bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing
Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki
2010-01-01
Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927
Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste
2017-09-01
Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.
Agmatine promotes the migration of murine brain endothelial cells via multiple signaling pathways.
Jung, Hyun-Joo; Jeon, Yong-Heui; Bokara, Kiran Kumar; Koo, Bon-Nyeo; Lee, Won Taek; Park, Kyung Ah; Lee, Jong-Eun
2013-01-17
The combination of adhesion and migration of endothelial cells (ECs) is an integral process for evolution, organization, repair and vessel formation in living organisms. Agmatine, a polycationic amine existing in brain, has been investigated to exert neuroprotective effects. Up to date, there are no studies reporting that agmatine modulates murine brain endothelial (bEnd.3) cells migration. In the present study, we intend to investigate the role of agmatine in bEnd.3 cells migration and the molecular mechanism mediating this action. The effect of agmatine on the bEnd.3 cells migration was examined by migration assay, and the mechanism involved for this effect was investigated by western blot analysis and NO contents measurements. Agmatine treatment (50, 100 and 200 μM) significantly accelerated bEnd.3 cells migration in a concentration-dependent manner. Western blotting revealed that agmatine treatment significantly induced vascular endothelial growth factor (VEGF), VEGF receptor 2 (Flk-1/KDR or VEGFR2), phosphatidylinositol 3-kinase (PI3K), Akt/protein kinase B (also known as PKB, PI3K downstream effector protein), endothelial nitric oxide synthase (eNOS) nitric oxide (NO; product by eNOS) and intercellular adhesion molecule 1 (ICAM-1) expressions during bEnd.3 cells migration. The expression of ICAM-1 and migration of bEnd.3 cells, induced by agmatine, were significantly attenuated by treatment of wortmannin, a specific PI3K inhibitor. Taken together, we provide the first evidence that activation of VEGF/VEGFR2 and the consequential PI3K/Akt/eNOS/NO/ICAM-1 signaling pathways are serial events, through which the treatment of agmatine could lead to bEnd.3 cells migration. Copyright © 2012 Elsevier Inc. All rights reserved.
Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami
2012-05-01
To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.
Wang, Bei; Zhao, Huzi; Zhao, Lei; Zhang, Yongchen; Wan, Qing; Shen, Yong; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu
2017-11-01
Metastatic spread of cancer cells is the most life-threatening aspect of breast cancer and involves multiple steps including cell migration. We recently found that the TBC1D3 oncogene promotes the migration of breast cancer cells, and its interaction with CaM enhances the effects of TBC1D3. However, little is known regarding the mechanism by which TBC1D3 induces the migration of cancer cells. Here, we demonstrated that TBC1D3 stimulated the expression of oxidized low density lipoprotein receptor 1 (OLR1), a stimulator of cell migration, in breast cancer cells at the transcriptional level. Depletion of OLR1 by siRNAs or down-regulation of OLR1 expression using pomalidomide, a TNFα inhibitor, significantly decreased TBC1D3-induced migration of these cells. Notably, TBC1D3 overexpression activated NF-κB, a major effector of TNFα signaling, while inhibition of TNFα signaling suppressed the effects of TBC1D3. Consistent with this, NF-κB inhibition using its specific inhibitor caffeic acid phenethyl ester decreased both TBC1D3-induced OLR1 expression and cell migration, suggesting a critical role for TNFα/NF-κB signaling in TBC1D3-induced migration of breast cancer cells. Mechanistically, TBC1D3 induced activation of this signaling pathway on multiple levels, including by increasing the release of TNFα, elevating the transcription of TNFR1, TRAF1, TRAF5 and TRAF6, and decreasing the degradation of TNFR1. In summary, these studies identify the TBC1D3 oncogene as a novel regulator of TNFα/NF-κB signaling that mediates this oncogene-induced migration of human breast cancer cells by up-regulating OLR1. Copyright © 2017 Elsevier B.V. All rights reserved.
Mathavan, Ketan; Khedgikar, Vikram; Bartolo, Vanessa
2017-01-01
During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors. PMID:29190819
Shih, Yung-Luen; Chou, Hsiao-Min; Chou, Hsiu-Chen; Lu, Hsu-Feng; Chu, Yung-Lin; Shang, Hung-Sheng; Chung, Jing-Gung
2017-09-01
Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose-dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose-dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP-9, MMP-2, MMP-1, FAK, 14-3-3, GRB2, Akt, NF-κB p65, SOS-1, p-EGFR, p-JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe-S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA-damage-inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future. © 2017 Wiley Periodicals, Inc.
Park, Sun Joo; Kim, Yong Tae; Jeon, You Jin
2012-04-01
Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H(2)O(2) treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H(2)O(2)-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47(phox). Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.
Park, Sun Joo; Kim, Yong Tae; Jeon, You Jin
2012-01-01
Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H2O2 treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H2O2-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47phox. Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol. PMID:22441674
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.
Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki
2017-10-31
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.
Wang, Guojun; Sun, Junfeng; Liu, Guanghui; Fu, Yang; Zhang, Xiefu
2017-12-01
Bradykinin (BK) has been reported to be involved in the progression of diverse types of cancer. In the present study, we investigated the possible role of BK in cell proliferation, migration, invasion, and tumor growth of gastric cancer (GC). Cell proliferation was evaluated by MTT assays. Cell migration and invasion were assessed by Transwell assays. Tumor growth of nude mice was detected by establishing subcutaneous xenograft tumor model. Silencing of bradykinin B1 receptor (B1R) and the bradykinin B2 receptor (B2R) was performed by transfecting cells with si-B1R and si-B2R, respectively. The protein expression levels of phospho-ERK1/2 (p-ERK1/2), matrix metalloproteinase (MMP)-2, MMP-9, and E-Cadherin were examined by Western blot. Data revealed that BK promoted cell proliferation, migration, invasion, and the in vivo tumor growth of GC cells SGC-7901 and HGC-27. Furthermore, BK elevated the protein levels of p-ERK1/2, MMP-2, and MMP-9, but reduced E-Cadherin. In addition, by repressing B2R using si-B2R or inhibiting ERK signaling pathway using PD98059, BK-mediated promotion of cell proliferation, migration, and invasion and upregulation of p-ERK1/2, MMP-2/9, as well as downregulation of E-Cadherin were attenuated. Taken together, the present study demonstrated that BK promoted cell proliferation, migration, invasion, and tumor growth by binding to B2R via ERK signaling pathway. Our findings may provide promising options for the further treatment of GC. J. Cell. Biochem. 118: 4444-4453, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Jianwei; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050; Sun, Xiaolei
2015-08-14
Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively,more » but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.« less
Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H
2013-10-25
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Jayakumar, Thanasekaran; Chiu, Chong-Chi; Wang, Shwu-Huey; Chou, Duen-Suey; Huang, Yung-Kai; Sheu, Joen-Rong
2014-01-01
Matrix metalloproteinases (MMPs) play important roles in the invasion and migration of cancer cells. In melanoma, several signaling pathways are constitutively activated. Among these, the mitogen-activated protein kinase (MAPKs) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Therefore, the inhibition of MAPK signaling might be a crucial role for the treatment of melanoma cancer. We examined the anticancer effect of CME-1, a novel water-soluble polysaccharide fraction, isolated from Cordyceps sinensis mycelia on B16-F10 melanoma cells. B16-F10 cells were exposed to different concentrations of CME-1 (250, 500 and 800 μg/ml) for 24 h in 5% CO² incubator at 37°C. Western blot analysis was performed to detect the expression of MMP-1, p-p38 MAPK, p-ERK1/2, and IkB-α in B16-F10 cells. Cell migration test was performed by wound healing migration assay. CME-1 suppresses cell migration in a concentration-dependent manner. Western blotting analysis revealed that CME-1 led to the reduction on the expression levels of MMP-1 and down regulated the expression of phosphorylated extracellular signal-regulated kinase (ERK1/2 and p38 mitogen-activated protein kinase (p38 MAPK). CME-1 restored the IkB-degradation in B16F10 cells. These results indicate that CME-1 inhibited MMP-1 expressions in B16F10 melanoma cells through either NF-kB or ERK/p38 MAPK down regulation thereby inhibiting B16F10 cell migration. Therefore, we proposed that CME-1 might be developed as a therapeutic potential candidate for the treatment of cancer metastasis.
Glabman, Raisa A.; Ruthel, Gordon; Hamann, Alf; Debes, Gudrun F.
2016-01-01
The skin is an important barrier organ and frequent target of autoimmunity and allergy. Here we found innate-like B cells that expressed the anti-inflammatory cytokine IL-10 in the skin of humans and mice. Unexpectedly, innate-like B1 and conventional B2 cells showed differential homing capacities with peritoneal B1 cells preferentially migrating into the inflamed skin of mice. Importantly, the skin-homing B1 cells included IL-10 secreting cells. B1 cell homing into the skin was independent of typical skin-homing trafficking receptors and instead required α4β1-integrin. Moreover, B1 cells constitutively expressed activated β1 integrin and relocated from the peritoneum to the inflamed skin and intestine upon innate stimulation, indicating an inherent propensity to extravasate into inflamed and barrier sites. We conclude that innate-like B cells migrate from central reservoirs into skin, adding an important cell type with regulatory and protective functions to the skin immune system. PMID:26851219
Walsh, Gregory S; Grant, Paul K; Morgan, John A; Moens, Cecilia B
2011-07-01
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.
Walsh, Gregory S.; Grant, Paul K.; Morgan, John A.; Moens, Cecilia B.
2011-01-01
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons. PMID:21693519
Li, Xiaozhao; Bao, Chunyu; Ma, Zhinan; Xu, Boqun; Liu, Xiaoqiu; Ying, Xiaoyan; Zhang, Xuesen
2018-05-09
As widely used in consumer products, perfluorooctanoic acid (PFOA) has become a common environmental pollutant, which has been detected in human serum and associated with cancers. Our previous study showed that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. Here, we showed that PFOA (≥100 nM) treatment also stimulated A2780 ovarian cancer cell invasion and migration, which correlated with increased matrix metalloproteinases MMP-2/-9 expression, important proteases associated with tumor invasion and migration. Notably, PFOA treatment induced activation of ERK1/2/ NF-κB signaling. Pre-treatment with U0126, an ERK1/2inhibitor;or JSH-23, a NF-kB inhibitor, can reverse the PFOA-induced cell migration and invasion. Consistent with these results, inhibiting ERK1/2 or NF-κB signaling abolished PFOA-induced up-regulation of MMP-2/-9 expression. These results indicate that PFOA can stimulate ovarian cancer cell migration, invasion and MMP-2/-9 expression by up-regulating ERK/NF-κB pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Kun; Sun, Peisheng; Yue, Zhongyi
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Previous studies have reported that the oxidored-nitro domain containing protein 1 (NOR1) is a novel tumor suppressor in several tumors. Recent evidence suggests that NOR1 is strongly expressed in HCC cells. However, its role and mechanism in HCC are unclear. In the current study, Western blot and qPCR detected strong NOR1 mRNA and protein expression in HepG2 and Hep3B cells. After transfection with NOR1 siRNA or pcDNA3.1-myc-his-NOR1, the proliferation and migration of HepG2 and Hep3B cells were analyzed in vitro. HepG2 or Hep3B cells overexpressing NOR1 showed anmore » increased proliferation and migration, whereas siRNA-mediated silencing of NOR1 showed the opposite effect. Furthermore, NOR1 activated the Notch signaling pathway, indicated by increased levels of Notch1, NICD, Hes1, and Hey1 in protein. Importantly, the Notch inhibitor DAPT downregulated Notch activation and further enhanced siNOR1-induced reduction of cell proliferation and migration in HepG2 and Hep3B cells, whereas DAPT reversed the effect of NOR1 overexpression on cell proliferation and migration. In conclusion, these results indicate that NOR1 may be involved in the progression of HCC and thus may be a potential target for the treatment of liver cancer. - Highlights: • NOR1 expression is up-regulated in HCC cells. • NOR1 promotes the proliferation and migration of HCC cells. • NOR1 promotes the progression of HCC cells by activating Notch pathway.« less
Store-operated Ca{sup 2+} entry in rhabdomyosarcoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Evi, E-mail: Evi.Schmid@med.uni-tuebingen.de; Stagno, Matias Julian; Yan, Jing
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, has an intrinsic or early-acquisition of resistance to chemo- and radiation therapy. Molecular determinants pivotal for RMS migration, metastatic invasion, cell proliferation, and survival are incompletely identified. Migration and cell proliferation were shown to correlate with cytosolic Ca{sup 2+} activity ([Ca{sup 2+}]{sub i}). Store-operated Ca{sup 2+}-entry (SOCE) that increases intracellular [Ca{sup 2+}] is accomplished by Orai1, a pore-forming ion channel unit, the expression of which is stimulated by the transcription factor NFκB. The present study explored the expression of Orai1 and its regulators STIM1 and NFκB in human rhabdomyosarcoma cell linesmore » and analyzed their impact on cell proliferation and migration. For the study human rhabdomyosarcoma cell lines RD (embryonal) and RH30 (alveolar) were analyzed for Orai1, STIM1, and NFκB transcription by RT-PCR and their corresponding proteins in Western blot. [Ca{sup 2+}]{sub i} was detected via Fura-2 fluorescence and SOCE – resulting from [Ca{sup 2+}]{sub i} increase following store depletion with extracellular Ca{sup 2+} removal and inhibition of the sarcoendoplasmatic reticular Ca{sup 2+} ATPase – detected with thapsigargin. Cell migration was analyzed in transwell and mitotic cell death with the clonogenic assay. In summary, Orai1, STIM1, and NFκB are expressed in embryonal (RD) and alveolar (RH30) rhabdomyosarcoma. SOCE inhibitor BTP2, Orai1 inhibitor 2-APB, or NFκB inhibitor wogonin virtually abrogated (BTP2, 2-APB) or significantly reduced (wogonin) SOCE. Moreover, SOCE inhibitors 2-APB and BTP2 and wogonin significantly inhibited migration and proliferation of both, RD and RH30 cells. These results suggest that Orai1 signaling is involved in SOCE into rhabdomyosarcoma cells thus contributing to migration, invasion and proliferation. - Highlights: • Orai1, STIM1, and NFκB are expressed in RD and RH30 rhabdomyosarcoma cell lines. • Orai1, STIM1, and NFκB are significantly upregulated in the RH30 cell line and leads to a significantly increased SOCE. • Orai1 signaling is involved in SOCE thus contributing to migration, invasion and proliferation.« less
Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel
2015-01-01
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388
Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D
2015-04-20
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.
Xu, Zhiyao; Tao, Jingjing; Chen, Ping; Chen, Long; Sharma, Sherven; Wang, Guanyu; Dong, Qinghua
2018-03-01
Short-chain fatty acid sodium butyrate (NaB) is the byproduct of bacterial anaerobic fermentation of dietary fiber in the colon, and has been shown to have an antitumor effect on colorectal cancer (CRC). The miR-200 family is a key regulator of the epithelial-mesenchymal transition (EMT). We investigate the role of miR-200s expression on cell migration in NaB-treated CRC cells. HCT116 and LOVO CRC cells treated with NaB depicted reduced cell proliferation, enhanced apoptosis, and cell cycle arrest. NaB inhibited cell migration in the wound healing and transwell assays, and in spheriod cultures while regulating EMT-related protein expression. NaB reciprocally increased miR-200s but reduced expression of their target genes (Bmi-1, Zeb1, EZH2). Cells transfected with miR-200c shRNA displayed a significant blockade of NaB-induced anti-invasive activity. Upregulation of Bmi-1 expression partially reversed the effect of NaB. In addition to inhibition of tumor growth in vivo, qRT-PCR results showed that NaB increased miR-200c/200b/492 expression in the tumor tissues. Immunohistochemistry and Western blotting results demonstrated that NaB decreased Bmi-1 expression in vivo. NaB inhibits CRC cell migration by enhancing miR-200c expression-mediated downregulation of Bmi-1. These findings support the utility of NaB in colorectal cancer therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling.
Khanna, Puja; Lee, Joan Shuying; Sereemaspun, Amornpun; Lee, Haeryun; Baeg, Gyeong Hun
2018-06-22
Dysregulated JAK/STAT signaling has been implicated in breast cancer metastasis, which is associated with high relapse risks. However, mechanisms underlying JAK/STAT signaling-mediated breast tumorigenesis are poorly understood. Here, we showed that GRAMD1B expression is upregulated on IL-6 but downregulated upon treatment with the JAK2 inhibitor AG490 in the breast cancer MDA-MB-231 cells. Notably, Gramd1b knockdown caused morphological changes of the cells, characterized by the formation of membrane ruffling and protrusions, implicating its role in cell migration. Consistently, GRAMD1B inhibition significantly enhanced cell migration, with an increase in the levels of the Rho family of GTPases. We also found that Gramd1b knockdown-mediated pro-migratory phenotype is associated with JAK2/STAT3 and Akt activation, and that JAK2 or Akt inhibition efficiently suppresses the phenotype. Interestingly, AG490 dose-dependently increased p-Akt levels, and our epistasis analysis suggested that the effect of JAK/STAT inhibition on p-Akt is via the regulation of GRAMD1B expression. Taken together, our results suggest that GRAMD1B is a key signaling molecule that functions to inhibit cell migration in breast cancer by negating both JAK/STAT and Akt signaling, providing the foundation for its development as a novel biomarker in breast cancer.
Hjort, Magnus A.; Abdollahi, Pegah; Vandsemb, Esten N.; Fenstad, Mona H.; Lund, Bendik; Slørdahl, Tobias S.; Børset, Magne; Rø, Torstein B.
2018-01-01
Phosphatase of regenerating liver-3 (PRL-3/PTP4A3) is upregulated in multiple cancers, including BCR-ABL1- and ETV6-RUNX-positive acute lymphoblastic leukemia (ALL). With this study, we aim to characterize the biological role of PRL-3 in B cell ALL (B-ALL). Here, we demonstrate that PRL-3 expression at mRNA and protein level was higher in B-ALL cells than in normal cells, as measured by qRT-PCR or flow cytometry. Further, we demonstrate that inhibition of PRL-3 using shRNA or a small molecular inhibitor reduced cell migration towards an SDF-1α gradient in the preB-ALL cell lines Reh and MHH-CALL-4. Knockdown of PRL-3 also reduced cell adhesion towards fibronectin in Reh cells. Mechanistically, PRL-3 mediated SDF-1α stimulated calcium release, and activated focal adhesion kinase (FAK) and Src, important effectors of migration and adhesion. Finally, PRL-3 expression made Reh cells more resistance to cytarabine treatment. In conclusion, the expression level of PRL-3 was higher in B-ALL cells than in normal cells. PRL-3 promoted adhesion, migration and resistance to cytarabine. PRL-3 may represent a novel target in the treatment of B-ALL. PMID:29423065
Mapp, Oni M.; Wanner, Sarah J.; Rohrschneider, Monica R.; Prince, Victoria E.
2011-01-01
The facial branchiomotor neurons undergo a characteristic tangential migration in the vertebrate hindbrain. Several signaling mechanisms have been implicated in this process, including the non-canonical Wnt/planar cell polarity (PCP) pathway. However, the role of this signaling pathway in controlling the dynamics of these neurons is unclear. Here, we describe the cellular dynamics of the facial neurons as they migrate, focusing on the speed and direction of migration, extension of protrusions, cell shape and orientation. Furthermore, we show that the PET/LIM domain protein Prickle1b (Pk1b) is required for several aspects of these migratory behaviors, including cell orientation. However, we find that centrosome localization is not significantly affected by disruption of Pk1b function, suggesting that polarization of the neurons is not completely lost. Together, our data suggest that Pk1b function may be required to integrate the multiple migratory cues received by the neurons into polarization instructions for proper posterior movement. PMID:20503357
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles
2014-05-30
(pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A role for chemokine signaling in neural crest cell migration and craniofacial development
Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk
2009-01-01
Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198
Ma, Weina; Zhu, Man; Zhang, Dongdong; Yang, Liu; Yang, Tianfeng; Li, Xin; Zhang, Yanmin
2017-02-15
Berberine, a plant-derived compound isolated from Coptis chinensis used in traditional Chinese medicine, has been shown to possess anti-cancer properties. However, no study has shown that berberine could target ephrin-B2, which plays a critical role in cell proliferation and migration. The aim of this study is to investigate the effect of berberine on cancer cell growth and migration, through the regulation of ephrin-B2 and downstream signaling molecules. In this study, a high ephrin-B2-expressing cell membrane chromatography method was developed to investigate 48 crude extracts from traditional Chinese medicine that could act on ephrin-B2. Cell proliferative and wound-healing assays were used to study the effect of berberine on cancer cell growth and migration. The mechanism of berberine was investigated using western blot. Berberine was isolated from C. chinensis extracts and showed activity on the HEK293/ephrin-B2 cell membrane chromatography column. Berberine showed a greater inhibitory effect in high-expressing ephrin-B2 cells (HEK293/ephrin-B2 cells) than in normal HEK293 cells, and decreased the expression of ephrin-B2 and its PDZ binding proteins, which indicates that ephrin-B2 is a target of berberine. Furthermore, berberine downregulates the phosphorylation of VEGFR2 and downstream signaling members (AKT and Erk1/2), which in turn downregulates the expression of MMP2 and MMP9. The above data confirm the inhibitory effects of berberine on ZR-75-30 cell proliferation and cell migration. Overall, our studies demonstrate that berberine inhibits cell growth and migration by targeting ephrin-B2. Copyright © 2016 Elsevier GmbH. All rights reserved.
[Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].
Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan
2018-02-01
Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.
Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.
Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li
2016-07-01
The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.
Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG
2013-01-01
SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013
Poudrier, Johanne; Roger, Michel
2016-01-01
We have previously shown that overexpression of BLyS/BAFF was associated with increased relative frequencies of innate “precursor” marginal zone (MZ)-like B-cells in the blood of HIV-1-infected rapid and classic progressors. However, along with relatively normal BLyS/BAFF expression levels, these cells remain unaltered in elite-controllers (EC), rather, percentages of more mature MZ-like B-cells are decreased in the blood of these individuals. Fluctuations in frequencies of blood MZ-like B-cell populations may reflect migratory patterns associated with disease progression status, suggesting an important role for these cells in HIV-1 pathogenesis. We have therefore longitudinally measured plasma levels of B-tropic chemokines by ELISA-based technology as well as their ligands by flow-cytometry on blood B-cell populations of HIV-1-infected individuals with different rates of disease progression and uninfected controls. Migration potential of B-cell populations from these individuals were determined by chemotaxis assays. We found important modulations of CXCL13-CXCR5, CXCL12-CXCR4/CXCR7, CCL20-CCR6 and CCL25-CCR9 chemokine-axes and increased cell migration patterns in HIV progressors. Interestingly, frequencies of CCR6 expressing cells were significantly elevated within the precursor MZ-like population, consistent with increased migration in response to CCL20. Although we found little modulation of chemokine-axes in EC, cell migration was greater than that observed for uninfected controls, especially for MZ-like B-cells. Overall the immune response against HIV-1 may involve recruitment of MZ-like B-cells to peripheral sites. Moreover, our findings suggest that “regulated” attraction of these cells in a preserved BLyS/BAFF non-inflammatory environment, such as encountered in EC could be beneficial to the battle and even control of HIV. PMID:27203285
Wnt5b-associated exosomes promote cancer cell migration and proliferation.
Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira
2017-01-01
Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma.
Qin, Yuan; Zhao, Dong; Zhou, Hong-Gang; Wang, Xing-Hui; Zhong, Wei-Long; Chen, Shuang; Gu, Wen-Guang; Wang, Wei; Zhang, Chun-Hong; Liu, Yan-Rong; Liu, Hui-Juan; Zhang, Qiang; Guo, Yuan-Qiang; Sun, Tao; Yang, Cheng
2016-07-05
Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC.
Apigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma
Zhong, Wei-long; Chen, Shuang; Gu, Wen-guang; Wang, Wei; Zhang, Chun-hong; Liu, Yan-rong; Liu, Hui-juan; Zhang, Qiang; Guo, Yuan-qiang; Sun, Tao; Yang, Cheng
2016-01-01
Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC. PMID:27203387
Wang, Xueer; Tang, Pei; Guo, Fukun; Zhang, Min; Chen, Yinghua; Yan, Yuan; Tian, Zhihui; Xu, Pengcheng; Zhang, Lei; Zhang, Lu; Zhang, Lin
2017-01-01
In our previous study, Activin B induced actin stress fiber formation and cell migration in Bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. However, the underlying molecular mechanisms are not well studied. RhoA is recognized to play a critical role in the regulation of actomyosin cytoskeletal organization and cell migration. Pull-down assay was performed to investigate the activity of RhoA. The dominant-negative mutants of RhoA (RhoA(N19)) was used to determine whether RhoA has a role in Activin B-induced cytoskeleton organization and cell migration in BMSCs. Cytoskeleton organization was examined by fluorescence Rhodamine-phalloidin staining, and cell migration by transwell and cell scratching assay. Western blot was carried out to investigate downstream signaling cascade of RhoA. Inhibitor and siRNAs were used to detect the role of downstream signaling in stress fiber formation and/or cell migration. RhoA was activated by Activin B in BMSCs. RhoA(N19) blocked Activin B-induced stress fiber formation and cell migration. ROCK inhibitor blocked Activin B-induced stress fiber formation but enhanced BMSCs migration. Activin B induced phosphorylation of LIMK2 and Cofilin, which was abolished by ROCK inhibition. Both of siRNA LIMK2 and siRNA Cofilin inhibited Activin B-induced stress fiber formation. RhoA regulates Activin B-induced stress fiber formation and migration of BMSCs. A RhoA-ROCK-LIMK2-Cofilin signaling node exists and regulates actin stress fiber formation. RhoA regulates Activin B-induced cell migration independent of ROCK. Better understanding of the molecular mechanisms of BMSCs migration will help optimize therapeutic strategy to target BMSCs at injured tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of a kinin B2 receptor antagonist on LPS- and cytokine-induced neutrophil migration in rats
Santos, Danielle R; Calixto, João B; Souza, Glória E P
2003-01-01
This study examines the involvement of kinins in neutrophil migration into rat subcutaneous air pouches triggered by lipopolysaccharide (LPS), as well as the putative roles played by kinin B1 and B2 receptors, tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and selectins in this response. LPS (5 ng to 10 μg cavity−1) injected into the 6-day-old pouch induced a dose- and time-dependent neutrophil migration which peaked between 4 and 6 h, and was maximal following the dose of 100 ng cavity−1 (saline: 0.46±0.1; LPS: 43±3.70 × 106 cells cavity−1 at 6 h). Bradykinin (BK) (600 nmol) injected into the pouch of saline-treated rats induced only modest neutrophil migration (0.73±0.16 × 106 cells cavity−1). A more robust response to BK (3.2±0.25 × 106 cells cavity−1) was seen in animals pretreated with captopril, but this was still smaller than the responses to IL-1β or TNF-α (15 pmol: 23±2.2 × 106 and 75 pmol: 29.5±2 × 106 cells cavity−1, respectively). Nevertheless, the B1 agonist des-Arg9-BK (600 nmol) failed to induce neutrophil migration. HOE-140 (1 and 2 mg kg−1), a B2 receptor antagonist, reduced LPS-induced neutrophil migration. HOE-140 also reduced the neutrophil migration induced by BK, but had no effect on the migration promoted by IL-1β or TNF-α. des-Arg9-[Leu8]-BK, B1 receptor antagonist was ineffective in changing neutrophil migration caused by any of these stimuli. Neutrophil migration induced by LPS or BK was reduced by interleukin-1 receptor antagonist (IL-1ra) (1 mg kg−1), sheep anti-rat TNF serum (anti-TNF serum) (0.3 ml cavity−1), and the nonspecific selectin inhibitor fucoidin (10 mg kg−1). TNF-α levels in the pouch fluid were increased by LPS or BK injection, peaking at 0.5–1 h and gradually declining thereafter up to 6 h. IL-1β levels increased steadily throughout the 6 h period. HOE-140 markedly inhibited the rise in IL-1β and TNF-α levels in pouch fluid triggered by both stimuli. These results indicate that BK participates importantly in selectin-dependent neutrophil migration into the air pouch triggered by LPS in the rat, by stimulating B2 receptors coupled to synthesis/release of TNF-α and IL-1β. PMID:12770932
Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila
2017-06-01
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Sun, Mengyao; Wang, Xiaopeng; Tu, Chen; Wang, Shuang; Qu, Jianqiang; Xiao, Shengxiang
2017-12-01
MicroRNAs (miRNAs) play an increasingly important role in cancer growth by coordinately suppressing genes that control cell migration, proliferation, and invasion. The above results can be achieved through the regulation of gene expression by miRNAs by suppressing translation or the direct sequence-specific degradation of the targeted mRNA. In the present study, we indicate that the expression of miR-216b could be effectively repressed both in human melanoma tissues through a comparison with primary melanoma and in human melanoma cell lines through a comparison with a normal human keratinocyte line. Moreover, miR-216b induced a clear decrease in melanoma cell proliferation and migration in vitro. Forkhead box M1 (FOXM1) was confirmed as a target gene of miR-216b, and the overexpression of miR-216b markedly repressed the luciferase activity of reporter plasmids containing the FOXM1 3'-UTR (untranslated region). Furthermore, miR-216b suppressed melanoma cell growth in nude mice in vivo, with the effects of miR-216b overexpression on melanoma cell growth and proliferation reversed by FOXM1 overexpression. The results demonstrated that miR-216b is a tumor suppressor in melanoma, identified the FOXM1 signaling pathway as a target of miR-216b action, and suggested a potential therapeutic role for miR-216b in melanoma. © 2017 International Federation for Cell Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr
2012-06-22
Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1more » mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.« less
Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua
2014-12-01
Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Aili, Abudunaibi; Chen, Yong; Zhang, Hongqi
2016-01-01
MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.
Redondo-Muñoz, Javier; José Terol, María; García-Marco, José A; García-Pardo, Angeles
2008-01-01
B-cell chronic lymphocytic leukemia (B-CLL) progression is frequently accompanied by clinical lymphadenopathy, and the CCL21 chemokine may play an important role in this process. Indeed, CCR7 (the CCL21 receptor), as well as matrix metalloproteinase-9 (MMP-9), are overexpressed in infiltrating B-CLL cells. We have studied whether MMP-9 is regulated by CCL21 and participates in CCL21-dependent migration. CCL21 significantly increased B-CLL MMP-9 production, measured by gelatin zymography. This was inhibited by blocking extracellular signal-regulated kinase-1/2 (ERK1/2) activity or by cell transfection with CCR7-siRNA. Accordingly, CCL21/CCR7 interaction activated the ERK1/2/c-Fos pathway and increased MMP-9 mRNA. CCL21-driven B-CLL cell migration through Matrigel or human umbilical vein endothelial cells (HUVEC) was blocked by anti-CCR7 antibodies, CCR7-siRNA transfection, or the ERK1/2 inhibitor U0126, as well as by anti-MMP-9 antibodies or tissue inhibitor of metalloproteinase 1 (TIMP-1). These results strongly suggest that MMP-9 is involved in B-CLL nodal infiltration and expand the roles of MMP-9 and CCR7 in B-CLL progression. Both molecules could thus constitute therapeutic targets for this disease.
Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling
2018-05-15
The present study aimed to investigate the ability of hesperidin to suppress the migration and invasion of A549 cells, and to investigate the role of the SDF-1/CXCR-4 cascade in this suppression. We performed a Transwell migration assay to measure the migratory capability of A549 cells treated with 0.5% DMSO, SDF-1α, AMD3100 or hesperidin. The SDF-1 level in the culture medium was determined by an enzyme-linked immunosorbent assay (ELISA) to detect whether different concentrations of hesperidin affected SDF-1 secretion. A wound-healing assay was performed to determine the effects of different concentrations of hesperidin on the migration inhibition of A549, H460 and H1975 cells. Additionally, the effect of various hesperidin concentrations on the rate of A549 cell invasion and migration was examined with and without Matrigel in Transwell assays, respectively. Western blot analysis was used to evaluate the protein levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, p-p65, p-IκB, IκB, p-Akt and Akt. RT-qPCR was used to detect the mRNA levels of CXCR-4, MMP-9, CK-19, Vimentin, p65, IκB, SDF-1 and Akt. The Transwell migration assay indicated that SDF-1α promoted A549 cell migration, while AMD3100 and hesperidin significantly inhibited the migratory capability. The wound-healing assay demonstrated that hesperidin treatment significantly reduced the rate of wound closure compared with the control group in a dose-dependent manner. Similarly, the migration and invasive abilities of A549 cells, H460 and H1975 cells treated with hesperidin were significantly decreased compared with the control group. The ELISA data suggested that hesperidin attenuated the secretion of SDF-1 from A549 cells in a dose-dependent manner. Furthermore, western blot analysis indicated that SDF-1α treatment significantly increased the levels of CXCR-4, p-p65, p-IκB and p-Akt in A549 cells. In contrast, AMD3100 or hesperidin reversed the effect induced by SDF-1α through decreasing the expression of CXCR-4. Subsequent RT-qPCR and western blot analyses also confirmed that hesperidin had a significant effect on the expression of EMT-related proteins, including MMP-9, CK-19 and Vimentin, in A549 cells. In summary, we demonstrated that hesperidin inhibited the migratory and invasive capabilities of A549 human non-small cell lung cancer cells by the mediation of the SDF-1/CXCR-4 signaling cascade, thus providing the foundation for the development of hesperidin as a safer and more effective anticancer drug for non-small cell lung cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B; van der Hoorn, Frans A
2016-07-15
The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ou, Young; Chan, Gordon; Zuo, Jeremy; Rattner, Jerome B.; van der Hoorn, Frans A.
2016-01-01
The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process. PMID:27226580
Huang, Chien-Hsun; Lu, Shing-Hwa; Chang, Chao-Chien; Thomas, Philip Aloysius; Jayakumar, Thanasekaran; Sheu, Joen-Rong
2015-01-05
Invasion and metastasis are the major causes of treatment failure in patients with cancer. Hinokitiol, a natural bioactive compound found in Chamacyparis taiwanensis, has been used in hair tonics, cosmetics, and food as an antimicrobial agent. In this study, we investigated the effects and possible mechanisms of action of hinokitiol on migration by the metastatic melanoma cell line, B16-F10, in which matrix metalloproteinase-1 (MMP-1) is found to be highly- expressed. Treatment with hinokitiol revealed a concentration-dependent inhibition of migration of B16-F10 melanoma cells. Hinokitiol appeared to achieve this effect by reducing the expression of MMP-1 and by suppressing the phosphorylation of mitogen- activated protein kinase (MAPK) signaling molecules such as extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinases (JNK). On the other hand, hinokitiol treatment reversed IκB-α degradation and inhibited the phosphorylation of p65 nuclear factor kappa B (NF-κB) and cJun in B16-F10 cells. In addition, hinokitiol suppressed the translocation of p65 NF-κB from the cytosol to the nucleus, suggesting reduced NF-κB activation. Consistent with these in vitro findings, our in vivo study demonstrated that hinokitiol treatment significantly reduced the total number of mouse lung metastatic nodules and improved histological alterations in B16-F10 injected C57BL/6 mice. These findings suggest that treatment of B16-F10 cells with hinokitiol significantly inhibits metastasis, possibly by blocking MMP-1 activation, MAPK signaling pathways and inhibition of the transcription factors, NF-κB and c-Jun, involved in cancer cell migration. These results may accelerate the development of novel therapeutic agents for the treatment of malignant cancers. Copyright © 2014 Elsevier B.V. All rights reserved.
Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.
2013-07-01
The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both humanmore » and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.« less
López-Ortega, Orestes; Santos-Argumedo, Leopoldo
2017-01-01
Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775
Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.
Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste
2005-04-01
Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.
Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression
Cowden Dahl, Karen D.; Robertson, Sarah E.; Weaver, Valerie M.; Simon, M. Celeste
2005-01-01
Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of α and β aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt-/- and Hifα-/- TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin αvβ3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O2). Culturing B16F0 melanoma cells at 1.5% O2 resulted in increased αvβ3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O2 tension influence placental invasion and tumor migration by increasing cell surface expression of αvβ3 integrin. PMID:15689487
The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.
Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling
2018-05-21
Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
de Rooij, Martin F M; Kuil, Annemieke; Geest, Christian R; Eldering, Eric; Chang, Betty Y; Buggy, Joseph J; Pals, Steven T; Spaargaren, Marcel
2012-03-15
Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.
Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Cai, Ying; Li, Aodi; Li, Danni; Li, Ce; Wen, Ti; Fan, Yibo; Hou, Kezuo; Ma, Yanju; Hu, Xuejun; Liu, Yunpeng
2017-04-01
Multiple drug resistance (MDR) and metastasis are two major factors that contribute to the failure of cancer treatment. However, the relationship between MDR and metastasis has not been characterized. Additionally, the role of the E3 ubiquitin ligase Cbl-b in metastasis of MDR gastric and breast cancer is not well known. In the present study, we found that MDR gastric and breast cancer cells possess a typical mesenchymal phenotype and enhanced cell migration capacity. Additionally, Cbl-b is poorly expressed in MDR gastric and breast cancer cells. In MDR gastric adenocarcinoma tissues, gastric cancer patients with low Cbl-b expression were more likely to have tumor invasion (P=.016) and lymph node metastasis (P=.007). Moreover, overexpression of Cbl-b reduced cell migration in MDR cell cultures both in vitro and in vivo. Cbl-b overexpression also prevented EMT by inducing ubiquitination and degradation of EGFR, leading to inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis. However, further overexpression of EGFR on a background of Cbl-b overexpression restored both the mesenchymal phenotype and cell migration capacity of MDR gastric and breast cancer cells. These results suggest that Cbl-b is an important factor for maintenance of the epithelial phenotype and inhibition of cell migration in MDR gastric and breast cancer cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Role of high-mobility group box 1 in methamphetamine-induced activation and migration of astrocytes.
Zhang, Yuan; Zhu, Tiebing; Zhang, Xiaotian; Chao, Jie; Hu, Gang; Yao, Honghong
2015-09-04
Mounting evidence has indicated that high-mobility group box 1 (HMGB1) is involved in cell activation and migration. Our previous study demonstrated that methamphetamine mediates activation of astrocytes via sigma-1 receptor (σ-1R). However, the elements downstream of σ-1R in this process remain poorly understood. Thus, we examined the molecular mechanisms involved in astrocyte activation and migration induced by methamphetamine. The expression of HMGB1, σ-1R, and glial fibrillary acidic protein (GFAP) was examined by western blot and immunofluorescent staining. The phosphorylation of cell signaling pathways was detected by western blot, and cell migration was examined using a wound-healing assay in rat C6 astroglia-like cells transfected with lentivirus containing red fluorescent protein (LV-RFP) as well as in primary human astrocytes. The role of HMGB1 in astrocyte activation and migration was validated using a siRNA approach. Exposure of C6 cells to methamphetamine increased the expression of HMGB1 via the activation of σ-1R, Src, ERK mitogen-activated protein kinase, and downstream NF-κB p65 pathways. Moreover, methamphetamine treatment resulted in increased cell activation and migration in C6 cells and primary human astrocytes. Knockdown of HMGB1 in astrocytes transfected with HMGB1 siRNA attenuated the increased cell activation and migration induced by methamphetamine, thereby implicating the role of HMGB1 in the activation and migration of C6 cells and primary human astrocytes. This study demonstrated that methamphetamine-mediated activation and migration of astrocytes involved HMGB1 up-regulation through an autocrine mechanism. Targeting HMGB1 could provide insights into the development of a potential therapeutic approach for alleviation of cell activation and migration of astrocytes induced by methamphetamine.
Liu, Xiaoling; Xu, Qian; Liu, Weiwei; Yao, Guodong; Zhao, Yeli; Xu, Fanxing; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Yamato, Masayuki; Ikejima, Takashi
2018-04-01
Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.
Copper chaperone Atox1 plays role in breast cancer cell migration.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-01-29
Copper (Cu) is an essential transition metal ion required as cofactor in many key enzymes. After cell uptake of Cu, the metal is transported by the cytoplasmic Cu chaperone Atox1 to P 1B -type ATPases in the Golgi network for incorporation into Cu-dependent enzymes in the secretory path. Cu is vital for many steps of cancer progression and Atox1 was recently suggested to have additional functionality as a nuclear transcription factor. We here investigated the expression level, cellular localization and role in cell migration of Atox1 in an aggressive breast cancer cell line upon combining immunostaining, microscopy and a wound healing assay. We made the unexpected discovery that Atox1 accumulates at lamellipodia borders of migrating cancer cells and Atox1 silencing resulted in migration defects as evidenced from reduced wound closure. Therefore, we have discovered an unknown role of the Cu chaperone Atox1 in breast cancer cell migration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.
Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan
2016-04-07
Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.
Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen
2011-11-01
To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P < 0.01). (2) Migration and invasion: in the scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.
Wu, L C; Liu, C; Jiang, M R; Jiang, Y M; Wang, Q H; Lu, Z Y; Wang, S J; Yang, W L; Shao, Y X
2016-08-26
Development of the eyelid requires coordination of the cellular processes involved in proliferation, cell size alteration, migration, and cell death. C57BL/6J-corneal opacity (B6-Co) mice are mutant mice generated by the administration of N-ethyl-N-nitrosourea (100 mg/kg). They exhibit the eyelids open at birth phenotype, abnormal round cell shape from tightened F-actin bundles in leading edge keratinocytes at E16.5, and gradual corneal opacity with neovessels. The tip of the leading edge in B6-Co mice did not move forward, and demonstrated a sharp peak shape without obvious directionality. Analysis of the biological characteristics of B6-Co mice demonstrated that abnormal migration of keratinocytes could affect eyelid development, but proliferation and apoptosis in B6-Co mice had no effect. Mutant gene mapping and sequence analysis demonstrated that in B6-Co mice, adenosine was inserted into the untranslated regions, between 3030 and 3031, in the mRNA 3'-terminal of Fgf10. In addition, guanine 7112 was substituted by adenine in the Mtap1B mRNA, and an A2333T mutation was identified in Mtap1B. Quantitative real-time polymerase chain reaction analysis showed that expression of the Hbegf gene was significantly down-regulated in the eyelids of B6- Co mice at E16.5, compared to B6 mice. However, the expression of Rock1, Map3k1, and Jnk1 genes did not show any significant changes. Abnormal keratinocyte migration and down-regulated expression of the Hbegf gene might be associated with impaired eyelid development in B6-Co mice.
Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin
2017-01-01
Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.
Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng
2017-04-01
Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
IFN-γ promotes transendothelial migration of CD4+ T cells across the blood-brain barrier.
Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari
2017-10-01
Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K b and I-A b molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4 + T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4 + T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4 + T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4 + T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.
Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing
2017-01-01
This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC. © 2017 The Author(s). Published by S. Karger AG, Basel.
Itou, Junji; Tanaka, Sunao; Li, Wenzhao; Iida, Atsuo; Sehara-Fujisawa, Atsuko; Sato, Fumiaki; Toi, Masakazu
2017-01-01
During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and β1. In addition, we clarified that integrin α6 and β1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6β1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6β1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6β1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane
In this work, the A - and B -site cation migration pathways involving defect complexes in bulk La 1-xSr xMnO 3±δ (LSM) at x = 0.0-0.25 are investigated based on density-functional-theory modeling for solid-oxide fuel-cell (SOFC) cathode applications. We propose a dominant A -site cation migration mechanism which involves an A -site cation (e.g., Lamore » $$x\\atop{A}$$) V A"' of a V A"' -V B"' cluster, where La$$x\\atop{A}$$, V A"' and V B"' are La 3+, A-site vacancy, and B-site vacancy in bulk LSM, respectively, and V A"' -V B"' is the first nearest-neighbor V A"' and V B"' pair. This hop exhibits an approximately 1.6-eV migration barrier as compared to approximately 2.9 eV of the La$$x\\atop{A}$$ hop into a V A"'. This decrease in the cation migration barrier is attributed to the presence of the V B"' relieving the electrostatic repulsion and steric constraints to the migrating A-site cations in the transition-state image configurations.« less
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; ...
2017-10-04
In this work, the A - and B -site cation migration pathways involving defect complexes in bulk La 1-xSr xMnO 3±δ (LSM) at x = 0.0-0.25 are investigated based on density-functional-theory modeling for solid-oxide fuel-cell (SOFC) cathode applications. We propose a dominant A -site cation migration mechanism which involves an A -site cation (e.g., Lamore » $$x\\atop{A}$$) V A"' of a V A"' -V B"' cluster, where La$$x\\atop{A}$$, V A"' and V B"' are La 3+, A-site vacancy, and B-site vacancy in bulk LSM, respectively, and V A"' -V B"' is the first nearest-neighbor V A"' and V B"' pair. This hop exhibits an approximately 1.6-eV migration barrier as compared to approximately 2.9 eV of the La$$x\\atop{A}$$ hop into a V A"'. This decrease in the cation migration barrier is attributed to the presence of the V B"' relieving the electrostatic repulsion and steric constraints to the migrating A-site cations in the transition-state image configurations.« less
The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.
Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong
2018-02-19
EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.
Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma
Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula
2015-01-01
Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity. PMID:25811194
Zhang, Jia-Qiang; Chen, Shi; Gu, Jiang-Ning; Zhu, Yi; Zhan, Qian; Cheng, Dong-Feng; Chen, Hao; Deng, Xia-Xing; Shen, Bai-Yong; Peng, Cheng-Hong
2018-01-01
The study aims to verify the hypothesis that up-regulation of microRNA-300 (miR-300) targeting CUL4B promotes apoptosis and suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of pancreatic cancer cells by regulating the Wnt/β-catenin signaling pathway. Pancreatic cancer tissues and adjacent tissues were collected from 110 pancreatic cancer patients. Expression of miR-300, CUL4B, Wnt, β-catenin, E-cadherin, N-cadherin, Snail, GSK-3β, and CyclinD1 were detected using qRT-PCR and Western blot. CFPAC-1, Capan-1, and PANC-1 were classified into blank, negative control (NC), miR-300 mimics, miR-300 inhibitors, siRNA-CUL4B, and miR-300 inhibitors + siRNA-CUL4B groups. The proliferation, migration, invasion abilities, the cell cycle distribution, and apoptosis rates were measured in CCK-8 and Transwell assays. Pancreatic cancer tissues showed increased CUL4B expression but decreased miR-300 expression. When miR-300 was lowly expressed, CUL4B was upregulated which in-turn activated the Wnt/β-catenin pathway to protect the β-catenin expression and thus induce EMT. When miR-300 was highly expressed, CUL4B was downregulated which in-turn inhibited the Wnt/β-catenin pathway to prevent EMT. Weakened cell migration and invasion abilities and enhanced apoptosis were observed in the CUL4B group. The miR-300 inhibitors group exhibited an evident increase in growth rate accompanied the largest tumor volume. Smaller tumor volume and slower growth rate were observed in the miR-300 mimics and siRNA-CUL4B group. Our study concludes that lowly expressed miR-300 may contribute to highly expressed CUL4B activating the Wnt/β-catenin signaling pathway and further stimulating EMT, thus promoting proliferation and migration but suppressing apoptosis of pancreatic cancer cells. © 2017 Wiley Periodicals, Inc.
Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen
2017-01-01
Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545
Hou, Sen; Lin, Qiuyu; Guan, Feng; Lin, Chenghe
2018-06-12
To investigate the biological functions and regulatory mechanism of lncRNA TNRC6C-AS1 in thyroid cancer (TC). TNRC6C-AS1, miR-129-5p, and UNC5B expression levels were investigated by qRT-PCR and Western blot. CCK-8 assay was conducted to determine cell proliferation, while transwell assay was for inspection of cell migration and invasion. Through bioinformatic analysis, the interactions among TNRC6C-AS1, miR-129-5p, and UNC5B were predicted. Dual luciferase reporter gene assay and RNA pull-down assay confirmed the predicted target relationships. Tumor xenograft assay was applied to inspect the effect of TNRC6C-AS1 downregulation on TC development in vivo. TNRC6C-AS1 and UNC5B were overexpressed, while miR-129-5p was underexpressed in TC tissues and cells. TNRC6C-AS1/UNC5B downregulation and miR-129-5p overexpression could suppress proliferation, migration, and invasion of TC cells as well as inhibit tumorigenesis in vivo. MiR-129-5p targeted TNRC6C-AS1 and UNC5B in TC cells; and UNC5B expression was downregulated by knocking down TNRC6C-AS1, which competitively bound with miR-129-5p. Downregulation of TNRC6C-AS1 restrained TC development by knocking down UNC5B through upregulating the expression of miR-129-5p. © 2018 Wiley Periodicals, Inc.
Bai, Chengfeng; Xue, Rongfang; Wu, Jianbing; Lv, Tian; Luo, Xiaojun; Huang, Yun; Gong, Yan; Zhang, Honghua; Zhang, Yihua; Huang, Zhangjian
2017-05-02
The new nitric oxide (NO) donor O 2 -(6-oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolate 3c could simultaneously liberate NO as well as an active 3-glutathionyl-2-exomethylene-cyclohexanone 2 in the presence of GSH/GSTπ; exhibit potent antiproliferative activity; repress migration, invasion, and lateral migration of metastatic B16-BL6 cells; and significantly decrease hetero-adhesion of B16-BL6 cells to human umbilical vein endothelial cells.
Ono, Yosuke; Yu, Weimiao; Jackson, Harriet E; Parkin, Caroline A; Ingham, Philip W
2015-01-01
Adaxial cells, the progenitors of slow-twitch muscle fibres in zebrafish, exhibit a stereotypic migratory behaviour during somitogenesis. Although this process is known to be disrupted in various mutants, its precise nature has remained unclear. Here, using in vivo imaging and chimera analysis, we show that adaxial cell migration is a cell autonomous process, during which cells become polarised and extend filopodia at their leading edge. Loss of function of the Prdm1a transcription factor disrupts the polarisation and migration of adaxial cells, reflecting a role that is independent of its repression of sox6 expression. Expression of the M- and N-cadherins, previously implicated in driving adaxial cell migration, is largely unaffected by loss of Prdm1a function, suggesting that differential cadherin expression is not sufficient for adaxial cell migration. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE.
Lai, Shan-Shan; Xue, Bin; Yang, Yang; Zhao, Li; Chu, Chao-Shun; Hao, Jia-Yin; Wen, Chuan-Jun
2012-11-01
The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE. Copyright © 2012. Published by Elsevier Inc.
Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu
2016-01-01
Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313
Zomorrod, Mina Soufi; Kouhkan, Fatemeh; Soleimani, Masoud; Aliyan, Amir; Tasharrofi, Nooshin
2018-03-30
Angiogenesis is one of the essential hallmarks of cancer that is controlled by the balance between positive and negative regulators. FGFR1 signaling is crucial for the execution of bFGF-induced proliferation, migration, and tube formation of endothelial cells (ECs) and onset of angiogenesis on tumors. The purpose of this study is to identify whether or not miR-133 regulates FGFR1 expression and accordingly hypothesize if it plays a crucial role in modulating bFGF/FGFR1 activity in ECs and blocking tumor angiogenesis through targeting FGFR1. The influences of miR-133 overexpression on bFGF stimulated endothelial cells were assessed by cell growth curve, MTT assaying, tube formation, and migration assays. Forced expression of miR-133 caused significant reductions in bFGF-induced proliferation and migratory ability of ECs. MiR-133 Expression was negatively correlated with both mRNA and protein levels of FGFR1 in the transfected ECs isolated from peripheral blood. Moreover, overexpression of miR-133 drastically reduced the rate of cell division and disturbed capillary network formation of transfected ECs. These findings suggest that miR-133 plays an important function in bFGF-induced angiogenesis processes in ECs and provides a rationale for new therapeutic approaches to suppress tumor angiogenesis and cancer. Copyright © 2018. Published by Elsevier Inc.
Liu, Yuan-Hsuan; Tsai, Jin-Wu; Chen, Jia-Long; Yang, Wan-Shan; Chang, Pei-Ching; Cheng, Pei-Lin; Turner, David L.; Yanagawa, Yuchio; Wang, Tsu-Wei; Yu, Jenn-Yah
2017-01-01
During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon. PMID:28276447
Li, Hesheng; Sun, Qinglei; Han, Bing; Yu, Xingquan; Hu, Baoguang; Hu, Sanyuan
2015-01-01
Deregulated microRNAs (miRNAs) have been shown to play important roles in cancer progression as a result of changes in expression of their target genes. In this study, we investigated the expression of miR-16b in eight hepatocellular carcinoma (HCC) cell lines, revealed the roles of miR-26b on hepatocellular carcinoma (HCC) cell proliferation, migration, and invasion, and confirmed that EphA2 is a direct target of miR-26b. The miR-26b expression was decreased and EphA2 expression was evaluated in HCC cell lines. Luciferase assays revealed that miR-26b inhibited EphA2 expression by targeting the 3'-untranslated region of EphA2 mRNA. Overexpression of miR-26b dramatically inhibited the proliferation, invasion, and migration of HCC cells by targeting EphA2. Moreover, miR-26b down-regulated c-Myc and CyclinD1 expression, which was reversed by overexpressed EphA2. Taken together, our data demonstrated the mechanism of miR-26b contributed to HCC progression and implicated that miR-26b's potential in HCC therapy.
[The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].
Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun
2007-03-01
To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.
Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J.; Espinosa, Ana; Molnár, Zoltán
2016-01-01
Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. PMID:27151949
Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed
2007-01-15
Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.
Oktyabri, Dulamsuren; Ishimura, Akihiko; Tange, Shoichiro; Terashima, Minoru; Suzuki, Takeshi
2016-04-01
DOT1L is a histone H3 lysine 79 (H3K79) methyltransferase mainly implicated in leukemia. Here we analyzed the function of DOT1L in breast cancer cells. The expression of DOT1L was up-regulated in malignant breast cancer tissues. Over-expression of DOT1L significantly increased the sphere formation and the cell migration activities of MCF7 breast cancer cell line. In contrast, knockdown of DOT1L reduced the cell migration activity of MDA-MB-231 breast cancer cell line. BCAT1, which encodes a branched-chain amino acid transaminase, was identified as one of the target genes controlled by DOT1L through the regulation of H3K79 methylation. Mechanistic investigation revealed that BCAT1 might be an important regulator responsible for DOT1L-mediated sphere formation and cell migration in breast cancer cells. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan
2016-07-01
Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.
Katterle, Y; Brandt, B H; Dowdy, S F; Niggemann, B; Zänker, K S; Dittmar, T
2004-01-12
Due to its pivotal role in the growth factor-mediated tumour cell migration, the adaptor protein phospholipase C-gamma1 (PLC-gamma1) is an appropriate target to block ultimately the spreading of EGFR/c-erbB-2-positive tumour cells, thereby minimising metastasis formation. Here, we present an approach to block PLC-gamma1 activity by using protein-based PLC-gamma1 inhibitors consisting of PLC-gamma1 SH2 domains, which were fused to the TAT-transduction domain to ensure a high protein transduction efficiency. Two proteins were generated containing one PLC-gamma1-SH2-domain (PS1-TAT) or two PLC-gamma1-SH2 domains (PS2-TAT). PS2-TAT treatment of the EGFR/c-erbB-2-positive cell line MDA-HER2 resulted in a reduction of the EGF-mediated PLC-gamma1 tyrosine phosphorylation of about 30%, concomitant with a complete abrogation of the EGF-driven calcium influx. In addition to this, long-term PS2-TAT treatment both reduces the EGF-mediated migration of about 75% combined with a markedly decreased time locomotion of single MDA-HER2 cells as well as decreases the proliferation of MDA-HER2 cells by about 50%. Due to its antitumoral capacity on EGFR/c-erbB-2-positive breast cancer cells, we conclude from our results that the protein-based PLC-gamma1 inhibitor PS2-TAT may be a means for novel adjuvant antitumour strategies to minimise metastasis formation because of the blockade of cell migration and proliferation.
Borrull, Aurélie; Allard, Bertrand; Wijkhuisen, Anne; Herbet, Amaury; Lamourette, Patricia; Birouk, Wided; Leiber, Denis; Tanfin, Zahra; Ducancel, Frédéric; Boquet, Didier; Couraud, Jean-Yves; Robin, Philippe
2016-01-01
ABSTRACT Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer. We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB. These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics. PMID:27390909
PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility
González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.
2016-01-01
ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725
A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib
Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krishnan, Ramesh K.; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M.
2017-01-01
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. PMID:28007914
Dhruv, Harshil D.; McDonough Winslow, Wendy S.; Armstrong, Brock; Tuncali, Serdar; Eschbacher, Jenny; Kislin, Kerri; Loftus, Joseph C.; Tran, Nhan L.; Berens, Michael E.
2013-01-01
Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the “Go or Grow” hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the “Go or Grow” hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44) revealed higher proliferation (Ki67 labeling index) in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These findings suggest that the reciprocal and coordinated suppression/activation of transcription factors, such as c-Myc and NF-κB may underlie the shift of glioma cells from a “growing-to-going” phenotype. PMID:23967279
Ranjbarnejad, Tayebeh; Saidijam, Massoud; Moradkhani, Shirin; Najafi, Rezvan
2017-07-01
Colorectal cancer (CRC) is the most common cancer. A proper method to reduce mortality of CRC is chemoprevention to prevent initiation and promotion of intestinal tumorgenesis. One of the promising and developing chemopreventive agents is natural compounds found in plants. Frankincense, the resin extract from the Boswellia specious, has been used in traditional and modern medicine for treating various diseases with very minimal side effects. In the current study, we investigated the anti-cancer activity of methanolic extract of Boswellia serrata (B. serrata) on HT-29 human colon cancer cells. HT-29 cells were treated with different concentrations of B. serrata and cell viability was assessed by MTT assay. mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), MMP-9 and hypoxia-inducible factor-1 (HIF-1) were examined by quantitative real-time PCR. Apoptosis was evaluated by the proportion of sub-G1 cells. Prostaglandin E2 (PGE2) level and caspase 3 activity were determined by ELISA assay. Tube formation potential and HT-29 cells migration were assessed using three-dimensional vessel formation assay and scratch test. B. serrata extract considerably decreased the expression of mPGES-1, VEGF, CXCR4, MMP-2, MMP-9 and HIF-1. The caspase 3 activity and percent of cells in sub-G1 phase were increased by B. serrata extract. Cell viability, PGE2 generation, in vitro tube formation and cell migration were decreased significantly in B. serrata-treated HT-29 compared to the control group. Our findings suggest that B. serrata extract inhibits proliferation, angiogenesis and migration and induces apoptosis in HT-29 cells by inhibiting of mPGES-1 and decreasing the PGE2 level and its downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Payen, Valéry L; Hsu, Myriam Y; Rädecke, Kristin S; Wyart, Elisabeth; Vazeille, Thibaut; Bouzin, Caroline; Porporato, Paolo E; Sonveaux, Pierre
2017-10-15
Extracellular acidosis resulting from intense metabolic activities in tumors promotes cancer cell migration, invasion, and metastasis. Although host cells die at low extracellular pH, cancer cells resist, as they are well equipped with transporters and enzymes to regulate intracellular pH homeostasis. A low extracellular pH further activates proteolytic enzymes that remodel the extracellular matrix to facilitate cell migration and invasion. Monocarboxylate transporter MCT1 is a passive transporter of lactic acid that has attracted interest as a target for small-molecule drugs to prevent metastasis. In this study, we present evidence of a function for MCT1 in metastasis beyond its role as a transporter of lactic acid. MCT1 activates transcription factor NF-κB to promote cancer cell migration independently of MCT1 transporter activity. Although pharmacologic MCT1 inhibition did not modulate MCT1-dependent cancer cell migration, silencing or genetic deletion of MCT1 in vivo inhibited migration, invasion, and spontaneous metastasis. Our findings raise the possibility that pharmacologic inhibitors of MCT1-mediated lactic acid transport may not effectively prevent metastatic dissemination of cancer cells. Cancer Res; 77(20); 5591-601. ©2017 AACR . ©2017 American Association for Cancer Research.
Murphy, Niamh; Lynch, Marina A
2012-12-01
The P2X(7) receptor is an ion-gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X(7) receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP-treated glial cultures from neonatal C57BL/6 mice release and increase MMP-9 activity, which is coupled with a decrease in release of TIMP-1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3-inflammasome formation. Treatment with a P2X(7) receptor antagonist prevents ATP-induced MMP-9 activity, inhibition of active cathepsin B release and allows for TIMP-1 to be released from the cell. We have shown that cathepsin B degrades TIMP-1, and inhibition of cathepsin B allows for release of TIMP-1 and inhibits MMP-9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X(7) antagonism, depletion of MMP-9 or inhibition of cathepsin B. © 2012 International Society for Neurochemistry.
Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang
Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less
Poliakova, Kseniia; Adebola, Adijat; Leung, Conrad L; Favre, Bertrand; Liem, Ronald K H; Schepens, Isabelle; Borradori, Luca
2014-01-01
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.
Poliakova, Kseniia; Adebola, Adijat; Leung, Conrad L.; Favre, Bertrand; Liem, Ronald K. H.; Schepens, Isabelle; Borradori, Luca
2014-01-01
BPAG1a and BPAG1b (BPAG1a/b) constitute two major isoforms encoded by the dystonin (Dst) gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5′ end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3′ end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts. PMID:25244344
Zhang, Fu-Hui; Ren, Hong-Yue; Shen, Jin-Xing; Zhang, Xiao-Yun; Ye, Hui-Ming; Shen, Dong-Yan
2017-10-01
Magnolol has shown the potential anticancer properties against a variety of cancers. However, the role of magnolol in cholangiocarcinoma (CCA) cells is unknown. In this study, we assessed the effect of magnolol on the CCA cells. CCA cells were treated with magnolol in the absence or presence of TNFα, the activator for NF-κB. After co-incubation with magnolol, cell proliferation and growth were examined by MTT, colony formation and xenograft tumors; cell cycle was analyzed by flow cytometry; cell migration and invasion were detected by wound healing and transwell assays; the expression of PCNA, Ki67, CyclinD1, MMP-2, MMP-7 and MMP-9 and NF-κB pathway were evaluated by using Western blot. Magnolol inhibited the abilities of CCA cell growth, migration and invasion accompanying with a decreased expression of PCNA, Ki67, MMP-2, MMP-7 and MMP-9 (all P<0.05). with magnolol induced cell cycle arrest in G1 phase with a downregulation of cell cycle protein CyclinD1 (all P<0.05). In addition, magnolol suppressed the expression of p-IκBα and p-P65 and the effect of magnolol on CCA cells could be inhibited by TNFα. Magnolol could inhibit the growth, migration and invasion of CCA cells through regulation of NF-κB pathway, and these data indicate that magnolol is a potential candidate for treating of CCA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhu, Ping; Liao, Ling-Yao; Zhao, Ting-Ting; Mo, Xiao-Mei; Chen, George G; Liu, Zhi-Min
2017-02-15
The higher incidence of thyroid cancer in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogen have strongly suggested that estrogen may be involved in the occurrence and development of thyroid cancer. Cadmium (Cd) is a potent metalloestrogen that disrupts the endocrine system by mimicking the effects of 17β-estradiol (E2). In the present study, we demonstrate that similar to E2 and G1, a specific agonist for G protein-coupled estrogen receptor (GPER), Cd induces the proliferation, invasion and migration of human WRO and FRO thyroid cancer cells that have endogenous GPER. Moreover, like E2 and G1, Cd leads to a rapid activation of ERK/AKT, and then nuclear translocation of NF-κB, increased expression of cyclin A and D1, and secretion of IL-8, all of which are significantly attenuated by GPER blockage or knock-down in both WRO and FRO cells. Furthermore, the Cd-induced proliferation, invasion and migration are suppressed either by specific inhibitors for GPER, ERK, AKT and NF-κB, or by knock-down of GPER. These results suggest that GPER/ERK&AKT/NF-κB signaling pathway is involved in the Cd-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells
Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.
2015-01-01
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881
Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells
Fernandez-Gallardo, Miriam; González-Ramírez, Ricardo; Sandoval, Alejandro; Monjaraz, Eduardo
2016-01-01
Emerging evidence suggests that the adenosine (Ado) receptors may play crucial roles in tumor progression. Here, we show that Ado increases proliferation and migration in a triple negative breast cancer model, the MDA-MB 231 cell line. The use of specific agonists and antagonists evidenced that these effects depend on the activation of the A2B receptor, which then triggers an intracellular response mediated by the adenylate cyclase/PKA/cAMP signaling pathway. Ado also increases the expression of NaV1.5 channels, a potential biomarker in breast cancer. Together, these data suggest important roles of the A2B receptors and NaV1.5 channels in the Ado-induced increase in proliferation and migration of the MDA-MB 231 cells. PMID:27911956
Tan, Tzu-Wei; Chou, Ying-Erh; Yang, Wei-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Tang, Chih-Hsin
2014-09-01
Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma. Copyright © 2014 Elsevier B.V. All rights reserved.
Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration.
Williams, Jason S; Hsu, Jessica Y; Rossi, Christy Cortez; Artinger, Kristin Bruk
2018-03-29
Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Jeong, Ae Lee; Han, Sora; Lee, Sunyi; Su Park, Jeong; Lu, Yiling; Yu, Shuangxing; Li, Jane; Chun, Kyung-Hee; Mills, Gordon B.; Yang, Young
2016-01-01
Mutation of PPP2R1A has been observed at high frequency in endometrial serous carcinomas but at low frequency in ovarian clear cell carcinoma. However, the biological role of mutation of PPP2R1A in ovarian and endometrial cancer progression remains unclear. In this study, we found that PPP2R1A expression is elevated in high-grade primary tumor patients with papillary serous tumors of the ovary. To determine whether increased levels or mutation of PPP2R1A might contribute to cancer progression, the effects of overexpression or mutation of PPP2R1A on cell proliferation, migration, and PP2A phosphatase activity were investigated using ovarian and endometrial cancer cell lines. Among the mutations, PPP2R1A-W257G enhanced cell migration in vitro through activating SRC-JNK-c-Jun pathway. Overexpression of wild type (WT) PPP2R1A increased its binding ability with B56 regulatory subunits, whereas PPP2R1A-mutations lost the ability to bind to most B56 subunits except B56δ. Total PP2A activity and PPP2R1A-associated PP2Ac activity were significantly increased in cells overexpressing PPP2R1A-WT. In addition, overexpression of PPP2R1A-WT increased cell proliferation in vitro and tumor growth in vivo. PMID:27272709
Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa
2017-01-01
Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.
Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen
2017-01-01
Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070
VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fanni; Li, Chenglin; Zhang, Haiwei
It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14more » treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.« less
del Pliego, Margarita González; Aguirre-Benítez, Elsa; Paisano-Cerón, Karina; Valdovinos-Ramírez, Irene; Rangel-Morales, Carlos; Rodríguez-Mata, Verónica; Solano-Agama, Carmen; Martín-Tapia, Dolores; de la Vega, María Teresa; Saldoval-Balanzario, Miguel; Camacho, Javier; Mendoza-Garrido, María Eugenia
2013-01-01
Pituitary adenomas can invade surrounded tissue, but the mechanism remains elusive. Ether à go-go-1 (Eag1) potassium channel and epidermal growth factor receptors (ErbB1 and ErbB2) have been associated to invasive phenotypes or poor prognosis in cancer patients. However, cells arrange their cytoskeleton in order to acquire a successful migration pattern. We have studied ErbBs and Eag1 expression, and cytoskeleton arrangements in 11 human pituitary adenomas. Eag1, ErbB1 and ErbB2 expression were studied by immunochemistry in tissue and cultured cells. The cytoskeleton arrangement was analyzed in cultured cells by immunofluorescence. Normal pituitary tissue showed ErbB2 expression and Eag1 only in few cells. However, Eag1 and ErbB2 were expressed in all the tumors analyzed. ErbB1 expression was observed variable and did not show specificity for a tumor characteristic. Cultured cells from micro- and macro-adenomas clinically functional organize their cytoskeleton suggesting a mesenchymal pattern, and a round leucocyte/amoeboid pattern from invasive clinically silent adenoma. Pituitary tumors over-express EGF receptors and the ErbB2 repeated expression suggests is a characteristic of adenomas. Eag 1 was express, in different extent, and could be a therapeutic target. The cytoskeleton arrangements observed suggest that pituitary tumor cells acquire different patterns: mesenchymal, and leucocyte/amoeboid, the last observed in the invasive adenomas. Amoeboid migration pattern has been associated with high invasion capacity.
Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.
Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi
2018-02-01
N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Carter, Bing Z.; Mak, Po Yee; Chen, Ye; Mak, Duncan H.; Mu, Hong; Jacamo, Rodrigo; Ruvolo, Vivian; Arold, Stefan T.; Ladbury, John E.; Burks, Jared K.; Kornblau, Steven; Andreeff, Michael
2016-01-01
To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy. PMID:26956049
Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich
2016-06-15
Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.
Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin
2017-07-05
Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cyr-Depauw, Chanèle; Northey, Jason J.; Tabariès, Sébastien; Annis, Matthew G.; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P.; Andrechek, Eran R.
2016-01-01
ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638
Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook
2016-04-01
Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).
Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook
2016-01-01
Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569
Lin, Su-Hsuan; Shih, Yuan-Wei
2014-06-01
Chalcones (benzylideneacetophenone) are cancer-preventive food components found in a human diet rich in fruits and vegetables. In this study, we first report the chemopreventive effect of chalcone in human gastric adenocarcinoma cell lines: AGS. The results showed that chalcone could inhibit the abilities of the adhesion, invasion, and migration by cell-matrix adhesion assay, Boyden chamber invasion/migration assay, and wound-healing assay. Molecular data showed that the effect of chalcone in AGS cells might be mediated via sustained inactivation of the phosphorylation of focal adhesion kinase (FAK) and c-Jun N-terminal kinase 1 and 2 (JNK1/2) signal involved in the downregulation of the expressions of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Next, chalcone-treated AGS cells showed tremendous decrease in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, treating FAK small interfering RNA (FAK siRNA) and specific inhibitor for JNK (SP600125) to AGS cells could reduce the phosphorylation of JNK1/2 and the activity of MMP-2 and MMP-9. Our results revealed that chalcone significantly inhibited the metastatic ability of AGS cells by reducing MMP-2 and MMP-9 expressions concomitantly with a marked reduction on cell invasion and migration through suppressing and JNK signaling pathways. We suggest that chalcone may offer the application in clinical medicine.
Phosphodiesterase 4 regulates the migration of B16-F10 melanoma cells.
Watanabe, Yoshihiro; Murata, Taku; Shimizu, Kasumi; Morita, Hiroshi; Inui, Madoka; Tagawa, Toshiro
2012-08-01
Phosphodiesterases (PDEs) are important regulators of signal transduction processes. Eleven PDE gene families (PDE1-11) have been identified and several PDE isoforms are selectively expressed in various cell types. PDE4 family members specifically hydrolyze cyclic AMP (cAMP). Four genes (PDE4A-D) are known to encode PDE4 enzymes, with additional diversity generated by the use of alternative mRNA splicing and the use of different promoters. While PDE4 selective inhibitors show therapeutic potential for treating major diseases such as asthma and chronic obstructive pulmonary disease, little is known concerning the role of PDE4 in malignant melanoma. In this study, we examined the role of PDE4 in mouse B16-F10 melanoma cells. In these cells, PDE4 activity was found to be ∼60% of total PDE activity. RT-PCR detected only PDE4B and PDE4D mRNA. Cell growth was inhibited by the cAMP analog, 8-bromo-cAMP, but not by the specific PDE4 inhibitors, rolipram and denbufylline, which increased intracellular cAMP concentrations. Finally, migration of the B16-F10 cells was inhibited by the PDE4 inhibitors and 8-bromo-cAMP, while migration was increased by a protein kinase A (PKA) inhibitor, PKI(14-22), and was not affected by 8-pCPT-2'-O-Me-cAMP, which is an analog of exchange protein activated by cAMP (Epac). The inhibitory effect of rolipram on migration was reversed by PKI(14-22). Based on these results, PDE4 appears to play an important role in the migration of B16-F10 cells, and therefore may be a novel target for the treatment of malignant melanoma.
A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib.
Sun, Tianliang; Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krasel, Cornelius; Heil, Daniel; Krishnan, Ramesh K; Santoni, Marie-Josée; Borg, Jean-Paul; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M; Worzfeld, Thomas
2017-01-02
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. © 2017 Sun et al.
Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao
2016-11-01
Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH 3 ), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH 3 , Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.
[Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].
Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I
2017-01-01
Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.
PDGF-A suppresses contact inhibition during directional collective cell migration.
Nagel, Martina; Winklbauer, Rudolf
2018-06-08
The leading edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase-1 upstream and ephrinB1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass. © 2018. Published by The Company of Biologists Ltd.
Discovery of potent HDAC inhibitors based on chlamydocin with inhibitory effects on cell migration.
Wang, Shimiao; Li, Xiaohui; Wei, Yingdong; Xiu, Zhilong; Nishino, Norikazu
2014-03-01
The histone deacetylase (HDAC) family is a promising drug target class owing to the importance of these enzymes in a variety of cellular processes. Docking studies were conducted to identify novel HDAC inhibitors. Subtle modifications in the recognition domain were introduced into a series of chlamydocin analogues, and the resulting scaffolds were combined with various zinc binding domains. Remarkably, cyclo(L-Asu(NHOH)-L-A3mc6c-L-Phe-D-Pro, compound 1 b), with a methyl group at positions 3 or 5 on the aliphatic ring, exhibited better antiproliferative effects than trichostatin A (TSA) against MCF-7 and K562 cell lines. In addition to cell-cycle arrest and apoptosis, cell migration inhibition was observed in cells treated with compound 1 b. Subsequent western blot analysis revealed that the balance between matrix metalloproteinase 2 (MMP2) and tissue inhibitors of metalloproteinase 1 (TIMP1) determines the degree of metalloproteinase activity in MCF-7 cells, thereby regulating cell migration. The improved inhibitory activity imparted by altering the hydrophobic substitution pattern at the bulky cap group is a valuable approach in the development of novel HDAC inhibitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis.
Armas-González, Estefanía; Domínguez-Luis, María Jesús; Díaz-Martín, Ana; Arce-Franco, Mayte; Castro-Hernández, Javier; Danelon, Gabriela; Hernández-Hernández, Vanesa; Bustabad-Reyes, Sagrario; Cantabrana, Alberto; Uguccioni, Mariagrazia; Díaz-González, Federico
2018-06-07
B cells exert their pathogenic action in rheumatoid arthritis (RA) locally in the synovium. This study was undertaken to elucidate the chemokines responsible for the recruitment of B cells in the inflamed synovium, taking into account that the rich chemokine milieu present in the synovial tissue can fine-tune modulate discrete chemokine receptors. Expression levels of chemokine receptors from the CC and CXC family, as well as CD27, were assessed by flow cytometry in CD20 + mononuclear cells isolated from the peripheral blood (PB) and synovial fluid (SF) of RA and psoriatic arthritis patients. Transwell experiments were used to study migration of B cells in response to a chemokine or in the presence of multiple chemokines. B cells from the SF of arthritis patients showed a significant increase in the surface expression of CCR1, CCR2, CCR4, CCR5 and CXCR4 with respect to PB. Conversely, SF B cells expressed consistently lower amounts of CXCR5, CXCR7 and CCR6, independent of CD27 expression. Analysis of permeabilized B cells suggested internalization of CXCR5 and CCR6 in SF B cells. In Transwell experiments, CCL20 and CXCL13, ligands of CCR6 and CXCR5, respectively, caused a significantly higher migration of B cells from PB than of those from SF of RA patients. Together, these two chemokines synergistically increased B-cell migration from PB, but not from SF. These results suggest that CXCL13 and CCL20 might play major roles in RA pathogenesis by acting singly on their selective receptors and synergistically in the accumulation of B cells within the inflamed synovium.
Sun, Jinghui; Luo, Qing; Liu, Lingling; Song, Guanbin
2018-07-28
Cancer stem cells (CSCs) are a small subpopulation of tumour cells that have been proposed to be responsible for cancer initiation, chemotherapy resistance and cancer recurrence. Shear stress activated cellular signalling is involved in cellular migration, proliferation and differentiation. However, little is known about the effects of shear stress on the migration of liver cancer stem cells (LCSCs). Here, we studied the effects of shear stress that are generated from a parallel plated flow chamber system, on LCSC migration and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2), using transwell assay and western blot, respectively. We found that 2 dyne/cm 2 shear stress loading for 6 h promotes LCSC migration and activation of the FAK and ERK1/2 signalling pathways, whereas treatment with the FAK phosphorylation inhibitor PF573228 or the ERK1/2 phosphorylation inhibitor PD98059 suppressed the shear stress-promoted migration, indicating the involvement of FAK and ERK1/2 activation in shear stress-induced LCSC migration. Additionally, atomic force microscopy (AFM) analysis showed that shear stress lowers LCSC stiffness via the FAK and ERK1/2 pathways, suggesting that the mechanism by which shear stress promotes LCSC migration might partially be responsible for the decrease in cell stiffness. Further experiments focused on the role of the actin cytoskeleton, demonstrating that the F-actin filaments in LCSCs are less well-defined after shear stress treatment, providing an explanation for the reduction in cell stiffness and the promotion of cell migration. Overall, our study demonstrates that shear stress promotes LCSC migration through the activation of the FAK-ERK1/2 signalling pathways, which further results in a reduction of organized actin and softer cell bodies. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing
2018-06-16
Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.
Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A
2016-08-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.
Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.
2016-01-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683
Ma, De-Qiang; Zhang, Yin-Hua; Ding, De-Ping; Li, Juan; Chen, Lin-Li; Tian, You-You; Ao, Kang-Jian
2018-05-11
To investigate the impact of Bmi-1-mediated NF-κB pathway on the biological characteristics of CD133+ liver cancer stem cells (LCSCs). Flow cytometry was used to isolate CD133+ LCSC cells from Huh7, Hep3B, SK-hep1, and PLC/PRF-5 cells. CD133+ Huh7 cells were divided into Control, Blank, Bmi-1 siRNA, JSH-23 (NF-κB pathway inhibitor), and Bmi-1 + JSH-23 groups. The properties of CD133+ Huh7 cells were detected by the colony-formation and sphere-forming assays. Besides, Transwell assay was applied for the measurement of cell invasion and migration, immunofluorescence staining for the detection of NF-κB p65 nuclear translocation, and qRT-PCR and Western blotting for the determination of SOX2, NANOG, OCT4, Bmi-1, and NF-κB p65 expression. CD133+ Huh-7 cells were chosen as the experiment subjects after flow cytometry. Compared with CD133- Huh-7 cells, the expression of CD133, OCT4, SOX2, NANOG, Bmi-1, and NF-κB p65, the nuclear translocation of NF-κB p65, the number of cell colonies and Sphere formation, as well as the abilities of invasion and migration were observed to be increased in CD133+ Huh-7 cells, which was inhibited after treated with Bmi-1 siRNA or JSH-23, meanwhile, the cell cycle was arrested at the G0/G1 and S phases with apparently enhanced cell apoptosis. Importantly, no significant differences in the biological characteristics of CD133 + Huh-7 cells were found between the Blank group and Bmi-1 + JSH-23 group. Down-regulating Bmi-1 may inhibit the biological properties of CD133+ LCSC by blocking NF-κB signaling pathway, which lays a scientific foundation for the clinical treatment of liver cancer.
Pichavant, Muriel; Charbonnier, Anne-Sophie; Taront, Solenne; Brichet, Anne; Wallaert, Benoît; Pestel, Joel; Tonnel, André-Bernard; Gosset, Philippe
2005-04-01
Airway dendritic cells (DCs) are crucial for allergen-induced sensitization and inflammation in allergic asthma. After allergen challenge, an increased number of DCs is observed in airway epithelium from patients with allergy. Because Der p 1, a cysteine protease allergen from Dermatophagoides pteronyssinus , induces chemokine production by bronchial epithelial cells (BECs), the purpose of this investigation was to evaluate the capacity of BEC exposed to Der p 1 to recruit DCs. Chemotactic activity of BEAS-2B, a bronchial epithelial cell line, and BECs from nonatopic controls and patients with allergic asthma was evaluated on the migration of precursors, immature and mature monocyte-derived DCs (MDDCs), and CD34 + -derived Langerhans cells (LCs). C-C chemokine ligand (CCL)-2, CCL5, and C-X-C chemokine ligand 10 production by BEAS-2B and BEC was increased after Der p 1 exposure, whereas the proenzyme proDer p 1 devoid of enzymatic activity had no effect. Der p 1 stimulation of BEAS-2B and BEC from both groups increased significantly the recruitment of MDDC precursors, depending on CCL2, CCL5, and C-X-C chemokine ligand 10 production. In a reconstituted polarized epithelium, apical application of Der p 1 enhanced MDDC precursor migration into the epithelial layer. Moreover, Der p 1 stimulation of BEC from patients with asthma but not from controls increased the migration of LC precursors, mainly dependent on CCL20 secretion. No migration of immature and mature DCs was observed. These data confirmed that BECs participate in the homeostasis of the DC network present within the bronchial epithelium through the secretion of chemokines. In allergic asthma, upregulation of CCL20 production induced LC recruitment, the role of which remains to be determined.
Kwon, Chae Hwa; Moon, Hyun Jung; Park, Hye Ji; Choi, Jin Hwa; Park, Do Youn
2013-01-01
S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPK-dependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer. PMID:23456298
Huang, Gao-Xiang; Wang, Yan; Su, Jie; Zhou, Peng; Li, Bo; Yin, Li-Juan; Lu, Jian
2017-12-01
Although glucocorticoids (GCs) regulate proliferation, differentiation and apoptosis of tumor cells, their influence on metastasis of tumor cells is poorly understood. Melanoma is a type of skin cancers with high metastasis. We investigated the effect of GCs on metastasis of melanoma cells and its mechanism. We found that GCs significantly promoted the adhesion, migration, invasion of melanoma cells in vitro and lung metastasis in experimental melanoma metastasis mice. Dexamethasone (Dex), a synthetic GC, did not change the RhoA, RhoB and RhoC signalings, but significantly increased the expression and activity of Rho-associated kinase 1/2 (ROCK1/2). The effect of Dex was to increase ROCK1/2 stability mediated by glucocorticoid receptor. Inhibiting ROCK1/2 activity with Y-27632, a ROCK1/2 inhibitor abrogated the pro-migration and pro-metastasis effects of GCs in vitro and in vivo, indicating that ROCK1/2 mediated the pro-metastasis effects of GCs. Activation of PI3K/AKT also contributed to the pro-migration and pro-invasion effects of Dex partially through up-regulating ROCK1/2 expression. Additionally, Dex also down-regulated the expression of tissue inhibitors of matrix metalloproteinase-2. Taken together, our findings provide new data to understand the possible promoting roles and mechanisms of GCs in melanoma metastasis. Copyright © 2017. Published by Elsevier B.V.
Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula
Wen, Jason WH
2017-01-01
During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration. PMID:28826499
Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing
2014-01-01
Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838
Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing
2014-02-01
To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.
Fascin Overexpression Promotes Cholangiocarcinoma RBE Cell Proliferation, Migration, and Invasion.
