Sample records for b12 binding proteins

  1. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation?

    PubMed Central

    Gant, JC; Blalock, EM; K-C, Chen; Kadish, I; Porter, NM; Norris, CM; Thibault, O; Landfield, PW

    2014-01-01

    It has been recognized for some time that the Ca2+-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca2+-mediated electrophysiological responses are increased in hippocampus with aging, including Ca2+ transients, L-type voltage-gated Ca2+ channel activity, Ca2+ spike duration and action potential accommodation. Elevated Ca2+-induced Ca2+ release from ryanodine receptors (RyRs) appears to drive amplification of the Ca2+ responses. Components of this Ca2+ dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca2+ dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca2+-induced Ca2+ release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors containing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca2+ dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer’s disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca2+ dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging. PMID:24291098

  2. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    PubMed

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The promiscuous protein binding ability of erythrosine B studied by metachromasy (metachromasia).

    PubMed

    Ganesan, Lakshmi; Buchwald, Peter

    2013-04-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein-protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50 ) in the 5- to 30-μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd ) and stoichiometry (nb ) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5-6 and 8-9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.

  4. The Promiscuous Protein Binding Ability of Erythrosine B Studied by Metachromasy (Metachromasia)

    PubMed Central

    Ganesan, Lakshmi; Buchwald, Peter

    2013-01-01

    The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly-iodinated xanthene dye and an FDA-approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPI) with a remarkably consistent median inhibitory concentration (IC50) in the 5–30 µM range. Because ErB exhibits metachromasy, i.e., color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 µM for BSA and CD40L, respectively) were in good agreement with that expected from the protein–protein interaction (PPI) inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively) indicating the possibility of nonspecific binding of the flat an rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. PMID:23456742

  5. Lactoferrin binding protein B – a bi-functional bacterial receptor protein

    PubMed Central

    Ostan, Nicholas K. H.; Yu, Rong-Hua; Ng, Dixon; Lai, Christine Chieh-Lin; Sarpe, Vladimir; Schriemer, David C.

    2017-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation. PMID:28257520

  6. Antascomicins A, B, C, D and E. Novel FKBP12 binding compounds from a Micromonospora strain.

    PubMed

    Fehr, T; Sanglier, J J; Schuler, W; Gschwind, L; Ponelle, M; Schilling, W; Wioland, C

    1996-03-01

    5 novel ascomycin-like compounds, antascomicins A, B, C, D and E were isolated from a strain of Micromonospora. The antascomicins bind strongly to the FK506-binding protein FKBP12 and antagonize the immunosuppressive activity of FK506 and rapamycin. The strain description, fermentation, structure elucidation and biological activity of these compounds are described.

  7. Multiple binding modes for palmitate to barley lipid transfer protein facilitated by the presence of proline 12.

    PubMed

    Smith, Lorna J; Gunsteren, Wilfred F Van; Allison, Jane R

    2013-01-01

    Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar protein-ligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental protein-ligand atom-atom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of protein-ligand interactions in complexes where NMR data provide insufficient restraints. Copyright © 2012 The Protein Society.

  8. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    PubMed

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  9. Conservation of an ATP-binding domain among recA proteins from Proteus vulgaris, erwinia carotovora, Shigella flexneri, and Escherichia coli K-12 and B/r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K.L.; Hess, R.M.; McEntee, K.

    1988-06-01

    The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N/sub 3/ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the (..cap alpha..-/sup 32/P)8N/sub 3/ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in eachmore » of the digests and these peptides eluted identically with the tryptic peptide T/sub 31/ of the E. coli K-12 RecA protein, which was the unique site of 8N/sub 3/ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10/sup 7/ years.« less

  10. Allelic variation of polymorphic locus lytB, encoding a choline-binding protein, from streptococci of the mitis group.

    PubMed

    Moscoso, Miriam; Obregón, Virginia; López, Rubens; García, José L; García, Ernesto

    2005-12-01

    The choline-binding protein LytB, an N-acetylglucosaminidase of Streptococcus pneumoniae, is the key enzyme for daughter cell separation and is believed to play a critical pathogenic role, facilitating bacterial spreading during infection. Because of these peculiarities LytB is a putative vaccine target. To determine the extent of LytB polymorphism, the lytB alleles from seven typical, clinical pneumococcal isolates of various serotypes and from 13 additional streptococci of the mitis group (12 atypical pneumococci and the Streptococcus mitis type strain) were sequenced. Sequence alignment showed that the main differences among alleles were differences in the number of repeats (range, 12 to 18) characteristic of choline-binding proteins. These differences were located in the region corresponding to repeats 11 to 17. Typical pneumococcal strains contained either 14, 16, or 18 repeats, whereas all of the atypical isolates except strains 1283 and 782 (which had 14 and 16 repeats, respectively) and the S. mitis type strain had only 12 repeats; atypical isolate 10546 turned out to be a DeltalytB mutant. We also found that there are two major types of alternating repeats in lytB, which encode 21 and 23 amino acids. Choline-binding proteins are linked to the choline-containing cell wall substrate through choline residues at the interface of two consecutive choline-binding repeats that create a choline-binding site. The observation that all strains contained an even number of repeats suggests that the duplication events that gave rise to the choline-binding repeats of LytB involved two repeats simultaneously, an observation that is in keeping with previous crystallographic data. Typical pneumococcal isolates usually grew as diplococci, indicating that an active LytB enzyme was present. In contrast, most atypical isolates formed long chains of cells that did not disperse after addition of purified LytB, suggesting that in these strains chains were produced through

  11. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    PubMed Central

    2010-01-01

    Background Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein. PMID:20979600

  12. Light-dependent gene regulation by a coenzyme B12-based photoreceptor

    PubMed Central

    Ortiz-Guerrero, Juan Manuel; Polanco, María Carmen; Murillo, Francisco J.; Padmanabhan, S.; Elías-Arnanz, Montserrat

    2011-01-01

    Cobalamin (B12) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B12-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B12 for activity even though both have a canonical B12-binding motif. Unanswered were what underlies this striking difference, what is the specific cobalamin used, and how it acts. Here, we show that coenzyme B12 (5′-deoxyadenosylcobalamin, AdoB12), specifically dictates CarH function in the dark and on exposure to light. In the dark, AdoB12-binding to the autonomous domain containing the B12-binding motif foments repressor oligomerization, enhances operator binding, and blocks transcription. Light, at various wavelengths at which AdoB12 absorbs, dismantles active repressor oligomers by photolysing the bound AdoB12 and weakens repressor–operator binding to allow transcription. By contrast, AdoB12 alters neither CarA oligomerization nor operator binding, thus accounting for its B12-independent activity. Our findings unveil a functional facet of AdoB12 whereby it serves as the chromophore of a unique photoreceptor protein class acting in light-dependent gene regulation. The prevalence of similar proteins of unknown function in microbial genomes suggests that this distinct B12-based molecular mechanism for photoregulation may be widespread in bacteria. PMID:21502508

  13. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein.

    PubMed

    Tsyrendorzhiev, D D; Orlovskaya, I A; Sennikov, S V; Tregubchak, T V; Gileva, I P; Tsyrendorzhieva, M D; Shchelkunov, S N

    2014-06-01

    The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.

  14. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Mototsugu, E-mail: mototsugu-yamada@meiji.co.jp; Watanabe, Takashi; Baba, Nobuyoshi

    The selenomethionyl-substituted transpeptidase domain of penicillin-binding protein (PBP) 2B from S. pneumoniae was isolated from a limited proteolysis digest of the soluble form of recombinant PBP 2B and then crystallized. MAD data were collected to 2.4 Å resolution. Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 86.39,more » c = 143.27 Å. Diffraction data were collected to 2.4 Å resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.« less

  15. DNA-binding by Haemophilus influenzae and Escherichia coli YbaB, members of a widely-distributed bacterial protein family.

