Sample records for b104 neuroblastoma cells

  1. PHOX2B reliably distinguishes neuroblastoma among small round blue cell tumours.

    PubMed

    Hung, Yin P; Lee, John P; Bellizzi, Andrew M; Hornick, Jason L

    2017-11-01

    Neuroblastoma shows considerable histological overlap with other small round blue cell tumours. PHOX2B, a transcription factor that is essential for autonomic nervous system development, has been reported as an immunohistochemical marker for neuroblastoma. The aim of this study was to validate the specificity and diagnostic utility of PHOX2B for peripheral neuroblastic tumours. We evaluated 240 cases (133 in whole-tissue sections; 107 in tissue microarrays), including 76 peripheral neuroblastic tumours (median age 2 years; including four adults) and 164 other tumours: 44 Wilms tumours; 20 Ewing sarcomas; 10 each of CIC-rearranged round cell sarcomas, poorly differentiated synovial sarcomas, lymphoblastic lymphomas, alveolar rhabdomyosarcomas, embryonal rhabdomyosarcomas, mesenchymal chondrosarcomas, Merkel cell carcinomas, olfactory neuroblastomas, and melanomas; and five each of NUT midline carcinomas and desmoplastic small round cell tumours. Immunohistochemistry for PHOX2B was performed with a rabbit monoclonal antibody. PHOX2B positivity was defined as the presence of nuclear immunoreactivity in ≥5% of cells. PHOX2B was positive in 70 (92%) peripheral neuroblastic tumours, including 68 of 72 (94%) paediatric and two of four (50%) adult cases. Furthermore, PHOX2B was consistently negative in all non-peripheral neuroblastic tumours, with staining being absent in 160 cases and limited in four cases. PHOX2B is a highly sensitive and specific immunohistochemical marker for peripheral neuroblastic tumours, including neuroblastoma. PHOX2B reliably distinguishes neuroblastoma from histological mimics such as Wilms tumour, Ewing sarcoma, and CIC-rearranged round cell sarcoma. PHOX2B negativity in two of four adult neuroblastoma cases raises the possibility that some adult neuroblastomas are of a different lineage than paediatric cases. © 2017 John Wiley & Sons Ltd.

  2. Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth

    PubMed Central

    Zanni, Eleonora Di; Bianchi, Giovanna; Ravazzolo, Roberto; Raffaghello, Lizzia; Ceccherini, Isabella; Bachetti, Tiziana

    2017-01-01

    The pathogenic role of the PHOX2B gene in neuroblastoma is indicated by heterozygous mutations in neuroblastoma patients and by gene overexpression in both neuroblastoma cell lines and tumor samples. PHOX2B encodes a transcription factor which is crucial for the correct development and differentiation of sympathetic neurons. PHOX2B overexpression is considered a prognostic marker for neuroblastoma and it is also used by clinicians to monitor minimal residual disease. Furthermore, it has been observed that neuronal differentiation in neuroblastoma is dependent on down-regulation of PHOX2B expression, which confirms that PHOX2B expression may be considered a target in neuroblastoma. Here, PHOX2B promoter or 3′ untranslated region were used as molecular targets in an in vitro high-throughput approach that led to the identification of molecules able to decrease PHOX2B expression at transcriptional and likely even at post-transcriptional levels. Further functional investigations carried out on PHOX2B mRNA levels and biological consequences, such as neuroblastoma cell apoptosis and growth, showed that chloroquine and mycophenolate mofetil are most promising agents for neuroblastoma therapy based on down-regulation of PHOX2B expression. Finally, a strong correlation between the effect of drugs in terms of down-regulation of PHOX2B expression and of biological consequences in neuroblastoma cells confirms the role of PHOX2B as a potential molecular target in neuroblastoma. PMID:29069774

  3. Suppression of miR-19b enhanced the cytotoxic effects of mTOR inhibitors in human neuroblastoma cells.

    PubMed

    Chen, Yun; Tsai, Ya-Hui; Tseng, Bor-Jiun; Pan, Hsin-Yen; Tseng, Sheng-Hong

    2016-11-01

    Mammalian target of rapamycin (mTOR) inhibitors exert significant antitumor effects on several cancer cell types. In this study, we investigated the effects of mTOR inhibitors, in particular the regulation of the microRNA, in neuroblastoma cells. AZD8055 (a new mTOR inhibitor)- or rapamycin-induced cytotoxic effects on neuroblastoma cells were studied. Western blotting was used to investigate the expression of various proteins in the mTOR pathway. MicroRNA precursors and antagomirs were transfected into cells to manipulate the expression of target microRNA. AZD8055 exerted stronger cytotoxic effects than rapamycin in neuroblastoma cells (p<0.03). In addition, AZD8055 suppressed the mTOR pathway and increased the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in the neuroblastoma cells. AZD8055 significantly decreased miR-19b expression (p<0.005); in contrast, rapamycin increased miR-19b expression (p<0.05). Transfection of miR-19b antagomir into the neuroblastoma cells mimicked the effects of AZD8055 treatment, whereas miR-19b overexpression reversed the effects of AZD8055. Combination of miR-19b knockdown and rapamycin treatment significantly improved the sensitivity of neuroblastoma cells to rapamycin (p<0.02). Suppression of miR-19b may enhance the cytotoxic effects of mTOR inhibitors in neuroblastoma cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo.

    PubMed

    Eliassen, Liv Tone; Berge, Gerd; Leknessund, Arild; Wikman, Mari; Lindin, Inger; Løkke, Cecilie; Ponthan, Frida; Johnsen, John Inge; Sveinbjørnsson, Baldur; Kogner, Per; Flaegstad, Trond; Rekdal, Øystein

    2006-08-01

    Antimicrobial peptides have been shown to exert cytotoxic activity towards cancer cells through their ability to interact with negatively charged cell membranes. In this study the cytotoxic effect of the antimicrobial peptide, LfcinB was tested in a panel of human neuroblastoma cell lines. LfcinB displayed a selective cytotoxic activity against both MYCN-amplified and non-MYCN-amplified cell lines. Non-transformed fibroblasts were not substantially affected by LfcinB. Treatment of neuroblastoma cells with LfcinB induced rapid destabilization of the cytoplasmic membrane and formation of membrane blebs. Depolarization of the mitochondria membranes and irreversible changes in the mitochondria morphology was also evident. Immuno- and fluorescence-labeled LfcinB revealed that the peptide co-localized with mitochondria. Furthermore, treatment of neuroblastoma cells with LfcinB induced cleavage of caspase-6, -7 and -9 followed by cell death. However, neither addition of the pan-caspase inhibitor, zVAD-fmk, or specific caspase inhibitors could reverse the cytotoxic effect induced by LfcinB. Treatment of established SH-SY-5Y neuroblastoma xenografts with repeated injections of LfcinB resulted in significant tumor growth inhibition. These results revealed a selective destabilizing effect of LfcinB on two important targets in the neuroblastoma cells, the cytoplasmic- and the mitochondria membrane. Copyright (c) 2006 Wiley-Liss, Inc.

  5. Sparstolonin B, a Novel Plant Derived Compound, Arrests Cell Cycle and Induces Apoptosis in N-Myc Amplified and N-Myc Nonamplified Neuroblastoma Cells

    PubMed Central

    Kumar, Ambrish; Fan, Daping; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in

  6. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1.

    PubMed

    Liu, Xiaodan; Peng, Hongxia; Liao, Wang; Luo, Ailing; Cai, Mansi; He, Jing; Zhang, Xiaohong; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2018-05-26

    Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1. © 2018 Wiley Periodicals, Inc.

  7. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    PubMed

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  8. Cell Survival Signaling in Neuroblastoma

    PubMed Central

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  9. NF-κB Regulates Caspase-4 Expression and Sensitizes Neuroblastoma Cells to Fas-Induced Apoptosis

    PubMed Central

    Yang, Hai-Jie; Wang, Mian; Wang, Lei; Cheng, Bin-Feng; Lin, Xiao-Yu; Feng, Zhi-Wei

    2015-01-01

    Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-dependent way and NF-κB signaling is activated as well, in neuroblastoma cells SH-EP1. Unexpectedly, NF-κB activation was shown to be pro-apoptotic, as suggested by the reduction of Fas-induced cell death with either a dominant negative form of IκBα (DN-IκBα) or an IκB kinase-specific inhibitor. To our interest, when analyzing downstream events of NF-κB signaling, we found that DN-IκBα only suppressed the expression of caspase-4, but not other caspases. Vice versa, enhancement of NF-κB activity by p65 (RelA) overexpression increased the expression of caspase-4 at both mRNA and protein levels. More directly, results from dual luciferase reporter assay demonstrated the regulation of caspase-4 promoter activity by NF-κB. When caspase-4 activity was blocked by its dominant negative (DN) form, Fas-induced cell death was substantially reduced. Consistently, the cleavage of PARP and caspase-3 induced by Fas was also reduced. In contrast, the cleavage of caspase-8 remained unaffected in caspase-4 DN cells, although caspase-8 inhibitor could rescue Fas-induced cell death. Collectively, these data suggest that caspase-4 activity is required for Fas-induced cell apoptosis and caspase-4 may act upstream of PARP and caspase-3 and downstream of caspase-8. Overall, we demonstrate that NF-κB can mediate Fas-induced apoptosis through caspase-4 protease, indicating that caspase-4 is a new mediator of NF-κB pro-apoptotic pathway in neuroblastoma cells. PMID:25695505

  10. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  11. Cell Proliferation in Neuroblastoma

    PubMed Central

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  12. MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma

    PubMed Central

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R.; Gartlgruber, Moritz; Herrmann, Carl; Agarwal, Saurabh; Helsmoortel, Hetty H.; Althoff, Kristina; Molenaar, Jan J.; Cheung, Belamy B.; Schulte, Johannes H.; Benoit, Yves; Shohet, Jason M.; Westermann, Frank; Marshall, Glenn M.; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2016-01-01

    LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3′UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefor establishing a MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promotor, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underlines the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process. PMID:26123663

  13. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma.

    PubMed

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E; Vasudevan, Sanjeev A; Tao, Ling; Pang, Jonathan C; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-03

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.

  14. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal.

    PubMed

    Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S

    2018-05-09

    Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is

  15. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    PubMed Central

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  16. Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation.

    PubMed

    Emdal, Kristina B; Pedersen, Anna-Kathrine; Bekker-Jensen, Dorte B; Tsafou, Kalliopi P; Horn, Heiko; Lindner, Sven; Schulte, Johannes H; Eggert, Angelika; Jensen, Lars J; Francavilla, Chiara; Olsen, Jesper V

    2015-04-28

    SH-SY5Y neuroblastoma cells respond to nerve growth factor (NGF)-mediated activation of the tropomyosin-related kinase A (TrkA) with neurite outgrowth, thereby providing a model to study neuronal differentiation. We performed a time-resolved analysis of NGF-TrkA signaling in neuroblastoma cells using mass spectrometry-based quantitative proteomics. The combination of interactome, phosphoproteome, and proteome data provided temporal insights into the molecular events downstream of NGF binding to TrkA. We showed that upon NGF stimulation, TrkA recruits the E3 ubiquitin ligase Cbl-b, which then becomes phosphorylated and ubiquitylated and decreases in abundance. We also found that recruitment of Cbl-b promotes TrkA ubiquitylation and degradation. Furthermore, the amount of phosphorylation of the kinase ERK and neurite outgrowth increased upon Cbl-b depletion in several neuroblastoma cell lines. Our findings suggest that Cbl-b limits NGF-TrkA signaling to control the length of neurites. Copyright © 2015, American Association for the Advancement of Science.

  17. Reversible upregulation of tropomyosin-related kinase receptor B by geranylgeranoic acid in human neuroblastoma SH-SY5Y cells.

    PubMed

    Sakane, Chiharu; Shidoji, Yoshihiro

    2011-09-01

    All-trans retinoic acid (ATRA) plays crucial roles in cell survival and differentiation of neuroblastoma cells. In the present study, we investigated the effects of geranylgeranoic acid (GGA), an acyclic retinoid, on differentiation and tropomyosin-related kinase receptor B (TrkB) gene expression in SH-SY5Y human neuroblastoma cells in comparison with ATRA. GGA induced growth suppression and neural differentiation to the same extent as ATRA. Two variants (145 and 95 kD) of the TrkB protein were dramatically increased by GGA treatment, comparable to the effect of ATRA. Following 6- to 8-day GGA treatment, the effect of GGA on TrkB was reversed after 2-4 days of its removal, whereas the effect of ATRA was irreversible under the same conditions. Both GGA and ATRA upregulated the cellular levels of three major TrkB messenger RNA splice variants in a time-dependent manner. Time-dependent induction of cell cycle-related genes, such as cyclin D1 and retinoblastoma protein, and amplification of the neural progenitor cell marker, brain lipid binding protein, were suppressed by GGA treatment and were completely abolished by ATRA. ATRA and GGA induced retinoic acid receptor β (RARβ) expression, whereas the time-dependent expression of both RARα and RARγ was abolished by ATRA, but not by GGA. Our results suggest that GGA may be able to restore neuronal properties of SH-SY5Y human neuroblastoma cells in a similar but not identical way to ATRA.

  18. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    PubMed

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  19. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.ed; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfectedmore » cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin

  20. Newly-derived neuroblastoma cell lines propagated in serum-free media recapitulate the genotype and phenotype of primary neuroblastoma tumours.

    PubMed

    Bate-Eya, Laurel T; Ebus, Marli E; Koster, Jan; den Hartog, Ilona J M; Zwijnenburg, Danny A; Schild, Linda; van der Ploeg, Ida; Dolman, M Emmy M; Caron, Huib N; Versteeg, Rogier; Molenaar, Jan J

    2014-02-01

    Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. MYCN Promotes the Expansion of Phox2B-Positive Neuronal Progenitors to Drive Neuroblastoma Development

    PubMed Central

    Alam, Goleeta; Cui, Hongjuan; Shi, Huilin; Yang, Liqun; Ding, Jane; Mao, Ling; Maltese, William A.; Ding, Han-Fei

    2009-01-01

    Amplification of the oncogene MYCN is a tumorigenic event in the development of a subset of neuroblastomas that commonly consist of undifferentiated or poorly differentiated neuroblasts with unfavorable clinical outcome. The cellular origin of these neuroblasts is unknown. Additionally, the cellular functions and target cells of MYCN in neuroblastoma development remain undefined. Here we examine the cell types that drive neuroblastoma development in TH-MYCN transgenic mice, an animal model of the human disease. Neuroblastoma development in these mice begins with hyperplastic lesions in early postnatal sympathetic ganglia. We show that both hyperplasia and primary tumors are composed predominantly of highly proliferative Phox2B+ neuronal progenitors. MYCN induces the expansion of these progenitors by both promoting their proliferation and preventing their differentiation. We further identify a minor population of undifferentiated nestin+ cells in both hyperplastic lesions and primary tumors that may serve as precursors of Phox2B+ neuronal progenitors. These findings establish the identity of neuroblasts that characterize the tumor phenotype and suggest a cellular pathway by which MYCN can promote neuroblastoma development. PMID:19608868

  2. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    PubMed Central

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram. PMID:28467792

  3. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    PubMed

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10-7), -24.1 (p<5.6 10-9) and -17.7 (p<1.2 10-7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.

  4. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma

    PubMed Central

    Arnhold, Viktor; Schmelz, Karin; Proba, Jutta; Winkler, Annika; Wünschel, Jasmin; Toedling, Joern; Deubzer, Hedwig E.; Künkele, Annette; Eggert, Angelika; Schulte, Johannes H.; Hundsdoerfer, Patrick

    2018-01-01

    Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity. PMID:29416773

  5. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  6. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    PubMed

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2014-09-01

    Watters, K. M., Das, S., Bryan, K., Bernas, T., Prehn , J. H., and Stallings, R. L. (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma...Cell Biol 2009;29(19):5290-5305. 30. Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL. MicroRNAs 10a and 10b are potent

  8. Up-regulation of Jun/AP-1 during differentiation of N1E-115 neuroblastoma cells.

    PubMed

    de Groot, R P; Kruijer, W

    1991-12-01

    Neuroblastoma cell lines isolated from neuroblastoma tumors can be induced to differentiate into neuronal cell types by treatment with chemical agents, such as dimethyl sulfoxide and retinoic acid. The molecular mechanisms underlying this differentiation process, however, are completely obscure. In this paper, we show that neuronal differentiation of mouse N1E-115 neuroblastoma cells by dimethyl sulfoxide is accompanied by a prolonged rise in c-jun, junB, and junD expression and AP-1 activity. Multiple sequence elements in the Jun promoters are involved in this process. Furthermore, we show that c-jun and junD, but not junB, are expressed at high levels in the neuronal cell types obtained after dimethyl sulfoxide treatment. These results suggest an important role for c-jun and junD in neuronal differentiation of N1E-115 cells.

  9. Transcriptional Profiling Reveals a Common Metabolic Program for Tumorigenicity in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells

    PubMed Central

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2017-01-01

    Summary High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of TH-MYCN mice, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element-binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. PMID:27705805

  10. Inhibition of H3K9 Methyltransferase G9a Repressed Cell Proliferation and Induced Autophagy in Neuroblastoma Cells

    PubMed Central

    Ke, Xiao-Xue; Zhang, Dunke; Zhu, Shunqin; Xia, Qingyou; Xiang, Zhonghuai; Cui, Hongjuan

    2014-01-01

    Histone methylation plays an important role in gene transcription and chromatin organization and is linked to the silencing of a number of critical tumor suppressor genes in tumorigenesis. G9a is a histone methyltransferase (HMTase) for histone H3 lysine 9. In this study, we investigated the role of G9a in neuroblastoma tumor growth together with the G9a inhibitor BIX01294. The exposure of neuroblastoma cells to BIX01294 resulted in the inhibition of cell growth and proliferation, and BIX01294 treatment resulted in the inhibition of the tumorigenicity of neuroblastoma cells in NOD/SCID mice. Therefore, G9a may be a potential therapeutic target in neuroblastoma. Moreover, we found several specific characteristics of autophagy after BIX01294 treatment, including the appearance of membranous vacuoles and microtubule-associated protein light chain 3 (LC3B). Similar results were observed in G9a-knockdown cells. In conclusion, our results demonstrated that G9a is a prognostic marker in neuroblastoma, and revealed a potential role of G9a in regulating the autophagy signaling pathway in neuroblastoma. PMID:25198515

  11. Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Zhu, Shunqin; Liu, Wanhong; Ke, Xiaoxue; Li, Jifu; Hu, Renjian; Cui, Hongjuan; Song, Guanbin

    2014-09-01

    Artemisinin, a natural product from the Chinese medicinal plant, Artemisia annua L., is commonly used in the treatment of malaria, and has recently been reported to have potent anticancer activity in various types of human tumors. Yet, the effect of artemisinin on neuroblastoma is still unclear. In the present study, we aimed to investigate the effects of artemisinin on neuroblastoma cells. We observed that artemisinin significantly inhibited cell growth and proliferation, and caused cell cycle arrest in the G1 phase in neuroblastoma cell lines. Annexin V-FITC/PI staining assay revealed that artemisinin markedly induced apoptosis. Soft agar assays revealed that artemisinin suppressed the ability of clonogenic formation of neuroblastoma cells and a xenograft study in NOD/SCID mice showed that artemisinin inhibited tumor growth and development in vivo. Therefore, our results suggest that the Chinese medicine artemisinin could serve as a novel potential therapeutic agent in the treatment of neuroblastoma.

  12. Proliferate and survive: cell division cycle and apoptosis in human neuroblastoma.

    PubMed

    Borriello, Adriana; Roberto, Roberta; Della Ragione, Fulvio; Iolascon, Achille

    2002-02-01

    Neuroblastoma is one of the most frequent childhood cancers and a major cause of death from neoplasias of infancy. Although a wealth of studies on its molecular bases have been carried out, little conclusive information about its origin and evolution is available. Some intriguing findings have correlated neuroblastoma development with aberrations of two pivotal cellular processes generally altered in human cancers, namely cell division cycle and apoptosis. Indeed, it has been reported that neuroblastoma cell lines show accumulation of Id2 protein, a factor which is able to hamper the pRb protein antiproliferative activity. The increased Id2 is due to N-myc gene amplification and overexpression, a phenomenon frequently observed in neuroblastoma and an important independent negative marker. Moreover, neuroblastoma cells are frequently characterized by increased levels of survivin, an inhibitor of the apoptotic response, and by a deficiency of procaspase 8, a key intermediate of the programmed cell death cascade. These two events, probably, make neuroblastomas more resistant to programmed cell death. These recent findings might suggest that neuroblastoma cells have acquired the capability to proliferate easily and die difficultly. The mechanistic meaning of these data will be discussed in the present review. Moreover, we will suggest new therapeutic scenarios opened up by the described alterations of cell cycle and apoptosis engines.

  13. Dioxin induces expression of hsa-miR-146b-5p in human neuroblastoma cells.

    PubMed

    Xu, Tuan; Xie, Heidi Q; Li, Yunping; Xia, Yingjie; Sha, Rui; Wang, Lingyun; Chen, Yangsheng; Xu, Li; Zhao, Bin

    2018-01-01

    Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect. Copyright © 2017. Published by Elsevier B.V.

  14. Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells.

    PubMed

    Rust, Aleksander; Leese, Charlotte; Binz, Thomas; Davletov, Bazbek

    2016-05-31

    Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.

  15. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  16. Marrow-Derived Antibody Library for Treatment of Neuroblastoma

    DTIC Science & Technology

    2013-09-01

    to capture the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this...project is to use NB patient-derived materials to create NB cell lines, xenograft models, NB specific phage display libraries and to identify and...the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this project is to

  17. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation

    PubMed Central

    Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.

    2015-01-01

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249

  18. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    PubMed

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  19. Development of resting membrane potentials in differentiating murine neuroblastoma cells (N1E-115) evaluated by flow cytometry.

    PubMed

    Kisaalita, W S; Bowen, J M

    1997-09-01

    With the aid of a voltage-sensitive oxonol dye, flow cytometry was used to measure relative changes in resting membrane potential (V(m)) and forward angle light scatter (FALS) profiles of a differentiating/differentiated murine neuroblastoma cell line (N1E-115). Electrophysiological differentiation was characterized by V(m) establishment. The (V(m))-time profile was found to be seed cell concentration-dependent for cell densities of less than 2 × 10(4) cells/cm(2). At higher initial cell densities, under differentiating culture conditions, V(m) development commenced on day 2 and reached a steady-state on day 12. The relative distribution of differentiated cells between low and high FALS has been proposed as a potential culture electrophysiological differentiation state index. These experiments offer a general methodology to characterize cultured excitable cells of nervous system origin, with respect to electrophysiological differentiation. This information is valuable in studies employing neuroblastoma cells as in vitro screening models for safety/hazard evaluation and/or risk assessment of therapeutical and industrial chemicals under development.

  20. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Wang, Chung-Hao; Huang, Yao-Jhang; Chang, Chia-Wei; Hsu, Wen-Ming; Peng, Ching-An

    2009-08-01

    Despite aggressive multimodality therapy, most neuroblastoma-bearing patients relapse and survival rate remains poor. Exploration of alternative therapeutic modalities is needed. Carbon nanotubes (CNTs), revealing optical absorbance in the near-infrared region, warrant their merits in photothermal therapy. In order to specifically target disialoganglioside (GD2) overexpressed on the surface of neuroblastoma stNB-V1 cells, GD2 monoclonal antibody (anti-GD2) was conjugated to acidified CNTs. To examine the fate of anti-GD2 bound CNTs after incubation with stNB-V1 cells, rhodamine B was labeled on carboxylated CNTs functionalized with and without anti-GD2. Our results illustrated that anti-GD2-linked CNTs were extensively internalized by neuroblastoma cells via GD2-mediated endocytosis. In addition, we showed that anti-GD2 bound CNTs were not ingested by PC12 cells without GD2 expression. After anti-GD2 conjugated CNTs were incubated with neuroblastoma cells for 6 h and endocytosed by the cells, CNT-laden neuroblastoma cells were further irradiated with an 808 nm near-infrared (NIR) laser with intensity ramping from 0.6 to 6 W cm-2 for 10 min which was then maintained at 6 W cm-2 for an additional 5 min. Post-NIR laser exposure, and after being examined by calcein-AM dye, stNB-V1 cells were all found to undergo necrosis, while non-GD2 expressing PC12 cells all remained viable. Based on the in vitro study, CNTs bound with anti-GD2 have the potential to be utilized as a therapeutic thermal coupling agent that generates heat sufficient to selectively kill neuroblastoma cells under NIR laser light exposure.

  1. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    PubMed

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  2. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival

    PubMed Central

    Thole, Theresa M; Lodrini, Marco; Fabian, Johannes; Wuenschel, Jasmin; Pfeil, Sebastian; Hielscher, Thomas; Kopp-Schneider, Annette; Heinicke, Ulrike; Fulda, Simone; Witt, Olaf; Eggert, Angelika; Fischer, Matthias; Deubzer, Hedwig E

    2017-01-01

    The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target. PMID:28252645

  3. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    PubMed

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Suppression of RRM2 inhibits cell proliferation, causes cell cycle arrest and promotes the apoptosis of human neuroblastoma cells and in human neuroblastoma RRM2 is suppressed following chemotherapy.

    PubMed

    Li, Junfeng; Pang, Jinglin; Liu, Yongdong; Zhang, Jing; Zhang, Chuanguang; Shen, Gang; Song, Lili

    2018-07-01

    Ribonucleotide reductase regulatory subunit M2 (RRM2) is a rate‑limiting enzyme for DNA synthesis and repair. RRM2 has vital roles in controlling the progression of cancer. In the present study, we investigated the RRM2 level in neuroblastoma tissues, analyzed its relationship with clinicopathological characteristics of neuroblastoma patients, and explored the effect of RRM2 on the biological functions of neuroblastoma cells. RRM2 levels in 67 pairs of neuroblastoma and matched adjacent non‑cancerous tissues were detected by qRT‑PCR, and its association with patient clinicopathological features was assessed. Using RRM2 siRNA, the role of RRM2 in cell viability was detected by CCK‑8 assay, and the effects on cell cycle distribution and cell apoptosis were detected by flow cytometry. Hoechst 33342 staining was also performed. For RRM2 protein detection in cells and tissues, western blot analyses were employed. Our results revealed that RRM2 expression was significant higher in neuroblastoma tissues than that noted in adjacent non‑cancerous tissues at both the mRNA and protein levels. The increased RRM2 level was significantly associated with clinical stage. RRM2 levels were suppressed in stage III and IV tumors in the chemotherapy subgroup, compared with levels noted in tumors in the preoperative non‑chemotherapy subgroup. RRM2 siRNA significantly inhibited cell viability in the SH‑5Y5Y cells, induced cell arrest in the G0/G1 phase, and enhanced cell apoptosis. Taken together, overexpression of RRM2 is associated with the genesis and progression of neuroblastoma, and may be a potential chemotherapeutic target.

  5. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Lan; Department of Pharmaceutical Sciences, Jilin University, Changchun 130021; Paul, Pritha

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated thatmore » GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.« less

  6. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    PubMed

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Symmetry breaking in human neuroblastoma cells

    PubMed Central

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  8. Cytopathogenicity of Naegleria for cultured neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulford, D.E.

    1985-01-01

    The cytopathic activity of live Naegleria amoebae and cell-free lysates of Naegleria for B-103 rat neuroblastoma cells was investigated using a /sup 51/Cr release assay. Live amoebae and cell-free lysates of N. fowleri, N. australiensis, N. lovaniensis, and N. gruberi all induced sufficient damage to radiolabeled B-103 cells to cause a significant release of chromium. The cytotoxic activity present in the cell-free lysates of N. fowleri can be recovered in the supernatant fluid following centrifugation at 100,000xg and precipitation of the 100,000xg supernatant fluid with ammonium sulfate. Initial characterization of the cytotoxic factor indicates that it is a heat labile,more » pH sensitive, soluble protein. The cytotoxic activity is abolished by either extraction, unaffected by repeated freeze-thawing, and is not sensitive to inhibitors of proteolytic enzymes. Phospholipase A activity was detected in the cytotoxic ammonium sulfate precipitable material, suggesting that this enzyme activity may have a role in the cytotoxic activity of the cell-free lysates.« less

  9. N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53.

    PubMed

    Janardhanan, Rajiv; Banik, Naren L; Ray, Swapan K

    2009-11-01

    Neuroblastomas, which mostly occur in children, are aggressive metastatic tumors of the sympathetic nervous system. The failure of the previous therapeutic regimens to target multiple components of N-Myc pathway resulted in poor prognosis. The present study investigated the efficacy of the combination of N-(4-hydroxyphenyl) retinamide (4-HPR, 0.5 microM) and genistein (GST, 25 microM) to control the growth of human neuroblastoma cells (SH-SY5Y and SK-N-BE2) harboring divergent molecular attributes. Combination of 4-HPR and GST down regulated N-Myc, Notch-1, and Id2 to induce neuronal differentiation. Transition to neuronal phenotype was accompanied by increase in expression of e-cadherin. Induction of neuronal differentiation was associated with decreased expression of hTERT, PCNA, survivin, and fibronectin. This is the first report that combination of 4-HPR and GST mediated reactivation of multiple tumor suppressors (p53, p21, Rb, and PTEN) for early cell cycle exit (due to G1/S phase arrest) in neuroblastoma cells. Reactivation of tumor suppressor(s) repressed N-Myc driven growth factor mediated angiogenic and invasive pathways (VEGF, b-FGF, MMP-2, and MMP-9) in neuroblastoma. Repression of angiogenic factors led to the blockade of components of mitogenic pathways [phospho-Akt (Thr 308), p65 NF-kappaB, and p42/44 Erk 1/2]. Taken together, the combination of 4-HPR and GST effectively blocked survival, mitogenic, and angiogenic pathways and activated proteases for apoptosis in neuroblastoma cells. These results suggested that combination of 4-HPR and GST could be effective for controlling the growth of heterogeneous human neuroblastoma cell populations.

  10. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    PubMed

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  11. Signal Transduction Pathways through TRK‐A and TRK‐B Receptors in Human Neuroblastoma Cells

    PubMed Central

    Kuroda, Hiroshi; Horii, Yoshihiro; Moritake, Hiroshi; Tanaka, Takeo; Hattori, Seisuke

    2001-01-01

    Little is known about the signal transduction pathways of TRK family receptors in neuroblastoma (NB) cells. In this study, an NB cell line, designated MP‐N‐TS, was established from an adrenal tumor taken from a 2‐year‐old boy. This cell line expressed both TRK‐A and TRK‐B receptors, which is rare in a single NB cell line. Therefore, the MP‐N‐TS cell line was used to determine whether the signal transduction through these constitutive receptors is functional. Three neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/ 5 (NT‐4/5), induced tyrosine phosphorylation of panTRK, and BDNF and NT‐4/5 induced tyrosine phosphorylation of TRK‐B. Tyrosine phosphorylation of panTRK and/or TRK‐B by the neurotro‐phins was inhibited in the presence of a tyrosine kinase inhibitor K252a. Tyrosine phosphorylation of Src homologous and collagen (She), extracellular signal‐regulated kinase (ERK)‐l and ERK‐2, and phospholipase C‐γl (PLC‐γl) was increased by the three neurotrophins and the increase was inhibited in the presence of K252a. Activation of Ras, detected as the GTP‐bound form of Ras, was induced by the three neurotrophins. The neurotrophins did not modulate the expressions of TRK‐A or TRK‐B mRNA, but they did induce the expression of c‐fos mRNA. Exogenous NGF induced weak neurite outgrowth, whereas exogenous BDNF and NT‐4/5 induced distinct neurite outgrowth. Exogenous BDNF and NT‐4/5 increased the number of viable cells, while NGF did not. Our results demonstrate that the signal transduction pathways through TRK‐A and TRK‐B in MP‐N‐TS cells are functional and similar, and the main downstream signaling pathways from the three neurotrophins are mitogen‐activated protein kinase (MAPK) cascades through She, activated Ras, ERK‐1 and ERK‐2, and the transduction pathway through PLC‐γl. Further, BDNF and NT‐4/5 increased cell viability. The MP‐N‐TS cell line

  12. Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong; Sun, Ruowen; Chi, Zuofei; Li, Shuang; Hao, Liangchun

    2017-09-01

    Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.

  13. Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy.

    PubMed

    Mescola, Andrea; Vella, Serena; Scotto, Marco; Gavazzo, Paola; Canale, Claudio; Diaspro, Alberto; Pagano, Aldo; Vassalli, Massimo

    2012-05-01

    Single-cell force spectroscopy is an emerging technique in the field of biomedicine because it has proved to be a unique tool to obtain mechanical and functional information on living cells, with force resolution up to single molecular bonds. This technique was applied to the study of the cytoskeleton organisation of neuroblastoma cells, a life-threatening cancer typically developing during childhood, and the results were interpreted on the basis of reference experiments on human embryonic kidney cell line. An intimate connection emerges among cellular state, cytoskeleton organisation and experimental outcome that can be potentially exploited towards a new method for cancer stadiation of neuroblastoma cells. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.

    PubMed

    Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-11-15

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.

  15. Restoration of promyelocytic leukemia protein-nuclear bodies in neuroblastoma cells enhances retinoic acid responsiveness.

    PubMed

    Yu, Jiang Hong; Nakajima, Ayako; Nakajima, Hiroshi; Diller, Lisa R; Bloch, Kenneth D; Bloch, Donald B

    2004-02-01

    Neuroblastoma is the most common solid tumor of infancy and is believed to result from impaired differentiation of neuronal crest embryonal cells. The promyelocytic leukemia protein (PML)-nuclear body is a cellular structure that is disrupted during the pathogenesis of acute promyelocytic leukemia, a disease characterized by impaired myeloid cell differentiation. During the course of studies to examine the composition and function of PML-nuclear bodies, we observed that the human neuroblastoma cell line SH-SY5Y lacked these structures and that the absence of PML-nuclear bodies was a feature of N- and I-type, but not S-type, neuroblastoma cell lines. Induction of neuroblastoma cell differentiation with 5-bromo-2'deoxyuridine, all-trans-retinoic acid, or IFN-gamma induced PML-nuclear body formation. PML-nuclear bodies were not detected in tissue sections prepared from undifferentiated neuroblastomas but were present in neuroblasts in differentiating tumors. Expression of PML in neuroblastoma cells restored PML-nuclear bodies, enhanced responsiveness to all-trans-retinoic acid, and induced cellular differentiation. Pharmacological therapies that increase PML expression may prove to be important components of combined modalities for the treatment of neuroblastoma.

  16. Undifferentiated Neuroblastoma Cells Are More Sensitive to Photogenerated Oxidative Stress Than Differentiated Cells.

    PubMed

    Lee, Chu-I; Perng, Jing-Huei; Chen, Huang-Yo; Hong, Yi-Ren; Wang, Jyh-Jye

    2015-09-01

    Neuroblastoma is one of the most aggressive cancers and has a complex form of differentiation. We hypothesized that advanced cellular differentiation may alter the susceptibility of neuroblastoma to photodynamic treatment (PDT) and confer selective survival advantage. We demonstrated that hematoporphyrin uptake by undifferentiated SH-SY5Y cells was lower than that of differentiated counterparts, yet the former were more susceptible to PDT-induced oxidative stress killing. Photogenerated reactive oxygen species (ROS) in undifferentiated cells efficiently stimulated cell cycle arrest at G2/M phase, mitochondrial apoptotic pathway activation, the sustained phosphorylation of Akt/GSK-3β and ERK. Differentiated cells with more resistance to PDT exhibited a ROS-independent and a prolonged activation of ERK. Both SH-SY5Y cells exposed to PDT exhibited ROS-independent p38 and JNK activation. These results may have important implications for neuroblastoma patients undergoing photodynamic therapy. © 2015 Wiley Periodicals, Inc.

  17. microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Sung, Derek; Li, Monica; Kosti, Adam; Lin, Gregory; Chen, Yidong; Pertsemlidis, Alexander; Hsiao, Tzu-Hung; Du, Liqin

    2015-01-01

    microRNA-449a (miR-449a) has been identified to function as a tumor suppressor in several types of cancers. However, the role of miR-449a in neuroblastoma has not been intensively investigated. We recently found that the overexpression of miR-449a significantly induces neuroblastoma cell differentiation, suggesting its potential tumor suppressor function in neuroblastoma. In this study, we further investigated the mechanisms underlying the tumor suppressive function of miR-449a in neuroblastoma. We observed that miR-449a inhibits neuroblastoma cell survival and growth through 2 mechanisms—inducing cell differentiation and cell cycle arrest. Our comprehensive investigations on the dissection of the target genes of miR-449a revealed that 3 novel targets- MFAP4, PKP4 and TSEN15 -play important roles in mediating its differentiation-inducing function. In addition, we further found that its function in inducing cell cycle arrest involves down-regulating its direct targets CDK6 and LEF1. To determine the clinical significance of the miR-449a-mediated tumor suppressive mechanism, we examined the correlation between the expression of these 5 target genes in neuroblastoma tumor specimens and the survival of neuroblastoma patients. Remarkably, we noted that high tumor expression levels of all the 3 miR-449a target genes involved in regulating cell differentiation, but not the target genes involved in regulating cell cycle, are significantly correlated with poor survival of neuroblastoma patients. These results suggest the critical role of the differentiation-inducing function of miR-449a in determining neuroblastoma progression. Overall, our study provides the first comprehensive characterization of the tumor-suppressive function of miR-449a in neuroblastoma, and reveals the potential clinical significance of the miR-449a-mediated tumor suppressive pathway in neuroblastoma prognosis. PMID:25760387

  18. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  19. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.

    PubMed

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N; Abhari, Behnaz A; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N; Cinatl, Jindrich

    2015-02-03

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.

  20. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen

    PubMed Central

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich

    2015-01-01

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037

  1. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line

    PubMed Central

    Shipley, Mackenzie M.; Mangold, Colleen A.; Szpara, Moriah L.

    2016-01-01

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease. PMID:26967710

  2. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    PubMed

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  3. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less

  4. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma

    PubMed Central

    Powers, John T; Tsanov, Kaloyan M; Pearson, Daniel S; Roels, Frederik; Spina, Catherine S; Ebright, Richard; Seligson, Marc; de Soysa, Yvanka; Cahan, Patrick; Theiβen, Jessica; Tu, Ho-Chou; Han, Areum; Kurek, Kyle C; LaPier, Grace S; Osborne, Jihan K; Ross, Samantha J; Cesana, Marcella; Collins, James J; Berthold, Frank; Daley, George Q

    2016-01-01

    Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumor suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. However, here we show that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN mRNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN-amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma pathogenesis with broad implications for cancer pathogenesis. PMID:27383785

  5. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    PubMed

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  7. PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways.

    PubMed

    Wu, Dong-Dong; Gao, Ying-Ran; Li, Tao; Wang, Da-Yong; Lu, Dan; Liu, Shi-Yu; Hong, Ya; Ning, Hui-Bin; Liu, Jun-Ping; Shang, Jia; Shi, Jun-Feng; Wei, Jian-She; Ji, Xin-Ying

    2018-05-02

    PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in cell proliferation and tumorigenesis. However, the precise mechanism of action of PCNP in the process of tumor growth has not yet been fully elucidated. ShRNA knockdown and overexpression of PCNP were performed in human neuroblastoma cells. Tumorigenic and metastatic effects of PCNP were examined by tumor growth, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. PCNP over-expression decreased the proliferation, migration, and invasion of human neuroblastoma cells and down-regulation of PCNP showed reverse effects. PCNP over-expression increased protein expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase, as well as ratios of B-cell lymphoma-2 (Bcl-2)-associated X protein/Bcl-2 and Bcl-2-associated death promoter/B-cell lymphoma-extra large in human neuroblastoma cells, however PCNP knockdown exhibited reverse trends. PCNP over-expression increased phosphorylations of extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, as well as decreased phosphorylations of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), nevertheless PCNP knockdown exhibited opposite effects. Furthermore, PCNP over-expression significantly reduced the growth of human neuroblastoma xenograft tumors by down-regulating angiogenesis, whereas PCNP knockdown markedly promoted the growth of human neuroblastoma xenograft tumors through up-regulation of angiogenesis. PCNP mediates the proliferation, migration, and invasion of human neuroblastoma cells through mitogen-activated protein kinase and PI3K/AKT/mTOR signaling pathways, implying that PCNP is a therapeutic target for patients with neuroblastoma.

  8. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma.

    PubMed

    Agol, V I; Drozdov, S G; Ivannikova, T A; Kolesnikova, M S; Korolev, M B; Tolskaya, E A

    1989-09-01

    Cultured cells of a human neuroblastoma, SK-N-MC, were found to be highly resistant to Sabin attenuated poliovirus types 1 and 2 strains; no appreciable cytopathic effect was observed, and the total harvest was generally in the order of 1 PFU per cell or less. On the other hand, related neurovirulent strains of these antigenic types produced a relatively good (2 orders of magnitude higher) yield in a markedly protracted infectious cycle. The limited growth of the attenuated virus in the neuroblastoma cells appeared to be confined to a minor cell subpopulation. Experiments with intratypic (type 1) poliovirus recombinants suggested that the major genetic determinants limiting reproduction of the attenuated polioviruses in the neuroblastoma cells are located in the 5' half of the viral RNA, although the 3' half also appears to contribute somewhat to this phenotype. The possibility that neuroblastoma cells may represent an in vitro model for studying poliovirus neurovirulence is briefly discussed.

  9. Kinin and Purine Signaling Contributes to Neuroblastoma Metastasis.

    PubMed

    Ulrich, Henning; Ratajczak, Mariusz Z; Schneider, Gabriela; Adinolfi, Elena; Orioli, Elisa; Ferrazoli, Enéas G; Glaser, Talita; Corrêa-Velloso, Juliana; Martins, Poliana C M; Coutinho, Fernanda; Santos, Ana P J; Pillat, Micheli M; Sack, Ulrich; Lameu, Claudiana

    2018-01-01

    Bone marrow metastasis occurs in approximately 350,000 patients that annually die in the U.S. alone. In view of the importance of tumor cell migration into the bone marrow, we have here investigated effects of various concentrations of stromal cell-derived factor-1 (SDF-1), bradykinin- and ATP on bone marrow metastasis. We show for first time that bradykinin augmented chemotactic responsiveness of neuroblastoma cells to SDF-1 and ATP concentrations, encountered under physiological conditions. Bradykinin upregulated VEGF expression, increased metalloproteinase activity and induced adhesion of neuroblastoma cells. Bradykinin augmented SDF-1-induced intracellular Ca 2+ mobilization as well as resensitization and expression of ATP-sensing P2X7 receptors. Bradykinin treatment resulted in higher gene expression levels of the truncated P2X7B receptor compared to those of the P2X7A full-length isoform. Bradykinin as pro-metastatic factor induced tumor proliferation that was significantly decreased by P2X7 receptor antagonists; however, the peptide did not enhance cell death nor P2X7A receptor-related pore activity, promoting neuroblastoma growth. Furthermore, immunodeficient nude/nude mice transplanted with bradykinin-pretreated neuroblastoma cells revealed significantly higher metastasis rates compared to animals injected with untreated cells. In contrast, animals receiving Brilliant Blue G, a P2X7 receptor antagonist, did not show any specific dissemination of neuroblastoma cells to the bone marrow and liver, and metastasis rates were drastically reduced. Our data suggests correlated actions of kinins and purines in neuroblastoma dissemination, providing novel avenues for clinic research in preventing metastasis.

  10. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma.

    PubMed

    Antonoff, Mara B; Chugh, Rohit; Skube, Steven J; Dudeja, Vikas; Borja-Cacho, Daniel; Clawson, Kimberly A; Vickers, Selwyn M; Saluja, Ashok K

    2010-09-01

    Our recent work demonstrated that treatment of neuroblastoma with triptolide causes apoptotic cell death in vitro and decreases tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 d, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death. Copyright 2010 Elsevier Inc. All rights reserved.

  11. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  12. ARID1B alterations identify aggressive tumors in neuroblastoma.

    PubMed

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  13. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  14. Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.

    PubMed Central

    Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.

    1994-01-01

    Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728

  15. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines.

    PubMed

    Kolbinger, Fiona R; Koeneke, Emily; Ridinger, Johannes; Heimburg, Tino; Müller, Michael; Bayer, Theresa; Sippl, Wolfgang; Jung, Manfred; Gunkel, Nikolas; Miller, Aubry K; Westermann, Frank; Witt, Olaf; Oehme, Ina

    2018-06-09

    High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.

  16. A novel PKC-ι inhibitor abrogates cell proliferation and induces apoptosis in neuroblastoma.

    PubMed

    Pillai, Prajit; Desai, Shraddha; Patel, Rekha; Sajan, Mini; Farese, Robert; Ostrov, David; Acevedo-Duncan, Mildred

    2011-05-01

    Protein Kinase C-iota (PKC-ι), an atypical protein kinase C isoform manifests its potential as an oncogene by targeting various aspects of cancer cells such as growth, invasion and survival. PKC-ι confers resistance to drug-induced apoptosis in cancer cells. The acquisition of drug resistance is a major obstacle to good prognosis in neuroblastoma. The focus of this research was to identify the efficacy of [4-(5-amino-4-carbamoylimidazol-1-yl)-2,3-dihydroxycyclopentyl] methyl dihydrogen phosphate (ICA-1) as a novel PKC-ι inhibitor in neuroblastoma cell proliferation and apoptosis. ICA-1 specifically inhibits the activity of PKC-ι but not that of PKC-zeta (PKC-ζ), the closely related atypical PKC family member. The IC(50) for the kinase activity assay was approximately 0.1μM which is 1000 times less than that of aurothiomalate, a known PKC-ι inhibitor. Cyclin dependent kinase 7 (Cdk7) phosphorylates cyclin dependent kinases (cdks) and promotes cell proliferation. Our data shows that PKC-ι is an in vitro Cdk7 kinase and the phosphorylation of Cdk7 by PKC-ι was potently inhibited by ICA-1. Furthermore, our data shows that neuroblastoma cells proliferate via a PKC-ι/Cdk7/cdk2 cell signaling pathway and ICA-1 mediates its antiproliferative effects by inhibiting this pathway. ICA-1 (0.1μM) inhibited the in vitro proliferation of BE(2)-C neuroblastoma cells by 58% (P=0.01). Additionally, ICA-1 also induced apoptosis in neuroblastoma cells. Interestingly, ICA-1 did not affect the proliferation of normal neuronal cells suggesting its potential as chemotherapeutic with low toxicity. Hence, our results emphasize the potential of ICA-1 as a novel PKC-ι inhibitor and chemotherapeutic agent for neuroblastoma. Published by Elsevier Ltd.