Zhao, Haiying; Yang, Fuquan; Zhao, Wenyan; Zhang, Chunjv; Liu, Jingang
2016-04-01
Fascin is overexpressed in various tumor tissues and is closely related to tumor metastasis and invasion. However, the role of fascin in cholangiocarcinoma RBE cells has not been clearly reported. This study aimed to establish a cholangiocarcinoma cell line with stable and high expression of fascin to observe the effect of fascin on cell proliferation, migration, and invasion. A fascin overexpression vector, pcDNA3.1-Fascin, was constructed and transfected into the human cholangiocarcinoma RBE cell line. The results of real-time polymerase chain reaction, Western blot, and immunofluorescence indicated that fascin was steadily and highly expressed in RBE cells. The results of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and colony formation assay indicated that upregulated fascin expression could enhance cholangiocarcinoma cell proliferation. The results of wound healing assay and transwell assay indicated that fascin could promote cholangiocarcinoma cell migration and invasion, and a further study found that the nuclear factor-κB signaling pathway was activated after upregulation of fascin, whereas E-cadherin expression in these cells was significantly decreased. Additionally, E-cadherin expression was significantly increased after inhibiting nuclear factor-κB activity using inhibitor or small interfering RNA, and E-cadherin expression was decreased by fascin overexpression after nuclear factor-κB inhibition, suggesting that nuclear factor-κB signaling pathway was not involved in the regulation of E-cadherin by fascin. In summary, the results of this study demonstrated that fascin effectively promoted cholangiocarcinoma RBE cell proliferation, migration, and invasion. This study provides evidence for fascin as a potential target in the treatment of cholangiocarcinoma. © The Author(s) 2015.
Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon
2015-06-01
It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Metformin Treatment May Increase Omentin-1 Levels in Women With Polycystic Ovary Syndrome
Tan, Bee K.; Adya, Raghu; Farhatullah, Syed; Chen, Jing; Lehnert, Hendrik; Randeva, Harpal S.
2010-01-01
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with the metabolic syndrome. Decreased omentin-1 levels are associated with obesity and diabetes. To study the effects of metformin treatment on omentin-1 levels in PCOS subjects and effects of omentin-1 on in vitro migration and angiogenesis. RESEARCH DESIGN AND METHODS Serum omentin-1 was measured by ELISA. Angiogenesis was assessed by studying capillary tube formation in human microvascular endothelial cells (HMEC-1) on growth factor reduced Matrigel. Endothelial cell migration assay was performed in a modified Boyden chamber. Nuclear factor-κB (NF-κB) was studied by stably transfecting HMEC-1 cells with a cis-reporter plasmid containing luciferase reporter gene linked to five repeats of NF-κB binding sites. Akt phosphorylation was assessed by Western blotting. RESULTS Serum omentin-1 was significantly lower in PCOS women (P < 0.05). After 6 months of metformin treatment, there was a significant increase in serum omentin-1 (P < 0.01). Importantly, changes in hs-CRP were significantly negatively correlated with changes in serum omentin-1 (P = 0.036). In vitro migration and angiogenesis were significantly increased in serum from PCOS women (P < 0.01) compared with matched control subjects; these effects were significantly attenuated by metformin treatment (P < 0.01) plausibly through the regulation of omentin-1 levels via NF-κB and Akt pathways. CRP and VEGF induced in vitro migration, and angiogenesis was significantly decreased by omentin-1. CONCLUSIONS Increases in omentin-1 levels may play a role but are not sufficient to explain the decreased inflammatory and angiogenic effects of sera from metformin-treated PCOS women. PMID:20852028
Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K
1997-10-01
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.
Molecular Action of a Potential Tumor Suppression in Mammary Carcinogenesis
2006-05-01
translocation in MDA-MB231 cells, as shown in Fig. 5D , indicating that Tid1 inhibits FVII -induced IL-8 production and cell migration by blocking NF-nB...tissue factor - FVIIa pathway modulates the migratory potential of cancer cells through IL-8 production (7). As Tid1 blocks the IL-8 production of...Introduction: ErbB family of growth factor receptors (ErbB1-4) are critically involved in the derivation of certain mammary cancers [1-3]. Among them
Zha, He; Sun, Hui; Li, Xueru; Duan, Liang; Li, Aifang; Gu, Yue; Zeng, Zongyue; Zhao, Jiali; Xie, Jiaqing; Yuan, Shimei; Li, Huan; Zhou, Lan
2016-07-01
Previous studies have shown that S100 calcium-binding protein A8 (S100A8) contributes to the survival and migration of colorectal cancer (CRC) cells. However, whether S100A8 participates in the progression and metastasis of CRC via the regulation of macrophages in the tumor inflammatory microenvironment remains unknown. In this study, phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. MTT assay, western blot analysis, immunofluorescence staining, semi-quantitative RT-PCR (semi-PCR), quantitative real-time PCR (qPCR), Gaussia luciferase activity assay and ELISA were performed to analyze the roles and molecular mechanisms of S100A8 in the modulation of macrophages. MTT assay, flow cytometric analysis, Hoechst staining, wound healing and Transwell migration assay were used to test the effect of S100A8 on the viability and migration of CRC cells co-cultured with macrophages in the inflammatory microenvironment. We found that THP-1 monocytes were induced by PMA and differentiated to macrophages. S100A8 activated the NF-κB pathway in the macrophages and promoted the expression of miR-155 and inflammatory cytokines IL-1β and TNF-α in the inflammatory microenvironment mimicked by lipopolysaccharides (LPS). Furthermore, S100A8 contributed to augment the migration but not the viability of the CRC cells co-cultured with the macrophages in the inflammatory microenvironment. Altogether, our study demonstrated that S100A8 facilitated the migration of CRC cells in the inflammatory microenvironment, and the underlying molecular mechanisms may be partially attributed to the overexpression of miR-155, IL-1β and TNF-α through activation of the NF-κB pathway in macrophages.
Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li
2015-08-01
Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.
Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé
2017-01-01
The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.
Touihri-Barakati, Imen; Kallech-Ziri, Olfa; Ayadi, Wiem; Kovacic, Hervé; Hanchi, Belgacem; Hosni, Karim; Luis, José
2017-02-15
Integrins are essential protagonists in the complex multistep process of cancer progression and are thus attractive targets for the development of anticancer agents. Cucurbitacin B, a triterpenoid purified from the leaves of Tunisian Ecballium elaterium exhibited an anticancer effect and displayed anti-integrin activity on human glioblastoma U87 cells, without being cytotoxic at concentrations up to 500nM. Here we show that cucurbitacin B affected the adhesion and migration of U87 cells to fibronectin in a dose-dependent manner with IC50 values of 86.2nM and 84.6nM, respectively. Time-lapse videomicroscopy showed that cucurbitacin B significantly reduced U87 cells motility and affected directional persistence. Cucurbitacin B also inhibited proliferation with IC50 value of 70.1nM using Crystal Violet assay. Moreover, cucurbitacin B efficiently inhibited in vitro human microvascular endothelial cells (HMEC) angiogenesis with concentration up to 10nM. Interestingly, we demonstrate for the first time that this effect was specifically mediated by α5β1 integrins. These findings reveal a novel mechanism of action for cucurbitacin B, which displays a potential interest as a specific anti-integrin drug. Copyright © 2017 Elsevier B.V. All rights reserved.
HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells
Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin
2013-01-01
Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110
Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming
2017-01-01
Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions. PMID:29261770
Wang, Beilei; Liu, Dan; Wang, Chao; Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming
2017-01-01
Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions.
MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.
Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng
2017-01-01
Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.
Jonckheere, Nicolas; Skrypek, Nicolas; Merlin, Johann; Dessein, Anne Frédérique; Dumont, Patrick; Leteurtre, Emmanuelle; Harris, Ann; Desseyn, Jean-Luc; Susini, Christiane; Frénois, Frédéric; Van Seuningen, Isabelle
2012-01-01
The mucin MUC4 and its membrane partner the ErbB2 oncogenic receptor are potential interacting partners in human pancreatic tumour development. However, the way they function is still largely unknown. In this work, we aimed to identify the cellular mechanisms and the intracellular signalling pathways under the control of both ErbB2 and MUC4 in a human pancreatic adenocarcinomatous cell line. Using co-immunoprecipitation and GST pull-down, we show that MUC4 and ErbB2 interact in the human pancreatic adenocarcinomatous cell line CAPAN-2 via the EGF domains of MUC4. Stable cell clones were generated in which either MUC4 or ErbB2 were knocked down (KD) by a shRNA approach. Biological properties of these cells were then studied in vitro and in vivo. Our results show that ErbB2-KD cells are more apoptotic and less proliferative (decreased cyclin D1 and increased p27kip1 expression) while migration and invasive properties were not altered. MUC4-KD clones were less proliferative with decreased cyclin D1 expression, G1 cell cycle arrest and altered ErbB2/ErbB3 expression. Their migration properties were reduced whereas invasive properties were increased. Importantly, inhibition of ErbB2 and MUC4 expression did not impair the same signalling pathways (inhibition of MUC4 expression affected the JNK pathway whereas that of ErbB2 altered the MAPK pathway). Finally, ErbB2-KD and MUC4-KD cells showed impaired tumour growth in vivo. Our results show that ErbB2 and MUC4, which interact physically, activate different intracellular signalling pathways to regulate biological properties of CAPAN-2 pancreatic cancer cells.
PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.
Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu
2016-10-01
Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.
Curcumin is a potent modulator of microglial gene expression and migration
2011-01-01
Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders. PMID:21958395
Wang, Junjian; Huang, Shaoxiang
2018-03-01
Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.
Wang, Junjian; Huang, Shaoxiang
2018-01-01
Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment. PMID:29467859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp
Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less
Dong, Zhiwei; Chen, Yajie; Peng, Yuan; Wang, Fan; Yang, Zichen; Huang, Guangtao; Chen, Yu; Yuan, Zhiqiang; Cao, Tongtong; Peng, Yizhi
2017-01-01
Skin transplantation aims to cover skin defects but often fails due to immune rejection of the transplantated tissue. Immature dendritic cells (imDCs) induce immune tolerance but have a low migration rate. After stimulation, imDCs transform into mature DCs, which activate immune rejection. Thus, inducing imDC to obtain a high migration counteracts development of immune tolerance. We transfected imDCs with a recombinant adenovirus carrying the CCR7 gene (Ad-CCR7) and a small interfering RNA targeting RelB (RelB-siRNA) to concurrently overexpress CCR7 and downregulate RelB expression. Functionally, such cells showed a significantly enhanced migration rate in the chemotactic assay and decreased T-cell proliferation after lipopolysaccharide stimulation in mixed lymphocyte reactions. Cotransfected cells showed an increased ability to induce immune tolerance by upregulating T regulatory (Treg) cells and shifting the Th1/Th2 ratio. Cotransfection of Ad-CCR7 and RelB-siRNA endowed imDCs with resistance to apoptosis and cell death. CCR7 overexpression and RelB knockdown (KD) in imDCs improve skin-graft survival in a murine skin-transplantation model. Transfection with Ad-CCR7 and RelB KD in imDCs may be an effective approach inducing immune tolerance, thus being potentially valuable for inhibiting allograft rejection. © 2017 The Author(s). Published by S. Karger AG, Basel.
Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells
Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.
2012-01-01
Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less
miR-133b Regulation of Connective Tissue Growth Factor
Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon; Jorgensen, Marda; Liu, Chen; Protopapadakis, Yianni; Patel, Ashnee; Petersen, Bryon E.
2017-01-01
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response. PMID:26945106
Wu, Xiaojing; Gu, Xiaochun; Han, Xiaoning; Du, Ailing; Jiang, Yan; Zhang, Xiaoyun; Wang, Yanjie; Cao, Guangliang; Zhao, Chunjie
2014-01-22
Interkinetic nuclear migration (INM) is a key feature of cortical neurogenesis. INM functions to maximize the output of the neuroepithelium, and more importantly, balance the self-renewal and differentiation of the progenitors. Although INM has been reported to be highly correlated with the cell cycle, little is known about the effects of cell cycle regulators on INM. In this study, by crossing Foxm1(fl/fl) mice with Emx1-Cre line, we report that a conditional disruption of forkhead transcription factor M1 (Foxm1) in dorsal telencephalon results in abnormal cell cycle progression, leading to impaired INM through the downregulation of Cyclin b1 and Cdc25b. The impairment of INM disturbs the synchronization of apical progenitors (APs) and promotes the transition from APs to basal progenitors (BPs) in a cell-autonomous fashion. Moreover, ablation of Foxm1 causes anxiety-related behaviors in adulthood. Thus, this study provides evidence of linkages among the cell cycle regulator Foxm1, INM, and adult behavior.
Stevenson, Nigel J; McFarlane, Cheryl; Ong, Seow Theng; Nahlik, Krystyna; Kelvin, Alyson; Addley, Mark R; Long, Aideen; Greaves, David R; O'Farrelly, Cliona; Johnston, James A
2010-11-05
Suppressors of cytokine signalling (SOCS) proteins regulate signal transduction, but their role in responses to chemokines remains poorly understood. We report that cells expressing SOCS1 and 3 exhibit enhanced adhesion and reduced migration towards the chemokine CCL11. Focal adhesion kinase (FAK) and the GTPase RhoA, control cell adhesion and migration and we show the presence of SOCS1 or 3 regulates expression and tyrosine phosphorylation of FAK, while also enhancing activation of RhoA. Our novel findings suggest that SOCS1 and 3 may control chemotaxis and adhesion by significantly enhancing both FAK and RhoA activity, thus localizing immune cells to the site of allergic inflammation. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shang-Jyh; School of Respiratory Therapy, Taipei Medical University, Taipei Taiwan; Su, Jen-Liang
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibitionmore » of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole inhibits IκBα degradation and NF-κB nucleus translocation. ► Osthole suppresses EMT by repressing vimentin and inducing E-cadherin expression.« less
Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai
2017-01-01
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097
PDK1: A signaling hub for cell migration and tumor invasion.
Gagliardi, Paolo Armando; di Blasio, Laura; Primo, Luca
2015-12-01
The ability of cells to migrate is essential for different physiological processes including embryonic development, angiogenesis, tissue repair and immune response. In the context of cancer such abilities acquire dramatic implications, as they are exploited by tumor cells to invade neighboring or distant healthy tissues. 3-Phosphoinositide dependent protein kinase-1 (PDK1 or PDPK1) is an ancient serine-threonine kinase belonging to AGC kinase family. An increasing amount of data points at a pivotal role for PDK1 in the regulation of cell migration. PDK1 is a transducer of PI3K signaling and activates multiple downstream effectors, thereby representing an essential hub coordinating signals coming from extracellular cues to the cytoskeletal machinery, the final executor of cell movement. Akt, PAK1, β3 integrin, ROCK1, MRCKα and PLCγ1 are, according to the literature, the signaling transducers through which PDK1 regulates cell migration. In addition, PDK1 contributes to tumor cell invasion by regulating invadopodia formation and both amoeboid and collective cancer cell invasion. This and other pieces of evidence, such as its reported overexpression across several tumor types, corroborate a PDK1 role tumor aggressiveness. Altogether, these findings indicate the possibility to rationally target PDK1 in human tumors in order to counteract cancer cell dissemination in the organism. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha
2012-07-01
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.
[Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].
Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun
2010-10-01
To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.
Su, Jia; Zhang, Qiqi; Qi, Hui; Wu, Linlin; Li, Yuanqiang; Yu, Donna; Huang, Wendong; Chen, Wei-Dong; Wang, Yan-Dong
2017-08-15
Gpbar1 (TGR5), a G-protein-coupled bile acid membrane receptor, is well known for its roles in regulation of glucose metabolism and energy homeostasis. In the current work, we found that TGR5 activation by its ligand suppressed lipopolysaccharide (LPS)-induced proinflammatory gene expression in wild-type (WT) but not TGR5 -/- mouse kidney. Furthermore, we found that TGR5 is a suppressor of kidney cancer cell proliferation and migration. We show that TGR5 activation antagonized NF-κB and STAT3 signaling pathways through suppressing the phosphorylation of IκBα, the translocation of p65 and the phosphorylation of STAT3. TGR5 overexpression with ligand treatment inhibited gene expression mediated by NF-κB and STAT3. These results suggest that TGR5 antagonizes kidney inflammation and kidney cancer cell proliferation and migration at least in part by inhibiting NF-κB and STAT3 signaling. These findings identify TGR5 may serve as an attractive therapeutic tool for human renal inflammation related diseases and cancer.
Li, Yinghua; Xie, Yunpeng; Cui, Dan; Ma, Yanni; Sui, Linlin; Zhu, Chenyang; Kong, Hui; Kong, Ying
2015-01-01
Osteopontin (OPN) is an Extracellular Matrix (ECM) molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8), Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2) and epithelial-mesenchymal transition (EMT)-related factors in HEC-1A cells treated with rhOPN. rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT) and Extracellular regulated protein kinases (ERK1/2) signaling pathway. These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer. © 2015 The Author(s) Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei Teh, Bing, E-mail: bing.teh@earscience.org.au; Ear Science Institute Australia, Subiaco, WA; Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA
Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-α, IL-24 and their combinations onmore » migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-α, TGF-α/HA and TGF-α/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-α and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-α/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ► TGF-α, TGF-α/HA and TGF-α/IL-24 improved hTM keratinocyte migration and proliferation. ► TGF-α and/or HA maintained epithelial cell phenotype. ► TGF-α/HA-mediated migration and proliferation requires activation of ErbB1 receptor.« less
Raviprakash, Nune; Manna, Sunil Kumar
2014-01-01
BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yiting; State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193; Liu, Lan
2015-06-10
Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest bymore » reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory capacity of MSCs. • The PI3K/AKT/Rac1 pathway mediates the Wip1-knockout-induced migration of MSCs. • Overexpression of Wip1 reversed premature senescence and migration of Wip1{sup −/−} MSCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Lingqin, E-mail: qinlingsongxa@163.com; Liu, Di; Zhao, Yang
2015-08-28
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a vital transcription factor that regulates multiple important biological processes, including the epithelial–mesenchymal transition (EMT) and metastasis of breast cancer. Sinomenine is an isoquinoline well known for its remarkable curative effect on rheumatic and arthritic diseases and can induce apoptosis of several cancer cell types. Recently, sinomenine was reported as a tumor suppressor via inhibiting cell proliferation and inducing apoptosis. However, the role and mechanism of sinomenine in invasion and metastasis of breast cancer are largely unknown. Here, we report that sinomenine suppressed the invasion and migration of MDA-MB-231 and 4T1more » breast cancer cells in a dose-dependent manner. We detected binding of NF-κB to the inhibitor of NF-κB (IκB) after the MDA-MB-231 cells were treated with 0.25, 0.5, and 1 mM sinomenine. Co-IP analysis revealed that sinomenine enhanced the binding of NF-κB and IκB in a dose-dependent manner, suggesting that sinomenine had an effect on inactivation of NF-κB. Western blotting and ELISA approaches indicated that the suppression effect was closely associated with the phosphorylation of IκB kinase (IKK) and its negative regulator CUEDC2. Sinomenine treatment decreased miR-324-5p expression, thus increased the level of its target gene CUEDC2, and then blocked the phosphorylation of IKK through altering the upstream axis. Finally, transfection of a miR-324-5p mimic inhibited the suppression of invasion and metastasis of MDA-MB-231 and 4T1 cell by sinomenine, providing evidence that sinomenine treatment suppressed breast cancer cell invasion and metastasis via regulation of the IL4/miR-324-5p/CUEDC2 axis. Our findings reveal a novel mechanism by which sinomenine suppresses cancer cell invasion and metastasis, i.e., blocking NF-κB activation. - Highlights: • Sinomenine reduced invasion and migration of MDA-MB-231 and 4T1 breast cancer cells. • Sinomenine enhanced combination of NF-κB with IκB and blocked NF-κB activation. • Sinomenine promoted CUEDC2 expression and suppressed IκB kinase phosphorylation. • Sinomenine reduced IL-4 and miR-324-5p levels. • MiR-324-5p inhibited the suppression of invasion and metastasis by sinomenine.« less
Liu, Jiannan; Sun, Yuping; Zhang, Huarong; Ji, Dexin; Wu, Fei; Tian, Huihui; Liu, Kun; Zhang, Ying; Wu, Benhao; Zhang, Guoying
2016-11-15
Cervical cancer is the third most prevalent cancer among women worldwide. Theanine from tea and its derivatives show some anticancer activities. However, the role of theanine and its derivatives against human cervical cancer and the molecular mechanisms of action remain unclear. Thus, in this study, we aim to investigate the anticancer activities and underlying mechanisms of theanine and a theanine derivative, ethyl 6-bromocoumarin-3- carboxylyl L-theanine (TBrC), against human cervical cancer. In vitro and in vivo assays for cancer cell growth and migration have confirmed the inhibition of the cell growth and migration by TBrC and theanine in highly-metastatic human cervical cancer. TBrC displays much stronger activity than theanine on inhibition of the cell growth and migration as well as induction of apoptosis and regulation of related protein expressions in the human cervical cancer cells. TBrC and theanine greatly reduced endogenous and exogenous factors-stimulated cell migration and completely repressed HGF- and EGF+HGF-activated EGFR/Met-Akt/NF-κB signaling by reducing the phosphorylation and expressions of EGFR, Met, Akt, and NF-κB in cervical cancer cells. The enhancer of zeste homolog 2 (EZH2) knockdown decreased the cancer cell migration and NF-κB expression. The NF-κB knockdown reduced the cancer cell migration. TBrC and theanine reduced the EZH2 expression by more than 80%. In addition, TBrC and theanine significantly suppressed human cervical tumor growth in tumor-bearing nude mice without toxicity to the mice. Our results suggest that TBrC and theanine may have the potentials of the therapeutic and/or adjuvant therapeutic application in the treatment of human cervical cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
MicroRNA-93 Promotes Epithelial–Mesenchymal Transition of Endometrial Carcinoma Cells
Sun, Kai-Xuan; Xiu, Yin-Ling; Liu, Bo-Liang; Feng, Miao-Xiao; Sang, Xiu-Bo; Zhao, Yang
2016-01-01
MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3′ untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial–mesenchymal transition in endometrial carcinoma cells by targeting FOXA1. PMID:27829043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonhwa; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University; Kim, Tae Hoon
2012-07-01
Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cellmore » adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ting; Han, Shuai; Wu, Zhipeng
Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer.more » In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misu, Masayasu; Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp; Kawai, Norikazu
In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cellsmore » in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.« less
Xu, Wenjing; Zhao, Zhe; Zhao, Bin; Wang, Yu; Peng, Jiang; Zhang, Li; Chen, Jifeng; Lu, Shibi
2011-10-01
Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root ganglia (DRG). Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, which were cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 x 10(3)), group B (1 x 10(4)), group C (1 x 10(5)), and group D (0, blank control), and BMSCs were co-cultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P < 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P < 0.05), but there was no significant difference between group A and group C, and between group A and group B (P > 0.05). The axon area index in groups A and B was significantly greater than that in group D (P < 0.05), but there was no significant difference between group C and group D (P > 0.05); there was no significant difference in groups A, B, and C (P > 0.05). In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.
Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez
2015-04-20
Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles
2012-01-01
We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324
Cheng, Hsin-Lin; Hsieh, Ming-Ju; Yang, Jia-Sin; Lin, Chiao-Wen; Lue, Ko-Haung; Lu, Ko-Hsiu; Yang, Shun-Fa
2016-01-01
Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma. PMID:27144433
Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease
Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel
2014-01-01
Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977
Yu, Sung Hoon; Yu, Jae Myung; Lee, Seong Jin; Kang, Dong Hyun; Cho, Young Jung; Kim, Doo Man
2016-01-01
Purpose Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. Materials and Methods Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-κB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. Results We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-κB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. Conclusion Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-κB pathways. These effects were inhibited by the antioxidant rutin. PMID:26847289
ADH1B promotes mesothelial clearance and ovarian cancer infiltration.
Gharpure, Kshipra M; Lara, Olivia D; Wen, Yunfei; Pradeep, Sunila; LaFargue, Chris; Ivan, Cristina; Rupaimoole, Rajesha; Hu, Wei; Mangala, Lingegowda S; Wu, Sherry Y; Nagaraja, Archana S; Baggerly, Keith; Sood, Anil K
2018-05-18
Primary debulking surgery followed by adjuvant chemotherapy is the standard treatment for ovarian cancer. Residual disease after primary surgery is associated with poor patient outcome. Previously, we discovered ADH1B to be a molecular biomarker of residual disease. In the current study, we investigated the functional role of ADH1B in promoting ovarian cancer cell invasiveness and contributing to residual disease. We discovered that ADH1B overexpression leads to a more infiltrative cancer cell phenotype, promotes metastasis, increases the adhesion of cancer cells to mesothelial cells, and increases extracellular matrix degradation. Live cell imaging revealed that ADH1B-overexpressing cancer cells efficiently cleared the mesothelial cell layer compared to control cells. Moreover, gene array analysis revealed that ADH1B affects several pathways related to the migration and invasion of cancer cells. We also discovered that hypoxia increases ADH1B expression in ovarian cancer cells. Collectively, these findings indicate that ADH1B plays an important role in the pathways that promote ovarian cancer cell infiltration and may increase the likelihood of residual disease following surgery.
Migration of guinea pig airway epithelial cells in response to bombesin analogues.
Kim, J S; McKinnis, V S; White, S R
1997-03-01
Bombesin-like peptides within neuroepithelial cells elicit proliferation of normal and malignant airway epithelial cells. It is not clear that these peptides also elicit epithelial cell migration, a necessary component of airway repair after injury. We studied the effects of the bombesin analogues, gastrin releasing peptide (GRP) and neuromedin B (NMB), on guinea pig tracheal epithelial cell (GPTEC) migration. Primary GPTEC were allowed to migrate through 8-microm-pore gelatin-coated filters for 6 h in a chemotaxis chamber, after which the number of migrated cells per 10 high power fields (10 hpf) were counted. Both neuropeptides elicited migration of GPTEC: 24.8 +/- 4.5 cells for 10(-11) M NMB (P < 0.001 versus control, n = 4) and 16.8 +/- 1.2 cells for 10(-12) M GRP (P < 0.001 versus control, n = 8). Migration was attenuated substantially by a bombesin receptor antagonist. To investigate further the relationship of migration through a filter to the repair of a damaged epithelium, we studied the repair of epithelial cells by video microscopy. A 0.3- to 0.5-microm2 wound was created in a confluent monolayer of GPTEC, and wound closure was followed over 24 h. There was no significant acceleration in the rate of repair of GRP- or NMB-stimulated monolayers compared to control. These data demonstrate that GRP and NMB elicit migration of airway epithelial cells but may not play a significant role in the early repair of the airway epithelium in culture.
Liao, Ching-Lung; Lin, Ju-Hwa; Lien, Jin-Cherng; Hsu, Shu-Chun; Chueh, Fu-Shin; Yu, Chien-Chih; Wu, Ping-Ping; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung
2015-01-01
Osteosarcoma is the most common primary malignancy of the bone cancers. In the Chinese population, the crude extract of Corni Fructus (CECF) has been used as Traditional Chinese medicine to treat several different diseases for hundreds of years. In the present study, effects of CECF on inhibition of migration and invasion in U-2 OS human osteosarcoma cells were examined. CECF significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells. We also found that CECF inhibited activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). CECF decreased protein levels of FAK, PKC, SOS1, MKK7, MEKK3, GRB2, NF-κB p65, COX-2, HIF-1α, PI3K, Rho A, ROCK-1, IRE-1α, p-JNK1/2, p-ERK1/2, p-p38, Ras, p-PERK, MMP-2, MMP-9, and VEGF in U-2 OS cells. Results of this study indicate that CECF may have potential as a novel anticancer agent for the treatment of osteosarcoma by inhibiting migration and invasion of cancer cells. © 2013 Wiley Periodicals, Inc.
Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik
2015-01-01
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484] PMID:26129676
EphrinB3 restricts endogenous neural stem cell migration after traumatic brain injury.
Dixon, Kirsty J; Mier, Jose; Gajavelli, Shyam; Turbic, Alisa; Bullock, Ross; Turnley, Ann M; Liebl, Daniel J
2016-11-01
Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue integrity. Unfortunately, the factors that regulate migration are poorly understood. Here, we examine whether ephrinB3 functions to restrict neuroblasts from migrating outside the subventricular zone (SVZ) and rostral migratory stream (RMS). We have previously shown that ephrinB3 is expressed in tissues surrounding these regions, including the overlying corpus callosum (CC), and is reduced after controlled cortical impact (CCI) injury. Our current study takes advantage of ephrinB3 knockout mice to examine the influences of ephrinB3 on neuroblast migration into CC and cortex tissues after CCI injury. Both injury and/or ephrinB3 deficiency led to increased neuroblast numbers and enhanced migration outside the SVZ/RMS zones. Application of soluble ephrinB3-Fc molecules reduced neuroblast migration into the CC after injury and limited neuroblast chain migration in cultured SVZ explants. Our findings suggest that ephrinB3 expression in tissues surrounding neurogenic regions functions to restrict neuroblast migration outside the RMS by limiting chain migration. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.
Lo, Angela Kwok Fung; Huang, Dolly P; Lo, Kwok Wai; Chui, Yiu Loon; Li, Hoi Ming; Pang, Jesse Chung Sean; Tsao, Sai-Wah
2004-05-10
Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a common cancer in Hong Kong. The EBV-encoded LMP1 protein is believed to play an important role in cell transformation. We have previously identified a prevalent LMP1 variant (2117-LMP1) that is expressed in 86% of primary NPC in Hong Kong. In this study, the biologic phenotypes induced by 2117-LMP1 were compared with those of the prototypic B95.8-LMP1 in an immortalized nasopharyngeal epithelial cell line, NP69. The 2117-LMP1 could induce cell proliferation and resistance to apoptosis induced by growth factor deprivation. Expression of 2117-LMP1 also suppressed expression of p16, p21 and Bax but induced expression of CDK2 and A20. Compared with B95.8-LMP1, 2117-LMP1 could induce a higher migration ability in NP69 cells but was less efficient in inducing morphologic changes, anchorage-independent growth and cell invasion. Relatively weaker ability of 2117-LMP1 than B95.8-LMP1 in upregulation of vimentin, VEGF and MMP9 as well as in downregulation of E-cadherin was observed. 2117-LMP1 could activate higher level of NF-kappaB activity in HEK 293 cells than B95.8-LMP1. The present study supports a role of 2117-LMP1 in NPC development by enhancing cell proliferation, cell death inhibition and migration in premalignant nasopharyngeal epithelial cells. Furthermore, our study reveals significant functional differences between 2117-LMP1 and the prototypic B95.8-LMP1. Our results provide insights into the pathologic significance of this prevalent LMP1 variant, 2117-LMP1, in the development of NPC in the Hong Kong population. Copyright 2004 Wiley-Liss, Inc.
Zago, Giulia; Biondini, Marco; Camonis, Jacques; Parrini, Maria Carla
2017-05-12
Cell migration is central to many developmental, physiologic and pathological processes, including cancer progression. The Ral GTPases (RalA and RalB) which act down-stream the Ras oncogenes, are key players in the coordination between membrane trafficking and actin polymerization. A major direct effector of Ral, the exocyst complex, works in polarized exocytosis and is at the center of multiple protein-protein interactions that support cell migration by promoting protrusion formation, front-rear polarization, and extra-cellular matrix degradation. In this review we describe the recent advancements in deciphering the molecular mechanisms underlying this role of Ral via exocyst on cell migration. Among others, we will discuss the recently identified cross-talk between Ral and Rac1 pathways: exocyst binds to a negative regulator (the RacGAP SH3BP1) and to the major effector (the Wave Regulatory Complex, WRC) of Rac1, the master regulator of protrusions. Next challenge will be to better characterize the dynamics in space and in time of these molecular interplays, to better understand the pleiotropic functions of Ral in both normal and cancer cells.
Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas
2012-04-11
Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. Copyright © 2011 Elsevier B.V. All rights reserved.
2013-01-01
Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437
Liu, Xiaodan; Peng, Hongxia; Liao, Wang; Luo, Ailing; Cai, Mansi; He, Jing; Zhang, Xiaohong; Luo, Ziyan; Jiang, Hua; Xu, Ling
2018-05-26
Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1. © 2018 Wiley Periodicals, Inc.
Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting
2018-06-01
The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.
Maclean, Glenn; Dollé, Pascal; Petkovich, Martin
2009-03-01
Cyp26b1 encodes a cytochrome-P450 enzyme that catabolizes retinoic acid (RA), a vitamin A derived signaling molecule. We have examined Cyp26b1(-/-) mice and report that mutants exhibit numerous abnormalities in cranial neural crest cell derived tissues. At embryonic day (E) 18.5 Cyp26b1(-/-) animals exhibit a truncated mandible, abnormal tooth buds, reduced ossification of calvaria, and are missing structures of the maxilla and nasal process. Some of these abnormalities may be due to defects in formation of Meckel's cartilage, which is truncated with an unfused distal region at E14.5 in mutant animals. Despite the severe malformations, we did not detect any abnormalities in rhombomere segmentation, or in patterning and migration of anterior hindbrain derived neural crest cells. Abnormal migration of neural crest cells toward the posterior branchial arches was observed, which may underlie defects in larynx and hyoid development. These data suggest different periods of sensitivity of anterior and posterior hindbrain neural crest derivatives to elevated levels of RA in the absence of CYP26B1. (c) 2009 Wiley-Liss, Inc.
Intracellular pH gradients in migrating cells.
Martin, Christine; Pedersen, Stine F; Schwab, Albrecht; Stock, Christian
2011-03-01
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.
Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki
Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hwan; Translational Research Center for Protein Function Control; Kim, Nam Doo
2013-07-26
Highlights: •FAK signaling cascade in cancer cells is profoundly inhibited by methyl violet 2B. •Methyl violet 2B identified by virtual screening is a novel allosteric FAK inhibitor. •Methyl violet 2B possesses extremely high kinase selectivity. •Methyl violet 2B suppresses strongly the proliferation of cancer cells. •Methyl violet 2B inhibits focal adhesion, invasion and migration of cancer cells. -- Abstract: The focal adhesion kinase (FAK) signaling cascade in cancer cells was profoundly inhibited by methyl violet 2B identified with the structure-based virtual screening. Methyl violet 2B was shown to be a non-competitive inhibitor of full-length FAK enzyme vs. ATP. It turnedmore » out that methyl violet 2B possesses extremely high kinase selectivity in biochemical kinase profiling using a large panel of kinases. Anti-proliferative activity measurement against several different cancer cells and Western blot analysis showed that this substance is capable of suppressing significantly the proliferation of cancer cells and is able to strongly block FAK/AKT/MAPK signaling pathways in a dose dependent manner at low nanomolar concentration. Especially, phosphorylation of Tyr925-FAK that is required for full activation of FAK was nearly completely suppressed even with 1 nM of methyl violet 2B in A375P cancer cells. To the best of our knowledge, it has never been reported that methyl violet possesses anti-cancer effects. Moreover, methyl violet 2B significantly inhibited FER kinase phosphorylation that activates FAK in cell. In addition, methyl violet 2B was found to induce cell apoptosis and to exhibit strong inhibitory effects on the focal adhesion, invasion, and migration of A375P cancer cells at low nanomolar concentrations. Taken together, these results show that methyl violet 2B is a novel, potent and selective blocker of FAK signaling cascade, which displays strong anti-proliferative activities against a variety of human cancer cells and suppresses adhesion/migration/invasion of tumor cells.« less
Kang, Sung Koo; Yi, Kye Sook; Kwon, Nyoun Soo; Park, Kwang-Hyun; Kim, Uh-Hyun; Baek, Kwang Jin; Im, Mie-Jae
2004-08-27
A multifunctional enzyme, G(h), is a GTP-binding protein that couples to the alpha(1B)-adrenoreceptor and stimulates phospholipase C-delta1 but also displays transglutaminase 2 (TG2) activity. G(h)/TG2 has been implicated to play a role in cell motility. In this study we have examined which function of G(h)/TG2 is involved in this cellular response and the molecular basis. Treatment of human aortic smooth muscle cell with epinephrine inhibits migration to fibronectin and vitronectin, and the inhibition is blocked by the alpha(1)-adrenoreceptor antagonist prazosin or chloroethylclonidine. Up-regulation or overexpression of G(h)/TG2 in human aortic smooth muscle cells, DDT1-MF2, or human embryonic kidney cells, HEK 293 cells, results in inhibition of the migratory activity, and stimulation of the alpha(1B)-adrenoreceptor with the alpha(1) agonist further augments the inhibition of migration of human aortic smooth muscle cells and DDT1-MF2. G(h)/TG2 is coimmunoprecipitated by an integrin alpha(5) antibody and binds to the cytoplasmic tail peptide of integrins alpha(5), alpha(v), and alpha(IIb) subunits in the presence of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). Mutation of Lys-Arg residues in the GFFKR motif, present in the alpha(5)-tail, significantly reduces the binding of GTPgammaS-G(h)/TG2. Moreover, the motif-containing integrin alpha(5)-tail peptides block G(h)/TG2 coimmunoprecipitation and reverse the inhibition of the migratory activity of HEK 293 cells caused by overexpression G(h)/TG2. These results provide evidence that G(h) function initiates the modulation of cell motility via association of GTP-bound G(h)/TG2 with the GFFKR motif located in integrin alpha subunits.
PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena
Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.
2015-01-01
During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385
MicroRNA-128b suppresses tumor growth and promotes apoptosis by targeting A2bR in gastric cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ping; Guo, Xueyan; Zong, Wei
2015-11-27
MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role and mechanism of miR-128b in the development and progression of GC. Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of miR-128b in GC tissues and cell lines. We found that miR-128b was significantly down-regulated in GC tissues and cell lines. In addition, over-expression of miR-128b inhibited GC cell proliferation, migration andmore » invasion of GC cells in vitro. Gain-of-function in vitro experiments further showed that the miR-128b mimic significantly promoted GC cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene A2bR as direct target of miR-128b. Therefore, our results indicate that miR-128b is a proto-oncogene miRNA that can suppresses GC proliferation and migration through down-regulation of the oncogene gene A2bR. Taken together, our results indicate that miR-128b could serve as a potential diagnostic biomarker and therapeutic option for human GC in the near future. - Highlights: • The expression of MiR-128b is significantly down-regulated in GC tissues and cell lines. • Ectopic expression of miR-128b directly affects cell proliferation, migration and invasion in vitro. • Overexpression of miR-128b increases apoptosis in GC cells. • A2bR is a candidate target gene of miR-128b. • MiR-128b represses cell proliferation, migration and invasion and promotes apoptosis by targeting A2bR in GC.« less
Hwang, Byungdoo; Noh, Dae-Hwa; Park, Sung Lyea; Kim, Won Tae; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon
2017-01-01
Although recent studies have demonstrated the anti-tumor effects of garlic extract (GE), the exact molecular mechanism is still unclear. In this study, we investigated the molecular mechanism associated with the inhibitory action of GE against bladder cancer EJ cell responses. Treatment with GE significantly inhibited proliferation of EJ cells dose-dependently through G2/M-phase cell cycle arrest. This G2/M-phase cell cycle arrest by GE was due to the activation of ATM and CHK2, which appears to inhibit phosphorylation of Cdc25C (Ser216) and Cdc2 (Thr14/Tyr15), this in turn was accompanied by down-regulation of cyclin B1 and up-regulation of p21WAF1. Furthermore, GE treatment was also found to induce phosphorylation of MAPK (ERK1/2, p38MAPK, and JNK) and AKT. In addition, GE impeded the migration and invasion of EJ cells via inhibition of MMP-9 expression followed by decreased binding activities of AP-1, Sp-1, and NF-κB motifs. Based on microarray datasets, we selected Heat shock protein A6 (HSPA6) as the most up-regulated gene responsible for the inhibitory effects of GE. Interestingly, overexpression of HSPA6 gene resulted in an augmentation effect with GE inhibiting proliferation, migration, and invasion of EJ cells. The augmentation effect of HSPA6 was verified by enhancing the induction of G2/M-phase-mediated ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade, phosphorylation of MAPK and AKT signaling, and suppression of transcription factor-associated MMP-9 regulation in response to GE in EJ cells. Overall, our novel results indicate that HSPA6 reinforces the GE-mediated inhibitory effects of proliferation, migration, and invasion of EJ cells and may provide a new approach for therapeutic treatment of malignancies. PMID:28187175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamminen, Jenni A.; Yin, Miao; Transplantation Laboratory, Haartman Institute, University of Helsinki
Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cellsmore » in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.« less
Jonckheere, Nicolas; Skrypek, Nicolas; Merlin, Johann; Dessein, Anne Frédérique; Dumont, Patrick; Leteurtre, Emmanuelle; Harris, Ann; Desseyn, Jean-Luc; Susini, Christiane; Frénois, Frédéric; Van Seuningen, Isabelle
2012-01-01
The mucin MUC4 and its membrane partner the ErbB2 oncogenic receptor are potential interacting partners in human pancreatic tumour development. However, the way they function is still largely unknown. In this work, we aimed to identify the cellular mechanisms and the intracellular signalling pathways under the control of both ErbB2 and MUC4 in a human pancreatic adenocarcinomatous cell line. Using co-immunoprecipitation and GST pull-down, we show that MUC4 and ErbB2 interact in the human pancreatic adenocarcinomatous cell line CAPAN-2 via the EGF domains of MUC4. Stable cell clones were generated in which either MUC4 or ErbB2 were knocked down (KD) by a shRNA approach. Biological properties of these cells were then studied in vitro and in vivo. Our results show that ErbB2-KD cells are more apoptotic and less proliferative (decreased cyclin D1 and increased p27kip1 expression) while migration and invasive properties were not altered. MUC4-KD clones were less proliferative with decreased cyclin D1 expression, G1 cell cycle arrest and altered ErbB2/ErbB3 expression. Their migration properties were reduced whereas invasive properties were increased. Importantly, inhibition of ErbB2 and MUC4 expression did not impair the same signalling pathways (inhibition of MUC4 expression affected the JNK pathway whereas that of ErbB2 altered the MAPK pathway). Finally, ErbB2-KD and MUC4-KD cells showed impaired tumour growth in vivo. Our results show that ErbB2 and MUC4, which interact physically, activate different intracellular signalling pathways to regulate biological properties of CAPAN-2 pancreatic cancer cells. PMID:22393391
Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin
2015-02-01
Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.