    PubMed

    Cooley, Anne E; Riley, Sean P; Kral, Keith; Miller, M Clarke; DeMoll, Edward; Fried, Michael G; Stevenson, Brian

    2009-07-13

    Genes orthologous to the ybaB loci of Escherichia coli and Haemophilus influenzae are widely distributed among eubacteria. Several years ago, the three-dimensional structures of the YbaB orthologs of both E. coli and H. influenzae were determined, revealing a novel "tweezer"-like structure. However, a function for YbaB had remained elusive, with an early study of the H. influenzae ortholog failing to detect DNA-binding activity. Our group recently determined that the Borrelia burgdorferi YbaB ortholog, EbfC, is a DNA-binding protein. To reconcile those results, we assessed the abilities of both the H. influenzae and E. coli YbaB proteins to bind DNA to which B. burgdorferi EbfC can bind. Both the H. influenzae and the E. coli YbaB proteins bound to tested DNAs. DNA-binding was not well competed with poly-dI-dC, indicating some sequence preferences for those two proteins. Analyses of binding characteristics determined that both YbaB orthologs bind as homodimers. Different DNA sequence preferences were observed between H. influenzae YbaB, E. coli YbaB and B. burgdorferi EbfC, consistent with amino acid differences in the putative DNA-binding domains of these proteins. Three distinct members of the YbaB/EbfC bacterial protein family have now been demonstrated to bind DNA. Members of this protein family are encoded by a broad range of bacteria, including many pathogenic species, and results of our studies suggest that all such proteins have DNA-binding activities. The functions of YbaB/EbfC family members in each bacterial species are as-yet unknown, but given the ubiquity of these DNA-binding proteins among Eubacteria, further investigations are warranted.

  16. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication.

    PubMed

    Ganaie, Safder S; Chen, Aaron Yun; Huang, Chun; Xu, Peng; Kleiboeker, Steve; Du, Aifang; Qiu, Jianming

    2018-04-15

    Human parvovirus B19 (B19V) expresses a single precursor mRNA (pre-mRNA), which undergoes alternative splicing and alternative polyadenylation to generate 12 viral mRNA transcripts that encode two structural proteins (VP1 and VP2) and three nonstructural proteins (NS1, 7.5-kDa protein, and 11-kDa protein). Splicing at the second 5' donor site (D2 site) of the B19V pre-mRNA is essential for the expression of VP2 and the 11-kDa protein. We previously identified that cis -acting intronic splicing enhancer 2 (ISE2) that lies immediately after the D2 site facilitates the recognition of the D2 donor for its efficient splicing. In this study, we report that ISE2 is critical for the expression of the 11-kDa viral nonstructural protein. We found that ISE2 harbors a consensus RNA binding motif protein 38 (RBM38) binding sequence, 5'-UGUGUG-3'. RBM38 is expressed during the middle stage of erythropoiesis. We first confirmed that RBM38 binds specifically with the ISE2 element in vitro The knockdown of RBM38 significantly decreases the level of spliced mRNA at D2 that encodes the 11-kDa protein but not that of the D2-spliced mRNA that encodes VP2. Importantly, we found that the 11-kDa protein enhances viral DNA replication and virion release. Accordingly, the knockdown of RBM38 decreases virus replication via downregulating 11-kDa protein expression. Taken together, these results suggest that the 11-kDa protein facilitates B19V DNA replication and that RBM38 is an essential host factor for B19V pre-mRNA splicing and for the expression of the 11-kDa protein. IMPORTANCE B19V is a human pathogen that can cause fifth disease, arthropathy, anemia in immunocompromised patients and sickle cell disease patients, myocarditis, and hydrops fetalis in pregnant women. Human erythroid progenitor cells (EPCs) are most susceptible to B19V infection and fully support viral DNA replication. The exclusive tropism of B19V for erythroid-lineage cells is dependent not only on the expression of viral

  17. Interacting protein partners of Arabidopsis RNA binding protein AtRBP45b

    USDA-ARS?s Scientific Manuscript database

    RNA binding proteins (RBPs) are important players in post-transcriptional gene regulation and shown to play an important role in normal development and in response to environmental perturbations. Arabidopsis RBP, AtRBP45b with triple RNA recognition motifs (RRMs) have are closely related to the yeas...

  18. The Solution Structure, Binding Properties, and Dynamics of the Bacterial Siderophore-binding Protein FepB*

    PubMed Central

    Chu, Byron C. H.; Otten, Renee; Krewulak, Karla D.; Mulder, Frans A. A.; Vogel, Hans J.

    2014-01-01

    The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs. PMID:25173704

  19. Computational search for aflatoxin binding proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Jinfeng; Zhang, Lujia; He, Xiao; Zhang, John Z. H.

    2017-10-01

    Aflatoxin is one of the mycotoxins that contaminate various food products. Among various aflatoxin types (B1, B2, G1, G2 and M1), aflatoxin B1 is the most important and the most toxic one. In this study, through computational screening, we found that several proteins may bind specifically with different type of aflatoxins. Combination of theoretical methods including target fishing, molecular docking, molecular dynamics (MD) simulation, MM/PBSA calculation were utilized to search for new aflatoxin B1 binding proteins. A recently developed method for calculating entropic contribution to binding free energy called interaction entropy (IE) was employed to compute the binding free energy between the protein and aflatoxin B1. Through comprehensive comparison, three proteins, namely, trihydroxynaphthalene reductase, GSK-3b, and Pim-1 were eventually selected as potent aflatoxin B1 binding proteins. GSK-3b and Pim-1 are drug targets of cancers or neurological diseases. GSK-3b is the strongest binder for aflatoxin B1.

  20. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites.

    PubMed

    Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B

    1998-06-01

    C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.

  1. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism

    PubMed Central

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; Anderson, Lindsey N.; Nandhikonda, Premchendar; Rodionova, Irina A.; Carre, Alexandre; Li, Xiaoqing; Xu, Chengdong; Clauss, Therese R. W.; Metz, Thomas O.; Wright, Aaron T.

    2017-01-01

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism. PMID:28137868

  2. Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism

    DOE PAGES

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari; ...

    2017-01-30

    Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12. Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a new light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine,more » and ubiquinone metabolism suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.« less

  3. Elucidation of roles for vitamin B 12 in regulation of folate, ubiquinone, and methionine metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romine, Margaret F.; Rodionov, Dmitry A.; Maezato, Yukari

    Only a small fraction of vitamin B 12-requiring organisms are able to synthesize B 12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B 12-binding enzymes and regulatory roles for B 12. Here we report the development and use of a B 12-based chemical probe to identify B 12-binding proteins in a nonphototrophic B 12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a new light-sensing B 12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second,more » our probe captured proteins involved in folate, methionine, and ubiquinone metabolism suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Furthermore, B 12 modulates growth, and by limiting its availability to auxotrophs, B 12-producing organisms may facilitate coordination of community metabolism.« less

  4. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  5. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  6. Phage display selection of peptides that target calcium-binding proteins.

    PubMed

    Vetter, Stefan W

    2013-01-01

    Phage display allows to rapidly identify peptide sequences with binding affinity towards target proteins, for example, calcium-binding proteins (CBPs). Phage technology allows screening of 10(9) or more independent peptide sequences and can identify CBP binding peptides within 2 weeks. Adjusting of screening conditions allows selecting CBPs binding peptides that are either calcium-dependent or independent. Obtained peptide sequences can be used to identify CBP target proteins based on sequence homology or to quickly obtain peptide-based CBP inhibitors to modulate CBP-target interactions. The protocol described here uses a commercially available phage display library, in which random 12-mer peptides are displayed on filamentous M13 phages. The library was screened against the calcium-binding protein S100B.