  17. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  18. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  19. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly inmore » SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in

  20. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model

    PubMed Central

    Richman, Sarah A.; Nunez-Cruz, Selene; Moghimi, Babak; Li, Lucy Z.; Gershenson, Zachary T.; Mourelatos, Zissimos; Barrett, David M.; Grupp, Stephan A.; Milone, Michael C.

    2018-01-01

    The GD2 ganglioside, which is abundant on the surface of neuroblastoma cells, is targeted by an FDA-approved therapeutic monoclonal antibody and is an attractive tumor-associated antigen for cellular immunotherapy. Chimeric antigen receptor (CAR)–modified T cells can have potent antitumor activity in B-cell malignancies, and trials to harness this cytolytic activity toward GD2 in neuroblastoma are under way. In an effort to enhance the antitumor activity of CAR T cells that target GD2, we generated variant CAR constructs predicted to improve the stability and the affinity of the GD2-binding, 14G2a-based, single-chain variable fragment (scFv) of the CAR and compared their properties in vivo. We included the E101K mutation of GD2 scFv (GD2-E101K) that has enhanced antitumor activity against a GD2+ human neuroblastoma xenograft in vivo. However, this enhanced antitumor efficacy in vivo was concomitantly associated with lethal central nervous system (CNS) toxicity comprised of extensive CAR T-cell infiltration and proliferation within the brain and neuronal destruction. The encephalitis was localized to the cerebellum and basal regions of the brain that display low amounts of GD2. Our results highlight the challenges associated with target antigens that exhibit shared expression on critical normal tissues. Despite the success of GD2-specific antibody therapies in the treatment of neuroblastoma, the fatal neurotoxicity of GD2-specific CAR T-cell therapy observed in our studies suggests that GD2 may be a difficult target antigen for CAR T-cell therapy without additional strategies that can control CAR T-cell function within the CNS. PMID:29180536

  1. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    PubMed

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  2. Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma

    DTIC Science & Technology

    2012-07-01

    DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT The NBL -Tag neuroblastoma mice were crossed with B-cell... NBL -Tag mice were established. The NBL -Tag/B-cell deficient mice lacked B-cells as expected using flow cytometry analyses and immunohistochemistry...However, the lack of B-cells did not alter the growth patterns of NBL -Tag tumor formation as imaged by MRI. Studies using anti-B cell therapy were

  3. Predicting neuroblastoma using developmental signals and a logic-based model.

    PubMed

    Kasemeier-Kulesa, Jennifer C; Schnell, Santiago; Woolley, Thomas; Spengler, Jennifer A; Morrison, Jason A; McKinney, Mary C; Pushel, Irina; Wolfe, Lauren A; Kulesa, Paul M

    2018-07-01

    Genomic information from human patient samples of pediatric neuroblastoma cancers and known outcomes have led to specific gene lists put forward as high risk for disease progression. However, the reliance on gene expression correlations rather than mechanistic insight has shown limited potential and suggests a critical need for molecular network models that better predict neuroblastoma progression. In this study, we construct and simulate a molecular network of developmental genes and downstream signals in a 6-gene input logic model that predicts a favorable/unfavorable outcome based on the outcome of the four cell states including cell differentiation, proliferation, apoptosis, and angiogenesis. We simulate the mis-expression of the tyrosine receptor kinases, trkA and trkB, two prognostic indicators of neuroblastoma, and find differences in the number and probability distribution of steady state outcomes. We validate the mechanistic model assumptions using RNAseq of the SHSY5Y human neuroblastoma cell line to define the input states and confirm the predicted outcome with antibody staining. Lastly, we apply input gene signatures from 77 published human patient samples and show that our model makes more accurate disease outcome predictions for early stage disease than any current neuroblastoma gene list. These findings highlight the predictive strength of a logic-based model based on developmental genes and offer a better understanding of the molecular network interactions during neuroblastoma disease progression. Copyright © 2018. Published by Elsevier B.V.

  4. Morphometric analysis of cisplatin-induced neurite outgrowth in N1E-115 neuroblastoma cells.

    PubMed

    Konings, P N; Philipsen, R L; van den Broek, J H; Ruigt, G S

    1994-08-29

    Cisplatin, a widely used cytostatic drug for the control of a variety of neoplastic tumors, unexpectedly induced neurite outgrowth in N1E-115 neuroblastoma cells and this phenomenon was studied further in detail with morphometric analysis. As expected, cisplatin dose-dependently reduced cell number. At the same time, however, cisplatin affected the morphology of the neuroblastoma cells that changed from small rounded cell bodies into large flat cell bodies with neurites. The neurite length/cell as a function of cisplatin concentration showed a bell-shaped curve. The maximal effect (1200% of control) on neurite length/cell was observed at 1 microgram/ml cisplatin. In conclusion, cisplatin induced cellular differentiation in N1E-115 neuroblastoma cells at and just above threshold doses for cytostatic activity.

  5. Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells.

    PubMed

    Kwon, Young Hwi; Bishayee, Kausik; Rahman, Ataur; Hong, Jae Seung; Lim, Soon-Sung; Huh, Sung-Oh

    2015-07-01

    Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE (10 μg/ml) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer.

  6. Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells

    PubMed Central

    Kwon, Young Hwi; Bishayee, Kausik; Rahman, Ataur; Hong, Jae Seung; Lim, Soon-Sung; Huh, Sung-Oh

    2015-01-01

    Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE (10 μg/ml) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer. PMID:25921607

  7. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse.

    PubMed

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L; Bown, Nick; Tweddle, Deborah A

    2016-12-27

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ~85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression.

  8. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells

    PubMed Central

    Dolman, M. Emmy M.; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization. PMID:26716839

  9. Origin and initiation mechanisms of neuroblastoma.

    PubMed

    Tsubota, Shoma; Kadomatsu, Kenji

    2018-05-01

    Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.

  10. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.

    PubMed

    Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki

    2002-11-01

    Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.

  11. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells.

    PubMed

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  12. Targeting tachykinin receptors in neuroblastoma.

    PubMed

    Henssen, Anton G; Odersky, Andrea; Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H

    2017-01-03

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma.

  13. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  14. High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition

    PubMed Central

    Bate-Eya, Laurel T.; den Hartog, Ilona J.M.; van der Ploeg, Ida; Schild, Linda; Koster, Jan; Santo, Evan E.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.; Dolman, M. Emmy M.

    2016-01-01

    The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression. PMID:27056887

  15. SPARC Overexpression Inhibits Cell Proliferation in Neuroblastoma and Is Partly Mediated by Tumor Suppressor Protein PTEN and AKT

    PubMed Central

    Bhoopathi, Praveen; Gorantla, Bharathi; Sailaja, G. S.; Gondi, Christopher S.; Gujrati, Meena; Klopfenstein, Jeffrey D.; Rao, Jasti S.

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo. PMID:22567126

  16. LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis.

    PubMed

    Zhu, Shizhen; Zhang, Xiaoling; Weichert-Leahey, Nina; Dong, Zhiwei; Zhang, Cheng; Lopez, Gonzalo; Tao, Ting; He, Shuning; Wood, Andrew C; Oldridge, Derek; Ung, Choong Yong; van Ree, Janine H; Khan, Amish; Salazar, Brittany M; Lummertz da Rocha, Edroaldo; Zimmerman, Mark W; Guo, Feng; Cao, Hong; Hou, Xiaonan; Weroha, S John; Perez-Atayde, Antonio R; Neuberg, Donna S; Meves, Alexander; McNiven, Mark A; van Deursen, Jan M; Li, Hu; Maris, John M; Look, A Thomas

    2017-09-11

    A genome-wide association study identified LMO1, which encodes an LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma. Here we show that dβh promoter-mediated expression of LMO1 in zebrafish synergizes with MYCN to increase the proliferation of hyperplastic sympathoadrenal precursor cells, leading to a reduced latency and increased penetrance of neuroblastomagenesis. The transgenic expression of LMO1 also promoted hematogenous dissemination and distant metastasis, which was linked to neuroblastoma cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction, including loxl3, itga2b, itga3, and itga5. Our results provide in vivo validation of LMO1 as an important oncogene that promotes neuroblastoma initiation, progression, and widespread metastatic dissemination. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. ERα36 gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Zhi, Hua

    2018-06-22

    Neuroblastoma is the most common cancer in infants and the third most common cancer in children after leukemia and brain cancer. The purpose of our study was to investigate the effects of estrogen receptor (ER)-α36 gene silencing on tau protein phosphorylation, cell proliferation, and cell apoptosis in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with estrogen or left untreated, to investigate the effects of estrogen stimulation on ERα36 and the ERK/protein B kinase (AKT) signaling pathway. ERα36 mRNA expressions were detected by quantitative RT-PCR. A phosphatase kit was used to test protein phosphatase (PP)-2A activity before and after treatment. Western blot analysis was conducted to detect protein expression of ERα36; tau protein; phosphorylated- tau (p-tau) at site Thr231 [p-tau (Thr231)]; glycogen synthase kinase (GSK)3β and its specificity sites (Tyr216 and Ser9); Cyclin Dl; proliferating cell nuclear antigen (PCNA); B-cell lymphoma (Bcl)-2; and Bcl-2-associated X protein (Bax). A cell-counting kit (CCK)-8 assay was used to determine cell viability. Cell apoptosis and rate of tumor growth and volume were determined by Annexin V-FITC/PI staining and a xenotransplanted tumor model in nude mice. Results show that without estrogen stimulation, ERα36 was inactivated. When stimulated by estrogen, expression of ERα36, PP2A, p-GSK3β (Ser9)/total protein ( t)-GSK3β, Cyclin Dl, PCNA, and Bcl-2 were up-regulated, and p-GSK3β (Tyr216)/ t-GSK3β expression was down-regulated, as was p-tau (Thr231) and Bax expression. The expression of p-ERK/ERK, p-AKT/AKT, p-methyl ethyl ketone (MEK)/MEK, and p-mammalian target of rapamycin (mTOR)/mTOR expression was up-regulated, suggesting that the ERK/AKT signaling pathway is activated. Cell proliferation was also accelerated, whereas apoptosis was inhibited with stimulation by estrogen. However, we found that the effects of silencing ERα36 on the expression of related intracellular factors had no

  18. Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells.

    PubMed

    Kafi, Md Abdul; Kim, Tae-Hyung; An, Jeung Hee; Choi, Jeong-Woo

    2011-03-15

    A cell-based chip was fabricated for the electrochemical detection of the dose-dependent effects of bisphenol-A (BPA) on neuroblastoma cells (SH-SY5Y), which showed dual-mode correlation as a standard curve. Toxicity assessment of BPA became very important in environmental toxicants detection since BPA can be reached out easily from various common plastic-based product and give negative cellular effects on living organism. Cell chip was fabricated by immobilizing cells on C(RGD)(4) peptide coated electrode to detect the cytotoxicity of BPA electrochemically. Redox properties in living cells were determined by cyclic voltammetry using a home-made three-electrode system, and the cathodic peak current (I(pc)) was used as a parameter for measurement of the effect of BPA on cell viability. The peak current, I(pc) value increased with the concentration of BPA up to 300 nM and then decreased because of the stimulation of cancer cell activity at the concentration of BPA below 300nM and cytotoxicity at the concentration of BPA above 300 nM, respectively. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and optical microscopy-based morphological analysis confirmed the results of electrochemical study. This dual-mode correlation between the concentration of BPA and voltammetric signal intensity should be firstly considered to analyze its dose-dependent stimulus and cytotoxic effects on neuroblastoma cells by cell chip. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    PubMed

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-06-01

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  20. Knockdown of zinc transporter ZIP8 expression inhibits neuroblastoma progression and metastasis in vitro.

    PubMed

    Mei, Zhengrong; Yan, Pengke; Wang, Ying; Liu, Shaozhi; He, Fang

    2018-05-02

    Neuroblastoma is one of the leading causes of cancer‑associated mortality worldwide, particularly in children, partially due to the absence of effective therapeutic targets and diagnostic biomarkers. Therefore, novel molecular targets are critical to the development of therapeutic approaches for neuroblastoma. In the present study, the functions of zinc transporter ZIP8 (Zip8), a member of the zinc transporting protein family, were investigated as novel molecular targets in neuroblastoma cancer cells. The proliferation rates of neuroblastoma cancer cells were significantly decreased when Zip8 was knocked down by lentiviral‑mediated RNA interference. Study of the molecular mechanism suggested that Zip8 modulated the expression of key genes involved in the nuclear factor‑κB signaling pathway. Furthermore, Zip8 depletion suppressed the migratory potential of neuroblastoma cancer cells by reducing the expression levels of matrix metalloproteinases. In conclusion, the results of the present study suggested that Zip8 was an important regulator of neuroblastoma cell proliferation and migration, indicating that Zip8 may be a potential anticancer therapeutic target and a promising diagnostic biomarker for human neuroblastoma.

  1. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N- BE2 and SH-SY5Y cells

    PubMed Central

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (−)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in expression of NFP, NSE, and e-cadherin and also decreases in expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro network

  2. [The reaction of the neuroblastoma cells in the culture on the influence of tretionine and neurotoxine].

    PubMed

    Magakian, Iu A; Karalian, Z A; Karalova, E M; Abroian, L O; Akopian, L A; Avetisian, A C; Semerdzhian, Z B

    2011-01-01

    Effect of the tretionine (retinoid) and aluminum chloride (neurotoxin) on the growth and differentiation of neuroblastoma cells in culture after their introduction into the medium separately and in combination was studied. The introduction of these substances creates a new information field in the medium, which becomes apparent by the reactions of neuroblastoma found on the populational and cellular levels of its organization. The presence of tretionine stimulates proliferation and induces differentiation of the cells into astrocytes. Aluminum chloride inhibits cell proliferation and enhances the process of their destruction in the monolayer. The variety of the reactions of neuroblastoma cells to the presence of these substances in the medium indicates the existence and functioning of a mechanism that selects from the information introduced only the portion which may contribute to adaptation of neuroblastoma cells to the changed culture conditions.

  3. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  4. Immobilization of concanavalin A receptors during differentiation of neuroblastoma cells.

    PubMed

    Fishman, M C; Dragsten, P R; Spector, I

    1981-04-30

    Neuroblastoma cells serve as a useful model of neuronal development because compounds such as dimethyl sulphoxide (DMSO) and dibutyryl cyclic AMP cause them to undergo a process of controlled differentiation in tissue culture, during which they can extend long processes, develop characteristic excitability mechanisms, synthesize neurotransmitters and form synapses. We have used the technique of fluorescence photobleaching recovery to study the lateral mobility of cell-surface constituents during the differentiation of neuroblastoma clone N1E-115 cells. The concanavalin A (Con A) binding sites appear as discrete patches distributed over the entire cell surface and exhibit lateral mobility in undifferentiated cells comparable with that of surface glycoproteins of other cells. After induction of differentiation, however, the vast majority of Con A binding sites become immobilized, and we present data which suggest that the mechanism of this immobilization may involve linkage to the internal actin network.

  5. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    NASA Astrophysics Data System (ADS)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  6. Anti-cancer effect of oncolytic adenovirus-armed shRNA targeting MYCN gene on doxorubicin-resistant neuroblastoma cells.

    PubMed

    Li, Yuan; Zhuo, Baobiao; Yin, Yiyu; Han, Tao; Li, Shixian; Li, Zhengwei; Wang, Jian

    2017-09-09

    Chemotherapy is one of the few effective choices for patients with neuroblastoma. However, the development of muti-drug resistance (MDR) to chemotherapy is a major obstacle to the effective treatment of advanced or recurrent neuroblastoma. The muti-drug resistance-associated protein (MRP), which encodes a transmembrane glycoprotein, is a key regulator of MDR. The expression of MRP is a close correlation with MYCN oncogene in neuroblastoma. We have recently shown ZD55-shMYCN (oncolytic virus armed with shRNA against MYCN) can down-regulate MYCN to inhibit tumor cells proliferation and induce apoptosis in neuroblastoma. Here we further report ZD55-shMYCN re-sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and inhibited cell migration), and reduced the in vivo growth rate of neuroblastoma xenografts by down-regulation of MRP expression. Sequential therapy with doxorubicin did not affect the replication of ZD55-shMYCN in doxorubicin-resistant neuroblastoma cells, but decreased the expression of Bcl-2, Bcl-X L , MMP-1. Thus, this synergistic effect of ZD55-shMYCN in combination with doxorubicin provides a novel therapy strategy for doxorubicin-resistant neuroblastoma, and is a promising approach for further clinical development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The transcription of the human fructose-bisphosphate aldolase C gene is activated by nerve-growth-factor-induced B factor in human neuroblastoma cells.

    PubMed Central

    Buono, P; Conciliis, L D; Izzo, P; Salvatore, F

    1997-01-01

    A DNA region located at around -200 bp in the 5' flanking region (region D) of the human brain-type fructose-bisphosphate aldolase (aldolase C) gene has been analysed. We show by transient transfection assay and electrophoretic-mobility-shift assay (EMSA) that the binding of transcriptional activators to region D is much more efficient (80% versus 30%) in human neuroblastoma cells (SKNBE) than in the non-neuronal cell line A1251, which contains low levels of aldolase C mRNA. The sequence of region D, CAAGGTCA, is very similar to the AAAGGTCA motif present in the mouse steroid 21-hydroxylase gene; the latter motif binds nerve-growth-factor-induced B factor (NGFI-B), which is a member of the thyroid/steroid/retinoid nuclear receptor gene family. Competition experiments in EMSA and antibody-directed supershift experiments showed that NGFI-B is involved in the binding to region D of the human aldolase C gene. Furthermore, the regulation of the aldolase C gene (which is the second known target of NGFI-B) expression during development parallels that of NGFI-B. PMID:9173889

  8. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    PubMed

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  9. Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan

    PubMed Central

    Chaturvedi, Nagendra K.; McGuire, Timothy R.; Coulter, Don W.; Shukla, Ashima; McIntyre, Erin M.; Sharp, John Graham; Joshi, Shantaram S.

    2016-01-01

    Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic. PMID:26934655

  10. Effect of Citrus bergamia juice on human neuroblastoma cells in vitro and in metastatic xenograft models.

    PubMed

    Navarra, M; Ursino, M R; Ferlazzo, N; Russo, M; Schumacher, U; Valentiner, U

    2014-06-01

    Neuroblastoma is the most common extracranial pediatric solid tumor with poor prognosis in children with disseminated stage of disease. A number of studies show that molecules largely distributed in commonly consumed fruits and vegetables may have anti-tumor activity. In this study we evaluate the effect of Citrus bergamia (bergamot) juice (BJ) in vitro and in a spontaneous metastatic neuroblastoma SCID mouse model. Qualitative and quantitative characterizations of BJ flavonoid fractions were performed by RP-HPLC/PDA/MS. We show that BJ significantly affects SK-N-SH and LAN-1 cell proliferation in vitro, but fails to reduce primary tumor weight in vivo. Moreover, BJ reduced cell adhesiveness and invasion of LAN-1 and SK-N-SH cells in vitro and the number of pulmonary metastases under consideration of the number of tumor cells in the blood in mice inoculated with LAN-1 cells in vivo. These effects without any apparent sign of systemic toxicity confirm the potential clinical interest of BJ and lay the basis for further investigation in cancer. Copyright © 2014. Published by Elsevier B.V.

  11. Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group.

    PubMed

    Burchill, Susan A; Beiske, Klaus; Shimada, Hiroyuki; Ambros, Peter F; Seeger, Robert; Tytgat, Godelieve A M; Brock, Penelope R; Haber, Michelle; Park, Julie R; Berthold, Frank

    2017-04-01

    The current study was conducted to expedite international standardized reporting of bone marrow disease in children with neuroblastoma and to improve equivalence of care. A multidisciplinary International Neuroblastoma Response Criteria Bone Marrow Working Group was convened by the US National Cancer Institute in January 2012 with representation from Europe, North America, and Australia. Practical transferable recommendations to standardize the reporting of bone marrow disease were developed. To the authors' knowledge, the current study is the first to comprehensively present consensus criteria for the collection, analysis, and reporting of the percentage area of bone marrow parenchyma occupied by tumor cells in trephine-biopsies. The quantitative analysis of neuroblastoma content in bone marrow aspirates by immunocytology and reverse transcriptase-quantitative polymerase chain reaction are revised. The inclusion of paired-like homeobox 2b (PHOX2B) for immunohistochemistry and reverse transcriptase-quantitative polymerase chain reaction is recommended. Recommendations for recording bone marrow response are provided. The authors endorse the quantitative assessment of neuroblastoma cell content in bilateral core needle biopsies-trephines and aspirates in all children with neuroblastoma, with the exception of infants, in whom the evaluation of aspirates alone is advised. It is interesting to note that 5% disease is accepted as an internationally achievable level for disease assessment. The quantitative assessment of neuroblastoma cells is recommended to provide data from which evidence-based numerical criteria for the reporting of bone marrow response can be realized. This is particularly important in the minimal disease setting and when neuroblastoma detection in bone marrow is intermittent, where clinical impact has yet to be validated. The wide adoption of these harmonized criteria will enhance the ability to compare outcomes from different trials and facilitate

  12. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  13. Unusual Differentiation to Pheochromocytoma-Like Cells in an Adrenal Neuroblastoma After Chemotherapy: A Case Report and Literature Review.

    PubMed

    Tatekawa, Yukihiro

    2015-01-01

    The authors present a case of 3-year-old female with Stage 4 neuroblastoma originating from the left adrenal gland. Biopsy of the left adrenal tumor showed neuroblastoma. After three courses of chemotherapy, the left adrenal gland including the left adrenal tumor was surgically removed. Pathological findings of the resected tumor revealed that most of the neuroblastoma tissues changed to pheochromocytoma-like cells. The tumor cells were arranged in well-defined nests surrounded by a delicate fibrovascular stroma and had granular eosinophilic cytoplasm, and round to oval nuclei. Immunohistological analysis of the biopsy samples showed strongly positive Ganglioside GD2-staining cells, whereas almost all of the tumor cells in the resected specimen were Ganglioside GD2-negative; cells were very weakly stained. The authors suggest that a part of the neuroblastoma in the left adrenal gland exhibited unusual differentiation toward pheochromocytic lineage Ganglioside GD2-negative neuroblastoma in a patient who had been treated with intensive chemotherapy.

  14. The Aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo

    PubMed Central

    Faisal, Amir; Vaughan, Lynsey; Bavetsias, Vassilios; Sun, Chongbo; Atrash, Butrus; Avery, Sian; Jamin, Yann; Robinson, Simon P.; Workman, Paul; Blagg, Julian; Raynaud, Florence I.; Eccles, Suzanne A.; Chesler, Louis; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation and cytokinesis. Aurora A and B overexpression has also been associated with various human cancers and as such, they have been extensively studied as novel anti-mitotic drug targets. Here we characterise the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC50 values in both biochemical and cellular assays and exhibits anti-proliferative activity against a wide range of human solid tumour cell lines. CCT137690 efficiently inhibits histone H3 and TACC3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumour cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 (TK1) downregulation and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma (TH-MYCN) that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumour growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN amplified neuroblastoma. PMID:21885865

  15. Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma.

    PubMed

    Radogna, F; Cerella, C; Gaigneaux, A; Christov, C; Dicato, M; Diederich, M

    2016-07-21

    A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of

  16. Effects of inorganic lead on the differentiation and growth of cultured hippocampal and neuroblastoma cells.

    PubMed

    Audesirk, T; Audesirk, G; Ferguson, C; Shugarts, D

    1991-01-01

    Lead exposure has devastating effects on the developing nervous system, and has been implicated in variety of behavioral and cognitive deficits as well as neural morphological abnormalities. Since lead impacts many calcium-dependent processes, one likely mechanism of lead toxicity is its disruption of calcium dependent processes, among which is neuronal differentiation. We investigated the effects of inorganic lead on survival and several parameters of differentiation of cultured neurons. Three different cell types were used: Rat hippocampal neurons (a primary CNS cell type), B50 rat neuroblastoma cells (a transformed CNS-derived cell line), and N1E-115 mouse neuroblastoma cells (a transformed peripherally-derived cell line). Lead concentrations ranged from low nM to 1 mM. Lead effects differed considerably among the three cell types, with B50 cells least affected. Lead effects were generally multimodal, with fewest effects observed at intermediate concentrations. Lead inhibited neurite initiation in hippocampal neurons, but stimulated initiation in N1E-115 cells. In those cells that differentiated, lead increased dendrite numbers in hippocampal neurons and neurite numbers in N1E-115 cells. Lead exposure increased both the length and the degree of branching of axons in hippocampal neurons and the length of neurites in N1E-115 cells. We hypothesize that lead impacts multiple regulatory processes that influence neuron survival and differentiation, and that its effects show differing dose-dependencies. The differing responses of the different cell types to lead suggests that differentiation may be regulated in different ways by the three types of cells. Alternatively, or additionally, the cell types may differ in their ability to compensate for, sequester, or expel lead.

  17. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells.

    PubMed

    Geng, N; Shi, B-J; Li, S-L; Zhong, Z-Y; Li, Y-C; Xua, W-L; Zhou, H; Cai, J-H

    2018-06-01

    Ferroptosis is a new-found iron-dependent form of non-apoptotic regulated cell death (RCD), which is activated on therapy with several antitumor agents, but the potential mechanism remains unclear. Erastin, exhibiting selectivity for RAS-mutated cancer cells, induces ferroptosis by increasing iron and lipid reactive oxygen species (ROS) levels in cell. Ferroportin (Fpn), the sole iron export protein, participates in the regulation of intracellular iron concentration. In this study, we investigated the role of Fpn on ferroptosis induced by erastin in SH-SY5Y cells. The cell viability was determined by CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay kit. The activity of caspase-3 was measured by ELISA kit. qRT-PCR was performed to examine the mRNA expression of Fpn. Western blot assay was conducted to examine the expression level of marker proteins. Specific commercial kits were used to examine the levels of MDA, ROS and iron in cells, respectively. Ferroptosis was evaluated by intracellular lipid ROS level and iron concentration. Hepcidin could prevent erastin-induced ferroptosis by degrading Fpn. Erastin (5 μg/mL) was observed to induce ferroptosis in neuroblastoma cells at 6 hours, which was promoted by knockdown of Fpn. The expression of Fpn gene and protein was decreased in SH-SY5Y cells treated with erastin. After treatment with erastin, Fpn siRNA transfection in SH-SY5Y cells was able to accelerate ferroptosis-associated phenotypic changes. Fpn acted as a negative regulator of ferroptosis by reducing intracellular iron concentration. Knockdown of Fpn enhanced anticancer activity of erastin. These results suggested that knockdown of Fpn accelerated erastin-induced ferroptosis by increasing iron-dependent lipid ROS accumulation, highlighting Fpn as a potential therapeutic target site for neuroblastoma. Thus, Fpn inhibitors may provide new access for chemosensitization of neuroblastoma.

  18. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells.

    PubMed

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-02-28

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 microM) or R116010 (1 or 10 microM) in combination with either 10 microM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma.

  19. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications. Copyright © 2013. Published by Elsevier B.V.

  20. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  1. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T Cell Receptors in High-risk MYCN-not-amplified Human Neuroblastoma.

    PubMed

    Wei, Jun S; Kuznetsov, Igor B; Zhang, Shile; Song, Young K; Asgharzadeh, Shahab; Sindiri, Sivasish; Wen, Xinyu; Patidar, Rajesh; Nagaraj, Sushma; Walton, Ashley; Guidry Auvil, Jaime M; Gerhard, Daniela S; Yuksel, Aysen; Catchpoole, Daniel R; Hewitt, Stephen M; Sondel, Paul M; Seeger, Robert C; Maris, John M; Khan, Javed

    2018-05-21

    High-risk neuroblastoma is an aggressive disease. DNA sequencing studies have revealed a paucity of actionable genomic alterations and a low mutation burden, posing challenges to develop effective novel therapies. We used RNA sequencing (RNA-seq) to investigate the biology of this disease including a focus on tumor-infiltrating lymphocytes (TILs). We performed deep RNA-seq on pre-treatment diagnostic tumors from 129 high-risk and 21 low- or intermediate-risk patients with neuroblastomas. We used single-sample gene set enrichment analysis to detect gene expression signatures of TILs in tumors and examined their association with clinical and molecular parameters including patient outcome. The expression profiles of 190 additional pre-treatment diagnostic neuroblastomas, a neuroblastoma tissue microarray, and T-cell receptor (TCR) sequencing were used to validate our findings. We found that MYCN -not-amplified ( MYCN -NA) tumors had significant higher cytotoxic TIL signatures compared to MYCN -amplified ( MYCN -A) tumors. A reported MYCN-activation-signature was significantly associated with poor outcome for high-risk patients with MYCN -NA tumors; however, a subgroup of these patients who had elevated activated NK cells, CD8+ T-cells, and cytolytic signatures showed improved outcome and expansion of infiltrating T-cell receptor (TCR) clones. Furthermore, we observed up-regulation of immune exhaustion marker genes, indicating an immune suppressive microenvironment in these neuroblastomas. Conclusions: This study provides evidence that RNA signatures of cytotoxic TIL are associated with the presence of activated NK-/T-cells and improved outcomes in high-risk neuroblastoma patients harboring MYCN -NA tumors. Our findings suggest that these high-risk patients with MYCN -NA neuroblastoma may benefit from additional immunotherapies incorporated into the current therapeutic strategies. Copyright ©2018, American Association for Cancer Research.

  2. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma.

    PubMed

    Maugeri, Marco; Barbagallo, Davide; Barbagallo, Cristina; Banelli, Barbara; Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele

    2016-12-13

    Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5'-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5'-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma.

  3. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma

    PubMed Central

    Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele

    2016-01-01

    Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5′-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5′-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma. PMID:27829219

  4. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Offerdahl, Danielle K.

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranesmore » to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.« less

  5. Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.

    PubMed

    Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi

    2018-02-01

    Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Neuroblastoma and MYCN

    PubMed Central

    Huang, Miller; Weiss, William A.

    2013-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed. PMID:24086065

  7. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  8. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth.

    PubMed

    Carter, Yvette M; Kunnimalaiyaan, Selvi; Chen, Herbert; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2014-05-01

    Neuroblastoma is a common neuroendocrine (NE) tumor that presents in early childhood, with a high incidence of malignancy and recurrence. The glycogen synthase kinase-3 (GSK-3) pathway is a potential therapeutic target, as this pathway has been shown to be crucial in the management of other NE tumors. However, it is not known which isoform is necessary for growth inhibition. In this study, we investigated the effect of the GSK-3 inhibitor AR-A014418 on the different GSK-3 isoforms in neuroblastoma. NGP and SH-5Y-SY cells were treated with 0-20 μM of AR-A014418 and cell viability was measured by MTT assay. Expression levels of NE markers CgA and ASCL1, GSK-3 isoforms, and apoptotic markers were analyzed by western blot. Neuroblastoma cells treated with AR-A014418 had a significant reduction in growth at all doses and time points (P<0.001). A reduction in growth was noted in cell lines on day 6, with 10 μM (NGP-53% vs. 0% and SH-5Y-SY-38% vs. 0%, P<0.001) treatment compared to control, corresponding with a noticeable reduction in tumor marker ASCL1 and CgA expression. Treatment of neuroblastoma cell lines with AR-A014418 reduced the level of GSK-3α phosphorylation at Tyr279 compared to GSK-3β phosphorylation at Tyr216, and attenuated growth via the maintenance of apoptosis. This study supports further investigation to elucidate the mechanism(s) by which GSK-3α inhibition downregulates the expression of NE tumor markers and growth of neuroblastoma.

  9. D-galactose induces necroptotic cell death in neuroblastoma cell lines.

    PubMed

    Li, Na; He, Yangyan; Wang, Ling; Mo, Chunfen; Zhang, Jie; Zhang, Wei; Li, Junhong; Liao, Zhiyong; Tang, Xiaoqiang; Xiao, Hengyi

    2011-12-01

    D-Galactose (D-gal) can induce oxidative stress in non-cancer cells and result in cell damage by disturbing glucose metabolism. However, the effect of D-gal on cancer cells is yet to be explored. In this study, we investigated the toxicity of D-gal to malignant cells specifically neuroblastoma cells. As the results, high concentrations of D-gal had significant toxicity to cancer cells, whereas the same concentrations of glucose had no; the viability loss via D-gal treatment was prominent to malignant cells (Neuro2a, SH-SY5Y, PC-3, and HepG2) comparing to non-malignant cells (NIH3T3 and LO(2)). Differing from the apoptosis induced by H(2) O(2), D-gal damaged cells showed the characters of necrotic cell death, such as trypan blue-tangible and early phase LDH leakage. Further experiments displayed that the toxic effect of D-gal can be alleviated by necroptosis inhibitor Necrostatin (Nec-1) and autophagy inhibitor 3-methyladenine (3-MA) but not by caspase inhibitor z-VAD-fmk. D-Gal treatment can transcriptionally up-regulate the genes relevant to necroptosis (Bmf, Bnip3) and autophagy (Atg5, TIGAR) but not the genes related to apoptosis (Caspase3, Bax, and p53). D-Gal did not activate Caspase-3, but prompted puncta-like GFP-LC3 distribution, an indicator for activated autophagy. The involvement of aldose reductase (AR)-mediated polyol pathway was proved because the inhibitor of AR can attenuate the toxicity of D-gal and D-gal treatment elevates the expression of AR. This study demonstrates for the first time that D-gal can induce non-apoptotic but necroptotic cell death in neuroblastoma cells and provides a new clue for developing the strategy against apoptosis-resistant cancers. Copyright © 2011 Wiley Periodicals, Inc.

  10. Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide.

    PubMed

    Yurinskaya, M M; Funikov, S Y; Evgen'ev, M B; Vinokurov, M G

    2016-07-01

    The effect of exogenous heat shock protein HSP70 and lipopolysaccharide (LPS) on the production of reactive oxygen species (ROS), TNFα secretion, and mRNA expression by human neuroblastoma SK-N-SH cells. It was shown that exogenous HSP70 protects neuroblastoma cells from the action of LPS. The protection mechanism of HSP70 includes a reduction in the production of ROS and TNFα and a decrease in the expression of TLR4 and IL-1β mRNA in SK-N-SH cells induced by LPS.

  11. Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.

    PubMed

    Duijkers, Floor A M; Meijerink, Jules P P; Pieters, Rob; van Noesel, Max M

    2013-05-25

    Neuroblastomas (NBL) are common pediatric solid tumors with a variable clinical course. At diagnosis half of all neuroblastoma patients presents with metastatic disease. The mechanisms of metastasis are largely unknown. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify a subgroup of non-MYCN amplified (non-NMA) NBL cell lines with a distinct gene expression profile and characterized by high expression of AXL. Axl is a tyrosine kinase receptor which plays a role in the metastatic process of several types of cancer. We hypothesized that Axl contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high Axl expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with more than 90% infection efficiency. Axl mRNA and protein level were efficiently knocked-down resulting in a decrease of migration of Axl positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, Axl knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin). These changes in cytoskeleton were associated with decreased migration, but were not accompanied by changes in genes involved in epithelial to mesenchymal transition such as CDH2, VIM or MMP9. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy.

    PubMed

    Liu, Yin; Wu, Hong-Wei; Sheard, Michael A; Sposto, Richard; Somanchi, Srinivas S; Cooper, Laurence J N; Lee, Dean A; Seeger, Robert C

    2013-04-15

    Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.

  13. The effect of cisplatin pretreatment on the accumulation of MIBG by neuroblastoma cells in vitro.

    PubMed

    Armour, A; Cunningham, S H; Gaze, M N; Wheldon, T E; Mairs, R J

    1997-01-01

    [131I]meta-iodobenzylguanidine ([131I]MIBG) provides a means of selectively delivering radiation to neuroblastoma cells and is a promising addition to the range of agents used to treat neuroblastoma. As MIBG is now being incorporated into multimodal approaches to therapy, important questions arise about the appropriate scheduling and sequencing of the various agents employed. As the ability of neuroblastoma cells to actively accumulate MIBG is crucial to the success of this therapy, the effect of chemotherapeutic agents on this uptake capacity needs to be investigated. We report here our initial findings on the effect of cisplatin pretreatment on the neuroblastoma cell line SK-N-BE (2c). After treating these cells with therapeutically relevant concentrations of cisplatin (2 microM and 20 microM), a stimulation in uptake of [131I]MIBG was observed. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that this effect was due to increased expression of the noradrenaline transporter. These results suggest that appropriate scheduling of cisplatin and [131I]MIBG may lead to an increase in tumour uptake of this radiopharmaceutical with consequent increases in radiation dose to the tumour.

  14. TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-κB-mediated expression of Fas.

    PubMed

    Galenkamp, Koen Mo; Carriba, Paulina; Urresti, Jorge; Planells-Ferrer, Laura; Coccia, Elena; Lopez-Soriano, Joaquín; Barneda-Zahonero, Bruna; Moubarak, Rana S; Segura, Miguel F; Comella, Joan X

    2015-03-19

    Patients with high-risk neuroblastoma (NBL) tumors have a high mortality rate. Consequently, there is an urgent need for the development of new treatments for this condition. Targeting death receptor signaling has been proposed as an alternative to standard chemo- and radio-therapies in various tumors. In NBL, this therapeutic strategy has been largely disregarded, possibly because ~50-70% of all human NBLs are characterized by caspase-8 silencing. However, the expression of caspase-8 is detected in a significant group of NBL patients, and they could therefore benefit from treatments that induce cell death through death receptor activation. Given that cytokines, such as TNFα, are able to upregulate Fas expression, we sought to address the therapeutic relevance of co-treatment with TNFα and FasL in NBL. For the purpose of the study we used a set of eight NBL cell lines. Here we explore the cell death induced by TNFα, FasL, cisplatin, and etoposide, or a combination thereof by Hoechst staining and calcein viability assay. Further assessment of the signaling pathways involved was performed by caspase activity assays and Western blot experiments. Characterization of Fas expression levels was achieved by qRT-PCR, cell surface biotinylation assays, and cytometry. We have found that TNFα is able to increase FasL-induced cell death by a mechanism that involves the NF-κB-mediated induction of the Fas receptor. Moreover, TNFα sensitized NBL cells to DNA-damaging agents (i.e. cisplatin and etoposide) that induce the expression of FasL. Priming to FasL-, cisplatin-, and etoposide-induced cell death could only be achieved in NBLs that display TNFα-induced upregulation of Fas. Further analysis denotes that the high degree of heterogeneity between NBLs is also manifested in Fas expression and modulation thereof by TNFα. In summary, our findings reveal that TNFα sensitizes NBL cells to FasL-induced cell death by NF-κB-mediated upregulation of Fas and unveil a new

  15. Favorable prognostic role of tropomodulins in neuroblastoma.

    PubMed

    Bettinsoli, Paola; Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Guarienti, Michela; Cangelosi, Davide; Varesio, Luigi; Memo, Maurizio

    2018-06-05

    Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 ( TMOD1 ) and tropomodulin 2 ( TMOD2 ) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.

  16. Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma cells.

    PubMed

    Kloog, Y; Axelrod, J; Spector, I

    1983-02-01

    Cells of mouse neuroblastoma clone N1E-115 in the confluent phase of growth can catalyze the formation of endogenous protein carboxyl methyl esters, using a protein carboxyl methylase and membrane-bound methyl acceptor proteins. The enzyme is localized predominantly in the cytosol of the cells and has a molecular weight of about 20,000 daltons. Treatment of the cells with dimethylsulfoxide (DMSO) or hexamethylene-bisacetamide (HMBA), agents that induce morphological and electrophysiological differentiation, results in a marked increase in protein carboxyl methylase activity. Maximal levels are reached 6-7 days after exposure to the agents, a time course that closely parallels the development of electrical excitability mechanisms in these cells. Serum deprivation also causes neurite outgrowth but does not enhance electrical excitability or enzyme activity. The capacity of membrane-bound neuroblastoma protein(s) to be carboxyl methylated is increased by the differentiation procedures that have been examined. However, the increase in methyl acceptor proteins induced by DMSO or HMBA is the largest, and its time course parallels electrophysiological differentiation. In contrast, serum deprivation induced a small increase that reached maximal levels within 24 h. The data suggest that increased protein carboxyl methylation is a developmentally regulated property of neuroblastoma cells and that at least two groups of methyl acceptor proteins are induced during differentiation: a minor group related to morphological differentiation, and a major group that may be related to ionic permeability mechanisms of the excitable membrane.

  17. Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma.

    PubMed

    Bettinsoli, P; Ferrari-Toninelli, G; Bonini, S A; Prandelli, C; Memo, M

    2017-05-19

    Neuroblastoma is the most common extracranial solid malignancy in childhood, responsible for 15% of all pediatric cancer deaths. It is an heterogeneous disease that does not always respond to classical therapy; so the identification of new and specific molecular targets to improve existing therapy is needed. We have previously demonstrated the involvement of the Notch pathway in the onset and progression of neuroblastoma. In this study we further investigated the role of Notch signaling and identified Delta-like 1 (DLL1) as a novel molecular target in neuroblastoma cells with a high degree of MYCN amplification, which is a major oncogenic driver in neuroblastoma. The possibility to act on DLL1 expression levels by using microRNAs (miRNAs) was assessed. DLL1 mRNA and protein expression levels were measured in three different neuroblastoma cell lines using quantitative real-time PCR and Western Blot analysis, respectively. Activation of the Notch pathway as a result of increased levels of DLL1 was analyzed by Immunofluorescence and Western Blot methods. In silico tools revealed the possibility to act on DLL1 expression levels with miRNAs, in particular with the miRNA-34 family. Neuroblastoma cells were transfected with miRNA-34 family members, and the effect of miRNAs transfection on DLL1 mRNA expression levels, on cell differentiation, proliferation and apoptosis was measured. In this study, the DLL1 ligand was identified as the Notch pathway component highly expressed in neuroblastoma cells with MYCN amplification. In silico analysis demonstrated that DLL1 is one of the targets of miRNA-34 family members that maps on chromosome regions that are frequently deregulated or deleted in neuroblastoma. We studied the possibility to use miRNAs to target DLL1. Among all miRNA-34 family members, miRNA-34b is able to significantly downregulate DLL1 mRNA expression levels, to arrest cell proliferation and to induce neuronal differentiation in malignant neuroblastoma cells

  18. Effects of exposure to DAMPS and GSM signals on ornithine decarboxylase (ODC) activity: II. SH-SY5Y human neuroblastoma cells.

    PubMed

    Billaudel, Bernard; Taxile, Murielle; Poulletier de Gannes, Florence; Ruffie, Gilles; Lagroye, Isabelle; Veyret, Bernard

    2009-06-01

    An increase in Ornithine Decarboxylase (ODC) activity was reported in L929 murine fibroblast cells after exposure to a digital cellular telephone signal. This result was not confirmed by several other studies, including the one reported in a companion paper. As a partner in the Perform-B programme, we extended this study to human neuroblastoma cells (SH-SY5Y), using well-defined waveguide systems to imitate exposure to radiofrequency radiation (RFR): Digital Advanced Mobile Phone System (DAMPS) or Global System for Mobile communications (GSM) signals emitted by mobile phones. Human neuroblastoma cells (SH-SY5Y) were exposed at various Specific Absorption Rates (SAR) to DAMPS or GSM signals using different set-ups. Cell ODC activities were assayed using 14CO2 generation from 14C-labeled L-ornithine. SH-SY5Y cells were incubated for 20 hours, and were blindly exposed to 50 Hz-modulated DAMPS-835 or 217 Hz-modulated GSM-1800 for 8 or 24 h using Information Technologies in Society (IT'IS) waveguides equipped with fans. After cell lysis, ODC activity was determined using 14C-labeled L-ornithine. ODC activity was estimated by the 14CO2 generated from 14C-labeled L-ornithine, as generated d.p.m. 14CO2/h/mg protein. The results showed that, irrespective of the signal used (835 MHz/DAMPS, or 1800 MHz/GSM) and exposure conditions (duration and SAR), human SH-SY5Y neuroblastoma cells did not exhibit any alteration in ODC enzyme activity. This work did not show a significant effect of mobile phone RFR exposure on ODC activity in neuroblastoma cells (SH-SY5Y).

  19. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification

    PubMed Central

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2013-01-01

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. PMID:23941992

  20. Downregulation of N‑Myc inhibits neuroblastoma cell growth via the Wnt/β‑catenin signaling pathway.

    PubMed

    Wang, Yingge; Gao, Shan; Wang, Weiguang; Xia, Yuting; Liang, Jingyan

    2018-05-03

    Neuroblastoma, one of the most common types of cancer in childhood, is commonly treated with surgery, radiation and chemotherapy. However, prognosis and survival remain poor for children with high‑risk neuroblastoma. Therefore, the identification of novel, effective therapeutic targets is necessary. N‑Myc, a proto‑oncogene protein encoded by the v‑myc avial myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) gene, is associated with tumorigenesis. In the present study, the effect of N‑Myc silencing on MYCN‑amplified CHP134 and BE‑2C neuroblastoma cells was evaluated, and the underlying molecular mechanism was investigated. N‑Myc was successfully knocked down using an N‑Myc‑specific small interfering RNA, the efficacy of interference efficiency confirmed by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was evaluated by MTT assay and apoptosis was measured by ELISA assay. The results indicated that MYCN silencing significantly decreased cell viability and promoted apoptosis. Subsequently, the expression levels of key Wnt/β‑catenin signaling pathway proteins were detected by western blotting, and MYCN silencing was demonstrated to inhibit Wnt/β‑catenin signaling, decreasing the expression ofanti‑apoptosis proteins and increasing the expression of pro‑apoptosis protein. This suggested that N‑Myc regulated survival and growth of CHP134 and BE‑2C neuroblastoma cells, potentially through Wnt/β‑catenin signaling. Furthermore, associated proteins, N‑Myc and STAT interactor and dickkopf Wnt signaling pathway inhibitor 1, were demonstrated to be involved in this regulation. Therefore, N‑Myc and its downstream targets may provide novel therapeutic targets for the treatment of neuroblastoma.