Polymorphonuclear cell motility, ankylosing spondylitis, and HLA B27.
Pease, C T; Fordham, J N; Currey, H L
1984-01-01
Polymorphonuclear leucocyte (PMN) function was studied in 29 subjects with ankylosing spondylitis (AS). Of these, 20 were HLA B27+ve and 9 B27-ve. There were 30 controls and, of these, 15 were B27+ve. Random and directed cell migration was measured by 2 techniques: migration through a micropore filter and migration under an agar film. The chemo-attractant was either case in-activated serum or zymosan-activated serum. By both techniques directed motility was increased in subjects with B27 or with AS when compared to the B27-ve controls. This suggests that the disease AS and the possession of B27 are both associated with increased PMN motility. PMID:6608924
Giffin, Louise; West, John A.
2015-01-01
ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010
Shirasuna, Koumei; Seno, Kotomi; Ohtsu, Ayaka; Shiratsuki, Shogo; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Nagayama, Shiho; Iwata, Hisataka; Kuwayama, Takehito
2016-05-01
Advanced glycation end products (AGEs) and high-mobility group box-1 (HMGB1) are considered contributing to placental inflammation. We examined the effect of AGEs and HMGB1 on cytokines from Sw.71 human trophoblast cell lines and the interactions between Sw.71 cells and THP-1-monocytes. Sw.71 cells were cultured with/without AGEs or HMGB1. We examined the role of AGEs or HMGB1 on THP1 migration and effect of AGEs on IL-6 from Sw.71 cells using co-cultures or conditioned medium from THP-1 cells. AGEs and HMGB1 increased interleukin (IL)-6, IL-8, and chemokine C-C motif ligand 2 (CCL2) secretion from Sw.71 cells. The secretion of IL-6 was dependent on reactive oxygen species (ROS) and NF-κB. AGEs stimulated IL-6 secretion through receptor RAGE and TLR4, whereas HMGB1 stimulated it through TLR4. AGEs, but not HMGB1, increased monocyte migration via IL-8 and CCL2 from Sw.71 cells. THP-1 monocytes induced IL-6 secretion from Sw.71 cells, and AGEs further stimulated it. AGEs and HMGB1 may promote sterile placental inflammation cooperating with monocytes/macrophages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair
Lopez-Baez, Juan Carlos; Zeng, Zhiqiang; Brunsdon, Hannah; Salzano, Angela; Brombin, Alessandro; Wyatt, Cameron; Rybski, Witold; Huitema, Leonie F A; Dale, Rodney M; Kawakami, Koichi; Englert, Christoph; Chandra, Tamir; Schulte-Merker, Stefan
2018-01-01
Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments. PMID:29405914
Targeting DYRK1B suppresses the proliferation and migration of liposarcoma cells
Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J.; Shan, Aijun; Duan, Zhenfeng
2018-01-01
Liposarcoma is a common subtype of soft tissue sarcoma and accounts for 20% of all sarcomas. Conventional chemotherapeutic agents have limited efficacy in liposarcoma patients. Expression and activation of serine/threonine-protein kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B (DYRK1B) is associated with growth and survival of many types of cancer cells. However, the role of DYRK1B in liposarcoma remains unknown. In this study, we investigated the functional and therapeutic relevance of DYRK1B in liposarcoma. Tissue microarray and immunohistochemistry analysis showed that higher expression levels of DYRK1B correlated with a worse prognosis. RNA interference-mediated knockdown of DYRK1B or targeting DYRK1B with the kinase inhibitor AZ191 inhibited liposarcoma cell growth, decreased cell motility, and induced apoptosis. Moreover, combined AZ191 with doxorubicin demonstrated an increased anti-cancer effect on liposarcoma cells. These findings suggest that DYRK1B is critical for the growth of liposarcoma cells. Targeting DYRK1B provides a new rationale for treatment of liposarcoma. PMID:29568347
Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S
2018-05-09
Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng
2018-04-01
For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.
Chang, Hung-Ming; Shyu, Ming-Kwang; Tseng, Guo-Fang; Liu, Chiung-Hui; Chang, Hung-Shuo; Lan, Chyn-Tair; Hsu, Wen-Ming; Liao, Wen-Chieh
2013-01-01
Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI. PMID:23301073
Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua
2018-02-01
Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Feng; Jordan, Ashley; Kluz, Thomas
The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealedmore » the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.« less
Badache, A; Hynes, N E
2001-01-01
Interleukin (IL)-6, a multifunctional regulator of immune response, hematopoiesis, and acute phase reactions, has also been shown to regulate cancer cell proliferation. We have investigated IL-6 signaling pathways and cellular responses in the T47D breast carcinoma cell line. The IL-6-type cytokines, IL-6 and oncostatin M, simultaneously inhibited cell proliferation and increased cell migration. In T47D cells, IL-6 stimulated the activation of Janus-activated kinase 1 tyrosine kinase and signal transducers and activators of transcription (STAT) 1 and STAT3 transcription factors. Expression of dominant negative STAT3 in the cells strongly reduced IL-6-mediated growth inhibition but did not prevent IL-6-induced cell migration. IL-6 treatment led to activation of the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3'-kinase (PI3K) pathways. Inhibition of MAPK or PI3K activity reversed IL-6- and oncostatin M-stimulated migration. Because cross-talk between cytokine receptors and members of the ErbB family of receptor tyrosine kinases has been described previously, we have examined their interaction in T47D cells. Down-regulation of ErbB receptor activity, through the use of specific pharmacological inhibitors or dominant negative receptor constructs, revealed that IL-6-induced MAPK activation was largely dependent on epidermal growth factor (EGF) receptor activity, but not on ErbB-2 activity. Using a monoclonal antibody that interferes with EGF receptor-ligand interaction, we have shown that in T47D cells, IL-6 cooperates with an EGF receptor autocrine activity loop for signaling through the MAPK and PI3K pathways and for cell migration. Both the tyrosine phosphatase SHP-2 and the multisubstrate docking molecule Gab1, which are potential links between IL-6 and the MAPK/PI3K pathways, were constitutively associated with the active EGF receptor. On IL-6 stimulation, SHP-2 and Gab1 were recruited to the gp130 subunit of the IL-6 receptor and tyrosine phosphorylated, allowing downstream signaling to the MAPK and PI3K pathways. Thus, in T47D breast carcinoma cells, IL-6 acts in synergy with EGF receptor autocrine activity to signal through the MAPK/PI3K pathways. Cooperation between IL-6 and the EGF receptor in T47D breast carcinoma cells illustrates how a combination of multiple stimuli, either exogenous or endogenous, may result in synergistic cellular responses.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min
2017-02-14
Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.
Sinha, Dona; Dutta, Kaustav; Ganguly, Kirat K.; Biswas, Jaydip; Bishayee, Anupam
2014-01-01
Background A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic and anti-inflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. Methods AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA and immunocytochemistry. Results The results elicited that AMR-Me was successful in restricting the adhesion, migration and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/prosphorylated forms of focal adhesion kinase (pFAK397)/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2 and MMP-9. Conclusion AMR-Me suppresses the activity of MT1-MMP, MMP-2 and MMP-9 by downregulation of VEGF/pFAK397/pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. General significance AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease. PMID:24510625
Cold plasma selectivity in the interaction with various types of the cells
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2011-10-01
Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.
Chen, Ling; Peng, Xi; Chen, Jian; Hu, Jiong-Yu; Teng, Miao; Liang, Guang-Ping
2013-01-01
Background Interactions between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 are crucial for the recruitment of mesenchymal stem cells (MSCs) from bone marrow (BM) reservoirs to damaged tissues for repair during alarm situations. MicroRNAs are differentially expressed in stem cell niches, suggesting a specialized role in stem cell regulation. Here, we gain insight into the molecular mechanisms involved in regulating SDF-1α. Methods MSCs from green fluorescent protein transgenic male mice were transfused to irradiated recipient female C57BL/6 mice, and skin burn model of bone marrow-chimeric mice were constructed. Six miRNAs with differential expression in burned murine skin tissue compared to normal skin tissue were identified using microarrays and bioinformatics. The expression of miR-27b and SDF-1α was examined in burned murine skin tissue using quantitative real-time PCR (qPCR) and immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA). The Correlation of miR-27b and SDF-1α expression was analyzed by Pearson analysis Correlation. miRNAs suppressed SDF-1α protein expression by binding directly to its 3′UTR using western blot and luciferase reporter assay. The importance of miRNAs in MSCs chemotaxis was further estimated by decreasing SDF-1α in vivo and in vitro. Results miR-23a, miR-27a and miR-27b expression was significantly lower in the burned skin than in the normal skin (p<0.05). We also found that several miRNAs suppressed SDF-1α protein expression, while just miR-27a and miR-27b directly bound to the SDF-1α 3′UTR. Moreover, the forced over-expression of miR-27a and miR-27b significantly reduced the directional migration of mMSCs in vitro. However, only miR-27b in burn wound margins significantly inhibited the mobilization of MSCs to the epidermis. Conclusion miR-27b may be a unique signature of the stem cell niche in burned mouse skin and can suppress the directional migration of mMSCs by targeting SDF-1α by binding directly to its 3′UTR. PMID:23894385
Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin
2016-04-16
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben
2015-01-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589
microRNA‑196b promotes cell migration and invasion by targeting FOXP2 in hepatocellular carcinoma.
Yu, Zhaoxiang; Lin, Xiaobo; Tian, Ming; Chang, Weiping
2018-02-01
Accumulating evidence indicates that microRNAs (miRNAs) play important roles in tumorigenesis and metastasis. Recent research has shown that miR‑196b is implicated in metastasis by regulating the migration and invasion of cancer cells. However, the clinical significance of miR‑196b and its role as well as the underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unknown. Here, we detected miR‑196b expression in HCC and matched non-tumor tissues with qRT‑PCR. We found that miR‑196b displayed higher expression in HCC patient tissues and cells. Clinical analysis revealed that high miR‑196 expression was correlated with venous infiltration, advanced TNM stage and poor prognosis. Functionally, we demonstrated that miR‑196b promoted the migration and invasion of HCC cells in vitro. Moreover, miR‑196b knockdown restrained pulmonary metastasis in vivo. Mechanistically, we confirmed that miR‑196b could directly bind to 3'UTR of forkhead box P2 (FOXP2) mRNA and repress its expression. miR‑196b and FOXP2 showed a negative correlation in HCC tissues. More importantly, upregulation of FOXP2 antagonized miR‑196b‑mediated migration and invasion in Hep3B cells. Furthermore, FOXP2 knockdown partially reversed the anti‑metastatic function of the miR‑196b inhibitor on HCCLM3 cells. Taken together, we demonstrated that miR‑196b may function as a prognostic biomarker and suppressed FOXP2 expression, subsequently leading to the metastasis of HCC. Our findings highlight a novel mechanism of miR‑196b in the progression of HCC and identify miR‑196b/FOXP2 axis as a promising target for HCC.
Liang, Shuwei; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Liu, Qiao; Su, Qiao; Wei, Weidong; Du, Jun; Wang, Hongsheng
2017-02-01
Triple-negative breast cancer (TNBC) is characterized by high vascularity and frequent metastasis. Here, we found that activation of G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 can significantly inhibit interleukin 6 (IL-6) and vascular endothelial growth factor A (VEGF-A). TNBC tissue microarrays from 100 TNBC patients revealed GPER is negatively associated with IL-6 levels and higher grade and stage. Activation of GPER or anti-IL-6 antibody can inhibit both in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and migration of TNBC cells. While recombinant IL-6 supplementary can significantly reverse the inhibitory effects of G-1, suggesting the essential role of IL-6 in G-1 induced suppression of angiogenesis and invasiveness of TNBC cells. G-1 treatment decreased the phosphorylation, nuclear localization, transcriptional activities of NF-κB and suppressed its binding with IL-6 promoter. BAY11-7028, the inhibitor of NF-κB, can mimic the effect of G-1 to suppression of IL-6 and VEGF-A. While over expression of p65 can attenuate the inhibitory effects of G-1 on IL-6 and VEGF expression. The suppression of IL-6 by G-1 can further inhibit HIF-1α and STAT3 signals in TNBC cells by inhibition their expression, phosphorylation and/or nuclear localization. Moreover, G-1 also inhibited the in vivo NF-κB/IL-6 signals and angiogenesis and metastasis of MDA-MB-231 xenograft tumors. In conclusion, our study demonstrated that activation of GPER can suppress migration and angiogenesis of TNBC via inhibition of NF-κB/IL-6 signals, therefore it maybe act as an important target for TNBC treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Soong, Joanne; Chen, Yulin; Shustef, Elina; Scott, Glynis
2011-01-01
Semaphorins are secreted and membrane bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilins receptors. We recently reported that Plexin B1, the Semaphorin 4D receptor, is a tumor suppressor protein for melanoma, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to ultraviolet irradiation, that it stimulates proliferation, and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, in part through down-regulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Semaphorin 4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly down-regulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF dependent effects on melanocytes, including melanocyte migration. PMID:22189792
Soong, Joanne; Chen, Yulin; Shustef, Elina M; Scott, Glynis A
2012-04-01
Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report, we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to UV irradiation, and that it stimulates proliferation and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, partly through downregulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand, hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Sema4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met-dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly downregulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF-dependent effects on melanocytes, including melanocyte migration.
Grb2 mediates semaphorin-4D-dependent RhoA inactivation.
Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M
2012-08-01
Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.
Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien
2012-05-15
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. Copyright © 2012 Elsevier Inc. All rights reserved.
Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.
Liu, Jing; Qu, Xinyu; Shao, Liwei; Hu, Yuan; Yu, Xin; Lan, Peixiang; Guo, Qie; Han, Qiuju; Zhang, Jian; Zhang, Cai
2018-03-04
Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.
Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir
2014-09-01
Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.
Erdogan, Suat; Doganlar, Oguzhan; Doganlar, Zeynep B; Serttas, Riza; Turkekul, Kader; Dibirdik, Ilker; Bilir, Ayhan
2016-10-01
Cancer stem cells (CSCs) are involved in drug resistance, metastasis and recurrence of cancers. The efficacy of apigenin on cell survival, apoptosis, migration and stemness properties were analyzed in CSCs. Prostate CSCs (CD44(+)) were isolated from human prostate cancer (PCa) PC3 cells using a magnetic-activated cell sorting system. PC3 and CSCs were treated with various concentrations of apigenin, docetaxel and their combinations for 48h. Apigenin dose dependently inhibited CSCs and PC3 cell survival, and this was accompanied with a significant increase of p21 and p27. Apigenin induced apoptosis via an extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspases-8, -3 and TNF-α, but failed to regulate the intrinsic pathway as determined by the Bax, cytochrome c (Cyt-c) and APAF-1 in CSCs. In contrary to CSCs, apigenin induced intrinsic apoptosis pathway as evidenced by the induction of Bax, Cyt-c and caspase-3 while caspase-8, TNF-α and Bcl-2 levels remained unchanged in PC3 cells. The flavonoid strongly suppressed the migration rate of CSCs compared to untreated cells. Significant downregulation of matrix metallopeptidases-2, -9, Snail and Slug exhibits the ability of apigenin treatment to suppress invasion. The expressions of NF-κB p105/p50, PI3K, Akt and the phosphorylation of pAkt were decreased after apigenin treatment. Moreover, apigenin treatment significantly reduced pluripotency marker Oct3/4 protein expression which might be associated with the down-regulation of PI3K/Akt/NF-κB signaling. Our data indicated that, apigenin could be a useful compound to prevent proliferation and migration of cancer cells as well as CSCs. Copyright © 2016 Elsevier Inc. All rights reserved.
Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.
Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael
2016-07-01
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Pilkington, Suzanne M; Ogden, Stephanie; Eaton, Laura H; Dearman, Rebecca J; Kimber, Ian; Griffiths, Christopher E M
2018-01-01
Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young (< 30 years) and aged (> 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology.
Salvi, Alessandro; Sabelli, Cristiano; Moncini, Silvia; Venturin, Marco; Arici, Bruna; Riva, Paola; Portolani, Nazario; Giulini, Stefano M; De Petro, Giuseppina; Barlati, Sergio
2009-06-01
Urokinase-type plasminogen activator (uPA) and c-met play a major role in cancer invasion and metastasis. Evidence has suggested that uPA and c-met overexpression may be coordinated in human hepatocellular carcinoma (HCC). In the present study, to understand whether the expression of these genes might be coregulated by specific microRNAs (miRs) in human cells, we predicted that Homo sapiens microRNA-23b could recognize two sites in the 3'-UTR of uPA and four sites in the c-met 3'-UTR by the algorithm pictar. The miR-23b expression analysis in human tumor and normal cells revealed an inverse trend with uPA and c-met expression, indicating that uPA and c-met negative regulation might depend on miR-23b expression. Transfection of miR-23b molecules in HCC cells (SKHep1C3) led to inhibition of protein expression of the target genes and caused a decrease in cell migration and proliferation capabilities. Furthermore, anti-miR-23b transfection in human normal AB2 dermal fibroblasts upregulated the expression of endogenous uPA and c-met. Cotransfection experiments in HCC cells of the miR-23b with pGL4.71 Renilla luciferase reporter gene constructs, containing the putative uPA and c-met 3'-UTR target sites, and with the pGL3 firefly luciferase-expressing vector showed a decrease in the relative luciferase activity. This would indicate that miR-23b can recognize target sites in the 3'-UTR of uPA and of c-met mRNAs and translationally repress the expression of uPA and c-met in HCC cells. The evidence obtained shows that overexpression of miR-23b leads to uPA and c-met downregulation and to decreased migration and proliferation abilities of HCC cells.
Sun, Jian-Yong; Li, Chao; Shen, Zhu-Xia; Zhang, Wu-Chang; Ai, Tang-Jun; Du, Lin-Juan; Zhang, Yu-Yao; Yao, Gao-Feng; Liu, Yan; Sun, Shuyang; Naray-Fejes-Toth, Aniko; Fejes-Toth, Geza; Peng, Yong; Chen, Mao; Liu, Xiaojing; Tao, Jun; Zhou, Bin; Yu, Ying; Guo, Feifan; Du, Jie; Duan, Sheng-Zhong
2016-05-01
Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-β and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways. © 2016 American Heart Association, Inc.
Garrido, T; Riese, H H; Aracil, M; Pérez-Aranda, A
1995-04-01
We have developed a modified chemotaxis chamber assay in which bovine aortic endothelial (BAE) cells degrade Matrigel basement membrane and migrate and form capillary-like structures on type I collagen. This capillary formation occurs in the presence of conditioned media from highly metastatic tumour cell lines, such as B16F10 murine melanoma or MDA-MD-231 human breast adenocarcinoma, but not in the presence of conditioned medium (CM) from the less invasive B16F0 cell line. Replacement of tumour cell CM by 10 ng ml-1 basic fibroblast growth factor (bFGF) also results in capillary-like structure formation by BAE cells. An anti-bFGF antibody blocks this effect, showing that bFGF is one of the factors responsible for the angiogenic response induced by B16F10 CM in our assay. Addition of an anti-laminin antibody reduces significantly the formation of capillary-like structures, probably by blocking the attachment of BAE cells to laminin present in Matrigel. The anti-angiogenic compound suramin inhibits in a dose-dependent manner (complete inhibition with 100 microM suramin) the migration and differentiation of BAE cells on type I collagen in response to B16F10 CM. This assay represents a new model system to study tumour-induced angiogenesis in vitro.
Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen. Time-lapse microscopy demonstrated that random cell migration was significantly diminished in response to PRKD2 silencing. The pharmacological PRKD family inhibitor CRT0066101 decreased chemotactic migration and invasion across uncoatedmore » or matrigel-coated Transwell inserts. Silencing of PRKD2 attenuated migration and invasion of U87MG cells even more effectively. In terms of downstream signaling, CRT0066101 prevented PRKD2 autophosphorylation and inhibited p44/42 MAPK and to a smaller extent p54/46 JNK and p38 MAPK activation. PRKD2 silencing impaired activation of p44/42 MAPK and p54/46 JNK, downregulated nuclear c-Jun protein levels and decreased c-Jun{sup S73} phosphorylation without affecting the NFκB pathway. Finally, qPCR array analyses revealed that silencing of PRKD2 downregulates mRNA levels of integrin alpha-2 and -4 (ITGA2 and -4), plasminogen activator urokinase (PLAU), plasminogen activator urokinase receptor (PLAUR), and matrix metallopeptidase 1 (MMP1). Findings of the present study identify PRKD2 as a potential target to interfere with glioblastoma cell migration and invasion, two major determinants contributing to recurrence of glioblastoma after multimodality treatment. Highlights: • Sphingosine-1-phosphate induces glioma cell migration and invasion. • Part of the effects is mediated by protein kinase D2 (PRKD2) activation. • Inactivation of PRKD2 attenuates glioblastoma cell migration and invasion. • Both, RNAi and pharmacological inhibition of PRKD2 inhibits MAPK signaling. • PRKD2 regulates transcription of gene products implicated in migration and invasion.« less
Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.
Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok
2017-12-01
Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Co-Regulation of Cell Polarization and Migration by Caveolar Proteins PTRF/Cavin-1 and Caveolin-1
Hill, Michelle M.; Daud, Noor Huda; Aung, Cho Sanda; Loo, Dorothy; Martin, Sally; Murphy, Samantha; Black, Debra M.; Barry, Rachael; Simpson, Fiona; Liu, Libin; Pilch, Paul F.; Hancock, John F.; Parat, Marie-Odile; Parton, Robert G.
2012-01-01
Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration. PMID:22912783
Myo1g is an active player in maintaining cell stiffness in B-lymphocytes.
López-Ortega, O; Ovalle-García, E; Ortega-Blake, I; Antillón, A; Chávez-Munguía, B; Patiño-López, G; Fragoso-Soriano, R; Santos-Argumedo, L
2016-05-01
B-lymphocytes are migrating cells that specialize in antigen presentation, antibody secretion, and endocytosis; these processes implicate the modulation of plasma membrane elasticity. Cell stiffness is a force generated by the interaction between the actin-cytoskeleton and the plasma membrane, which requires the participation of several proteins. These proteins include class I myosins, which are now considered to play a role in controlling membrane-cytoskeleton interactions. In this study, we identified the motor protein Myosin 1g (Myo1g) as a mediator of this phenomenon. The absence of Myo1g decreased the cell stiffness, affecting cell adhesion, cell spreading, phagocytosis, and endocytosis in B-lymphocytes. The results described here reveal a novel molecular mechanism by which Myo1g mediates and regulates cell stiffness in B-lymphocytes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2.
Xu, Mei; Bower, Kimberly A; Wang, Siying; Frank, Jacqueline A; Chen, Gang; Ding, Min; Wang, Shiow; Shi, Xianglin; Ke, Zunji; Luo, Jia
2010-10-29
Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7(ErbB2)) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130(Cas), as well as interactions among these proteins. C3G abolished ethanol-mediated p130(Cas)/JNK interaction. C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.
Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2
2010-01-01
Background Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion. Results C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7ErbB2) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130Cas, as well as interactions among these proteins. C3G abolished ethanol-mediated p130Cas/JNK interaction. Conclusions C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis. PMID:21034468
Li, N; Jiang, K; Fang, L P; Yao, L L; Yu, Z
2018-06-26
Long noncoding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in gastric cancer (GC) tissues compared with normal counterparts and CCAT1 upregulation can promote proliferation and migration of GC cells in vitro. B-cell specific moloney leukemia virus insertion site 1 (Bmi-1) expression is positively correlated with tumor progression. The present study aimed to investigate the biological functions of CCAT1 and the relationships between CCAT1 and Bmi-1 in GC progression. In the present study, CCAT1 was knocked down by specific shRNA transfection in two human GC cell lines (MGC-803 and SGC-7901). The effects of CCAT1 knockdown on GC cell proliferation, cell cycle, migration and invasion were investigated in vitro. The effect of CCAT1 knockdown on peritoneal metastasis was assessed in nude mice. Bmi-1 expression levels were examined both in vitro and in vivo. The results showed that CCAT1 knockdown markedly inhibited cell proliferation, migration and invasion, arrested the cell cycle at G0/G1 phase in vitro, and inhibited peritoneal metastasis in nude mice, along with the downregulation of Bmi-1. Taken together, CCAT1 is functionally involved in growth and metastasis of GC cells and it may be a potential target for GC therapy.
Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincione, Gabriella, E-mail: g.mincione@unich.it; Center of Excellence on Aging, Ce.S.I., ‘G. d'Annunzio’ University Foundation, Chieti; Tarantelli, Chiara
2014-09-10
The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC andmore » FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.« less
Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons
Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William
2010-01-01
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636
Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang
2017-05-28
Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿
Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina
2011-01-01
Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447
IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.
Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi
2017-03-21
Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.
Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd
2014-01-01
Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611
Ortiz, Rina; Díaz, Jorge; Díaz, Natalia; Lobos-Gonzalez, Lorena; Cárdenas, Areli; Contreras, Pamela; Díaz, María Inés; Otte, Ellen; Cooper-White, Justin; Torres, Vicente; Leyton, Lisette; Quest, Andrew F.G.
2016-01-01
Caveolin-1 (CAV1) is a scaffolding protein that plays a dual role in cancer. In advanced stages of this disease, CAV1 expression in tumor cells is associated with enhanced metastatic potential, while, at earlier stages, CAV1 functions as a tumor suppressor. We recently implicated CAV1 phosphorylation on tyrosine 14 (Y14) in CAV1-enhanced cell migration. However, the contribution of this modification to the dual role of CAV1 in cancer remained unexplored. Here, we used in vitro [2D and transendothelial cell migration (TEM), invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question in B16F10 murine melanoma cells. CAV1 promoted directional migration on fibronectin or laminin, two abundant lung extracellular matrix (ECM) components, which correlated with enhanced Y14 phosphorylation during spreading. Moreover, CAV1-driven migration, invasion, TEM and metastasis were ablated by expression of the phosphorylation null CAV1(Y14F), but not the phosphorylation mimicking CAV1(Y14E) mutation. Finally, CAV1-enhanced focal adhesion dynamics and surface expression of beta1 integrin were required for CAV1-driven TEM. Importantly, CAV1 function as a tumor suppressor in tumor formation assays was not altered by the Y14F mutation. In conclusion, our results provide critical insight to the mechanisms of CAV1 action during cancer development. Specific ECM-integrin interactions and Y14 phosphorylation are required for CAV1-enhanced melanoma cell migration, invasion and metastasis to the lung. Because Y14F mutation diminishes metastasis without inhibiting the tumor suppressor function of CAV1, Y14 phosphorylation emerges as an attractive therapeutic target to prevent metastasis without altering beneficial traits of CAV1. PMID:27259249
MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Hao, Shaobo; Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052
We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brainmore » tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.« less
Expression profiles of inka2 in the murine nervous system.
Iwasaki, Yumi; Yumoto, Takahito; Sakakibara, Shin-Ichi
2015-01-01
Dynamic rearrangement of the actin cytoskeleton impacts many cellular characteristics in both the developing and adult central nervous systems (CNS), including the migration and adhesion of highly motile neural progenitor cells, axon guidance of immature neurons, and reconstruction of synaptic structures in the adult brain. Inka1, a known regulator of actin cytoskeleton reconstruction, is predominantly expressed by the neural crest cell lineage and regulates the migration and differentiation of these cells. In the present study, we identified a novel gene, designated as inka2, which is related to inka1. Inka2/fam212b is an evolutionarily conserved gene found in different vertebrate species and constitutes a novel gene family together with inka1. Northern blot analysis showed that inka2 mRNA was highly enriched in the nervous system. The spatiotemporal propagation cell profiles of those cells that expressed inka2 transcripts were compatible with those of Olig2-positive oligodendrocyte progenitor cells, which originate in the ventral ventricular zone during embryogenesis. Intense expression of inka2 was also noted in the proliferative neuronal progenitors in the developing cerebellum. On the other hand, immature newborn neurons in the embryonic brain showed no expression of inka2, except for the cells residing in the marginal zone of the embryonic telencephalon, which is known to contain transient cells including the non-subplate pioneer neurons and Cajal-Retzius cells. As brain development proceeds during the postnatal stage, inka2 expression emerged in some populations of immature neurons, including the neocortical pyramidal neurons, hippocampal pyramidal neurons, and granule cells migrating in the cerebellar cortex. In the adult brain, the expression of inka2 was interestingly confined in terminally differentiated neurons in the restricted forebrain regions. Taken together, as a novel regulator of actin cytoskeletons in the CNS, inka2 may be involved in multiple actin-driven processes, including cell migration and establishment of neuronal polarity. Copyright © 2015 Elsevier B.V. All rights reserved.
Krizbai, István A.; Gasparics, Ákos; Nagyőszi, Péter; Fazakas, Csilla; Molnár, Judit; Wilhelm, Imola; Bencs, Rita; Rosivall, László; Sebe, Attila
2015-01-01
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-β, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-β1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, β1-integrin, calponin and α-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-β signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in transendothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-β-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-β-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation. PMID:25742314
Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang
2015-12-01
The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.
Liu, Zhixin; Dai, Xuechen; Wang, Tianci; Zhang, Chengcheng; Zhang, Wenjun; Zhang, Wei; Zhang, Qi; Wu, Kailang; Liu, Fang; Liu, Yingle; Wu, Jianguo
2017-08-01
Hepatitis B virus (HBV) is a major etiologic agent of hepatocellular carcinoma (HCC). However, the molecular mechanism by which HBV infection contributes to HCC development is not fully understood. Here, we initially showed that HBV stimulates the production of cancer stem cells (CSCs)-related markers (CD133, CD117 and CD90) and CSCs-related genes (Klf4, Sox2, Nanog, c-Myc and Oct4) and facilitates the self-renewal of CSCs in human hepatoma cells. Cellular and clinical studies revealed that HBV facilitates hepatoma cell growth and migration, enhances white blood cell (WBC) production in the sera of patients, stimulates CD133 and CD117 expression in HCC tissues, and promotes the CSCs generation of human hepatoma cells and clinical cancer tissues. Detailed studies revealed that PreS1 protein of HBV is required for HBV-mediated CSCs generation. PreS1 activates CD133, CD117 and CD90 expression in normal hepatocyte derived cell line (L02) and human hepatoma cell line (HepG2 and Huh-7); facilitates L02 cells migration, growth and sphere formation; and finally enhances the abilities of L02 cells and HepG2 cells to induce tumorigeneses in nude mice. Thus, PreS1 acts as a new oncoprotein to play a key role in the appearance and self-renewal of CSCs during HCC development. Copyright © 2017 Elsevier B.V. All rights reserved.
Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement.
Alrashdan, Yazan A; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E; Burgess, Janette K; Armour, Carol L; Ammit, Alaina J; Hughes, J Margaret
2012-05-15
CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma.
miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B.
Sun, Feng; Yu, Mengchao; Yu, Jing; Liu, Zhijian; Zhou, Xinyan; Liu, Yanqing; Ge, Xiaolong; Gao, Haidong; Li, Mei; Jiang, Xiaohong; Liu, Song; Chen, Xi; Guan, Wenxian
2018-05-09
Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC's mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3'-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.
Young, Nicholas A.; Bruss, Michael S.; Gardner, Mark; Willis, William L.; Mo, Xiaokui; Valiente, Giancarlo R.; Cao, Yu; Liu, Zhongfa; Jarjour, Wael N.; Wu, Lai-Chu
2014-01-01
Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response. PMID:25369140
The skin, a novel niche for recirculating B cells1
Geherin, Skye A.; Fintushel, Sarah R.; Lee, Michael H.; Wilson, R. Paul; Patel, Reema T.; Alt, Carsten; Young, Alan J.; Hay, John B.; Debes, Gudrun F.
2012-01-01
B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that co-express high levels IgM and CD11b. Skin B cells have increased MHCII, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and antibody-secreting cells during inflammation increases local antibody titers, which could augment host defense and autoimmunity. While skin B cells express typical skin homing receptors such as E-selectin ligand and alpha-4 and beta-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation. PMID:22561151
Regulation of B1 cell migration by signals through Toll-like receptors
Ha, Seon-ah; Tsuji, Masayuki; Suzuki, Keiichiro; Meek, Bob; Yasuda, Nobutaka; Kaisho, Tsuneyasu; Fagarasan, Sidonia
2006-01-01
Peritoneal B1 cells are known to generate large amounts of antibodies outside their residential site. These antibodies play an important role in the early defense against bacteria and viruses, before the establishment of adaptive immune responses. Although many stimuli, including antigen, lipopolysaccharide, or cytokines, have been shown to activate B1 cells and induce their differentiation into plasma cells, the molecular signals required for their egress from the peritoneal cavity are not understood. We demonstrate here that direct signals through Toll-like receptors (TLRs) induce specific, rapid, and transient down-regulation of integrins and CD9 on B1 cells, which is required for detachment from local matrix and a high velocity movement of cells in response to chemokines. Thus, we revealed an unexpected role for TLRs in governing the interplay between integrins, tetraspanins, and chemokine receptors required for B1 cell egress and, as such, in facilitating appropriate transition from innate to adaptive immune responses. PMID:17060475
Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis.
Hofma, Ben R; Wardill, Hannah R; Mavrangelos, Chris; Campaniello, Melissa A; Dimasi, David; Bowen, Joanne M; Smid, Scott D; Bonder, Claudine S; Beckett, Elizabeth A; Hughes, Patrick A
2018-01-01
Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.
Shan, Zhongyan; Xu, Baohui; Mikulowska-Mennis, Anna; Michie, Sara A
2014-05-01
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the destruction of insulin-producing β cells in the pancreatic islets. The migration of T cells from blood vessels into pancreas is critical for the development of islet inflammation and β cell destruction in T1D. To define the roles of C-C chemokine receptor type 7 (CCR7) in recruitment of T cells into islets, we used laser capture microdissection to isolate tissue from inflamed islets of nonobese diabetic (NOD) mice and uninflamed islets of BALB/c and young NOD mice. RT-PCR analyses detected mRNAs for CCR7 and its chemokine ligands CCL19 (ELC; MIP-3β) and CCL21 (SLC) in captures from inflamed, but not from uninflamed, islets. Immunohistology studies revealed that high endothelial venules in inflamed islets co-express CCL21 protein and MAdCAM-1 (an adhesion molecule that recruits lymphocytes into islets). Desensitization of lymphocyte CCR7 blocked about 75 % of T cell migration from the bloodstream into inflamed islets, but had no effect on B cell migration into islets. These results indicate that CCR7 and its ligands are important in the recruitment of T cells into inflamed islets and thus in the pathogenesis of T1D.
Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho
2017-01-01
Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamiya, Rina, E-mail: rinataka0429@gmail.com; Takahashi, Motoko; Uehara, Yasuaki
2014-11-21
Highlights: • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of HIF-1α. • The sErbB3 N418Q mutant attenuates cancer cell migration induced by heregulin β1. • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of Nrf2. • The sErbB3 N418Q mutant may be a potential therapeutic application for tumor. - Abstract: It has been well documented that activation of the ErbB3–PI3K–Akt pathway is implicated in tumor survival and progression. We previously demonstrated that the single N-glycan deletion mutant of soluble ErbB3 protein (sErbB3 N418Q) attenuates heregulin β1-induced ErbB3 signaling. The active PI3K–Akt pathway augments the nuclearmore » accumulation of hypoxia inducible factor (HIF)-1α, which activates the transcription of many target genes and drives cancer progression. In this study, we focused on the effects of sErbB3 N418Q mutant on nuclear accumulation of HIF-1α. Pretreatment with the sErbB3 N418Q mutant suppressed heregulin β1-induced HIF-1α activation in MCF7 cells. Similar results were also obtained in other breast cancer cell lines, T47D and BT474. Interestingly, these suppressive effects were not observed with the sErbB3 wild type. In addition, pretreatment with the sErbB3 N418Q mutant suppressed the cell migration of MCF7 cells induced by heregulin β1. Furthermore, incubation with heregulin β1 also induced the nuclear accumulation of Nrf2, and this effect was also reduced by the sErbB3 N418Q mutant, but not the sErbB3 wild type. These findings indicated that the sErbB3 N418Q mutant suppressed malignant formation of cancer cells by blocking of the HIF-1α and Nrf2 pathways.« less
Grade, Sofia; Weng, Yuan C.; Snapyan, Marina; Kriz, Jasna; Malva, João O.; Saghatelyan, Armen
2013-01-01
Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS. PMID:23383048
Lin, Chin-Chung; Kuo, Chao-Lin; Huang, Yi-Ping; Chen, Cheng-Yen; Hsu, Ming-Jie; Chu, Yung Lin; Chueh, Fu-Shin; Chung, Jing-Gung
2018-05-01
Demethoxycurcumin (DMC), one of the curcuminoids present in turmeric, has been shown to induce cell death in many human cancer cell lines, however, there has not been any investigation on whether DMC inhibits metastatic activity in human cervical cancer cells in vitro. In the present study, DMC at 2.5-15 μM decreased cell number, thus, we used IC 20 (7.5 μM) for further investigation of its anti-metastatic activity in human cervical cancer HeLa cells. The wound healing, migration, invasion, zymography, and western blotting assays were used to investigate the effects of DMC on HeLa cells. The wound healing assay was used to show that DMC suppressed cell movement of HeLa cells. Furthermore, the trans-well chamber assay was used to show that DMC suppressed HeLa cell migration and invasion. Gelatin zymography assay did not show any significant effects of DMC on the gelatinolytic activity (MMP-2 and -9) in conditioned media of HeLa cells treated by DMC. Western blotting showed that DMC significantly reduced protein levels of GRB2, MMP-2, ERK1/2, N-cadherin and Ras but increased the levels of E-cadherin and NF-κB in HeLa cells. Confocal laser microscopy indicated that DMC increased NF-κB in HeLa cells confirming the results from Western blotting. DMC may be used as a novel anti-metastatic agent for the treatment of human cervical cancer in the future. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Mao, Zhengfa; Ma, Xiaoyan; Rong, Yefei; Cui, Lei; Wang, Xuqing; Wu, Wenchuan; Zhang, Jianxin; Jin, Dayong
2011-01-01
Local invasion and distant metastasis are difficult problems for surgical intervention and treatment in gastric cancer. Connective tissue growth factor (CTGF/CCN2) was considered to have an important role in this process. In this study, we demonstrated that expression of CTGF was significantly upregulated in clinical tissue samples of gastric carcinoma (GC) samples. Forced expression of CTGF in AGS GC cells promoted their migration in culture and significantly increased tumor metastasis in nude mice, whereas RNA interference-mediated knockdown of CTGF in GC cells significantly inhibited cell migration in vitro. We disclose that CTGF downregulated the expression of E-cadherin through activation of the nuclear factor-κappa B (NF-κB) pathway. The effects of CTGF in GC cells were abolished by dominant negative IκappaB. Collectively, these data reported here demonstrate CTGF could modulate the NF-κappaB pathway and perhaps be a promising therapeutic target for gastric cancer invasion and metastasis. © 2010 Japanese Cancer Association.
Sun, Lili; Li, Xuenong; Liu, Guobing
2013-06-01
To investigate the expression of inhibitor of DNA differentiation/DNA binding 1 (Id1) and Id3 in endometrial carcinoma and explore their roles in regulating the proliferation, invasion, migration and adhesion of endometrial carcinoma cells in vitro. Id1 and Id3 expression in 4 fresh endometrial cancer tissue specimens and matched adjacent tissues were detected using Western blotting. Two endometrial cancer cell lines, HEC-1-B and RL-952, were both divided into 4 groups, namely the untreated group, blank virus group, promoter group and Id1/Id3 double-knockdown group, and their expressions of MMP2, CXCR4 and P21 were detected by qRT-PCR and Western blotting. The proliferation, invasion, migration and adhesion of the cells were evaluated with MTT, Transwell, wound-healing, and adhesion assays. Endometrial carcinoma tissues showed significantly higher Id1 and Id3 expression than the adjacent tissues (P<0.05). In the two endometrial carcinoma cell lines, Id1/Id3 double-knockdown significantly decreased MMP2 and CXCR4 expression and increased P21 expression at both mRNA and protein levels (P<0.05), and resulted in suppressed cell proliferation, invasion, migration and adhesion. Id1 and Id3 expressions are up-regulated in endometrial carcinoma to promote the proliferation, invasion, migration and adhesion of the tumor cells by increasing MMP2 and CXCR4 expression and reducing P21 expression. Therapies targeting Id1/Id3 can be a novel strategy for treatment of endometrial carcinoma.
Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels
Hadden, William J.; Young, Jennifer L.; Holle, Andrew W.; McFetridge, Meg L.; Kim, Du Yong; Wijesinghe, Philip; Taylor-Weiner, Hermes; Wen, Jessica H.; Lee, Andrew R.; Bieback, Karen; Vo, Ba-Ngu; Sampson, David D.; Kennedy, Brendan F.; Spatz, Joachim P.; Choi, Yu Suk
2017-01-01
The spatial presentation of mechanical information is a key parameter for cell behavior. We have developed a method of polymerization control in which the differential diffusion distance of unreacted cross-linker and monomer into a prepolymerized hydrogel sink results in a tunable stiffness gradient at the cell–matrix interface. This simple, low-cost, robust method was used to produce polyacrylamide hydrogels with stiffness gradients of 0.5, 1.7, 2.9, 4.5, 6.8, and 8.2 kPa/mm, spanning the in vivo physiological and pathological mechanical landscape. Importantly, three of these gradients were found to be nondurotactic for human adipose-derived stem cells (hASCs), allowing the presentation of a continuous range of stiffnesses in a single well without the confounding effect of differential cell migration. Using these nondurotactic gradient gels, stiffness-dependent hASC morphology, migration, and differentiation were studied. Finally, the mechanosensitive proteins YAP, Lamin A/C, Lamin B, MRTF-A, and MRTF-B were analyzed on these gradients, providing higher-resolution data on stiffness-dependent expression and localization. PMID:28507138
Monet, Michaël; Lehen'kyi, V'yacheslav; Gackiere, Florian; Firlej, Virginie; Vandenberghe, Matthieu; Roudbaraki, Morad; Gkika, Dimitra; Pourtier, Albin; Bidaux, Gabriel; Slomianny, Christian; Delcourt, Philippe; Rassendren, François; Bergerat, Jean-Pierre; Ceraline, Jocelyn; Cabon, Florence; Humez, Sandrine; Prevarskaya, Natalia
2010-02-01
Castration resistance in prostate cancer (PCa) constitutes an advanced, aggressive disease with poor prognosis, associated with uncontrolled cell proliferation, resistance to apoptosis, and enhanced invasive potential. The molecular mechanisms involved in the transition of PCa to castration resistance are obscure. Here, we report that the nonselective cationic channel transient receptor potential vanilloid 2 (TRPV2) is a distinctive feature of castration-resistant PCa. TRPV2 transcript levels were higher in patients with metastatic cancer (stage M1) compared with primary solid tumors (stages T2a and T2b). Previous studies of the TRPV2 channel indicated that it is primarily involved in cancer cell migration and not in cell growth. Introducing TRPV2 into androgen-dependent LNCaP cells enhanced cell migration along with expression of invasion markers matrix metalloproteinase (MMP) 9 and cathepsin B. Consistent with the likelihood that TRPV2 may affect cancer cell aggressiveness by influencing basal intracellular calcium levels, small interfering RNA-mediated silencing of TRPV2 reduced the growth and invasive properties of PC3 prostate tumors established in nude mice xenografts, and diminished expression of invasive enzymes MMP2, MMP9, and cathepsin B. Our findings establish a role for TRPV2 in PCa progression to the aggressive castration-resistant stage, prompting evaluation of TRPV2 as a potential prognostic marker and therapeutic target in the setting of advanced PCa.
Allergen-induced migration of human cells in allergic severe combined immunodeficiency mice.
Duez, C; Akoum, H; Marquillies, P; Cesbron, J Y; Tonnel, A B; Pestel, J
1998-02-01
Recently, we have shown that severe combined immunodeficiency (SCID) mice, intraperitoneally reconstituted with peripheral blood mononuclear cells (PBMC) from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, produced human IgE and developed a pulmonary inflammatory-type reaction after exposure to allergen aerosol. In order to understand the potential mechanisms involved in the human cell migration in SCID mice, we analysed their phenotypic profile in the lungs, spleen and thymus, 2 months after Dpt inhalation. The human cell recruitment in these organs was found to be allergen-dependent as CD45+ human cells were only detected in hu-SCID mice after Dpt exposure. The composition of the pulmonary human T-cell infiltrate, preferentially memory (CD45RO), activated (human leucocyte antigen (HLA)-DR) and CD4+ cells, was similar to that described in asthmatic patients. However, CD20+ B cells were predominately recruited in the spleen and thymus and may be IgE-producing cells in the spleen. In the lungs, the percentage of human leucocytes expressing the alpha-chain of the lymphocyte function-associated antigen-1 (LFA-1) (CD11a) was higher than those of CD49d+ or CD54+ cells, in contrast to the spleen and thymus, suggesting a potential role of LFA-1 in the human cell migration towards SCID mice lung. In conclusion, this model could be useful in the study of factors implicated in the cellular migration towards the lymphoid organs during an allergic reaction.
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms.
Tancharoen, Salunya; Gando, Satoshi; Binita, Shrestha; Nagasato, Tomoka; Kikuchi, Kiyoshi; Nawa, Yuko; Dararat, Pornpen; Yamamoto, Mika; Narkpinit, Somphong; Maruyama, Ikuro
2016-11-23
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 ( Hmgb1 +/- ) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1 +/- and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1 +/- mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1 +/- mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing.
Wu, Junqing; Liang, Bin; Qian, Yan; Tang, Liyuan; Xing, Chongyun; Zhuang, Qiang; Shen, Zhijian; Jiang, Songfu; Yu, Kang; Feng, Jianhua
2018-05-29
The survival rate of childhood acute lymphoblastic leukemia (ALL) has increased while that of Philadelphia-positive (Ph+) ALL remains low. CD19 is a B-cell specific molecule related to the survival and proliferation of normal B cells. However, there is little information available on the effects of CD19 on the biological behavior of Ph+ ALL cells. In this study, we explored a lentiviral vector-mediated short hairpin RNA (shRNA) expression vector to stably reduce CD19 expression in Ph+ ALL cell line SUP-B15 cells and investigated the effects of CD19 downregulation on cell proliferation, apoptosis, drug sensitivity, cell adhesion, cell migration and cell invasion in vitro. CD19 mRNA and protein expression levels were inhibited significantly by CD19 shRNA. Down-regulation of CD19 could inhibit cell proliferation, adhesion, migration and invasion, and increase cell apoptosis and the efficacy of chemotherapeutic agents and imatinib in SUP-B15 cells. Moreover, we found that down-regulation of CD19 expression inhibits cell proliferation and induces apoptosis in SUP-B15 cells in a p53-dependent manner. Taken together, our results suggest that lentiviral vector-mediated RNA interference of CD19 gene may be a promising strategy in the treatment of Ph+ ALL. This article is protected by copyright. All rights reserved.
Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D
2010-06-01
The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.
Beales, Ian L P; Garcia-Morales, Carla; Ogunwobi, Olorunseun O; Mutungi, Gabriel
2014-01-25
Obesity is characterised by hyperleptinaemia and hypoadiponectinaemia and these metabolic abnormalities may contribute to the progression of several obesity-associated cancers including oesophageal adenocarcinoma (OAC). We have examined the effects of leptin and adiponectin on OE33 OAC cells. Leptin stimulated proliferation, invasion and migration and inhibited apoptosis in a STAT3-dependant manner. Leptin-stimulated MMP-2 secretion in a partly STAT3-dependent manner and MMP-9 secretion via a STAT3-independent pathway. Adiponectin inhibited leptin-induced proliferation, migration, invasion, MMP secretion and reduced the anti-apoptotic effects: these effects of adiponectin were ameliorated by both a non-specific tyrosine phosphatase inhibitor and a specific PTP1B inhibitor. Adiponectin reduced leptin-stimulated JAK2 activation and STAT3 transcriptional activity in a PTP1B-sensitive manner and adiponectin increased both PTP1B protein and activity. We conclude that adiponectin restrains leptin-induced signalling and pro-carcinogenic behaviour by inhibiting the early events in leptin-induced signal transduction by activating PTP1B. Relative adiponectin deficiency in obesity may contribute to the promotion of OAC. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
Chen, Shi; Zhang, Jia-Qiang; Chen, Jiang-Zhi; Chen, Hui-Xing; Qiu, Fu-Nan; Yan, Mao-Lin; Chen, Yan-Ling; Peng, Cheng-Hong; Tian, Yi-Feng; Wang, Yao-Dong
2017-09-01
This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Lei; Xu, Pengcheng; Wang, Xueer; Zhang, Min; Yan, Yuan; Chen, Yinghua; Zhang, Lu; Zhang, Lin
2017-06-01
Adipose-derived stem cells (ADSCs) are multipotent stromal cells that can differentiate into a variety of cell types, including skin cells, and they can provide an abundant source of cells for skin tissue engineering and skin wound healing. The purpose of this study is to explore the therapeutic effects of activin B in combination with ADSCs and the possible signaling mechanism. In this study, we found that activin B was able to promote ADSC migration by inducing actin stress fiber formation in vitro. In vivo, activin B in combination with ADSCs was capable of enhancing α-SMA expression and wound closure. This combined treatment also promoted fibroblast and keratinocyte proliferation and accelerated re-epithelialization and collagen deposition. Moreover, activin B in combination with ADSCs boosted angiogenesis in the wound area. Further study of the mechanism revealed that activation of JNK and ERK signaling, but not p38 signaling, were required for activin B-induced ADSC actin stress fiber formation and cell migration. These results showed that activin B was able to activate JNK and ERK signaling pathways to induce actin stress fiber formation and ADSC migration to promote wound healing. These results suggest that combined treatment with activin B and ADSCs is a promising therapeutic strategy for the management of serious skin wounds. Copyright © 2017. Published by Elsevier Ltd.
Zaoui, Kossay; Benseddik, Khedidja; Daou, Pascale; Salaün, Danièle; Badache, Ali
2010-10-26
Microtubules (MTs) contribute to key processes during cell motility, including the regulation of focal adhesion turnover and the establishment and maintenance of cell orientation. It was previously demonstrated that the ErbB2 receptor tyrosine kinase regulated MT outgrowth to the cell cortex via a complex including Memo, the GTPase RhoA, and the formin mDia1. But the mechanism that linked this signaling module to MTs remained undefined. We report that ErbB2-induced repression of glycogen synthase kinase-3 (GSK3) activity, mediated by Memo and mDia1, is required for MT capture and stabilization. Memo-dependent inhibition of GSK3 allows the relocalization of APC (adenomatous polyposis coli) and cytoplasmic linker-associated protein 2 (CLASP2), known MT-associated proteins, to the plasma membrane and ruffles. Peripheral microtubule extension also requires expression of the plus-end binding protein EB1 and its recently described interactor, the spectraplakin ACF7. In fact, in migrating cells, ACF7 localizes to the plasma membrane and ruffles, in a Memo-, GSK3-, and APC-dependent manner. Finally, we demonstrate that ACF7 targeting to the plasma membrane is both required and sufficient for MT capture downstream of ErbB2. This function of ACF7 does not require its recently described ATPase activity. By defining the signaling pathway by which ErbB2 allows MT capture and stabilization at the cell leading edge, we provide insights into the mechanism underlying cell motility and steering.
Menezes, Maira Maria; Nobre, Leonardo Thiago Duarte Barreto; Rossi, Gustavo Rodrigues; Almeida-Lima, Jailma; Melo-Silveira, Raniere Fagundes; Franco, Celia Regina Cavichiolo; Trindade, Edvaldo Silva; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira
2018-05-01
A low-molecular-weight (LMW) heterofucan (designated fucan B) was obtained from the brown seaweed, Spatoglossum schröederi, and its activity as an inhibitor of capillary-like tube formation by endothelial cells (ECs) was analyzed. Chemical, infrared and electrophoretic analyses confirmed the identity of fucan B. In contrast to other LMW fucans, fucan B (0.012-0.1 mg/mL) inhibited ECs capillary-like tube formation in a concentration-dependent manner. In addition, fucan B (0.01-0.05 mg/mL) did not affect ECs proliferation. Fucan B also inhibited ECs migration on a fibronectin-coated surface, but not on laminin- or collagen-coated surfaces. Biotinylated fucan B was used as a probe to identify its localization. Confocal microscopy experiments revealed that biotinylated fucan did not bind to the cell surface, but rather only to fibronectin. Our findings suggest that fucan B inhibits ECs capillary-like tube formation and migration by binding directly to fibronectin and blocking fibronectin sites recognized by cell surface ligands. However, further studies are needed to evaluate the in vivo effects of fucan B. Copyright © 2018 Elsevier B.V. All rights reserved.
Plexin-B2 promotes invasive growth of malignant glioma
Pingle, Sandeep C.; Kesari, Santosh; Wang, Huaien; Yong, Raymund L.; Zou, Hongyan; Friedel, Roland H.
2015-01-01
Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma. PMID:25762646
Lei, Hui; Zhang, Yu; Huang, Longjian; Xu, Shaofeng; Li, Jiang; Yang, Lichao; Wang, Ling; Xing, Changhong; Wang, Xiaoliang; Peng, Ying
2018-05-04
Alzheimer's disease (AD) is characterized by extracellular accumulation of β-amyloid peptides (Aβ) and intracellular neurofibrillary tangles, along with cognitive decline and neurodegeneration. The cognitive deficit is considered to be due to the dysfunction of hippocampal neurogenesis. Although L-3-n-butylphthalide (L-NBP) has been shown beneficial effects in multiple AD animal models, the underlying molecular mechanisms are still elusive. In this study, we investigated the effects of L-NBP on neurogenesis both in vitro and in vivo. L-NBP promoted proliferation and migration of neural stem cells and induced neuronal differentiation in vitro. In APP/PS1 mice, L-NBP induced neurogenesis in the dentate gyrus and improved cognitive functions. In addition, L-NBP significantly increased the expressions of BDNF and NGF, tyrosine phosphorylation of its cognate receptor, and phosphorylation of Akt as well as CREB at Ser133 in the hippocampus of APP/PS1 mice. These results indicated that L-NBP might stimulate the proliferation, migration, and differentiation of hippocampal neural stem cells and reversed cognitive deficits in APP/PS1 mice. BDNF/TrkB/CREB/Akt signaling pathway might be involved.
Souza, M H; Melo-Filho, A A; Rocha, M F; Lyerly, D M; Cunha, F Q; Lima, A A; Ribeiro, R A
1997-01-01
Clostridium difficile (Cd) toxins appear to mediate the inflammatory response in pseudomembranous colitis and/or colitis associated with the use of antibiotics. In contrast to Cd Toxin A (TxA), Cd Toxin B (TxB) has been reported not to promote fluid secretion or morphological damage in rabbits and hamsters and also does not induce neutrophil chemotaxis in vitro. However, TxB is about 1000 times more potent than TxA in stimulating the release of tumour necrosis factor-alpha (TNF-alpha) by cultured monocytes. In the present study, we investigated the ability of TxB to promote neutrophil migration into peritoneal cavities and subcutaneous air-pouches of rats. We also examined the role of resident peritoneal cells in this process as well as the inflammatory mediators involved. TxB caused a significant and dose-dependent neutrophil influx with a maximal response at 0.1 microgram/cavity after 4 hr. Depleting the peritoneal resident cell population by washing the peritoneal cavity or increasing this population by pretreating the animals with thioglycollate blocked and amplified the TxB-induced neutrophil migration, respectively. Pretreating the animals with MK886 (a lipoxygenase inhibitor), NDGA (a dual cyclo- and lipoxygenase inhibitor) or the glucocorticoid, dexamethasone, but not with indomethacin (a cyclo-oxygenase inhibitor), or BN52021 (a platelet-activating factor antagonist), inhibited the neutrophil migration evoked by TxB. Pretreatment with dexamethasone or the administration of anti-TNF-alpha serum into the air-pouches also significantly reduced the TxB-induced neutrophil migration. Supernatants from TxB-stimulated macrophages induced neutrophil migration when injected into the rat peritoneal cavity. This effect was attenuated by the addition of either MK886 or dexamethasone to the macrophage monolayer and by preincubating the supernatants with anti-TNF-alpha serum. TxB also stimulated the release of TNF-alpha by macrophages. Overall, these results suggest that TxB induces an intense neutrophil migration which is mediated by macrophage-derived TNF-alpha and lipoxygenase products. PMID:9227329
Ho, Yung-Tsuan; Yang, Jai-Sing; Li, Tsai-Chung; Lin, Jen-Jyh; Lin, Jaung-Geng; Lai, Kuang-Chi; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung
2009-07-08
There is increasing evidence that urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) play an important role in cancer metastasis and angiogenesis. Inhibition of u-PA and MMPs could suppress migration and invasion of cancer cells. Berberine, one of the main constituents of the plant Rhizoma coptidis, is a type of isoquinoline alkaloid, reported to have anti-cancer effects in different human cancer cell lines. There is however, no available information on effects of berberine on migration and invasion of human tongue cancer cells. Here, we report that berberine inhibited migration and invasion of human SCC-4 tongue squamous carcinoma cells. This action was mediated by the p-JNK, p-ERK, p-p38, IkappaK and NF-kappaB signaling pathways resulting in inhibition of MMP-2 and -9 in human SCC-4 tongue squamous carcinoma cells. Our Western blowing analysis also showed that berberine inhibited the levels of urokinase-plasminogen activator (u-PA). These results suggest that berberine down-regulates u-PA, MMP-2 and -9 expressions in SCC-4 cells through the FAK, IKK and NF-kappaB mediated pathways and a novel function of berberine is to inhibit the invasive capacity of malignant cells.
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of Epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein. PMID:21503965
Seo, Juhee; Lee, Hyun Sun; Ryoo, Sungwoo; Seo, Jee Hee; Min, Byung-Sun; Lee, Jeong-Hyung
2011-12-30
Tangeretin, a natural polymethoxylated flavone concentrated in the peel of citrus fruits, is known to have antiproliferative, antiinvasive, antimetastatic and antioxidant activities. However, the effect of tangeretin on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of tangeretin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Tangeretin significantly inhibited proliferation, DNA synthesis and migration of PDGF-BB-stimulated RASMCs without inducing cell death. Treatment with tangeretin-induced cell-cycle arrest in the G₀/G₁ phase was associated with down-regulation of cyclin D1 and cyclin E in addition to up-regulation of p27(kip1). We also showed that tangeretin inhibited PDGF-BB-induced phosphorylation of AKT, while it had no effect on the phosphorylation of phospholipase Cγ (PLCγ), PDGF receptor β-chain (PDGF-Rβ) and extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). An in vitro kinase assay revealed that tangeretin inhibited AKT activity in a dose-dependent manner. Moreover, treatment of LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, had similar effects than that of tangeretin on the expression of p27(kip1) and cyclin D1, as well as cell migration in PDFG-BB-stimulated RASMCs. Taken together, these findings suggest that tangeretin could suppress PDGF-BB-induced proliferation and migration of RASMCs through the suppression of PI3K/AKT signaling pathway, and may be a potential candidate for preventing or treating vascular diseases, such as atherosclerosis and restenosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhai, Yihui; Bloch, Jacek; Hömme, Meike; Schaefer, Julia; Hackert, Thilo; Philippin, Bärbel; Schwenger, Vedat; Schaefer, Franz; Schmitt, Claus P
2012-07-01
Biocompatible peritoneal dialysis fluids (PDF) are buffered with lactate and/or bicarbonate. We hypothesized that the reduced toxicity of the biocompatible solutions might unmask specific effects of the buffer type on mesothelial cell functions. Human peritoneal mesothelial cells (HPMC) were incubated with bicarbonate (B-)PDF or lactate-buffered (L-)PDF followed by messenger RNA (mRNA) and protein analysis. Gene silencing was achieved using small interfering RNA (siRNA), functional studies using Transwell culture systems, and monolayer wound-healing assays. Incubation with B-PDF increased HPMC migration in the Transwell and monolayer wound-healing assay to 245 ± 99 and 137 ± 11% compared with L-PDF. Gene silencing showed this effect to be entirely dependent on the expression of aquaporin-1 (AQP-1) and independent of AQP-3. Exposure of HPMC to B-PDF increased AQP-1 mRNA and protein abundance to 209 ± 80 and 197 ± 60% of medium control; the effect was pH dependent. L-PDF reduced AQP-1 mRNA. Addition of bicarbonate to L-PDF increased AQP-1 abundance by threefold; mRNA half-life remained unchanged. Immunocytochemistry confirmed opposite changes of AQP-1 cell-membrane abundance with B-PDF and L-PDF. Peritoneal mesothelial AQP-1 abundance and migration capacity is regulated by pH and buffer agents used in PD solutions. In vivo studies are required to delineate the impact with respect to long-term peritoneal membrane integrity and function.
Copine-III interacts with ErbB2 and promotes tumor cell migration.
Heinrich, C; Keller, C; Boulay, A; Vecchi, M; Bianchi, M; Sack, R; Lienhard, S; Duss, S; Hofsteenge, J; Hynes, N E
2010-03-18
ErbB2 amplification and overexpression in breast cancer correlates with aggressive disease and poor prognosis. To find novel ErbB2-interacting proteins, we used stable isotope labeling of amino acids in cell culture followed by peptide affinity pull-downs and identified specific binders using relative quantification by mass spectrometry. Copine-III, a member of a Ca(2+)-dependent phospholipid-binding protein family, was identified as binding to phosphorylated Tyr1248 of ErbB2. In breast cancer cells, Copine-III requires Ca(2+) for binding to the plasma membrane, where it interacts with ErbB2 upon receptor stimulation, an interaction that is dependent on receptor activity. Copine-III also binds receptor of activated C kinase 1 and colocalizes with phosphorylated focal adhesion kinase at the leading edge of migrating cells. Importantly, knockdown of Copine-III in T47D breast cancer cells causes a decrease in Src kinase activation and ErbB2-dependent wound healing. Our data suggest that Copine-III is a novel player in the regulation of ErbB2-dependent cancer cell motility. In primary breast tumors, high CPNE3 RNA levels significantly correlate with ERBB2 amplification. Moreover, in an in situ tissue microarray analysis, we detected differential protein expression of Copine-III in normal versus breast, prostate and ovarian tumors, suggesting a more general role for Copine-III in carcinogenesis.
Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.
Nario, R C; Hubbard, A K
1997-01-01
Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721
The intermediate-conductance Ca2+ -activated K+ channel (KCa3.1) in vascular disease.
Tharp, D L; Bowles, D K
2009-01-01
The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) was first described by Gardos in erythrocytes and later confirmed to play a significant role in T-cell activation and the immune response. More recently, K(Ca)3.1 has been characterized in numerous cell types which contribute to the development of vascular disease, such as T-cells, B-cells, endothelial cells, fibroblasts, macrophages, and dedifferentiated smooth muscle cells (SMCs). Physiologically, K(Ca)3.1 has been demonstrated to play a role in acetylcholine and endothelium-derived hyperpolarizing factor (EDHF) induced hyperpolarization, and thus control of blood pressure. Pathophysiologically, K(Ca)3.1 contributes to proliferation of T-cells, B-cells, fibroblasts, and vascular SMCs, as well as the migration of SMCs and macrophages and platelet coagulation. Recent studies have indicated that blockade of K(Ca)3.1, by specific blockers such as TRAM-34, could prove to be an effective treatment for vascular disease by inhibiting T-cell activation as well as preventing proliferation and migration of macrophages, endothelial cells, and SMCs. This vasculoprotective potential of K(Ca)3.1 inhibition has been confirmed in both rodent and swine models of restenosis. In this review, we will discuss the physiological and pathophysiological role of K(Ca)3.1 in cells closely associated with vascular biology, and the effect of K(Ca)3.1 blockers on the initiation and progression of vascular disease.
Luo, Tingting; Yan, Aifen; Liu, Lian; Jiang, Hong; Feng, Cuilan; Liu, Guannan; Liu, Fang; Tang, Dongsheng; Zhou, Tianhong
2018-03-28
To explore the effect of intervention of E-cadherin (E-cad) and B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1) mediated by transcription activator-like effector nuclease (TALEN) on the biological behaviors of nasopharyngeal carcinoma cells. Methods: Multi-locus gene targeting vectors pUC-DS1-CMV-E-cad-2A-Neo-DS2 and pUC-DS1-Bmi-1 shRNA-Zeo-DS2 were constructed, and the E-cad and Bmi-1 targeting vectors were transferred with TALEN plasmids to CNE-2 cells individually or simultaneously. The integration of target genes were detected by PCR, the expressions of E-cad and Bmi-1 were detected by Western blot. The changes of cell proliferation were detected by cell counting kit-8 (CCK-8) assay. The cell cycle and apoptosis were detected by flow cytometry. The cell migration and invasion were detected by Transwell assay. Results: The E-cad and Bmi-1 shRNA expression elements were successfully integrated into the genome of CNE-2 cells, the protein expression level of E-cad was up-regulated, and the protein expression level of Bmi-1 was down-regulated. The intervention of E-cad and Bmi-1 didn't affect the proliferation, cell cycle and apoptosis of CNE-2 cells, but it significantly inhibited the migration and invasion ability of CNE-2 cells. Furthermore, the intervention of E-cad and Bmi-1 together significantly inhibited the migration ability of nasopharyngeal carcinoma cells compared with the intervention of E-cad or Bmi-1 alone (all P<0.01). Conclusion: The joint intervention of E-cad and Bmi-1 mediated by TALEN can effectively inhibit the migration and invasion of nasopharyngeal carcinoma cells in vitro, which may lay the preliminary experimental basis for gene therapy of human cancer.
Gimond, Clotilde; Baudoin, Christian; van der Neut, Ronald; Kramer, Duco; Calafat, Jero; Sonnenberg, Arnoud
1998-01-01
Two splice variants of the α6 integrin subunit, α6A and α6B, with different cytoplasmic domains, have previously been described. While α6B is expressed throughout the development of the mouse, the expression of α6A begins at 8.5 days post coitum and is initially restricted to the myocardium. Later in ontogeny, α6A is found in various epithelia and in certain cells of the immune system. In this study, we have investigated the function of α6A in vivo by generating knockout mice deficient for this splice variant. The Cre- loxP system of the bacteriophage P1 was used to specifically remove the exon encoding the cytoplasmic domain of α6A in embryonic stem cells, and the deletion resulted in the expression of α6B in all tissues that normally express α6A. We show that α6A−/− mice develop normally and are fertile. The substitution of α6A by α6B does not impair the development and function of the heart, hemidesmosome formation in the epidermis, or keratinocyte migration. Furthermore, T cells differentiated normally in α6A−/− mice. However, the substitution of α6A by α6B leads to a decrease in the migration of lymphocytes through laminin-coated Transwell filters and to a reduction of the number of T cells isolated from the peripheral and mesenteric lymph nodes. Lymphocyte homing to the lymph nodes, which involves various types of integrin–ligand interactions, was not affected in the α6A knockout mice, indicating that the reduced number of lymph node cells could not be directly attributed to defects in lymphocyte trafficking. Nevertheless, the expression of α6A might be necessary for optimal lymphocyte migration on laminin in certain pathological conditions. PMID:9763436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Juan; Li, Li; Yun, Hui-fang
2015-08-07
Background: Diabetic vascular smooth muscle cells (VSMCs) exhibit significantly increased rates of proliferation and migration, which was the most common pathological change in atherosclerosis. In addition, the study about the role for miRNAs in the regulation of VSMC proliferation is just beginning to emerge and additional miRNAs involved in VSMC proliferation modulation should be identified. Methods: The expression of miR-138 and SIRT1 were examined in SMCs separated from db/db mice and in SMC lines C-12511 exposed to high glucose with qRT-PCR and western blot. The regulation of miR-138 on the expression of SMCs was detected with luciferase report assay. VSMCsmore » proliferation and migration assays were performed to examine the effect of miR-138 inhibitor on VSMCs proliferation and migration. Results: We discovered that higher mRNA level of miR-138 and reduced expression of SIRT1 were observed in SMCs separated from db/db mice and in SMC lines C-12511. Moreover, luciferase report assay showed that the activity of SIRT1 3′-UTR was highly increased by miR-138 inhibitor and reduced by miR-138 mimic. In addition, we examined that the up-regulation of NF-κB induced by high glucose in SMCs was reversed by resveratrol and miR-138 inhibitor. MTT and migration assays showed that miR-138 inhibitor attenuated the proliferation and migration of smooth muscle cells. Conclusion: In this study, we revealed that miR-138 might promote proliferation and migration of SMC in db/db mice through suppressing the expression of SIRT1. - Highlights: • Higher mRNA level of miR-138 was observed in SMCs from db/db mice. • The mRNA and protein level of SIRT1 in SMCs from db/db mice were greatly reduced. • miR-138 could regulate the expression of SIRT1 in SMCs. • SIRT1 overexpression reversed the up-regulation of acetylized p65 and NF-κB induced by high glucose. • MiR-138 inhibitor reversed VSMCs proliferation and migration induced by high glucose.« less
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB
Zhang, Linlin; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB. PMID:28409156
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB.
Chen, Jian; Zhang, Linlin; Shu, Yilai; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang; Wu, Haitao; Li, Wulan
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF- κ B activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF- κ B inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF- α -induced NF- κ B activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF- κ B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi
2015-07-03
Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed,more » because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.« less
Li, Te-Mao; Fong, Yi-Chin; Liu, Shan-Chi; Chen, Po-Chun; Tang, Chih-Hsin
2013-01-01
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis. PMID:23874483
Asghar, Muhammad Yasir; Viitanen, Tero; Kemppainen, Kati; Törnquist, Kid
2012-10-01
Anaplastic thyroid cancer (ATC) is the most aggressive form of human thyroid cancer, lacking any effective treatment. Sphingosine 1-phosphate (S1P) receptors and human ether-a'-go-go-related gene (HERG (KCNH2)) potassium channels are important modulators of cell migration. In this study, we have shown that the S1P(1-3) receptors are expressed in C643 and THJ-16T human ATC cell lines, both at mRNA and protein level. S1P inhibited migration of these cells and of follicular FTC-133 thyroid cancer cells. Using the S1P(1,3) inhibitor VPC-23019, the S1P(2) inhibitor JTE-013, and the S1P(2) receptor siRNA, we showed that the effect was mediated through S1P(2). Treatment of the cells with the Rho inhibitor C3 transferase abolished the effect of S1P on migration. S1P attenuated Rac activity, and inhibiting Rac decreased migration. Sphingosine kinase inhibitor enhanced basal migration of cells, and addition of exogenous S1P inhibited migration. C643 cells expressed a nonconducting HERG protein, and S1P decreased HERG protein expression. The HERG blocker E-4031 decreased migration. Interestingly, downregulating HERG protein with siRNA decreased the basal migration. In experiments using HEK cells overexpressing HERG, we showed that S1P decreased channel protein expression and current and that S1P attenuated migration of the cells. We conclude that S1P attenuates migration of C643 ATC cells by activating S1P(2) and the Rho pathway. The attenuated migration is also, in part, dependent on a S1P-induced decrease of HERG protein.
PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.
Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B
2015-11-01
During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Lingwal, Neelam; Padmasekar, Manju; Samikannu, Balaji; Bretzel, Reinhard G.; Preissner, Klaus T.; Linn, Thomas
2012-01-01
Islet transplantation provides an approach to compensate for loss of insulin-producing cells in patients with type 1 diabetes. However, the intraportal route of transplantation is associated with instant inflammatory reactions to the graft and subsequent islet destruction as well. Although matrix metalloprotease (MMP)-2 and -9 are involved in both remodeling of extracellular matrix and leukocyte migration, their influence on the outcome of islet transplantation has not been characterized. We observed comparable MMP-2 mRNA expressions in control and transplanted groups of mice, whereas MMP-9 mRNA and protein expression levels increased after islet transplantation. Immunostaining for CD11b (Mac-1)-expressing leukocytes (macrophage, neutrophils) and Ly6G (neutrophils) revealed substantially reduced inflammatory cell migration into islet-transplanted liver in MMP-9 knockout recipients. Moreover, gelatinase inhibition resulted in a significant increase in the insulin content of transplanted pancreatic islets and reduced macrophage and neutrophil influx compared with the control group. These results indicate that the increase of MMP-9 expression and activity after islet transplantation is directly related to enhanced leukocyte migration and that early islet graft survival can be improved by inhibiting MMP-9 (gelatinase B) activity. PMID:22586582
Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang
2011-01-21
Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.
Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ju, E-mail: ju.liu@sdu.edu.cn; Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5; Li, Yan
Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We foundmore » that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF signaling.« less
Zhang, Ying; Miao, Ju-Mei
2018-05-19
Ischemic stroke is the leading cause of death around the world. Ginkgolide K (GK) has been used to treat ischemic stroke due to its neuroprotective potential. However, the molecular mechanism underlying the neuroprotective effect of GK in ischemic stroke is still almost blank. In this study, astrocytes were divided into four groups: control group, oxygen-glucose deprivation (OGD) group, OGD + GK group and OGD + GK + Compound C (CC) group. The viability and proliferation of astrocytes were examined by Cell Counting Kit-8 assay and 5-ethynyl-20-deoxyuridine (EdU) assay, respectively. Transwell migration and wound scratch assays were conducted to evaluate astrocyte migration. The protein expression in astrocytes were determined by western blot assay. We found that GK pretreatment promoted astrocyte proliferation and migration after OGD as shown by the increase in the viability of astrocytes, glial fibrillary acidic protein level, the number of EdU positive cells and migrated cells, and the migration distance. GK pretreatment induced autophagy after OGD, as indicated by upregulation of autophagy-related protein 7, Beclin-1 protein and increase of microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I, and downregulation of p62 protein. Moreover, GK pretreatment activated the AMP activated protein kinase (AMPK)/mammalian target of rapamycin (m-TOR)/ULK1 pathway in astrocytes following OGD. Notably, CC treatment blocked the promotory effect of GK on astrocyte proliferation and migration after OGD. Collectively, GK promoted astrocyte proliferation and migration after OGD via inducing protective autophagy through the AMPK/mTOR/ULK1 signaling pathway. Our findings suggested that GK might be a potential agent for cerebral ischemia/reperfusion injury. Copyright © 2018. Published by Elsevier B.V.
Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection.
Lokensgard, James R; Mutnal, Manohar B; Prasad, Sujata; Sheng, Wen; Hu, Shuxian
2016-05-20
Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and persisted through the latest time tested (60 days post infection). Finally, astrocytes produce BAFF (B cell activating factor of the TNF family) and promote proliferation of B cells via cell-to-cell contact. CXCR3 is the primary chemokine receptor on CD19(+) B cells persisting within the brain, and migration to microglial cell supernatants is mediated through this receptor. Correspondingly, microglial cells produce CXCL9 and CXCL10, but not CXCL13. Reactive astrocytes promote B cell proliferation.
Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis
Chousterman, Benjamin G.; Hilgendorf, Ingo; Robbins, Clinton S.; Theurl, Igor; Gerhardt, Louisa M.S.; Iwamoto, Yoshiko; Quach, Tam D.; Ali, Muhammad; Chen, John W.; Rothstein, Thomas L.; Nahrendorf, Matthias; Weissleder, Ralph
2014-01-01
Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911
Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells.
Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng
2018-05-01
The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V‑FITC/PI staining and JC‑1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH‑DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP‑2 and MMP‑9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT‑PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK‑MEL‑5 cells in a concentration‑dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro‑apoptotic protein Bax, caspase‑9 and caspase‑3 were upregulated, while anti‑apoptotic protein Bcl‑2 was downregulated in the LD‑treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co‑treatment of LD and free radical scavenger N‑acetyl‑cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP‑9 and MMP‑2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion.
Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells
Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng
2018-01-01
The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V-FITC/PI staining and JC-1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH-DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP-2 and MMP-9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT-PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK-MEL-5 cells in a concentration-dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro-apoptotic protein Bax, caspase-9 and caspase-3 were upregulated, while anti-apoptotic protein Bcl-2 was downregulated in the LD-treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co-treatment of LD and free radical scavenger N-acetyl-cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP-9 and MMP-2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion. PMID:29565458
Fascin 1 is dispensable for developmental and tumour angiogenesis
Ma, Yafeng; Reynolds, Louise E.; Li, Ang; Stevenson, Richard P.; Hodivala-Dilke, Kairbaan M.; Yamashiro, Shigeko; Machesky, Laura M.
2013-01-01
Summary The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis. PMID:24244855
Fascin 1 is dispensable for developmental and tumour angiogenesis.
Ma, Yafeng; Reynolds, Louise E; Li, Ang; Stevenson, Richard P; Hodivala-Dilke, Kairbaan M; Yamashiro, Shigeko; Machesky, Laura M
2013-01-01
The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.
Ramos, Ana Raquel; Elong Edimo, William's; Erneux, Christophe
2018-01-01
Inositol polyphosphate 5-phosphatases or phosphoinositide 5-phosphatases (PI 5-phosphatases) are enzymes that can act on soluble inositol phosphates and/or phosphoinositides (PIs). Several PI 5-phosphatases have been linked to human genetic diseases, in particular the Lowe protein or OCRL which is mutated in the Lowe syndrome. There are 10 different members of this family and 9 of them can use PIs as substrate. One of these substrates, PI(3,4,5)P3 binds to specific PH domains and recruits as effectors specific proteins to signaling complexes. Protein kinase B is one target protein and activation of the kinase will have a major impact on cell proliferation, survival and cell metabolism. Two other PIs, PI(4,5)P2 and PI(3,4)P2, are produced or used as substrates of PI 5-phosphatases (OCRL, INPP5B, SHIP1/2, SYNJ1/2, INPP5K, INPP5J, INPP5E). The inositol lipids may influence many aspects of cytoskeletal organization, lamellipodia formation and F-actin polymerization. PI 5-phosphatases have been reported to control cell migration, adhesion, polarity and cell invasion particularly in cancer cells. In glioblastoma, reducing SHIP2 expression can positively or negatively affect the speed of cell migration depending on the glioblastoma cell type. The two PI 5-phosphatases SHIP2 or SKIP could be localized at the plasma membrane and can reduce either PI(3,4,5)P3 or PI(4,5)P2 abundance. In the glioblastoma 1321 N1 cells, SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Ying; Teng, Hong-Lin; Gao, Yuan; Zhang, Fan; Ding, Yu-Qiang; Huang, Zhi-Hui
2016-12-01
Olfactory ensheathing cells (OECs) are a unique type of glial cells with axonal growth-promoting properties in the olfactory system. Organized migration of OECs is essential for neural regeneration and olfactory development. However, the molecular mechanism of OEC migration remains unclear. In the present study, we examined the effects of brain-derived neurotrophic factor (BDNF) on OEC migration. Initially, the "scratch" migration assay, the inverted coverslip and Boyden chamber migration assays showed that BDNF could promote the migration of primary cultured OECs. Furthermore, BDNF gradient attracted the migration of OECs in single-cell migration assays. Mechanistically, TrkB receptor expressed in OECs mediated BDNF-induced OEC migration, and BDNF triggered calcium signals in OECs. Finally, transient receptor potential cation channels (TRPCs) highly expressed in OECs were responsible for BDNF-induced calcium signals, and required for BDNF-induced OEC migration. Taken together, these results demonstrate that BDNF promotes the migration of cultured OECs and an unexpected finding is that TRPCs are required for BDNF-induced OEC migration. GLIA 2016;64:2154-2165. © 2016 Wiley Periodicals, Inc.
Nakashima, Hiroko; Hamaguchi, Yasuhito; Watanabe, Rei; Ishiura, Nobuko; Kuwano, Yoshihiro; Okochi, Hitoshi; Takahashi, Yoshimasa; Tamaki, Kunihiko; Sato, Shinichi; Tedder, Thomas F; Fujimoto, Manabu
2010-05-01
Although contact hypersensitivity (CHS) has been considered a prototype of T cell-mediated immune reactions, recently a significant contribution of regulatory B cell subsets in the suppression of CHS has been demonstrated. CD22, one of the sialic acid-binding immunoglobulin-like lectins, is a B cell-specific molecule that negatively regulates BCR signaling. To clarify the roles of B cells in CHS, CHS in CD22(-/-) mice was investigated. CD22(-/-) mice showed delayed recovery from CHS reactions compared with that of wild-type mice. Transfer of wild-type peritoneal B-1a cells reversed the prolonged CHS reaction seen in CD22(-/-) mice, and this was blocked by the simultaneous injection with IL-10 receptor Ab. Although CD22(-/-) peritoneal B-1a cells were capable of producing IL-10 at wild-type levels, i.p. injection of differentially labeled wild-type/CD22(-/-) B cells demonstrated that a smaller number of CD22(-/-) B cells resided in lymphoid organs 5 d after CHS elicitation, suggesting a defect in survival or retention in activated CD22(-/-) peritoneal B-1 cells. Thus, our study reveals a regulatory role for peritoneal B-1a cells in CHS. Two distinct regulatory B cell subsets cooperatively inhibit CHS responses. Although splenic CD1d(hi)CD5(+) B cells have a crucial role in suppressing the acute exacerbating phase of CHS, peritoneal B-1a cells are likely to suppress the late remission phase as "regulatory B cells." CD22 deficiency results in disturbed CHS remission by impaired retention or survival of peritoneal B-1a cells that migrate into lymphoid organs.
Seo, Hyang-Hee; Kim, Sang Woo; Lee, Chang Youn; Lim, Kyu Hee; Lee, Jiyun; Lim, Soyeon; Lee, Seahyoung; Hwang, Ki-Chul
2017-03-05
Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Qi-Zhi; Guo, Yu-Dong; Li, Hao-Mei; Wang, Rui-Zheng; Guo, Shou-Gang; Du, Yi-Feng
2017-03-01
Stroke is a major public health concern with high rates of morbidity and mortality worldwide. Cerebral ischemia and infarction are commonly associated with stroke. Currently used medications, though effective, are also associated with adverse effects. Development of effective neuroprotective agents with fewer side effects would be of clinical value. We evaluated the effects of Withaferin A (WA), a steroidal lactone derived from the plant Withania somnifera, on experimentally induced cerebral infarction. The ability of WA to inhibit neuroapoptosis and modulate vascular smooth muscle cell (VSMC) migration and PI3K/Akt signaling was assessed. Separate groups of Sprague Dawley rats were subjected to cerebral occlusion and reperfused for 24h. WA treatment (25, 50 or 100mg/kg bodyweight) significantly reduced the infarct area in a carotid ligation model; WA reduced intimal hyperplasia and proliferating cell nuclear antigen (PCNA)-positive cell counts. Western blotting analysis revealed significantly suppressed PI3K/Akt signaling following cerebral ischemia/reperfusion injury. WA supplementation was found to downregulate apoptotic pathway proteins. WA suppressed PTEN and enhanced p-Akt and GSK-3β levels and elevated mTORc1, cyclinD1 and NF-κB p65 expression, suggesting activation of the PI3K/Akt pathway. In vitro studies with PDGF-stimulated A7r5 cells revealed that WA exposure severely downregulated matrix metalloproteinases (MMP)-2 and -9 and inhibited migration of A7r5 cells. Additionally, WA reduced the proliferation of A7r5 cells significantly. WA exerted neuroprotective effects by activating the PI3K/Akt pathway, modulating the expression of MMPs, and inhibiting the migration of VSMCs. Copyright © 2017. Published by Elsevier B.V.