  7. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine

    PubMed Central

    Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.

    2015-01-01

    Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468

  8. A blue corrinoid from partial degradation of vitamin B12 in aqueous bicarbonate: spectra, structure, and interaction with proteins of B12 transport.

    PubMed

    Fedosov, Sergey N; Ruetz, Markus; Gruber, Karl; Fedosova, Natalya U; Kräutler, Bernhard

    2011-09-20

    Cobalamin (Cbl) is a complex cofactor produced only by bacteria but used by all animals and humans. Cyanocobalamin (vitamin B(12), CNCbl) is one commonly isolated form of cobalamin. B(12) belongs to a large group of corrinoids, which are characterized by a distinct red color conferred by the system of conjugated double bonds of the corrin ring retaining a Co(III) ion. A unique blue Cbl derivative was produced by hydrolysis of CNCbl in a weakly alkaline aqueous solution of bicarbonate. This corrinoid was purified and isolated as dark blue crystals. Its spectroscopic analysis and X-ray crystallography revealed B-ring opening with formation of 7,8-seco-cyanocobalamin (7,8-sCNCbl). The unprecedented structural change was caused by cleavage of the peripheral C-C bond between saturated carbons 7 and 8 of the corrin macrocycle accompanied by formation of a C═C bond at C7 and a carbonyl group at C8. Additionally, the C-amide was hydrolyzed to a carboxylic acid. The extended conjugation of the π-system caused a considerable red shift of the absorbance spectrum. Formation and degradation of 7,8-sCNCbl were analyzed qualitatively. Its interaction with the proteins of mammalian Cbl transport revealed both a slow binding kinetics and a low overall affinity. The binding data were compared to those of other monocarboxylic derivatives and agreed with the earlier proposed scheme for two-step ligand recognition. The obtained results are consistent with the structural models of 7,8-sCNCbl and the transport proteins intrinsic factor and transcobalamin. Potential applications of the novel derivative for drug conjugation are discussed. © 2011 American Chemical Society

  9. NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack.

    PubMed

    Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo

    2014-01-31

    The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.

  10. RNA binding protein Lin28B confers gastric cancer cells stemness via directly binding to NRP-1.

    PubMed

    Wang, Xiaocong; Hu, Huihua; Liu, Hebo

    2018-05-19

    This work aims to explore the roles and related mechanisms of RNA binding protein Lin28B in gastric cancer cells stemness. We found that Lin28B expression was negatively correlated with the overall survival (OS) of gastric cancer patients, and significantly increased in gastric cancer cells compared with that in gastric epithelial cells. Lin28B overexpression increased spheroid formation, expression of gastric cancer stemness-related markers, and decreased cisplatin sensitivity in gastric cancer cells. Mechanistically, Lin28B could directly bind to NRP-1 3'UTR, thus increasing NRP-1 mRNA stability and expression, and activate the downstream Wnt/β-catenin signaling. Knockdown of NRP-1 or treatment with Wnt/β-catenin antagonist could rescue the promotive effects of Lin28B on gastric cancer stemness. Thus, thes results indicate that Lin28B could facilitate gastric cancer stemness via directly binding to NRP-1 3'UTR and activating the downstream Wnt/β-catenin signaling. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  12. Food proteins and maturation of small intestinal microvillus membranes (MVM). III. Food protein binding and MVM proteins in rats from newborn to young adult age.

    PubMed

    Stern, M; Gellermann, B; Wieser, H

    1990-10-01

    To investigate postnatal maturational profiles of functional and biochemical properties of rat small intestinal microvillus membranes (MVM), we did a longitudinal study in rats from birth to the age of 12 weeks. In parallel, we studied binding of cow's milk proteins and of the wheat gliadin peptide B 3142, as well as MVM proteins (SDS-PAGE). Changes in MVM fluidity and lipid composition exhibited early (0-4 weeks) and intermediate and late (6-12 weeks) patterns, as has been published earlier. Postnatal changes of food protein and peptide binding occurred early during the observation period, not related to weaning. There was not much further change in binding after 6-8 weeks. Developmental profiles of MVM protein and some lipid changes resembled, but did not equal, changes in food protein binding. We conclude that changes in MVM biochemical composition affect MVM binding characteristics. In particular, high molecular weight MVM proteins (susceptible to trypsin treatment) appear to play a role in postnatal maturational differences in MVM food protein binding.

  13. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity.

    PubMed Central

    Curtis, N A; Orr, D; Ross, G W; Boulton, M G

    1979-01-01

    The affinities of a range of penicillins and cephalosporins for ther penicillin-binding proteins of Escherichia coli K-12 have been studied, and the results were compared with the antibacterial activity of the compounds against E. coli K-12 and an isogenic permeability mutant. Different penicillins and cephalosporins exhibited different affinities for the "essential" penicillin-binding proteins of E. coli K-12, in a manner which directly correlated with their observed effects upon bacterial morphology. Furthermore, the affinities of the compounds for their "primary" lethal penicillin-binding protein targets showed close agreement with their antibacterial activities against the permeability mutant. Images PMID:393164

  14. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c =more » 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.« less

  15. RED CELL STROMA PROTEIN RICH IN VITAMIN B12 DURING ACTIVE REGENERATION

    PubMed Central

    Whipple, G. H.; Robscheit-Robbins, F. S.; Bale, W. F.

    1955-01-01

    During active blood regeneration in anemia in dogs an increase occurs in the stroma protein of the red cells. When vitamin B12 with radioactive cobalt is given at the start of this blood regeneration one finds concentration of labeled B 12 in the stroma protein but not in the hemoglobin. After the acute phase of red cell regeneration is ended the concentration of B12 in stroma protein falls rapidly to very low levels within 2 weeks. Subsequent episodes of red blood cell regeneration seems not to cause remobilization of radioactive cobalt into red cells from other body stores. It appears that the vitamin B12 is a factor of importance in the first steps of stroma protein formation in the first few days of the life of the red cell in the dog. This response in dogs and the response in pernicious anemia to vitamin B12 may have some points in common. Distribution of the B12-radioactive cobalt in the organs and tissues at autopsy has been recorded. Some very suggestive localizations were noted and some variation 1 week and 7 weeks after B12 injections. Radioactive cobalt escapes in the urine during the weeks following B12 injections. PMID:13271685

  16. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant.

    PubMed Central

    Król, M; Spangfort, M D; Huner, N P; Oquist, G; Gustafsson, P; Jansson, S

    1995-01-01

    Monospecific polyclonal antibodies have been raised against synthetic peptides derived from the primary sequences from different plant light-harvesting Chl a/b-binding (LHC) proteins. Together with other monospecific antibodies, these were used to quantify the levels of the 10 different LHC proteins in wild-type and chlorina f2 barley (Hordeum vulgare L.), grown under normal and intermittent light (ImL). Chlorina f2, grown under normal light, lacked Lhcb1 (type I LHC II) and Lhcb6 (CP24) and had reduced amounts of Lhcb2, Lhcb3 (types II and III LHC II), and Lhcb4 (CP 29). Chlorina f2 grown under ImL lacked all LHC proteins, whereas wild-type ImL plants contained Lhcb5 (CP 26) and a small amount of Lhcb2. The chlorina f2 ImL thylakoids were organized in large parallel arrays, but wild-type ImL thylakoids had appressed regions, indicating a possible role for Lhcb5 in grana stacking. Chlorina f2 grown under ImL contained considerable amounts of violaxanthin (2-3/reaction center), representing a pool of phototransformable xanthophyll cycle pigments not associated with LHC proteins. Chlorina f2 and the plants grown under ImL also contained early light-induced proteins (ELIPs) as monitored by western blotting. The levels of both ELIPs and xanthophyll cycle pigments increased during a 1 h of high light treatment, without accumulation of LHC proteins. These data are consistent with the hypothesis that ELIPs are pigment-binding proteins, and we suggest that ELIPs bind photoconvertible xanthophylls and replace "normal" LHC proteins under conditions of light stress. PMID:7748263

  17. Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties.