  1. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma.

    PubMed

    Lochmann, Timothy L; Powell, Krista M; Ham, Jungoh; Floros, Konstantinos V; Heisey, Daniel A R; Kurupi, Richard I J; Calbert, Marissa L; Ghotra, Maninderjit S; Greninger, Patricia; Dozmorov, Mikhail; Gowda, Madhu; Souers, Andrew J; Reynolds, C Patrick; Benes, Cyril H; Faber, Anthony C

    2018-05-16

    High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN -amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Differentiation of human SH-SY5Y neuroblastoma cells by all-trans retinoic acid activates the interleukin-18 system.

    PubMed

    Sallmon, Hannes; Hoene, Victoria; Weber, Sven C; Dame, Christof

    2010-02-01

    The clinical prognosis of children with high-stage neuroblastoma is still poor. Therapeutic approaches include surgery and cellular differentiation by retinoic acid, but also experimental interleukin-based immune modulation. However, the molecular mechanisms of all-trans retinoic acid (ATRA)-induced differentiation of neuroblastoma cells are incompletely understood. Herein, we examined the effect of ATRA on the activity of the interleukin-18 (IL-18) system in human SH-SY5Y neuroblastoma cells. It is shown that SH-SY5Y cells express IL-18 receptor (IL-18R) and the secreted antagonist IL-18-binding protein (IL-18BP), but no IL-18. SH-SY5Y cells are highly sensitive to ATRA treatment and react by cellular differentiation from a neuroblastic toward a more neuronal phenotype. This was associated with induction of IL-18 and reduction of IL-18BP expression, while IL-18R expression remained stable. Thereby, we identified the IL-18 system as a novel target of ATRA in neuroblastoma cells that might contribute to the therapeutic properties of retinoids in treatment of neuroblastoma.

  3. Rho-associated kinase is a therapeutic target in neuroblastoma.

    PubMed

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  4. Rho-associated kinase is a therapeutic target in neuroblastoma

    PubMed Central

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K.; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge

    2017-01-01

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma. PMID:28739902

  5. ERdj5 sensitizes neuroblastoma cells to endoplasmic reticulum stress-induced apoptosis.

    PubMed

    Thomas, Christophoros G; Spyrou, Giannis

    2009-03-06

    Down-regulation of the unfolded protein response (UPR) can be therapeutically valuable in cancer treatment, and endoplasmic reticulum (ER)-resident chaperone proteins may thus be targets for developing novel chemotherapeutic strategies. ERdj5 is a novel ER chaperone that regulates the ER-associated degradation of misfolded proteins through its associations with EDEM and the ER stress sensor BiP. To investigate whether ERdj5 can regulate ER stress signaling pathways, we exposed neuroblastoma cells overexpressing ERdj5 to ER stress inducers. ERdj5 promoted apoptosis in tunicamycin, thapsigargin, and bortezomib-treated cells. To provide further evidence that ERdj5 induces ER stress-regulated apoptosis, we targeted Bcl-2 to ER of ERdj5-overexpressing cells. Targeting the Bcl-2 to ER prevented the apoptosis induced by ER stress inducers but not by non-ER stress apoptotic stimuli, suggesting induction of ER stress-regulated apoptosis by ERdj5. ERdj5 enhanced apoptosis by abolishing the ER stress-induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) and the subsequent translational repression. ERdj5 was found to inhibit the eIF2alpha phosphorylation under ER stress through inactivating the pancreatic endoplasmic reticulum kinase. The compromised integrated stress response observed in ERdj5-overexpressing ER-stressed cells due to repressed eIF2alpha phosphorylation correlated with impaired neuroblastoma cell resistance under ER stress. These results demonstrate that ERdj5 decreases neuroblastoma cell survival by down-regulating the UPR, raising the possibility that this protein could be a target for anti-tumor approaches.

  6. Prognostic Impact of Activated Leucocyte Cell Adhesion Molecule (ALCAM/CD166) in Infantile Neuroblastoma.

    PubMed

    Wachowiak, Robin; Mayer, Steffi; Kaifi, Jussuf; Gebauer, Florian; Izbicki, Jakob R; Lacher, Martin; Bockhorn, Maximilian; Tachezy, Michael

    2016-08-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) as a member of the 'immunoglobulin superfamily' is known to be involved in cancer cell proliferation and migration. The aim of this study was to investigate the expression of ALCAM in neuroblastoma tissues. ALCAM expression was analyzed in primary neuroblastoma specimens by immunohistochemistry on microarray sections. Histopathological and clinical data were correlated with ALCAM expression and survival analysis was performed. Sixty-six children were included in the study. Strong expression of ALCAM was detected in 52 (79%) of the samples. Weak expression was significantly correlated with the International Neuroblastoma Staging System (INSS) stage (p=0.024) and positive n-MYC amplification (p=0.019). Recurrence-free survival (RFS) and overall survival (OS) were significantly shorter if ALCAM was expressed weakly (p=0.032 and p=0.001). Weak ALCAM expression was significantly correlated with established markers for poor prognosis, as well as shorter RFS and OS. ALCAM might be considered as a prognostic marker for infantile neuroblastoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma PRINCIPAL INVESTIGATOR: Yves A. DeClerck CONTRACTING ORGANIZATION... Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0571 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) DE CLERCK, YVES 5d. PROJECT...experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma . Further

  8. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    PubMed

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells.

    PubMed

    Wang, Qiang; Xu, Zhilin; An, Qun; Jiang, Dapeng; Wang, Long; Liang, Bingxue; Li, Zhaozhu

    2015-02-01

    Neuroblastoma (NB) is a neuroendocrine cancer that occurs most commonly in infants and young children. The Hippo signaling pathway regulates cell proliferation and apoptosis, and its primary downstream effectors are TAZ and yes‑associated protein 1 (YAP). The effect of TAZ on the metastatic progression of neuroblastoma and the underlying mechanisms involved remain elusive. In the current study, it was determined by western blot analysis that the migratory and invasive properties of SK‑N‑BE(2) human neuroblastoma cells are associated with high expression levels of TAZ. Repressed expression of TAZ in SK‑N‑BE(2) cells was shown to result in a reduction in aggressiveness of the cell line, by Transwell migration and invasion assay. In contrast, overexpression of TAZ in SK‑N‑SH human neuroblastoma cells was shown by Transwell migration and invasion assays, and western blot analysis, to result in epithelial‑mesenchymal transition (EMT) and increased invasiveness. Mechanistically, the overexpression of TAZ was demonstrated to upregulate the expression levels of connective tissue growth factor (CTGF), by western blot analysis and chromatin immunoprecipitation assay, while the knockdown of TAZ downregulated it. Furthermore, TAZ was shown by luciferase assay to induce CTGF expression by modulating the activation of the TGF‑β/Smad3 signaling pathway. In conclusion, the present study is, to the best of our knowledge, the first to demonstrate that the overexpression of TAZ induces EMT, increasing the invasive abilities of neuroblastoma cells. This suggests that TAZ may serve as a potential target in the development of novel therapies for the treatment of neuroblastoma.

  10. Novel synthetic monoketone transmute radiation-triggered NFκB-dependent TNFα cross-signaling feedback maintained NFκB and favors neuroblastoma regression.

    PubMed

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.

  11. Novel Synthetic Monoketone Transmute Radiation-Triggered NFκB-Dependent TNFα Cross-Signaling Feedback Maintained NFκB and Favors Neuroblastoma Regression

    PubMed Central

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300

  12. Targeted Doxorubicin-Loaded Bacterially Derived Nano-Cells for the Treatment of Neuroblastoma.

    PubMed

    Sagnella, Sharon M; Trieu, Jennifer; Brahmbhatt, Himanshu; MacDiarmid, Jennifer A; MacMillan, Alex; Whan, Renee M; Fife, Christopher M; McCarroll, Joshua A; Gifford, Andrew J; Ziegler, David S; Kavallaris, Maria

    2018-05-01

    Advanced stage neuroblastoma is an aggressive disease with limited treatment options for patients with drug-resistant tumors. Targeted delivery of chemotherapy for pediatric cancers offers promise to improve treatment efficacy and reduce toxicity associated with systemic chemotherapy. The EnGeneIC Dream Vector (EDV TM ) is a nanocell, which can package chemotherapeutic drugs and target tumors via attachment of bispecific proteins to the surface of the nanocell. Phase I trials in adults with refractory tumors have shown an acceptable safety profile. Herein we investigated the activity of EGFR-targeted and doxorubicin-loaded EDV TM ( EGFR EDV TM Dox ) for the treatment of neuroblastoma. Two independent neuroblastoma cell lines with variable expression of EGFR protein [SK-N-BE(2), high; SH-SY-5Y, low] were used. EGFR EDV TM Dox induced apoptosis in these cells compared to control, doxorubicin, or non-doxorubicin loaded EGFR EDV TM In three-dimensional tumor spheroids, imaging and fluorescence life-time microscopy revealed that EGFR EDV TM Dox had a marked enhancement of doxorubicin penetration compared to doxorubicin alone, and improved penetration compared to non-EGFR-targeted EDV TM Dox , with enhanced spheroid penetration leading to increased apoptosis. In two independent orthotopic human neuroblastoma xenograft models, short-term studies (28 days) of tumor-bearing mice led to a significant decrease in tumor size in EGFR EDV TM Dox -treated animals compared to control, doxorubicin, or non-EGFR EDV TM Dox There was increased TUNEL staining of tumors at day 28 compared to control, doxorubicin, or non-EGFR EDV TM Dox Moreover, overall survival was increased in neuroblastoma mice treated with EGFR EDV TM Dox ( P < 0007) compared to control. Drug-loaded bispecific-antibody targeted EDVs TM offer a highly promising approach for the treatment of aggressive pediatric malignancies such as neuroblastoma. Mol Cancer Ther; 17(5); 1012-23. ©2018 AACR . ©2018 American

  13. Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients.

    PubMed

    Semeraro, Michaela; Rusakiewicz, Sylvie; Minard-Colin, Véronique; Delahaye, Nicolas F; Enot, David; Vély, Frédéric; Marabelle, Aurélien; Papoular, Benjamin; Piperoglou, Christelle; Ponzoni, Mirco; Perri, Patrizia; Tchirkov, Andrei; Matta, Jessica; Lapierre, Valérie; Shekarian, Tala; Valsesia-Wittmann, Sandrine; Commo, Frédéric; Prada, Nicole; Poirier-Colame, Vichnou; Bressac, Brigitte; Cotteret, Sophie; Brugieres, Laurence; Farace, Françoise; Chaput, Nathalie; Kroemer, Guido; Valteau-Couanet, Dominique; Zitvogel, Laurence

    2015-04-15

    The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n = 196, P < 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification. Copyright © 2015, American Association for the Advancement of Science.

  14. Neuroblastoma

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Neuroblastoma KidsHealth / For Parents / Neuroblastoma What's in this article? ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma most commonly starts in the tissue of ...

  15. mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM

    PubMed Central

    Bhoopathi, Praveen; Lee, Nathaniel; Pradhan, Anjan K.; Shen, Xue-Ning; Das, Swadesh K.; Sarkar, Devanand; Emdad, Luni; Fisher, Paul B.

    2016-01-01

    Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in pre-clinical animal models and in a Phase I clinical trial in patients with advanced cancers, without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting ER stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival and angiogenesis. To enhance cancer-selective expression and targeted anti-cancer activity of mda-7/IL-24 we created a tropism-modified Cancer Terminator Virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24. We now show that Ad.5/3-CTV induces profound neuroblastoma anti-proliferative activity and apoptosis in a caspase 3/9-independent manner both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ–H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small molecule inhibitors that attenuated PARP cleavage by inhibiting γ–H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM and γ–H2AX. PMID:27197168

  16. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    PubMed Central

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  17. 48 CFR 1837.104 - Personal services contracts. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (NASA supplements paragraph (b)) 1837.104 Section 1837.104 Federal Acquisition Regulations System... Contracts-General 1837.104 Personal services contracts. (NASA supplements paragraph (b)) (b) Section 203(c)(9) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2473(c)(9)) authorizes NASA “to...

  18. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    PubMed Central

    2010-01-01

    Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer. PMID:20409325

  19. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  20. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  1. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  2. 14 CFR 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Exercise of arrest authority-general guidelines. 1203b.104 Section 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104 Exercise...

  3. 48 CFR 1837.104 - Personal services contracts. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contracts. (NASA supplements paragraph (b)) 1837.104 Section 1837.104 Federal Acquisition Regulations System... Contracts-General 1837.104 Personal services contracts. (NASA supplements paragraph (b)) (b) Section 203(c)(9) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2473(c)(9)) authorizes NASA “to...

  4. 48 CFR 1837.104 - Personal services contracts. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contracts. (NASA supplements paragraph (b)) 1837.104 Section 1837.104 Federal Acquisition Regulations System... Contracts-General 1837.104 Personal services contracts. (NASA supplements paragraph (b)) (b) Section 203(c)(9) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2473(c)(9)) authorizes NASA “to...

  5. 48 CFR 1837.104 - Personal services contracts. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contracts. (NASA supplements paragraph (b)) 1837.104 Section 1837.104 Federal Acquisition Regulations System... Contracts-General 1837.104 Personal services contracts. (NASA supplements paragraph (b)) (b) Section 203(c)(9) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2473(c)(9)) authorizes NASA “to...

  6. 48 CFR 1837.104 - Personal services contracts. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contracts. (NASA supplements paragraph (b)) 1837.104 Section 1837.104 Federal Acquisition Regulations System... Contracts-General 1837.104 Personal services contracts. (NASA supplements paragraph (b)) (b) Section 203(c)(9) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2473(c)(9)) authorizes NASA “to...

  7. Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma.

    PubMed

    Ackermann, Sandra; Goeser, Felix; Schulte, Johannes H; Schramm, Alexander; Ehemann, Volker; Hero, Barbara; Eggert, Angelika; Berthold, Frank; Fischer, Matthias

    2011-02-15

    High-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. The Polo-like kinase 1 (PLK1) is highly expressed in many human cancers and is a target of the novel small-molecule inhibitor BI 2536, which has shown promising anticancer activity in adult malignancies. Here, we investigated the effect of BI 2536 on neuroblastoma cells in vitro and in vivo to explore PLK1 as a potential target in high-risk neuroblastoma therapy. PLK1 transcript levels were analyzed by microarrays in 476 primary neuroblastoma specimens, and correlation with prognostic markers and patient outcome was examined. To explore the effect of PLK1 inhibition on neuroblastoma cells, 7 cell lines were treated with BI 2536 and changes in growth properties were determined. Furthermore, nude mice with IMR-32 and SK-N-AS xenografts were treated with BI 2536. PLK1 is highly expressed in unfavorable neuroblastoma and in neuroblastoma cell lines. Expression of PLK1 is associated with unfavorable prognostic markers such as stage 4, age >18 months, MYCN amplification, unfavorable gene expression-based classification, and adverse patient outcome (P < 0.001 each). On treatment with nanomolar doses of BI 2536, all neuroblastoma cell lines analyzed showed significantly reduced proliferation, cell cycle arrest, and cell death. Moreover, BI 2536 abrogated growth of neuroblastoma xenografts in nude mice. Elevated PLK1 expression is significantly associated with high-risk neuroblastoma and unfavorable patient outcome. Inhibition of PLK1 using BI 2536 exhibits strong antitumor activity on human neuroblastoma cells in vitro and in vivo, opening encouraging new perspectives for the treatment of high-risk neuroblastoma. ©2010 AACR.

  8. Expression of Truncated Neurokinin-1 Receptor in Childhood Neuroblastoma is Independent of Tumor Biology and Stage.

    PubMed

    Pohl, Alexandra; Kappler, Roland; Mühling, Jakob; VON Schweinitz, Dietrich; Berger, Michael

    2017-11-01

    Neuroblastoma is an embryonal malignancy arising from the aberrant growth of neural crest progenitor cells of the sympathetic nervous system. The tachykinin receptor 1 (TACR1) - substance P complex is associated with tumoral angiogenesis and cell proliferation in a variety of cancer types. Inhibition of TACR1 was recently described to impede growth of NB cell lines. However, the relevance of TACR1 in clinical settings is unknown. We investigated gene expression levels of full-length and truncated TACR1 in 59 neuroblastomas and correlated these data with the patients' clinical parameters such as outcome, metastasis, International Neuroblastoma Staging System (INSS) status, MYCN proto-oncogene, bHLH transcription factor (MYCN) status, gender and age. Our results indicated that TACR1 is ubiquitously expressed in neuroblastoma but expression levels are independent of clinical parameters. Our data suggest that TACR1 might serve as a potent anticancer target in a large variety of patients with neuroblastoma, independent of tumor biology and clinical stage. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    PubMed Central

    Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M

    2009-01-01

    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267

  10. Overcoming the Mechanism of Radioresistance in Neuroblastoma

    DTIC Science & Technology

    2014-06-01

    of Radioresistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Brian Marples PhD CONTRACTING ORGANIZATION: William Beaumont Hospital Inc...COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Overcoming the Mechanism of Radioresistance in Neuroblastoma 5b. GRANT NUMBER 5c. PROGRAM...for highly aggressive advanced-stage neuroblastoma remains poor despite a multidisciplinary approach involving aggressive surgery, chemotherapy and

  11. Dehydroepiandrosterone protects male and female hippocampal neurons and neuroblastoma cells from glucose deprivation.

    PubMed

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Ruiz-Palmero, Isabel; Ortiz-Rodriguez, Ana; Ghorbanpoor, Samar; Kucharski, Luiz Carlos; Arevalo, Maria A; Garcia-Segura, Luis Miguel; Ribeiro, Maria Flávia M

    2016-08-01

    Dehydroepiandrosterone (DHEA) modulates neurogenesis, neuronal function, neuronal survival and metabolism, enhancing mitochondrial oxidative capacity. Glucose deprivation and hypometabolism have been implicated in the mechanisms that mediate neuronal damage in neurological disorders, and some studies have shown that these mechanisms are sexually dimorphic. It was also demonstrated that DHEA is able to attenuate the hypometabolism that is related to some neurodegenerative diseases, eliciting neuroprotective effects in different experimental models of neurodegeneration. The aim of this study was to evaluate the effect of DHEA on the viability of male and female hippocampal neurons and SH-SY5Y neuroblastoma cells exposed to glucose deprivation. It was observed that after 12h of pre-treatment, DHEA was able to protect SH-SY5Y cells from glucose deprivation for 6h (DHEA 10(-12), 10(-8) and 10(-6)M) and 8h (DHEA 10(-8)M). In contrast, DHEA was not neuroprotective against glucose deprivation for 12 or 24h. DHEA (10(-8)M) also protected SH-SY5Y cells when added together or even 1h after the beginning of glucose deprivation (6h). Furthermore, DHEA (10(-8)M) also protected primary neurons from both sexes against glucose deprivation. In summary, our findings indicate that DHEA is neuroprotective against glucose deprivation in human neuroblastoma cells and in male and female mouse hippocampal neurons. These results suggest that DHEA could be a promising candidate to be used in clinical studies aiming to reduce neuronal damage in people from both sexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  13. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    PubMed Central

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  14. Diacylglycerol kinase ζ generates dipalmitoyl-phosphatidic acid species during neuroblastoma cell differentiation.

    PubMed

    Mizuno, Satoru; Kado, Sayaka; Goto, Kaoru; Takahashi, Daisuke; Sakane, Fumio

    2016-12-01

    Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and differentiation. PA consists of various molecular species with different acyl chains at the sn- 1 and sn -2 positions. However, it has been poorly understood what PA molecular species are produced during such cellular events. Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method. Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a neuroblastoma cells 24-48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not. Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.

  15. Environment-Mediated Drug Resistance in Neuroblastoma

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-12-1-0572 TITLE: Environment-Mediated Drug Resistance in Neuroblastoma PRINCIPAL INVESTIGATOR: Yu...Resistance in Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0572 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yu, Hua E 5d. PROJECT...collaborative experiments have demonstrated that monocytes collaborate with MSC in inducing STAT3-dependent drug resistance in neuroblastoma (Task 1), that S1P

  16. Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma.

    PubMed

    Mina, Marco; Boldrini, Renata; Citti, Arianna; Romania, Paolo; D'Alicandro, Valerio; De Ioris, Maretta; Castellano, Aurora; Furlanello, Cesare; Locatelli, Franco; Fruci, Doriana

    2015-09-01

    Neuroblastoma grows within an intricate network of different cell types including epithelial, stromal and immune cells. The presence of tumor-infiltrating T cells is considered an important prognostic indicator in many cancers, but the role of these cells in neuroblastoma remains to be elucidated. Herein, we examined the relationship between the type, density and organization of infiltrating T cells and clinical outcome within a large collection of neuroblastoma samples by quantitative analysis of immunohistochemical staining. We found that infiltrating T cells have a prognostic value greater than, and independent of, the criteria currently used to stage neuroblastoma. A variable in situ structural organization and different concurrent infiltration of T-cell subsets were detected in tumors with various outcomes. Low-risk neuroblastomas were characterized by a higher number of proliferating T cells and a more structured T-cell organization, which was gradually lost in tumors with poor prognosis. We defined an immunoscore based on the presence of CD3 + , CD4 + and CD8 + infiltrating T cells that associates with favorable clinical outcome in MYCN-amplified tumors, improving patient survival when combined with the v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) status. These findings support the hypothesis that infiltrating T cells influence the behavior of neuroblastoma and might be of clinical importance for the treatment of patients.

  17. HOXC9-Induced Differentiation in Neuroblastoma Development

    DTIC Science & Technology

    2014-10-01

    Neuroblastoma Development PRINCIPAL INVESTIGATOR: Han-Fei Ding RECIPIENT: Georgia Health Sciences University Research Institute, Inc... Neuroblastoma  Development   5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0613 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...role in determining the differentiation states of neuroblastoma tumors, with higher levels of HOXC9 promoting differentiation. At the cellular level

  18. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  19. Neurotrophin regulation of sodium and calcium channels in human neuroblastoma cells.

    PubMed

    Urbano, F J; Buño, W

    2000-01-01

    Neurotrophins, acting through tyrosine kinase family genes, are essential for neuronal differentiation. The expression of tyrosine kinase family genes is prognostic in neuroblastoma, and neurotrophins reduce proliferation and induce differentiation, indicating that neuroblastomas are regulated by neurotrophins. We tested the effects of nerve growth factor and brain-derived neurotrophic factor on Na(+) and Ca(2+) currents, using the whole-cell patch-clamp technique, in human neuroblastoma NB69 cells. Control cells exhibited a slow tetrodotoxin-resistant (IC(50)=98 nM) Na(+) current and a high-voltage-activated Ca(2+) current. Exposure to nerve growth factor (50 ng/ml) and/or brain-derived neurotrophic factor (5 ng/ml) produced the expression of a fast tetrodotoxin-sensitive (IC(50)=10 nM) Na(+) current after day 3, and suppressed the slow tetrodotoxin-resistant variety. The same type of high-voltage-activated Ca(2+) current was expressed in control and treated cells. The treatment increased the surface density of both Na(+) and Ca(2+) currents with time after plating, from 17 pA/pF at days 3-5 and 1-5 to 34 and 30 pA/pF after days 6-10, respectively. Therefore, both nerve growth factor and brain-derived neurotrophic factor, acting through different receptors of the tyrosine kinase family and also possibly the tumor necrosis factor receptor-II, were able to regulate differentiation and the expression of Na(+) and Ca(2+) channels, partially reproducing the modifications induced by diffusible astroglial factors. We show that neurotrophins induced differentiation to a neuronal phenotype and modified the expression of Na(+) and Ca(2+) currents, partially reproducing the effects of diffusible astroglial factors.

  20. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells.

    PubMed

    Mulik, Rohit S; Mönkkönen, Jukka; Juvonen, Risto O; Mahadik, Kakasaheb R; Paradkar, Anant R

    2012-11-01

    Curcumin, a natural phytoconstituent, is known to be therapeutically effective in the treatment of various cancers such as, breast cancer, lung cancer, pancreatic cancer, brain cancer, etc. However, low bioavailability and photodegradation of curcumin hampers its overall therapeutic efficacy. Anionic polymerization method was employed for the preparation of apolipoprotein-E3 mediated curcumin loaded poly(butyl)cyanoacrylate nanoparticles (ApoE3-C-PBCA) and characterized for size, zeta potential, entrapment efficiency, photostability, morphology, and in vitro release study. ApoE3-C-PBCA were found to be effective against SH-SY5Y neuroblastoma cells compared to curcumin solution (CSSS) and curcumin loaded PBCA nanoparticles (C-PBCA) from in vitro cell culture investigations. Flow cytometry techniques employed for the detection of anticancer activity revealed enhanced activity of curcumin against SH-SY5Y neuroblastoma cells with ApoE3-C-PBCA compared to CSSS and C-PBCA, and apoptosis being the underlying mechanism. Present study revealed that ApoE3-C-PBCA has tremendous potential to develop into an effective therapeutic treatment modality against brain cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma.

    PubMed

    Whittle, Sarah B; Patel, Kalyani; Zhang, Linna; Woodfield, Sarah E; Du, Michael; Smith, Valeria; Zage, Peter E

    2016-12-01

    Background High-risk neuroblastoma has poor outcomes with high rates of relapse despite aggressive treatment, and novel therapies are needed to improve these outcomes. Ponatinib is a multi-tyrosine kinase inhibitor that targets many pathways implicated in neuroblastoma pathogenesis. We hypothesized that ponatinib would be effective against neuroblastoma in preclinical models. Methods We evaluated the effects of ponatinib on survival and migration of human neuroblastoma cells in vitro. Using orthotopic xenograft mouse models of human neuroblastoma, we analyzed tumors treated with ponatinib for growth, gross and histologic appearance, and vascularity. Results Ponatinib treatment of neuroblastoma cells resulted in decreased cell viability and migration in vitro. In mice with orthotopic xenograft neuroblastoma tumors, treatment with ponatinib resulted in decreased growth and vascularity. Conclusions Ponatinib reduces neuroblastoma cell viability in vitro and reduces tumor growth and vascularity in vivo. The antitumor effects of ponatinib suggest its potential as a novel therapeutic agent for neuroblastoma, and further preclinical testing is warranted.

  2. Biological effects of induced MYCN hyper-expression in MYCN-amplified neuroblastomas.

    PubMed

    Torres, Jaime; Regan, Paul L; Edo, Robby; Leonhardt, Payton; Jeng, Eric I; Rappaport, Eric F; Ikegaki, Naohiko; Tang, Xao X

    2010-10-01

    Neuroblastoma is a childhood malignancy of the sympathetic nervous system. The tumor exhibits two different phenotypes: favorable and unfavorable. MYCN amplification is associated with rapid tumor progression and the worst neuroblastoma disease outcome. We have previously reported that inhibitors of histone deacetylase (HDAC) and proteasome enhance favorable neuroblastoma gene expression in neuroblastoma cell lines and inhibit growth of these cells. In this study, we investigated the effect of trichostatin A or TSA (an HDAC inhibitor), and epoxomycin (a proteasome inhibitor) on MYCN and p53 expression in MYCN-amplified neuroblastoma cells. It was found that TSA down-regulated MYCN expression, but Epoxomycin and the TSA/Epoxomycin combination led to MYCN hyper-expression in MYCN-amplified neuroblastoma cell lines. Despite their contrasting effects on MYCN expression, TSA and Epoxomycin caused growth suppression and cell death of the MYCN-amplified cell lines examined. Consistent with these data, forced hyper-expression of MYCN in MYCN-amplified IMR5 cells via transfection resulted in growth suppression and the increased expression of several genes known to suppress growth or induce cell death. Furthermore, Epoxomycin as a single agent and its combination with TSA enhance p53 expression in the MYCN-amplified neuroblastoma cell lines. Unexpectedly, co-transfection of TP53 and MYCN in IMR5 cells resulted in high p53 expression but a reduction of MYCN expression. Together our data suggest that either down regulation or hyper-expression of MYCN results in growth inhibition and/or apoptosis of MYCN-amplified neuroblastoma cells. In addition, elevated p53 expression has a suppressive effect on MYCN expression in these cells.

  3. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  4. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof

    2016-01-01

    The purpose of this study was to evaluate the cytotoxic potential of Cypermethrin (CM) on cultured human Neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with CM at 0-200µM for 24, 48, and 72 h, in vitro. It was found that CM induced the cell death of Neuroblastoma cells in a dose- and time-dependent manner, as shown by LDH assays. Next, some aspects of the process of cell death triggered by CM in the human SH-SY5Y cell line were investigated. It was revealed that the pan-caspase inhibitor Q-VD-OPh, sensitizes SH-SY5Y cells to necroptosis caused by CM. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 failed to attenuate the effect of the pesticide. Finally, it was shown that inhibition of TNF-a by Pomalidomide (PLD) caused statistically significant reduction in CM-induced cytotoxicity. Overall, the data obtained suggest that CM induces neurotoxicity in SH-SY5Y cells by necroptosis.

  5. Didymin: an orally active citrus flavonoid for targeting neuroblastoma

    PubMed Central

    Singhal, Sharad S.; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-01-01

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma. PMID:28187004

  6. Didymin: an orally active citrus flavonoid for targeting neuroblastoma.

    PubMed

    Singhal, Sharad S; Singhal, Sulabh; Singhal, Preeti; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay

    2017-04-25

    Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.

  7. MiRNA-124 is a link between measles virus persistent infection and cell division of human neuroblastoma cells.

    PubMed

    Naaman, Hila; Rall, Glenn; Matullo, Christine; Veksler-Lublinsky, Isana; Shemer-Avni, Yonat; Gopas, Jacob

    2017-01-01

    Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.

  8. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB.

    PubMed

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.

  9. Neuroblastoma

    MedlinePlus

    Cancer - neuroblastoma ... Neuroblastoma can occur in many areas of the body. It develops from the tissues that form the ... pressure, digestion, and levels of certain hormones. Most neuroblastomas begin in the abdomen, in the adrenal gland, ...

  10. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  11. Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line.

    PubMed

    Oh, J-E; Karlmark Raja, K; Shin, J-H; Pollak, A; Hengstschläger, M; Lubec, G

    2006-10-01

    No systematic approach to detect expression of differentiation-related elements was published so far. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments. We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical identification of proteins to generate a map of cytoskeleton proteins (CPs), i.e., to search for differentiation-related structures. Alpha-actin, actin-like protein 6A, gamma-tubulin complex component 2, tubulin alpha 3/alpha 7, CLIP associating protein 2, B4 integrin interactor homolog were detectable in the undifferentiated cell line exclusively and neuron-specific CPs drebrin and presynaptic density protein 95, actin-related protein 2/3, alpha and beta-centractin, PDZ-domain actin binding protein, actinin alpha 1, profilin II, ezrin, coactosin-like protein, transgelin 2, myosin light polypeptide 6, tubulin alpha 2, 6 and 7, beta tubulin (94% similar with tubulin beta-2), tubulin beta 3, tubulin tyrosine ligase-like protein 1, lamin B1 and keratin 20 were observed in the differentiated cell line only. We herein identified differentiation-related expressional patterns thus providing new evidence for the role of CPs in the process of neuronal differentiation.

  12. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells.

    PubMed

    Guarnieri, S; Pilla, R; Morabito, C; Sacchetti, S; Mancinelli, R; Fanò, G; Mariggiò, M A

    2009-04-01

    SH-SY5Y neuroblastoma cells, a model for studying neuronal differentiation, are able to differentiate into either cholinergic or dopaminergic/adrenergic phenotypes depending on media conditions. Using this system, we asked whether guanosine (Guo) or guanosine-5'-triphosphate (GTP) are able to drive differentiation towards one particular phenotype. Differentiation was determined by evaluating the frequency of cells bearing neurites and assessing neurite length after exposure to different concentrations of Guo or GTP for different durations. After 6 days, 0.3 mM Guo or GTP induced a significant increase in the number of cells bearing neurites and increased neurite length. Western blot analyses confirmed that purines induced differentiation; cells exposed to purines showed increases in the levels of GAP43, MAP2, and tyrosine hydroxylase. Proliferation assays and cytofluorimetric analyses indicated a significant anti-proliferative effect of purines, and a concentration-dependent accumulation of cells in S-phase, starting after 24 h of purine exposure and extending for up to 6 days. A transcriptional profile analysis using gene arrays showed that an up-regulation of cyclin E2/cdk2 evident after 24 h was responsible for S-phase entry, and a concurrent down-regulation of cell-cycle progression-promoting cyclin B1/B2 prevented S-phase exit. In addition, patch-clamp recordings revealed that 0.3 mM Guo or GTP, after 6 day incubation, significantly decreased Na(+) currents. In conclusion, we showed Guo- and GTP-induced cell-cycle arrest in neuroblastoma cells and suggest that this makes these cells more responsive to differentiation processes that favor the dopaminergic/adrenergic phenotype.

  13. Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma.

    PubMed

    Sweeney, Elizabeth E; Cano-Mejia, Juliana; Fernandes, Rohan

    2018-04-17

    A thermal "window" of immunogenic cell death (ICD) elicited by nanoparticle-based photothermal therapy (PTT) in an animal model of neuroblastoma is described. In studies using Prussian blue nanoparticles to administer photothermal therapy (PBNP-PTT) to established localized tumors in the neuroblastoma model, it is observed that PBNP-PTT conforms to the "more is better" paradigm, wherein higher doses of PBNP-PTT generates higher cell/local heating and thereby more cell death, and consequently improved animal survival. However, in vitro analysis of the biochemical correlates of ICD (ATP, high-motility group box 1, and calreticulin) elicited by PBNP-PTT demonstrates that PBNP-PTT triggers a thermal window of ICD. ICD markers are highly expressed within an optimal temperature (thermal dose) window of PBNP-PTT (63.3-66.4 °C) as compared with higher (83.0-83.5 °C) and lower PBNP-PTT (50.7-52.7 °C) temperatures, which both yield lower expression. Subsequent vaccination studies in the neuroblastoma model confirm the in vitro findings, wherein PBNP-PTT administered within the optimal temperature window results in long-term survival (33.3% at 100 d) compared with PBNP-PTT administered within the higher (0%) and lower (20%) temperature ranges, and controls (0%). The findings demonstrate a tunable immune response to heat generated by PBNP-PTT, which should be critically engaged in the administration of PTT for maximizing its therapeutic benefits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 14 CFR § 1203b.104 - Exercise of arrest authority-general guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Exercise of arrest authority-general guidelines. § 1203b.104 Section § 1203b.104 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SECURITY PROGRAMS; ARREST AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.104...

  15. Glycolysis-respiration relationships in a neuroblastoma cell line.

    PubMed

    Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua

    2013-04-01

    Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  17. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK -mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  18. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    1997-09-03

    Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect

  20. Activation of transglutaminase 2 by nerve growth factor in differentiating neuroblastoma cells: A role in cell survival and neurite outgrowth.

    PubMed

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2018-02-05

    NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells

    PubMed Central

    Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, Aldo

    2017-01-01

    We recently reported the in vitro over-expression of 45A, a RNA polymerase III-transcribed non-coding (nc)RNA, that perturbs the intracellular content of FE65L1 affecting cell proliferation rate, short-term response to genotoxic stress, substrate adhesion capacity and, ultimately, increasing the tumorigenic potential of human neuroblastoma cells. In this work, to deeply explore the mechanism by which 45A ncRNA contributes to cancer development, we targeted in vitro and in vivo 45A levels by the stable overexpression of antisense 45A RNA. 45A downregulation leads to deep modifications of cytoskeleton organization, adhesion and migration of neuroblastoma cells. These effects are correlated with alterations in the expression of several genes including GTSE1 (G2 and S phase-expressed-1), a crucial regulator of tumor cell migration and metastatic potential. Interestingly, the downregulation of 45A ncRNA strongly affects the in vivo tumorigenic potential of SKNBE2 neuroblastoma cells, increasing tumor nodule compactness and reducing GTSE1 protein expression in a subcutaneous neuroblastoma mouse model. Moreover, intracardiac injection of neuroblastoma cells showed that downregulation of 45A ncRNA also influences tumor metastatic ability. In conclusion, our data highlight a key role of 45A ncRNA in cancer development and suggest that its modulation might represent a possible novel anticancer therapeutic approach. PMID:28029658

  2. The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells.

    PubMed

    Penna, Ilaria; Gigoni, Arianna; Costa, Delfina; Vella, Serena; Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, Aldo

    2017-01-31

    We recently reported the in vitro over-expression of 45A, a RNA polymerase III-transcribed non-coding (nc)RNA, that perturbs the intracellular content of FE65L1 affecting cell proliferation rate, short-term response to genotoxic stress, substrate adhesion capacity and, ultimately, increasing the tumorigenic potential of human neuroblastoma cells. In this work, to deeply explore the mechanism by which 45A ncRNA contributes to cancer development, we targeted in vitro and in vivo 45A levels by the stable overexpression of antisense 45A RNA.45A downregulation leads to deep modifications of cytoskeleton organization, adhesion and migration of neuroblastoma cells. These effects are correlated with alterations in the expression of several genes including GTSE1 (G2 and S phase-expressed-1), a crucial regulator of tumor cell migration and metastatic potential. Interestingly, the downregulation of 45A ncRNA strongly affects the in vivo tumorigenic potential of SKNBE2 neuroblastoma cells, increasing tumor nodule compactness and reducing GTSE1 protein expression in a subcutaneous neuroblastoma mouse model. Moreover, intracardiac injection of neuroblastoma cells showed that downregulation of 45A ncRNA also influences tumor metastatic ability. In conclusion, our data highlight a key role of 45A ncRNA in cancer development and suggest that its modulation might represent a possible novel anticancer therapeutic approach.

  3. Neuroblastoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Neuroblastoma treatment generally is based on whether the tumor is low, intermediate, or high risk. Treatment options include surgery, observation, radiation therapy, chemotherapy, stem cell rescue, and targeted therapy. Get detailed neuroblastoma treatment information in this summary for clinicians.

  4. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines.

    PubMed

    Redova, Martina; Chlapek, Petr; Loja, Tomas; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-02-01

    We investigated the possible modulation by LOX/ COX inhibitors of all-trans retinoic acid (ATRA)-induced cell differentiation in two established neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor of cyclooxygenase-2, were chosen for this study. The effects of the combined treatment with ATRA and LOX/COX inhibitors on neuroblastoma cells were studied using cell morphology assessment, detection of differentiation markers by immunoblotting, measurement of proliferation activity, and cell cycle analysis and apoptosis detection by flow cytometry. The results clearly demonstrated the potential of caffeic acid to enhance ATRA-induced cell differentiation, especially in the SK-N-BE(2) cell line, whereas application of celecoxib alone or with ATRA led predominantly to cytotoxic effects in both cell lines. Moreover, the higher sensitivity of the SK-N-BE(2) cell line to combined treatment with ATRA and LOX/COX inhibitors suggests that cancer stem cells are a main target for this therapeutic approach. Nevertheless, further detailed study of the phenomenon of enhanced cell differentiation by expression profiling is needed.

  5. Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.

    PubMed

    Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill

    2017-11-01

    Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.

  6. 32 CFR Appendix B to Part 104 - Sample Employer Notification of Uniformed Service

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Sample Employer Notification of Uniformed Service B Appendix B to Part 104 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... MEMBERS AND FORMER SERVICE MEMBERS OF THE UNIFORMED SERVICES Pt. 104, App. B Appendix B to Part 104—Sample...

  7. 32 CFR Appendix B to Part 104 - Sample Employer Notification of Uniformed Service

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Sample Employer Notification of Uniformed Service B Appendix B to Part 104 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE... MEMBERS AND FORMER SERVICE MEMBERS OF THE UNIFORMED SERVICES Pt. 104, App. B Appendix B to Part 104—Sample...

  8. BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma.

    PubMed

    Sime, Wondossen; Niu, Qiankun; Abassi, Yasmin; Masoumi, Katarzyna Chmielarska; Zarrizi, Reihaneh; Køhler, Julie Bonne; Kjellström, Sven; Lasorsa, Vito Alessandro; Capasso, Mario; Fu, Haian; Massoumi, Ramin

    2018-04-24

    BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.

  9. Patient-derived xenografts as preclinical neuroblastoma models.

    PubMed

    Braekeveldt, Noémie; Bexell, Daniel

    2018-05-01

    The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.

  10. The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model.

    PubMed

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Woodfield, Sarah E; Zhang, Huiyuan; Yang, Kristine L; Bieerkehazhi, Shayahati; Qi, Lin; Li, Xiaonan; Gu, Jerry; Xu, Xin; Jin, Jingling; Muscal, Jodi A; Yang, Tianshu; Xu, Guo-Tong; Yang, Jianhua

    2017-08-01

    Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes

    PubMed Central

    Ferguson, Ross; Subramanian, Vasanta

    2016-01-01

    Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease. PMID:27391595

  12. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes.

    PubMed

    Ferguson, Ross; Subramanian, Vasanta

    2016-01-01

    Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease.

  13. The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis

    PubMed Central

    Zhang, Jie; Liu, Bing; Li, Mengshu; Feng, Dongru; Jin, Honglei; Wang, Peng; Liu, Jun; Xiong, Feng; Wang, Jinfa; Wang, Hong-Bin

    2015-01-01

    Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression. PMID:25794933

  14. CHL1 gene acts as a tumor suppressor in human neuroblastoma.

    PubMed

    Ognibene, Marzia; Pagnan, Gabriella; Marimpietri, Danilo; Cangelosi, Davide; Cilli, Michele; Benedetti, Maria Chiara; Boldrini, Renata; Garaventa, Alberto; Frassoni, Francesco; Eva, Alessandra; Varesio, Luigi; Pistoia, Vito; Pezzolo, Annalisa

    2018-05-25

    Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system that accounts for 15% of pediatric cancer deaths. A distal portion of human chromosome 3p is often deleted in neuroblastoma, this region may contain one or more putative tumor suppressor genes. A 2.54 Mb region at 3p26.3 encompassing the smallest region of deletion pinpointed CHL1 gene, the locus for neuronal cell adhesion molecule close homolog of L1. We found that low CHL1 expression predicted poor outcome in neuroblastoma patients. Here we have used two inducible cell models to analyze the impact of CHL1 on neuroblastoma biology. Over-expression of CHL1 induced neurite-like outgrowth and markers of neuronal differentiation in neuroblastoma cells, halted tumor progression, inhibited anchorage-independent colony formation, and suppressed the growth of human tumor xenografts. Conversely, knock-down of CHL1 induced neurite retraction and activation of Rho GTPases, enhanced cell proliferation and migration, triggered colony formation and anchorage-independent growth, accelerated growth in orthotopic xenografts mouse model. Our findings demonstrate unambiguously that CHL1 acts as a regulator of proliferation and differentiation of neuroblastoma cells through inhibition of the MAPKs and Akt pathways. CHL1 is a novel candidate tumor suppressor in neuroblastoma, and its associated pathways may represent a promising target for future therapeutic interventions.

  15. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  16. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    PubMed

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  17. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

    PubMed Central

    Carpenter, EL; Haglund, EA; Mace, EM; Deng, D; Martinez, D; Wood, AC; Chow, AK; Weiser, DA; Belcastro, LT; Winter, C; Bresler, SC; Asgharzadeh, S; Seeger, RC; Zhao, H; Guo, R; Christensen, JG; Orange, JS; Pawel, BR; Lemmon, MA; Mossé, YP

    2013-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies–as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK. PMID:22266870

  18. Osteochondroma in long-term survivors of high-risk neuroblastoma.

    PubMed

    Kushner, Brian H; Roberts, Stephen S; Friedman, Danielle N; Kuk, Deborah; Ostrovnaya, Irina; Modak, Shakeel; Kramer, Kim; Basu, Ellen M; Cheung, Nai-Kong V

    2015-06-15

    Osteochondromas are benign bony protrusions that can be spontaneous or associated with radiotherapy (RT). Current treatment of high-risk neuroblastoma includes dose-intensive chemotherapy, local RT, an anti-GD2 monoclonal antibody (MoAb), and isotretinoin. Late effects are emerging. The authors examined osteochondromas in 362 patients who were aged <10 years when diagnosed with neuroblastoma, had received a MoAb plus isotretinoin since 2000, and had survived >24 months from the time of the first dose of the MoAb. The incidence rate of osteochondroma was determined using the competing risks approach, in which the primary event was osteochondroma calculated from the date of neuroblastoma diagnosis and the competing event was death without osteochondroma. A total of 21 osteochondroma cases were found among 14 patients who were aged 5.7 to 15.3 years (median, 10.4 years) and 3.1 to 11.2 years (median, 8.2 years) from the time of neuroblastoma diagnosis. The cumulative incidence rate was 0.6% at 5 years and 4.9% at 10 years from the neuroblastoma diagnosis. Nine osteochondromas were revealed incidentally during assessments of neuroblastoma disease status or bone age. Thirteen osteochondromas were detected outside RT portals and had characteristics of spontaneous forms. Complications were limited to pain necessitating surgical resection in 3 patients, but follow-up was short at 0.3 to 7.7 years (median, 3.5 years). Osteochondromas in long-term survivors of neuroblastoma should be expected because these benign growths can be related to RT and these patients undergo radiologic studies over years, are monitored for late toxicities through and beyond adolescence, and receive special attention (because of concerns about disease recurrence) if they develop a bony protuberance. A pathogenic role for chemotherapy, anti-GD2 MoAbs, or isotretinoin remains speculative. © 2015 American Cancer Society.

  19. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models

    PubMed Central

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-01-01

    The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations. DOI: http://dx.doi.org/10.7554/eLife.17137.001 PMID:28425916

  20. β-Arrestin1 and Distinct CXCR4 Structures Are Required for Stromal Derived Factor-1 to Downregulate CXCR4 Cell-Surface Levels in Neuroblastoma

    PubMed Central

    Clift, Ian C.; Bamidele, Adebowale O.; Rodriguez-Ramirez, Christie; Kremer, Kimberly N.