MUC4-promoted neural invasion is mediated by the axon guidance factor Netrin-1 in PDAC.
Wang, Linjun; Zhi, Xiaofei; Zhu, Yi; Zhang, Qun; Wang, Weizhi; Li, Zheng; Tang, Jie; Wang, Jiwei; Wei, Song; Li, Bowen; Zhou, Jianping; Jiang, Jianguo; Yang, Li; Xu, Hao; Xu, Zekuan
2015-10-20
Neural invasion (NI) is an important oncological feature of pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanism of NI in PDAC remains unclear. In this study, we found that MUC4 was overexpressed in PDAC tissues and high expression of MUC4 indicated a higher NI incidence than low expression. In vitro, MUC4 knockdown inhibited the migration and invasion of PDAC cells and impaired the migration of PDAC cells along nerve in dorsal root ganglia (DRG)-PDAC cell co-culture assay. In vivo, MUC4 knockdown suppressed the NI of PDAC cells in a murine NI model. Mechanistically, our data revealed that MUC4 silencing resulted in decreased netrin-1 expression and re-expression of netrin-1 in MUC4-silenced cells rescued the capability of NI. Furthermore, we identified that decreased netrin-1 expression was owed to the downregulation of HER2/AKT/NF-κB pathway in MUC4-silenced cells. Additionally, MUC4 knockdown also resulted in the downregulation of pFAK, pSrc, pJNK and MMP9. Taken together, our findings revealed a novel role of MUC4 in potentiating NI via netrin-1 through the HER2/AKT/NF-κB pathway in PDAC.
Liu, Yan-rong; Liu, Hui-juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-shuang; Wang, Jing; Sun, Bo; Dai, Ting-ting; Yang, Cheng; Sun, Tao; Zhou, Hong-gang
2015-01-01
The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients. PMID:26512779
Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E.; Jiang, Wen G.; Harding, Keith G.; Adams, Ralf H.; Nobes, Catherine D.; Martin, Paul
2015-01-01
Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443
Dubon, Maria Jose; Park, Ki-Sook
2016-04-01
Substance P (SP) is known to induce the mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) and thus participates in wound repair. However, the cellular and molecular mechanisms responsible for the SP-mediated migration of BM-MSCs were not fully understood. In the present study, we studied the molecular mechanisms that mediate the migration of the BM-derived MSC-like cell line ST2 in response to SP. Using a migration assay and western blot analysis, we noted that SP induced the chemotactic migration of ST2 cells through the intrinsic activation of extracellular signal-regulated kinases (ERKs) and protein kinase B (Akt), the phosphorylated expression levels of which were increased. We noted that Src is involved in the SP-mediated migration of ST2 cells and that focal adhesion kinase (FAK) was activated in the ST2 cells following SP treatment. Membrane ruffling increased in the ST2 cells after SP treatment, as was clearly demonstrated by immunocytochemical analysis. Importantly, using a blocking antibody against N-cadherin (GC-4), we studied cell migration and noted that SP mediated the migration of the ST2 cells through N-cadherin. The present study thus advanced our understanding of the mechanisms through which SP induces BM-MSC migration.
Guimarães-Ferreira, Carla A; Rodrigues, Elaine G; Mortara, Renato A; Cabral, Hamilton; Serrano, Fabiana A; Ribeiro-dos-Santos, Ricardo; Travassos, Luiz R
2007-01-01
In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies. PMID:17898868
Silencing of diphthamide synthesis 3 (Dph3) reduces metastasis of murine melanoma.
Wang, Lei; Shi, Yu; Ju, Peijun; Liu, Rui; Yeo, Siok Ping; Xia, Yinyan; Owlanj, Hamed; Feng, Zhiwei
2012-01-01
Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma.
Silencing of Diphthamide Synthesis 3 (Dph3) Reduces Metastasis of Murine Melanoma
Wang, Lei; Shi, Yu; Ju, Peijun; Liu, Rui; Yeo, Siok Ping; Xia, Yinyan; Owlanj, Hamed; Feng, Zhiwei
2012-01-01
Melanoma is the most dangerous skin cancer due to its highly metastatic potential and resistance to chemotherapy. Currently, there is no effective treatment for melanoma once it is progressed to metastatic stage. Therefore, further study to elucidate the molecular mechanism underlying the metastasis of melanoma cells is urgently required for the improvement of melanoma treatment. In the present study, we found that diphthamide synthesis 3 (Dph3) is involved in the metastasis of B16F10 murine melanoma cells by insertional mutagenesis. We demonstrated that Dph3 disruption impairs the migration of B16F10 murine melanoma cells. The requirement of Dph3 in the migration of melanoma cells was further confirmed by gene silencing with siRNA in vitro. In corresponding to this result, overexpression of Dph3 significantly promoted the migratory ability of B16F10 and B16F0 melanoma cells. Moreover, down regulation of Dph3 expression in B16F10 melanoma cells strikingly inhibits their cellular invasion and metastasis in vivo. Finally, we found that Dph3 promotes melanoma migration and invasion through the AKT signaling pathway. To conclude, our findings suggest a novel mechanism underlying the metastasis of melanoma cells which might serve as a new intervention target for the treatment of melanoma. PMID:23185508
Dai, Bingling; Ma, Yujiao; Yang, Tianfeng; Wang, Wenjie; Zhang, Yanmin
2017-03-01
12k, a taspine derivative, has been demonstrated to have the potent anti-tumor activity in lung cancer and colorectal cancer. The study aims to further explore the underlying mechanisms of 12k on A549 cell migration in vitro. Our data demonstrated that 12k negatively regulated Wnt signaling pathway by suppressing the phosphorylation of LRP5/6, and inhibiting the expression and nuclear translocation of β-catenin. 12k was shown to downregulate MMP3 and MMP7 expression which regulated by β-catenin interacts with TCF/LEF in the nucleus, and effectively impaired the related migration protein expression of MMP2 and MMP9 in A549 cells. In addition, 12k repressed the EphrinB2 and its PDZ protein, impairing the VEGFR2 and VEGFR3 expression in A549 cells, as well as inhibited the downstream of VEGFR2 included PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Taken together, our findings revealed that 12k suppressed migration of A549 cells through the Wnt/β-catenin signaling pathway and EphrinB2 related signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Arioka, Masaki; Takahashi-Yanaga, Fumi; Kubo, Momoko; Igawa, Kazunobu; Tomooka, Katsuhiko; Sasaguri, Toshiyuki
2017-08-15
Differentiation-inducing factor-1 (DIF-1) isolated from Dictyostelium discoideum strongly inhibits the proliferation of various mammalian cells through the activation of glycogen synthase kinase-3 (GSK-3). To evaluate DIF-1 as a novel anti-cancer agent for malignant melanoma, we examined whether DIF-1 has anti-proliferative, anti-migratory, and anti-invasive effects on melanoma cells using in vitro and in vivo systems. DIF-1 reduced the expression levels of cyclin D1 and c-Myc by facilitating their degradation via GSK-3 in mouse (B16BL6) and human (A2058) malignant melanoma cells, and thereby strongly inhibited their proliferation. DIF-1 suppressed the canonical Wnt signaling pathway by lowering the expression levels of transcription factor 7-like 2 and β-catenin, key transcription factors in this pathway. DIF-1 also inhibited cell migration and invasion, reducing the expression of matrix metalloproteinase-2; however, this effect was not dependent on GSK-3 activity. In a mouse lung tumor formation model, repeated oral administrations of DIF-1 markedly reduced melanoma colony formation in the lung. These results suggest that DIF-1 inhibits cell proliferation by a GSK-3-dependent mechanism and suppresses cell migration and invasion by a GSK-3-independent mechanism. Therefore, DIF-1 may have a potential as a novel anti-cancer agent for the treatment of malignant melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Shiozawa, Yusuke; Pedersen, Elisabeth A.; Taichman, Russell S.
2009-01-01
Despite improvements in current combinational chemotherapy regimens, the prognosis of the (1;19)(q23;p13) translocation (E2A/PBX1) positive B-cell precursor acute lymphoblastic leukemia (ALL) is poor in pediatric leukemia patients. In this study, we examined the roles of GAS6/Mer axis in the interactions between E2A/PBX1 positive B-cell precursor ALL cells and the osteoblastic niche in the bone marrow. The data show that primary human osteoblasts secrete GAS6 in response to the Mer-over-expressed E2A/PBX1 positive ALL cells through MAPK signaling pathway and that leukemia cells migrate toward GAS6 using pathways activated by Mer. Importantly, GAS6 supports the survival and prevents apoptosis from chemotherapy of E2A/PBX1 positive ALL cells by inducing dormancy. Together, these data suggest that GAS6/Mer axis regulates the homing and survival of the E2A/PBX1 positive B-cell precursor ALL in the bone marrow niche. PMID:19922767
Bedini, Andrea; Baiula, Monica; Vincelli, Gabriele; Formaggio, Francesco; Lombardi, Sara; Caprini, Marco; Spampinato, Santi
2017-09-15
Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1β mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca 2+ ] i require β-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1β mRNA are counteracted by N/OFQ via β-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role. Copyright © 2017 Elsevier Inc. All rights reserved.
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Li, Yiwei; Ahmad, Aamir; Banerjee, Sanjeev; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
Activation of Notch-1 is known to be associated with the development and progression of human malignancies including pancreatic cancer. Emerging evidence suggest that the acquisition of epithelial-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotype are interrelated and contributes to tumor recurrence and drug resistance. The molecular mechanism(s) by which Notch-1 contributes to the acquisition of EMT phenotype and CSC self-renewal capacity has not been fully elucidated. Here we show that forced over-expression of Notch-1 leads to increased cell growth, clonogenicity, migration and invasion of AsPC-1 cells. Moreover, over-expression of Notch-1 led to the induction of EMT phenotype by activation of mesenchymal cell markers such as ZEB1, CD44, EpCAM, and Hes 1. Here we also report, for the first time, that over-expression of Notch-1 leads to increased expression of miR-21, and decreased expression of miR-200b, miR-200c, let-7a, let-7b, and let-7c. Re-expression of miR-200b led to decreased expression of ZEB1, and vimentin, and increased expression of E-cadherin. Over-expression of Notch-1 also increased the formation of pancreatospheres consistent with expression of CSC surface markers CD44 and EpCAM. Finally, we found that genistein, a known natural anti-tumor agent inhibited cell growth, clonogenicity, migration, invasion, EMT phenotype, formation of pancreatospheres and expression of CD44 and EpCAM. These results suggest that the activation of Notch-1 signaling contributes to the acquisition of EMT phenotype, which is in part mediated through the regulation of miR-200b and CSC self-renewal capacity, and these processes could be attenuated by genistein treatment. PMID:21463919
Wei, Jia; Zhou, Yu; Besner, Gail E
2015-07-01
Necrotizing enterocolitis (NEC) is associated with loss of neurons and glial cells in the enteric nervous system (ENS). Our goal was to determine whether enteric neural stem cell (NSC) transplantation, in conjunction with heparin-binding epidermal growth factor-like growth factor (HB-EGF), could protect against experimental NEC. In vitro, HB-EGF on NSC proliferation and migration, and the effects of receptors utilized by HB-EGF to exert these effects, were determined. In vivo, mouse pups were exposed to experimental NEC and treated with NSC alone, HB-EGF alone, NSC+HB-EGF, or HB-EGF overexpressing NSC. NSC engraftment and differentiation into neurons in the ENS, intestinal injury, intestinal permeability, and intestinal motility were determined. HB-EGF promoted NSC proliferation via ErbB-1 receptors and enhanced NSC migration via ErbB-1, ErbB-4, and Nardilysin receptors. HB-EGF significantly enhanced the engraftment of transplanted NSC into the ENS during NEC. NSC transplantation significantly reduced NEC incidence and improved gut barrier function and intestinal motility, and these effects were augmented by simultaneous administration of HB-EGF or by transplantation of HB-EGF overexpressing NSC. HB-EGF promotes NSC proliferation and migration. HB-EGF and NSC reduce intestinal injury and improve gut barrier function and intestinal motility in experimental NEC. Combined HB-EGF and NSC transplantation may represent a potential future therapy to prevent NEC.
Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina
2018-06-01
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Esposito, Giuseppe; Gigli, Stefano; Seguella, Luisa; Nobile, Nicola; D'Alessandro, Alessandra; Pesce, Marcella; Capoccia, Elena; Steardo, Luca; Cirillo, Carla; Cuomo, Rosario; Sarnelli, Giovanni
2016-08-01
Activation of intestinal human pregnane X receptor (PXR) has recently been proposed as a promising strategy for the chemoprevention of inflammation-induced colon cancer. The present study was aimed at evaluating the effect of rifaximin, a non-absorbable antibiotic, in inhibiting angiogenesis in a model of human colorectal epithelium and investigating the role of PXR in its mechanism of action. Caco-2 cells were treated with rifaximin (0.1, 1.0 and 10.0 µM) in the presence or absence of ketoconazole (10 µM) and assessed for cell proliferation, migration and expression of proliferating cell nuclear antigen (PCNA). The release of vascular endothelial growth factor (VEGF) and nitric oxide (NO), expression of Akt, mechanistic target of rapamycin (mTOR), p38 mitogen activated protein kinases (MAPK), nuclear factor κB (NF-κB) and metalloproteinase-2 and -9 (MMP-2 and -9) were also evaluated. Treatment with rifaximin 0.1, 1.0 and 10.0 µM caused significant and concentration-dependent reduction of cell proliferation, cell migration and PCNA expression in the Caco-2 cells vs. untreated cells. Treatment downregulated VEGF secretion, NO release, VEGFR-2 expression, MMP-2 and MMP-9 expression vs. untreated cells. Rifaximin treatment also resulted in a concentration-dependent decrease in the phosphorylation of Akt, mTOR, p38MAPK and inhibition of hypoxia-inducible factor 1-α (HIF-1α), p70S6K and NF-κB. Ketoconazole (PXR antagonist) treatment inhibited these effects. These findings demonstrated that rifaximin causes PXR-mediated inhibition of angiogenic factors in Caco-2 cell line and may be a promising anticancer tool.
CXCR3A contributes to the invasion and metastasis of gastric cancer cells.
Yang, Chenggang; Zheng, Wanlei; Du, Wenfeng
2016-09-01
CXCR3, belonging to CXC chemokine receptors, has been identified to be overexpressed in various kinds of tumors. There are three mRNA variants of CXCR3 (CXCR3A, CXCR3B and CXCR3alt) in human cells. The functions of major CXCR3 isoforms (CXCR3A, CXCR3B) have been reported in some tumors including prostate and breast cancer. However, the effects of CXCR3A and CXCR3B on gastric cancer cell progression remain unknown. The present investigation found that CXCR3A mRNA level was upregulated but CXCR3B mRNA level was downregulated in gastric cancer cells and tissues. In vitro growth analysis showed that CXCR3A acted as a positive mediator in regulating cell growth, whereas CXCR3B exerted the opposite effect. In vitro invasion and migration assays showed that CXCL10 promoted gastric cancer cell invasion and migration via CXCR3A, but not CXCR3B. Moreover, knockdown of CXCR3A inhibited cell growth and metastasis in vivo. Additionally, CXCR3A knockdown attenuated matrix metalloproteinase (MMP)‑13 and IL‑6 expression, and reduced ERK1/2 activation. Together, these data suggest that CXCR3A contributes to the growth, invasion and metastasis of gastric cancer cells in vitro and in vivo, and thus may be a key mediator of gastric cancer progression.
MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma.
Liu, Shujing; Kumar, Suresh M; Lu, Hezhe; Liu, Aihua; Yang, Ruifeng; Pushparajan, Anitha; Guo, Wei; Xu, Xiaowei
2012-01-01
MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression. Hsa-miR-9 has been shown to have opposite functions in different tumour types; however, the underlying mechanism is unclear. Here we show that hsa-miR-9 is down-regulated in metastatic melanomas compared to primary melanomas. Overexpression of miR-9 in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity with decreased F-actin polymerization and down-regulation of multiple GTPases involved in cytoskeleton remodelling. miR-9 overexpression induced significant down-regulation of Snail1 with a concomitant increase in E-cadherin expression. In contrast, knockdown of miR-9 increased Snail1 expression as well as melanoma cell proliferation and migration capacity. Mechanistically, miR-9 expression down-regulated NF-κB1 in melanoma and the effect was abolished by mutations in the putative miR-9 binding sites within the 3'-untranslated region (UTR) of NF-κB1. Anti-miR-9 miRNA inhibitor also increased the expression of NF-κB1. The effects of miR-9 on Snail1 expression and melanoma cell proliferation and migration were rescued by overexpression of NF-κB1 in these cells. Furthermore, miR-9 overexpression resulted in significantly decreased melanoma growth and metastasis in vivo. In summary, miR-9 inhibits melanoma proliferation and metastasis through down-regulation of the NF-κB1-Snail1 pathway. This study finds a new mechanism that miR-9 utilizes to decrease E-cadherin expression and inhibit melanoma progression. The results suggest that function of microRNAs is context and tumour type-specific. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T
1995-01-01
Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082
Jeon, J I; Ko, S H; Kim, Y-J; Choi, S M; Kang, K K; Kim, H; Yoon, H J; Kim, J M
2015-03-01
The CC chemokine eotaxin contributes to epithelium-induced inflammation in airway diseases such as asthma. Eupatilin (5,7-dihydroxy-3',4',6'-trimethoxyflavone), a bioactive component of Artemisia asiatica Nakai (Asteraceae), is reported to inhibit the adhesion of eosinophils to bronchial epithelial cells. However, little is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelium-induced inflammation. In this study, we investigated the effect of eupatilin on expression of eotaxin-1 (CCL11), a potent chemoattractant for eosinophils. Eupatilin significantly inhibited eotaxin expression in bronchial epithelial cells stimulated with TNF-α, while NF-κB and IκBα kinase (IKK) activities declined concurrently. Eupatilin also inhibited mitogen-activated protein kinase (MAPK) activity; however, all of these anti-inflammatory activities were reversed by MAPK overexpression. In contrast, eupatilin did not affect the signal transducer and activator of transcription 6 (STAT6) signalling in bronchial epithelial cells stimulated with IL-4. Furthermore, eupatilin significantly attenuated TNF-α-induced eosinophil migration. These results suggest that the eupatilin inhibits the signalling of MAPK, IKK, NF-κB and eotaxin-1 in bronchial epithelial cells, leading to inhibition of eosinophil migration. © 2015 John Wiley & Sons Ltd.
Li, Pengcheng; Zheng, Xun; Shou, Kangquan; Niu, Yahui; Jian, Chao; Zhao, Yong; Yi, Wanrong; Hu, Xiang; Yu, Aixi
2016-01-01
Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), the novel iron chelator, has been reported to inhibit the tumorigenesis and progression of various cancer cells, including neuroblastoma, neuroepithelioma and prostate cancer. However, whether Dp44mT has anticancer effects in osteosarcoma is still unknown. Here, we investigated the antitumor action of Dp44mT in osteosarcoma and its underlying mechanisms. A human osteosarcoma 143B cell line in vitro and 143B xenograft in nude mice in vivo were utilized, the anticancer effects of Dp44mT were examined through methods of MTT assay, transwell, wound healing assay, flow cytometry, western blot, immunohistochemistry and H&E staining. We showed that Dp44mT inhibits cell proliferation, invasion and migration in vitro. In addition, flow cytometry further illustrated that Dp44mT suppression of 143B cell proliferation, invasion and migration were partially due to induction of cell apoptosis, cell cycle arrest in S phase and ROS production. Also in vitro and in vivo, the expression levels of Bcl2, Bax, Caspase3, Caspase9, LC3-II, β-catenin and its downstream targets such as C-myc and Cyclin D1 demonstrated that cell apoptosis and autophagy, as well as Wnt/β-catenin pathway were involved in Dp44mT induced osteosarcoma suppression. The Dp44mT inhibition of osteosarcoma was further verified via animal models. The findings indicated that in vivo Dp44mT showed a significant reduction in the 143B xenograft tumor growth and metastasis. In conclusion, our data demonstrated that Dp44mT has effective anticancer capability in osteosarcoma and that may represent a promising treatment strategy for osteosarcoma. PMID:28078009
VEGF-A165b Is Cytoprotective and Antiangiogenic in the Retina
Magnussen, Anette L.; Rennel, Emma S.; Hua, Jing; Bevan, Heather S.; Long, Nicholas Beazley; Lehrling, Christina; Gammons, Melissa; Floege, Juergen; Harper, Steven J.; Agostini, Hansjürgen T.; Bates, David O.; Churchill, Amanda J.
2010-01-01
Purpose. A number of key ocular diseases, including diabetic retinopathy and age-related macular degeneration, are characterized by localized areas of epithelial or endothelial damage, which can ultimately result in the growth of fragile new blood vessels, vitreous hemorrhage, and retinal detachment. VEGF-A165, the principal neovascular agent in ocular angiogenic conditions, is formed by proximal splice site selection in its terminal exon 8. Alternative splicing of this exon results in an antiangiogenic isoform, VEGF-A165b, which is downregulated in diabetic retinopathy. Here the authors investigate the antiangiogenic activity of VEGF165b and its effect on retinal epithelial and endothelial cell survival. Methods. VEGF-A165b was injected intraocularly in a mouse model of retinal neovascularization (oxygen-induced retinopathy [OIR]). Cytotoxicity and cell migration assays were used to determine the effect of VEGF-A165b. Results. VEGF-A165b dose dependently inhibited angiogenesis (IC50, 12.6 pg/eye) and retinal endothelial migration induced by 1 nM VEGF-A165 across monolayers in culture (IC50, 1 nM). However, it also acts as a survival factor for endothelial cells and retinal epithelial cells through VEGFR2 and can stimulate downstream signaling. Furthermore, VEGF-A165b injection, while inhibiting neovascular proliferation in the eye, reduced the ischemic insult in OIR (IC50, 2.6 pg/eye). Unlike bevacizumab, pegaptanib did not interact directly with VEGF-A165b. Conclusions. The survival effects of VEGF-A165b signaling can protect the retina from ischemic damage. These results suggest that VEGF-A165b may be a useful therapeutic agent in ischemia-induced angiogenesis and a cytoprotective agent for retinal pigment epithelial cells. PMID:20237249
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms
Tancharoen, Salunya; Gando, Satoshi; Binita, Shrestha; Nagasato, Tomoka; Kikuchi, Kiyoshi; Nawa, Yuko; Dararat, Pornpen; Yamamoto, Mika; Narkpinit, Somphong; Maruyama, Ikuro
2016-01-01
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 (Hmgb1+/−) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1+/− and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1+/− mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1+/− mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing. PMID:27886093
Effects of recombinant dentin sialoprotein in dental pulp cells.
Lee, S-Y; Kim, S-Y; Park, S-H; Kim, J-J; Jang, J-H; Kim, E-C
2012-04-01
Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.
Paradise, Ranjani K; Whitfield, Matthew J; Lauffenburger, Douglas A; Van Vliet, Krystyn J
2013-02-15
Extracellular pH (pH(e)) gradients are characteristic of tumor and wound environments. Cell migration in these environments is critical to tumor progression and wound healing. While it has been shown previously that cell migration can be modulated in conditions of spatially invariant acidic pH(e) due to acid-induced activation of cell surface integrin receptors, the effects of pH(e) gradients on cell migration remain unknown. Here, we investigate cell migration in an extracellular pH(e) gradient, using both model α(v)β(3) CHO-B2 cells and primary microvascular endothelial cells. For both cell types, we find that the mean cell position shifts toward the acidic end of the gradient over time, and that cells preferentially polarize toward the acidic end of the gradient during migration. We further demonstrate that cell membrane protrusion stability and actin-integrin adhesion complex formation are increased in acidic pH(e), which could contribute to the preferential polarization toward acidic pH(e) that we observed for cells in pH(e) gradients. These results provide the first demonstration of preferential cell migration toward acid in a pH(e) gradient, with intriguing implications for directed cell migration in the tumor and wound healing environments. Copyright © 2012 Elsevier Inc. All rights reserved.
Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François
2012-01-01
Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663
Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.
2015-01-01
The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327
Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling
2016-01-01
Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment. PMID:26911838
Suppression of gastric cancer dissemination by ephrin-B1-derived peptide.
Tanaka, Masamitsu; Kamata, Reiko; Yanagihara, Kazuyoshi; Sakai, Ryuichi
2010-01-01
Interaction of the Eph family of receptor protein tyrosine kinases and their ligands, ephrin family members, induces bidirectional signaling through cell-cell contacts. High expression of B-type ephrin is associated with high invasion potential of tumors, and we previously observed that signaling through the C-terminus of ephrin-B1 mediates the migration and invasion of cells, and is involved in the promotion of carcinomatous peritonitis in vivo. Here we show that the intracellular introduction of a synthetic peptide derived from ephrin-B1 C-terminus blocks ephrin-B1 mediated signaling in scirrhous gastric cancer cells. Treatment of cancer cells with a fusion peptide consisting of HIV-TAT and amino acids 331-346 of ephrin-B1 (PTD-EFNB1-C) suppressed the activation of RhoA, mediated by the association of ephrin-B1 with an adaptor protein Dishevelled, and also inhibited extracellular secretion of metalloproteinase. Moreover, injection of PTD-EFNB1-C peptide into the peritoneal cavity of nude mice suppressed carcinomatous peritonitis of intraperitoneally transplanted scirrhous gastric cancer cells. These results indicate the possible application of ephrin-B1 C-terminal peptide to develop novel protein therapy for scirrhous gastric carcinoma, especially in the stage of tumor progression, including peritoneal dissemination.
de Matos Cândido-Bacani, Priscila; Ezan, Frédéric; de Oliveira Figueiredo, Patrícia; Matos, Maria de Fátima Cepa; Rodrigues Garcez, Fernanda; Silva Garcez, Walmir; Baffet, Georges
2017-05-05
[1-9-NαC]-crourorb A1 is a cyclic peptide isolated from Croton urucurana Baillon latex, found in midwestern Brazil, that has been shown to exert cytotoxic effects against a panel of cancer cell lines. However, the underlying mechanisms responsible for the crourorb A1-induced cytotoxicity in cancer cells remain unknown. In this study, the effects of crourorb A1 on the viability, apoptosis, cell cycle and migration of Huh-7 (human hepatocarcinoma) cells were investigated. We evaluated the viability of Huh-7 cells treated with crourorb A1 in 2D and 3D collagen cultures and found that cells in 3D culture exhibited increased resistance to crourorb A1 compared to cells in 2D culture (IC 50 : 62μg/ml versus 35.75μg/ml). Crourorb A1 treatment decreases the viability of Huh-7 cells in a dose- and time-dependent manner and is associated with the induction of apoptosis, in the absence of necrotic cells, through the activation of caspase-3/7 and increased expression of the pro-apoptotic proteins Bak, Bid, Bax, Puma, Bim, and Bad. The effects of crourorb A1 are also associated with G2/M phase cell cycle arrest and increases in cyclin-dependent kinase (CDK1) and cyclin B1 expression. A significant reduction in Huh-7 cell migration induced by crourorb A1 was also observed in the presence of mitomycin C. Finally, we showed that the JNK/MAP pathway, but not ERK signaling, is involved in crourorb A1-induced hepatocarcinoma cell mortality. Copyright © 2017 Elsevier B.V. All rights reserved.
Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.
2016-01-01
NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662
Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik
2016-07-01
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu
2017-12-01
Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.
Lv, Wei; Sui, Linlin; Yan, Xiaona; Xie, Huaying; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Yao, Xiaofeng; Kong, Ying; Cao, Jun
2018-01-05
Cadmium (Cd) is a toxic heavy metal that is widely used in industry and agriculture. In this study the role of autophagy in Cd-induced proliferation, migration and invasion was investigated in A549 cells. Exposure to Cd (2 μM) significantly increased reactive oxygen species (ROS) production, induced autophagy and enhanced cell growth, migration and invasion in A549 cells. Western blot analysis showed that the expression of autophagy-related proteins, LC3-II, Beclin-1 and Atg4 and invasion-related protein MMP-9 were upregulated in Cd-treated cells. N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of A549 cells and the increasing protein level of LC3-II and Atg4. Blocking Atg4 expression by siRNA strongly reduced Beclin-1 and LC3-II protein expression and the number of autophagosome positive cells induced by Cd. Furthermore, Atg4 siRNA increased the number of cells at G0/G1 phase, reduced the number of S and G2/M phase cells, and inhibited Cd-induced cell growth significantly compared with that of Cd-treated Control siRNA cells. 3-MA pretreatment increased the percentage of G0/G1 phase cells, decreased S phase and G2/M phase percentage, and inhibited Cd-induced cell growth remarkably compared with that of only Cd-treated cells. Knocking down Atg4 reduced the number of cells that migrated and invaded through the Matrigel matrix significantly and led to a significant decrease of MMP-9 expression. In addition, in lung tissues of Cd-treated BALB/c mice, the increased expression of LC3-II, Beclin-1 and Atg4 were observed. Taken together, our results demonstrated that ROS-dependent Atg4-mediated autophagy plays an important role in Cd-induced cell growth, migration and invasion in A549 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit
2010-08-15
The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.
Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin
2015-01-01
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987
Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement
Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.
2012-01-01
CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292
Li, Junjun; Yan, Ming; Wang, Zilu; Jing, Shuanglin; Li, Yao; Liu, Genxia; Yu, Jinhua; Fan, Zhipeng
2014-01-01
NF-κB signaling pathway plays a complicated role in the biological functions of mesenchymal stem cells. However, the effects of NF-κB pathway on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) remain unclear. The present study was designed to evaluate the effects of canonical NF-κB pathway on the osteo/odontogenic capacity of SCAPs in vitro. Western blot results demonstrated that NF-κB pathway in SCAPs was successfully activated by TNF-α or blocked by BMS-345541. NF-κB pathway-activated SCAPs presented a higher proliferation activity compared with control groups, as indicated by dimethyl-thiazol-diphenyl tetrazolium bromide assay (MTT) and flow cytometry assay (FCM). Wound scratch assay revealed that NF-κB pathway-activated SCAPs presented an improved migration capacity, enhanced alkaline phosphatase (ALP) activity, and upregulated mineralization capacity of SCAPs, as compared with control groups. Meanwhile, the odonto/osteogenic markers (ALP/ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, OPN/OPN, BSP/BSP, DSPP/DSP, and DMP-1/DMP-1) in NF-κB pathway-activated SCAPs were also significantly upregulated as compared with control groups at both protein and mRNA levels. However, NF-κB pathway-inhibited SCAPs exhibited a lower proliferation/migration capacity, and decreased odonto/osteogenic ability in comparison with control groups. Our findings suggest that classical NF-κB pathway plays a paramount role in the proliferation and committed differentiation of SCAPs.
Molecular mechanisms of ulcer healing.
Tarnawski, A
2000-04-01
An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.
Son, Eun Suk; Kim, Young Ock; Park, Chun Geon; Park, Kyung Hun; Jeong, Sung Hwan; Park, Jeong-Woong; Kim, Se-Hee
2017-11-06
Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf has been used in China as an herbal medicine. Many studies of this plant have reported anti-proliferative and apoptotic activities on human cancer cell lines. Therefore, this study of the anti-metastatic effect of Coix lacryma-jobi var. ma-yuen Stapf sprout extract (CLSE) in colorectal cancer cells may provide a scientific basis for exploring anti-cancer effects of edible crops. To evaluate the effect of CLSE on cell proliferation and signaling, we performed a Cell Counting Kit-8 (CCK-8) assay in HCT116 cells and used western blot analysis. Furthermore, scratch-wound healing, transwell migration, matrigel invasion, and adhesion assays were conducted to elucidate the anti-metastatic effects of CLSE under hypoxic conditions in colon cancer cells. First, CLSE decreased deferoxamine (DFO)-induced migration of colon cancer cells by 87%, and blocked colon cancer cell migration by 80% compared with hypoxia control cells. Second, CLSE treatment resulted in a 54% reduction in hypoxia-induced invasiveness of colon cancer cells, and 50% inhibition of adhesive potency through inactivation of the extracellular signal-regulated kinase (ERK) 1/2 and protein kinase b (AKT) pathways. Third, conditioned medium collected from CLSE-treated HCT116 cells suppressed tube formation of human umbilical vein endothelial cells (HUVECs) by 91%. CLSE inhibited migration, invasion, and adhesion of colon cancer cells and tube formation by HUVECs via repression of the ERK1/2 and AKT pathways under hypoxic conditions. Therefore, CLSE may be used to treat patients with colon cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Xin, Beibei; Wang, Hui
Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues.more » Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.« less
Zhou, Lina; Shi, Mengchen; Zhao, Lu; Lin, Zhipeng; Tang, Zeli; Sun, Hengchang; Chen, Tingjin; Lv, Zhiyue; Xu, Jin; Huang, Yan; Yu, Xinbing
2017-06-17
Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
Ying, Li; Li, Gang; Wei, Si-si; Wang, Hong; An, Pei; Wang, Xun; Guo, Kai; Luo, Xian-jin; Gao, Ji-min; Zhou, Qing; Li, Wei; Yu, Ying; Li, Yi-gang; Duan, Jun-li; Wang, Yue-peng
2015-01-01
Aim: Small GTPase Rac1 is a member of the Ras superfamily, which plays important roles in regulation of cytoskeleton reorganization, cell growth, proliferation, migration, etc. The aim of this study was to determine how a constitutively active Rac1b regulated cell proliferation and to investigate the effects of the Rac1b inhibitor sanguinarine. Methods: Three HEK293T cell lines stably overexpressing GFP, Rac1-GFP or Rac1b-GFP were constructed by lentiviral infection. The cells were treated with sanguinarine (1 μmol/L) or its analogue berberine (1 μmol/L) for 4 d. Cell proliferation was evaluated by counting cell numbers and with a BrdU incorporation assay. The levels of cleaved PARP-89 (an apoptosis marker) and cyclin-D1 (a proliferative index) were measured using Western blotting. Results: In 10% serum-containing media, overexpressing either Rac1 or Rac1b did not significantly change the cell proliferation. In the serum-starved media, however, the survival rate of Rac1b cells was significantly increased, whereas that of Rac1 cells was moderately increased. The level of cleaved PARP-89 was significantly increased in serum-starved Rac1 cells, but markedly reduced in serum-starved Rac1b cells. The level of cyclin-D1 was significantly increased in both serum-starved Rac1 and Rac1b cells. Treatment with sanguinarine, but not berberine, inhibited the proliferation of Rac1b cells, which was accompanied by significantly increased the level of PARP-89, and decreased both the level of cyclin-D1 and the percentage of BrdU positive cells. Conclusion: Rac1b enhances the cell proliferation under a growth-limiting condition via both anti-apoptotic and pro-proliferative mechanisms. Sanguinarine, as the specific inhibitor of Rac1b, is a potential therapeutic agent for malignant tumors with up-regulated Rac1b. PMID:25544362
Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V
2010-01-01
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance. PMID:20237142
Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V
2010-06-01
The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.
Molecular role of the PAX5-ETV6 oncoprotein in promoting B-cell acute lymphoblastic leukemia.
Smeenk, Leonie; Fischer, Maria; Jurado, Sabine; Jaritz, Markus; Azaryan, Anna; Werner, Barbara; Roth, Mareike; Zuber, Johannes; Stanulla, Martin; den Boer, Monique L; Mullighan, Charles G; Strehl, Sabine; Busslinger, Meinrad
2017-03-15
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6 + B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development. © 2017 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamoto, Michio; Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp; Okada, Kiyoshi
2014-01-17
Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitromore » and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.« less
Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin
2016-01-01
A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770
Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin
2016-08-30
A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.
MicroRNA Let-7b inhibits keratinocyte migration in cutaneous wound healing by targeting IGF2BP2.
Wu, Yan; Zhong, Julia Li; Hou, Ning; Sun, Yaolan; Ma, Benting; Nisar, Muhammad Farrukh; Teng, Yan; Tan, Zhaoli; Chen, Keping; Wang, Youliang; Yang, Xiao
2017-02-01
Wound healing is a complex process which involves proliferation and migration of keratinocyte for closure of epidermal injuries. A member of microRNA family, let-7b, has been expressed in mammalian skin, but its exact role in keratinocyte migration is still not in knowledge. Here, we showed that let-7b regulates keratinocyte migration by targeting the insulin-like growth factor IGF2BP2. Overexpression of let-7b led to reduced HaCaT cell migration, while knockdown of let-7b resulted in enhanced migration. Furthermore, let-7b was decreased during wound healing in wild-type mice, which led us to construct the transgenic mice with overexpression of let-7b in skin. The re-epithelialization of epidermis of let-7b transgenic mice was reduced during wound healing. Using bioinformatics prediction software and a reporter gene assay, we found that IGF2BP2 was a target of let-7b, which contributes to keratinocyte migration. Introduction of an expression vector of IGF2BP2 also rescued let-7b-induced migration deficiency, which confirms that IGF2BP2 is an important target for let-7b regulation. Our findings suggest that let-7b significantly delayed the re-epithelialization possibly due to reduction of keratinocyte migration and restraints IGF2BP2 during skin wound healing. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.
Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn
2017-05-11
Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.
Expression and Functional Significance of HtrA1 Loss in Endometrial Cancer
Mullany, Sally A.; Moslemi-Kebria, Mehdi; Rattan, Ramandeep; Khurana, Ashwani; Clayton, Amy; Ota, Takayo; Mariani, Andrea; Podratz, Karl C.; Chien, Jeremy; Shridhar, Viji
2010-01-01
Purpose The purpose of this study was to determine if loss of serine protease HtrA1 in endometrial cancer will promote the invasive potential of EC cell lines. Experimental design Western blot analysis and immunohistochemistry methods were used to determine HtrA1 expression in EC cell lines and primary tumors, respectively. Migration, invasion assays and in vivo xenograft experiment were performed to compare the extent of metastasis between HtrA1 expressing and HtrA-1 knocked down clones. Results Western blot analysis of HtrA1 in 13 EC cell lines revealed complete loss of HtrA1 expression in all 7 papillary serous EC cell lines. Downregulation of HtrA1 in Hec1A and Hec1B cell lines resulted in a 3-4 fold increase in the invasive potential. Exogenous expression of HtrA1 in Ark 1 and Ark 2 cells resulted in 3-4 fold decrease in both invasive and migration potential of these cells. There was an increased rate of metastasis to the lungs associated with HtrA1 downregulation in Hec1B cells compared to control cells with endogenous HtrA1 expression. Enhanced expression of HtrA1 in Ark 2 cells resulted in significantly less tumor nodules metastasizing to the lungs compared to parental or protease deficient (SA mutant) Ark 2 cells. Immunohistochemical (IHC) analysis showed 57% (105/184) of primary EC tumors had low HtrA1 expression. The association of low HtrA1 expression with high-grade endometrioid tumors was statistically significant (p=0.016). Conclusions Collectively, these data indicate loss of HtrA1 may contribute to the aggressiveness and metastatic ability of endometrial tumors. PMID:21098697
Valente, Anthony J.; Yoshida, Tadashi; Murthy, Subramanyam N.; Sakamuri, Siva S. V. P.; Katsuyama, Masato; Clark, Robert A.; Delafontaine, Patrice
2012-01-01
The redox-sensitive transcription factors NF-κB and activator protein-1 (AP-1) are critical mediators of ANG II signaling. The promitogenic and promigratory factor interleukin (IL)-18 is an NF-κB- and AP-1-responsive gene. Therefore, we investigated whether ANG II-mediated smooth muscle cell (SMC) migration and proliferation involve IL-18. ANG II induced rat carotid artery SMC migration and proliferation and IL-18 and metalloproteinase (MMP)-9 expression via ANG II type 1 (AT1) receptor. ANG II-induced superoxide generation, NF-κB and AP-1 activation, and IL-18 and MMP-9 induction were all markedly attenuated by losartan, diphenyleneiodonium chloride (DPI), and Nox1 knockdown. Similar to ANG II, addition of IL-18 also induced superoxide generation, activated NF-κB and AP-1, and stimulated SMC migration and proliferation, in part via Nox1, and both ANG II and IL-18 induced NOX1 transcription in an AP-1-dependent manner. AT1 physically associates with Nox1 in SMC, and ANG II enhanced this binding. Interestingly, exogenous IL-18 neither induced AT1 binding to Nox1 nor enhanced the ANG II-induced increase in AT1/Nox1 binding. Importantly, IL-18 knockdown, or pretreatment with IL-18 neutralizing antibodies, or IL-18 binding protein, all attenuated the migratory and mitogenic effects of ANG II. Continuous infusion of ANG II for 7 days induced carotid artery hyperplasia in rats via AT1 and was associated with increased AT1/Nox1 binding (despite lower AT1 levels); increased DPI-inhibitable superoxide production; increased phospho-IKKβ, JNK, p65, and c-Jun; and induction of IL-18 and MMP-9 in endothelium-denuded carotid arteries. These results indicate that IL-18 amplifies the ANG II-induced, redox-dependent inflammatory cascades by activating similar promitogenic and promigratory signal transduction pathways. The ANG II/Nox1/IL-18 pathway may be critical in hyperplastic vascular diseases, including atherosclerosis and restenosis. PMID:22636674
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration. PMID:25563751
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-07
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Anti-inflammatory effects of methylthiouracil in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Sae-Kwang; Baek, Moon-Chang, E-mail: mcbaek@knu.ac.kr; Bae, Jong-Sup, E-mail: baejs@knu.ac.kr
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-inducedmore » endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. - Highlights: • MTU reduced LPS-mediated hyperpermeability in vitro and in vivo. • MTU inhibited LPS-mediated leukocyte adhesion and migration. • MTU inhibited LPS-mediated production of IL-6 and TNF-α. • MTU reduced LPS-mediated mortality and lung injury.« less
Anitua, E; Pino, A; Orive, G
2016-11-02
The use of plasma rich in growth factors (PRGF) has gained importance in many medical fields due to its regenerative potential. The aim of this study is to evaluate the effects of PRGF on primary skin fibroblasts assessing cell proliferation, migration and secretion of growth factors. The age of the patients from who PRGF was prepared was also studied to determine whether it influenced the outcomes. Human dermal fibroblasts were isolated from three healthy volunteers. Using PRGF-Endoret technology, PRGF was prepared from two groups of different ages (18-35 years and 50+ years). The effects of increasing concentration of PRGF (5%, 10% and 20%) on cell proliferation and migration was evaluated. Biosynthetic behaviour of cells was also analysed measuring vascular endothelial growth factor (VEGF), transforming growth factor b1 (TGFb1) and pro-collagen type I secreted levels with or without PRGF treatment. Mean platelet enrichment reached 2.4X and 2X in 18-35 and 50+ groups respectively. A dose-dependent response was observed in proliferation assays achieving the highest levels with 20% PRGF. Migration was also promoted in cells but not in a dose-dependent manner. Cell proliferation and migration outcomes obtained with PRGF (from both groups) were significantly higher compared to non-stimulated groups (p<0.05), with no statistical significances were observed between the different age groups. Production of VEGF, TGFb and procollagen type I was significantly increased by cells treated with PRGF, however, with the exception of VEGF, no statistical significances were observed between the different age groups. Results from this study concluded that PRGF is safe and effective in stimulating skin regeneration by enhancing proliferation, migration and expression of pivotal bioactive molecules involved in wound healing and haemostasis.