    PubMed

    Torabi, F; Bogle, O A; Estanyol, J M; Oliva, R; Miller, D

    2017-12-01

    Are there novel hyaladherins in human sperm? Zona pellucida-binding protein 2 (ZPBP2), containing a Link-like hyaluronic acid (HA)-binding domain, and several other proteins containing BX7B motifs, such as ADAM32 and Midkine, may be novel hyaladherins with HA-binding properties. HA-binding proteins (hyaladherins), which can bind HA surrounding the cumulus-oophorus complex, are distinct from hyases such as PH 20 (SPAM1) and are expressed by mature spermatozoa. Although HABP1 and CD44 are reasonably well characterized hyaladherins and the former has been implicated in sperm-oocyte interactions, the overall significance of sperm hyaladherins for male fertility is still poorly understood. This was a laboratory-based investigation into human sperm hyaladherins undertaken as part of a three year PhD programme sponsored by the EU Marie Curie Training network, Reprotrain. Protein homogenates of sperm obtained from young men of unknown fertility (N = 4) were partitioned into HA-binding and non-binding fractions by a protein affinity 'panning' method; their subsequent characterization was by liquid chromatography-tandem mass spectrometry (LC-MS-MS) and partitioning behaviour was confirmed by western blotting. Sequences of proteins from both fractions were submitted to PDBsum to look for orthologous entries (PDB codes) and all returned codes were queried against the matching protein using SAS (Sequences Annotated by Structure) looking for structural similarities between them. A systematic search for other common features of hyaladherins was also undertaken. The presence of BX7B sequence motifs found in several well-described hyaladherins including RHAMM was used to assess efficacy of potential hyaladherin partitioning by the HA substrate. The data showed that 50% (14/28) and 34.5% (28/81) of proteins in the bound and unbound fractions, respectively, contained these motifs (one-tailed Z-score = 1.45; P = 0.074), indicating weak discrimination by the substrate. Querying PDBsum

  18. Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury

    PubMed Central

    Liu, Jo-Wen; Montero, Manuel; Bu, Liming; De Leon, Marino

    2015-01-01

    Epidermal fatty acid-binding protein (E-FABP/FABP5/DA11) binds and transport long-chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E-FABP protects nerve growth factor-differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM-induced lipotoxicity (PAM-LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E-FABP. Antioxidants MCI-186 and N-acetyl cysteine prevented E-FABP's induction in expression by PAM-LTx, while tert-butyl hydroperoxide increased ROS and E-FABP expression. Non-metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E-FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE-FABP showed reduced E-FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E-FABP cellular levels by pre-loading the cells with recombinant E-FABP diminished the PAM-induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E-FABP expression and enhanced the resistance of NGFDPC12 cells to PAM-LTx. We conclude that E-FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS. Epidermal fatty acid-binding protein (E-FABP) may protect nerve cells from the damaging exposure to high levels of free fatty acids (FA). We show that E-FABP can neutralize the effects of reactive oxygen species (ROS) generated by the high levels of FA in the cell and protect PC12 cells from lipotoxic injuries common in Type 2 diabetes neuropathy. Potentially, E-FABP gene up-regulation may be mediated through the NFkB pathway and future studies are needed to further evaluate this proposition. PMID:25147052

  19. Structural and Genetic Analyses of the Mycobacterium tuberculosis Protein Kinase B Sensor Domain Identify a Potential Ligand-binding Site.

    PubMed

    Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M

    2016-10-28

    Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

    PubMed Central

    Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G

    1998-01-01

    The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024

  1. FK506-Binding Protein 12.6/1b, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats

    PubMed Central

    Gant, John C.; Blalock, Eric M.; Chen, Kuey-Chu; Kadish, Inga; Thibault, Olivier; Porter, Nada M.

    2018-01-01

    Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly to each other and young controls (YCs). Transcriptional profiling in the same animals identified 2342 genes with hippocampal expression that was upregulated/downregulated in aged controls (ACs) compared with YCs (the aging effect). Of these aging-dependent genes, 876 (37%) also showed altered expression in aged FKBP1b-treated rats compared with ACs, with FKBP1b restoring expression of essentially all such genes (872/876, 99.5%) in the direction opposite the aging effect and closer to levels in YCs. This inverse relationship between the aging and FKBP1b effects suggests that the aging effects arise from FKBP1b deficiency. Functional category analysis revealed that genes downregulated with aging and restored by FKBP1b were associated predominantly with diverse brain structure categories, including cytoskeleton, membrane channels, and extracellular region. Conversely, genes upregulated with aging but not restored by FKBP1b associated primarily with glial–neuroinflammatory, ribosomal, and lysosomal categories. Immunohistochemistry confirmed aging-induced rarefaction and FKBP1b-mediated restoration of neuronal microtubular structure. Therefore, a previously unrecognized genomic network modulating diverse brain structural processes is dysregulated by aging and restored by FKBP1b overexpression

  2. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli

    PubMed Central

    Soparkar, Ketaki; Kinana, Alfred D.; Weeks, Jon W.; Morrison, Keith D.; Nikaido, Hiroshi

    2015-01-01

    ABSTRACT The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions—Y49S, V127A, V127G, D153E, and G288C—mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions—F453C and L486W—were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure

  3. Identification of the ubiquinone-binding domain in the disulfide catalyst disulfide bond protein B.

    PubMed

    Xie, Tong; Yu, Linda; Bader, Martin W; Bardwell, James C A; Yu, Chang-An

    2002-01-18

    Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.

  4. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression

    PubMed Central

    Peter, Daniel; Weber, Ramona; Sandmeir, Felix; Wohlbold, Lara; Helms, Sigrun; Bawankar, Praveen; Valkov, Eugene; Igreja, Cátia; Izaurralde, Elisa

    2017-01-01

    The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5′ cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine–tyrosine–phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E. Here, we present crystal structures of the 4EHP-binding regions of GIGYF1 and GIGYF2 in complex with 4EHP, which reveal the molecular basis for the selectivity of the GIGYF1/2 proteins for 4EHP. Complementation assays in a GIGYF1/2-null cell line using structure-based mutants indicate that 4EHP requires interactions with GIGYF1/2 to down-regulate target mRNA expression. Our studies provide structural insights into the assembly of 4EHP–GIGYF1/2 repressor complexes and reveal that rather than merely facilitating 4EHP recruitment to transcripts, GIGYF1/2 proteins are required for repressive activity. PMID:28698298

  5. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-02-09

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  6. The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans

    PubMed Central

    Choy, Henry A.; Kelley, Melissa M.; Croda, Julio; Matsunaga, James; Babbitt, Jane T.; Ko, Albert I.; Picardeau, Mathieu; Haake, David A.

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9–11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  7. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis.

  8. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking

    PubMed Central

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu

    2016-01-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  9. Fluorescent-responsive synthetic C1b domains of protein kinase Cδ as reporters of specific high-affinity ligand binding.

    PubMed

    Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu

    2011-01-19

    Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.

  10. Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex.

    PubMed

    Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L; Southworth, Daniel R; Banerjee, Ruma

    2017-10-27

    G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Transcriptional activation of the Escherichia coli adaptive response gene aidB is mediated by binding of methylated Ada protein. Evidence for a new consensus sequence for Ada-binding sites.