    2014-01-01

    CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472

  1. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A

    2015-01-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. PMID:25825542

  2. No evidence for involvement of SDHD in neuroblastoma pathogenesis

    PubMed Central

    De Preter, Katleen; Vandesompele, Jo; Hoebeeck, Jasmien; Vandenbroecke, Caroline; Smet, Jöel; Nuyts, Annick; Laureys, Geneviève; Combaret, Valérie; Van Roy, Nadine; Roels, Frank; Van Coster, Rudy; Praet, Marleen; De Paepe, Anne; Speleman, Frank

    2004-01-01

    Background Deletions in the long arm of chromosome 11 are observed in a subgroup of advanced stage neuroblastomas with poor outcome. The deleted region harbours the tumour suppressor gene SDHD that is frequently mutated in paraganglioma and pheochromocytoma, which are, like neuroblastoma, tumours originating from the neural crest. In this study, we sought for evidence for involvement of SDHD in neuroblastoma. Methods SDHD was investigated on the genome, transcriptome and proteome level using mutation screening, methylation specific PCR, real-time quantitative PCR based homozygous deletion screening and mRNA expression profiling, immunoblotting, functional protein analysis and ultrastructural imaging of the mitochondria. Results Analysis at the genomic level of 67 tumour samples and 37 cell lines revealed at least 2 bona-fide mutations in cell lines without allelic loss at 11q23: a 4bp-deletion causing skip of exon 3 resulting in a premature stop codon in cell line N206, and a Y93C mutation in cell line NMB located in a region affected by germline SDHD mutations causing hereditary paraganglioma. No evidence for hypermethylation of the SDHD promotor region was observed, nor could we detect homozygous deletions. Interestingly, SDHD mRNA expression was significantly reduced in SDHD mutated cell lines and cell lines with 11q allelic loss as compared to both cell lines without 11q allelic loss and normal foetal neuroblast cells. However, protein analyses and assessment of mitochondrial morphology presently do not provide clues as to the possible effect of reduced SDHD expression on the neuroblastoma tumour phenotype. Conclusions Our study provides no indications for 2-hit involvement of SDHD in the pathogenesis of neuroblastoma. Also, although a haplo-insufficient mechanism for SDHD involvement in advanced stage neuroblastoma could be considered, the present data do not provide consistent evidence for this hypothesis. PMID:15331017

  3. Crizotinib Synergizes with Chemotherapy in Preclinical Models of Neuroblastoma

    PubMed Central

    Krytska, Kateryna; Ryles, Hannah T.; Sano, Renata; Raman, Pichai; Infarinato, Nicole R.; Hansel, Theodore D.; Makena, Monish R.; Song, Michael M.; Reynolds, C. Patrick; Mossé, Yael P.

    2015-01-01

    Purpose The presence of an ALK aberration correlates with inferior survival for patients with high-risk neuroblastoma. The emergence of ALK inhibitors such as crizotinib has provided novel treatment opportunities. However, certain ALK mutations result in de novo crizotinib resistance, and a phase I trial of crizotinib showed a lack of response in patients harboring those ALK mutations. Thus, understanding mechanisms of resistance and defining circumvention strategies for the clinic is critical. Experimental Design The sensitivity of human neuroblastoma-derived cell lines, cell line-derived and patient-derived xenograft (PDX) models with varying ALK statuses to crizotinib combined with topotecan and cyclophosphamide (topo/cyclo) was examined. Cultured cells and xenografts were evaluated for effects of these drugs on proliferation, signaling, and cell death, and assessment of synergy. Results In neuroblastoma murine xenografts harboring the most common ALK mutations, including those mutations associated with resistance to crizotinib (but not in those with wild-type ALK), crizotinib combined with topo/cyclo enhanced tumor responses and mouse event-free-survival. Crizotinib + topo/cyclo showed synergistic cytotoxicity and higher caspase-dependent apoptosis than crizotinib or topo/cyclo alone in neuroblastoma cell lines with ALK aberrations (mutation or amplification). Conclusions Combining crizotinib with chemotherapeutic agents commonly used in treating newly diagnosed patients with high-risk neuroblastoma restores sensitivity in preclinical models harboring both sensitive ALK aberrations and de novo resistant ALK mutations. These data support clinical testing of crizotinib and conventional chemotherapy with the goal of integrating ALK inhibition into multi-agent therapy for ALK-aberrant neuroblastoma patients. PMID:26438783

  4. Neuroblastoma treatment in the post-genomic era.

    PubMed

    Esposito, Maria Rosaria; Aveic, Sanja; Seydel, Anke; Tonini, Gian Paolo

    2017-02-08

    Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib.We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.

  5. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    PubMed Central

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  6. Evidence for idiotypic- and antiidiotypic B-B cellular interaction with the use of cloned antiidiotypic B cell line.

    PubMed

    Bitoh, S; Fujimoto, S; Yamamoto, H

    1990-03-15

    Immunization of BALB/c mice with MOPC104E myeloma protein induces antiidiotypic B lymphocytes that have Id-specific enhancing activity on antibody production. The B-B cell interaction was restricted to both Igh and class II MHC. However, anti-Thy-1 and C-treated splenic B cells were maintained for more than 1 y in a mixture of Con A-stimulated splenocyte culture supernatant and synthetic medium. In applying the long term culture method, we have established a cloned B cell line named B19-1d, B19-1d cells are specific to MOPC104E or J558 cross-reactive Id and they express surface mu, lambda but no Ly-1. B19-1d do not spontaneously secrete Ig but produce them upon stimulation with bacterial LPS. The effect of B19-1d cell line on idiotypic antibody production was tested. Addition of only 10 to 100 B19-1d cells into dextran-immune B cell culture greatly enhanced the Id+ antidextran antibody responses. On the contrary, the antidextran antibody production was suppressed by the higher doses of B19-1d cells. The effective cooperation between dextran-immune B cells and B19-1d cloned B cells was restricted to class II MHC. The role of idiotypic- and antiidiotypic B-B cell interaction in immune regulation and repertoire generation was suggested.

  7. Antagonism of cytotoxic chemotherapy in neuroblastoma cell lines by 13-cis-retinoic acid is mediated by the anti-apoptotic Bcl-2 family proteins

    PubMed Central

    Hadjidaniel, Michael Daniel; Reynolds, Charles Patrick

    2010-01-01

    13-cis-retinoic acid (13-cis-RA), is given at completion of cytotoxic therapy to control minimal residual disease in neuroblastoma. We investigated the effect of combining 13-cis-RA with cytotoxic agents employed in neuroblastoma therapy using a panel of 6 neuroblastoma cell lines. The effect of 13-cis-RA on the mitochondrial apoptotic pathway, was studied by flow cytometry, cytotoxicity by DIMSCAN, and protein expression by immuoblotting. Pre-treatment and direct combination of 13-cis-RA with etoposide, topotecan, cisplatin, melphalan, or doxorubicin markedly antagonized the cytotoxicity of those agents in 4 out of 6 tested neuroblastoma cell lines, increasing fractional cell survival by 1 to 3 logs. The inhibitory concentration of drugs (IC99) increased from clinically achievable levels to non-achievable levels: > 5-fold (cisplatin) to > 7-fold (etoposide). In SMS-KNCR neuroblastoma cells, 13-cis-RA upregulated expression of Bcl-2 and Bcl-xL RNA and protein, and this was associated with protection from etoposide-mediated apoptosis at the mitochondrial level. A small molecule inhibitor of the Bcl-2 family of proteins (ABT-737) restored mitochondrial membrane potential loss and apoptosis in response to cytotoxic agents in 13-cis-RA treated cells. Prior selection for resistance to RA did not diminish the response to cytotoxic treatment. Thus, combining 13-cis-RA with cytotoxic chemotherapy significantly reduced the cytotoxiciity for neuroblastoma in vitro, mediated at least in part via the anti-apoptotic Bcl-2 family of proteins. PMID:21159604

  8. shRNA-Mediated Silencing of Y-Box Binding Protein-1 (YB-1) Suppresses Growth of Neuroblastoma Cell SH-SY5Y In Vitro and In Vivo

    PubMed Central

    Wang, Hong; Sun, Ruowen; Gu, Min; Li, Shuang; Zhang, Bin; Chi, Zuofei; Hao, Liangchun

    2015-01-01

    Y-box binding protein-1 (YB-1), a member of cold-shock protein superfamily, has been demonstrated to be associated with tumor malignancy, and is proposed as a prognostic marker in multiple carcinomas. However, the role of YB-1 in neuroblastoma has not been well studied. To investigate the functional role of YB-1 in neuroblastoma, we established a YB-1-silenced neuroblastoma cell strain by inhibiting YB-1 expression using a shRNA knockdown approach. YB-1-silenced neuroblastoma SH-SY5Y cells exhibited a pronounced reduction in cell proliferation and an increased rate of apoptosis in vitro and in vivo xenograft tumor model. At molecular level, YB-1 silencing resulted in downregulation of Cyclin A, Cyclin D1 and Bcl-2, as well as upregulated levels of Bax, cleaved caspase-3 and cleaved PARP-1. We further demonstrated that YB-1 transcriptionally regulated Cyclin D1 expression by chromatin-immunoprecipitation and luciferase reporter assays. In addition, xenograft tumors derived from neuroblastoma SH-SY5Y cell line were treated with YB-1 shRNA plasmids by intra-tumor injection, and YB-1 targeting effectively inhibited tumor growth and induced cell death. In summary, our findings suggest that YB-1 plays a critical role in neuroblastoma development, and it may serve as a potential target for neuroblastoma therapy. PMID:25993060

  9. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons.

    PubMed

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. We assessed intracellular calcium ([Ca(2+)]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Chemosensitive receptors [Ca(2+)](i) signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca(2+)](i) transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca(2+)](i) transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca(2+)](i) by >50% (p<0.05) and abolished the 17β-estradiol effect. By contrast, apoptotic DRG cells increased initial ATP-induced [Ca(2+)](i), flux four fold and abolished subsequent [Ca(2+)](i), responses to ATP stimulation (p<0.001). Capsaicin (100nM) induced [Ca(2+)](i) responses were totally abolished. The local presence of apoptotic DRG or human neuroblastoma cells induced differing abnormal ATP and capsaicin-mediated [Ca(2+)](i) fluxes in normal DRG. These findings support physically disconnected, non-diffusible cell-to-cell signaling. Further studies are needed to delineate the mechanism(s) of and model(s) of communication.

  10. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  11. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells.

    PubMed

    Kranenburg, O; Scharnhorst, V; Van der Eb, A J; Zantema, A

    1995-10-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.

  12. KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells.

    PubMed

    Mohan, Nishant; Ai, Walden; Chakrabarti, Mrinmay; Banik, Naren L; Ray, Swapan K

    2013-06-01

    Neuroblastoma is a childhood tumor that arises from immature neuroblasts of the sympathetic nervous system. Krüpple-like factor 4 (KLF4) is a transcription factor, the precise function of which in neuroblastoma is unclear. We examined the effects of KLF4 overexpression and apigenin (APG) treatment in human malignant neuroblastoma SK-N-DZ and IMR-32 cell lines. KLF4 overexpression in both SK-N-DZ and IMR-32 cell lines was confirmed by laser scanning immunofluorescent confocal microscopy and Western blotting. We found that 100 nM KLF4 plasmid and 25 μM APG synergistically inhibited the growth of SK-N-DZ and IMR-32 cells. We also found increase in KLF4 expression in response to treatment with various concentrations of APG. Combination of KLF4 plasmid and APG treatment significantly increased the amounts of apoptosis in both cell lines when compared with control vector or single treatment. We also noticed that the combination therapy decreased expression of the anti-apoptotic proteins Bcl-2 and Mcl-1, increased expression of the pro-apoptotic proteins Bax, Noxa, and Puma, upregulated p53, and caused activation of caspase-3 for cleavage of the inhibitor of caspase-activated DNase (ICAD) leading to completion of apoptosis machinery. Further, combination of KLF4 overexpression and APG treatment was highly effective in inhibiting migration of both neuroblastoma cell lines and was associated with down regulation of matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9. Collectively, our results from this investigation strongly suggest that KLF4 functions as a tumor suppressor and potentiates the anti-cancer activities of APG in two different human malignant neuroblastoma cell lines. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. The mutational landscape of MYCN, Lin28b and ALK F1174L driven murine neuroblastoma mimics human disease.

    PubMed

    De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank

    2018-02-02

    Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.

  14. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA.

    PubMed

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.

  15. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akter, Jesmin; Takatori, Atsushi, E-mail: atakatori@chiba-cc.jp; Islam, Md. Sazzadul

    2014-10-10

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus duringmore » ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.« less

  16. The metastatic microenvironment: lung-derived factors control the viability of neuroblastoma lung metastasis.

    PubMed

    Maman, Shelly; Edry-Botzer, Liat; Sagi-Assif, Orit; Meshel, Tsipi; Yuan, Weirong; Lu, Wuyuan; Witz, Isaac P

    2013-11-15

    Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease. Copyright © 2013 UICC.

  17. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma

    PubMed Central

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E.; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J.; Reifenberger, Guido; Büsselberg, Dietrich

    2017-01-01

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment. PMID:28206967

  18. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.

    PubMed

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich

    2017-04-04

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.

  19. Targeting gastrin-releasing peptide as a new approach to treat aggressive refractory neuroblastomas.

    PubMed

    Paul, Pritha; Gillory, Lauren A; Kang, JungHee; Qiao, Jingbo; Chung, Dai H

    2011-03-01

    The overall survival for neuroblastoma remains dismal, in part due to the emergence of resistance to chemotherapeutic drugs. We have demonstrated that gastrin-releasing peptide (GRP), a gut peptide secreted by neuroblastoma, acts as an autocrine growth factor. We hypothesized that knockdown of GRP will induce apoptosis in neuroblastoma cells and potentiate the cytotoxic effects of chemotherapeutic agents. The human neuroblastoma cell lines (JF, SK-N-SH) were transfected with small interfering (si) RNA targeted at GRP. Apoptosis was assessed by DNA fragmentation assay. Immunoblotting was used to confirm molecular markers of apoptosis, and flow cytometry was performed to determine cell cycle arrest after GRP knockdown. siGRP resulted in an increase in apoptosis in the absence of chemotherapeutic interventions. A combination of GRP silencing and chemotherapeutic drugs resulted in enhanced apoptosis when compared to either of the treatments alone. GRP silencing led to increased expression of proapoptotic proteins, p53 and p21. Silencing of GRP induces apoptosis in neuroblastoma cells; it acts synergistically with chemotherapeutic effects of etoposide and vincristine. GRP knockdown-mediated apoptosis appears to be associated with upregulation of p53 in neuroblastoma cells. Targeting GRP may be postulated as a potential novel agent for combinational treatment to treat aggressive neuroblastomas. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells.

    PubMed

    Vaitkuviene, Aida; McDonald, Matthew; Vahidpour, Farnoosh; Noben, Jean-Paul; Sanen, Kathleen; Ameloot, Marcel; Ratautaite, Vilma; Kaseta, Vytautas; Biziuleviciene, Gene; Ramanaviciene, Almira; Nesladek, Milos; Ramanavicius, Arunas

    2015-01-25

    The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment. Boron doped NCD coatings were also prepared and investigated. NCD surface wettability was determined by contact angle measurement. To assess biocompatibility of the NCD coatings, the neuroblastoma SH-SY5Y cell line was used. Cells were plated directly onto diamond surfaces and cultured in medium with or without fetal bovine serum (FBS), in order to evaluate the ability of cells to adhere and to proliferate. The obtained results showed that these cells adhered and proliferated better on NCD surfaces than on the bare fused silica. The cell proliferation on NCD in medium with and without FBS after 48h from plating was on average, respectively, 20 and 58% higher than that on fused silica, irrespective of NCD surface modification. Our results showed that the hydrogenated, oxygenated and boron-doped NCD coatings can be used for biomedical purposes, especially where good optical transparency is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Differentially expressed genes and pathways induced by organophosphates in human neuroblastoma cells.

    PubMed

    Li, Tianwei; Zhao, Hongtao; Hung, Guo-Chiuan; Han, Jing; Tsai, Shien; Li, Bingjie; Zhang, Jing; Puri, Raj K; Lo, Shyh-Ching

    2012-12-01

    Organophosphates (OPs) are toxic chemicals commonly used as pesticides and herbicides. Some OPs are highly toxic to humans and have been used in warfare and terrorist attacks. In order to elucidate the molecular mechanisms of injury caused by OPs, the differentially expressed genes were analyzed in human SK-N-SH neuroblastoma cells induced by three OPs. The SK-N-SH cells were treated with one of the three OPs, chlorpyrifos, dichlorvos or methamidophos at LC20 (high-dose), the concentration causing 20% cell death, as well as 1/20 of LC20 (low-dose), a sub-lethal concentration with no detectable cell death, for 24 h. The genome-wide gene changes were identified by Agilent Microarray System, and analyzed by microarray analysis tools. The analysis revealed neuroblastoma cells treated with the high doses of all three OPs markedly activated cell apoptosis and inhibited cell growth and proliferation genes, which would most likely lead to the process of cell death. Interestingly, the analysis also revealed significant decrease in expressions of many genes in a specific spliceosome pathway in cells treated with the low doses of all three different OPs. The change of spliceosome pathway may represent an important mechanism of injury in neuronal cells exposed to low doses of various OPs. In addition to unraveling a potentially different form of OP pathogenesis, this finding could provide a new diagnostic marker in assessing OP-associated injury in cells or tissues. In addition, these results could also contribute to the development of new prevention and/or therapeutic regimens against OP toxicity.

  2. Iron depletion results in Src kinase inhibition with associated cell cycle arrest in neuroblastoma cells.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2015-03-01

    Iron is required for cellular proliferation. Recently, using systematic time studies of neuroblastoma cell growth, we better defined the G1 arrest caused by iron chelation to a point in mid-G1, where cyclin E protein is present, but the cyclin E/CDK2 complex kinase activity is inhibited. In this study, we again used the neuroblastoma SKNSH cells lines to pinpoint the mechanism responsible for this G1 block. Initial studies showed in the presence of DFO, these cells have high levels of p27 and after reversal of iron chelation p27 is degraded allowing for CDK2 kinase activity. The initial activation of CDK2 kinase allows cells to exit G1 and enter S phase. Furthermore, we found that inhibition of p27 degradation by DFO is directly associated with inhibition of Src kinase activity measured by lack of phosphorylation of Src at the 416 residue. Activation of Src kinase occurs very early after reversal from the DFO G1 block and is temporally associated with initiation of cellular proliferation associated with entry into S phase. For the first time therefore we show that iron chelation inhibits Src kinase activity and this activity is a requirement for cellular proliferation. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma.

    PubMed

    Yang, Chao; Tan, Juan; Zhu, Jun; Wang, Shan; Wei, Guanghui

    2017-06-06

    The transcriptional co-activator Yes-associated protein (YAP) is essential for Hippo pathway-driven tumorigenesis in various cancers. However, the expression and function of YAP in neuroblastoma remains elusive. Here, we show that YAP was highly expressed in Neuroblastoma (NB) and expression levels correlated with advanced tumor staging. Knockdown of YAP significantly impaired neuroblastoma proliferation, tumorigenesis, and invasion in vitro. Injection of the YAP inhibitor, Peptide 17, dramatically prevented neuroblastoma subcutaneous tumor growth by efficiently downregulating YAP expression in tumors. Additionally, less proliferative and more apoptotic cells were found in the Peptide 17 treatment group. Furthermore, YAP inhibition significantly inhibited cisplatin-resistant neuroblastoma proliferation, tumorigenesis, and invasion in vitro. The combination of Peptide 17 with low-dose cisplatin efficiently impaired cisplatin-resistant NB subcutaneous tumor growth, being as effective as high-dose cisplatin. Notably, the combination therapy caused lesser liver toxicity in mice compared to the high-dose cisplatin treatment group. Collectively, this work identifies YAP as a novel regulator of neuroblastoma proliferation, tumorigenesis, and invasion and indicates that YAP is a potential therapeutic target for cisplatin-resistant neuroblastoma.

  4. Different Subcellular Localization of ALCAM Molecules in Neuroblastoma: Association with Relapse

    PubMed Central

    Corrias, Maria Valeria; Gambini, Claudio; Gregorio, Andrea; Croce, Michela; Barisione, Gaia; Cossu, Claudia; Rossello, Armando; Ferrini, Silvano; Fabbi, Marina

    2010-01-01

    Background: The Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD), involved in nervous system development, has been linked to tumor progression and metastasis in several tumors. No information is available on ALCAM expression in neuroblastoma, a childhood neoplasia originating from the sympathetic nervous system. Methods: ALCAM expression was analysed by immunofluorescence and immunohistochemistry on differentiated neuroblastoma cell lines and on archival specimens of stroma-poor, not MYCN amplified, resectable neuroblastoma tumors, respectively. Results: ALCAM is variously expressed in neuroblastoma cell lines, is shed by metalloproteases and is cleaved by ADAM17/TACE in vitro. ALCAM is expressed in neuroblastoma primary tumors with diverse patterns of subcellular localization and is highly expressed in the neuropil area in a subgroup of cases. Tumor specimens showing high expression of ALCAM at the membrane of the neuroblast body or low levels in the neuropil area are associated with relapse (P = 0.044 and P < 0.0001, respectively). In vitro differentiated neuroblastoma cells show strong ALCAM expression on neurites, suggesting that ALCAM expression in the neuropil is related to a differentiated phenotype. Conclusions: Assessment of ALCAM localization by immunohistochemistry may help to identify patients who, in the absence of negative prognostic factors, are at risk of relapse and require a more careful follow-up. PMID:20208136

  5. The RB-related gene Rb2/p130 in neuroblastoma differentiation and in B-myb promoter down-regulation.

    PubMed

    Raschellà, G; Tanno, B; Bonetto, F; Negroni, A; Claudio, P P; Baldi, A; Amendola, R; Calabretta, B; Giordano, A; Paggi, M G

    1998-05-01

    The retinoblastoma family of nuclear factors is composed of RB, the prototype of the tumour suppressor genes and of the strictly related genes p107 and Rb2/p130. The three genes code for proteins, namely pRb, p107 and pRb2/p130, that share similar structures and functions. These proteins are expressed, often simultaneously, in many cell types and are involved in the regulation of proliferation and differentiation. We determined the expression and the phosphorylation of the RB family gene products during the DMSO-induced differentiation of the N1E-115 murine neuroblastoma cells. In this system, pRb2/p130 was strongly up-regulated during mid-late differentiation stages, while, on the contrary, pRb and p107 resulted markedly decreased at late stages. Differentiating N1E-115 cells also showed a progressive decrease in B-myb levels, a proliferation-related protein whose constitutive expression inhibits neuronal differentiation. Transfection of each of the RB family genes in these cells was able, at different degrees, to induce neuronal differentiation, to inhibit [3H]thymidine incorporation and to down-regulate the activity of the B-myb promoter.

  6. Marrow Derived Antibody Library for the Treatment of Neuroblastoma

    DTIC Science & Technology

    2015-12-01

    Award Number: W81XWH-12-1-0332 TITLE: Marrow-Derived Antibody Library for the Treatment of Neuroblastoma PRINCIPAL INVESTIGATOR: Giselle...Marrow-Derived Antibody Library for Treatment of Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to Spectrum Health. 14. ABSTRACT Neuroblastoma (NB) is the most common solid tumor in children, which accounts for 15% of all pediatric cancer deaths

  7. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.

    PubMed

    Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo

    2010-10-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.

  8. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    PubMed

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    PubMed

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Haploidentical Stem Cell Transplantation for Refractory/Relapsed Neuroblastoma.

    PubMed

    Illhardt, Toni; Toporski, Jacek; Feuchtinger, Tobias; Turkiewicz, Dominik; Teltschik, Heiko-Manuel; Ebinger, Martin; Schwarze, Carl-Philipp; Holzer, Ursula; Lode, Holger N; Albert, Michael H; Gruhn, Bernd; Urban, Christian; Dykes, Josefina H; Teuffel, Oliver; Schumm, Michael; Handgretinger, Rupert; Lang, Peter

    2018-05-01

    Pediatric patients with refractory or relapsed metastatic neuroblastoma (NBL) have a poor prognosis despite autologous stem cell transplantation (SCT). Allogeneic SCT from a haploidentical donor has a remarkable alloreactive effect in patients with leukemia; thus, we evaluated this approach in children with very high-risk NBL. We analyzed data from 2 prospective phase I/II trials. A total of 26 patients with refractory (n = 5), metastatic relapsed (n = 20), or locally relapsed MYCN-positive (n = 1) NBL received a median of 17 × 10 6 /kg T/B cell-depleted CD34 + stem cells with 68 × 10 3 /kg residual T cells and 107 × 10 6 /kg natural killer cells. The conditioning regimen comprised melphalan, fludarabine, thiotepa, OKT3, and a short course of mycophenolate mofetil post-transplantation. Engraftment occurred in 96% of the patients. Event-free survival and overall survival at 5 years were 19% and 23%, respectively. No transplantation-related mortality was observed, and the single death was due to progression/subsequent relapse. The median duration of follow-up was 8.1 years. Patients in complete remission before SCT had a significantly better prognosis than those with residual tumor load (P < .01). All patients with progressive disease before SCT relapsed within 1 year. Grade II and grade III acute graft-versus-host disease (GVHD) occurred in 31% and 12% of the patients, respectively. Chronic limited and extensive GVHD occurred in 28% and 10%, respectively. Our data indicate that haploidentical SCT is a feasible treatment option that can induce long-term remission in some patients with NBL with tolerable side effects, and may enable the development of further post-transplantation therapeutic strategies based on the donor-derived immune system. Copyright © 2018. Published by Elsevier Inc.

  11. The Shc protein RAI promotes an adaptive cell survival program in hypoxic neuroblastoma cells.

    PubMed

    Criscuoli, Mattia; Filippi, Irene; Osti, Daniela; Aldinucci, Carlo; Guerrini, Giuditta; Pelicci, Giuliana; Carraro, Fabio; Naldini, Antonella

    2018-05-01

    Neuroblastoma (NB) is a highly malignant pediatric solid tumor where a hypoxic signature correlates with unfavorable patient outcome. The hypoxia-inducible factor (HIF)-1α plays an important role in NB progression, contributing to cell proliferation and invasiveness. RAI belongs to the Shc family proteins, it is mainly neuron specific and protects against cerebral ischemia. RAI is also expressed in several NB cell lines, where it promotes cell survival. In this work, hypoxia differently affected cell survival and pro-apoptotic program in two NB cell lines, either expressing RAI (SKNBE) or not (SKNMC). RAI expression appeared to promote NB cell survival and to reduce some pro-apoptotic markers under hypoxia. Accordingly, the RAI silencing in SKNBE cells resulted in a reduction of cell survival and HIF-1α expression. Furthermore, using SKNMC cells stably expressing RAI, we defined a role of RAI in NB cell responses to hypoxia. Of interest, in hypoxic SKNMC cells expressing RAI HIF-1α protein levels were higher than in control cells. This was associated with a) an increased cell survival; b) an increased expression of anti-apoptotic markers; c) a pro-autophagic and not pro-apoptotic phenotype; and d) an increased metabolic activity. We may conclude that RAI plays an important role in hypoxic signaling in NB cells and the interplay between RAI and HIF-1α may be relevant in the protection of NB cells against hypoxia. Our results may contribute to a further understanding the physiology of NB cells and the molecular mechanisms involved in their survival, with important implications in NB progression. © 2017 Wiley Periodicals, Inc.

  12. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma

    PubMed Central

    Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael

    2016-01-01

    Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180

  13. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    NASA Astrophysics Data System (ADS)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  14. mTOR ATP-competitive inhibitor INK128 inhibits neuroblastoma growth via blocking mTORC signaling

    PubMed Central

    Zhang, Huiyuan; Dou, Jun; Yu, Yang; Zhao, Yanling; Fan, Yihui; Cheng, Jin; Xu, Xin; Liu, Wei; Guan, Shan; Chen, Zhenghu; shi, Yan; Patel, Roma; Vasudevan, Sanjeev A; Zage, Peter E; Zhang, Hong; Nuchtern, Jed G; Kim, Eugene S; Fu, Songbin; Yang, Jianhua

    2015-01-01

    High-risk neuroblastoma often develops resistance to high-dose chemotherapy. The mTOR signaling cascade is frequently deregulated in human cancers and targeting mTOR signaling sensitizes many cancer types to chemotherapy. Here, using a panel of neuroblastoma cell lines, we found that the mTOR inhibitor INK128 showed inhibitory effects on both anchorage-dependent and independent growth of neuroblastoma cells and significantly enhanced the cytotoxic effects of doxorubicin (Dox) on these cell lines. Treatment of neuroblastoma cells with INK128 blocked the activation of downstream mTOR signaling and enhanced Dox-induced apoptosis. Moreover, INK128 was able to overcome the established chemoresistance in the LA-N-6 cell line. Using an orthotopic neuroblastoma mouse model, we found that INK128 significantly inhibited tumor growth in vivo. In conclusion, we have shown that INK128-mediated mTOR inhibition possessed substantial antitumor activity and could significantly increase the sensitivity of neuroblastoma cells to Doxorubicin therapy. Taken together, our results indicate that using INK128 can provide additional efficacy to current chemotherapeutic regimens and represent a new paradigm in restoring drug sensitivity in neuroblastoma. PMID:25425103

  15. Overview and recent advances in the treatment of neuroblastoma.

    PubMed

    Whittle, Sarah B; Smith, Valeria; Doherty, Erin; Zhao, Sibo; McCarty, Scott; Zage, Peter E

    2017-04-01

    Children with neuroblastoma have widely divergent outcomes, ranging from cure in >90% of patients with low risk disease to <50% for those with high risk disease. Recent research has shed light on the biology of neuroblastoma, allowing for more accurate risk stratification and treatment reduction in many cases, although newer treatment strategies for children with high-risk and relapsed neuroblastoma are needed to improve outcomes. Areas covered: Neuroblastoma epidemiology, diagnosis, risk stratification, and recent advances in treatment of both newly diagnosed and relapsed neuroblastoma. Expert commentary: The identification of newer tumor targets and of novel cell-mediated immunotherapy agents may lead to novel therapeutic approaches, and clinical trials for regimens designed to target individual genetic aberrations in tumors are underway. A combination of therapeutic modalities will likely be required to improve survival and cure rates for patients with high-risk neuroblastoma.

  16. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells

    PubMed Central

    1995-01-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation. PMID:7559779

  17. Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma.

    PubMed

    Mogass, Michael; York, Timothy P; Li, Lin; Rujirabanjerd, Sinitdhorn; Shiang, Rita

    2004-12-03

    Mutations in the Treacher Collins syndrome gene, TCOF1, cause a disorder of craniofacial development. We manipulated the levels of Tcof1 and its protein treacle in a murine neuroblastoma cell line to identify downstream changes in gene expression using a microarray platform. We identified a set of genes that have similar expression with Tcof1 as well as a set of genes that are negatively correlated with Tcof1 expression. We also showed that the level of Tcof1 and treacle expression is downregulated during differentiation of neuroblastoma cells into neuronal cells. Inhibition of Tcof1 expression by siRNA induced morphological changes in neuroblastoma cells that mimic differentiation. Thus, expression of Tcof1 and treacle synthesis play an important role in the proliferation of neuroblastoma cells and we have identified genes that may be important in this pathway.

  18. Persistent positive metaiodobenzylguanidine scans after autologous peripheral blood stem cell transplantation may indicate maturation of stage 4 neuroblastoma.

    PubMed

    Okamoto, Yasuhiro; Kodama, Yuichi; Nishikawa, Takuro; Rindiarti, Almitra; Tanabe, Takayuki; Nakagawa, Shunsuke; Yoshioka, Takako; Takumi, Koji; Kaji, Tatsuru; Kawano, Yoshifumi

    2017-04-01

    Metaiodobenzylguanidine (MIBG) scans are sensitive testing tools for neuroblastoma. Persistent positive MIBG scans in patients with stage 3 neuroblastoma have previously been found to indicate maturation rather than regression. We assessed the significance of this finding in stage 4 neuroblastoma in the present study. Fifteen consecutive pediatric patients with stage 4 neuroblastoma treated between 2004 and 2014 at the Kagoshima University Hospital were retrospectively examined. Treatment involved a combination of multiagent chemotherapy, resection, autologous peripheral blood stem cell transplantation (PBSCT), radiotherapy, and maintenance therapy with retinoic acid. The MIBG uptake in each patient during treatment was assessed using a Curie score. The 5-year event-free and overall survival rates in 15 patients were 38.9% and 58.7%, respectively. Four patients with persistent positive MIBG scans who underwent autologous PBSCT but experienced decreased 123 I-MIBG uptake during the clinical course survived without progression, and their event-free survival (EFS) was significantly superior to that of patients who showed negative MIBG scans after PBSCT (5-year EFS rate: 18.2%, p = 0.0176). Therefore, persistent positive MIBG scans with gradually decreased uptake after PBSCT do not always indicate neuroblastoma progression, and may instead indicate tumor maturation in some selected cases, if not all cases, of stage 4 neuroblastoma.

  19. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells.

    PubMed

    Thummayot, Sarinthorn; Tocharus, Chainarong; Jumnongprakhon, Pichaya; Suksamrarn, Apichart; Tocharus, Jiraporn

    2018-04-19

    Cyanidin is polyphenolic pigment found in plants. We have previously demonstrated that cyanidin protects nerve cells against Aβ 25-35 -induced toxicity by decreasing oxidative stress and attenuating apoptosis mediated by both the mitochondrial apoptotic pathway and the ER stress pathway. To further elucidate the molecular mechanisms underlying the neuroprotective effects of cyanidin, we investigated the effects of cyanidin on neuroinflammation mediated by the TLR4/NOX4 pathway in Aβ 25-35 -treated human neuroblastoma cell line (SK-N-SH). SK-N-SH cells were exposed to Aβ 25-35 (10 μmol/L) for 24 h. Pretreatment with cyanidin (20 μmol/L) or NAC (20 μmol/L) strongly inhibited the NF-κB signaling pathway in the cells evidenced by suppressing the degradation of IκBα, translocation of the p65 subunit of NF-κB from the cytoplasm to the nucleus, and thereby reducing the expression of iNOS protein and the production of NO. Furthermore, pretreatment with cyanidin greatly promoted the translocation of the Nrf2 protein from the cytoplasm to the nucleus; upregulating cytoprotective enzymes, including HO-1, NQO-1 and GCLC; and increased the activity of SOD enzymes. Pretreatment with cyanidin also decreased the expression of TLR4, directly improved intracellular ROS levels and regulated the activity of inflammation-related downstream pathways including NO production and SOD activity through TLR4/NOX4 signaling. These results demonstrate that TLR4 is a primary receptor in SK-N-SH cells, by which Aβ 25-35 triggers neuroinflammation, and cyanidin attenuates Aβ-induced inflammation and ROS production mediated by the TLR4/NOX4 pathway, suggesting that inhibition of TLR4 by cyanidin could be beneficial in preventing neuronal cell death in the process of Alzheimer's disease.

  20. International neuroblastoma staging system stage 1 neuroblastoma: a prospective study and literature review.

    PubMed

    Kushner, B H; Cheung, N K; LaQuaglia, M P; Ambros, P F; Ambros, I M; Bonilla, M A; Ladanyi, M; Gerald, W L

    1996-07-01

    To gain insight into the management of non-metastatic neuroblastoma by examining clinical and biologic features of International Neuroblastoma Staging System (INSS) stage 1 tumors. Patients were staged by both the INSS and the Evans staging system and were evaluated for biologic prognostic factors. Patients with INSS stage 1 received no cytotoxic therapy. The literature was reviewed for clinical and biologic data about INSS stage 1. We evaluated 10 consecutive patients (median age, 17.5 months) with INSS stage 1; all remain disease-free (median follow-up duration, > 5 years). Tumors were in the abdomen (n = 6), chest (n = 3), or pelvis (n = 1). Neuroblastoma involved margins of resection in six tumors. Poor-prognostic biologic findings included tumor-cell diploidy (n = 2) and unfavorable Shimada histopathology (n = 2). Two patients were to receive chemotherapy for, respectively, a tumor deemed unresectable and a tumor classified as Evans stage III; second opinions resulted in surgical management alone in each case. Published reports confirm that some INSS stage 1 patients (1) are at risk for overtreatment, and (2) have poor-prognostic biologic findings yet do well. Surgery alone suffices for INSS stage 1 neuroblastoma, even if biologic prognostic factors are unfavorable, microscopic disease remains after surgery, and tumor size is suggestive of "advanced-stage" status in other staging systems. Attempts to resect regionally confined neuroblastomas should take precedence over immediate use of cytotoxic therapy; otherwise, some patients may receive chemotherapy or radiotherapy unnecessarily.

  1. Neuroblastoma.

    PubMed

    Nakagawara, Akira; Li, Yuanyuan; Izumi, Hideki; Muramori, Katsumi; Inada, Hiroko; Nishi, Masanori

    2018-03-01

    Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.

  2. Loss of EGF binding and cation transport response during differentiation of mouse neuroblastoma cells.

    PubMed

    Mummery, C L; van der Saag, P T; de Laat, S W

    1983-01-01

    Mouse neuroblastoma cells (clone N1E-115) differentiate in culture upon withdrawal of serum growth factors and acquire the characteristics of neurons. We have shown tht exponentially growing N1E-115 cells possess functional epidermal growth factor (EGF) receptors but that the capacity for binding EGF and for stimulation of DNA synthesis is lost as the cells differentiate. Furthermore, in exponentially growing cells, EGF induces a rapid increase in amiloride-sensitive Na+ influx, followed by stimulation of the (Na+-K+)ATPase, indicating that activation of the Na+/H+ exchange mechanism in N1E-115 cells [1] may be induced by EGF. The ionic response is also lost during differentiation, but we have shown that the stimulation of both Na+ and K+ influx is directly proportional to the number of occupied receptors in all cells whether exponentially growing or differentiating, thus only indirectly dependent on the external EGF concentration. The linearity of the relationships indicates that there is no rate-limiting step between EGF binding and the ionic response. Our data would suggest that as neuroblastoma cells differentiate and acquire neuronal properties, their ability to respond to mitogens, both biologically and in the activation of cation transport processes, progressively decreases owing to the loss of the appropriate receptors.

  3. Testing of SNS-032 in a Panel of Human Neuroblastoma Cell Lines with Acquired Resistance to a Broad Range of Drugs.

    PubMed

    Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich

    2013-12-01

    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3(r)CDDP(1000) in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases.

  4. Sodium and calcium currents in neuroblastoma x glioma hybrid cells before and after morphological differentiation by dibutyryl cyclic AMP.

    PubMed

    Bodewei, R; Hering, S; Schubert, B; Wollenberger, A

    1985-04-01

    Sodium and calcium inward currents (INa and ICa) were measured in neuroblastoma X glioma hybrid cells of clones 108CC5 and 108CC15 by a single suction pipette method for internal perfusion and voltage clamp. Morphologically undifferentiated, exponentially growing cells were compared with cells differentiated by cultivation with 1 mmol/l dibutyryl cyclic AMP. Outward currents were eliminated by perfusing the cells with a K+-free solution. Voltage dependence and ion selectivity as well as steady state inactivation characteristics of INa and ICa resembled those of differentiated mouse neuroblastoma cells, clone N1E-115 (Moolenaar and Spector 1978, 1979). These parameters were identical in undifferentiated and differentiated cells of both clones. After differentiation the average density of the peak sodium and calcium currents was increased two and four-fold, respectively, in both cell lines. Our data indicate that exponentially growing, morphologically undifferentiated 108CC5 and 108CC15 neuroblastoma X glioma hybrid cells possess functional Na+ and Ca2+ channels undistinguishable from those of non-proliferating cells of these clones differentiated morphologically by treatment with dibutyryl cyclic AMP. That Na+ and Ca2+ spikes were not detected by other authors in these cells prior to morphological differentiation by dibutyryl cyclic AMP may be attributed to the fact that at the low resting membrane potential measured the Na+ and Ca2+ channels are inactivated.

  5. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation.

    PubMed

    Akter, Jesmin; Takatori, Atsushi; Islam, Md Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira

    2014-10-10

    We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    PubMed Central

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  7. More than the genes, the tumor microenvironment in neuroblastoma

    PubMed Central

    Borriello, Lucia; Seeger, Robert C.; Asgharzadeh, Shahab; DeClerck, Yves A.

    2017-01-01

    Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME. PMID:26597947

  8. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis

    PubMed Central

    Zhu, Shizhen; Lee, Jeong-Soo; Guo, Feng; Shin, Jimann; Perez-Atayde, Antonio R.; Kutok, Jeffery L.; Rodig, Scott J.; Neuberg, Donna S.; Helman, Daniel; Feng, Hui; Stewart, Rodney A.; Wang, Wenchao; George, Rani E.; Kanki, John P.; Look, A. Thomas

    2012-01-01

    SUMMARY Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analogue following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. PMID:22439933

  9. Biochemical and electrophysiological differentiation profile of a human neuroblastoma (IMR-32) cell line.

    PubMed

    Rao, Raj R; Kisaalita, William S

    2002-09-01

    A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.

  10. Evaluation of Rhodiola crenulata on growth and metabolism of NB-1691, an MYCN-amplified neuroblastoma cell line.

    PubMed

    Wong, Kaitlyn E; Mora, Maria C; Sultana, Nazneen; Moriarty, Kevin P; Arenas, Richard B; Yadava, Nagendra; Schneider, Sallie S; Tirabassi, Michael V

    2018-06-01

    Outcomes of children with high grade neuroblastoma remain poor despite multi-agent chemotherapy regimens. Rhodiola crenulata extracts display anti-neoplastic properties against several cancers including breast cancer, melanoma, and glioblastoma. In this study, we evaluated the anti-neoplastic potential of Rhodiola crenulata extracts on human neuroblastoma cells. Through this work, cell viability and proliferation were evaluated following treatments with ethanol (vehicle control) or Rhodiola crenulata extract in neuroblastoma, NB-1691 or SK-N-AS cells, in vitro. HIF-1 transcriptional activity was evaluated using a dual luciferase assay. Quantitative real-time polymerase chain reaction was utilized to assess the expression of HIF-1 targets. Selected metabolic intermediates were evaluated for their ability to rescue cells from Rhodiola crenulata extract-induced death. Lactate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase activities and NAD + /NADH levels were assayed in vehicle and Rhodiola crenulata extract-treated cells. The effects of Rhodiola crenulata extracts on metabolism were assessed by respirometry and metabolic phenotyping/fingerprinting. Our results revealed striking cytotoxic effects upon Rhodiola crenulata extract treatment, especially prominent in NB-1691 cells. As a greater response was observed in NB-1691 cells therefore it was used for remaining experiments. Upon Rhodiola crenulata extract treatment, HIF-1 transcriptional activity was increased. This increase in activity correlated with changes in HIF-1 targets involved in cellular metabolism. Serendipitously, we observed that addition of pyruvate protected against the cytotoxic effects of Rhodiola crenulata extracts. Therefore, we focused on the metabolic effects of Rhodiola crenulata extracts on NB-1691 cells. We observed that while the activities of pyruvate kinase and pyruvate dehydrogenase activities were increased, the activity of lactate dehydrogenase activity was decreased upon

  11. Toxicity study of complex CNT-PEG(-NH2)-DOX synthesis on neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Nurulhuda, I.; Mazatulikhma, M. Z.; Alrokayan, S.; Khan, H.; Rusop, M.

    2018-05-01

    The synthesized carbon nanotubes was functionalized with PEG and drug (doxorubicin) was tested on neuroblastoma cells. The treatment was done for 24 and 48 h. The concentration of CNT and doxorubicin were at 2.5, 5, 10 µg/ml and 0.5, 0.1, 0.05 µM, respectively. The result showed the longer time treatment do have effect on the cells viability and the complex functionalized CNT have high cells viability rather than the drug and CNT treatment alone.

  12. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.

    PubMed

    González-Polo, Rosa A; Niso-Santano, Mireia; Ortíz-Ortíz, Miguel A; Gómez-Martín, Ana; Morán, José M; García-Rubio, Lourdes; Francisco-Morcillo, Javier; Zaragoza, Concepción; Soler, Germán; Fuentes, José M

    2007-06-01

    Autophagy is a degradative mechanism involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. This phenomenon of autophagy has been observed in neurons from patients with Parkinson's disease (PD), suggesting a functional role for autophagy in neuronal cell death. On the other hand, it has been demonstrated that exposure to pesticides can be a risk factor in the incidence of PD. In this sense, paraquat (PQ) (1,1'-dimethyl-4,4'-bipyridinium dichloride), a widely used herbicide that is structurally similar to the known dopaminergic neurotoxicant MPP(+) (1-methyl-4-phenyl-pyridine), has been suggested as a potential etiologic factor for the development of PD. The current study shows, for the first time, that low concentrations of PQ induce several characteristics of autophagy in human neuroblastoma SH-SY5Y cells. In this way, PQ induced the accumulation of autophagic vacuoles (AVs) in the cytoplasm and the recruitment of a LC3-GFP fusion protein to AVs. Furthermore, the cells treated with PQ showed an increase of the long-lived protein degradation which is blocked in the presence of the autophagy inhibitor 3-methyladenine and regulated by the mammalian target of rapamycin (mTOR) signaling. Finally, the cells succumbed to cell death with hallmarks of apoptosis such as phosphatidylserine exposure, caspase activation, and chromatin condensation. While caspase inhibition retarded cell death, autophagy inhibition accelerated the apoptotic cell death induced by PQ. Altogether, these findings show the relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with PQ.

  13. Preclinical Evaluation of Engineered Oncolytic Herpes Simplex Virus for the Treatment of Neuroblastoma

    PubMed Central

    Gillory, Lauren A.; Megison, Michael L.; Stewart, Jerry E.; Mroczek-Musulman, Elizabeth; Nabers, Hugh C.; Waters, Alicia M.; Kelly, Virginia; Coleman, Jennifer M.; Markert, James M.; Gillespie, G. Yancey; Friedman, Gregory K.; Beierle, Elizabeth A.