Cellular migration to electrospun poly(lactic acid) fibermats.
Fujikura, Kie; Obata, Akiko; Kasuga, Toshihiro
2012-01-01
Nonwoven fabrics prepared via an electrospinning method, so-called electrospun fibermats, are expected to be promising scaffold materials for bone tissue engineering. In the present work, poly(L-lactic acid) (PLLA) fibermats, consisting of fibers with diameters ranging from 1 to 10 μm, were prepared by electrospinning. Mouse osteoblast-like cells (MC3T3-E1) were seeded on the fibermats with various fiber diameters (10, 5 and 2 μm; they are denoted by samples A, B and C, respectively) and cultured in two different directions in order to compare the migration behaviours into the scaffold of the normal condition and the anti-gravity condition. The cells in/on the fibermats were observed by laser confocal microscopy to estimate the cellular migration ability into them. When the MC3T3-E1 cells were cultured in the normal direction, the thickness of their layer increased to approx. 90 μm in the sample A, consisting of 10-μm fibers after 13 days of culture, while that in the sample C, consisting of 2-μm fibers, did not increase. When the MC3T3-E1 cells were cultured in the anti-gravity condition, the thickness of the cell layer in the sample A increased to approx. 60 μm. These results mean that the MC3T3-E1 cells migrated into the inside of sample A in either the normal direction or the anti-gravity one. The cellular proliferation showed no significant difference among the fibermats with three different fiber diameters; MC3T3-E1 cells on the fibermat with 2 μm fiber diameter grew two-dimensionally, while they grew three-dimensionally in the fibermat with 10 μm fiber diameter.
Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells
Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn
2017-01-01
Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548
Wu, Dong-Dong; Gao, Ying-Ran; Li, Tao; Wang, Da-Yong; Lu, Dan; Liu, Shi-Yu; Hong, Ya; Ning, Hui-Bin; Liu, Jun-Ping; Shang, Jia; Shi, Jun-Feng; Wei, Jian-She; Ji, Xin-Ying
2018-05-02
PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in cell proliferation and tumorigenesis. However, the precise mechanism of action of PCNP in the process of tumor growth has not yet been fully elucidated. ShRNA knockdown and overexpression of PCNP were performed in human neuroblastoma cells. Tumorigenic and metastatic effects of PCNP were examined by tumor growth, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. PCNP over-expression decreased the proliferation, migration, and invasion of human neuroblastoma cells and down-regulation of PCNP showed reverse effects. PCNP over-expression increased protein expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase, as well as ratios of B-cell lymphoma-2 (Bcl-2)-associated X protein/Bcl-2 and Bcl-2-associated death promoter/B-cell lymphoma-extra large in human neuroblastoma cells, however PCNP knockdown exhibited reverse trends. PCNP over-expression increased phosphorylations of extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, as well as decreased phosphorylations of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), nevertheless PCNP knockdown exhibited opposite effects. Furthermore, PCNP over-expression significantly reduced the growth of human neuroblastoma xenograft tumors by down-regulating angiogenesis, whereas PCNP knockdown markedly promoted the growth of human neuroblastoma xenograft tumors through up-regulation of angiogenesis. PCNP mediates the proliferation, migration, and invasion of human neuroblastoma cells through mitogen-activated protein kinase and PI3K/AKT/mTOR signaling pathways, implying that PCNP is a therapeutic target for patients with neuroblastoma.
Dong, Peixin; Ihira, Kei; Xiong, Ying; Watari, Hidemichi; Hanley, Sharon J B; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-04-12
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial-mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2'-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene.
Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-01-01
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121
LI, QI; LAI, YIMING; WANG, CHENGBIN; XU, GUIBIN; HE, ZHENG; SHANG, XIAOHONG; SUN, YI; ZHANG, FAN; LIU, LEYUAN; HUANG, HAI
2016-01-01
Matrine is a naturally occurring alkaloid extracted from the Chinese herb Sophora flavescens. It has been demonstrated to exhibit antiproliferative properties, promote apoptosis and inhibit cell invasion in a number of cancer cell lines. It has also been shown to improve the efficacy of chemotherapy when it is combined with other chemotherapy drugs. However, the therapeutic efficacy of matrine for prostate cancer remains poorly understood. In the present study, we showed that matrine inhibited the proliferation, migration and invasion of both DU145 and PC-3 cells in a dose- and time-dependent manner. It also reduced the cell population at S phase and increased the cell population at sub-G1 phase. The increases in both the apoptotic cell population and cell population at S and sub-G1 phases consistently indicated a pro-apoptotic effect of matrine. Decreases in levels of P65, p-P65, IKKα/β, p-IKKα/β, IKBα and p-IKBα as detected by immunoblot analysis in the matrine-treated DU145 and PC-3 cells suggested an involvement of the NF-κB signaling pathway. Therefore, it is a novel promising addition to the current arsenal of chemotherapy drugs for the treatment of androgen-independent prostate cancer. PMID:26497618
Shikonin Derivative DMAKO-05 Inhibits Akt Signal Activation and Melanoma Proliferation.
Yang, Yao-Yao; He, Hui-Qiong; Cui, Jia-Hua; Nie, Yun-Juan; Wu, Ya-Xian; Wang, Rui; Wang, Gang; Zheng, Jun-Nian; Ye, Richard D; Wu, Qiong; Li, Shao-Shun; Qian, Feng
2016-06-01
DMAKO-05((S)-1-((5E,8E)-5,8-bis(hydroxyimino)-1,4-dimethoxy-5,8-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 3-methylbutanoate) is a novel oxime derivative of shikonin, the major component extracted from Chinese herb Lithospermun erythrorhizon. Here, we report that DMAKO-05 had an antitumor activity against mouse melanoma cell line B16F0. Our studies indicated that DMAKO-05 not only inhibited B16F0 proliferation and migration but also led to cell cycle arrest at G1 phase and cell apoptosis, in which DMAKO-05 triggered mitochondrial-mediated apoptosis signal including caspase-9/3 and PARP. In response to DMAKO-05 treatment, the Akt-mediated survival signals were remarkably attenuated in B16F0 cells. Collectively, DMAKO-05 has a strong cytotoxicity in B16F0 cells via inhibiting Akt activation, inducing G1 arrest, and promoting B16F0 cell apoptosis. DMAKO-05 might serve as a potential candidate lead compound for melanoma. © 2016 John Wiley & Sons A/S.
A role for NRAGE in NF-κB activation through the non-canonical BMP pathway
2010-01-01
Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315
Ho, Yi-Ju; Chiang, Yu-Jung; Kang, Shih-Tsung; Fan, Ching-Hsiang; Yeh, Chih-Kuang
2018-05-28
Adipose-derived stem cells (ADSCs) have been utilized in cellular delivery systems to carry therapeutic agents into tumors by migration. Drug-loaded nanodroplets release drugs and form bubbles after acoustic droplet vaporization (ADV) triggered by ultrasound stimulation, providing a system for ultrasound-induced cellular delivery of theranostic agents. In order to improve the efficiency of drug release, fusogenic nanodroplets were designed to go from nano to micron size upon uptake by ADSCs for reducing ADV threshold. The purpose of our study was to demonstrate the utility of camptothecin-loaded fusogenic nanodroplets (CPT-FNDs) as ultrasound theranostic agents in an ADSCs delivery system. CPT-FNDs showed an increase in size from 81.6 ± 3.5 to 1043.5 ± 28.3 nm and improved CPT release from 22.0 ± 1.8% to 37.6 ± 2.1%, demonstrating the fusion ability of CPT-FNDs. CPT-FNDs-loaded ADSCs demonstrated a cell viability of 77 ± 4%, and the in vitro migration ability was 3.2 ± 1.2-fold for the tumor condition compared to the cell growth condition. Ultrasound enhancement imaging showed intratumoral ADV-generated bubble formation (increasing 3.24 ± 0.47 dB) triggered by ultrasound after CPT-FNDs-loaded ADSCs migration into B16F0 tumors. Histological images revealed intratumoral distribution of CPT-FNDs-loaded ADSCs and tissue damage due to the ADV. The CPT-FNDs can be used as theranostic agents in an ADSCs delivery system to provide the ultrasound contrast imaging and deliver combination therapy of drug release and physical damage after ADV. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug; Kim, Koanhoi
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.
Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug
2017-01-01
Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol. PMID:29236764
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling
2011-10-15
Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti-PDGF signaling and pro-adhesiveness. > The more resveratrols oligomerize, the more potent effects they exert.« less
Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien
2013-01-01
Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799
CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3.
Mueller, Anja; Meiser, Andrea; McDonagh, Ellen M; Fox, James M; Petit, Sarah J; Xanthou, Georgina; Williams, Timothy J; Pease, James E
2008-04-01
The chemokine CXCL4/platelet factor-4 is released by activated platelets in micromolar concentrations and is a chemoattractant for leukocytes via an unidentified receptor. Recently, a variant of the human chemokine receptor CXCR3 (CXCR3-B) was described, which transduced apoptotic but not chemotactic signals in microvascular endothelial cells following exposure to high concentrations of CXCL4. Here, we show that CXCL4 can induce intracellular calcium release and the migration of activated human T lymphocytes. CXCL4-induced chemotaxis of T lymphocytes was inhibited by a CXCR3 antagonist and pretreatment of cells with pertussis toxin (PTX), suggestive of CXCR3-mediated G-protein signaling via Galphai-sensitive subunits. Specific binding by T lymphocytes of the CXCR3 ligand CXCL10 was not effectively competed by CXCL4, suggesting that the two are allotopic ligands. We subsequently used expression systems to dissect the potential roles of each CXCR3 isoform in mediating CXCL4 function. Transient expression of the CXCR3-A and CXCR3-B isoforms in the murine pre-B cell L1.2 produced cells that migrated in response to CXCL4 in a manner sensitive to PTX and a CXCR3 antagonist. Binding of radiolabeled CXCL4 to L1.2 CXCR3 transfectants was of low affinity and appeared to be mediated chiefly by glycosaminoglycans (GAGs), as no specific CXCL4 binding was observed in GAG-deficient 745-Chinese hamster ovary cells stably expressing CXCR3. We suggest that following platelet activation, the CXCR3/CXCL4 axis may play a role in T lymphocyte recruitment and the subsequent amplification of inflammation observed in diseases such as atherosclerosis. In such a setting, antagonism of the CXCR3/CXCL4 axis may represent a useful, therapeutic intervention.
Hamed, Saher; Alshiek, Jonia; Aharon, Anat; Brenner, Benjamin; Roguin, Ariel
2010-07-01
Endothelial progenitor cells (EPCs) contribute to the maintenance of vascular endothelial function. The moderate consumption of red wine provides cardiovascular protection. We investigated the underlying molecular mechanism of EPC migration in young, healthy individuals who drank red wine. Fourteen healthy volunteers consumed 250 mL red wine daily for 21 consecutive days. Vascular endothelial function, plasma stromal cell-derived factor 1alpha (SDF1alpha) concentrations, and the number, migration, and nitric oxide production of EPCs were determined before and after the daily consumption of red wine. EPCs were glucose stressed to study the effect of red wine on EPC migration, proliferation, and senescence and to study the expressions of CXC chemokine receptor 4 (CXCR4) and members of the Pi3K/Akt/eNOS (phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase) signaling pathway by Western blotting. Daily red wine consumption for 21 consecutive days significantly enhanced vascular endothelial function. Although plasma SDF1alpha concentrations were unchanged, EPC count and migration were significantly increased after this 21-d consumption period. Red wine increased the migration, proliferation, CXCR4 expression, and activity of the Pi3K/Akt/eNOS signaling pathway and decreased the extent of apoptosis in glucose-stressed EPCs. The results of the present study indicate that red wine exerts its effect through the up-regulation of CXCR4 expression and activation of the SDF1alpha/CXCR4/Pi3K/Akt/eNOS signaling pathway, which results in increased EPC migration and proliferation and decreased extent of apoptosis. Our findings suggest that these effects could be linked to the mechanism of cardiovascular protection that is associated with the regular consumption of red wine.
Ferguson, Ryan; Tarlton, Nicole; Wu, Victoria; Sequeira, Christopher S.; Bremer, Martina; Abramson, Tzvia
2012-01-01
Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, a respiratory disease that is reemerging worldwide. Mechanisms of selective lymphocyte trafficking to the airways are likely to be critical in the immune response to this pathogen. We compared murine infection by B. pertussis, B. parapertussis, and a pertussis toxin-deleted B. pertussis mutant (BpΔPTX) to test the hypothesis that effector memory T-helper cells (emTh) display an altered pattern of trafficking receptor expression in B. pertussis infection due to a defect in imprinting. Increased cell recruitment to the lungs at 5 days post infection (p.i.) with B. parapertussis, and to a lesser extent with BpΔPTX, coincided with an increased frequency of circulating emTh cells expressing the mucosal-associated trafficking receptors α4β7 and α4β1 while a reduced population of these cells was observed in B. pertussis infection. These cells were highly evident in the blood and lungs in B. pertussis infection only at 25 days p.i. when B. parapertussis and BpΔPTX infections were resolved. Although at 5 days p.i., an equally high percentage of lung dendritic cells (DCs) from all infections expressed maturation markers, this expression persisted only in B. pertussis infection at 25 days p.i. Furthermore, at 5 days p.i with B. pertussis, lung DCs migration to draining lymph nodes may be compromised as evidenced by decreased frequency of CCR7+ DCs, inhibited CCR7-mediated in vitro migration, and fewer DCs in lung draining lymph nodes. Lastly, a reduced frequency of allogeneic CD4+ cells expressing α4β1 was detected following co-culture with lung DCs from B. pertussis-infected mice, suggesting a defect in DC imprinting in comparison to the other infection groups. The findings in this study suggest that B. pertussis may interfere with imprinting of lung-associated trafficking receptors on T lymphocytes leading to extended survival in the host and a prolonged course of disease. PMID:23300813
Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing
2017-04-30
Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).
Stable knockdown of Kif5b in MDCK cells leads to epithelial–mesenchymal transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Ju, E-mail: juzi.cui@gmail.com; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR; Jin, Guoxiang
2015-07-17
Polarization of epithelial cells requires vectorial sorting and transport of polarity proteins to apical or basolateral domains. Kif5b is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). To investigate the function of Kif5b in epithelial cells, we examined the phenotypes of Kif5b-deficient MDCK cells. Stable knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate, profound changes in cell morphology, loss of epithelial cell marker, and gain of mesenchymal marker, as well as increased cell migration, invasion, and tumorigenesis abilities. E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells, and their expression levelsmore » were decreased in Kif5b-deficient MDCK cells. Overexpression of E-cadherin and NMMIIA in Kif5b depleted MDCK cells could decrease mesenchymal marker expression and cell migration ability. These results indicate that stable knockdown of Kif5b in MDCK cells can lead to epithelial–mesenchymal transition, which is mediated by defective E-cadherin and NMMIIA expression. - Highlights: • Knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate. • Kif5b deficient MDCK cells underwent epithelial–mesenchymal transition. • E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells. • Decreased E-cadherin and NMMIIA levels mediate EMT in Kif5b deficient MDCK cells. • Overexpression of E-cadherin and NMMIIA reverse the effects of Kif5b knockdown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dong-Wook; Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752; Lim, Hye Ryeon
The abnormal growth of vascular smooth muscle cells (VSMCs) plays an important role in vascular diseases, including atherosclerosis and restenosis after angioplasty. Although (-)-epigallocatechin-3-O-gallate (EGCG) has antiproliferative effects on various cells, relatively a little is known about precise mechanisms of the inhibitory effects of EGCG on SMCs. In this study, the inhibitory effects of EGCG on attachment, proliferation, migration, and cell cycle of rat aortic SMCs (RASMCs) with serum stimulation were investigated. Also, the involvement of nuclear factor-{kappa}B (NF-{kappa}B) during these inhibitions by EGCG was examined. EGCG treatment resulted in significant (p < 0.05) inhibition in attachment and proliferation ofmore » RASMCs induced by serum. While non-treated RASMCs migrated into denuded area in response to serum and showed essentially complete closure after 36 h, EGCG-treated cells covered only 31% of the area even after 48 h of incubation. Furthermore, EGCG treatment resulted in an appreciable cell cycle arrest at both G0/G1- and G2/M-phases. The immunoblot analysis revealed that the constitutive expression of NF-{kappa}B/p65 nuclear protein in RASMCs was lowered by EGCG in both the cytosol and the nucleus in a dose-dependent manner. These results suggest that the EGCG-caused inhibitory effects on RASMCs may be mediated through NF-{kappa}B down-modulation.« less
Lim, Jiwon; Choi, Andrew; Kim, Hyung Woo; Yoon, Hyungjun; Park, Sang Min; Tsai, Chia-Hung Dylan; Kaneko, Makoto; Kim, Dong Sung
2018-05-02
Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.
Sangboonruang, S; Thammasit, P; Intasai, N; Kasinrerk, W; Tayapiwatana, C; Tragoolpua, K
2014-06-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) exhibits overexpression in various cancers and promotes cancer progression and metastasis via the interaction with its associated molecules. The scFv-M6-1B9 intrabody has a potential ability to reduce EMMPRIN cell surface expression. However, the subsequent effect of scFv-M6-1B9 intrabody-mediated EMMPRIN abatement on its related molecules, α3β1-integrin, MCT1, MMP-2 and MMP-9, is undefined. Our results demonstrated that the scFv-M6-1B9 intrabody efficiently decreased α3β1-integrin cell surface expression levels. In addition, intracellular accumulation of MCT1 and lactate were increased. These results lead to suppression of features characteristic for tumor progression, including cell migration, proliferation and invasion, in a colorectal cancer cell line (Caco-2) although there was no difference in MMP expression. Thus, EMMPRIN represents an attractive target molecule for the disruption of cancer proliferation and metastasis. An scFv-M6-1B9 intrabody-based approach could be relevant for cancer gene therapy.
Preparative electrophoresis of cultured human cells: Effect of cell cycle phase
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.
1985-01-01
Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.
Eph receptor interclass cooperation is required for the regulation of cell proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurek, Aleksandra; Genander, Maria; Kundu, Parag
2016-10-15
Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signalingmore » clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.« less
Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario
2016-10-25
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.
Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario
2016-01-01
Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner. PMID:27655713
Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang
2016-12-06
Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Hiroshi; Department of Pharmacy, Nara Hospital, Kinki University School of Medicine, 1248-1 Ikoma, Nara 630-0293; Tsubaki, Masanobu
2009-07-15
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities ofmore » matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKC{alpha} and PKC{delta} phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.« less
Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C
2002-02-22
Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.
Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞
Huang, Jing; Bridges, Lance C.; White, Judith M.
2005-01-01
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176
Protein profile in HBx transfected cells: a comparative iTRAQ-coupled 2D LC-MS/MS analysis.
Feng, Huixing; Li, Xi; Niu, Dandan; Chen, Wei Ning
2010-06-16
The x protein of HBV (HBx) has been involved in the development of hepatocellular carcinoma (HCC), with a possible link to individual genotypes. Nevertheless, the underlying mechanism remains obscure. In this study, we aim to identify the HBx-induced protein profile in HepG2 cells by LC-MS/MS proteomics analysis. Our results indicated that proteins were differentially expressed in HepG2 cells transfected by HBx of various genotypes. Proteins associated with cytoskeleton were found to be either up-regulated (MACF1, HMGB1, Annexin A2) or down-regulated (Lamin A/C). These may in turn result in the decrease of focal adhesion and increase of cell migration in response to HBx. Levels of other cellular proteins with reported impact on the function of extracellular matrix (ECM) proteins and cell migration, including Ca(2+)-binding proteins (S100A11, S100A6, and S100A4) and proteasome protein (PSMA3), were affected by HBx. The differential protein profile identified in this study was also supported by our functional assay which indicated that cell migration was enhanced by HBx. Our preliminary study provided a new platform to establish a comprehensive cellular protein profile by LC-MS/MS proteomics analysis. Further downstream functional assays, including our reported cell migration assay, should provide new insights in the association between HCC and HBx. Copyright 2009 Elsevier B.V. All rights reserved.
Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk
2017-01-01
Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Roeb, Elke; Bosserhoff, Anja-Katrin; Hamacher, Sabine; Jansen, Bettina; Dahmen, Judith; Wagner, Sandra; Matern, Siegfried
2005-01-01
AIM: To study the effect of gelatinases (especially MMP-9) on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells. METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases. RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05) and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly. Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1 deactivates cell signaling pathways of MMP-2 and MMP-9 involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1. CONCLUSION: Overexpressing functional TIMP-1- enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9. PMID:15754388
αB-crystallin: a Novel Regulator of Breast Cancer Metastasis to the Brain
Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M.; Ahmad, Abraham Al; Adamo, Barbara; Miller, C. Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V.; Anders, Carey K.; Cryns, Vincent L.
2013-01-01
Purpose Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBC. Experimental Design αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among breast cancer patients with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMECs) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte co-culture blood-brain barrier (BBB) model were examined. Additionally, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. Results In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among TNBC patients. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, while silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs at least in part through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, while silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. Conclusion αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease. PMID:24132917
αB-crystallin: a novel regulator of breast cancer metastasis to the brain.
Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M; Al Ahmad, Abraham; Adamo, Barbara; Miller, C Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V; Anders, Carey K; Cryns, Vincent L
2014-01-01
Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBCs. αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among patients with breast cancer with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMEC) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte coculture blood-brain barrier (BBB) model were examined. In addition, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among patients with TNBC. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, whereas silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs, at least in part, through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, whereas silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease.
Baicalein inhibits the migration and invasive properties of human hepatoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less
Li, Xuejiao; Jiang, Zhongxiu; Li, Xiangmin; Zhang, Xiaoye
2018-01-01
Osteopontin (OPN) is a promoter for tumor progression. It has been reported to promote non-small cell lung cancer (NSCLC) progression via the activation of nuclear factor-κB (NF-κB) signaling. As the increased acetylation of NF-κB p65 is linked to NF-κB activation, the regulation of NF-κB p65 acetylation could be a potential treatment target for OPN-induced NSCLC progression. Sirtuin 1 (SIRT1) is a deacetylase, and the role of SIRT1 in tumor progression is still controversial. The effect and mechanism of SIRT1 on OPN-induced tumor progression remains unknown. The results presented in this research demonstrated that OPN inhibited SIRT1 expression and promoted NF-κB p65 acetylation in NSCLC cell lines (A549 and NCI-H358). In this article, overexpression of SIRT1 was induced by infection of SIRT1-overexpressing lentiviral vectors. The overexpression of SIRT1 protected NSCLC cells against OPN-induced NF-κB p65 acetylation and epithelial-mesenchymal transition (EMT), as indicated by the reduction of OPN-induced changes in the expression levels of EMT-related markers and cellular morphology. Furthermore, SIRT1 overexpression significantly attenuated OPN-induced cell proliferation, migration and invasion. Moreover, overexpression of SIRT1 inhibited OPN-induced NF-κB activation. As OPN induced NSCLC cell EMT through activation of NF-κB signaling, OPN-induced SIRT1 downregulation may play an important role in NSCLC cell EMT via NF-κB signaling. The results suggest that SIRT1 could be a tumor suppressor to attenuate OPN-induced NSCLC progression through the regulation of NF-κB signaling.
2016-03-11
50, Immunology. 26 | P a g e blood-borne antigens. The white pulp consists of the periarteriolar lymphoid sheath (PALS) which contain T cells ...and CD8α+ dendritic (DC), and adjacent lymphoid follicles containing mainly circulating B cells , known as follicular B cells (FB). The outer boundary...complexes, for initial priming within the T cell zones of secondary lymphoid organs followed by migration of T cells to the T cell -B cell border. B
Giffin, Louise; West, John A; Damania, Blossom
2015-12-08
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi's sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman's disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6's impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field's understanding of vIL-6 function and its contribution to KSHV pathogenesis. Copyright © 2015 Giffin et al.
Taspine derivative TAS9 regulates cell growth and metastasis of human hepatocellular carcinoma.
Liu, Rui; Wang, Wenjie; Dai, Bingling; Liu, Yanping; Zhang, Yanmin
2015-11-01
Taspine has been indicated to be a potential anti‑carcinogenic agent. The present study investigated the effects of TAS9, a modified taspine derivative, on the proliferation and migration of the SMMC‑7721 human liver cancer cell line. First, the effects of TAS9 on SMMC‑7721 cell growth were examined using MTT and colony formation assaya. In vivo Transwell and wound healing assays were then performed to assess the inhibitory effects of TAS9 on cell invasion and migration, respectively. The expression of cell proliferation‑ and migration‑associated signaling molecules was investigated by western blot analysis. The results indicated that TAS9 inhibited SMMC‑7721 cell growth by downregulating the signaling molecules protein kinase Cβ (PKCβ), Akt, mammalian target of rapamycin, mitogen‑activated protein kinase kinase 2, RAF and c‑Jun N‑terminal kinase‑1, and inhibiting SMMC‑7721 cell migration by suppressing the expression of matrix metalloproteinase (MMP)‑2, MMP‑9, chemokine (C‑X‑C motif) receptor 4, nuclear factor κB, p38 and p53. Small interfering RNA‑mediated knockdown of PKCβ in the SMMC‑7721 cells significantly attenuated the tumor inhibitory effects of TAS9. In conclusion, the results of the present study suggested that TAS9 may have inhibitory effects on the proliferation and migration of SMMC‑7721 cells, and may serve as a potential candidate for cancer treatment.
Fenton, Jenifer I; Wolff, Margaret S; Orth, Michael W; Hord, Norman G
2002-06-01
Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may induce cells heterozygous for Apc to overcome defective cell migration, a phenotype associated with cell differentiation and apoptosis.
Guo, Rui; Chai, Linlin; Chen, Liang; Chen, Wenguang; Ge, Liangpeng; Li, Xiaoge; Li, Hongli; Li, Shirong; Cao, Chuan
2015-06-01
Epidermal stem cells could contribute to skin repair through the migration of cells from the neighboring uninjured epidermis, infundibulum, hair follicle, or sebaceous gland. However, little is known about the factors responsible for the complex biological processes in wound healing. Herein, we will show that the attracting chemokine, SDF-1/CXCR4, is a major regulator involved in the migration of epidermal stem cells during wound repair. We found that the SDF-1 levels were markedly increased at the wound margins following injury and CXCR4 expressed in epidermal stem cells and proliferating epithelial cells. Blocking the SDF-1/CXCR4 axis resulted in a significant reduction in epidermal stem cell migration toward SDF-1 in vitro and delayed wound healing in vivo, while an SDF-1 treatment enhanced epidermal stem cell migration and proliferation and accelerated wound healing. These results provide direct evidence that SDF-1 promotes epidermal stem cell migration, accelerates skin regeneration, and makes the development of new regenerative therapeutic strategies for wound healing possible.
Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1
Rao, Feng; Xu, Jing; Fu, Chenglai; Cha, Jiyoung Y.; Gadalla, Moataz M.; Xu, Risheng; Barrow, James C.; Snyder, Solomon H.
2015-01-01
The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell–cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy. PMID:25617365
Li, Junjun; Yan, Ming; Wang, Zilu; Jing, Shuanglin; Li, Yao; Liu, Genxia; Yu, Jinhua; Fan, Zhipeng
2014-01-01
Background Information. NF-κB signaling pathway plays a complicated role in the biological functions of mesenchymal stem cells. However, the effects of NF-κB pathway on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) remain unclear. The present study was designed to evaluate the effects of canonical NF-κB pathway on the osteo/odontogenic capacity of SCAPs in vitro. Results. Western blot results demonstrated that NF-κB pathway in SCAPs was successfully activated by TNF-α or blocked by BMS-345541. NF-κB pathway-activated SCAPs presented a higher proliferation activity compared with control groups, as indicated by dimethyl-thiazol-diphenyl tetrazolium bromide assay (MTT) and flow cytometry assay (FCM). Wound scratch assay revealed that NF-κB pathway-activated SCAPs presented an improved migration capacity, enhanced alkaline phosphatase (ALP) activity, and upregulated mineralization capacity of SCAPs, as compared with control groups. Meanwhile, the odonto/osteogenic markers (ALP/ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, OPN/OPN, BSP/BSP, DSPP/DSP, and DMP-1/DMP-1) in NF-κB pathway-activated SCAPs were also significantly upregulated as compared with control groups at both protein and mRNA levels. However, NF-κB pathway-inhibited SCAPs exhibited a lower proliferation/migration capacity, and decreased odonto/osteogenic ability in comparison with control groups. Conclusion. Our findings suggest that classical NF-κB pathway plays a paramount role in the proliferation and committed differentiation of SCAPs. PMID:24864235
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A.
2017-01-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo. PMID:28893948
Hu, Minghua; Wang, Mingwei; Lu, Huihong; Wang, Xiaoming; Fang, Xiaoshan; Wang, Jinguo; Ma, Chenyang; Chen, Xiaobing; Xia, Hongping
2016-07-12
Hepatocellular carcinoma (HCC) is the leading cause of cancer related death worldwide. The number of deaths is proportional to the global incidence, which highlights the aggressive tumor biology and lack of effective therapies. Dysregulation of microRNAs has been implicated in carcinogenesis and progression of liver cancer. Here, we identified that miR-1258 was significantly downregulated in HCC and associated with poor patients' survival. Overexpression of miR-1258 significantly inhibits liver cancer cell growth, proliferation and tumorigenicity through increasing cell cycle arrest in G0/G1 phase and promotes cell apoptosis. Interestingly, stable overexpression of miR-1258 suppresses cell migration, stemness and increases sensitivity of HCC cells to chemotherapy drug like doxorubicin. The CDC28 protein kinase regulatory subunit 1B (CKS1B) was identified as a functional downstream target of miR-1258. Re-expression of CKS1B overcomes miR-1258 induced apoptosis and increases stemness of HCC cells, suggesting that loss of miR-1258 contributes to carcinogenesis and progression of liver cancer through targeting CKS1B . Therefore, loss of miR-1258 may be a potential diagnostic and prognostic biomarker and blocking miR-1258-CKS1B axis is a potential therapeutic strategy in HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Li-hong; Li, Hui; Li, Jin-ping
2011-12-09
Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear.more » Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Syng-Ook; Jeong, Yun-Jeong; Yu, Mi Hee
2006-12-08
Matrix metalloproteinase-9 (MMP-9) plays a major role in the pathogenesis of atherosclerosis and restenosis by regulating both migration and proliferation of vascular smooth muscle cells (VSMC) after an arterial injury. In this study, we examined the inhibitory effect of three major flavonoids in Scutellariae Radix, baicalin, baicalein, and wogonin, on TNF-{alpha}-induced MMP-9 expression in human aortic smooth muscle cells (HASMC). Wogonin, but not baicalin and baicalein, significantly and selectively suppressed TNF-{alpha}-induced MMP-9 expression in HASMC. Reporter gene, electrophoretic mobility shift, and Western blotting assays showed that wogonin inhibits MMP-9 gene transcriptional activity by blocking the activation of NF-{kappa}B via MAPKmore » signaling pathways. Moreover, the Matrigel migration assay showed that wogonin reduced TNF-{alpha}-induced HASMC migration. These results suggest that wogonin effectively suppresses TNF-{alpha}-induced HASMC migration through the selective inhibition of MMP-9 expression and represents a potential agent for the prevention of vascular disorders related to the migration of VSMC.« less
Zhang, Liangyu; Shao, Hengyi; Zhu, Tongge; Xia, Peng; Wang, Zhikai; Liu, Lifang; Yan, Maomao; Hill, Donald L.; Fang, Guowei; Chen, Zhengjun; Wang, Dongmei; Yao, Xuebiao
2013-01-01
Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration. PMID:23652583
Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.
2014-01-01
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744
Zhang, Lili; Gallup, Marianne; Zlock, Lorna; Finkbeiner, Walter E.; McNamara, Nancy A.
2014-01-01
The adherens junction protein p120-catenin (p120ctn) shuttles between E-cadherin–bound and cytoplasmic pools to regulate E-cadherin/catenin complex stability and cell migration, respectively. When released from the adherens junction, p120ctn promotes cell migration through modulation of the Rho GTPases Rac1, Cdc42, and RhoA. Accordingly, the down-regulation and cytoplasmic mislocalization of p120ctn has been reported in all subtypes of lung cancers and is associated with grave prognosis. Previously, we reported that cigarette smoke induced cytoplasmic translocation of p120ctn and cell migration, but the underlying mechanism was unclear. Using primary human bronchial epithelial cells exposed to smoke-concentrated medium (Smk), we observed the translocation of Rac1 and Cdc42, but not RhoA, to the leading edge of polarized and migrating human bronchial epithelial cells. Rac1 and Cdc42 were robustly activated by smoke, whereas RhoA was inhibited. Accordingly, siRNA knockdown of Rac1 or Cdc42 completely abolished Smk-induced cell migration, whereas knockdown of RhoA had no effect. p120ctn/Rac1 double knockdown completely abolished Smk-induced cell migration, whereas p120ctn/Cdc42 double knockdown did not. These data suggested that Rac1 and Cdc42 coactivation was essential to smoke-promoted cell migration in the presence of p120ctn, whereas migration proceeded via Rac1 alone in the absence of p120ctn. Thus, Rac1 may provide an omnipotent therapeutic target in reversing cell migration during the early (intact p120ctn) and late (loss of p120ctn) stages of lung carcinogenesis. PMID:23562274
Goldstein, Robert H; Reagan, Michaela R; Anderson, Kristen; Kaplan, David L; Rosenblatt, Michael
2010-01-01
American women have a nearly 25% lifetime risk of developing breast cancer, with 20–40% of these patients developing life-threatening metastases. Over 70% of patients presenting with metastases have skeletal involvement, which signals progression to an incurable stage. Tumor-stroma cell interactions are only superficially understood, specifically regarding the ability of stromal cells to affect metastasis. In vivo models show that exogenously supplied hBMSCs (human bone-marrow derived stem cells) migrate to breast cancer tumors, but no reports have shown endogenous hBMSC migration from the bone to primary tumors. Here we present a model of in vivo hBMSC migration from a physiologic human bone environment to human breast tumors. Further, hBMSCs alter tumor growth and bone metastasis frequency. hBMSCs may home to certain breast tumors based on tumor-derived TGF-β1. Moreover, at the primary tumor IL-17B/IL-17BR signaling may mediate interactions between hBMSCs and breast cancer cells (BCCs). PMID:21159629
Li, Shuai; Guo, Lianyi
2018-01-01
Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.
Ibrutinib: A paradigm shift in management of CLL
Badar, Talha; Burger, Jan A; Wierda, William G; O'Brien, Susan
2016-01-01
1. Summary B-cell receptor (BCR) signaling plays a vital role in B-cell malignancies; Bruton's Tyrosine Kinase (BTK) is a critical mediator of this signaling. BCR signaling, either constitutively or following antigen binding, leads to activation of several downstream pathways involved in cell survival, proliferation, and migration. The efficacy observed in studies of the BTK inhibitor, ibrutinib, confirms that BCR signaling is critical for the growth of B-cell malignancies. Ibrutinib characteristically induces redistribution of malignant B-cells from tissues into the peripheral blood, and rapid resolution of adenopathy. Further, ibrutinib therapy results in normalization of lymphocyte counts and improvement in cytopenias. Ibrutinib has been shown to have an excellent safety profile and does not cause myelosuppression. Early data from combination studies of ibrutinib with anti-CD20 monoclonal antibodies have shown more rapid responses compared to those seen with ibrutinib monotherapy. Current data strongly support continued clinical evaluation of Ibrutinib in B-cell malignancies. PMID:25387837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki
Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion,more » and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920 has potential clinical applications for the treatment in osteosarcoma.« less
Zhang, Yanmin; He, Langchong; Meng, Liang; Luo, Wenjuan; Xu, Xuemei
2008-04-08
The present study was to demonstrate the effect of taspine isolated from Radix et Rhizoma Leonticis on tumor angiogenesis and its mechanism of action. The anti-angiogenic effect in vivo was evaluated on chicken chorioallantoic membrane (CAM) neovascularisation model and CAM transplantation tumor model. Taspine exerted inhibitory influence on CAM angiogenesis and the growth and microvessel density (MVD) of CAM transplantation tumor at concentrations of 0.5-2μg/egg. The mechanism was demonstrated through detecting vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) protein secretion by enzyme-linked immunosorbent assay (ELISA), as well as mRNA expression of VEGF, Flt-1 and Flk-1/KDR by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that taspine down-regulated the VEGF and bFGF secretion in human non-small cell lung cancer cell (A549 cell) and human umbilical vein endothelial cell (HUVEC), and the VEGF and Flk-1/KDR mRNA expression in HUVEC. Additionally, the effect of taspine on HUVEC migration was detected with the method of cell scrape. The result indicated that taspine inhibited HUVEC migration in a dose-dependent manner. These findings suggest that taspine might be a promising candidate as angiogenesis inhibitors.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.
van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob
2015-04-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.
Woo, Sang-Mi; Choi, Youn Kyung; Cho, Sung-Gook; Park, Sunju; Ko, Seong-Gyu
2013-01-01
Tumor-associated macrophages (TAMs) in tumor microenvironment regulate cancer progression and metastases. In breast cancer, macrophage infiltration is correlated with a poor prognosis. While metastatic breast cancer is poor prognostic with a severe mortality, therapeutic options are still limited. In this study, we demonstrate that KSG-002, a new herbal composition of radices Astragalus membranaceus and Angelica gigas, suppresses breast cancer via inhibiting TAM recruitment. KSG-002, an extract of radices Astragalus membranaceus and Angelica gigas at 3 : 1 ratio, respectively, inhibited MDA-MB-231 xenograft tumor growth and pulmonary metastasis in nude mice, while KSG-001, another composition (1 : 1 ratio, w/w), enhanced tumor growth, angiogenesis, and pulmonary metastasis, in vivo. KSG-002 further decreased the infiltrated macrophage numbers in xenograft tumor cohorts. In Raw264.7 cells, KSG-002 but not KSG-001 inhibited cell proliferation and migration and reduced TNF-alpha (TNFα) production by inhibiting NF-κB pathway. Furthermore, a combinatorial treatment of KSG-002 with TNFα inhibited a proliferation and migration of both MDA-MB-231 and Raw264.7 cells. Taken together, we conclude that KSG-002 suppresses breast cancer growth and metastasis through targeting NF-κB-mediated TNFα production in macrophages. PMID:23818931
MicroRNAs in B-cell lymphomas: how a complex biology gets more complex.
Musilova, K; Mraz, M
2015-05-01
MicroRNAs (miRNAs) represent important regulators of gene expression besides transcriptional control. miRNA regulation can be involved in the cell developmental fate decisions, but can also have more subtle roles in buffering stochastic fluctuations in gene expression. They participate in pathways fundamental to B-cell development like B-cell receptor (BCR) signalling, B-cell migration/adhesion, cell-cell interactions in immune niches, and the production and class-switching of immunoglobulins. miRNAs influence B-cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells. In this review, we discuss miRNAs with essential functions in malignant B-cell development (such as miR-150, miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16). We also put these miRNAs in the context of normal B-cell differentiation, as this is intimately connected to neoplastic B-cell development. We review miRNAs' role in the most common B-cell malignancies, including chronic lymphocytic leukaemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). We focus on miR-contribution to the regulation of important signalling pathways (such as NF-κB, PI3K/AKT and TGF-β), BCR signalling and its modulators (such as PTEN, SHIP-1, ZAP-70, GAB1 and BTK), anti- and pro-apoptotic proteins (such as BCL2, MCL1, TCL1, BIM, p53 and SIRT1) and transcription factors (such as MYC, MYB, PU.1, FOXP1 and BCL6). We also discuss the association of miRNAs' expression levels with the patients' survival and response to therapy, summarizing their potential use as predictive and prognostic markers. Importantly, the targeting of miRNAs (like use of anti-miR-155 or miR-34a mimic) could provide a novel therapeutic approach as evidenced by tumour regression in xenograft mouse models and initial promising data from clinical trials.
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of cobalt and chromium ions on lymphocyte migration.