    PubMed

    Landini, P; Volkert, M R

    1995-04-07

    The Escherichia coli aidB gene is part of the adaptive response to DNA methylation damage. Genes belonging to the adaptive response are positively regulated by the ada gene; the Ada protein acts as a transcriptional activator when methylated in one of its cysteine residues at position 69. Through DNaseI protection assays, we show that methylated Ada (meAda) is able to bind a DNA sequence between 40 and 60 base pairs upstream of the aidB transcriptional startpoint. Binding of meAda is necessary to activate transcription of the adaptive response genes; accordingly, in vitro transcription of aidB is dependent on the presence of meAda. Unmethylated Ada protein shows no protection against DNaseI digestion in the aidB promoter region nor does it promote aidB in vitro transcription. The aidB Ada-binding site shows only weak homology to the proposed consensus sequences for Ada-binding sites in E. coli (AAANNAA and AAAGCGCA) but shares a higher degree of similarity with the Ada-binding regions from other bacterial species, such as Salmonella typhimurium and Bacillus subtilis. Based on the comparison of five different Ada-dependent promoter regions, we suggest that a possible recognition sequence for meAda might be AATnnnnnnG-CAA. Higher concentrations of Ada are required for the binding of aidB than for the ada promoter, suggesting lower affinity of the protein for the aidB Ada-binding site. Common features in the Ada-binding regions of ada and aidB are a high A/T content, the presence of an inverted repeat structure, and their position relative to the transcriptional start site. We propose that these elements, in addition to the proposed recognition sequence, are important for binding of the Ada protein.

  12. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α′

    PubMed Central

    Hochscherf, Jennifer; Lindenblatt, Dirk; Witulski, Benedict; Birus, Robin; Aichele, Dagmar

    2017-01-01

    Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium. PMID:29236079

  13. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    PubMed

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B

    PubMed Central

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Pey, Ángel L.; Soubeyran, Philippe; Vidal, Miguel; Urrutia, Raúl; Iovanna, Juan L.; Neira, José L.

    2017-01-01

    Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 μM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins. PMID:28720707

  15. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.

    PubMed

    Heuck, Alexander; Schleiffer, Alexander; Clausen, Tim

    2011-03-11

    β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Makarska-Bialokoz, Magdalena

    2017-09-01

    The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.

  17. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide sensitive iron-sulphur cluster

    PubMed Central

    Smith, Laura J.; Stapleton, Melanie R.; Fullstone, Gavin J. M.; Crack, Jason C.; Thomson, Andrew J.; Le Brun, Nick E.; Hunt, Debbie M.; Harvey, Evelyn; Adinolfi, Salvatore; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. Here it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however in the presence of apo-WhiB1 transcription was severely inhibited, irrespective of the presence or absence of the CRP protein Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections. PMID:20929442

  18. Two-Component System RgfA/C Activates the fbsB Gene Encoding Major Fibrinogen-Binding Protein in Highly Virulent CC17 Clone Group B Streptococcus

    PubMed Central

    Safadi, Rim Al; Mereghetti, Laurent; Salloum, Mazen; Lartigue, Marie-Frédérique; Virlogeux-Payant, Isabelle; Quentin, Roland; Rosenau, Agnès

    2011-01-01

    Group B streptococcus (GBS) strains with the highest ability to bind to human fibrinogen belong to the highly invasive clonal complex (CC) 17. To investigate the fibrinogen-binding mechanisms of CC17 strains, we determined the prevalence of fibrinogen-binding genes (fbsA and fbsB), and fbs regulator genes (rogB encoding an fbsA activator, rovS encoding an fbsA repressor and rgf encoding a two-component system [TCS] whose role on fbs genes was not determined yet) in a collection of 134 strains representing the major CCs of the species. We showed that specific gene combinations were related to particular CCs; only CC17 strains contained the fbsA, fbsB, and rgf genes combination. Non polar rgfAC deletion mutants of three CC17 serotype III strains were constructed. They showed a 3.2- to 5.1-fold increase of fbsA transcripts, a 4.8- to 6.7-fold decrease of fbsB transcripts, and a 52% to 68% decreased fibrinogen-binding ability, demonstrating that the RgfA/RgfC TCS inhibits the fbsA gene and activates the fbsB gene. The relative contribution of the two fbs genes in fibrinogen-binding ability was determined by constructing isogenic fbsA, fbsB, deletion mutants of the three CC17 strains. The ability to bind to fibrinogen was reduced by 49% to 57% in ΔfbsA mutants, and by 78% to 80% in ΔfbsB mutants, suggesting that FbsB protein plays a greater role in the fibrinogen-binding ability of CC17 strains. Moreover, the relative transcription level of fbsB gene was 9.2- to 12.7-fold higher than that of fbsA gene for the three wild type strains. Fibrinogen-binding ability could be restored by plasmid-mediated expression of rgfAC, fbsA, and fbsB genes in the corresponding deletion mutants. Thus, our results demonstrate that a specific combination of fbs genes and fbs regulator genes account for the high fibrinogen-binding ability of CC17 strains that may participate to their enhanced invasiveness for neonates as compared to strains of other CCs. PMID:21326613

  19. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    PubMed

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    PubMed Central

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  1. Fine specificity of antigen binding to two class I major histocompatibility proteins (B*2705 and B*2703) differing in a single amino acid residue

    NASA Astrophysics Data System (ADS)

    Rognan, Didier; Krebs, Stefan; Kuonen, Oliver; Lamas, , José R.; Castro, José A. López de; Folkers, Gerd

    1997-09-01

    Starting from the X-ray structure of a class I majorhistocompatibility complex (MHC)-encoded protein (HLA-B*2705), a naturallypresented self-nonapeptide and two synthetic analogues were simulated in thebinding groove of two human leukocyte antigen (HLA) alleles (B*2703 andB*2705) differing in a single amino acid residue. After 200 ps moleculardynamics simulations of the solvated HLA-peptide pairs, some molecularproperties of the complexes (distances between ligand and protein center ofmasses, atomic fluctuations, buried versus accessible surface areas,hydrogen-bond frequencies) allow a clear discrimination of potent from weakMHC binders. The binding specificity of the three nonapeptides for the twoHLA alleles could be explained by the disruption of one hydrogen-bondingnetwork in the binding pocket of the HLA-B*2705 protein where the singlemutation occurs. Rearrangements of interactions in the B pocket, which bindsthe side chain of peptidic residue 2, and a weakening of interactionsinvolving the C-terminal end of the peptide also took place. In addition,extension of the peptide backbone using a β-Ala analogue did notabolish binding to any of the two HLA-B27 subtypes, but increased theselectivity for B*2703, as expected from the larger peptide binding groovein this subtype. A better understanding of the atomic details involved inpeptide selection by closely related HLA alleles is of crucial importancefor unraveling the molecular features linking particular HLA alleles toautoimmune diseases, and for the identification of antigenic peptidestriggering such pathologies.

  2. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands

    PubMed Central

    Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho

    2002-01-01

    InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480

  3. Novel Interactions of the TRTK12 Peptide with S100 Protein Family Members: Specificity and Thermodynamic Characterization

    PubMed Central

    Wafer, Lucas N.; Tzul, Franco O.; Pandharipande, Pranav P.; Makhatadze, George I.

    2013-01-01

    The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best studied member and has been shown to interact with over 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins sixteen members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were only found with two family members: S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B to accommodate variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases. PMID:23899389

  4. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar tomore » other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.« less

  5. Hyaluronate-binding proteins of murine brain.

    PubMed

    Marks, M S; Chi-Rosso, G; Toole, B P

    1990-01-01

    The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.