    2013-01-01

    Despite intensive research efforts and therapeutic advances over the last few decades, the pediatric neural crest tumor, neuroblastoma, continues to be responsible for over 15% of pediatric cancer deaths. Novel therapeutic options are needed for this tumor. Recently, investigators have shown that mice with syngeneic murine gliomas treated with an engineered, neuroattenuated oncolytic herpes simplex virus-1 (oHSV), M002, had a significant increase in survival. M002 has deletions in both copies of the γ134.5 gene, enabling replication in tumor cells but precluding infection of normal neural cells. We hypothesized that M002 would also be effective in the neural crest tumor, neuroblastoma. We showed that M002 infected, replicated, and decreased survival in neuroblastoma cell lines. In addition, we showed that in murine xenografts, treatment with M002 significantly decreased tumor growth, and that this effect was augmented with the addition of ionizing radiation. Importantly, survival could be increased by subsequent doses of radiation without re-dosing of the virus. Finally, these studies showed that the primary entry protein for oHSV, CD111 was expressed by numerous neuroblastoma cell lines and was also present in human neuroblastoma specimens. We concluded that M002 effectively targeted neuroblastoma and that this oHSV may have potential for use in children with unresponsive or relapsed neuroblastoma. PMID:24130898

  14. More than the genes, the tumor microenvironment in neuroblastoma.

    PubMed

    Borriello, Lucia; Seeger, Robert C; Asgharzadeh, Shahab; DeClerck, Yves A

    2016-09-28

    Neuroblastoma is the second most common solid tumor in children. Since the seminal discovery of the role of amplification of the MYCN oncogene in the pathogenesis of neuroblastoma in the 1980s, much focus has been on the contribution of genetic alterations in the progression of this cancer. However it is now clear that not only genetic events play a role but that the tumor microenvironment (TME) substantially contributes to the biology of neuroblastoma. In this article, we present a comprehensive review of the literature on the contribution of the TME to the ten hallmarks of cancer in neuroblastoma and discuss the mechanisms of communication between neuroblastoma cells and the TME that underlie the influence of the TME on neuroblastoma progression. We end our review by discussing how the knowledge acquired over the last two decades in this field is now leading to new clinical trials targeting the TME. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Sialic Acid Metabolic Engineering: A Potential Strategy for the Neuroblastoma Therapy

    PubMed Central

    Gnanapragassam, Vinayaga S.; Bork, Kaya; Galuska, Christina E.; Galuska, Sebastian P.; Glanz, Dagobert; Nagasundaram, Manimozhi; Bache, Matthias; Vordermark, Dirk; Kohla, Guido; Kannicht, Christoph; Schauer, Roland; Horstkorte, Rüdiger

    2014-01-01

    Background Sialic acids (Sia) represent negative-charged terminal sugars on most glycoproteins and glycolipids on the cell surface of vertebrates. Aberrant expression of tumor associated sialylated carbohydrate epitopes significantly increases during onset of cancer. Since Sia contribute towards cell migration ( =  metastasis) and to chemo- and radiation resistance. Modulation of cellular Sia concentration and composition poses a challenge especially for neuroblastoma therapy, due to the high heterogeneity and therapeutic resistance of these cells. Here we propose that Metabolic Sia Engineering (MSE) is an effective strategy to reduce neuroblastoma progression and metastasis. Methods Human neuroblastoma SH-SY5Y cells were treated with synthetic Sia precursors N-propanoyl mannosamine (ManNProp) or N-pentanoyl mannosamine (ManNPent). Total and Polysialic acids (PolySia) were investigated by high performance liquid chromatography. Cell surface polySia were examined by flow-cytometry. Sia precursors treated cells were examined for the migration, invasion and sensitivity towards anticancer drugs and radiation treatment. Results Treatment of SH-SY5Y cells with ManNProp or ManNPent (referred as MSE) reduced their cell surface sialylation significantly. We found complete absence of polysialylation after treatment of SH-SY5Y cells with ManNPent. Loss of polysialylation results in a reduction of migration and invasion ability of these cells. Furthermore, radiation of Sia-engineered cells completely abolished their migration. In addition, MSE increases the cytotoxicity of anti-cancer drugs, such as 5-fluorouracil or cisplatin. Conclusions Metabolic Sia Engineering (MSE) of neuroblastoma cells using modified Sia precursors reduces their sialylation, metastatic potential and increases their sensitivity towards radiation or chemotherapeutics. Therefore, MSE may serve as an effective method to treat neuroblastoma. PMID:25148252

  16. Genetic susceptibility to neuroblastoma: current knowledge and future directions.

    PubMed

    Ritenour, Laura E; Randall, Michael P; Bosse, Kristopher R; Diskin, Sharon J

    2018-05-01

    Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.

  17. Uncovering the proteome response of murine neuroblastoma cells against low-dose exposure to saxitoxin.

    PubMed

    Chen, Xiao; Sun, Ye; Huang, Haiyan; Liu, Wei; Hu, Panpan; Huang, Xinfeng; Zou, Fei; Liu, Jianjun

    2018-06-01

    The potent neurotoxin saxitoxin produced by both marine and freshwater phytoplankton causes paralytic shellfish poisoning syndrome. The toxicity and mode of action of the acute exposure of high-dose saxitoxin have been intensively studied for decades; however, the potential risk of exposure of low-dose saxitoxin remained to be uncovered. Here we present a proteomics study of murine neuroblastoma N2A cell with low-dose saxitoxin exposure (1 nM and 10 nM, 24-h intoxication). Differential proteins were profiled by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 9 proteins, including 14-3-3 beta (1433B), alpha enolase (ENO1) and cofilin 2 (CFL2), were altered by the low-dose saxitoxin exposure. We further validated the expressions of 1433B, ENO1 and CFL2 by Western blot analysis and the enzyme-linked immunosorbent assay. These 9 proteins involve cell apoptotic pathways, cell skeleton maintenance, membrane potentials and mitochondrial functions. Modulation of these 9 proteins by low-dose saxitoxin exposure could correlate to the reports on genotoxicity and neurotoxicity induced by saxitoxin. This study also suggested other potential risks of saxitoxin.

  18. The M sub 1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated ({sup 3}H)IP{sub 1} accumulation in the SH-SY5Y cells was decreased in the presence of 1{mu}g/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M{sub 1} mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m{sub 1} gene. The transfected B82 cells (cTB10) showed specific ({supmore » 3}H)(-)QNB binding activity. The mAChRs in these cells are of the M{sub 1} type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M{sub 1} mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M{sub 1} mAChR densities in these cells characterized by ({sup 3}H)(-)MQNB binding ranged from 12 fmol/10{sup 6} cells in LK3-1 cells to 260 fmol/10{sup 6} cells in the LK3-8 cells.« less

  19. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.

    PubMed

    Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N

    2016-11-01

    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics

  20. Testing of SNS-032 in a Panel of Human Neuroblastoma Cell Lines with Acquired Resistance to a Broad Range of Drugs12

    PubMed Central

    Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich

    2013-01-01

    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371

  1. 29 CFR 2520.104b-10 - Summary Annual Report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... report shall take place in accordance with the requirements of § 2520.104b-1 of this part. (b) [Reserved... plan year the plan experienced an (increase) (decrease) in its net assets of ($) This (increase...) funds toward (state whether individual policies, group deferred annuities or other). The total premiums...

  2. Preclinical Assessment of CD171-Directed CAR T-cell Adoptive Therapy for Childhood Neuroblastoma: CE7 Epitope Target Safety and Product Manufacturing Feasibility.

    PubMed

    Künkele, Annette; Taraseviciute, Agne; Finn, Laura S; Johnson, Adam J; Berger, Carolina; Finney, Olivia; Chang, Cindy A; Rolczynski, Lisa S; Brown, Christopher; Mgebroff, Stephanie; Berger, Michael; Park, Julie R; Jensen, Michael C

    2017-01-15

    The identification and vetting of cell surface tumor-restricted epitopes for chimeric antigen receptor (CAR)-redirected T-cell immunotherapy is the subject of intensive investigation. We have focused on CD171 (L1-CAM), an abundant cell surface molecule on neuroblastomas and, specifically, on the glycosylation-dependent tumor-specific epitope recognized by the CE7 monoclonal antibody. CD171 expression was assessed by IHC using CE7 mAb in tumor microarrays of primary, metastatic, and recurrent neuroblastoma, as well as human and rhesus macaque tissue arrays. The safety of targeting the CE7 epitope of CD171 with CE7-CAR T cells was evaluated in a preclinical rhesus macaque trial on the basis of CD171 homology and CE7 cross reactivity. The feasibility of generating bioactive CAR T cells from heavily pretreated pediatric patients with recurrent/refractory disease was assessed. CD171 is uniformly and abundantly expressed by neuroblastoma tumor specimens obtained at diagnoses and relapse independent of patient clinical risk group. CD171 expression in normal tissues is similar in humans and rhesus macaques. Infusion of up to 1 × 10 8 /kg CE7-CAR + CTLs in rhesus macaques revealed no signs of specific on-target off-tumor toxicity. Manufacturing of lentivirally transduced CD4 + and CD8 + CE7-CAR T-cell products under GMP was successful in 4 out of 5 consecutively enrolled neuroblastoma patients in a phase I study. All four CE7-CAR T-cell products demonstrated in vitro and in vivo antitumor activity. Our preclinical assessment of the CE7 epitope on CD171 supports its utility and safety as a CAR T-cell target for neuroblastoma immunotherapy. Clin Cancer Res; 23(2); 466-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: a European HR-NBL1/SIOPEN study.

    PubMed

    Viprey, Virginie F; Gregory, Walter M; Corrias, Maria V; Tchirkov, Andrei; Swerts, Katrien; Vicha, Ales; Dallorso, Sandro; Brock, Penelope; Luksch, Roberto; Valteau-Couanet, Dominique; Papadakis, Vassilios; Laureys, Genevieve; Pearson, Andrew D; Ladenstein, Ruth; Burchill, Susan A

    2014-04-01

    To evaluate the hypothesis that detection of neuroblastoma mRNAs by reverse transcriptase quantitative polymerase chain reaction (RTqPCR) in peripheral blood (PB) and bone marrow aspirates (BM) from children with stage 4 neuroblastoma are clinically useful biomarkers of risk. RTqPCR for paired-like homeobox 2b (PHOX2B), tyrosine hydroxylase (TH), and doublecortin (DCX) mRNA in PB and BM of children enrolled onto the High-Risk Neuroblastoma Trial-1 of the European Society of Pediatric Oncology Neuroblastoma Group (HR-NBL1/SIOPEN) was performed at diagnosis and after induction therapy. High levels of TH, PHOX2B, or DCX mRNA in PB or BM at diagnosis strongly predicted for worse event-free survival (EFS) and overall survival (OS) in a cohort of 290 children. After induction therapy, high levels of these mRNAs predicted worse EFS and OS in BM but not in PB. Combinations of mRNAs in BM did not add to the predictive power of any single mRNA. However, in the original (n = 182) and validation (n = 137) PB cohorts, high TH (log10TH > 0.8) or high PHOX2B (log10PHOX2B > 0.28) identify 19% of children as ultrahigh risk, with 5-year EFS and OS rates of 0%; OS rate was 25% (95% CI, 16% to 36%) and EFS rate was 38% (95% CI, 28% to 49%) in the remaining children. The magnitude of reduction in mRNA level between diagnosis and postinduction therapy in BM or PB was not of additional predictive value. High levels of TH and PHOX2B mRNA in PB at diagnosis objectively identify children with ultrahigh-risk disease who may benefit from novel treatment approaches. The level of TH, PHOX2B, and DCX mRNA in BM and/or PB at diagnosis might contribute to an algorithm to improve stratification of children for treatment.

  4. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    PubMed Central

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  5. In situ monitoring of PTHLH secretion in neuroblastoma cells cultured onto nanoporous membranes.

    PubMed

    de la Escosura-Muñiz, Alfredo; Espinoza-Castañeda, Marisol; Chamorro-García, Alejandro; Rodríguez-Hernández, Carlos J; de Torres, Carmen; Merkoçi, Arben

    2018-06-01

    In this work, we propose for the first time the use of anodic aluminum oxide (AAO) nanoporous membranes for in situ monitoring of parathyroid hormone-like hormone (PTHLH) secretion in cultured human cells. The biosensing system is based on the nanochannels blockage upon immunocomplex formation, which is electrically monitored through the voltammetric oxidation of Prussian blue nanoparticles (PBNPs). Models evaluated include a neuroblastoma cell line (SK-N-AS) and immortalized keratinocytes (HaCaT) as a control of high PTHLH production. The effect of total number of seeded cells and incubation time on the secreted PTHLH levels is assessed, finding that secreted PTHLH levels range from approximately 60 to 400 ng/mL. Moreover, our methodology is also applied to analyse PTHLH production following PTHLH gene knockdown upon transient cell transfection with a specific silencing RNA (siRNA). Given that inhibition of PTHLH secretion reduces cell proliferation, survival and invasiveness in a number of tumors, our system provides a powerful tool for the preclinical evaluation of therapies that regulate PTHLH production. This nanoporous membrane - based sensing technology might be useful to monitor the active secretion of other proteins as well, thus contributing to characterize their regulation and function. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pre-Clinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma

    PubMed Central

    Waters, Alicia M.; Stewart, Jerry E.; Atigadda, Venkatram R.; Mroczek-Musulman, Elizabeth; Muccio, Donald D.; Grubbs, Clinton J.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell cycle analysis, migration, and invasion were studied using alamarBlue® assays, FACS, and Transwell® assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion and migration, cell cycle arrest and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment. PMID:25944918

  7. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    PubMed Central

    Beiske, K; Burchill, S A; Cheung, I Y; Hiyama, E; Seeger, R C; Cohn, S L; Pearson, A D J; Matthay, K K

    2009-01-01

    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups. PMID:19401690

  8. Enhancer of zeste homologue 2 plays an important role in neuroblastoma cell survival independent of its histone methyltransferase activity.

    PubMed

    Bate-Eya, Laurel T; Gierman, Hinco J; Ebus, Marli E; Koster, Jan; Caron, Huib N; Versteeg, Rogier; Dolman, M Emmy M; Molenaar, Jan J

    2017-04-01

    Neuroblastoma is predominantly characterised by chromosomal rearrangements. Next to V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived Homolog (MYCN) amplification, chromosome 7 and 17q gains are frequently observed. We identified a neuroblastoma patient with a regional 7q36 gain, encompassing the enhancer of zeste homologue 2 (EZH2) gene. EZH2 is the histone methyltransferase of lysine 27 of histone H3 (H3K27me3) that forms the catalytic subunit of the polycomb repressive complex 2. H3K27me3 is commonly associated with the silencing of genes involved in cellular processes such as cell cycle regulation, cellular differentiation and cancer. High EZH2 expression correlated with poor prognosis and overall survival independent of MYCN amplification status. Unexpectedly, treatment of 3 EZH2-high expressing neuroblastoma cell lines (IMR32, CHP134 and NMB), with EZH2-specific inhibitors (GSK126 and EPZ6438) resulted in only a slight G1 arrest, despite maximum histone methyltransferase activity inhibition. Furthermore, colony formation in cell lines treated with the inhibitors was reduced only at concentrations much higher than necessary for complete inhibition of EZH2 histone methyltransferase activity. Knockdown of the complete protein with three independent shRNAs resulted in a strong apoptotic response and decreased cyclin D1 levels. This apoptotic response could be rescued by overexpressing EZH2ΔSET, a truncated form of wild-type EZH2 lacking the SET transactivation domain necessary for histone methyltransferase activity. Our findings suggest that high EZH2 expression, at least in neuroblastoma, has a survival function independent of its methyltransferase activity. This important finding highlights the need for studies on EZH2 beyond its methyltransferase function and the requirement for compounds that will target EZH2 as a complete protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  10. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  11. Regulation of neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor tyrosine kinase PDGFRA

    PubMed Central

    Mei, Yang; Wang, Zhanxiang; Zhang, Lei; Zhang, Yiru; Li, Xiaoyu; Liu, Huihui; Ye, Jing; You, Han

    2012-01-01

    Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial early event in neuroblastoma pathogenesis is arrested differentiation of neuroblasts at various stages. Treatment of neuroblastoma with TPA and PDGF-BB leads to terminal differentiation of neuroblastoma cells. However, the signaling pathways that are involved in this process remain largely unknown. Here, we report that inhibition of endogenous FOXO proteins attenuated TPA/PDGF-BB mediated differentiation of neuroblastoma cells. Activated FOXO transcription factors acted on PDGFRA promoter to direct its basal mRNA expression as well as its induction upon serum deprivation. Depletion of endogenous PDGFRA in neuroblastoma cells significantly diminished neurite formation and extension under TPA/PDGF-BB treatment. Furthermore, ectopic expression of PDGFRA abolished the blockage of neuroblastoma differentiation by FOXOs inhibition. These findings define the FOXO–PDGFRA axis as crucial mechanistic components that govern TPA-induced neuroblastoma differentiation. PMID:22411791

  12. Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo.

    PubMed

    Gleissman, Helena; Segerström, Lova; Hamberg, Mats; Ponthan, Frida; Lindskog, Magnus; Johnsen, John Inge; Kogner, Per

    2011-04-01

    Epidemiological and preclinical studies have revealed that omega-3 fatty acids have anticancer properties. We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) induces apoptosis of neuroblastoma cells in vitro by mechanisms involving intracellular peroxidation of DHA by means of 15-lipoxygenase or autoxidation. In our study, the effects of DHA supplementation on neuroblastoma tumor growth in vivo were investigated using two complementary approaches. For the purpose of prevention, DHA as a dietary supplement was fed to athymic rats before the rats were xenografted with human neuroblastoma cells. For therapeutic purposes, athymic rats with established neuroblastoma xenografts were given DHA daily by gavage and tumor growth was monitored. DHA levels in plasma and tumor tissue were analyzed by gas liquid chromatography. DHA delayed neuroblastoma xenograft development and inhibited the growth of established neuroblastoma xenografts in athymic rats. A revised version of the Pediatric Preclinical Testing Program evaluation scheme used as a measurement of treatment response showed that untreated control animals developed progressive disease, whereas treatment with DHA resulted in stable disease or partial response, depending on the DHA concentration. In conclusion, prophylactic treatment with DHA delayed neuroblastoma development, suggesting that DHA could be a potential agent in the treatment of minimal residual disease and should be considered for prevention in selected cases. Treatment results on established aggressive neuroblastoma tumors suggest further studies aiming at a clinical application in children with high-risk neuroblastoma. Copyright © 2010 UICC.

  13. Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC

    PubMed Central

    Hadjidaniel, Michael D.; Muthugounder, Sakunthala; Hung, Long T.; Sheard, Michael A.; Shirinbak, Soheila; Chan, Randall Y.; Nakata, Rie; Borriello, Lucia; Malvar, Jemily; Kennedy, Rebekah J.; Iwakura, Hiroshi; Akamizu, Takashi; Sposto, Richard; Shimada, Hiroyuki; DeClerck, Yves A.; Asgharzadeh, Shahab

    2017-01-01

    Tumor-associated macrophages (TAMs) are strongly associated with poor survival in neuroblastomas that lack MYCN amplification. To study TAM action in neuroblastomas, we used a novel murine model of spontaneous neuroblastoma lacking MYCN amplification, and observed recruitment and polarization of TAMs, which in turn enhanced neuroblastoma proliferation and growth. In both murine and human neuroblastoma cells, we found that TAMs increased STAT3 activation in neuroblastoma cells and transcriptionally up-regulated the MYC oncogene. Analysis of human neuroblastoma tumor specimens revealed that MYC up-regulation correlates with markers of TAM infiltration. In an IL6ko neuroblastoma model, the absence of IL-6 protein had no effect on tumor development and prevented neither STAT3 activation nor MYC up-regulation. In contrast, inhibition of JAK-STAT activation using AZD1480 or the clinically admissible inhibitor ruxolitinib significantly reduced TAM-mediated growth of neuroblastomas implanted subcutaneously in NOD scid gamma mice. Our results point to a unique mechanism in which TAMs promote tumor cells that lack amplification of an oncogene common to the malignancy by up-regulating transcriptional expression of a distinct oncogene from the same gene family, and underscore the role of IL-6-independent activation of STAT3 in this mechanism. Amplification of MYCN or constitutive up-regulation of MYC protein is observed in approximately half of high-risk tumors; our findings indicate a novel role of TAMs as inducers of MYC expression in neuroblastomas lacking independent oncogene activation. PMID:29207662

  14. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma.

    PubMed

    Regairaz, Marie; Munier, Fabienne; Sartelet, Hervé; Castaing, Marine; Marty, Virginie; Renauleaud, Céline; Doux, Camille; Delbé, Jean; Courty, José; Fabre, Monique; Ohta, Shigeru; Vielh, Philippe; Michiels, Stefan; Valteau-Couanet, Dominique; Vassal, Gilles

    2016-02-01

    Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Zebrafish as a model to study neuroblastoma development.

    PubMed

    Casey, Mattie J; Stewart, Rodney A

    2018-05-01

    Neuroblastoma is a pediatric solid tumor arising from embryonic neural crest progenitor cells that normally generate the peripheral sympathetic nervous system. As such, the location of neuroblastoma tumors is correlated with the distribution of major post-ganglionic clusters throughout the sympathetic chain, with the highest incidence in the adrenal medulla or lumbar sympathetic ganglia (~65%). Neuroblastoma is an enigmatic tumor that can spontaneously regress with minimal treatment or become highly metastatic and develop resistance to aggressive treatments, including radiation and high-dose chemotherapy. Age of diagnosis, stage of disease and cellular and genetic features often predict whether the tumor will regress or advance to metastatic disease. Recent efforts using molecular and genomic technologies have allowed more accurate stratification of patients into low-, intermediate- and high-risk categories, thereby allowing for minimal intervention in low-risk patients and providing potential new therapeutic targets, such as the ALK receptor tyrosine kinase, for high-risk or relapsed patients. Despite these advances, the overall survival of high-risk neuroblastoma patients is still less than 50%. Furthermore, next-generation sequencing has revealed that almost two-thirds of neuroblastoma tumors do not contain obvious pathogenic mutations, suggesting that epigenetic mechanisms and/or a perturbed cellular microenvironment may heavily influence neuroblastoma development. Understanding the mechanisms that drive neuroblastoma, therefore, will likely require a combination of genomic, developmental and cancer biology approaches in whole animal systems. In this review, we discuss the contributions of zebrafish research to our understanding of neuroblastoma pathogenesis as well as the potential for this model system to accelerate the identification of more effective therapies for high-risk neuroblastoma patients in the future.

  16. The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma.

    PubMed

    Leone, A; Mitsiades, N; Ward, Y; Spinelli, B; Poulaki, V; Tsokos, M; Kelly, K

    2001-05-31

    Gem is a small GTP-binding protein within the Ras superfamily whose function has not been determined. We report here that ectopic Gem expression is sufficient to stimulate cell flattening and neurite extension in N1E-115 and SH-SY5Y neuroblastoma cells, suggesting a role for Gem in cytoskeletal rearrangement and/or morphological differentiation of neurons. Consistent with this potential function, in clinical samples of neuroblastoma, Gem protein was most highly expressed within cells which had differentiated to express ganglionic morphology. Gem was also observed in developing trigeminal nerve ganglia in 12.5 day mouse embryos, demonstrating that Gem expression is a property of normal ganglionic development. Although Gem expression is rare in epithelial and hematopoietic cancer cell lines, constitutive Gem levels were detected in several neuroblastoma cell lines and could be further induced as much as 10-fold following treatment with PMA or the acetylcholine muscarinic agonist, carbachol.

  17. RADIOFREQUENCY RADIATION-INDUCED CALCIUM-ION-EFFLUX ENHANCEMENT FROM HUMAN AND OTHER NEUROBLASTOMA CELLS IN CULTURE

    EPA Science Inventory

    In order to test the generality of radiofrequency-radiation-induced change in alteration 45Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption ra...

  18. MAX to MYCN intracellular ratio drives the aggressive phenotype and clinical outcome of high risk neuroblastoma.

    PubMed

    Ferrucci, Francesca; Ciaccio, Roberto; Monticelli, Sara; Pigini, Paolo; di Giacomo, Simone; Purgato, Stefania; Erriquez, Daniela; Bernardoni, Roberto; Norris, Murray; Haber, Michelle; Milazzo, Giorgio; Perini, Giovanni

    2018-03-01

    Childhood neuroblastoma, a disease of the sympathetic nervous system, is the most common solid tumour of infancy, remarkably refractory to therapeutic treatments. One of the most powerful independent prognostic indicators for this disease is the amplification of the MYCN oncogene, which occurs at high levels in approximately 25% of neuroblastomas. Interestingly, amplification and not just expression of MYCN has a strong prognostic value, although this fact appears quite surprising as MYCN is a transcription factor that requires dimerising with its partner MAX, to exert its function. This observation greatly suggests that the role of MYCN in neuroblastoma should be examined in the context of MAX expression. In this report, we show that, in contrast to what is found in normal cells, MAX expression is significantly different among primary NBs, and that its level appears to correlate with the clinical outcome of the disease. Importantly, controlled modulation of MAX expression in neuroblastoma cells with different extents of MYCN amplification, demonstrates that MAX can instruct gene transcription programs that either reinforce or weaken the oncogenic process enacted by MYCN. In general, our work illustrates that it is the MAX to MYCN ratio that can account for tumour progression and clinical outcome in neuroblastoma and proposes that such a ratio should be considered as an important criterion to the design and development of anti-MYCN therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. [Cervical neuroblastoma in an infant].

    PubMed

    Arvai, Krisztina; Tóth, Judit; Németh, Tamás; Kiss, Csongor; Molnár, Péter; Oláh, Eva

    2004-01-01

    The case of a one-month-old patient admitted to the Department of Pediatrics (Medical and Health Science Center, Debrecen University) because of respiratory distress caused by a cervical mass compressing the upper respiratory pathways is presented. The mass could only be partially removed, the histological diagnosis proved to be neuroblastoma (SBCT: "small blue cell tumor"). Despite the fact that the DNA index of tumor cells (ploidy measurements) and the age of the patient suggested a favourable prognosis, the tumor continued to grow and metastases appeared. Because of symptoms of compression exerted on the respiratory system by the tumor, chemotherapy had to be applied. Since a standard OPEC/OJEC chemotherapeutic protocol proved to be not entirely effective and a residual tumor was still present, retinoic acid and interferon treatment was introduced. Presently, 4 years after the diagnosis, the patient is in complete remission and can be considered to be cured. The case presented here demonstrates that despite the favorable prognosis of the majority of infant neuroblastomas, in some cases the anatomic location of the tumor, leading to disturbance of vital functions, may serve as indication of chemotherapy. Our experience also proved the efficacy of retinoic acid and interferon treatment in relapsed neuroblastoma.

  20. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma.

    PubMed

    Kocak, H; Ackermann, S; Hero, B; Kahlert, Y; Oberthuer, A; Juraeva, D; Roels, F; Theissen, J; Westermann, F; Deubzer, H; Ehemann, V; Brors, B; Odenthal, M; Berthold, F; Fischer, M

    2013-04-11

    Neuroblastoma is an embryonal malignancy of the sympathetic nervous system. Spontaneous regression and differentiation of neuroblastoma is observed in a subset of patients, and has been suggested to represent delayed activation of physiologic molecular programs of fetal neuroblasts. Homeobox genes constitute an important family of transcription factors, which play a fundamental role in morphogenesis and cell differentiation during embryogenesis. In this study, we demonstrate that expression of the majority of the human HOX class I homeobox genes is significantly associated with clinical covariates in neuroblastoma using microarray expression data of 649 primary tumors. Moreover, a HOX gene expression-based classifier predicted neuroblastoma patient outcome independently of age, stage and MYCN amplification status. Among all HOX genes, HOXC9 expression was most prominently associated with favorable prognostic markers. Most notably, elevated HOXC9 expression was significantly associated with spontaneous regression in infant neuroblastoma. Re-expression of HOXC9 in three neuroblastoma cell lines led to a significant reduction in cell viability, and abrogated tumor growth almost completely in neuroblastoma xenografts. Neuroblastoma growth arrest was related to the induction of programmed cell death, as indicated by an increase in the sub-G1 fraction and translocation of phosphatidylserine to the outer membrane. Programmed cell death was associated with the release of cytochrome c from the mitochondria into the cytosol and activation of the intrinsic cascade of caspases, indicating that HOXC9 re-expression triggers the intrinsic apoptotic pathway. Collectively, our results show a strong prognostic impact of HOX gene expression in neuroblastoma, and may point towards a role of Hox-C9 in neuroblastoma spontaneous regression.

  1. Evidence of chromaffin oxygen sensing in neuroblastoma.

    PubMed

    Hedborg, F; Franklin, G; Norrman, J; Grimelius, L; Wassberg, E; Hero, B; Schilling, F; Berthold, F; Harms, D; Sandstedt, B

    2001-01-01

    With the aid of IGF2 and VEGF in situ hybridization; tyrosine hydroxylase, chromogranin A, and Ki67 immunohistochemistry; and TUNEL staining applied to a large series of clinical neuroblastomas and to an animal model, we show here that stroma-poor neuroblastomas show evidence of chromaffin differentiation similar to that of type 1 small intensely fluorescent (SIF) cells and that this occurs in a vascular-dependent fashion, indicating a role for local tumor hypoxia in the differentiation process.

  2. Low-dose cisplatin protects human neuroblastoma SH-SY5Y cells from paclitaxel-induced apoptosis.

    PubMed

    Villa, Daniela; Miloso, Mariarosaria; Nicolini, Gabriella; Rigolio, Roberta; Villa, Antonello; Cavaletti, Guido; Tredici, Giovanni

    2005-09-01

    Combined anticancer therapy using platinum compounds and antitubulins has increased the risk of neurotoxicity. However, the combination of low-dose cisplatin (CDDP) with toxic doses of paclitaxel significantly reduces cellular death in a human neuroblastoma SH-SY5Y cell line. To analyze the mechanisms of this protection, we evaluated various signaling molecules possibly involved in apoptosis and some relevant cell cycle regulatory proteins. CDDP does not interfere with the tubulin-stabilizing action of paclitaxel. The evaluation of molecular pathways involved in apoptosis indicates that the Bcl-2 but not the caspases may be involved in the CDDP protection of paclitaxel-induced apoptosis. The increase in p53 protein and its nuclear accumulation suggests a possible involvement of p53 in CDDP protection. The use of the chemical inhibitor of p53, pifithrin alpha, excluded this possibility. The study of cyclins and the flow cytometric analysis (fluorescence-activated cell sorting) suggest that CDDP exerts a protective action by blocking cells early in the cell cycle. The determination of the mitotic index indicates that CDDP prevents cells from reaching the mitosis. We concluded that low doses of CDDP are protective against toxic doses of paclitaxel and that the possible mechanism of this protection is that the CDDP prevents human neuroblastoma SH-SY5Y cells from achieving mitosis.

  3. Identification of GPC2 as an Oncoprotein and Candidate Immunotherapeutic Target in High-Risk Neuroblastoma.

    PubMed

    Bosse, Kristopher R; Raman, Pichai; Zhu, Zhongyu; Lane, Maria; Martinez, Daniel; Heitzeneder, Sabine; Rathi, Komal S; Kendsersky, Nathan M; Randall, Michael; Donovan, Laura; Morrissy, Sorana; Sussman, Robyn T; Zhelev, Doncho V; Feng, Yang; Wang, Yanping; Hwang, Jennifer; Lopez, Gonzalo; Harenza, Jo Lynne; Wei, Jun S; Pawel, Bruce; Bhatti, Tricia; Santi, Mariarita; Ganguly, Arupa; Khan, Javed; Marra, Marco A; Taylor, Michael D; Dimitrov, Dimiter S; Mackall, Crystal L; Maris, John M

    2017-09-11

    We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The “Neuro” of Neuroblastoma: Neuroblastoma as a Neurodevelopmental Disorder

    PubMed Central

    Ratner, Nancy; Brodeur, Garrett M.; Dale, Russell C.; Schor, Nina F.

    2017-01-01

    Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. PMID:27043043

  5. Influence of differentiation on muscarinic receptors in N1E 115 neuroblastoma cells.

    PubMed

    Buyse, M A; Lefebvre, R A; Fraeyman, N H

    1989-01-01

    The effect of inducing morphological differentiation in N1E 115 mouse neuroblastoma cells on the number of muscarinic receptors and the ligand binding affinity was investigated using the lipophylic quinuclidinyl benzylate and the hydrophylic N-methylscopolamine as tritiated ligands. Induction of morphological differentiation was accompanied by a two- to three-fold increase of the number of receptors when assayed in a broken cell preparation; the ligand binding affinity was unaffected by differentiation. Using intact cells, this increase was not paralleled by a similar increase in binding sites accessible for N-methylscopolamine, which binds preferentially to extracellular sites.

  6. Heme Oxygenase Inhibition Sensitizes Neuroblastoma Cells to Carfilzomib.

    PubMed

    Barbagallo, Ignazio; Giallongo, Cesarina; Volti, Giovanni Li; Distefano, Alfio; Camiolo, Giuseppina; Raffaele, Marco; Salerno, Loredana; Pittalà, Valeria; Sorrenti, Valeria; Avola, Roberto; Di Rosa, Michelino; Vanella, Luca; Di Raimondo, Francesco; Tibullo, Daniele

    2018-06-10

    Neuroblastoma (NB) is an embryonic malignancy affecting the physiological development of adrenal medulla and paravertebral sympathetic ganglia in early infancy. Proteasome inhibitors (PIs) (i.e., carfilzomib (CFZ)) may represent a possible pharmacological treatment for solid tumors including NB. In the present study, we tested the effect of a novel non-competitive inhibitor of heme oxygenase-1 (HO-1), LS1/71, as a possible adjuvant therapy for the efficacy of CFZ in neuroblastoma cells. Our results showed that CFZ increased both HO-1 gene expression (about 18-fold) and HO activity (about 8-fold), following activation of the ER stress pathway. The involvement of HO-1 in CFZ-mediated cytotoxicity was further confirmed by the protective effect of pharmacological induction of HO-1, significantly attenuating cytotoxicity. In addition, HO-1 selective inhibition by a specific siRNA increased the cytotoxic effect following CFZ treatment in NB whereas SnMP, a competitive pharmacological inhibitor of HO, showed no changes in cytotoxicity. Our data suggest that treatment with CFZ produces ER stress in NB without activation of CHOP-mediated apoptosis, whereas co-treatment with CFZ and LS1/71 led to apoptosis activation and CHOP expression induction. In conclusion, our study showed that treatment with the non-competitive inhibitor of HO-1, LS1 / 71, increased cytotoxicity mediated by CFZ, triggering apoptosis following ER stress activation. These results suggest that PIs may represent a possible pharmacological treatment for solid tumors and that HO-1 inhibition may represent a possible strategy to overcome chemoresistance and increase the efficacy of chemotherapic regimens.

  7. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma

    PubMed Central

    Li, Nan; Fu, Haiying; Hewitt, Stephen M.; Dimitrov, Dimiter S.

    2017-01-01

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma. PMID:28739923

  8. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma.

    PubMed

    Li, Nan; Fu, Haiying; Hewitt, Stephen M; Dimitrov, Dimiter S; Ho, Mitchell

    2017-08-08

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.

  9. Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells.

    PubMed

    Kurotsuchi, Ai; Murakumo, Yoshiki; Jijiwa, Mayumi; Kurokawa, Kei; Itoh, Yasutomo; Kodama, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Terasaki, Hiroko; Takahashi, Masahide

    2010-05-01

    Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.

  10. Mutations in PIK3CA are infrequent in neuroblastoma

    PubMed Central

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Background Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Methods Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. Results We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. Conclusion These data

  11. Protective Effects of Bacopa Monnieri on Hydrogen Peroxide and Staurosporine: Induced Damage of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Łojewski, Maciej; Pomierny, Bartosz; Muszyńska, Bożena; Krzyżanowska, Weronika; Budziszewska, Bogusława; Szewczyk, Agnieszka

    2016-02-01

    Many herbs, and recently their biomass from in vitro cultures, are essential for the treatment of diseases. The aim of this study was to determine the optimal growth of Bacopa monnieri (water hyssop) in an in vitro culture and to examine if extracts of the B. monnieri biomass from the in vitro culture would affect hydrogen peroxide- and staurosporine-induced injury of the human neuroblastoma SH-SY5Y cell line. It has been found that B. monnieri at concentrations of 25, 50, and 100 µg/mL inhibited both hydrogen peroxide-induced efflux of lactate dehydrogenase from damaged cells to culture medium and increased cell viability determined by an MTT assay. Moreover, B. monnieri at concentrations of 10, 25, and 50 µg/mL decreased staurosporine-induced activity of an executive apoptotic enzyme-caspase-3 and protected mitochondrial membrane potential. The obtained data indicate that the biomass from the in vitro culture of B. monnieri prevented SH-SY5Y cell damage related to oxidative stress and had the ability to inhibit the apoptotic process. Thus, this study supports the traditional use of B. monnieri as a neuroprotective therapy, and further in vivo studies on the effects of this preparation on morphology and function of nerve cells could lead to its wider application. Georg Thieme Verlag KG Stuttgart · New York.

  12. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  13. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    PubMed Central

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  14. The toxicity study of functionalized CNT from fermented tapioca on neuroblastoma cell

    NASA Astrophysics Data System (ADS)

    Nurulhuda, I.; Mazatulikhma, M. Z.; Alrokayan, S.; Khan, H.; Rusop, M.

    2018-05-01

    Carbon nanotubes known as one of the most interesting types of nanomaterials, especially use in application directly to cells. Somehow the use should take into consideration regarding the potential adverse impact on human health. Current study, the carbon nanotube was synthesized from fermented tapioca and functionalized with polyethylene glycol and directly test on the neuroblastoma cells in vitro. The toxicity effect on cells was assessed by 3(4, 5-dimethylthiazol-2-yl)-2, 5-tetrazolium bromide assays. It showed a dose-and time-dependent less toxic effect on functionalized carbon nanotube compared to non-functionalized. This leads us to the conclusion that functionalized carbon nanotube can be use for drug delivery in future.

  15. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    PubMed Central

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  16. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.

    PubMed

    Dolman, M Emmy M; Poon, Evon; Ebus, Marli E; den Hartog, Ilona J M; van Noesel, Carel J M; Jamin, Yann; Hallsworth, Albert; Robinson, Simon P; Petrie, Kevin; Sparidans, Rolf W; Kok, Robbert J; Versteeg, Rogier; Caron, Huib N; Chesler, Louis; Molenaar, Jan J

    2015-11-15

    MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification. ©2015 American Association for Cancer Research.

  17. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells

    PubMed Central

    HERNÁNDEZ-BULE, MARÍA LUISA; ROLDÁN, ERNESTO; MATILLA, JOAQUÍN; TRILLO, MARÍA ÁNGELES; ÚBEDA, ALEJANDRO

    2012-01-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45–0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate. PMID:22843038

  18. Radiofrequency currents exert cytotoxic effects in NB69 human neuroblastoma cells but not in peripheral blood mononuclear cells.

    PubMed

    Hernández-Bule, María Luisa; Roldán, Ernesto; Matilla, Joaquín; Trillo, María Angeles; Ubeda, Alejandro

    2012-10-01

    Recently, a number of electric and electrothermal therapies have been applied to the treatment of specific cancer types. However, the cellular and molecular mechanisms involved in the response to such therapies have not been well characterized yet. Capacitive-resistive electric transfer (CRET) therapy uses electric currents at frequencies within the 0.45-0.6 MHz range to induce hyperthermia in target tissues. Preliminary trials in cancer patients have shown consistent signs that CRET could slow down growth of tumor tissues in brain gliomas, without inducing detectable damage in the surrounding healthy tissue. Previous studies by our group have shown that subthermal treatment with 0.57-MHz electric currents can induce a cytostatic, not cytotoxic response in HepG2 human hepatocarcinoma cells; such effect being mediated by cell cycle alterations. In contrast, the study of the response of NB69 human neuroblastoma cells to the same electric treatment revealed consistent indications of cytotoxic effects. The present study extends the knowledge on the response of NB69 cells to the subthermal stimulus, comparing it to that of primary cultures of human peripheral blood mononuclear cells (PBMC) exposed to the same treatment. The results showed no sensitivity of PBMC to the 0.57 MHz subthermal currents and confirmed that the treatment exerts a cytotoxic action in NB69 cells. The data also revealed a previously undetected cytostatic response of the neuroblastoma cell line. CRET currents affected NB69 cell proliferation by significantly reducing the fraction of cells in the phase G2/M of the cell cycle at 12 h of exposure. These data provide new information on the mechanisms of response to CRET therapy, and are consistent with a cytotoxic and/or cytostatic action of the electric treatment, which would affect human cells of tumor origin but not normal cells with a low proliferation rate.

  19. TIAM1 variants improve clinical outcome in neuroblastoma.

    PubMed

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L; Cañete, Adela; Castel, Victoria; Font de Mora, Jaime

    2017-07-11

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma.

  20. Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma.

    PubMed

    Boboila, Shuobo; Lopez, Gonzalo; Yu, Jiyang; Banerjee, Debarshi; Kadenhe-Chiweshe, Angela; Connolly, Eileen P; Kandel, Jessica J; Rajbhandari, Presha; Silva, Jose M; Califano, Andrea; Yamashiro, Darrell J

    2018-06-07

    Despite the identification of MYCN amplification as an adverse prognostic marker in neuroblastoma, MYCN inhibitors have yet to be developed. Here, by integrating evidence from a whole-genome shRNA library screen and the computational inference of master regulator proteins, we identify transcription factor activating protein 4 (TFAP4) as a critical effector of MYCN amplification in neuroblastoma, providing a novel synthetic lethal target. We demonstrate that TFAP4 is a direct target of MYCN in neuroblastoma cells, and that its expression and activity strongly negatively correlate with neuroblastoma patient survival. Silencing TFAP4 selectively inhibits MYCN-amplified neuroblastoma cell growth both in vitro and in vivo, in xenograft mouse models. Mechanistically, silencing TFAP4 induces neuroblastoma differentiation, as evidenced by increased neurite outgrowth and upregulation of neuronal markers. Taken together, our results demonstrate that TFAP4 is a key regulator of MYCN-amplified neuroblastoma and may represent a valuable novel therapeutic target.

  1. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    PubMed

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  2. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  3. miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis.

    PubMed

    Qiao, Jingbo; Lee, Sora; Paul, Pritha; Theiss, Lauren; Tiao, Joshua; Qiao, Lan; Kong, Andrew; Chung, Dai H

    2013-08-01

    microRNA (miRNA) functions broadly as post-transcriptional regulators of gene expression, and disproportionate miRNAs can result in dysregulation of oncogenes in cancer cells. We have previously shown that gastrin-releasing peptide receptor (GRP-R) signaling regulates tumorigenicity of neuroblastoma cells. Herein, we sought to characterize miRNA profile in GRP-R silenced neuroblastoma cells, and to determine the role of miRNAs on tumorigenicity and metastatic potential. Human neuroblastoma cell lines, BE(2)-C and SK-N-SH, were used for our study. Stably transfected GRP-R silenced cells were assessed for miRNA profiles. Cells were transfected with miR-335, miR-363, or miR-CON, a nontargeting control, and in vitro assays were performed. In vivo functions of miR-335 and miR-363 were also assessed in a spleen-liver metastasis murine model. GRP-R silencing significantly increased expression of miR-335 and miR-363 in BE(2)-C cells. Overexpression of miR-335 and miR-363 decreased tumorigenicity as measured by clonogenicity, anchorage-independent growth, and metastasis determined by cell invasion assay and liver metastasis in vivo. We report, for the first time, that GRP-R-mediated tumorigenicity and increased metastatic potential in neuroblastoma are regulated, in part, by miR-335 and miR-363. A better understanding of the anti-tumor functions of miRNAs could provide valuable insights to discerning molecular mechanisms responsible for neuroblastoma metastasis. Copyright © 2013 Mosby, Inc. All rights reserved.

  4. Inhibition of Microsomal Prostaglandin E Synthase-1 in Cancer-Associated Fibroblasts Suppresses Neuroblastoma Tumor Growth.

    PubMed

    Kock, Anna; Larsson, Karin; Bergqvist, Filip; Eissler, Nina; Elfman, Lotta H M; Raouf, Joan; Korotkova, Marina; Johnsen, John Inge; Jakobsson, Per-Johan; Kogner, Per

    2018-06-01

    Despite recent progress in diagnosis and treatment, survival for children with high-risk metastatic neuroblastoma is still poor. Prostaglandin E 2 (PGE 2 )-driven inflammation promotes tumor growth, immune suppression, angiogenesis and resistance to established cancer therapies. In neuroblastoma, cancer-associated fibroblasts (CAFs) residing in the tumor microenvironment are the primary source of PGE 2 . However, clinical targeting of PGE 2 with current non-steroidal anti-inflammatory drugs or cyclooxygenase inhibitors has been limited due to risk of adverse side effects. By specifically targeting microsomal prostaglandin E synthase-1 (mPGES-1) activity with a small molecule inhibitor we could block CAF-derived PGE 2 production leading to reduced tumor growth, impaired angiogenesis, inhibited CAF migration and infiltration, reduced tumor cell proliferation and a favorable shift in the M1/M2 macrophage ratio. In this study, we provide proof-of-principle of the benefits of targeting mPGES-1 in neuroblastoma, applicable to a wide variety of tumors. This non-toxic single drug treatment targeting infiltrating stromal cells opens up for combination treatment options with established cancer therapies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Spontaneous regression of neuroblastoma.

    PubMed

    Brodeur, Garrett M

    2018-05-01

    Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.

  6. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  7. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    PubMed

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  8. Alpha-Lipoic Acid Downregulates IL-1β and IL-6 by DNA Hypermethylation in SK-N-BE Neuroblastoma Cells.