Baskey, Stephen J; Lehoux, Eric A; Catelas, Isabelle
2017-04-01
A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co 2+ and Cr 3+ in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co 2+ or Cr 3+ , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co 2+ and Cr 3+ was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co 2+ (8 ppm) and Cr 3+ (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co 2+ and Cr 3+ can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co 2+ or Cr 3+ were not statistically different from those in culture supernatants of macrophages exposed to Co 2+ or Cr 3+ , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co 2+ and Cr 3+ are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria
2016-09-01
B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.
Tropomyosin Promotes Lamellipodial Persistence by Collaborating with Arp2/3 at the Leading Edge.
Brayford, Simon; Bryce, Nicole S; Schevzov, Galina; Haynes, Elizabeth M; Bear, James E; Hardeman, Edna C; Gunning, Peter W
2016-05-23
At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-mediated polymerization of actin filaments [1]. This dense, branched actin network is promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 networks are remodeled by proteins such as GMF, which blocks the actin-Arp2/3 interaction [4, 5], and coronin 1B, which acts by directing SSH1L to the lamellipodium where it activates the actin-severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in lamellipodia, however, is disputed in the literature [9-19]. Here, we report that the Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of lamellipodia and cell motility, a phenotype consistent with cortactin- and coronin 1B-deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while, conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein. These findings establish a novel regulatory mechanism within the lamellipodium whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface immunoglobulin on cultured foetal mouse thymocytes
Haustein, D.; Mandel, T. E.
1979-01-01
Organ cultures of 14–15 day foetal mouse thymus were used as a source of non-neoplastic differentiating T cells, free of contaminating B cells. Viable cells obtained from such cultured thymuses were radio-iodinated and immunoglobulins (Ig) were isolated by co-precipitation from the 125I-labelled cell-surface proteins released during 1 h of incubation at 37°. The precipitates, both reduced and unreduced, were then analysed by polyacrylamide gel electrophoresis. The unreduced material migrated in a 5% gel as a single peak with a mobility slightly faster than that of mouse IgG. After reduction, however, two peaks were obtained (in a 10% gel), one corresponding in migration to mouse light chain and the other which moved slightly faster than mouse μ chain. This pattern was identical with that previously seen for both surface Ig of normal mouse thymocytes and neoplastic T lymphoma cells. Uncultured, 15 day foetal thymocytes did not produce any detectable co-precipitated cell surface material. Ig detected in these experiments was therefore produced during in vitro culture by non-neoplastic T cells in a system free of contaminating B cells and mouse serum proteins. PMID:315364
Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics
Sinnar, Shamim A.; Antoku, Susumu; Saffin, Jean-Michel; Cooper, Jon A.; Halpain, Shelley
2014-01-01
Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP's role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells. PMID:24829386
Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min
2009-09-04
Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less
Wang, Qiong; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai; Tan, Yonghong
2017-07-01
Safety concerns of some local anesthetics, such as lidocaine, have been raised in recent years due to potential neurological impairment. Dexmedetomidine may protect humans from neurotoxicity, and miR-let-7b is activated by nerve injury; however, the roles of miR-let-7b and its target gene in lidocaine-induced cytotoxicity are not well known. Through bioinformatics and a luciferase reporter assay, COL3A1 was suggested as a direct target gene of miR-let-7b. Here, we confirmed by measuring mRNA and protein levels that miR-let-7b was downregulated and COL3A1 was upregulated in lidocaine-treated cells, an observation that was reversed by dexmedetomidine. Similar to miR-let-7b mimics or knockdown of COL3A1, dexmedetomidine treatment reduced the expression of COL3A1, suppressed cell apoptosis and cell migration/invasion ability, and induced cell cycle progression and cell proliferation in PC12 cells, effects that were reversed by the miR-let-7b inhibitor. Meanwhile, proteins involved in cell apoptosis, such as Bcl2 and caspase 3, were impacted as well. Taken together, dexmedetomidine may protect PC12 cells from lidocaine-induced cytotoxicity through miR-let-7b and COL3A1, while also increasing Bcl2 and inhibiting caspase 3. Therefore, miR-let-7b and COL3A1 might play critical roles in neuronal injury, and they are potential therapeutic targets.
A model for the kinetics of homotypic cellular aggregation under static conditions
NASA Technical Reports Server (NTRS)
Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1997-01-01
We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.
Wu, Xiaojie; Newbold, Molly A; Gao, Zhe; Haynes, Christy L
2017-05-01
Endothelial migration is a critical physiological process during vascular angiogenesis, growth and development, as well as in various disease conditions, such as cancer and cardiovascular diseases. Neutrophil migration, known as the important characteristic of immune responses, is also recognized as a contributor to the diseases involving endothelial migration. Herein, the mutually dependent relationship between neutrophil recruitment and endothelial migration was studied on a microfluidic platform for the first time. An in vivo-like microenvironment is created inside microfluidic devices by embedding a gel scaffold into the micro-chambers. This approach, with controllable stable chemical gradients and the ability to quantitate interaction characteristics, overcomes the limitations of the current in vivo and in vitro assays for cell migration studies. The number of neutrophils migrating through the endothelial cell layer is heavily influenced by the concentration of vascular endothelial growth factor (VEGF) that induces endothelial cell migration in the gel scaffold, and is not as correlated to the concentration of chemokine solution used for initiating neutrophil migration. More importantly, neutrophil migration diminishes the effects of the drug that inhibits endothelial migration and this process is regulated by the concentration of chemokine molecules instead of VEGF concentration. The results presented herein demonstrate the complicated cellular interactions between endothelial cells and neutrophils: endothelial migration delicately regulates neutrophil migration while the presence of neutrophils stabilizes the structures of endothelial migration. This study provides deeper understanding of the dynamic cellular interactions between neutrophils and endothelial cells as well as the pathogenesis of relevant diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Liao, Gongxian; van Driel, Boaz; Magelky, Erica; O'Keeffe, Michael S.; de Waal Malefyt, Rene; Engel, Pablo; Herzog, Roland W.; Mizoguchi, Emiko; Bhan, Atul K.; Terhorst, Cox
2014-01-01
Glucocorticoid-induced TNF receptor family-related protein (GITR) regulates the function of both T cells and antigen-presenting cells (APCs), while the function of GITR ligand (GITR-L) is largely unknown. Here we evaluate the role of GITR-L, whose expression is restricted to APCs, in the development of enterocolitis. On injecting naive CD4+ T cells, GITR-L−/−Rag−/− mice develop a markedly milder colitis than Rag−/− mice, which correlates with a 50% reduction of Ly6C+CD11b+MHCII+ macrophages in the lamina propria and mesenteric lymph nodes. The same result was observed in αCD40-induced acute colitis and during peritonitis, suggesting an altered monocyte migration. In line with these observations, the number of nondifferentiated monocytes was approximately 3-fold higher in the spleen of GITR-L−/−Rag−/− mice than in Rag−/− mice after αCD40 induction. Consistent with the dynamic change in the formation of an active angiotensin II type 1 receptor (AT1) dimer in GITR-L−/− splenic monocytes during intestinal inflammation, the migratory capability of splenic monocytes from GITR-L-deficient mice was impaired in an in vitro transwell migration assay. Conversely, αGITR-L reduces the number of splenic Ly6Chi monocytes, concomitantly with an increase in AT1 dimers. We conclude that GITR-L regulates the number of proinflammatory macrophages in sites of inflammation by controlling the egress of monocytes from the splenic reservoir.—Liao, G., van Driel, B., Magelky, E., O'Keeffe, M. S., de Waal Malefyt, R., Engel, P., Herzog, R. W., Mizoguchi, E., Bhan, A. K., Terhorst, C. Glucocorticoid-induced TNF receptor family-related protein ligand regulates the migration of monocytes to the inflamed intestine. PMID:24107315
Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao
2015-07-20
Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.
A pilgrim's progress: Seeking meaning in primordial germ cell migration.
Cantú, Andrea V; Laird, Diana J
2017-10-01
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Porcelli, Letizia; Guida, Gabriella; Quatrale, Anna E; Cocco, Tiziana; Sidella, Letizia; Maida, Immacolata; Iacobazzi, Rosa M; Ferretta, Anna; Stolfa, Diana A; Strippoli, Sabino; Guida, Stefania; Tommasi, Stefania; Guida, Michele; Azzariti, Amalia
2015-01-27
The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.
Lin, Qiuyue; Sun, Ming-Zhong; Guo, Chunmei; Shi, Ji; Chen, Xin; Liu, Shuqing
2015-02-01
The signal adaptor CRK family protein play important roles in cancer cell progression, proliferation, migration and invasion. Previously, we showed that CRK was involved in lymphatic metastatic potential of murine hepatocarcinoma cells. In current work, as a member of CRK family, chicken tumour virus number 10 regulator of kinase-like protein (CRKL) was revealed to be associated with malignant behaviors of Hca-P, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. CRKL overexpression in Hca-P by a constructed eukaryotic expression vector of pcDNA3.1/V5-HisB-CRKL significantly ameliorated its malignant biological properties. CCK-8 and soft agar colony formation assays indicated CRKL overexpression significantly inhibits the cell proliferation and colony formation abilities of Hca-P. Additionally, transwell assays indicated that the Hca-P cell migration and invasion capacities were apparently reduced following CRKL overexpression. As Hca-P is an ideal hepatocarcinoma cell model with low (initial) LNM potential, CRKL is shown to act as a potential suppressor and to provide new insight for both the malignant behaviors of hepatocarcinoma cells and lymphatic metastasis mechanism of hepatocarcinoma. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Law, Jessica Ka Yan; Susloparova, Anna; Vu, Xuan Thang; Zhou, Xiao; Hempel, Felix; Qu, Bin; Hoth, Markus; Ingebrandt, Sven
2015-05-15
Cytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging. However, there is currently no straightforward measurement tool available to examine the interaction strengths. In the present study, adhesion strengths and migration of single human CD8(+) T cells on pre-coated field-effect transistor (FET) devices (i.e. fibronectin, anti-CD3 antibody, and anti-LFA-1 antibody) were measured using impedance spectroscopy. Adhesion strengths to different protein and antibody coatings were compared. By fitting the data to an electronically equivalent circuit model, cell-related parameters (cell membrane capacitance referring to cell morphology and seal resistance referring to adhesion strength) were obtained. This electronically-assessed adhesion strength provides a novel, fast, and important index describing the interaction efficiency. Furthermore, the size of our detection transistor gates as well as their sensitivity reaches down to single cell resolution. Real-time motions of individually migrating T cells can be traced using our FET devices. The in-house fabricated FETs used in the present study are providing a novel and very efficient insight to individual cell interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
A 90-Kilodalton Endothelial Cell Molecule Mediating Lymphocyte Binding in Humans
NASA Astrophysics Data System (ADS)
Salmi, Marko; Jalkanen, Sirpa
1992-09-01
Interactions between leukocyte surface receptors and their ligands on vascular endothelial cells control lymphocyte traffic between the blood and various lymphoid organs, as well as extravasation of leukocytes into sites of inflammation. A heretofore undescribed 90-kilodalton human endothelial cell adhesion molecule (VAP-1) defined by a monoclonal antibody 1B2 is described. The expression pattern, molecular mass, functional properties, and an amino-terminal amino acid sequence define VAP-1 as an endothelial ligand for lymphocytes. VAP-1 helps to elucidate the complex heterotypic cell interactions that direct tissue-selective lymphocyte migration in man.
Effect of platelet lysate on human cells involved in different phases of wound healing.
Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue
2016-01-29
The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-basedmore » cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Li, Hui; Liu, Xiaoqiang
2016-07-15
The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF-β1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF-β1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF-β1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition andmore » the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF-β1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF-β1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF-β1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF-β1-induced EMT of ARPE-19 cells.« less
Takahashi, Kazuhide; Suzuki, Katsuo
2008-07-01
Lamellipodia formation necessary for epithelial cell migration and invasion is accomplished by rearrangement of the actin cytoskeleton at the leading edge through membrane transport of WAVE2. However, how WAVE2 is transported to the cell periphery where lamellipodia are formed remains to be established. We report here that hepatocyte growth factor (HGF) promoted lamellipodia formation and intracellular transport of WAVE2 to the cell periphery, depending on Rac1 activity, in MDA-MB-231 human breast cancer cells. Immunoblot analyses indicating the coimmunoprecipitation of WAVE2 with kinesin heavy chain KIF5B, one of the motor proteins, and IQGAP1 suggest that KIF5B and IQGAP1 formed a complex with WAVE2 in serum-starved cells and increased in their amount after HGF stimulation. Both downregulation of KIF5B by the small interfering RNA and depolymerization of microtubules with nocodazole abrogated the HGF-induced lamellipodia formation and WAVE2 transport. Therefore, we propose here that the promotion of lamellipodia formation by HGF in MDA-MB-231 cells is Rac1-dependent and requires KIF5B-mediated transport of WAVE2 and IQGAP1 to the cell periphery along microtubules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seomun, Young; Joo, Choun-Ki
Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence thatmore » lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.« less
Kaminota, Teppei; Yano, Hajime; Shiota, Kohei; Nomura, Noriko; Yaguchi, Haruna; Kirino, Yui; Ohara, Kentaro; Tetsumura, Issei; Sanada, Tomoyoshi; Ugumori, Toru; Tanaka, Junya; Hato, Naohito
2017-04-22
Cancer cells can migrate as collectives during invasion and/or metastasis; however, the precise molecular mechanisms of this form of migration are less clear compared with single cell migration following epithelial-mesenchymal transition. Elevated Na + /H + exchanger1 (NHE1) expression has been suggested to have malignant roles in a number of cancer cell lines and in vivo tumor models. Furthermore, a metastatic human head and neck squamous cell carcinoma (HNSCC) cell line (SASL1m) that was isolated based on its increased metastatic potential also exhibited higher NHE1 expression than its parental line SAS. Time-lapse video recordings indicated that both cell lines migrate as collectives, although with different features, e.g., SASL1m was much more active and changed the direction of migration more frequently than SAS cells, whereas locomotive activities were comparable. SASL1m cells also exhibited higher invasive activity than SAS in Matrigel invasion assays. shRNA-mediated NHE1 knockdown in SASL1m led to reduced locomotive and invasive activities, suggesting a critical role for NHE1 in the collective migration of SASL1m cells. SASL1m cells also exhibited a higher metastatic rate than SAS cells in a mouse lymph node metastasis model, while NHE1 knockdown suppressed in vivo SASL1m metastasis. Finally, elevated NHE1 expression was observed in human HNSCC tissue, and Cariporide, a specific NHE1 inhibitor, reduced the invasive activity of SASL1m cells, implying NHE1 could be a target for anti-invasion/metastasis therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Yue-Hua; Guo, Jin-Hao; Wu, Sai; Yang, Chuan-Hua
2017-08-01
Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg -1 ·d -1 ) for 6 weeks, using valsartan (13.5 mg·kg -1 ·d -1 ) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 -6 mol·L -1 Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A; Aboobaker, A Aziz
2017-10-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1 , snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo . © 2017. Published by The Company of Biologists Ltd.
Dynamics of cells function on laser cell-chip system
NASA Astrophysics Data System (ADS)
Kushibiki, Toshihiro; Sano, Tomoko; Ishii, Katsunori; Yoshihashi-Suzuki, Sachiko; Awazu, Kunio
2006-02-01
A new type of cell-cultivation system based on laser processing has been developed for the on-chip cultivation of living cells. We introduce a "laser cell-chip", on which migration of cells, such as stem cells, tumor cells or immunocompetent cells, can be observed. A sheet prepared from epoxy resin was processed by KrF excimer laser (248 nm, 1.6 J/cm2) for preparation of microgrooved surfaces with various groove width, spacing, and depth. A laser cell-chip can make kinetic studies of cell migration depending on the concentration gradient of a chemoattractant. In this study, megakaryocytes were used for the migration on a groove of laser cell-chip by the concentration gradient of the stromal cell derived factor 1 (SDF-1/CXCL12). SDF-1/CXCL12 plays an important and unique role in the regulation of stem/progenitor cell trafficking. A megakaryocyte was migrated on a groove of laser cell-chip depending on the optical concentration gradient of SDF-1/CXCL12. Since SDF-1/CXCL12-induced migration of mature megakaryocyte was known to increase the platelet production in the bone marrow extravascular space, the diagnosis of cell migration on laser cell-chip could provide a new strategy to potentially reconstitute hematopoiesis and avoid life-threatening hemorrhage after myelosuppression or bone marrow failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zi-xuan; Rao, Wei; Wang, Huan
Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromalmore » interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.« less
Shin, HyeRim; Kim, Dayoung; Helfman, David M
2017-11-10
Metastasis dissemination is the result of various processes including cell migration and cell aggregation. These processes involve alterations in the expression and organization of cytoskeletal and adhesion proteins in tumor cells. Alterations in actin filaments and their binding partners are known to be key players in metastasis. Downregulation of specific tropomyosin (Tpm) isoforms is a common characteristic of transformed cells. In this study, we examined the role of Tpm2.1 in non-transformed MCF10A breast epithelial cells in cell migration and cell aggregation, because this isoform is downregulated in primary and metastatic breast cancer as well as various breast cancer cell lines. Downregulation of Tpm2.1 using siRNA or shRNA resulted in retardation of collective cell migration but increase in single cell migration and invasion. Loss of Tpm2.1 is associated with enhanced actomyosin contractility and increased expression of E-cadherin and β-catenin. Furthermore, inhibition of Rho-associated kinase (ROCK) recovered collective cell migration in Tpm2.1-silenced cells. We also found that Tpm2.1-silenced cells formed more compacted spheroids and exhibited faster cell motility when spheroids were re-plated on 2D surfaces coated with fibronectin and collagen. When Tpm2.1 was downregulated, we observed a decrease in the level of AXL receptor tyrosine kinase, which may explain the increased levels of E-cadherin and β-catenin. These studies demonstrate that Tpm2.1 functions as an important regulator of cell migration and cell aggregation in breast epithelial cells. These findings suggest that downregulation of Tpm2.1 may play a critical role during tumor progression by facilitating the metastatic potential of tumor cells.
Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan
2016-03-01
The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.
Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant
van Roosmalen, Wies; Le Dévédec, Sylvia E.; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M.; Look, Maxime P.; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A.C. ‘t; Martens, John W.M.; Foekens, John A.; Geiger, Benjamin; van de Water, Bob
2015-01-01
Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis. PMID:25774502
Twist functions in vertebral column formation in medaka, Oryzias latipes.
Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira
2004-07-01
Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.
Zhang, Yandong; Wu, Wei; Kang, Lihua; Yu, Dehai; Liu, Chunshui
2017-10-01
Polysaccharides extracted from medicinal plants possess multiple functions. However, the inhibitory capacity of polysaccharides on the metastasis of breast cancer remains unclear. In the present study, we investigated the inhibitory activity of Aconitum coreanum polysaccharide (ACP1) and its sulphated derivative ACP1-s on migratory behaviour of human breast cancer cells MDA-MB-435s and evaluated the underlying molecular mechanism. The data from Transwell assay indicated that ACP1 and ACP1-s caused a significant inhibition of MDA-MB-435s cell migration in vitro. ACP1 and ACP1-s significantly impaired MDA-MB-435s cell migratory behaviour, and the accumulated distance and average velocity of ACP1- and ACP1-s-treated cells were reduced markedly. We also found ACP1 and ACP1-s treatment could affect dynamic remodeling of actin cytoskeleton, and suppress phosphorylation and activation of signalling molecules, attributing to anti-metastatic role of ACP1 and ACP1-s. These findings reveal a novel therapeutic potential of A. coreanum polysaccharide and its sulphated derivative for breast cancer metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Al Dhaheri, Yusra; Attoub, Samir; Arafat, Kholoud; AbuQamar, Synan; Viallet, Jean; Saleh, Alaaeldin; Al Agha, Hala; Eid, Ali; Iratni, Rabah
2013-01-01
Background We have recently reported that Origanum majorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O . majorana on the migration, invasion and tumor growth of these cells. Results We demonstrate that non-cytotoxic concentrations of O . majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O . majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O . majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O . majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9). ELISA, RT-PCR and Western blot results revealed that O . majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR), ICAM-1 and VEGF. Further investigation revealed that O . majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO) production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O . majorana promotes inhibition of tumor growth and metastasis in vivo. Conclusion Our findings identify Origanum majorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis. PMID:23874773
Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E
2018-05-01
Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.
Lobo, Gricela; Monasterios, Melina; Rodrigues, Juan; Gamboa, Neira; Capparelli, Mario V; Martínez-Cuevas, Javier; Lein, Michael; Jung, Klaus; Abramjuk, Claudia; Charris, Jaime
2015-01-01
A highly regiospecific synthesis of a series of indenoindoles is reported, together with X-ray studies and their activity against human prostate cancer cells PC-3 and LNCaP in vitro. The most effective compound 7,7-dimethyl-5-[(3,4-dichlorophenyl)]-(4bRS,9bRS)-dihydroxy-4b,5,6,7,8,9bhexahydro-indeno[1,2-b]indole-9,10-dione 7q reduced the viability in both cell lines in a time and dose-dependent manner. Inhibitory effects were also observed on the adhesion, migration, and invasion of the prostate cancer cells as well as on clonogenic possibly by inhibition of MMP-9 activity. Molecular docking of 7q and 6k into MMP-9 human active site was also performed to determine the probable binding mode. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Nucleus and nucleus-cytoskeleton connections in 3D cell migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com
Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and reviewmore » how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at the cell membrane through the cytoskeletal architecture to the nucleus and into the chromosomes. On a 2D substrate (B), the nucleus can be subjected to tensional forces emanating from the stress fibers and compressive forces due to the actin cap structures and the resistance of the surface. In a 3D environment (C), the migration process requires reshaping of the nucleus and squeezing it through narrow openings in the ECM. During this process the cells may also experience both tension generated by the actomyosin filaments and compression resulting from the high pressure of the anterior compartment. - Highlights: • The influence of nuclear size and stiffness in cell migration is discussed. • We describe molecular components that govern the mechanical properties of the nucleus. • We discuss the roles of chromatin, lamin A/C in nuclear mechanical properties and cell migration. • We review how nuclear dynamics are connected to cytoskeleton. • We discuss the role of nucleo-cytoskeletal coupling in cell migration.« less
Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth
2008-01-01
Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569
Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C
2012-01-01
BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973
van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T
2000-10-16
Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.
Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang
2011-08-01
We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.
Forlani, Greta; Abdallah, Rawan
2016-01-01
ABSTRACT Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral transactivator Tax-1 plays a central role in the onset of ATLL, mostly by deregulating the NF-κB pathway. We demonstrate that CIITA, a key regulator of adaptive immunity, suppresses Tax-1-dependent activation of NF-κB by acting at several levels: it retains most of Tax-1 and RelA in the cytoplasm and inhibits their residual functional activity in the nucleus. Importantly, this inhibition occurs in cells that are targets of HTLV-1 infection. These findings are of interest in the field of virology because they expand the current knowledge of the functional relationship between viral products and cellular interactors and provide the basis for a better understanding of the molecular countermeasures adopted by the host cell to antagonize HTLV-1 spreading and transforming properties. Within this framework, our results may contribute to the establishment of novel strategies against HTLV-1 infection and virus-dependent oncogenic transformation. PMID:26792751
Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S; Tosi, Giovanna
2016-01-20
Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral transactivator Tax-1 plays a central role in the onset of ATLL, mostly by deregulating the NF-κB pathway. We demonstrate that CIITA, a key regulator of adaptive immunity, suppresses Tax-1-dependent activation of NF-κB by acting at several levels: it retains most of Tax-1 and RelA in the cytoplasm and inhibits their residual functional activity in the nucleus. Importantly, this inhibition occurs in cells that are targets of HTLV-1 infection. These findings are of interest in the field of virology because they expand the current knowledge of the functional relationship between viral products and cellular interactors and provide the basis for a better understanding of the molecular countermeasures adopted by the host cell to antagonize HTLV-1 spreading and transforming properties. Within this framework, our results may contribute to the establishment of novel strategies against HTLV-1 infection and virus-dependent oncogenic transformation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Fan, Ming-Jen; Wang, I-Chen; Hsiao, Yung-Ting; Lin, Hui-Yi; Tang, Nou-Ying; Hung, Tzu-Chieh; Quan, Christine; Lien, Jin-Cherng; Chung, Jing-Gung
2015-01-01
Aside from the commonly known white rice lines, colored varieties also exist. These varieties have historically been used in Chinese medicine. Anthocyanins, a large group of natural polyphenols existing in a variety of daily fruits and vegetables, have been widely recognized as cancer chemopreventive agents. The primary objective of cancer treatment strategies has traditionally focused on preventing the occurrence of metastasis. In this research the antimetastatic mechanism of anthocyanins on the invasion/migration of human oral CAL 27 cells was performed using a transwell to quantify the migratory potential of CAL 27 cells and the results show that anthocyanins can inhibit the in vitro migration and invasion of CAL 27 cancer cells. In addition, the gelatin zymography assay indicated that anthocyanins inhibited the activity of matrix metalloproteinases-2 (MMP-2). Western blotting assay also demonstrated that anthocyanins inhibited the associated protein expression of migration/invasion of CAL 27 cell. Immunofluorescence staining proved that anthocyanins inhibited nuclear factor kappa B p65 (NF-κB p65) expressions. These results demonstrated that anthocyanins from a species of black rice (selected purple glutinous indica rice cultivated at Asia University) could suppress CAL 27 cell metastasis by reduction of MMP-2, MMP-9, and NF-κB p65 expression through the suppression of PI3K/Akt pathway and inhibition of NF-κB levels.
Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W
2007-01-01
Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278
X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.
Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki
2018-04-01
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Kogelberg, Heide; Tolner, Berend; Thomas, Gareth J.; Di Cara, Danielle; Minogue, Shane; Ramesh, Bala; Sodha, Serena; Marsh, Dan; Lowdell, Mark W.; Meyer, Tim; Begent, Richard H.J.; Hart, Ian; Marshall, John F; Chester, Kerry
2010-01-01
Summary The αvβ6 integrin is a promising target for cancer therapy. Its expression is up-regulated de novo on many types of carcinoma where it may activate transforming growth factor-β1 and transforming growth factor-β3, interact with the specific extracellular matrix proteins and promote migration and invasion of tumour cells. The viral protein 1 (VP1) coat protein of the O1 British field strain serotype of foot-and-mouth disease virus is a high-affinity ligand for αvβ6, and we recently reported that a peptide derived from VP1 exhibited αvβ6-specific binding in vitro and in vivo. We hypothesized that this peptide could confer binding specificity of an antibody to αvβ6. A 17-mer peptide of VP1 was inserted into the complementary-determining region H3 loop of MFE-23, a murine single-chain Fv (scFv) antibody reactive with carcinoembryonic antigen (CEA). The resultant scFv (B6-1) bound to αvβ6 but retained residual reactivity with CEA. This was eliminated by point mutation (Y100bP) in the variable heavy-chain domain to create an scFv (B6-2) that was as structurally stable as MFE-23 and reacted specifically with αvβ6 but not α5β1, αvβ3, αvβ5, αvβ8 or CEA. B6-2 was internalized into αvβ6-expressing cells and inhibited αvβ6-dependent migration of carcinoma cells. B6-2 was subsequently humanized. The humanized form (B6-3) was obtained as a non-covalent dimer from secretion in Pichia pastoris (115 mg/l) and was a potent inhibitor of αvβ6-mediated cell adhesion. Thus, we have used a rational stepwise approach to create a humanized scFv with therapeutic potential to block αvβ6-mediated cancer cell invasion or to deliver and internalize toxins specifically to αvβ6-expressing tumours. PMID:18656482
Yin, Bin; Li, Ke-han; An, Tai; Chen, Tao; Peng, Xiao-zhong
2010-06-01
To investigate the molecular mechanism of nectin-like molecule 1 (NECL1) inhibiting the migration and invasion of U251 glioma cells. We infected U251 glioma cells with adeno-nectin-like molecule 1 (Ad-NECL1) or empty adenovirus (Ad). Transwell and wound healing assays were performed to observe the migration of U251 cells incubated with the cell supernatant from Ad-NECL1 or Ad infected U251 cells. DNA microarray was applied to screen the gene expression profile after the restoration of NECL1 in U251 glioma cell lines. The differential expression of osteopontin (OPN), a gene related to migration and invasion, was further analyzed with semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The restoration of NECL1 inhibited migration of U251 cells significantly (P<0.05). Altogether 195 genes were found differentially expressed by microarray, in which 175 were up-regulated and 20 down-regulated, including 9 extracellular matrix proteins involved in the migration of cells. Both mRNA and protein expressions of OPN, the most markedly reduced extracellular matrix protein, were found decreased in U251 cells after restoration of NECL1. Immunohistochemical assay also detected an increase of OPN in glioma tissues, related with the progressing of malignant grade. A link might exist between NECL1 and the extracellular matrix protein OPN in inhibiting the migration and invasion of U251 glioma cells.
Rab7b at the intersection of intracellular trafficking and cell migration.
Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia
2015-01-01
Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).
Hao, Ning-Bo; Tang, Bo; Wang, Guo-Zheng; Xie, Rui; Hu, Chang-Jiang; Wang, Su-Min; Wu, Yu-Yun; Liu, En; Xie, Xia; Yang, Shi-Ming
2015-05-28
Heparanase (HPA) is an endoglucuronidase that can promote the shedding of associated cytokines in several types of tumors. However, little is known about what controls the expression of HPA or its role in gastric cancer. In this study, we report for the first time that HGF regulates HPA expression to promote gastric cancer metastasis. In this study, HGF and HPA were found to be significantly expressed in 58 gastric cancer patients. High expression of both HGF and HPA was positively associated with TNM stage, invasion depth and poor prognosis. In MKN74 cells, exogenous HGF significantly increased HPA expression at both the mRNA and protein levels. Further study revealed that HGF first activated PI3K/Akt signaling. NF-κB signaling was activated downstream of PI3K/Akt and promoted HPA expression. However, when c-met, PI3K/Akt or NF-κB signal inhibitors were used, HPA expression was significantly decreased. All of these results indicate that HGF regulates HPA expression by PI3K/Akt and downstream NF-κB signaling. Using bioinformatics and the ChIP assay, p65 was observed to bind to the HPA promoter. Furthermore, HGF significantly induced tumor cell migration, whereas treatment with an NF-κB inhibitor decreased migration. Moreover, when HPA was overexpressed in MKN74 cells, migration was significantly enhanced, and the HGF concentration was increased. However, when HPA was down-regulated in MKN45 cells, migration and HGF levels decreased. Together, these results demonstrate that HGF/c-met can activate PI3K/Akt and downstream NF-κB signaling to promote HPA expression and subsequent tumor metastasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Intravital third harmonic generation microscopy of collective melanoma cell invasion
Weigelin, Bettina; Bakker, Gert-Jan; Friedl, Peter
2012-01-01
Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes. PMID:29607252
Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao
2017-01-01
Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.
Cyrus, Bita F.; Muller, William A.
2017-01-01
A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343
Kwon, Jin-Sook; Joung, Hosouk; Kim, Yong Sook; Shim, Young-Sun; Ahn, Youngkeun; Jeong, Myung Ho; Kee, Hae Jin
2012-11-01
Sulforaphane, a naturally occurring organosulfur compound in broccoli, has chemopreventive properties in cancer. However, the effects of sulforaphane in vascular diseases have not been examined. We therefore aimed to investigate the effects of sulforaphane on vascular smooth muscle cell (VSMC) proliferation and neointimal formation and the related mechanisms. The expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) was examined in VSMCs. The nuclear translocation of nuclear factor-κB (NF-κB) and GATA6 expression was examined in VSMCs and in a carotid artery injury model by Western blot and immunohistochemistry. We also investigated whether local delivery of sulforaphane affected neointimal formation. Sulforaphane inhibited the mRNA and protein expression of VCAM-1 induced by tumor necrosis factor (TNF)-α in VSMCs. Treatment of VSMCs with sulforaphane blocked TNF-α-induced IκBα degradation and NF-κB p65 and GATA6 expression. Furthermore, NF-κB p65 and GATA6 expression were reduced in sulforaphane-treated carotid injury sections. Notably, binding of GATA6 to the VCAM-1 promoter was dramatically reduced by sulforaphane. The MTT, BrdU incorporation, and in vitro scratch assays revealed that the proliferation and migration of VSMCs were reduced by sulforaphane. Furthermore, local administration of sulforaphane significantly reduced neointima formation 14 days after vascular injury in rats. Our results indicate that sulforaphane inhibits neointima formation via targeting of adhesion molecules through the suppression of NF-κB/GATA6. Furthermore, sulforaphane regulates migration and proliferation in VSMCs. Sulforaphane may be a potential therapeutic agent for preventing restenosis after vascular injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang
2016-05-01
Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.
ERP44 inhibits human lung cancer cell migration mainly via IP3R2.
Huang, Xue; Jin, Meng; Chen, Ying-Xiao; Wang, Jun; Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju
2016-06-01
Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway.
ERP44 inhibits human lung cancer cell migration mainly via IP3R2
Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju
2016-01-01
Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway. PMID:27347718
Wang, Shujie; Watanabe, Takashi; Matsuzawa, Kenji; Katsumi, Akira; Kakeno, Mai; Matsui, Toshinori; Ye, Feng; Sato, Kazuhide; Murase, Kiyoko; Sugiyama, Ikuko; Kimura, Kazushi; Mizoguchi, Akira; Ginsberg, Mark H.; Collard, John G.
2012-01-01
Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration. PMID:23071154
Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh
2014-10-15
Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4 and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh
2014-01-01
Renal cancer metastasis may result from oncogenic forces that contribute to the primary tumor. We have recently identified microRNA-21 as an oncogenic driver of renal cancer cells. The mechanism by which miR-21 controls renal cancer cell invasion is poorly understood. We show that miR-21 directly downregulates the proapoptotic protein PDCD4 to increase migration and invasion of ACHN and 786-O renal cancer cells as a result of phosphorylation/activation of Akt and IKKβ, which activate NFκB-dependent transcription. Constitutively active (CA) Akt or CA IKKβ blocks PDCD4-mediated inhibition and restores renal cancer cell migration and invasion. PDCD4 inhibits mTORC1 activity, which was reversed by CA IKKβ. Moreover, CA mTORC1 restores cell migration and invasion inhibited by PDCD4- and dominant negative IKKβ. Moreover, PDCD4 negatively regulates mTORC2-dependent Akt phosphorylation upstream of this cascade. We show that PDCD4 forms a complex with rictor, an exclusive component of mTORC2, and that this complex formation is reduced in renal cancer cells due to increased miR-21 expression resulting in enhanced phosphorylation of Akt. Thus our results identify a previously unrecognized signaling node where high miR-21 levels reduce rictor-PDCD4 interaction to increase phosphorylation of Akt and contribute to metastatic fitness of renal cancer cells. PMID:25016284
Peng, Xueyan; Moore, Meagan; Mathur, Aditi; Zhou, Yang; Sun, Huanxing; Gan, Ye; Herazo-Maya, Jose D.; Kaminski, Naftali; Hu, Xinyuan; Pan, Hongyi; Ryu, Changwan; Osafo-Addo, Awo; Homer, Robert J.; Feghali-Bostwick, Carol; Fares, Wassim H.; Gulati, Mridu; Hu, Buqu; Lee, Chun-Geun; Elias, Jack A.; Herzog, Erica L.
2016-01-01
Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1−/− mouse macrophages are excessively migratory, and PLXNC1−/− mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow–derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.—Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. PMID:27609773
Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin
2015-01-01
At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473
Ponader, Sabine; Chen, Shih-Shih; Buggy, Joseph J.; Balakrishnan, Kumudha; Gandhi, Varsha; Wierda, William G.; Keating, Michael J.; O'Brien, Susan; Chiorazzi, Nicholas
2012-01-01
B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent. PMID:22180443
Microtubule release from the centrosome in migrating cells
Abal, Miguel; Piel, Matthieu; Bouckson-Castaing, Veronique; Mogensen, Mette; Sibarita, Jean-Baptiste; Bornens, Michel
2002-01-01
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63–71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration. PMID:12473683
Both sides of the same coin: Rac1 splicing regulating by EGF signaling.
Fu, Xiang-Dong
2017-04-01
EGF, a well-studied mitogen for cancer cells, is revealed to induce an E3 ubiquitin ligase adaptor SPSB1, which recruits the Elongin B/C-Collin complex to trigger ubiquitylation of the negative splicing regulator hnRNP A1. This event is synergized with EGF-activated SR proteins to alter alternative splicing of a key small GTPase Rac1 to enhance cell migration, highlighting converging EGF signals on both negative and positive splicing regulators to jointly promote a key cancer pathway.
Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo
Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B
2015-01-01
Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756
Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik
2009-06-01
Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.
Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Liping; Xu, Yinghui; Zou, Lijuan, E-mail: zoulijuantg@126.com
2014-03-28
Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9more » expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao
Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth andmore » promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.« less
Pranjol, Md Zahidul I; Gutowski, Nicholas J; Hannemann, Michael; Whatmore, Jacqueline L
2018-01-01
Epithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum. Copyright © 2017 Elsevier B.V. All rights reserved.
Sarabi, A; Kramp, B K; Drechsler, M; Hackeng, T M; Soehnlein, O; Weber, C; Koenen, R R; Von Hundelshausen, P
2011-01-01
The non-allelic variant of CXCL4/PF4, CXCL4L1/PF4alt, differs from CXCL4 in three amino acids of the C-terminal α-helix and has been characterized as a potent anti-angiogenic regulator. Although CXCL4 structurally belongs to the chemokine family, it does not behave like a 'classical' chemokine, lacking significant chemotactic properties. Specific hallmarks are its angiostatic, anti-proliferative activities, and proinflammatory functions, which can be conferred by heteromer-formation with CCL5/RANTES enhancing monocyte recruitment. Here we show that tube formation of endothelial cells was inhibited by CXCL4L1 and CXCL4, while only CXCL4L1 triggered chemokinesis of endothelial cells. The chemotactic response towards VEGF and bFGF was attenuated by both variants and CXCL4L1-induced chemokinesis was blocked by bFGF or VEGF. Endothelial cell proliferation was inhibited by CXCL4 (IC(50) 6.9 μg mL(-1)) but not by CXCL4L1, while both chemokines bound directly to VEGF and bFGF. Moreover, CXCL4 enhanced CCL5-induced monocyte arrest in flow adhesion experiments and monocyte recruitment into the mouse peritoneal cavity in vivo, whereas CXCL4L1 had no effect. CXCL4L1 revealed lower affinity to CCL5 than CXCL4, as quantified by isothermal fluorescence titration. As evidenced by the reduction of the activated partial thromboplastin time, CXCL4L1 showed a tendency towards less heparin-neutralizing activity than CXCL4 (IC(50) 2.45 vs 0.98 μg mL(-1)). CXCL4L1 may act angiostatically by causing random endothelial cell locomotion, disturbing directed migration towards angiogenic chemokines, serving as a homeostatic chemokine with a moderate structural distinction yet different functional profile from CXCL4. © 2010 International Society on Thrombosis and Haemostasis.
Li, Yadong; Zhang, Jinsong; Yang, Kai; Zhang, Fujun; Chen, Rui; Chen, Dan
2014-02-01
To detect the effects of ANO1 overexpression on the biological behaviors of human laryngeal squamous cell carcinoma Hep-2 cells. A Hep-2 cell line stably overexpressing ANO1 were examined with flow cytometry, soft agar assay, wound healing assay, siRNA experiments, and chloride channel block with DIDS to observe the effect of ANO1 overexpression on the growth, migration and invasion of the cells. Flow cytometry revealed a comparable cell percentage in G0/G1 phase between ANO1-overexpressing cells and the control cells (P>0.05). The two cells showed no significant difference in soft agar assay (P>0.05), but in wound healing experiments, ANO1-overexpressing cells showed significantly accelerated migration (P<0.05), whereas siRNA-mediated silencing of ANO1 significantly inhibited the cell migration (P<0.05). Treatment with DIDS resulted in an effective block of the ANO1 chloride channel activity and obviously decreased the migration speed of Hep-2 cells. ANO1 overexpression does not significantly affect the proliferation of cancer cells, but can enhance the migration ability of head and neck squamous cell carcinoma, suggesting the value of ANO1 as a new gene therapy target for head and neck squamous cell carcinoma.
Behaviour of CD11b-Positive Cells in an Animal Model of Laser-Induced Choroidal Neovascularisation.
Li, Lu; Heiduschka, Peter; Alex, Anne F; Niekämper, Daniel; Eter, Nicole
2017-01-01
Immune cells, e.g. microglial cells of the retina, appear to be involved in pathological processes in neovascular age-related macular degeneration. Therefore, the purpose of this study was to immunohistochemically check the expression of various factors and cytokines by CD11b-positive (CD11b+) immune cells in an animal model of choroidal neovascularisation (CNV). We used the animal model of laser-induced CNV in mice. Eyes were isolated at 1, 4, 7, and 14 days after laser treatment. Cryosections were prepared and checked immunohistochemically for the presence of different growth factors and cytokines on microglial cells and other immune cells identified by CD11b immunoreactivity. We found that the number of CD11b+ cells at the laser spots increased dramatically 4 days after laser treatment, the majority of them entering the laser spot most probably by migration. CD11b+ cells in the laser spot were positive for a variety of pro-angiogenic factors, such as PDGF-β, FGF-1, FGF-2, and TGF-β1. They were also positive for some inflammatory cytokines, in particular TNF-α, IL-6, and CXCL1. In non-treated retinas, CD11b+ cells showed almost no immunoreactivity for these proteins. Microglial cells, macrophages, and other CD11b+ cells may promote the neovascularisation in the laser spot and show a moderate inflammatory behaviour. Immunoreactivity for most of these molecules was found to decrease during the time of observation. Modulation of immune cell activity may thus be a tool to reduce the extent of CNV. © 2017 S. Karger AG, Basel.