  6. Characterization of a Complement-Binding Protein, DRS, from Strains of Streptococcus pyogenes Containing the emm12 and emm55 Genes

    PubMed Central

    Binks, Michael; Sriprakash, K. S.

    2004-01-01

    An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143

  7. Characterization of a complement-binding protein, DRS, from strains of Streptococcus pyogenes containing the emm12 and emm55 genes.

    PubMed

    Binks, Michael; Sriprakash, K S

    2004-07-01

    An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.

  8. Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua.

    PubMed

    Abe, Koichi; Sunagawa, Naoki; Terada, Tohru; Takahashi, Yuta; Arakawa, Takatoshi; Igarashi, Kiyohiko; Samejima, Masahiro; Nakai, Hiroyuki; Taguchi, Hayao; Nakajima, Masahiro; Fushinobu, Shinya

    2018-06-08

    β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with K d values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop 3-5 ) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop 3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Isolation and characterizations of oxalate-binding proteins in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roop-ngam, Piyachat; Chaiyarit, Sakdithep; Pongsakul, Nutkridta

    Highlights: Black-Right-Pointing-Pointer The first large-scale characterizations of oxalate-binding kidney proteins. Black-Right-Pointing-Pointer The recently developed oxalate-conjugated EAH Sepharose 4B beads were applied. Black-Right-Pointing-Pointer 38 forms of 26 unique oxalate-binding kidney proteins were identified. Black-Right-Pointing-Pointer 25/26 (96%) of identified proteins had 'L-x(3,5)-R-x(2)-[AGILPV]' domain. -- Abstract: Oxalate-binding proteins are thought to serve as potential modulators of kidney stone formation. However, only few oxalate-binding proteins have been identified from previous studies. Our present study, therefore, aimed for large-scale identification of oxalate-binding proteins in porcine kidney using an oxalate-affinity column containing oxalate-conjugated EAH Sepharose 4B beads for purification followed by two-dimensional gel electrophoresis (2-DE) tomore » resolve the recovered proteins. Comparing with those obtained from the controlled column containing uncoupled EAH-Sepharose 4B (to subtract the background of non-specific bindings), a total of 38 protein spots were defined as oxalate-binding proteins. These protein spots were successfully identified by quadrupole time-of-flight mass spectrometry (MS) and/or tandem MS (MS/MS) as 26 unique proteins, including several nuclear proteins, mitochondrial proteins, oxidative stress regulatory proteins, metabolic enzymes and others. Identification of oxalate-binding domain using the PRATT tool revealed 'L-x(3,5)-R-x(2)-[AGILPV]' as a functional domain responsible for oxalate-binding in 25 of 26 (96%) unique identified proteins. We report herein, for the first time, large-scale identification and characterizations of oxalate-binding proteins in the kidney. The presence of positively charged arginine residue in the middle of this functional domain suggested its significance for binding to the negatively charged oxalate. These data will enhance future stone research, particularly on stone

  10. Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli

    PubMed Central

    Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony

    2001-01-01

    The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, forming a ribonucleoprotein complex, which antagonizes CsrA activity. We have further examined the regulatory interactions of CsrA and CsrB RNA. The 5′ end of the CsrB transcript was mapped, and a csrB::cam null mutant was constructed. CsrA protein and CsrB RNA levels were estimated throughout the growth curves of wild-type and isogenic csrA, csrB, rpoS, or csrA rpoS mutant strains. CsrA levels exhibited modest or negligible effects of these mutations. The intracellular concentration of CsrA exceeded the total CsrA-binding capacity of intracellular CsrB RNA. In contrast, CsrB levels were drastically decreased (∼10-fold) in the csrA mutants. CsrB transcript stability was unaffected by csrA. The expression of a csrB-lacZ transcriptional fusion containing the region from −242 to +4 bp of the csrB gene was decreased ∼20-fold by a csrA::kanR mutation in vivo but was unaffected by CsrA protein in vitro. These results reveal a significant, though most likely indirect, role for CsrA in regulating csrB transcription. Furthermore, our findings suggest that CsrA mediates an intriguing form of autoregulation, whereby its activity, but not its levels, is modulated through effects on an RNA antagonist, CsrB. PMID:11567002

  11. HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation.

    PubMed

    Yin, M J; Christerson, L B; Yamamoto, Y; Kwak, Y T; Xu, S; Mercurio, F; Barbosa, M; Cobb, M H; Gaynor, R B

    1998-05-29

    NF-kappaB, a key regulator of the cellular inflammatory and immune response, is activated by the HTLV-I transforming and transactivating protein Tax. We show that Tax binds to the amino terminus of the protein kinase MEKK1, a component of an IkappaB kinase complex, and stimulates MEKK1 kinase activity. Tax expression increases the activity of IkappaB kinase beta (IKKbeta) to enhance phosphorylation of serine residues in IkappaB alpha that lead to its degradation. Dominant negative mutants of both IKKbeta and MEKK1 prevent Tax activation of the NF-kappaB pathway. Furthermore, recombinant MEKK1 stimulates IKKbeta phosphorylation of IkappaB alpha. Thus, Tax-mediated increases in NF-kappaB nuclear translocation result from direct interactions of Tax and MEKK1 leading to enhanced IKKbeta phosphorylation of IkappaB alpha.

  12. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L.

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly inmore » the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.« less

  13. Ice-shell purification of ice-binding proteins.

    PubMed

    Marshall, Craig J; Basu, Koli; Davies, Peter L

    2016-06-01

    Ice-affinity purification is a simple and efficient method of purifying to homogeneity both natural and recombinant ice-binding proteins. The purification involves the incorporation of ice-binding proteins into slowly-growing ice and the exclusion of other proteins and solutes. In previous approaches, the ice was grown around a hollow brass finger through which coolant was circulated. We describe here an easily-constructed apparatus that employs ice affinity purification that not only shortens the time for purification from 1-2 days to 1-2 h, but also enhances yield and purity. In this apparatus, the surface area for the separation was increased by extracting the ice-binding proteins into an ice-shell formed inside a rotating round-bottom flask partially submerged in a sub-zero bath. In principle, any ice-binding compound can be recovered from liquid solution, and the method is readily scalable. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  15. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    PubMed

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  16. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongshan; College of Life Sciences, Sichuan University, Chengdu 610065; Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane bymore » seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.« less

  17. Possible role for increased C4b-binding-protein level in acquired protein S deficiency in type I diabetes.

    PubMed

    Ceriello, A; Giugliano, D; Quatraro, A; Marchi, E; Barbanti, M; Lefebvre, P

    1990-04-01

    In this study, total protein S (PS) immunological levels, free-PS and C4b-binding-protein (C4bBP) concentrations, and PS functional activity were investigated in insulin-dependent (type I) diabetic patients and compared with nondiabetic subjects. Mean total PS antigen concentration was not different between diabetic patients and nondiabetic subjects, whereas free-PS levels and PS functional activity were significantly reduced in diabetic patients. C4bBP was increased in diabetic patients and correlated with HbA1 levels. This study shows that type I diabetic patients have depressed free PS and PS activity despite the presence of normal total PS concentration and suggests that this phenomenon is probably linked to the increase of circulating C4bBP.

  18. Probing the Interaction of Brain Fatty Acid Binding Protein (B-FABP) with Model Membranes

    PubMed Central

    Dyszy, Fábio; Pinto, Andressa P. A.; Araújo, Ana P. U.; Costa-Filho, Antonio J.