    PubMed

    Dinicola, Simona; Proietti, Sara; Cucina, Alessandra; Bizzarri, Mariano; Fuso, Andrea

    2017-09-26

    Alpha-lipoic acid (ALA) is a pleiotropic molecule with antioxidant and anti-inflammatory properties, of which the effects are exerted through the modulation of NF-kB. This nuclear factor, in fact, modulates different inflammatory cytokines, including IL-1b and IL-6, in different tissues and cell types. We recently showed that IL-1b and IL-6 DNA methylation is modulated in the brain of Alzheimer's disease patients, and that IL-1b expression is associated to DNA methylation in the brain of patients with tuberous sclerosis complex. These results prompted us to ask whether ALA-induced repression of IL-1b and IL-6 was dependent on DNA methylation. Therefore, we profiled DNA methylation in the 5'-flanking region of the two aforementioned genes in SK-N-BE human neuroblastoma cells cultured in presence of ALA 0.5 mM. Our experimental data pointed out that the two promoters are hypermethylated in cells supplemented with ALA, both at CpG and non-CpG sites. Moreover, the observed hypermethylation is associated with decreased mRNA expression and decreased cytokine release. These results reinforce previous findings indicating that IL-1b and IL-6 undergo DNA methylation-dependent modulation in neural models and pave the road to study the epigenetic mechanisms triggered by ALA.

  9. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways.

    PubMed

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-11-08

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P < 0.05; P < 0.01, respectively) in neuroblastoma tissue, whereas MEG3 displayed the lower expression (P < 0.01). HIF-1α expression was negatively correlated with cell proliferation in the linc01105 KD group. In addition, Noxa and Bid expression was positively correlated with cell apoptosis. Moreover, linc01105 knockdown promoted cell proliferation, whereas MEG3 overexpression inhibited proliferation. Finally, linc01105 knockdown, MEG3 overexpression and HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were -0.48, -0.58 and -0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage.

  10. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways

    PubMed Central

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-01-01

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P < 0.05; P < 0.01, respectively) in neuroblastoma tissue, whereas MEG3 displayed the lower expression (P < 0.01). HIF-1α expression was negatively correlated with cell proliferation in the linc01105 KD group. In addition, Noxa and Bid expression was positively correlated with cell apoptosis. Moreover, linc01105 knockdown promoted cell proliferation, whereas MEG3 overexpression inhibited proliferation. Finally, linc01105 knockdown, MEG3 overexpression and HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were −0.48, −0.58 and −0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage. PMID:27824082

  11. What's New in Neuroblastoma Research and Treatment?

    MedlinePlus

    ... New in Neuroblastoma Research? Neuroblastoma About Neuroblastoma What’s New in Neuroblastoma Research? Important research into neuroblastoma is ... group . Other gene changes might help researchers find new treatments that work on certain types of neuroblastoma ...

  12. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma.

    PubMed

    Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina; Qu, Feng; Van Herck, Simon; Tyurina, Yulia Y; Bayır, Hülya; Abhari, Behnaz A; Angeli, Jose Pedro Friedmann; Choi, Sze Men; Meul, Eline; Heyninck, Karen; Declerck, Ken; Chirumamilla, Chandra Sekhar; Lahtela-Kakkonen, Maija; Van Camp, Guy; Krysko, Dmitri V; Ekert, Paul G; Fulda, Simone; De Geest, Bruno G; Conrad, Marcus; Kagan, Valerian E; Berghe, Wim Vanden; Vandenabeele, Peter; Berghe, Tom Vanden

    2018-06-25

    High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor-like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.

  13. Neuroblastoma Treatment (PDQ®)—Patient Version

    Cancer.gov

    Neuroblastoma treatment may include surgery, observation, chemotherapy, radiation therapy, radioactive iodine, and high-dose chemotherapy with stem cell transplant and targeted therapy. Treatment also depends on risk category. Learn more in this expert-reviewed summary.

  14. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina

    2006-01-06

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe,more » and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.« less

  15. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  16. Iodine-131 metaiodobenzylguanidine therapy for neuroblastoma: reports so far and future perspective.

    PubMed

    Kayano, Daiki; Kinuya, Seigo

    2015-01-01

    Neuroblastoma, which derives from neural crest, is the most common extracranial solid cancer in childhood. The tumors express the norepinephrine (NE) transporters on their cell membrane and take in metaiodobenzylguanidine (MIBG) via a NE transporter. Since iodine-131 (I-131) MIBG therapy was firstly reported, many trails of MIBG therapy in patients with neuroblastoma were performed. Though monotherapy with a low dose of I-131 MIBG could achieve high-probability pain reduction, the objective response was poor. In contrast, more than 12 mCi/kg I-131 MIBG administrations with or without hematopoietic cell transplantation (HCT) obtain relatively good responses in patients with refractory or relapsed neuroblastoma. The combination therapy with I-131 MIBG and other modalities such as nonmyeloablative chemotherapy and myeloablative chemotherapy with HCT improved the therapeutic response in patients with refractory or relapsed neuroblastoma. In addition, I-131 MIBG therapy incorporated in the induction therapy was proved to be feasible in patients with newly diagnosed neuroblastoma. To expand more the use of MIBG therapy for neuroblastoma, further studies will be needed especially in the use at an earlier stage from diagnosis, in the use with other radionuclide formations of MIBG, and in combined use with other therapeutic agents.

  17. Iodine-131 Metaiodobenzylguanidine Therapy for Neuroblastoma: Reports So Far and Future Perspective

    PubMed Central

    Kayano, Daiki

    2015-01-01

    Neuroblastoma, which derives from neural crest, is the most common extracranial solid cancer in childhood. The tumors express the norepinephrine (NE) transporters on their cell membrane and take in metaiodobenzylguanidine (MIBG) via a NE transporter. Since iodine-131 (I-131) MIBG therapy was firstly reported, many trails of MIBG therapy in patients with neuroblastoma were performed. Though monotherapy with a low dose of I-131 MIBG could achieve high-probability pain reduction, the objective response was poor. In contrast, more than 12 mCi/kg I-131 MIBG administrations with or without hematopoietic cell transplantation (HCT) obtain relatively good responses in patients with refractory or relapsed neuroblastoma. The combination therapy with I-131 MIBG and other modalities such as nonmyeloablative chemotherapy and myeloablative chemotherapy with HCT improved the therapeutic response in patients with refractory or relapsed neuroblastoma. In addition, I-131 MIBG therapy incorporated in the induction therapy was proved to be feasible in patients with newly diagnosed neuroblastoma. To expand more the use of MIBG therapy for neuroblastoma, further studies will be needed especially in the use at an earlier stage from diagnosis, in the use with other radionuclide formations of MIBG, and in combined use with other therapeutic agents. PMID:25874239

  18. Sequences required for induction of neurotensin receptor gene expression during neuronal differentiation of N1E-115 neuroblastoma cells.

    PubMed

    Tavares, D; Tully, K; Dobner, P R

    1999-10-15

    The promoter region of the mouse high affinity neurotensin receptor (Ntr-1) gene was characterized, and sequences required for expression in neuroblastoma cell lines that express high affinity NT-binding sites were characterized. Me(2)SO-induced neuronal differentiation of N1E-115 neuroblastoma cells increased both the expression of the endogenous Ntr-1 gene and reporter genes driven by NTR-1 promoter sequences by 3-4-fold. Deletion analysis revealed that an 83-base pair promoter region containing the transcriptional start site is required for Me(2)SO activation. Detailed mutational analysis of this region revealed that a CACCC box and the central region of a large GC-rich palindrome are the crucial cis-regulatory elements required for Me(2)SO induction. The CACCC box is bound by at least one factor that is induced upon Me(2)SO treatment of N1E-115 cells. The Me(2)SO effect was found to be both selective and cell type-restricted. Basal expression in the neuroblastoma cell lines required a distinct set of sequences, including an Sp1-like sequence, and a sequence resembling an NGFI-A-binding site; however, a more distal 5' sequence was found to repress basal activity in N1E-115 cells. These results provide evidence that Ntr-1 gene regulation involves both positive and negative regulatory elements located in the 5'-flanking region and that Ntr-1 gene activation involves the coordinate activation or induction of several factors, including a CACCC box binding complex.

  19. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma.

    PubMed

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E

    2017-10-17

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.

  20. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma

    PubMed Central

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N.; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E.

    2017-01-01

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients. PMID:29156716

  1. Calreticulin Regulates VEGF-A in Neuroblastoma Cells.

    PubMed

    Weng, Wen-Chin; Lin, Kuan-Hung; Wu, Pei-Yi; Lu, Yi-Chien; Weng, Yi-Cheng; Wang, Bo-Jeng; Liao, Yung-Feng; Hsu, Wen-Ming; Lee, Wang-Tso; Lee, Hsinyu

    2015-08-01

    Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.

  2. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy.

    PubMed

    Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian

    2017-07-01

    Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  4. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  5. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, H.W.; Clarke, J.T.; Spence, M.W.

    1982-12-01

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; deltamore » 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue.« less

  6. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    PubMed Central

    Terman, Alexei; Hallbeck, Martin; Dehvari, Nodi; Cowburn, Richard F.; Benedikz, Eirikur; Kågedal, Katarina; Cedazo-Minguez, Angel; Marcusson, Jan

    2011-01-01

    Increasing evidence suggests the toxicity of intracellular amyloid β-protein (Aβ) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 40% oxygen for five days), and consequent activation of macroautophagy and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular Aβ production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of γ-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal Aβ resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration. PMID:22108004

  7. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.

    PubMed

    Rifatbegovic, Fikret; Frech, Christian; Abbasi, M Reza; Taschner-Mandl, Sabine; Weiss, Tamara; Schmidt, Wolfgang M; Schmidt, Iris; Ladenstein, Ruth; Ambros, Inge M; Ambros, Peter F

    2018-01-15

    Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of metastatic (M) stage patients present with disseminated tumor cells (DTCs) in the bone marrow (BM) at diagnosis and relapse. Although these cells represent a major obstacle in the treatment of neuroblastoma patients, insights into their expression profile remained elusive. The present RNA-Seq study of stage 4/M primary tumors, enriched BM-derived diagnostic and relapse DTCs, as well as the corresponding BM-derived mononuclear cells (MNCs) from 53 patients revealed 322 differentially expressed genes in DTCs as compared to the tumors (q < 0.001, |log 2 FC|>2). Particularly, the levels of transcripts encoded by mitochondrial DNA were elevated in DTCs, whereas, for example, genes involved in angiogenesis were downregulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8 × 10 -75 log 2 FC > 6). Interestingly, we found the transcriptome of relapse DTCs largely resembling those of diagnostic DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log 2 FC|>0.5). Notably, relapse DTCs showed a positional enrichment of 31 downregulated genes on chromosome 19, including five tumor suppressor genes: SIRT6, BBC3/PUMA, STK11, CADM4 and GLTSCR2. This first RNA-Seq analysis of neuroblastoma DTCs revealed their unique expression profile in comparison to the tumors and MNCs, and less pronounced differences between diagnostic and relapse DTCs. The latter preferentially affected downregulation of genes encoded by chromosome 19. As these alterations might be associated with treatment failure and disease relapse, further functional studies on DTCs should be considered. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  9. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    PubMed Central

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  10. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    PubMed

    Vieira, Gabriella Cunha; Chockalingam, S; Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O; Gabb, Peter David; Malik, Karim

    2015-11-24

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.

  11. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma

    PubMed Central

    Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O.; Gabb, Peter J.; Malik, Karim

    2015-01-01

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5. PMID:26517508

  12. Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Salwen, H; Laureys, G; Manoel, N; De Paepe, A; Speleman, F

    2001-10-01

    Cancer cell lines are essential gene discovery tools and have often served as models in genetic and functional studies of particular tumor types. One of the future challenges is comparison and interpretation of gene expression data with the available knowledge on the genomic abnormalities in these cell lines. In this context, accurate description of these genomic abnormalities is required. Here, we show that a combination of M-FISH with banding analysis, standard FISH, and CGH allowed a detailed description of the genetic alterations in 16 neuroblastoma cell lines. In total, 14 cryptic chromosome rearrangements were detected, including a balanced t(2;4)(p24.3;q34.3) translocation in cell line NBL-S, with the 2p24 breakpoint located at about 40 kb from MYCN. The chromosomal origin of 22 marker chromosomes and 41 cytogenetically undefined translocated segments was determined. Chromosome arm 2 short arm translocations were observed in six cell lines (38%) with and five (31%) without MYCN amplification, leading to partial chromosome arm 2p gain in all but one cell line and loss of material in the various partner chromosomes, including 1p and 11q. These 2p gains were often masked in the GGH profiles due to MYCN amplification. The commonly overrepresented region was chromosome segment 2pter-2p22, which contains the MYCN gene, and five out of eleven 2p breakpoints clustered to the interface of chromosome bands 2p16 and 2p21. In neuroblastoma cell line SJNB-12, with double minutes (dmins) but no MYCN amplification, the dmins were shown to be derived from 16q22-q23 sequences. The ATBF1 gene, an AT-binding transcription factor involved in normal neurogenesis and located at 16q22.2, was shown to be present in the amplicon. This is the first report describing the possible implication of ATBF1 in neuroblastoma cells. We conclude that a combined approach of M-FISH, cytogenetics, and CGH allowed a more complete and accurate description of the genetic alterations occurring in the

  13. 29 CFR 2520.104b-2 - Summary plan description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... welfare plan), required by section 104(b)(1) of the Act, the administrator of an employee benefit plan... to participants and beneficiaries have been completed; and (ii) In the case of an employee welfare... Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF...

  14. RSRC1 and CPZ gene polymorphisms with neuroblastoma susceptibility in Chinese children.

    PubMed

    Tang, Jue; Liu, Wei; Zhu, Jinhong; Zhang, Jiao; Wang, Feng-Hua; Liang, Jiang-Hua; Zeng, Jia-Hang; Wang, Hui; Xia, Huimin; He, Jing

    2018-07-01

    Two new neuroblastoma susceptibility loci at 3q25 (RSRC1 rs6441201 G > A) and 4p16 (CPZ rs3796725 T > C and rs3796727 A > G) were identified by a genome-wide association study (GWAS) involving Italians, African Americans and European Americans. In this case-control study with 393 neuroblastoma cases and 812 controls, we investigated the association between these three polymorphisms and neuroblastoma susceptibility in Chinese population. We found that participants harboring the RSRC1 rs6441201A allele were associated with an increased risk of neuroblastoma (AA vs. GG: adjusted OR = 1.55, 95% CI = 1.03-2.34, P = 0.036). No significant association between the CPZ polymorphisms (rs3796725 T > C and rs3796727A > G) and neuroblastoma susceptibility was observed. In conclusion, our results confirm that the RSRC1 rs6441201A allele is associated with neuroblastoma susceptibility in Chinese population. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. microRNA-221 Enhances MYCN via Targeting Nemo-like Kinase and Functions as an Oncogene Related to Poor Prognosis in Neuroblastoma.

    PubMed

    He, Xiao-Yan; Tan, Zheng-Lan; Mou, Qin; Liu, Fang-Jie; Liu, Shan; Yu, Chao-Wen; Zhu, Jin; Lv, Lin-Ya; Zhang, Jun; Wang, Shan; Bao, Li-Ming; Peng, Bin; Zhao, Hui; Zou, Lin

    2017-06-01

    Purpose: MYCN is one of the most well-characterized genetic markers of neuroblastoma. However, the mechanisms as to how MYCN mediate neuroblastoma tumorigenesis are not fully clear. Increasing evidence has confirmed that the dysregulation of miRNAs is involved in MYCN-mediated neuroblastoma tumorigenesis, supporting their potential as therapeutic targets for neuroblastoma. Although miR-221 has been reported as one of the upregulated miRNAs, the interplay between miR-221 and MYCN-mediated neuroblastoma progression remains largely elusive. Experimental Design: The expression of miR-221 in the formalin-fixed, paraffin-embedded tissues from 31 confirmed patients with neuroblastoma was detected by locked nucleic acid- in situ hybridization and qRT-PCR. The correlation between miR-221 expression and clinical features in patients with neuroblastoma was assessed. The mechanisms as to how miR-221 regulate MYCN in neuroblastoma were addressed. The effect of miR-221 on cellular proliferation in neuroblastoma was determined both in vitro and in vivo Results: miR-221 was significantly upregulated in neuroblastoma tumor cells and tissues that overexpress MYCN, and high expression of miR-221 was positively associated with poor survival in patients with neuroblastoma. Nemo-like kinase (NLK) as a direct target of miR-221 in neuroblastoma was verified. In addition, overexpression of miR-221 decreased LEF1 phosphorylation but increased the expression of MYCN via targeting of NLK and further regulated cell cycle, particularly in S-phase, promoting the growth of neuroblastoma cells. Conclusions: This study provides a novel insight for miR-221 in the control of neuroblastoma cell proliferation and tumorigenesis, suggesting potentials of miR-221 as a prognosis marker and therapeutic target for patients with MYCN overexpressing neuroblastoma. Clin Cancer Res; 23(11); 2905-18. ©2016 AACR . ©2016 American Association for Cancer Research.

  16. CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus

    PubMed Central

    Russell, Mike R.; Penikis, Annalise; Oldridge, Derek A.; Alvarez-Dominguez, Juan R.; McDaniel, Lee; Diamond, Maura; Padovan, Olivia; Raman, Pichai; Li, Yimei; Wei, Jun S.; Zhang, Shile; Gnanchandran, Janahan; Seeger, Robert; Asgharzadeh, Shahab; Khan, Javed; Diskin, Sharon J.; Maris, John M.; Cole, Kristina A.

    2015-01-01

    Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single nucleotide polymorphism (SNP) associations reside within CASC15, a long non-coding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression. PMID:26100672

  17. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    PubMed

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients.

    PubMed

    Applebaum, Mark A; Jha, Aashish R; Kao, Clara; Hernandez, Kyle M; DeWane, Gillian; Salwen, Helen R; Chlenski, Alexandre; Dobratic, Marija; Mariani, Christopher J; Godley, Lucy A; Prabhakar, Nanduri; White, Kevin; Stranger, Barbara E; Cohn, Susan L

    2016-11-22

    Neuroblastoma is notable for its broad spectrum of clinical behavior ranging from spontaneous regression to rapidly progressive disease. Hypoxia is well known to confer a more aggressive phenotype in neuroblastoma. We analyzed transcriptome data from diagnostic neuroblastoma tumors and hypoxic neuroblastoma cell lines to identify genes whose expression levels correlate with poor patient outcome and are involved in the hypoxia response. By integrating a diverse set of transcriptome datasets, including those from neuroblastoma patients and neuroblastoma derived cell lines, we identified nine genes (SLCO4A1, ENO1, HK2, PGK1, MTFP1, HILPDA, VKORC1, TPI1, and HIST1H1C) that are up-regulated in hypoxia and whose expression levels are correlated with poor patient outcome in three independent neuroblastoma cohorts. Analysis of 5-hydroxymethylcytosine and ENCODE data indicate that at least five of these nine genes have an increase in 5-hydroxymethylcytosine and a more open chromatin structure in hypoxia versus normoxia and are putative targets of hypoxia inducible factor (HIF) as they contain HIF binding sites in their regulatory regions. Four of these genes are key components of the glycolytic pathway and another three are directly involved in cellular metabolism. We experimentally validated our computational findings demonstrating that seven of the nine genes are significantly up-regulated in response to hypoxia in the four neuroblastoma cell lines tested. This compact and robustly validated group of genes, is associated with the hypoxia response in aggressive neuroblastoma and may represent a novel target for biomarker and therapeutic development.

  19. Mechanisms of neuroblastoma regression

    PubMed Central

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  20. Studies of the Tumor Microenvironment in Pathogenesis of Neuroblastoma

    DTIC Science & Technology

    2013-07-01

    NOTES 14. ABSTRACT The NBL -Tag neuroblastoma tumors were assessed for presence of macrophages and their role in promoting tumor growth...Anti-IL6 antibody therapy on a co-culture of macrophages and NBL -Tag tumor cell line (NBT2) did not decrease the tumor- promoting effects of ‘trained...characterization of a recently described 100% penetrant transgenic murine neuroblastoma model ( NBL -Tag) established lack of MYCN amplification using

  1. Dehydroeffusol inhibits viability and epithelial-mesenchymal transition through the Hedgehog and Akt/mTOR signaling pathways in neuroblastoma cells.

    PubMed

    He, Kang; Duan, Guoqing; Li, Yanyang

    2018-06-15

    Neuroblastoma (NB) is the most predominant extracranial solid tumor of infancy in the world. However, current chemotherapy has limited efficacy for more advanced stages of NB due to acquired chemoresistance or acute toxicity in NB patients. Therefore, effective novel anti-NB drugs are desperately needed. The present study aimed to investigate the effects of dehydroeffusol (DHE), a phenanthrene isolated from J. effuses, on NB cells and its underlying mechanism. The results showed that DHE treatment effectively inhibited NB cell viability in a dose-dependent manner. Moreover, DHE treatment suppressed the epithelial-mesenchymal transition (EMT) process in NB cells by promoting the expression of E-cadherin (E-cad) and restraining the expressions of N-cadherin (N-cad) and vimentin. Also, the invasive capacity and expression of MMP-2 and MMP-9 in NB cells were inhibited by DHE. Furthermore, DHE suppressed the hedgehog (Hh) and the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in NB cells. In conclusion, DHE effectively inhibited the viability and EMT through inactivating the Hh and the Akt/mTOR signaling pathways in NB cells, providing a novel evidence that DHE may be a potential anti-NB drug candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro.

    PubMed

    Burmakin, Mikhail; Shi, Yao; Hedström, Elisabeth; Kogner, Per; Selivanova, Galina

    2013-09-15

    Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo. The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice. RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo. Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma. ©2013 AACR.

  3. Bilateral neuroblastoma in situ associated with microcephaly.

    PubMed Central

    Park, W. S.; Chi, J. G.

    1993-01-01

    We present an autopsy case of a two-day-old female infant with a very unusual combination of neuroblastoma in situ in both adrenals and microcephaly. This baby was born to a 28-year-old mother after 38 weeks of gestation, and died of respiratory difficulty 2 days later. At autopsy, the baby weighted 1,840gm, and the brain was extraordinarily small with a weight of 125gm. The gyral pattern was simplified and irregular. Microscopically massive migration defects, pachygyria, micropolygyria, leptomeningeal glioneuronal islands, small corticospinal tract and heterotopic Purkinje cells in the cerebellum were found. In addition, there were medullary nodules in both adrenals. They measured 0.7 x 0.4cm and 0.7 x 0.3cm, respectively. These nodules showed the typical histological features of undifferentiated neuroblastoma. The tumor nodules were confined to the medullary portion and did not extend to the cortex or contiguous structures meeting the criteria of neuroblastoma in situ. Based on these unusual and seemingly unrelated sets of findings, it is suggested that the histogenesis of neuroblastoma in situ could be a part of the generalized dysontogenic process. PMID:8397936

  4. Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma

    PubMed Central

    Bassiri, Hamid; Benavides, Adriana; Haber, Michelle; Gilmour, Susan K.; Norris, Murray D.

    2015-01-01

    Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis (“African sleeping sickness”) since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m2/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m2/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the

  5. Neuroprotective properties of ciliary neurotrophic factor on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells.

    PubMed

    Wang, Ke; Zhou, Fanfan; Zhu, Xue; Zhang, Kai; Huang, Biao; Zhu, Lan; Zhu, Ling

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurocytokine, which could promote survival and/or differentiation in many cell types. In this study, the biological effects of CNTF on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells and the underlying molecular mechanism of this effect were investigated for the first time. The results showed that RA was able to increase cells susceptibility to CNTF via regulating the expression levels of CNTF receptors. A further study revealed that CNTF could induce phosphorylation of STAT3, Akt and ERK1/2 in RA-predifferentiated SH-SY5Y neuroblastoma cells, while the promoting activity of CNTF on survival and neurite growth of cells was attenuated by co-treatment with JAK2 inhibitor AG490 (25 μM), STAT3 inhibitor Curcumin (50 μM), PI3K inhibitor LY-294002 (50 µM), but not by co-treatment with MEK inhibitor PD98059 (50 μM). These findings suggested that JAK2/STAT3, as well as PI3K/Akt, play important roles in mediating the survival and neurite growth response of RA-predifferentiated cells to CNTF. Our study may be useful to further understand the functional role of CNTF and offer a convenient model to explore the therapeutic potential of CNTF in neurodegenerative diseases.

  6. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumrejkanchanakij, Piyamas; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330; Eto, Kazuhiro

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, amore » process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.« less

  7. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells.

    PubMed

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  8. Comparison of the Side Populations in Pretreatment and Postrelapse Neuroblastoma Cell Lines

    DTIC Science & Technology

    2010-08-01

    396–401. [15] Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS, Smith KM, Look AT, Yeger H, Miller FD, et al. (2007). Neuroblastoma...Acad Sci USA 103, 11154–11159. [32] Wu C, Wei Q , Utomo V, Nadesan P, Whetstone H, Kandel R, Wunder JS, and Alman BA (2007). Side population cells...Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun- Davis T, Zaehres H, Daley GQ, and Tang DG (2009). Functional evidence that the

  9. DNA from KI, WU and Merkel Cell Polyomaviruses Is Not Detected in Childhood Central Nervous System Tumours or Neuroblastomas

    PubMed Central

    Giraud, Géraldine; Ramqvist, Torbjörn; Pastrana, Diana V.; Pavot, Vincent; Lindau, Cecilia; Kogner, Per; Orrego, Abiel; Buck, Christopher B.; Allander, Tobias; Holm, Stefan; Gustavsson, Bengt; Dalianis, Tina

    2009-01-01

    Background BK and JC polyomaviruses (BKV and JCV) are potentially oncogenic and have in the past inconclusively been associated with tumours of the central nervous system (CNS), while BKV has been hinted, but not confirmed to be associated with neuroblastomas. Recently three new polyomaviruses (KIPyV, WUPyV and MCPyV) were identified in humans. So far KIPyV and WUPyV have not been associated to human diseases, while MCPyV was discovered in Merkel Cell carcinomas and may have neuroepithelial cell tropism. However, all three viruses can be potentially oncogenic and this compelled us to investigate for their presence in childhood CNS and neuroblastomas. Methodology The presence of KI, WU and MCPyV DNA was analysed, by a joint WU and KI specific PCR (covering part of VP1) and by a MCPyV specific regular and real time quantitative PCR (covering part of Large T) in 25 CNS tumour biopsies and 31 neuroblastoma biopsies from the Karolinska University Hospital, Sweden. None of the three new human polyomaviruses were found to be associated with any of the tumours, despite the presence of PCR amplifiable DNA assayed by a S14 housekeeping gene PCR. Conclusion In this pilot study, the presence of MCPyV, KI and WU was not observed in childhood CNS tumours and neuroblastomas. Nonetheless, we suggest that additional data are warranted in tumours of the central and peripheral nervous systems and we do not exclude that other still not yet detected polyomaviruses could be present in these tumours. PMID:20011509

  10. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  11. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    PubMed

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-03

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  12. MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma

    PubMed Central

    Fabian, Johannes; Opitz, Desirée; Althoff, Kristina; Lodrini, Marco; Hero, Barbara; Volland, Ruth; Beckers, Anneleen; de Preter, Katleen; Decock, Anneleen; Patil, Nitin; Abba, Mohammed; Kopp-Schneider, Annette; Astrahantseff, Kathy; Wünschel, Jasmin; Pfeil, Sebastian; Ercu, Maria; Künkele, Annette; Hu, Jamie; Thole, Theresa; Schweizer, Leonille; Mechtersheimer, Gunhild; Carter, Daniel; Cheung, Belamy B.; Popanda, Odilia; von Deimling, Andreas; Koster, Jan; Versteeg, Rogier; Schwab, Manfred; Marshall, Glenn M.; Speleman, Frank; Erb, Ulrike; Zoeller, Margot; Allgayer, Heike; Simon, Thorsten; Fischer, Matthias; Kulozik, Andreas E.; Eggert, Angelika; Witt, Olaf; Schulte, Johannes H.; Deubzer, Hedwig E.

    2016-01-01

    The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma. PMID:27572323

  13. MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma.

    PubMed

    Fabian, Johannes; Opitz, Desirée; Althoff, Kristina; Lodrini, Marco; Hero, Barbara; Volland, Ruth; Beckers, Anneleen; de Preter, Katleen; Decock, Anneleen; Patil, Nitin; Abba, Mohammed; Kopp-Schneider, Annette; Astrahantseff, Kathy; Wünschel, Jasmin; Pfeil, Sebastian; Ercu, Maria; Künkele, Annette; Hu, Jamie; Thole, Theresa; Schweizer, Leonille; Mechtersheimer, Gunhild; Carter, Daniel; Cheung, Belamy B; Popanda, Odilia; von Deimling, Andreas; Koster, Jan; Versteeg, Rogier; Schwab, Manfred; Marshall, Glenn M; Speleman, Frank; Erb, Ulrike; Zoeller, Margot; Allgayer, Heike; Simon, Thorsten; Fischer, Matthias; Kulozik, Andreas E; Eggert, Angelika; Witt, Olaf; Schulte, Johannes H; Deubzer, Hedwig E

    2016-10-11

    The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.

  14. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma.

    PubMed

    Ugolkov, Andrey V; Bondarenko, Gennadiy I; Dubrovskyi, Oleksii; Berbegall, Ana P; Navarro, Samuel; Noguera, Rosa; O'Halloran, Thomas V; Hendrix, Mary J; Giles, Francis J; Mazar, Andrew P

    2018-05-25

    Advanced stage neuroblastoma is a very aggressive pediatric cancer with limited treatment options and a high mortality rate. Glycogen synthase kinase-3β (GSK-3β) is a potential therapeutic target in neuroblastoma. Using immunohistochemical staining, we observed positive GSK-3β expression in 67% of human neuroblastomas (34 of 51 cases). Chemically distinct GSK-3 inhibitors (AR-A014418, TDZD-8, and 9-ING-41) suppressed the growth of neuroblastoma cells, whereas 9-ING-41, a clinically relevant small-molecule GSK-3β inhibitor with broad-spectrum preclinical antitumor activity, being the most potent. Inhibition of GSK-3 resulted in a decreased expression of the antiapoptotic molecule XIAP and an increase in neuroblastoma cell apoptosis. Mouse xenograft studies showed that the combination of clinically relevant doses of CPT-11 and 9-ING-41 led to greater antitumor effect than was observed with either agent alone. These data support the inclusion of patients with advanced neuroblastoma in clinical studies of 9-ING-41, especially in combination with CPT-11.

  15. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma

    PubMed Central

    Lau, Diana T.; Flemming, Claudia L.; Gherardi, Samuele; Perini, Giovanni; Oberthuer, André; Fischer, Matthias; Juraeva, Dilafruz; Brors, Benedikt; Xue, Chengyuan; Norris, Murray D.; Marshall, Glenn M.; Haber, Michelle

    2015-01-01

    MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression. PMID:25860940

  16. Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Pezzini, Francesco; Bettinetti, Laura; Di Leva, Francesca; Bianchi, Marzia; Zoratti, Elisa; Carrozzo, Rosalba; Santorelli, Filippo M; Delledonne, Massimo; Lalowski, Maciej; Simonati, Alessandro

    2017-05-01

    Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.

  17. Copper Induces Apoptosis of Neuroblastoma Cells Via Post-translational Regulation of the Expression of Bcl-2-family Proteins and the tx Mouse is a Better Model of Hepatic than Brain Cu Toxicity.

    PubMed

    Chan, Hsien W; Liu, Tianbing; Verdile, Giuseppe; Bishop, Glenda; Haasl, Ryan J; Smith, Mark A; Perry, George; Martins, Ralph N; Atwood, Craig S

    2008-01-01

    The basic mechanism(s) by which altered Cu homeostasis is toxic to hepatocytes and neurons, the two major cell types affected in copper storage diseases such as Wilson's disease (WD), remain unclear. Using human M17 neuroblastoma cells as a model to examine Cu toxicity, we found that there was a time- and concentration-dependent induction of neuronal death, such that at 24 h there was a approximately 50 % reduction in viability with 25 muM Cu-glycine(2). Cu-glycine(2) (25:50 muM) treatment for 24 h significantly altered the expression of 296 genes, including 8 genes involved with apoptosis (BCL2-associated athanogene 3, BCL2/adenovirus E1B 19kDa interacting protein caspase 5, regulator of Fas-induced apoptosis, V-jun sarcoma virus 17 oncogene homolog, claudin 5, prostaglandin E receptor 3 and protein tyrosine phosphatase, non-receptor type 6). Surprisingly, changes in the expression of more 'traditional' apoptotic genes (Bcl-2, Bax, Bak and Bad) did not vary more than 20 %. To test whether the induction of apoptosis in neuroblastoma cells was via post-translational mechanisms, we measured the protein expression of these apoptotic markers in M17 neuroblastoma cells treated with Cu-glycine(2) (0-100 muM) for 24-48 h. Compared with glycine treated cells, Cu-glycine(2) reduced Bcl-2 expression by 50 %, but increased Bax and Bak expression by 130% and 400 %, respectively. To assess whether Cu also induced apoptotic cell death in a mouse model of WD, we measured the expression of these apoptotic markers in the liver and brain of mice expressing an ATP7b gene mutation (tx(J) mice) at 10 months of age (near the end of their lives when overt liver pathology is displayed). Changes in the liver expression of these apoptotic markers in tx(J) mice compared to background mice mirrored those of Cu treated neuroblastoma cells. In contrast, few changes in apoptotic protein expression were detected in the brain between tx(J) and background mice, indicating the tx(J) mouse is a good

  18. Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line.

    PubMed

    Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille

    2007-07-01

    Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.

  19. Colony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes.

    PubMed

    Webb, Matthew W; Sun, Jianping; Sheard, Michael A; Liu, Wei-Yao; Wu, Hong-Wei; Jackson, Jeremy R; Malvar, Jemily; Sposto, Richard; Daniel, Dylan; Seeger, Robert C

    2018-04-17

    Tumor-associated macrophages can promote growth of cancers. In neuroblastoma, tumor-associated macrophages have greater frequency in metastatic versus loco-regional tumors, and higher expression of genes associated with macrophages helps to predict poor prognosis in the 60% of high-risk patients who have MYCN-non-amplified disease. The contribution of cytotoxic T-lymphocytes to anti-neuroblastoma immune responses may be limited by low MHC class I expression and low exonic mutation frequency. Therefore, we modelled human neuroblastoma in T-cell deficient mice to examine whether depletion of monocytes/macrophages from the neuroblastoma microenvironment by blockade of CSF-1R can improve the response to chemotherapy. In vitro, CSF-1 was released by neuroblastoma cells, and topotecan increased this release. In vivo, neuroblastomas formed by subcutaneous co-injection of human neuroblastoma cells and human monocytes into immunodeficient NOD/SCID mice had fewer human CD14 + and CD163 + cells and mouse F4/80 + cells after CSF-1R blockade. In subcutaneous or intra-renal models in immunodeficient NSG or NOD/SCID mice, CSF-1R blockade alone did not affect tumor growth or mouse survival. However, when combined with cyclophosphamide plus topotecan, the CSF-1R inhibitor BLZ945, either without or with anti-human and anti-mouse CSF-1 mAbs, inhibited neuroblastoma growth and synergistically improved mouse survival. These findings indicate that depletion of tumor-associated macrophages from neuroblastomas can be associated with increased chemotherapeutic efficacy without requiring a contribution from T-lymphocytes, suggesting the possibility that combination of CSF-1R blockade with chemotherapy might be effective in patients who have limited anti-tumor T-cell responses. © 2018 UICC.

  20. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes.

    PubMed

    Das, Eashita; Bhattacharyya, Nitai Pada

    2014-05-02

    MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0-G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma

    PubMed Central

    Neagu, Monica; Constantin, Carolina; Tampa, Mircea; Matei, Clara; Lupu, Andreea; Manole, Emilia; Ion, Rodica-Mariana; Fenga, Concettina; Tsatsakis, Aristidis M.

    2016-01-01

    Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that “escape” the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium. PMID:27626486

  2. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma.

    PubMed

    Neagu, Monica; Constantin, Carolina; Tampa, Mircea; Matei, Clara; Lupu, Andreea; Manole, Emilia; Ion, Rodica-Mariana; Fenga, Concettina; Tsatsakis, Aristidis M

    2016-10-25

    Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that "escape" the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium.

  3. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells.

    PubMed

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G Jane; Zisterer, Daniela M; Porter, Richard K

    2017-11-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G 1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.

  4. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells

    PubMed Central

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G. Jane; Zisterer, Daniela M.; Porter, Richard K.

    2017-01-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells. PMID:29113281

  5. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway

    PubMed Central

    Lynch, Jennifer; Fay, Joanna; Meehan, Maria; Bryan, Kenneth; Watters, Karen M.; Murphy, Derek M.; Stallings, Raymond L.

    2012-01-01

    Transforming growth factor-β (TGF-β) signaling regulates many diverse cellular activities through both canonical (SMAD-dependent) and non-canonical branches, which includes the mitogen-activated protein kinase (MAPK), Rho-like guanosine triphosphatase and phosphatidylinositol-3-kinase/AKT pathways. Here, we demonstrate that miR-335 directly targets and downregulates genes in the TGF-β non-canonical pathways, including the Rho-associated coiled-coil containing protein (ROCK1) and MAPK1, resulting in reduced phosphorylation of downstream pathway members. Specifically, inhibition of ROCK1 and MAPK1 reduces phosphorylation levels of the motor protein myosin light chain (MLC) leading to a significant inhibition of the invasive and migratory potential of neuroblastoma cells. Additionally, miR-335 targets the leucine-rich alpha-2-glycoprotein 1 (LRG1) messenger RNA, which similarly results in a significant reduction in the phosphorylation status of MLC and a decrease in neuroblastoma cell migration and invasion. Thus, we link LRG1 to the migratory machinery of the cell, altering its activity presumably by exerting its effect within the non-canonical TGF-β pathway. Moreover, we demonstrate that the MYCN transcription factor, whose coding sequence is highly amplified in a particularly clinically aggressive neuroblastoma tumor subtype, directly binds to a region immediately upstream of the miR-335 transcriptional start site, resulting in transcriptional repression. We conclude that MYCN contributes to neuroblastoma cell migration and invasion, by directly downregulating miR-335, resulting in the upregulation of the TGF-β signaling pathway members ROCK1, MAPK1 and putative member LRG1, which positively promote this process. Our results provide novel insight into the direct regulation of TGF-β non-canonical signaling by miR-335, which in turn is downregulated by MYCN. PMID:22382496

  6. Gastrin-releasing peptide-induced down-regulation of tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) in neuroblastomas.

    PubMed

    Qiao, Jingbo; Kang, Junghee; Cree, Jeremy; Evers, B Mark; Chung, Dai H

    2005-05-01

    To evaluate whether aggressive, undifferentiated neuroblastomas express tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) and to examine the effects of gastrin-releasing peptide (GRP) on PTEN gene and protein expression. We have previously shown that neuroblastomas secrete GRP, which binds to its cell surface receptor (GRP-R) to stimulate cell growth in an autocrine fashion. However, the effects of GRP on expression of the tumor suppressor gene PTEN have not been elucidated in neuroblastomas. Paraffin-embedded sections from human neuroblastomas were analyzed for PTEN and phospho-Akt protein expression by immunohistochemistry. Human neuroblastoma cell lines (SK-N-SH and SH-SY5Y) were stably transfected with the plasmid pEGFP-GRP-R to establish GRP-R overexpression cell lines, and the effects of GRP on PTEN gene and protein expression were determined. A decrease in the ratio of PTEN to phospho-Akt protein expression was identified in poorly differentiated neuroblastomas. An increase in GRP binding capacity was confirmed in GRP-R overexpressing cells, which demonstrated an accelerated constitutive cell growth rate. PTEN gene and protein expression was significantly decreased in GRP-R overexpressing cells when compared with controls. Our findings demonstrate decreased expression of the tumor suppressor protein PTEN in more aggressive undifferentiated neuroblastomas. An increase in GRP binding capacity, as a result of GRP-R overexpression, down-regulates PTEN expression. These findings suggest that an inhibition of the tumor suppressor gene PTEN may be an important regulatory mechanism involved in GRP-induced cell proliferation in neuroblastomas.

  7. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma.

    PubMed

    Schulte, Marc; Köster, Johannes; Rahmann, Sven; Schramm, Alexander

    2018-05-01

    The notion of cancer as a complex evolutionary system has been validated by in-depth molecular analyses of tumor progression over the last years. While a complex interplay of cell-autonomous programs and cell-cell interactions determines proliferation and differentiation during normal development, intrinsic and acquired plasticity of cancer cells allow for evasion of growth factor limitations, apoptotic signals, or attacks from the immune system. Treatment-induced molecular selection processes have been described by a number of studies already, but understanding of those events facilitating metastatic spread, organ-specific homing, and resistance to anoikis is still in its early days. In principle, somatic events giving rise to cancer progression should be easier to follow in childhood tumors bearing fewer mutations and genomic aberrations than their counterparts in adulthood. We have previously reported on the genetic events accompanying relapsing neuroblastoma, a solid tumor of early childhood. Our results indicated significantly higher single nucleotide variants in relapse tumors, gave hints for branched tumor evolution upon treatment and clonal selection as deduced from shifts in allelic frequencies between primary and relapsing neuroblastoma. Here, we will review these findings and give an outlook on dealing with intratumoral heterogeneity and sub-clonal diversity in neuroblastoma for future targeted treatments.

  8. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells.

    PubMed

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible.

  9. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells

    PubMed Central

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    2016-01-01

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible. PMID:26942051

  10. Integrative genomic and proteomic profiling of human neuroblastoma SH-SY5Y cells reveals signatures of endosulfan exposure.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2016-01-01

    Endosulfan, an organochlorine pesticide, is known to induce multiple disorders/abnormalities including neuro-degenerative disorders in many animal species. However, the molecular mechanism of endosulfan induced neuronal alterations is still not well understood. In the present study, the effect of sub-lethal concentration of endosulfan (3 μM) on human neuroblastoma cells (SH-SY5Y) was investigated using genomic and proteomic approaches. Microarray and 2D-PAGE followed by MALDI-TOF-MS analysis revealed differential expression of 831 transcripts and 16 proteins in exposed cells. A gene ontology enrichment analysis revealed that the differentially expressed genes and proteins were involved in variety of cellular events such as neuronal developmental pathway, immune response, cell differentiation, apoptosis, transmission of nerve impulse, axonogenesis, etc. The present study attempted to explore the possible molecular mechanism of endosulfan induced neuronal alterations in SH-SY5Y cells using an integrated genomic and proteomic approach. Based on the gene and protein profile possible mechanisms underlying endosulfan neurotoxicity were predicted. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells.

    PubMed

    Xiong, Xilin; Li, Yang; Liu, Ling; Qi, Kai; Zhang, Chi; Chen, Yueqin; Fang, Jianpei

    2018-06-13

    Arsenic trioxide (As 2 O 3 ), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As 2 O 3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As 2 O 3 regulates Trks for the purposes of treating NB. The aim of the present study was to investigate the effect of As 2 O 3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As 2 O 3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As 2 O 3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As 2 O 3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As 2 O 3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As 2 O 3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time

  12. Regulation of tyrosine hydroxylase gene expression during differentiation of neuroblastoma cells.

    PubMed

    Summerhill, E M; Wood, K; Fishman, M C

    1987-07-01

    Differentiation of N1E-115 neuroblastoma cells into neuron-like cells, with extension of neurites and acquisition of excitable membranes, can be induced by dimethyl sulfoxide (DMSO). We have found this differentiation to be accompanied by an increase in tyrosine hydroxylase (TH) mRNA, an increase disproportionate to changes in mRNAs for other measured, non-neuron-specific genes. The mRNA increases slowly over several days and falls gradually after removal of DMSO. Nuclear run-on studies suggest that a change in the rate of transcription cannot explain the increase in steady-state mRNA levels. TH mRNA half-life does, however, increase. This suggests that regulation is exerted in this case not at the level of transcription but rather at that of mRNA stability.

  13. Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.

    PubMed

    Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng

    2016-10-02

    Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.

  14. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells.

    PubMed

    Ferreira, Martiña; Blanco, Lucía; Garrido, Alejandro; Vieites, Juan M; Cabado, Ana G

    2013-05-01

    The toxic effects of the organotin compounds (OTCs) monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were evaluated in vitro in a neuroblastoma human cell line. Mechanisms of cell death, apoptosis versus necrosis, were studied by using several markers: inhibition of cell viability and proliferation, F-actin, and mitochondrial membrane potential changes as well as reactive oxygen species (ROS) production and DNA fragmentation. The most toxic effects were detected with DBT and TBT even at very low concentrations (0.1-1 μM). In contrast, MBT induced lighter cytotoxic changes at the higher doses tested. None of the studied compounds stimulated propidium iodide uptake, although the most toxic chemical, TBT, caused lactate dehydrogenase release at the higher concentrations tested. These findings suggest that in neuroblastoma, OTC-induced cytotoxicity involves different pathways depending on the compound, concentration, and incubation time. A screening method for DBT and TBT quantification based on cell viability loss was developed, allowing a fast detection alternative to complex methodology.

  15. Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain.

    PubMed

    Schleiermacher, Gudrun; Bourdeaut, Franck; Combaret, Valérie; Picrron, Gaelle; Raynal, Virginie; Aurias, Alain; Ribeiro, Agnes; Janoueix-Lerosey, Isabelle; Delattre, Olivier

    2005-05-05

    In neuroblastoma, the most frequent genetic alterations are unbalanced translocations involving chromosome 17. To gain insights into these rearrangements, we have characterized a previously identified der(1)t(1;17) of the CLB-Bar cell line. The 17q breakpoint was mapped by FISH. Subsequently, a rearranged fragment was identified by Southern analysis, cloned in a lambda vector and sequenced. The chromosome rearrangement is more complex than expected due to the presence of an interstitial 4p telomeric sequence between chromosome 1p and 17q. Three different genes, which may play a role in neuroblastoma development, are disrupted by the translocation breakpoints. Indeed, the 3'UTR of the PIP5K2B gene on chromosome 17q is directly fused to the (TTAGGG)n repeat of the chromosome 4p telomere, and the (1;4) fusion disrupts the MACF1 (microtubule-actin crosslinking factor 1) and POLN genes, respectively. Interestingly, the (1;4) fusion was present at diagnosis and at relapse, whereas the (4;17) fusion was detected at relapse only, leading to a secondary 17q gain confirmed by array CGH therefore indicating that 17q gain may not be a primary event in neuroblastoma. Finally, screening of a panel of neuroblastoma cell lines identified interstitial telomeric sequences in three other cases, suggesting that this may be a recurrent mechanism leading to unbalanced translocations in neuroblastoma.