    2013-01-01

    Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs. PMID:23555925

  19. Biochemical Properties of Purified Human Retinol Dehydrogenase 12 (RDH12): Catalytic Efficiency toward Retinoids and C9 Aldehydes and Effects of Cellular Retinol-Binding Protein Type I (CRBPI) and Cellular Retinaldehyde-Binding Protein (CRALBP) on the Oxidation and Reduction of Retinoids†

    PubMed Central

    Belyaeva, Olga V.; Korkina, Olga V.; Stetsenko, Anton V.; Kim, Tom; Nelson, Peter S.; Kedishvili, Natalia Y.

    2008-01-01

    Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber’s congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits ~2000-fold lower Km values for NADP+ and NADPH than for NAD+ and NADH and recognizes both retinoids and lipid peroxidation products (C9 aldehydes) as substrates. The kcat values of RDH12 for retinaldehydes and C9 aldehydes are similar, but the Km values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (kcat/Km ~900 min−1 μM−1), followed by 11-cis-retinal (450 min−1 mM−1) and 9-cis-retinal (100 min−1 mM−1). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products. PMID:15865448

  20. FK506-Binding Proteins and Their Diverse Functions.

    PubMed

    Tong, Mingming; Jiang, Yu

    2015-01-01

    FK506 binding proteins (FKBPs) are a family of highly conserved proteins in eukaryotes. The prototype of this protein family, FKBP12, is the binding partner for immunosuppressive drugs FK506 and rapamycin. FKBP12 functions as a cis/trans peptidyl prolyl isomerase (PPIase) that catalyzes interconversion between prolyl cis/trans conformations. Members of the FKBP family contain one or several PPIase domains, which do not always exhibit PPIase activity yet are all essential for their function. FKBPs are involved in diverse cellular functions including protein folding, cellular signaling, apoptosis and transcription. They elicit their function through direct binding and altering conformation of their target proteins, hence acting as molecular switches. In this review, we provide a general summary for the structures and diverse functions of FKBPs found in mammalian cells.

  1. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed thatmore » the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.« less

  2. Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies.

    PubMed

    Bernini, Andrea; Henrici De Angelis, Lucia; Morandi, Edoardo; Spiga, Ottavia; Santucci, Annalisa; Assfalg, Michael; Molinari, Henriette; Pillozzi, Serena; Arcangeli, Annarosa; Niccolai, Neri

    2014-03-01

    Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces. Disruptors of protein-protein interactions can be designed provided that the sterical features of binding pockets, including the transient ones, can be defined. Molecular Dynamics, MD, simulations have been used as a reliable framework for identifying transient pocket openings on the protein surface. Accessible surface area and intramolecular H-bond involvement of protein backbone amides are proposed as descriptors for characterizing binding pocket occurrence and evolution along MD trajectories. TEMPOL induced paramagnetic perturbations on (1)H-(15)N HSQC signals of protein backbone amides have been analyzed as a fragment-based search for surface hotspots, in order to validate MD predicted pockets. This procedure has been applied to CXCL12, a small chemokine responsible for tumor progression and proliferation. From combined analysis of MD data and paramagnetic profiles, two CXCL12 sites suitable for the binding of small molecules were identified. One of these sites is the already well characterized CXCL12 region involved in the binding to CXCR4 receptor. The other one is a transient pocket predicted by Molecular Dynamics simulations, which could not be observed from static analysis of CXCL12 PDB structures. The present results indicate how TEMPOL, instrumental in identifying this transient pocket, can be a powerful tool to delineate minor conformations which can be highly relevant in dynamic discovery of antitumoral drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences

    PubMed Central

    Brooks, Cory L.; Arutyunova, Elena; Lemieux, M. Joanne

    2014-01-01

    Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin. PMID:25286931

  4. Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein

    PubMed Central

    Dälken, Benjamin; Jabulowsky, Robert A.; Oberoi, Pranav; Benhar, Itai; Wels, Winfried S.

    2010-01-01

    Background The apoptosis-inducing serine protease granzyme B (GrB) is an important factor contributing to lysis of target cells by cytotoxic lymphocytes. Expression of enzymatically active GrB in recombinant form is a prerequisite for functional analysis and application of GrB for therapeutic purposes. Methods and Findings We investigated the influence of bacterial maltose-binding protein (MBP) fused to GrB via a synthetic furin recognition motif on the expression of the MBP fusion protein also containing an N-terminal α-factor signal peptide in the yeast Pichia pastoris. MBP markedly enhanced the amount of GrB secreted into culture supernatant, which was not the case when GrB was fused to GST. MBP-GrB fusion protein was cleaved during secretion by an endogenous furin-like proteolytic activity in vivo, liberating enzymatically active GrB without the need of subsequent in vitro processing. Similar results were obtained upon expression of a recombinant fragment of the ErbB2/HER2 receptor protein or GST as MBP fusions. Conclusions Our results demonstrate that combination of MBP as a solubility enhancer with specific in vivo cleavage augments secretion of processed and functionally active proteins from yeast. This strategy may be generally applicable to improve folding and increase yields of recombinant proteins. PMID:21203542

  5. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  6. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  7. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.

    PubMed

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-06-01

    RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

  8. The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology.

    PubMed

    Brautigam, Chad A; Deka, Ranjit K; Liu, Wei Z; Norgard, Michael V

    2016-01-01

    Treponema pallidum, the bacterium that causes syphilis, is an obligate human parasite. As such, it must acquire energy, in the form of carbon sources, from the host. There is ample evidence that the principal source of energy for this spirochete is D-glucose acquired from its environment, likely via an ABC transporter. Further, there is genetic evidence of a D-glucose chemotaxis system in T. pallidum. Both of these processes may be dependent on a single lipidated chemoreceptor: Tp0684, also called TpMglB-2 for its sequence homology to MglB of Escherichia coli. To broaden our understanding of this potentially vital protein, we determined a 2.05-Å X-ray crystal structure of a soluble form of the recombinant protein. Like its namesake, TpMglB-2 adopts a bilobed fold that is similar to that of the ligand-binding proteins (LBPs) of other ABC transporters. However, the protein has an unusual, circularly permuted topology. This feature prompted a series of biophysical studies that examined whether the protein's topological distinctiveness affected its putative chemoreceptor functions. Differential scanning fluorimetry and isothermal titration calorimetry were used to confirm that the protein bound D-glucose in a cleft between its two lobes. Additionally, analytical ultracentrifugation was employed to reveal that D-glucose binding is accompanied by a significant conformational change. TpMglB-2 thus appears to be fully functional in vitro, and given the probable central importance of the protein to T. pallidum's physiology, our results have implications for the viability and pathogenicity of this obligate human pathogen.

  9. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  10. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  11. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  12. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    PubMed

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  13. Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants.

    PubMed

    Rohrback, Suzanne E; Wheatly, Michele G; Gillen, Christopher M

    2015-01-01

    Sarcoplasmic calcium binding protein (SCP) is a high-affinity calcium buffering protein expressed in muscle of crayfish and other invertebrates. In previous work, we identified three splice variants of Procambarus clarkii SCP (pcSCP1a, pcSCP1b, and pcSCP1c) that differ in a 37 amino acid region that lies mainly between the 2nd and 3ed EF-hand calcium binding domain. To evaluate the function of the proteins encoded by the pcSCP1 transcripts, we produced recombinant pcSCP1 and used tryptophan fluorescence to characterize calcium binding. Tryptophan fluorescence of pcSCP1a decreased in response to increased calcium, while tryptophan fluorescence of the pcSCP1b and pcSCP1c variants increased. We estimated calcium binding constants and Hill coefficients with two different equations: the standard Hill equation and a modified Hill equation that accounts for contributions from two different tryptophans. The approaches gave similar results. Steady-state calcium binding constants (Kd) ranged from 2.7±0.7×10(-8)M to 5.6±0.1×10(-7)M, consistent with previous work. Variants displayed significantly different apparent calcium affinities, which were decreased in the presence of magnesium. Calcium Kd was lowest for pcSCP1a and highest for pcSCP1c. Site-directed mutagenesis of pcSCP1c residues to the amino acids of pcSCP1b decreased the calcium Kd, identifying residues outside the EF-hand domains that contribute to calcium binding in crayfish SCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Species B adenovirus serotypes 3, 7, 11 and 35 share similar binding sites on the membrane cofactor protein CD46 receptor.