  16. Tobacco, alcohol and illicit drugs during pregnancy and risk of neuroblastoma: systematic review.

    PubMed

    Müller-Schulte, Eloise; Kurlemann, Gerhard; Harder, Anja

    2017-11-21

    To determine whether prenatal and perinatal maternal consumption of alcohol, tobacco and/or illicit drugs is associated with risk of neuroblastoma. Medline and Embase (both from inception to February 2017), and reference lists of included studies. To be eligible, a study had to be an original report including data on intake of alcohol, tobacco smoking and/or consumption of illicit drugs during pregnancy and risk of neuroblastoma in the child. From eligible studies, data study characteristics as well as effect measures and confounders were extracted. We assessed unadjusted and confounder-adjusted estimates, performed risk of bias analysis, constructed random-effects models and assessed heterogeneity. We identified 14 case-control studies (1987-2016) involving a total of 3114 children with neuroblastoma. Meta-analysis of unadjusted estimates showed an association between alcohol (OR 1.26; 95% CI 1.07 to 1.49), tobacco (OR 1.22; 95% CI 1.04 to 1.44) and illicit drug consumption during pregnancy and risk of neuroblastoma during childhood, with illicit drug consumption showing the strongest association (OR 3.26; 95% CI 1.36 to 7.86). However, adjusted estimates were highly heterogeneous. All studies were at high risk of bias. Smoking, alcohol or illicit drugs during pregnancy might play a role in the development of neuroblastoma. However, well-designed studies are needed to assess whether these exposures are causal and whether time period during pregnancy, dose or co-consumption of substances is critical. Registration number CRD42016036165. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    PubMed Central

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  18. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells.

    PubMed

    Fjaeraa, Christina; Nånberg, Eewa

    2009-05-01

    Ellagic acid, a polyphenolic compound found in berries, fruits and nuts, has been shown to possess growth-inhibiting and apoptosis promoting activities in cancer cell lines in vitro. The objective of this study was to investigate the effect of ellagic acid in human neuroblastoma SH-SY5Y cells. In cultures of SH-SY5Y cells incubated with ellagic acid, time- and concentration-dependent inhibitory effects on cell number were demonstrated. Ellagic acid induced cell detachment, decreased cell viability and induced apoptosis as measured by DNA strand breaks. Ellagic acid-induced alterations in cell cycle were also observed. Simultaneous treatment with all-trans retinoic acid did not rescue the cells from ellagic acid effects. Furthermore, the results suggested that pre-treatment with all-trans retinoic acid to induce differentiation and cell cycle arrest did not rescue the cells from ellagic acid-induced cell death.

  19. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee

    PubMed Central

    Ambros, P F; Ambros, I M; Brodeur, G M; Haber, M; Khan, J; Nakagawara, A; Schleiermacher, G; Speleman, F; Spitz, R; London, W B; Cohn, S L; Pearson, A D J; Maris, J M

    2009-01-01

    Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies. PMID:19401703

  20. Breakpoint Features of Genomic Rearrangements in Neuroblastoma with Unbalanced Translocations and Chromothripsis

    PubMed Central

    Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2013-01-01

    Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058

  1. [Analysis of the role of various components of culture media during the proliferation of mouse neuroblastoma NIE-115 cells].

    PubMed

    Aslanidi, K B; Miakisheva, S N

    2010-01-01

    The values of the parameters of serum-free media (concentration of Na+, amino acids, and carbohydrates, as well as the pH values) have been determined at which the rate of the differentiation of neuroblastoma cells is minimal, and the rate of proliferation is maximal. It was shown that media inducing the differentiation of 70% of cells during the cell cycle provide the maximal time of survival of differentiated cells.

  2. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    PubMed

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  4. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    PubMed

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  5. Evidence that the modulation of membrane-associated protein kinase C activity by an endogenous inhibitor plays a role in N1E-115 murine neuroblastoma cell differentiation.

    PubMed

    Chakravarthy, B R; Wong, J; Durkin, J P

    1995-10-01

    Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.

  6. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors.

    PubMed

    Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard

    2016-06-15

    A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.

  7. Survival of high-risk pediatric neuroblastoma patients in a developing country.

    PubMed

    Easton, Joseph C; Gomez, Sergio; Asdahl, Peter H; Conner, J Michael; Fynn, Alcira B; Ruiz, Claudia; Ojha, Rohit P

    2016-09-01

    Little information is available about survival of high-risk pediatric neuroblastoma patients in developing countries. We aimed to assess survival among high-risk pediatric neuroblastoma patients in La Plata, Argentina. Individuals eligible for our cohort were aged <20 yr when diagnosed with high-risk neuroblastoma and received cancer-directed therapy including stem cell transplantation at Hospital de Niños Sor Maria Ludovica between February 1999 and February 2015. We estimated overall survival probabilities using an extended Kaplan-Meier approach. Our study population comprised 39 high-risk neuroblastoma patients, of whom 39% were aged >4 yr at diagnosis, 54% were male, and 62% had adrenal neuroblastoma. We observed 18 deaths, and the median survival time of our study population was 1.7 yr. The five-yr overall survival probability was 24% (95% CL: 10%, 41%). In contrast, five-yr survival of high-risk neuroblastoma patients ranges between 23% and 76% in developed countries. Survival among high-risk neuroblastoma patients is generally poor regardless of geographic location, but our results illustrate dramatically worse survival for patients in a developing country. We speculate that the observed survival differences could be attenuated or eliminated with improvements in treatment and supportive care, but addressing these issues will require creative solutions because of resource limitations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Role of genomic architecture in the expression dynamics of long noncoding RNAs during differentiation of human neuroblastoma cells.

    PubMed

    Batagov, Arsen O; Yarmishyn, Aliaksandr A; Jenjaroenpun, Piroon; Tan, Jovina Z; Nishida, Yuichiro; Kurochkin, Igor V

    2013-10-16

    Mammalian genomes are extensively transcribed producing thousands of long non-protein-coding RNAs (lncRNAs). The biological significance and function of the vast majority of lncRNAs remain unclear. Recent studies have implicated several lncRNAs as playing important roles in embryonic development and cancer progression. LncRNAs are characterized with different genomic architectures in relationship with their associated protein-coding genes. Our study aimed at bridging lncRNA architecture with dynamical patterns of their expression using differentiating human neuroblastoma cells model. LncRNA expression was studied in a 120-hours timecourse of differentiation of human neuroblastoma SH-SY5Y cells into neurons upon treatment with retinoic acid (RA), the compound used for the treatment of neuroblastoma. A custom microarray chip was utilized to interrogate expression levels of 9,267 lncRNAs in the course of differentiation. We categorized lncRNAs into 19 architecture classes according to their position relatively to protein-coding genes. For each architecture class, dynamics of expression of lncRNAs was studied in association with their protein-coding partners. It allowed us to demonstrate positive correlation of lncRNAs with their associated protein-coding genes at bidirectional promoters and for sense-antisense transcript pairs. In contrast, lncRNAs located in the introns and downstream of the protein-coding genes were characterized with negative correlation modes. We further classified the lncRNAs by the temporal patterns of their expression dynamics. We found that intronic and bidirectional promoter architectures are associated with rapid RA-dependent induction or repression of the corresponding lncRNAs, followed by their constant expression. At the same time, lncRNAs expressed downstream of protein-coding genes are characterized by rapid induction, followed by transcriptional repression. Quantitative RT-PCR analysis confirmed the discovered functional modes for

  9. Protection by polyphenol extract from olive stones against apoptosis produced by oxidative stress in human neuroblastoma cells

    PubMed

    Cortés-Castell, Ernesto; Veciana-Galindo, Carmen; Torró-Montell, Luis; Palazón-Bru, Antonio; Sirvent-Segura, Elia; Gil-Guillén, Vicente; Rizo-Baeza, Mercedes

    2016-02-16

    We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H202 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 μM) shows a clear apoptosis when treated with H2O2 150 μM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).

  10. Intrathecal transplantation of neuroblastoma cells decreases heat hyperalgesia and cold allodynia in a rat model of neuropathic pain.

    PubMed

    De la Calle, J L; Mena, M A; González-Escalada, J R; Paíno, C L

    2002-11-30

    Intrathecal grafting of cells as biological pumps to deliver monoamines, endorphins, and/or trophic factors, has been shown to be effective in treating chronic pain both in experimental animals and in clinical trials. We have tested whether intrathecal implantation of neuroblastoma cells reduces heat hyperalgesia and cold allodynia in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Behavioral tests and cerebrospinal fluid (CSF) collection were performed before CCI, 1 week later (after which, vehicle or NB69 cells were intrathecally injected) and at 4, 7, and 14 days post-injection. Both CSF sampling and injection of the cells were performed by direct lumbar puncture. Intrathecal grafting of 4 x 10(6) NB69 neuroblastoma cells reduced to basal levels the nociceptive response to heat in nerve-injured hindpaws, while the response of control limbs remained unchanged. Similarly, the allodynic response to cold elicited by acetone evaporation decreased in the animals implanted with NB69 cells. An increase in the concentrations of dopamine and serotonin metabolites of around 150% was observed in the CSF of animals that received grafts of NB69 cells. These data suggest that the monoamines released by NB69 cells in the intrathecal space produce analgesia to neuropathic pain in rats. Copyright 2002 Elsevier Science Inc.

  11. Growth, progression and chromosome instability of Neuroblastoma: a new scenario of tumorigenesis?

    PubMed

    Tonini, Gian Paolo

    2017-01-05

    Neuroblastoma is a pediatric cancer with a low survival rate of patients with metastatic stage 4 disease. Tumor aggressiveness and progression have been associated with structural copy number variations (CNVs) that are observed in malignant cells. In contrast, localized Neuroblastomas, which are associated with a low number of structural CNVs but frequent numerical CNVs, are less aggressive, and patients have good outcomes. Finally, whole-genome and whole-exome sequencing of Neuroblastoma tissues have shown few damaging mutations in these tumors. In the present report it is proposed that chromosome instability (CIN) plays a major role in Neuroblastoma tumorigenesis and that CIN is already present in the early phases of tumor development. High CIN can promote several types of chromosomal damage including chromothripsis, gene deletion, amplification and rearrangements, which deregulate gene expression. Indeed, gene rearrangements have been reported as a new scenario in the development of Neuroblastoma, which supports the hypothesis that CIN is an early step preliminary to the late catastrophic events leading to tumor development.

  12. Schedule-dependent response of neuroblastoma cell lines to combinations of etoposide and cisplatin

    PubMed Central

    Meczes, E L; Pearson, A D J; Austin, C A; Tilby, M J

    2002-01-01

    The growth inhibitory effects of cisplatin and etoposide on neuroblastoma cell lines were investigated in several scheduled combinations. Results were analyzed using median effect and combination index analyses. In all schedules in which cisplatin was administered prior to etoposide a synergistic effect was observed. Conversely, an antagonistic effect was seen in all schedules where etoposide was administered before cisplatin. British Journal of Cancer (2002) 86, 485–489. DOI: 10.1038/sj/bjc/6600060 www.bjcancer.com © 2002 The Cancer Research Campaign PMID:11875719

  13. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  14. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A.

    2013-01-01

    Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  15. Association of Rpn10 with high molecular weight complex is enhanced during retinoic acid-induced differentiation of neuroblastoma cells.

    PubMed

    Tayama, Yoko; Kawahara, Hiroyuki; Minami, Ryosuke; Shimada, Masumi; Yokosawa, Hideyoshi

    2007-12-01

    The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356-5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.

  16. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma.

    PubMed

    Tao, T; Sondalle, S B; Shi, H; Zhu, S; Perez-Atayde, A R; Peng, J; Baserga, S J; Look, A T

    2017-07-06

    The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.

  17. Acute maneb exposure significantly alters both glycolysis and mitochondrial function in neuroblastoma cells.

    PubMed

    Anderson, Colin C; Aivazidis, Stefanos; Kuzyk, Crystal L; Jain, Abhilasha; Roede, James R

    2018-05-14

    The pesticides paraquat (PQ) and maneb (MB) have been described as environmental risk factors for Parkinson's disease (PD), with mechanisms associated with mitochondrial dysfunction and reactive oxygen species (ROS) generation. A combined exposure of PQ and MB in murine models and neuroblastoma cells has been utilized to further advance understanding of the PD phenotype. MB acts as a redox modulator through alkylation of protein thiols and has been previously characterized to inhibit complex III of the electron transport chain (ETC) and uncouple the mitochondrial proton gradient. The purpose of this study was to analyze ATP-linked respiration and glycolysis in human neuroblastoma cells utilizing the Seahorse extracellular flux (XFp) platform. Employing an acute, subtoxic exposure of MB, this investigation revealed a MB-mediated decrease in mitochondrial oxygen consumption at baseline and maximal respiration, with inhibition of ATP synthesis and coupling efficiency. Additionally, MB treated cells showed an increase in non-mitochondrial respiration and proton leak. Further investigation into mitochondrial fuel flex revealed an elimination of fuel flexibility across all three major substrates, with a decrease in pyruvate capacity as well as glutamine dependency. Analyses of glycolytic function showed a substantial decrease in glycolytic acidification caused by lactic acid export. This inhibition of glycolytic parameters was also observed after titrating the MB dose as low as 6 μM, and appears to be dependent on the dithiocarbamate functional group, with manganese possibly potentiating the effect. Further studies into cellular ATP and NAD levels revealed a drastic decrease in cells treated with MB. In summary, MB significantly impacted both aerobic and anaerobic energy production; therefore, further characterization of MB's effect on cellular energetics may provide insight into the specificity of PD to dopaminergic neurons.

  18. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment.

    PubMed

    Giacoppo, Sabrina; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2017-07-14

    Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.

  19. Binding, internalization and fate of Huntingtin Exon1 fibrillar assemblies in mitotic and nonmitotic neuroblastoma cells.

    PubMed

    Ruiz-Arlandis, G; Pieri, L; Bousset, L; Melki, R

    2016-02-01

    The aggregation of Huntingtin (HTT) protein and of its moiety encoded by its Exon1 (HTTExon1) into fibrillar structures inside neurons is the molecular hallmark of Huntington's disease. Prion-like transmission of these aggregates between cells has been demonstrated. The cell-to-cell transmission mechanisms of these protein aggregates and the susceptibility of different kinds of neuronal cells to these toxic assemblies still need assessment. Here, we documented the binding to and internalization by differentiated and undifferentiated neuroblastoma cells of exogenous fibrillar HTTExon1 and polyglutamine (polyQ) polypeptides containing the same number of glutamines. We assessed the contribution of endocytosis to fibrillar HTTExon1 uptake, their intracellular localization and fate. We observed that undifferentiated neuroblastoma cells were more susceptible to fibrillar HTTExon1 and polyQ than their differentiated counterparts. Furthermore, we demonstrated that exogenous HTTExon1 aggregates are mainly taken up by endocytosis and directed to lysosomal compartments in both mitotic and quiescent cells. These data suggest that the rates of endocytic processes that differ in mitotic and quiescent cells strongly impact the uptake of exogenous HTTExon1 and polyQ fibrils. This may be either the consequence of distinct metabolisms or distributions of specific protein partners for amyloid-like assemblies at the surface of highly dividing versus quiescent cells. Our results highlight the importance of endocytic processes in the internalization of exogenous HTTExon1 fibrils and suggest that a proportion of those assemblies reach the cytosol where they can amplify by recruiting the endogenous protein after escaping, by yet an unknown process, from the endo-lysosomal compartments. © 2015 British Neuropathological Society.

  20. Endoplasmic reticulum stress is involved in the lidocaine-induced apoptosis in SH-SY5Y neuroblastoma cells.

    PubMed

    Li, Kehan; Han, Xuechang

    2015-05-01

    Lidocaine has been indicated to promote apoptosis and to promote endoplasmic reticulum (ER) stress. However, the mechanism underlining ER stress-mediated apoptosis is unclear. In the present study, we investigated the promotion to ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Firstly, we confirmed that lidocaine treatment induced apoptosis in SH-SY5Y cells, time-dependently and dose-dependently, via MTT cell viability assay and annexin V/FITC apoptosis detection with a FACScan flow cytometer. And the anti-apoptosis Bcl-2 and Bcl-xL were downregulated, whereas the apoptosis-executive caspase 3 was promoted through Western blot assay and caspase 3 activity assay. Moreover, the ER stress-associated binding immunoglobulin protein (BiP), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP) were also upregulated at both mRNA and protein levels by lidocaine treatment. On the other hand, downregulation of the ER stress-associated BiP by RNAi method not only blocked the lidocaine-promoted ER stress but also attenuated the lidocaine-induced SH-SY5Y cell apoptosis. In conclusion, the present study confirmed the involvement of ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Our study provides a better understanding on the mechanism of lidocaine's neurovirulence.

  1. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.

  2. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    PubMed Central

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  3. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  4. Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma.

    PubMed

    Yang, Qiwei; Tian, Yufeng; Liu, Shuqing; Zeine, Rana; Chlenski, Alexandre; Salwen, Helen R; Henkin, Jack; Cohn, Susan L

    2007-02-15

    In the pediatric cancer neuroblastoma, clinically aggressive disease is associated with increased levels of angiogenesis stimulators and high vascular index. We and others have hypothesized that blocking angiogenesis may be effective treatment for this pediatric malignancy. However, little is known about the efficacy of antiangiogenic agents in pediatric malignancies. Recently, promising results have been reported in an adult phase I study of ABT-510, a peptide derivative of the natural angiogenic inhibitor thrombospondin-1. Histone deacetylase inhibitors, such as valproic acid (VPA), have also been shown to have antiangiogenic activity in several cancer models. In this study, we evaluated the effects of ABT-510 and VPA on neuroblastoma tumor growth and angiogenesis. Although only VPA was capable of blocking the proliferation of neuroblastoma cells and inducing neuroblastoma cell apoptosis in vitro, treatment with VPA or ABT-510 alone significantly suppressed the growth of neuroblastoma xenografts established from two different MYCN-amplified cell lines. Combination therapy more effectively inhibited the growth of small neuroblastoma xenografts than single-agent treatment, and in animals with large xenografts, total cessation of tumor growth was achieved with this treatment approach. The microvascular density was significantly reduced in the xenografts treated with combination therapy compared with controls or tumors treated with single agents. In addition, the number of structurally abnormal vessels was reduced, suggesting that these agents may "normalize" the tumor vasculature. Our results indicate that ABT-510 combined with VPA may be an effective antiangiogenic treatment strategy for children with high-risk neuroblastoma.

  5. Retinoic acid postconsolidation therapy for high-risk neuroblastoma patients treated with autologous haematopoietic stem cell transplantation.

    PubMed

    Peinemann, Frank; van Dalen, Elvira C; Enk, Heike; Berthold, Frank

    2017-08-25

    Neuroblastoma is a rare malignant disease and mainly affects infants and very young children. The tumours mainly develop in the adrenal medullary tissue, with an abdominal mass as the most common presentation. About 50% of patients have metastatic disease at diagnosis. The high-risk group is characterised by metastasis and other features that increase the risk of an adverse outcome. High-risk patients have a five-year event-free survival of less than 50%. Retinoic acid has been shown to inhibit growth of human neuroblastoma cells and has been considered as a potential candidate for improving the outcome of patients with high-risk neuroblastoma. This review is an update of a previously published Cochrane Review. To evaluate the efficacy and safety of additional retinoic acid as part of a postconsolidation therapy after high-dose chemotherapy (HDCT) followed by autologous haematopoietic stem cell transplantation (HSCT), compared to placebo retinoic acid or to no additional retinoic acid in people with high-risk neuroblastoma (as defined by the International Neuroblastoma Risk Group (INRG) classification system). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (2016, Issue 11), MEDLINE in PubMed (1946 to 24 November 2016), and Embase in Ovid (1947 to 24 November 2016). Further searches included trial registries (on 22 December 2016), conference proceedings (on 23 March 2017) and reference lists of recent reviews and relevant studies. We did not apply limits by publication year or languages. Randomised controlled trials (RCTs) evaluating additional retinoic acid after HDCT followed by HSCT for people with high-risk neuroblastoma compared to placebo retinoic acid or to no additional retinoic acid. Primary outcomes were overall survival and treatment-related mortality. Secondary outcomes were progression-free survival, event-free survival, early toxicity, late toxicity, and health-related quality of life. We used standard

  6. Tumor spheroid model for the biologically targeted radiotherapy of neuroblastoma micrometastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, K.A.; Mairs, R.; Murray, T.

    Neuroblastoma is a pediatric malignancy with a poor prognosis at least partly attributable to an early pattern of dissemination. New approaches to treatment of micrometastases include targeted radiotherapy using radiolabeled antibodies or molecules which are taken up preferentially by tumor cells. Multicellular tumor spheroids (MTS) resemble micrometastases during the avascular phase of their development. A human neuroblastoma cell line (NBl-G) was grown as MTS and incubated briefly with a radiolabeled monoclonal antibody ({sup 131}I-UJ13A) directed against neuroectodermal antigens. Spheroid response was evaluated in terms of regrowth delay or proportion sterilized. A dose-response relationship was demonstrated in terms of {sup 131}Imore » activity or duration of incubation. Control experiments using unlabeled UJ13A, radiolabeled nonspecific antibody (T2.10), radiolabeled human serum albumin, and radiolabeled sodium iodide showed these to be relatively ineffective compared to {sup 131}I-UJ13A. The cell line NBl-G grown as MTS has also been found to preferentially accumulate the radiolabeled catecholamine precursor molecule m-({sup 131}I)iodobenzylguanidine compared to cell lines derived from other tumor types. NBl-G cells grown as MTS provide a promising laboratory model for targeted radiotherapy of neuroblastoma micrometastases using radiolabeled antibodies or m-iodobenzylguanidine.« less

  7. Human neuroblastoma growth inhibitory factor (h-NGIF), derived from human astrocytoma conditioned medium, has neurotrophic properties.

    PubMed

    Eksioglu, Y Z; Iida, J; Asai, K; Ueki, T; Nakanishi, K; Isobe, I; Yamagata, K; Kato, T

    1994-05-02

    Investigations on the general characteristics of human astrocytoma cell line NAC-1 revealed neuroblastoma growth inhibitory activity in conditioned medium. Neuroblastoma growth inhibitory factor (NGIF) was partially purified by Econo Q, Econo CM, and Superose 12 column chromatography. The protein is weakly basic with an estimated M(r) of 120,000, possibly having an M(r) 60,000 dimeric structure. NGIF inhibits the growth of human neuroblastoma cell lines but has no effect on morphology nor does it produce any change in the growth of human glioblastoma cell lines. Interestingly, NGIF appears to promote survival and neurite outgrowth of embryonal rat cortical neurons. These neurotrophic properties suggest a role for NGIF in the development of the nervous system.

  8. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    PubMed

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties

  9. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma

    PubMed Central

    Quintarelli, Concetta; Orlando, Domenico; Boffa, Iolanda; Guercio, Marika; Petretto, Andrea; Lavarello, Chiara; Sinibaldi, Matilde; Weber, Gerrit; Del Bufalo, Francesca; Giorda, Ezio; Scarsella, Marco; Petrini, Stefania; Pagliara, Daria; Locatelli, Franco

    2018-01-01

    ABSTRACT Chimeric antigen receptor (CAR) T-cell therapy has been shown to be dramatically effective in the treatment of B-cell malignancies. However, there are still substantial obstacles to overcome, before similar responses can be achieved in patients with solid tumors. We evaluated both in vitro and in a preclinical murine model the efficacy of different 2nd and 3rd generation CAR constructs targeting GD2, a disial-ganglioside expressed on the surface of neuroblastoma (NB) tumor cells. In order to address potential safety concerns regarding clinical application, an inducible safety switch, namely inducible Caspase-9 (iC9), was also included in the vector constructs. Our data indicate that a 3rd generation CAR incorporating CD28.4-1BB costimulatory domains is associated with improved anti-tumor efficacy as compared with a CAR incorporating the combination of CD28.OX40 domains. We demonstrate that the choice of 4-1BB signaling results into significant amelioration of several CAR T-cell characteristics, including: 1) T-cell exhaustion, 2) basal T-cell activation, 3) in vivo tumor control and 4) T-cell persistence. The fine-tuning of T-cell culture conditions obtained using IL7 and IL15 was found to be synergic with the CAR.GD2 design in increasing the anti-tumor activity of CAR T cells. We also demonstrate that activation of the suicide gene iC9, included in our construct without significantly impairing neither CAR expression nor anti-tumor activity, leads to a prompt induction of apoptosis of GD2.CAR T cells. Altogether, these findings are instrumental in optimizing the function of CAR T-cell products to be employed in the treatment of children with NB. PMID:29872565

  10. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-01-01

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  11. Modulation of Neuroblastoma Disease Pathogenesis By An Extensive Network of Epigenetically Regulated MicroRNAs

    PubMed Central

    Das, Sudipto; Bryan, Kenneth; Buckley, Patrick G; Piskareva, Olga; Bray, Isabella M; Foley, Niamh; Ryan, Jacqueline; Lynch, Jennifer; Creevey, Laura; Fay, Joanna; Prenter, Suzanne; Koster, Jan; van Sluis, Peter; Versteeg, Rogier; Eggert, Angelika; Schulte, Johannes H; Schramm, Alexander; Mesdagh, Pieter; Vandesompele, Jo; Speleman, Frank

    2012-01-01

    MicroRNAs contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs were associated with poor patient survival when under-expressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are over-expressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic over-expression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is up-regulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3’ UTR, explaining the mechanism by which SOX2 is down-regulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340 mediated down-regulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and

  12. Preclinical and clinical aspects on the use of amifostine as chemoprotector in neuroblastoma patients.

    PubMed

    Fulda, S; Fichtner, I; Hero, B; Berthold, F

    2001-01-01

    In several studies in adults, amifostine (WR-2721) and its active metabolite WR-1065 have shown protection against myelo- and nephrotoxicity of chemotherapeutic agents without compromising cytotoxic efficacy to the tumor. In the present study, the effect of amifostine and WR-1065 on neuroblastoma tumor growth and its protective potential for hematotoxicity were investigated. Neither amifostine nor WR-1065 reduced the cytotoxic effect of six drugs commonly used for this tumor when tested on neuroblastoma cells in vitro. In mice carrying human xeno-transplanted neuroblastoma, tumor growth and antitumor activity of chemotherapy were unaffected by amifostine. In addition, hematotoxicity of alkylators was relieved in some cases. In patients with neuroblastoma, amifostine only slightly reduced bone marrow toxicity and was highly emetogenic. Therefore, amifostine warrants further investigation before its widespread clinical use in the treatment of children with neuroblastoma.

  13. Synergistic efficacy of a novel combination therapy controls growth of Bcl-x(L) bountiful neuroblastoma cells by increasing differentiation and apoptosis.

    PubMed

    Mohan, Nishant; Banik, Naren L; Ray, Swapan K

    2011-11-01

    Neuroblastoma is the most prevalent extracranial solid tumor mainly in pediatric patients. We explored the efficacy of the combination of 2[(3-[2,3-dichlorophenoxy]propyl)amino]ethanol (2,3-DCPE, a small molecule inhibitor of the anti-apoptotic protein Bcl-x(L)) and N-(4-hydroxyphenyl) retinamide (4-HPR, a synthetic retinoid) in inducing differentiation and apoptosis in human malignant neuroblastoma cells. Immunofluorescence confocal microscopy and flow cytometry showed that the highest level of Bcl-x(L) expression occurred in SK-N-DZ cells followed by SH-SY5Y and IMR-32 cells. Combination of 20 μM 2,3-DCPE and 1 μM 4-HPR acted synergistically in decreasing viability of SK-N-DZ and SH-SY5Y cells. In situ methylene blue staining and protein gel blotting showed the efficacy of this combination of drugs in inducing neuronal differentiation morphologically and also biochemically with upregulation of the neuronal markers such as neurofilament protein (NFP) and neuron specific enolase (NSE) and downregulation of the differentiation inhibiting molecules such as N-Myc and Notch-1 in SK-N-DZ and SH-SY5Y cells. Annexin V-FITC/PI staining showed the synergistic action of this combination therapy in increasing apoptosis in both cell lines. Protein gel blotting manifested that combination therapy increased apoptosis with downregulation of the anti-apoptotic proteins Bcl-x(L), Bcl-2 and Mcl-1 and upregulation of the pro-apoptotic proteins Bax, p53, Puma (p53 upregulated modulator of apoptosis), and Noxa, ultimately causing activation of caspase-3. In conclusion, our results appeared highly encouraging in advocating the use of 2,3-DCPE and 4-HPR as a novel combination therapy for increasing both differentiation and apoptosis in human malignant neuroblastoma cells having Bcl-x(L) overexpression.

  14. Heat shock protein 70 modulates neural progenitor cells dynamics in human neuroblastoma SH-SY5Y cells exposed to high glucose content.

    PubMed

    Salimi, Leila; Rahbarghazi, Reza; Jafarian, Vahab; Biray Avci, Çıgır; Goker Bagca, Bakiye; Pinar Ozates, Neslihan; Khaksar, Majid; Nourazarian, Alireza

    2018-01-18

    In the current experiment, detrimental effects of high glucose condition were investigated on human neuroblastoma cells. Human neuroblastoma cell line SH-SY5Y were exposed to 5, 40, and 70 mM glucose over a period of 72 h. Survival rate and the proliferation of cells were analyzed by MTT and BrdU incorporation assays. Apoptosis was studied by the assays of flow cytometry and PCR array. In order to investigate the trans-differentiation capacity of the cell into mature neurons, we used immunofluorescence imaging to follow NeuN protein level. The transcription level of HSP70 was shown by real-time PCR analysis. MMP-2 and -9 activities were shown by gelatin Zymography. According to data from MTT and BrdU incorporation assay, 70 mM glucose reduced cell viability and proliferation rate as compared to control (5 mM glucose) and cells treated with 40 mM glucose (P < 0.05). Cell exposure to 70 mM glucose had potential to induced apoptosis after 72 h (P < 0.05). Our results also demonstrated the sensitivity of SH-SY5Y cells to detrimental effects of high glucose condition during trans-differentiation into mature neuron-like cells. Real-time PCR analysis confirmed the expression of HSP70 in cells under high content glucose levels, demonstrating the possible cell compensatory response to an insulting condition (p control vs 70 mM group  <0.05). Both MMP-2 and -9 activities were reduced in cells being exposed to 70 mM glucose. High glucose condition could abrogate the dynamics of neural progenitor cells. The intracellular level of HSP70 was proportional to cell damage in high glucose condition. © 2018 Wiley Periodicals, Inc.

  15. Carboxyl methylation of 21-23 kDa membrane proteins in intact neuroblastoma cells is increased with differentiation.

    PubMed

    Haklai, R; Kloog, Y

    1990-01-01

    Evidence is presented for specific enzymatic methylation of 21-23 kDa membrane proteins in intact neuroblastoma N1E 115 cells, which is increased in dimethylsulfoxide-induced differentiated cells. Methylation of these proteins has characteristics typical of enzymatic reactions in which base labile volatile methyl groups are incorporated into proteins, consistent with the formation of protein carboxyl methylesters. However, these methylesters of the 21-23 kDa proteins are relatively stable compared to other protein carboxyl methylesters. The 3-fold increase in methylated 21-23 kDa proteins in the differentiated cells suggest biological significance in differentiation of the cell membranes.

  16. Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells.

    PubMed

    Zhu, Xiaojuan; Wu, Tao; Chi, Ying; Ge, Yiyue; Wu, Bin; Zhou, Minghao; Zhu, Fengcai; Ji, Minjun; Cui, Lunbiao

    2018-06-07

    Enterovirus A71 (EV-A71) infection can cause hand, foot and mouth disease (HFMD), and even fatal meningoencephalitis. Unfortunately, there is currently no effective treatment for EV-A71 infection due to the lack of understanding of the mechanism of neurological diseases. In this study, we employed SH-SY5Y human neuroblastoma cells to explore the roles of caspase-1 in neuropathogenesis. The expression and activity of caspase-1 were analyzed. The potential immuneconsequences mediated by caspase-1 including cell death, lysis, DNA degradation, and secretion of pro-inflammatory were also examined. We found the gene expression levels of caspase-1, IL-1β, IL-18 and active caspase-1 were markedly increased in the SH-SY5Y cells at 48 h post EV-A71 infection. The cell death, lysis, and DNA degradation were also increased during infection, which could be significantly alleviated by caspase-1 inhibition. These observations provided additional experimental evidence supporting caspase-1-mediated pyroptosis as a novel pathway of inflammatory programmed cell death. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Somatostatin in neuroblastoma and ganglioneuroma.

    PubMed

    Kogner, P; Borgström, P; Bjellerup, P; Schilling, F H; Refai, E; Jonsson, C; Dominici, C; Wassberg, E; Bihl, H; Jacobsson, H; Theodorsson, E; Hassan, M

    1997-10-01

    Neuroblastoma, a childhood tumour of the sympathetic nervous system, may in some cases differentiate to a benign ganglioneuroma or regress due to apoptosis. Somatostatin may inhibit neuroblastoma growth and induce apoptosis in vitro and was therefore investigated. Using a radioimmunoassay, we found that all ganglioneuromas contained high somatostatin concentrations (> 16 pmol/g), significantly higher than neuroblastomas (n = 117, median 2.8 pmol/g), healthy adrenals, Wilms' tumours, phaeochromocytomas and other neuroendocrine tumours (P < 0.001). Neuroblastomas contained more somatostatin than control tumours (P < 0.001-0.05). Neuroblastomas amplified for the MYCN oncogene contained less somatostatin than non-amplified tumours (1.2 pmol/g versus 4.0 pmol/g, respectively; P = 0.026). In a clinically unfavourable neuroblastoma subset (age > 12 months, stage 3 or 4) 16 children with high concentrations of somatostatin in primary tumours had a better prognosis than 23 with low somatostatin (46.7% versus 0% survival at 5 years, P < 0.005). Scintigraphy using 111In-pentetreotide identified tumours expressing high-affinity somatostatin receptors in vivo. However, no significant correlation was found between somatostatin receptor expression and peptide content in 15 tumours. Similarly, human SH-SY5Y neuroblastoma xenografts grown in nude rats showed low somatostatin concentrations, but were positive for somatostatin receptor scintigraphy. Treatment of these rats with the somatostatin analogue octreotide seemed to upregulate in vivo receptor expression of somatostatin and vasoactive intestinal peptide more effectively than 13-cis retinoic acid. In conclusion, somatostatin in neuroblastoma is associated with differentiation to benign ganglioneuromas in vivo and favourable outcome in advanced tumours. Furthermore, somatostatin receptor scintigraphy may identify tumours with high-affinity receptors in children that might benefit from targeted therapy using synthetic

  18. MYCN induces neuroblastoma in primary neural crest cells.

    PubMed

    Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W

    2017-08-31

    Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis.

  19. MYCN induces neuroblastoma in primary neural crest cells

    PubMed Central

    Olsen, R R; Otero, J H; García-López, J; Wallace, K; Finkelstein, D; Rehg, J E; Yin, Z; Wang, Y-D; Freeman, K W

    2017-01-01

    Neuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS), which causes 15% of pediatric cancer deaths. High-risk NBL is characterized by N-Myc amplification and segmental chromosomal gains and losses. Owing to limited disease models, the etiology of NBL is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying NBL based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc, to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived NBL tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified NBL including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc, we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human NBL and establishes a new system with potential to study early stages of NBL oncogenesis, to functionally assess NBL oncogenic drivers and to characterize NBL metastasis. PMID:28459463

  20. Therapeutic Innovations for Targeting Childhood Neuroblastoma: Implications of the Neurokinin-1 Receptor System.

    PubMed

    Berger, Michael; VON Schweinitz, Dietrich

    2017-11-01

    Neuroblastoma is the most common solid extracranial malignant tumor in children. Despite recent advances in the treatment of this heterogenous tumor with surgery and chemotherapy, the prognosis in advanced stages remains poor. Interestingly, neuroblastoma is one of the few solid tumors, to date, in which an effect for targeted immunotherapy has been proven in controlled clinical trials, giving hope for further advances in the treatment of this and other tumors by targeted therapy. A large array of novel therapeutic options for targeted therapy of neuroblastoma is on the horizon. To this repεrtoirε, the neurokinin-1 receptor (NK1R) system was recently added. The present article explores the most recent developments in targeting neuroblastoma cells via the NK1R and how this new knowledge could be helpful to create new anticancer therapies agains neuroblastoma and other cancers. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Molecular galactose-galectin association in neuroblastoma cells: An unconventional tool for qualitative/quantitative screening.

    PubMed

    Pastorino, Fabio; Ponzoni, Mirco; Simone, Giuseppina

    2017-05-01

    Galectin decorates the cell membrane and forms an extracellular molecular association with galactoside units. Here, galactoside probes have been used to study galectin expression in neuroblastoma cells. The hypothesis behind this investigation has been that the molecular mechanisms by which glycans modulate neural metastatic cells involve a protein-carbohydrate association, galectin-galactose. Preliminary screening to validate the hypothesis has been performed with galactose moieties anchored to beads. The molecular association has been studied by FACS. In vitro experiments reveal the molecular binding preferences of the metastatic neuroblastoma cells. Ex vivo, the galactose probes discriminate healthy tissues. The unconventional assay in microfluidics used in this study displayed results analogous to the above (GI-LI-N cell capture efficiency overcomes IMR-32). At the point of equilibrium of shear and binding forces, the capture yield inside the chamber was measured to 60 ± 4.4% in GI-LI-N versus 40 ± 2.1% in IMR-32. Staining of the fished cells and subsequent conjugation with red beads bearing the galactose also have evidenced that microfluidics can be used to study and quantify the molecular association of galectin-galactose. Most importantly, a crucial insight for obtaining single-cell qualitative/quantitative glycome analysis has been achieved. Finally, the specificity of the assay performed in microfluidics is demonstrated by comparing GI-LI-N fishing efficiency in galactose and fucose environments. The residual adhesion to fucose confirmed the existence of receptors for this glycan and that its eventual unspecific binding (i.e. due to electrostatic interactions) is insignificant compared with the molecular binding. Identification and understanding of this mechanism of discrimination can be relevant for diagnostic monitoring and for producing probes tailored to interfere with galectin activities associated with the malignant phenotype. Besides, the given

  2. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ 2

    PubMed Central

    Dunham, Ann; Chen, Paula X.; Chen, Michelle; Huynh, Milan; Rheingold, Evan; Prosper, Olivia

    2016-01-01

    Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ 2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ 2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G 1, S, G 2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ 2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment. PMID:28044089

  3. 12 CFR 708b.104 - Submission of merger proposal to the NCUA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Submission of merger proposal to the NCUA. 708b... CREDIT UNIONS MERGERS OF FEDERALLY-INSURED CREDIT UNIONS; VOLUNTARY TERMINATION OR CONVERSION OF INSURED STATUS Mergers § 708b.104 Submission of merger proposal to the NCUA. (a) Upon approval of the merger plan...

  4. Small molecule targeting of the actin associating protein tropomyosin Tpm3.1 increases neuroblastoma cell response to Rac inhibition of multicellular invasion.

    PubMed

    Mitchell, Camilla B; Stehn, Justine R; O'Neill, Geraldine M

    2018-05-12

    The migration and invasion of cells through tissues in the body is facilitated by a dynamic actin cytoskeleton. The actin-associating protein, tropomyosin Tpm3.1 has emerged to play important roles in cell migration and invasion. To date, investigations have focused on single cell migration and invasion where Tpm3.1 expression is inversely associated with Rac GTPase-mediated cell invasion. While single cell and collective cell invasion have many features in common, collective invasion is additionally impacted by cell-cell adhesion, and the role of Tpm3.1 in collective invasion has not been established. In the present study we have modelled multicellular invasion using neuroblastoma spheroids embedded in 3D collagen and analysed the function of Tpm3.1 using recently established compounds that target the Tpm3.1 C-terminus. The major findings from our study reveal that combined Rac inhibition and Tpm3.1 targeting result in greater inhibition of multicellular invasion than either treatment alone. Together, the data suggest that Tpm3.1 disruption sensitizes neuroblastoma cells to Rac inhibition of multicellular invasion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  5. miR-129 inhibits tumor growth and potentiates chemosensitivity of neuroblastoma by targeting MYO10.

    PubMed

    Wang, Xiqian; Li, Jing; Xu, Xiao; Zheng, Jiachun; Li, Qingbo

    2018-07-01

    Although the treatment strategies for neuroblastoma (NB) develop rapidly, a considerable number of patients could not benefit from chemotherapy. Here, we revealed a miR-129-MYO10 axis that regulated neuroblastoma growth and chemosensitivity. Mechanistically, MYO10 was up-regulated in neuroblastoma tissues and associated with poor overall survival. While overexpression of MYO10 enhanced tumor growth, genetic inhibition of MYO10 led to growth-inhibitory and chemopotentiating effects in neuroblastoma. MYO10 was further identified as a target of miR-129. Our data showed that miR-129 down-regulated MYO10 expression and subsequently suppressed cell growth. Re-expression of MYO10 significantly rescued miR129-mediated proliferation repression and chemosensitivity. In conclusion, our results demonstrated that miR-129 inhibited neuroblastoma growth and potentiated chemosensitivity by targeting MYO10, which may represent promising targets and rational therapeutic options for neuroblastoma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. The Histone Deacetylase Inhibitor Valproic Acid Exerts a Synergistic Cytotoxicity with the DNA-Damaging Drug Ellipticine in Neuroblastoma Cells

    PubMed Central

    Cerna, Tereza; Hrabeta, Jan; Eckschlager, Tomas; Frei, Eva; Schmeiser, Heinz H.

    2018-01-01

    Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated. Treatment of these cells with ellipticine in combination with VPA led to the synergism of their anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is dictated by the sequence of drug administration; the increased cytotoxicity was seen only after either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for clinical studies of combined treatment of children suffering from high-risk NBL. PMID:29304031

  7. PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma.

    PubMed

    Melaiu, Ombretta; Mina, Marco; Chierici, Marco; Boldrini, Renata; Jurman, Giuseppe; Romania, Paolo; D'Alicandro, Valerio; Benedetti, Maria C; Castellano, Aurora; Liu, Tao; Furlanello, Cesare; Locatelli, Franco; Fruci, Doriana

    2017-08-01

    Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules. Experimental Design: In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation. Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients ( P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma. Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Purging of the neuroblastoma stem cell compartment and tumor regression on exposure to hypoxia or cytotoxic treatment.

    PubMed

    Marzi, Ilaria; D'Amico, Massimo; Biagiotti, Tiziana; Giunti, Serena; Carbone, Maria Vittoria; Fredducci, David; Wanke, Enzo; Olivotto, Massimo

    2007-03-15

    We worked out an experimental protocol able to purge the stem cell compartment of the SH-SY5Y neuroblastoma clone. This protocol was based on the prolonged treatment of the wild-type cell population with either hypoxia or the antiblastic etoposide. Cell fate was monitored by immunocytochemical and electrophysiologic (patch-clamp) techniques. Both treatments produced the progressive disappearance of neuronal type (N) cells (which constitute the bulk of the tumor), leaving space for a special category of epithelial-like substrate-adherent cells (S(0)). The latter represent a minimal cell component of the untreated population and are endowed with immunocytochemical markers (p75, c-kit, and CD133) and the electrophysiologic "nude" profile, typical of the neural crest stem cells. S(0) cells displayed a highly clonogenic potency and a substantial plasticity, generating both the N component and an alternative subpopulation terminally committed to the fibromuscular lineage. Unlike the N component, this lineage was highly insensitive to the apoptotic activity of hypoxia and etoposide and developed only when the neuronal option was abolished. Under these conditions, the fibromuscular progeny of S(0) expanded and progressed up to the exhaustion of the staminal compartment and to the extinction of the tumor. When combined, hypoxia and etoposide cooperated in abolishing the N cell generation and promoting the conversion of the tumor described. This synergy might mirror a natural condition in the ischemic areas occurring in cancer. These results have relevant implications for the understanding of the documented tendency of neuroblastomas to regress from a malignant to a benign phenotype, either spontaneously or on antiblastic treatment.

  9. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines.

    PubMed

    Offerdahl, Danielle K; Dorward, David W; Hansen, Bryan T; Bloom, Marshall E

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. Published by Elsevier Inc.

  10. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.

    PubMed

    Raji, Jennifer A; Frame, Bronwyn; Little, Daniel; Santoso, Tri Joko; Wang, Kan

    2018-01-01

    Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T 0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.

  11. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  12. Neuroblastoma SH-SY5Y cell-derived exosomes stimulate dendrite-like outgrowths and modify the differentiation of A375 melanoma cells.

    PubMed

    Park, Seyeon; Ahn, Eun Sook; Kim, Yunjoo

    2015-04-01

    The identification of small vesicles released by many cell types as tools of intercellular communication is proposed. Here, we identify SH-SY5Y neuroblastoma-derived exosomes comprised of major histocompatibility complex II (MHC II), Hsp90 and flotillin-1. Our data also suggest that, when applied extracellularly, exosomes released from neuronal cells stimulate dendrite-like outgrowth and melanogenesis of A375 melanoma cells through the mitogen-activated protein kinase (MAP kinase), extracellular signal-regulated kinase 1 (ERK1) activation. These results suggest a modification of differentiation of melanocyte by the treatment of neuronal cell exosomes. Since exosomes from neuronal cells have the capacity to affect melanoma cells, they could be generally implicated in intercellular communication between different types of cells. © 2014 International Federation for Cell Biology.

  13. NRF2 Mediates Neuroblastoma Proliferation and Resistance to Retinoic Acid Cytotoxicity in a Model of In Vitro Neuronal Differentiation.

    PubMed

    de Miranda Ramos, Vitor; Zanotto-Filho, Alfeu; de Bittencourt Pasquali, Matheus Augusto; Klafke, Karina; Gasparotto, Juciano; Dunkley, Peter; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-11-01

    Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox ® as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.

  14. Intratumoral Delivery of Interferonγ-Secreting Mesenchymal Stromal Cells Repolarizes Tumor-Associated Macrophages and Suppresses Neuroblastoma Proliferation In Vivo.

    PubMed

    Relation, Theresa; Yi, Tai; Guess, Adam J; La Perle, Krista; Otsuru, Satoru; Hasgur, Suheyla; Dominici, Massimo; Breuer, Christopher; Horwitz, Edwin M

    2018-06-01

    Neuroblastoma, the most common extracranial solid tumor in childhood, remains a therapeutic challenge. However, one promising patient treatment strategy is the delivery of anti-tumor therapeutic agents via mesenchymal stromal cell (MSC) therapy. MSCs have been safely used to treat genetic bone diseases such as osteogenesis imperfecta, cardiovascular diseases, autoimmune diseases, and cancer. The pro-inflammatory cytokine interferon-gamma (IFNγ) has been shown to decrease tumor proliferation by altering the tumor microenvironment (TME). Despite this, clinical trials of systemic IFNγ therapy have failed due to the high blood concentration required and associated systemic toxicities. Here, we developed an intra-adrenal model of neuroblastoma, characterized by liver and lung metastases. We then engineered MSCs to deliver IFNγ directly to the TME. In vitro, these MSCs polarized murine macrophages to the M1 phenotype. In vivo, we attained a therapeutically active TME concentration of IFNγ without increased systemic concentration or toxicity. The TME-specific IFNγ reduced tumor growth rate and increased survival in two models of T cell deficient athymic nude mice. Absence of this benefit in NOD SCID gamma (NSG) immunodeficient mouse model indicates a mechanism dependent on the innate immune system. IL-17 and IL-23p19, both uniquely M1 polarization markers, transiently increased in the tumor interstitial fluid. Finally, the MSC vehicle did not promote tumor growth. These findings reveal that MSCs can deliver effective cytokine therapy directly to the tumor while avoiding systemic toxicity. This method transiently induces inflammatory M1 macrophage polarization, which reduces tumor burden in our novel neuroblastoma murine model. Stem Cells 2018;36:915-924. © AlphaMed Press 2018.

  15. Experience with International Neuroblastoma Staging System and Pathology Classification

    PubMed Central

    Ikeda, H; Iehara, T; Tsuchida, Y; Kaneko, M; Hata, J; Naito, H; Iwafuchi, M; Ohnuma, N; Mugishima, H; Toyoda, Y; Hamazaki, M; Mimaya, J; Kondo, S; Kawa, K; Okada, A; Hiyama, E; Suita, S; Takamatsu, H

    2002-01-01

    The International Neuroblastoma Staging System and Pathology Classification were proposed in 1988 and in 1999, respectively, but their clinical value has not yet been fully studied in new patients. Six hundred and forty-four patients with neuroblastoma treated between January 1995 and December 1999 were analysed by these classifications. The 4-year overall survival rate of patients <12 months of age with INSS stages 1, 2A, 2B, 3 and 4S disease was 98.5%, which was significantly higher than the 73.1% rate in stage 4 patients <12 months (P<0.0001). When patients were ⩾12 months, the 4-year overall survival rate of patients with neuroblastoma at 1, 2A, 2B and 3 stages was 100% and that of patients at stage 4 was 48.5% (P<0.0001). As to the International Neuroblastoma Pathology Classification histology, the 4-year overall survival rate was 98.8% in patients with favourable histology and 60.7% in those with unfavourable histology in the <12 months group (P<0.0001). In the ⩾12 months group, the 4-year oral survival of patients with favourable histology was 95.3% and that of patients with unfavourable histology was 50.6% (P<0.0001). Among biological factors, MYCN amplification, DNA diploidy and 1p deletions were significantly associated with poor prognosis in patients <12 months, as were MYCN amplification and DNA diploidy in patients ⩾12 months of age. Multivariate analysis showed that the INSS stage (stage 4 vs other stages) and International Neuroblastoma Pathology Classification histology (unfavourable vs favourable) were significantly and independently associated with the survival of patients undergoing treatment, stratified by age, stage and MYCN amplification (P=0.0002 and P=0.0051, respectively). British Journal of Cancer (2002) 86, 1110–1116. DOI: 10.1038/sj/bjc/6600231 www.bjcancer.com © 2002 Cancer Research UK PMID:11953858

  16. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation.

    PubMed

    Cuende, J; Moreno, S; Bolaños, J P; Almeida, A

    2008-05-22

    In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.

  17. Transcriptional response to muscarinic acetylcholine receptor stimulation: regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells.

    PubMed

    Rössler, Oliver G; Henss, Isabell; Thiel, Gerald

    2008-02-01

    Carbachol-mediated activation of type M(3) muscarinic acetylcholine receptors induces the biosynthesis of the transcription factor Egr-1 in human SH-SY5Y neuroblastoma cells involving an activation of extracellular signal-regulated protein kinase. Carbachol triggered the phosphorylation of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, and strikingly enhanced the transcriptional activation potential of Elk-1. Chromatin immunoprecipitation experiments revealed that Elk-1 binds in vivo to the 5'-upstream region of the Egr-1 gene in carbachol-stimulated neuroblastoma cells. Together, these data indicate that Elk-1 connects the intracellular signaling cascade elicited by activation of M(3) muscarinic acetylcholine receptors with the transcription of the Egr-1 gene. Lentiviral-mediated expression of either MAP kinase phosphatase-1 (MKP-1) or a constitutively active mutant of calcineurin A inhibited Egr-1 biosynthesis following carbachol stimulation, indicating that these phosphatases function as shut-off devices of muscarinic acetylcholine receptor signaling. Additionally, carbachol stimulation increased transcription of a chromatin-embedded collagenase promoter/reporter gene, showing that AP-1 activity is enhanced in carbachol-stimulated neuroblastoma. Expression experiments revealed that both MKP-1 and a constitutively active mutant of calcineurin A impaired carbachol-induced upregulation of AP-1 activity. The fact that carbachol stimulation of neuroblastoma cells activates the transcription factors Egr-1 and AP-1 suggests that changes in the gene expression pattern are an integral part of muscarinic acetylcholine receptor signaling.

  18. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  19. Allosteric and Orthosteric Activators of mGluR8 differentially affect the Chemotherapeutic-induced Human Neuroblastoma SH-SY5Y Cell Damage: The Impact of Cell Differentiation State.

    PubMed

    Jantas, Danuta; Grygier, Beata; Zatorska, Justyna; Lasoń, Władysław

    2018-05-12

    The participation of group III metabotropic glutamate receptors (mGluRs) in cancer growth and progression is still an understudied issue. Based on our recent data on high expression of mGluR8 in human neuroblastoma SH-SY5Y cells, in the present study we evaluated the effect of an mGluR8-specific positive allosteric modulator (PAM: AZ12216052) and orthosteric agonist ((S)-3,4-DCPG) on chemotherapeutic (doxorubicin, irinotecan or cisplatin)-evoked cell damage in undifferentiated (UN-) and retinoic acid-differentiated (RA-) SH-SY5Y cells. The data showed that AZ12216052 as well as a group III mGluR antagonist (UBP1112) but not (S)-3,4-DCPG partially inhibited the cell damage evoked by doxorubicin, irinotecan or cisplatin in UN-SH-SY5Y cells. In RA-SH-SY5Y, we observed only a modest protective effect of mGluR8 PAM. In contrast, both types of mGluR8 activators significantly enhanced toxic effects of doxorubicin and irinotecan in RA-SH-SY5Y cells. These data suggest that in undifferentiated neuroblastoma malignant cells, some mGluR8 modulators can decrease cytotoxic effects of chemotherapeutics which exclude them from the group of putative anti-cancer agents. On the other hand, in SH-SY5Y cells differentiated to a more mature neuron-like phenotype, i.e. nonmalignant cells, the mGluR8 activators can aggravate the chemotherapeutic neurotoxicity which is a well-known undesired effect of these drugs. Our pharmacological data add new observations to the unexplored field of research on the role of mGluR8 in cancer, pointing to complexity of response which could be mediated by particular types of mGluR8 ligands at least in neuroblastoma cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.

    PubMed

    Guarino, Goffredo; Spampinato, Santi

    2008-07-16

    Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.

  1. Advances in the translational genomics of neuroblastoma

    PubMed Central

    Bosse, Kristopher R.; Maris, John M.

    2015-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  2. miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells

    PubMed Central

    Takwi, Apana A; Wang, Yue-Ming; Wu, Jing; Michaelis, Martin; Cinatl, Jindrich; Chen, Taosheng

    2013-01-01

    Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is down-regulated in resistant cells. miR-137 over-expression resulted in down-regulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 down-regulates CAR expression and CAR down-regulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance. PMID

  3. A novel, semi-synthetic diterpenoid 16(R and S)-phenylamino-cleroda-3,13(14), Z-dien-15,16 olide (PGEA-AN) inhibits the growth and cell survival of human neuroblastoma cell line SH-SY5Y by modulating P53 pathway.

    PubMed

    Hussain, Syed Saad; Rafi, Kinza; Faizi, Shaheen; Razzak, Zaid Abdul; Simjee, Shabana U

    2018-04-11

    Neuroblastoma being the most common extracranial pediatric solid tumor accounts for 15% of overall cancer-related childhood mortalities. Resistance to chemotherapeutic drugs is one of the limiting factors for positive prognosis for neuroblastoma. Therefore, there is always a need for developing new therapeutic moieties which can become a future prospect of neuroblastoma therapy. Terpenoids being the largest natural compounds have demonstrated many biological activities including anticancer activity. Keeping in mind the role of terpenoids in biological system, we aimed to identify novel semi-synthetic terpenoid derived from cleroda diterpene, 16-oxo-cleroda-3,13(14)E-diene-15-oic acid (1) as a potential anticancer moiety against neuroblastoma. We choose γ-amino γ-lactone (PGEA-AN, 2) of 1 to study further because it exhibited the most potent cytotoxic activity in preliminary screening. In comparison to cisplatin, PGEA-AN significantly decreased the nuclear area factor which suggest the potential apoptosis as cause of cell death. PGEA-AN demonstrated a significant increase in the percent of late apoptosis and necrotic cell death at 48-h treatment with IC 50 dose. PGEA-AN significantly increased expression of P53 and BAX with no or little effect on BCL2 shifting BAX/BCL2 towards BAX promoting apoptosis. Increment in mitochondrial permeability supports P53 pathway involvement. Despite similarity in actions with cisplatin, PGEA-AN has found to have no effect on renal system. Based on these observations, we suggest that PGEA-AN modulates P53 system which further leads to the death of the neuroblastoma cells with no effect on renal system in vivo owing it to be a future prospect for development of anticancer moiety against neuroblastoma.

  4. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  5. Management and outcome of stage 3 neuroblastoma

    PubMed Central

    Modak, Shakeel; Kushner, Brian H.; LaQuaglia, Michael P.; Kramer, Kim; Cheung, Nai-Kong V.

    2013-01-01

    Purpose The management of patients with International Neuroblastoma Staging System (INSS) stage 3 neuroblastoma (NB) is not consistent worldwide. We describe a single centre approach at Memorial Sloan-Kettering Cancer Centre (MSKCC) from 1991 to 2007 that minimizes therapy except for those patients with MYCN-amplified NB. Methods In this retrospective analysis of 69 patients, tumour MYCN was not amplified in 53 and amplified in 16. Event-free survival (EFS) and overall survival (OS) were determined by Kaplan–Meier analysis. Results Fourteen patients with non-MYCN-amplified tumours were treated with surgery alone (group A) and the remaining 39 (group B) with surgery following chemotherapy that was initiated and administered at non-MSKCC institutions. Chemotherapy was discontinued after surgery in 38/39 of the latter. The 10-year EFS and OS for all patients with MYCN-non-amplified NB were 74.9 ± 16.9% and 92.6 ± 5.5%, respectively. There was no difference in OS between groups A and B (p = 0.2; 10-year OS for groups A and B was 84.6 ± 14% and 97.1 ± 2.9%, respectively). Patients with MYCN-amplified disease (group C) underwent dose-intensive induction, tumour resection and local radiotherapy: 13 achieved complete or very good partial remission, and 10 received myeloablative chemotherapy. 11/16 patients also received 3F8-based immunotherapy: 10 remain free of disease. The 10-year EFS and OS for patients with MYCN-amplified neuroblastoma treated with immunotherapy were both 90.9 ± 8.7%. Conclusion Patients with MYCN-non-amplified stage 3 NB can be successfully treated with surgery without the need for radiotherapy or continuation of chemotherapy. Combination of dose-intensive chemotherapy, surgery, radiotherapy and immunotherapy was associated with a favourable outcome for most patients with MYCN-amplified stage 3 NB. PMID:18996003

  6. All-trans-retinoic acid inhibits collapsin response mediator protein-2 transcriptional activity during SH-SY5Y neuroblastoma cell differentiation.

    PubMed

    Fontán-Gabás, Lorena; Oliemuller, Erik; Martínez-Irujo, Juan José; de Miguel, Carlos; Rouzaut, Ana

    2007-01-01

    Neurons are highly polarized cells composed of two structurally and functionally distinct parts, the axon and the dendrite. The establishment of this asymmetric structure is a tightly regulated process. In fact, alterations in the proteins involved in the configuration of the microtubule lattice are frequent in neuro-oncologic diseases. One of these cytoplasmic mediators is the protein known as collapsin response mediator protein-2, which interacts with and promotes tubulin polymerization. In this study, we investigated collapsin response mediator protein-2 transcriptional regulation during all-trans-retinoic acid-induced differentiation of SH-SY5Y neuroblastoma cells. All-trans-retinoic acid is considered to be a potential preventive and therapeutic agent, and has been extensively used to differentiate neuroblastoma cells in vitro. Therefore, we first demonstrated that collapsin response mediator protein-2 mRNA levels are downregulated during the differentiation process. After completion of deletion construct analysis and mutagenesis and mobility shift assays, we concluded that collapsin response mediator protein-2 basal promoter activity is regulated by the transcription factors AP-2 and Pax-3, whereas E2F, Sp1 and NeuroD1 seem not to participate in its regulation. Furthermore, we finally established that reduced expression of collapsin response mediator protein-2 after all-trans-retinoic acid exposure is associated with impaired Pax-3 and AP-2 binding to their consensus sequences in the collapsin response mediator protein-2 promoter. Decreased attachment of AP-2 is a consequence of its accumulation in the cytoplasm. On the other hand, Pax-3 shows lower binding due to all-trans-retinoic acid-mediated transcriptional repression. Unraveling the molecular mechanisms behind the action of all-trans-retinoic acid on neuroblastoma cells may well offer new perspectives for its clinical application.

  7. Arsenic impairs insulin signaling in differentiated neuroblastoma SH-SY5Y cells.

    PubMed

    Niyomchan, Apichaya; Visitnonthachai, Daranee; Suntararuks, Sumitra; Ngamsiri, Pronrumpa; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2018-05-01

    A strong correlation between chronic arsenic exposure and neuropsychological disorders leads to a growing concern about a potential risk of arsenic related neurodegeneration. Evidently, brain insulin signaling contributes to physiological effects, including energy homeostasis, and learning and memory. Arsenic has been shown to impair insulin signaling in adipocytes and myocytes, however, this impairment has not yet been explored in neurons. Here we showed that NaAsO 2 caused significant reduction in basal levels of glucose, plasma membrane glucose transporter, GLUT 3 and Akt phosphorylation in differentiated human neuroblastoma SH-SY5Y cells. NaAsO 2 significantly decreased insulin-mediated glucose uptake, as well as GLUT1 and 3 membrane translocation. Furthermore, the ability of insulin to increase Akt phosphorylation, a well-recognized insulin signaling response, was significantly lessened by NaAsO 2 treatment. In addition, the classical tyrosine phosphorylation response of insulin was reduced by NaAsO 2 , as evidenced by reduction of insulin-induced tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1(IRS-1). Moreover, NaAsO 2 lowered the ratio of p110, a catalytic subunit to p85, a regulatory subunit of PI3K causing an imbalance between p110 and p85, the conditions reported to contribute to insulin sensitivity. Additionally, increment of IRS-1 interaction with GSK3β, and p85-PI3K were observed in NaAsO 2 treated cells. These molecular modulations may be mechanistically attributed to neuronal insulin signaling impairment by arsenic. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Duck-billed platypus venom peptides induce Ca2+ influx in neuroblastoma cells.

    PubMed

    Kita, Masaki; Black, David StC; Ohno, Osamu; Yamada, Kaoru; Kigoshi, Hideo; Uemura, Daisuke

    2009-12-23

    The duck-billed platypus (Ornithorhynchus anatinus) is one of the few venomous Australian mammals. We previously found that its crude venom potently induces Ca(2+) influx in human neuroblastoma IMR-32 cells. Guided by this bioassay, we identified 11 novel peptides, including the heptapeptide H-His-Asp-His-Pro-Asn-Pro-Arg-OH (1). Compounds 1-4 and 5-11 coincided with the 6-9 N-terminal residues of Ornithorhynchus venom C-type natriuretic peptide (OvCNP) and the 132-150 part of OvCNP precursor peptide, respectively. Heptapeptide 1, which is one of the primary components of the venom fluid (approximately 200 ng/microL), induced a significant increase in [Ca(2+)](i) in IMR-32 cells at 75 microM. To the best of our knowledge, this is the first example of the isolation of the N-terminal linear fragments of CNPs in any mammal.

  9. Altered sensitivity to ellagic acid in neuroblastoma cells undergoing differentiation with 12-O-tetradecanoylphorbol-13-acetate and all-trans retinoic acid.

    PubMed

    Alfredsson, Christina Fjæraa; Rendel, Filip; Liang, Qui-Li; Sundström, Birgitta E; Nånberg, Eewa

    2015-12-01

    Ellagic acid has previously been reported to induce reduced proliferation and activation of apoptosis in several tumor cell lines including our own previous data from non-differentiated human neuroblastoma SH-SY5Y cells. The aim of this study was now to investigate if in vitro differentiation with the phorbol ester 12-O- tetradecanoylphorbol-13-acetate or the vitamin A derivative all-trans retinoic acid altered the sensitivity to ellagic acid in SH-SY5Y cells. The methods used were cell counting and LDH-assay for evaluation of cell number and cell death, flow cytometric analysis of SubG1- and TUNEL-analysis for apoptosis and western blot for expression of apoptosis-associated proteins. In vitro differentiation was shown to reduce the sensitivity to ellagic acid with respect to cell detachment, loss of viability and activation of apoptosis. The protective effect was phenotype-specific and most prominent in all-trans retinoic acid-differentiated cultures. Differentiation-dependent up-regulation of Bcl-2 and integrin expression is introduced as possible protective mechanisms. The presented data also point to a positive correlation between proliferative activity and sensitivity to ellagic-acid-induced cell detachment. In conclusion, the presented data emphasize the need to consider degree of neuronal differentiation and phenotype of neuroblastoma cells when discussing a potential pharmaceutical application of ellagic acid in tumor treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Microbiological study of biofilm formation in isolates of Salmonella enterica Typhimurium DT104 and DT104b cultured from the modern pork chain.

    PubMed

    O'Leary, Denis; Cabe, Evonne M Mc; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2013-01-15

    The purpose of this study was to characterise 172 Salmonella Typhimurium isolates taken from the pork chain for their biofilm forming abilities and to analyse their potential to survive on food processing surfaces. Many Salmonella have the ability to form biofilms. These natural structures, elaborated by bacteria are important in food production because their formation contributes to bacterial survival. Adherent bacterial cells are more resilient to displacement strategies including physical and chemical procedures as a consequence of their altered more resistant phenotype. By improving our understanding of the nature of biofilms, this data could positively contribute to the development and implementation of eradication strategies. In this study, Salmonella Typhimurium DT104 and DT104b were investigated for their ability to form biofilms on a range of different surfaces under defined environmental growth conditions. Phenotypic characterisation involved examining colony morphology on indicator agars, assessing their ability to survive chlorine-based challenges and investigating their ability to attach to stainless steel and to plastic surfaces. All bacterial isolates were investigated for the presence of Salmonella genomic island I (SGI1) which is thought to enhance efficient biofilm formation. It was found that the majority of strains possess biofilm forming capabilities but successful attachment is highly dependent on the surface on which the biofilm is forming. The strains readily attached to stainless steel and plastic surfaces and survived high chlorine concentrations. Molecular and phenotypic comparisons of strong and weak biofilm forming strains indicate that biofilm development is not solely dependent on the acquirement of SGI1. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma.

    PubMed

    Guo, Zhu-Ling; Yu, Bin; Ning, Bo-Tao; Chan, Shing; Lin, Qiu-Bin; Li, James Chun-Bong; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2015-08-19

    Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1). Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied. No mice died of therapy-related complications. Tumor size reduction was 70 and 30% in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75% mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors. This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.

  12. Tolcapone induces oxidative stress leading to apoptosis and inhibition of tumor growth in Neuroblastoma.

    PubMed

    Maser, Tyler; Rich, Maria; Hayes, David; Zhao, Ping; Nagulapally, Abhinav B; Bond, Jeffrey; Saulnier Sholler, Giselle

    2017-06-01

    Catechol-O-methyltransferase (COMT) is an enzyme that inactivates dopamine and other catecholamines by O-methylation. Tolcapone, a drug commonly used in the treatment of Parkinson's disease, is a potent inhibitor of COMT and previous studies indicate that Tolcapone increases the bioavailability of dopamine in cells. In this study, we demonstrate that Tolcapone kills neuroblastoma (NB) cells in preclinical models by inhibition of COMT. Treating four established NB cells lines (SMS-KCNR, SH-SY5Y, BE(2)-C, CHLA-90) and two primary NB cell lines with Tolcapone for 48 h decreased cell viability in a dose-dependent manner, with IncuCyte imaging and Western blotting indicating that cell death was due to caspase-3-mediated apoptosis. Tolcapone also increased ROS while simultaneously decreasing ATP-per-cell in NB cells. Additionally, COMT was inhibited by siRNA in NB cells and showed similar increases in apoptotic markers compared to Tolcapone. In vivo xenograft models displayed inhibition of tumor growth and a significant decrease in time-to-event in mice treated with Tolcapone compared to untreated mice. These results indicate that Tolcapone is cytotoxic to neuroblastoma cells and invite further studies into Tolcapone as a promising novel therapy for the treatment of neuroblastoma. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. HIF2α reduces growth rate but promotes angiogenesis in a mouse model of neuroblastoma

    PubMed Central

    Favier, Judith; Lapointe, Stéphanie; Maliba, Ricardo; Sirois, Martin G

    2007-01-01

    Background HIF2α/EPAS1 is a hypoxia-inducible transcription factor involved in catecholamine homeostasis, vascular remodelling, physiological angiogenesis and adipogenesis. It is overexpressed in many cancerous tissues, but its exact role in tumour progression remains to be clarified. Methods In order to better establish its function in tumourigenesis and tumour angiogenesis, we have stably transfected mouse neuroblastoma N1E-115 cells with the native form of HIF2α or with its dominant negative mutant, HIF2α (1–485) and studied their phenotype in vitro and in vivo. Results In vitro studies reveal that HIF2α induces neuroblastoma cells hypertrophy and decreases their proliferation rate, while its inactivation by the HIF2α (1–485) mutant leads to a reduced cell size, associated with an accelerated proliferation. However, our in vivo experiments show that subcutaneous injection of cells overexpressing HIF2α into syngenic mice, leads to the formation of tumour nodules that grow slower than controls, but that are well structured and highly vascularized. In contrast, HIF2α (1–485)-expressing neuroblastomas grow fast, but are poorly vascularized and quickly tend to extended necrosis. Conclusion Together, our data reveal an unexpected combination between an antiproliferative and a pro-angiogenic function of HIF2α that actually seems to be favourable to the establishment of neuroblastomas in vivo. PMID:17655754

  14. STS-30 Atlantis, OV-104, at KSC LC Pad 39B atop mobile launcher platform

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, arrives at Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B atop mobile launcher platform. The fixed service structure (FSS) towers above OV-104, its external tank (ET), and its solid rocket boosters (SRBs). The rotating service structure (RSS) is retracted. The launch tower catwalks are also retracted.

  15. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  16. Radiolabeling and initial biological evaluation of [18F]KBM-1 for imaging RAR-α receptors in neuroblastoma.

    PubMed

    Solingapuram Sai, Kiran Kumar; Das, Bhaskar C; Sattiraju, Anirudh; Almaguel, Frankis G; Craft, Suzanne; Mintz, Akiva

    2017-03-15

    Retinoic acid receptor alpha (RAR-α) plays a significant role in a number of diseases, including neuroblastoma. Children diagnosed with high-risk neuroblastoma are treated13-cis-retinoic acid, which reduces risk of cancer recurrence. Neuroblastoma cell death is mediated via RAR-α, and expression of RAR-α is upregulated after treatment. A molecular imaging probe that binds RAR-α will help clinicians to diagnose and stratify risk for patients with neuroblastoma, who could benefit from retinoid-based therapy. In this study, we report the radiolabeling, and initial in vivo evaluation of [ 18 F]KBM-1, a novel RAR-α agonist. The radiochemical synthesis of [ 18 F]KBM-1 was carried out through KHF 2 assisted substitution of [ 18 F] - from aryl-substituted pinacolatoesters-based retinoid precursor. In vitro cell uptake assay in human neuroblastoma cell line showed that the uptake of [ 18 F]KBM-1 was significantly inhibited by all three blocking agents (KBM-1, ATRA, BD4) at all the selected incubation times. Standard biodistribution in mice bearing neuroblastoma tumors demonstrated increased tumor uptake from 5min to 60min post radiotracer injection and the uptake ratios for target to non-target (tumor: muscle) increased 2.2-fold to 3.7-fold from 30min to 60min post injection. Tumor uptake in subset of 30min blocking group was 1.7-fold lower than unblocked. These results demonstrate the potential utility of [ 18 F]KBM-1 as a RAR-α imaging agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Inhibition of neuroblastoma cell proliferation with omega-3 fatty acids and treatment of a murine model of human neuroblastoma using a diet enriched with omega-3 fatty acids in combination with sunitinib.

    PubMed

    Barnés, Carmen M; Prox, Daniela; Christison-Lagay, Emily A; Le, Hau D; Short, Sarah; Cassiola, Flavia; Panigrahy, Dipak; Chaponis, Deviney; Butterfield, Catherine; Nehra, Deepika; Fallon, Erica M; Kieran, Mark; Folkman, Judah; Puder, Mark

    2012-02-01

    We investigated the use of dietary omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) in the treatment of neuroblastoma both as a sole agent and in combination with sunitinib, a broad-spectrum tyrosine kinase receptor inhibitor. Substitution of all dietary fat with menhaden oil (ω-3 PUFA rich) resulted in a 40-70% inhibition of tumor growth and a statistically significant difference in the levels of several PUFAs (18:2 ω-6, 20:4 ω-6, 22:4 ω-6, 20:5 ω-3) as compared with a control diet. Furthermore, tumors from animals on the ω-3 fatty acid (FA)-enriched diet had an elevated triene/tetraene ratio suggestive of a change in local eicosanoid metabolism in these tissues similar to that seen with essential fatty acid deficiency. The ω-3 FA-enriched diet also decreased tumor-associated inflammatory cells and induced mitochondrial changes suggestive of mitochondrial damage. Combination treatment with sunitinib resulted in further reduction in tumor proliferation and microvessel density. These findings suggest a potential role for ω-3 PUFAs in the combination treatment of neuroblastoma. We used a murine model of orthotopic and subcutaneous human neuroblastoma and diets that differ in the FA content to define the optimal dietary ω-3/omega-6 (ω-6) FA ratio required for the inhibition of these tumors.

  18. Autologous stem cell transplantation for the treatment of neuroblastoma in Korea.

    PubMed Central

    Ryu, Kyung Ha; Ahn, Hyo Seop; Koo, Hong Hoe; Kook, Hoon; Kim, Moon Kyu; Kim, Hack Ki; Ghim, Thad; Moon, Hyung Nam; Seo, Jong Jin; Sung, Ki Woong; Shin, Hee Young; Yoo, Eun Sun; Lyu, Chuhl Joo; Lee, Young Ho; Lee, Hahng; Cho, Bin; Cho, Hyun Sang; Choi, Hyung Soo; Hah, Jeong Ok; Hwang, Tai Ju

    2003-01-01

    Autologous stem cell transplantation (ASCT) for the treatment of high-risk neuroblastoma (NBL) is an accepted method for restoring bone marrow depression after high dose chemotherapy. We retrospectively analyzed eighty eight cases of NBL that underwent ASCT following marrow ablative therapy at 12 transplant centers of the Korean Society of Pediatric Hematology-Oncology between January 1996 and September 2000. Seventy nine children were of stage IV NBL and 9 were of stage III with N-myc amplification. Various cytoreductive regimens were used. However, the main regimen was 'CEM' consisting of carboplatin, etoposide and melphalan, and this was used in 66 patients. Total body irradiation was also added in 36 patients for myeloablation. To reduce tumor cell contamination, stem cell infusions after CD34+ cell selection were performed in 16 patients. Post-transplantation therapies included the second transplantation in 18 patients, interleukin2 therapy in 45, 13-cis retinoic acid in 40, 131-meta-iodobenzylguanidine in 4, conventional chemotherapy in 11, and local radiotherapy in 8. Twenty two patients died, sixty six patients are surviving 1 to 46 months after ASCT (median followup duration, 14.5 months). Although the follow-up period was short and the number of patients small, we believe that ASCT might improve the survival rate in high-risk NBL. PMID:12692423

  19. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells.

    PubMed

    Naveen, C R; Gaikwad, Sagar; Agrawal-Rajput, Reena

    2016-06-15

    Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF

  20. F-104 in flight

    NASA Technical Reports Server (NTRS)

    1988-01-01

    F-104G (N826NA) in flight over the Mojave Desert in January 1988. This aircraft was the last of eleven F-104s delivered to the Dryden Flight Research Center over a period of four decades. The initial group of four (a YF-104A, two F-104As and a two-seat F-104B) arrived between August 1956 and December 1959. One of the F-104As was returned to the Air Force in 1961, and the other was lost in a non-fatal accident in 1962. To support X-15 activities, three special F-104Ns went to NASA in 1963. One crashed in the XB-70 midair collision, and it was replaced by an F-104A/G. (This was an F-104A modified to a G configuration.) As the initial F-104 fleet aged, a pair of two-seat TF-104Gs and a single-seat F-104G joined the Dryden inventory in June 1975. F-104G N826NA, shown in the photo, was one of these. Between 1975 and 1990, the older F-104s were retired - the YF-104A in November 1975, the F-104A/G in June 1977, the F-104B in June 1983, and the two F-104Ns in January 1987 and October 1990. As the F-104s phased out, the replacement F-18s started arriving at Dryden in 1984. F-104s N826NA made its 1,415th and last flight on February 3, 1994. The last two TF-104s ended service in September 1995, ending a 39 year involvement with the aircraft by the NACA and NASA.

  1. NK Cell-derived Exosomes From NK Cells Previously Exposed to Neuroblastoma Cells Augment the Antitumor Activity of Cytokine-activated NK Cells.

    PubMed

    Shoae-Hassani, Alireza; Hamidieh, Amir Ali; Behfar, Maryam; Mohseni, Rashin; Mortazavi-Tabatabaei, Seyed A; Asgharzadeh, Shahab

    2017-09-01

    Immune cell-derived exosomes can increase immunity against tumors. In contrast, tumor-derived exosomes can reduce the immunity and can change the tumor microenvironment to further develop and provide metastasis. These effects take place by an alteration in the innate and adaptive immune cell functions. In this experiment, we studied the natural killer (NK) cells' effectiveness on tumor cells after expansion and thereafter incubated it with exosomes. The exosomes were derived from 2 populations of NK cells: (1) naive NK cells and, (2) NK cells previously exposed to neuroblastoma (NB) cells. Moreover, we have studied the NB-derived exosomes on NK cell function. The molecular load of the characterized exosomes (by means of nanoparticle-tracking analysis, flow cytometry, scanning electron microscopy, and western blot) from NK cells exposed to the NB cell revealed their expression of natural killer cell receptors in addition to CD56, NKG2D, and KIR2DL2 receptors. These exosomes were used to treat NK cells and thereafter administered to NB tumor cells both in vitro and in vivo. Our results showed some kind of NK cells' education by the exosomes. This education from NK cells previously exposed to NB cell-derived exosomes caused efficient and greater cytotoxicity against NB tumors, but NB-derived exosomes act as tumor promoters by providing a tumor supporting niche. Hence, this method of preparing the exosomes has a dramatic effect on activation of anti-NK cells against NB cells.

  2. A Promyelocytic Leukemia Protein-Thrombospondin-2 Axis and the Risk of Relapse in Neuroblastoma.

    PubMed

    Dvorkina, Maria; Nieddu, Valentina; Chakelam, Shalini; Pezzolo, Annalisa; Cantilena, Sandra; Leite, Ana Paula; Chayka, Olesya; Regad, Tarik; Pistorio, Angela; Sementa, Angela Rita; Virasami, Alex; Barton, Jack; Montano, Ximena; Lechertier, Tanguy; Brindle, Nicola; Morgenstern, Daniel; Lebras, Morgane; Burns, Alan J; Saunders, Nigel J; Hodivala-Dilke, Kairbaan; Bagella, Luigi; De The, Hugues; Anderson, John; Sebire, Neil; Pistoia, Vito; Sala, Arturo; Salomoni, Paolo

    2016-07-01

    Neuroblastoma is a childhood malignancy originating from the sympathetic nervous system with a complex biology, prone to metastasize and relapse. High-risk, metastatic cases are explained in part by amplification or mutation of oncogenes, such as MYCN and ALK, and loss of tumor suppressor genes in chromosome band 1p. However, it is fundamental to identify other pathways responsible for the large portion of neuroblastomas with no obvious molecular alterations. Neuroblastoma cell lines were used for the assessment of tumor growth in vivo and in vitro Protein expression in tissues and cells was assessed using immunofluorescence and IHC. The association of promyelocytic leukemia (PML) expression with neuroblastoma outcome and relapse was calculated using log-rank and Mann-Whitney tests, respectively. Gene expression was assessed using chip microarrays. PML is detected in the developing and adult sympathetic nervous system, whereas it is not expressed or is low in metastatic neuroblastoma tumors. Reduced PML expression in patients with low-risk cancers, that is, localized and negative for the MYCN proto-oncogene, is strongly associated with tumor recurrence. PML-I, but not PML-IV, isoform suppresses angiogenesis via upregulation of thrombospondin-2 (TSP2), a key inhibitor of angiogenesis. Finally, PML-I and TSP2 expression inversely correlates with tumor angiogenesis and recurrence in localized neuroblastomas. Our work reveals a novel PML-I-TSP2 axis for the regulation of angiogenesis and cancer relapse, which could be used to identify patients with low-risk, localized tumors that might benefit from chemotherapy. Clin Cancer Res; 22(13); 3398-409. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. The biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.

    PubMed Central

    Lee, M. C.; Lee, W. S.; Park, C. S.; Juhng, S. W.

    1994-01-01

    Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase receptors and ligand-stimulated tyrosine kinase activity, and autophosphorylation of EGF(epidermal growth factor) and PDGF receptors. The experiment was designed to study the effects of GM1 ganglioside on growth of human neuroblastoma SH-SY5Y cells stimulated with trophic factor in vitro. The cells were plated in Eagle's minimum essential medium without serum. The number and morphologic change of SH-SY5Y cells were evaluated in the serum free medium added GM1 ganglioside with insulin or PDGF. SH-SY5Y cells were maintained for six days in serum-free medium, and then cultured for over two weeks in serum-free medium containing either insulin or PDGF. The effect of insulin on cell proliferation developed earlier and was more potent than that of PDGF. These proliferative effects were inhibited by GM1 ganglioside, and the cells showed prominent neurites outgrowth. These findings suggest that GM1 ganglioside inhibits the cell proliferation mediated by tyrosine kinase receptors and directly induces neuritogenesis as one of the neurotrophic factors. PMID:7986393

  4. Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells.

    PubMed

    Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna

    2011-02-01

    The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.

  5. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemendinger, Richelle A., E-mail: richelle.hemendinger@carolinashealthcare.org; Armstrong, Edward J.; Brooks, Benjamin Rix

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolatemore » (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.« less

  6. Cadmium inhibits neurite outgrowth in differentiating human SH-SY5Y neuroblastoma cells.

    PubMed

    Pak, Eun Joo; Son, Gi Dong; Yoo, Byung Sun

    2014-01-01

    Cadmium, a highly ubiquitous heavy metal, is well known to induce neurotoxicity. However, the underlying mechanism of cadmium-mediated neurotoxicity remains unclear. We have studied cadmium inhibition of neurite outgrowth using human SH-SY5Y neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Cadmium, at a concentration of 3 μmol/L, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells 48 hours after cadmium treatment (1-3 μmol/L cadmium) was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 1 to 3 μmol/L cadmium resulted in decreased level of cross-reactivities with 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The reactive oxygen species (ROS) scavenger, NAC (N-acetyl-l-cysteine), recovered the expression of GAP-43 in cadmium-treated cells. The results indicate that cadmium is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells and that this effect might result from ROS generation by cadmium. © The Author(s) 2014.

  7. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma.

    PubMed

    Groß, Anja; Schulz, Catrine; Kolb, Jasmine; Koster, Jan; Wehner, Sibylle; Czaplinski, Sebastian; Khilan, Abdulghani; Rohrer, Hermann; Harter, Patrick N; Klingebiel, Thomas; Langer, Julian D; Geerts, Dirk; Schulte, Dorothea

    2018-04-15

    Neuroblastoma is one of only a few human cancers that can spontaneously regress even after extensive dissemination, a poorly understood phenomenon that occurs in as many as 10% of patients. In this study, we identify the TALE-homeodomain transcription factor MEIS2 as a key contributor to this phenomenon. We identified MEIS2 as a MYCN-independent factor in neuroblastoma and showed that in this setting the alternatively spliced isoforms MEIS2A and MEIS2D exert antagonistic functions. Specifically, expression of MEIS2A was low in aggressive stage 4 neuroblastoma but high in spontaneously regressing stage 4S neuroblastoma. Moderate elevation of MEIS2A expression reduced proliferation of MYCN -amplified human neuroblastoma cells, induced neuronal differentiation and impaired the ability of these cells to form tumors in mice. In contrast, MEIS2A silencing or MEIS2D upregulation enhanced the aggressiveness of the tumor phenotype. Mechanistically, MEIS2A uncoupled a negative feedback loop that restricts accumulation of cellular retinoic acid, an effective agent in neuroblastoma treatment. Overall, our results illuminate the basis for spontaneous regression in neuroblastoma and identify an MEIS2A-specific signaling network as a potential therapeutic target in this common pediatric malignancy. Significance: This study illuminates the basis for spontaneous regressions that can occur in a common pediatric tumor, with implications for the development of new treatment strategies. Cancer Res; 78(8); 1935-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Retinoic acid-induced nNOS expression depends on a novel PI3K/Akt/DAX1 pathway in human TGW-nu-I neuroblastoma cells.

    PubMed

    Nagl, Florian; Schönhofer, Katrin; Seidler, Barbara; Mages, Jörg; Allescher, Hans-Dieter; Schmid, Roland M; Schneider, Günter; Saur, Dieter

    2009-11-01

    Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) acts as a neurotransmitter and intracellular signaling molecule in the central and peripheral nervous system. NO regulates multiple processes like neuronal development, plasticity, and differentiation and is a mediator of neurotoxicity. The nNOS gene is highly complex with 12 alternative first exons, exon 1a-1l, transcribed from distinct promoters, leading to nNOS variants with different 5'-untranslated regions. Transcriptional control of the nNOS gene is not understood in detail. To investigate regulation of nNOS gene expression by retinoic acid (RA), we used the human neuroblastoma cell line TGW-nu-I as a model system. We show that RA induces nNOS transcription in a protein synthesis-dependent fashion. We identify the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the atypical orphan nuclear receptor DAX1 (NR0B1) as critical mediators involved in RA-induced nNOS gene transcription. RA treatment increases DAX1 expression via PI3K/Akt signaling. Upregulation of DAX1 expression in turn induces nNOS transcription in response to RA. These results identify nNOS as a target gene of a novel RA/PI3K/Akt/DAX1-dependent pathway in human neuroblastoma cells and stress the functional importance of the transcriptional regulator DAX1 for nNOS gene expression in response to RA treatment.

  9. MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma.

    PubMed

    Wu, Tingting; Lin, Yun; Xie, Zhongguo

    2018-05-24

    Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be downregulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.

  10. Predictive Modeling of Neuroblastoma Growth Dynamics in Xenograft Model After Bevacizumab Anti-VEGF Therapy.

    PubMed

    He, Yixuan; Kodali, Anita; Wallace, Dorothy I

    2018-06-14

    Neuroblastoma is the leading cause of cancer death in young children. Although treatment for neuroblastoma has improved, the 5-year survival rate of patients still remains less than half. Recent studies have indicated that bevacizumab, an anti-VEGF drug used in treatment of several other cancer types, may be effective for treating neuroblastoma as well. However, its effect on neuroblastoma has not been well characterized. While traditional experiments are costly and time-consuming, mathematical models are capable of simulating complex systems quickly and inexpensively. In this study, we present a model of vascular tumor growth of neuroblastoma IMR-32 that is complex enough to replicate experimental data across a range of tumor cell properties measured in a suite of in vitro and in vivo experiments. The model provides quantitative insight into tumor vasculature, predicting a linear relationship between vasculature and tumor volume. The tumor growth model was coupled with known pharmacokinetics and pharmacodynamics of the VEGF blocker bevacizumab to study its effect on neuroblastoma growth dynamics. The results of our model suggest that total administered bevacizumab concentration per week, as opposed to dosage regimen, is the major determining factor in tumor suppression. Our model also establishes an exponentially decreasing relationship between administered bevacizumab concentration and tumor growth rate.

  11. Incorporating genomic, transcriptomic and clinical data: a prognostic and stem cell-like MYC and PRC imbalance in high-risk neuroblastoma.

    PubMed

    Yang, Xinan Holly; Tang, Fangming; Shin, Jisu; Cunningham, John M

    2017-10-03

    Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2). Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk neuroblastoma (HR-NB), the most common extracranial solid tumor in children. We systematically assembled genomic variants, gene expression changes, priori knowledge of gene functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new, individualized prognostic index using the relative expressions between the poor- and good-outcome signature genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells. A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2 reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This hypothesis-driven systems bioinformatics work offered novel insights into

  12. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis.

    PubMed

    HaDuong, Josephine H; Blavier, Laurence; Baniwal, Sanjeev K; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A

    2015-08-15

    The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. © 2015 UICC.

  13. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN.

    PubMed

    Guan, J; Tucker, E R; Wan, H; Chand, D; Danielson, L S; Ruuth, K; El Wakil, A; Witek, B; Jamin, Y; Umapathy, G; Robinson, S P; Johnson, T W; Smeal, T; Martinsson, T; Chesler, L; Palmer, R H; Hallberg, B

    2016-09-01

    The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. © 2016. Published by The Company of Biologists Ltd.

  14. Human Neuroblastoma: From Basic Science to Clinical Debut of Cellular Oncogenes

    NASA Astrophysics Data System (ADS)

    Schwab, Manfred

    Neuroblastoma is a childhood embryonic tumor of migrating neuroectodermal cells derived from the neural crest and destined for the adrenal medulla and the sympathetic nervous system. It very often has a rapidly progressive clinical course, and although many advances have been made in understanding the development of this tumor, improving the survival rates particularly in patients with metastatic tumor has been a frustrating experience. The mechanisms leading to neuroblastoma are largely unclear, but nonrandom chromosomal changes discovered early suggested the involvement of genetic alterations. Most prominent among these is the amplification of the oncogene MYCN, which identifies a group of patients who have a particularly dire prognosis. Amplified MYCN is used today as a prognostic marker on which therapy design is based to a large extent. An unusual aspect of neuroblastoma is the high rate at which tumors regress spontaneously, even in infants with extensive liver involvement and numerous subcutaneous nodules. Identifying the molecular and cellular basis of spontaneous regression could result in improved therapeutic approaches. Neuroblastoma is a model tumor with many fascinating aspects but has remained a challenge to the pediatric oncologist

  15. MicroRNA-542-5p as a Novel Tumor Suppressor in Neuroblastoma

    PubMed Central

    Bray, Isabella; Tivnan, Amanda; Bryan, Kenneth; Foley, Niamh H; Watters, Karen M; Tracey, Lorraine; Davidoff, Andrew M; Stallings, Raymond L

    2011-01-01

    Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer. PMID:21310526

  16. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    PubMed Central

    Alisi, Anna; Cho, William C.; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843

  17. Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

    PubMed Central

    Tint, I S; Bonder, E M; Feder, H H; Reboulleau, C P; Vasiliev, J M; Gelfand, I M

    1992-01-01

    Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement of the cell body away from the base of a process. In differentiated cells, PMA induced the rapid extension of small lamellas and subsequent formation of short-lived elongated processes from the lateral edges of neurites. Additionally, growth cones exhibited enhanced modulation in shape after PMA treatment. These reversible reorganizations were similar to the actinoplast-tubuloplast transformations exhibited by PMA-treated fibroblasts. We suggest that actinoplast-tubuloplast reorganizations play essential roles in morphogenesis where stable cytoplasmic extensions are induced by external stimuli. In particular, PMA-induced reorganizations of neural cells in culture may be a model for morphological modulations that occur in nerve tissue. Images PMID:1518842

  18. The Proteasome Inhibitor Bortezomib Enhances ATRA-Induced Differentiation of Neuroblastoma Cells via the JNK Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Luo, Peihua; Lin, Meili; Li, Lin; Yang, Bo; He, Qiaojun

    2011-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib. PMID:22087283

  19. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuenong; Wei, Han; Liu, Ziwei

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed thatmore » RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.« less

  20. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression

    PubMed Central

    Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario

    2016-01-01

    The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842