    PubMed

    Fleischli, Christoph; Sirena, Dominique; Lesage, Guillaume; Havenga, Menzo J E; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2007-11-01

    We recently characterized the domains of the human cofactor protein CD46 involved in binding species B2 adenovirus (Ad) serotype 35. Here, the CD46 binding determinants are mapped for the species B1 Ad serotypes 3 and 7 and for the species B2 Ad11. Ad3, 7 and 11 bound and transduced CD46-positive rodent BHK cells at levels similar to Ad35. By using antibody-blocking experiments, hybrid CD46-CD4 receptor constructs and CD46 single point mutants, it is shown that Ad3, 7 and 11 share many of the Ad35-binding features on CD46. Both CD46 short consensus repeat domains SCR I and SCR II were necessary and sufficient for optimal binding and transgene expression, provided that they were positioned at an appropriate distance from the cell membrane. Similar to Ad35, most of the putative binding residues of Ad3, 7 and 11 were located on the same glycan-free, solvent-exposed face of the SCR I or SCR II domains, largely overlapping with the binding surface of the recently solved fiber knob Ad11-SCR I-II three-dimensional structure. Differences between species B1 and B2 Ads were documented with competition experiments based on anti-CD46 antibodies directed against epitopes flanking the putative Ad-binding sites, and with competition experiments based on soluble CD46 protein. It is concluded that the B1 and B2 species of Ad engage CD46 through similar binding surfaces.

  15. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain.

    PubMed

    Chen, Changchun; Wang, Shuhui; Wang, Huajing; Mao, Xiaoyan; Zhang, Tiancheng; Ji, Guanghui; Shi, Xin; Xia, Tian; Lu, Weijia; Zhang, Dapeng; Dai, Jianxin; Guo, Yajun

    2012-01-01

    Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.

  16. Interplay between binding affinity and kinetics in protein-protein interactions.

    PubMed

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    NASA Astrophysics Data System (ADS)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  18. Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.

    PubMed

    Suzuki, N; Mihashi, K

    1991-01-01

    The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.

  19. Fluorescence studies on the interaction of choline-binding domain B of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Damai, Rajani S; Anbazhagan, V; Rao, K Babu; Swamy, Musti J

    2009-12-01

    The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.

  20. Molecular Dynamics Simulations of Novel Potential Inhibitors for Penicillin Binding Protein 2B of the Resistant 5204 Strain of Streptococcus Pneumoniae.

    PubMed

    Suvaithenamudhan, Suvaiyarasan; Parthasarathy, Subbiah

    2017-01-01

    Top five best hit compounds (ZINC59376795, ZINC60175365, ZINC36922620, ZINC39550705 and ZINC36953975) were obtained through our high throughput virtual screening (HTVS) analysis with resistant 5204-PBP2B (5204 Penicillin Binding Protein 2B) and sensitive R6-PBP2B (R6 Penicillin Binding Protein 2B) proteins of Streptococcus pneumoniae. To gain insight in molecular docking and dynamics simulations of these top five best hit compounds with both resistant 5204-PBP2B and sensitive R6-PBP2B targets. We have employed Glide XP docking and molecular dynamics simulations of these five best hit compounds with 5204-PBP2B and R6-PBP2B targets. The stability analysis has been carried out through DFT, prime-MM/GBSA binding free energy, RMSD, RMSF and Principal Component Analysis. The reference drug, penicillin G forms stable complex with sensitive R6-PBP2B protein. Similar stability is observed for the mutant resistant 5204-PBP2B with the top scoring compound ZINC592376795 which implies that this compound may act as an effective potential inhibitor. The compound ZINC59376795 forms a total of five hydrogen bonds with resistant 5204-PBP2B protein of which three are with mutated residues. Similarly, the other four compounds including penicillin G also form hydrogen bonds with mutated residue. The MD simulations and stability analysis of the complexes of wild and mutant forms are evaluated for a trajectory period of 16ns and further MD simulations of ZINC59376795 with resistant 5204-PBP2B and sensitive R6-PBP2B confirmed the stability for 50 ns. These results suggest that the top five best hit compounds are found to be a promising gateway for the further development of anti-pneumococcal therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Deletion and overexpression studies on DacB2, a putative low molecular mass penicillin binding protein from Mycobacterium tuberculosis H(37)Rv.

    PubMed

    Bourai, Neema; Jacobs, William R; Narayanan, Sujatha

    2012-02-01

    Mycobacterium tuberculosis genome encodes several high and low molecular mass penicillin binding proteins. One such low molecular mass protein is DacB2 encoded by open reading frame Rv2911 of M. tuberculosis which is predicted to play a role in peptidoglycan synthesis. In this study we have tried to gain an insight into the role of this accessory cell division protein in mycobacterial physiology by performing overexpression and deletion studies. The overproduction of DacB2 in non-pathogenic, fast growing mycobacterium Mycobacterium smegmatis mc(2)155 resulted in reduced growth, an altered colony morphology, a defect in sliding motility and biofilm formation. A point mutant of DacB2 was made wherein the active site serine residue was mutated to cysteine to abolish the penicillin binding function of protein. The overexpression of mutant protein showed similar results indicating that the effects produced were independent of protein's penicillin binding function. The gene encoding DacB2 was deleted in M. tuberculosis by specialized transduction method. The deletion mutant showed reduced growth in Sauton's medium under acidic and low oxygen availability. The in vitro infection studies with THP-1 cells showed increased intracellular survival of dacB2 mutant compared to parent and complemented strains. The colony morphology and antibiotic sensitivity of mutant and wild-type strains were similar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Multivalent binding of formin-binding protein 21 (FBP21)-tandem-WW domains fosters protein recognition in the pre-spliceosome.

    PubMed

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-11-04

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome.

  3. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, Rafael; González, Ana; Moscoso, Miriam

    2007-09-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-qualitymore » orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.« less

  4. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    PubMed Central

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  5. Multivalent Binding of Formin-binding Protein 21 (FBP21)-Tandem-WW Domains Fosters Protein Recognition in the Pre-spliceosome*

    PubMed Central

    Klippel, Stefan; Wieczorek, Marek; Schümann, Michael; Krause, Eberhard; Marg, Berenice; Seidel, Thorsten; Meyer, Tim; Knapp, Ernst-Walter; Freund, Christian

    2011-01-01

    The high abundance of repetitive but nonidentical proline-rich sequences in spliceosomal proteins raises the question of how these known interaction motifs recruit their interacting protein domains. Whereas complex formation of these adaptors with individual motifs has been studied in great detail, little is known about the binding mode of domains arranged in tandem repeats and long proline-rich sequences including multiple motifs. Here we studied the interaction of the two adjacent WW domains of spliceosomal protein FBP21 with several ligands of different lengths and composition to elucidate the hallmarks of multivalent binding for this class of recognition domains. First, we show that many of the proteins that define the cellular proteome interacting with FBP21-WW1-WW2 contain multiple proline-rich motifs. Among these is the newly identified binding partner SF3B4. Fluorescence resonance energy transfer (FRET) analysis reveals the tandem-WW domains of FBP21 to interact with splicing factor 3B4 (SF3B4) in nuclear speckles where splicing takes place. Isothermal titration calorimetry and NMR shows that the tandem arrangement of WW domains and the multivalency of the proline-rich ligands both contribute to affinity enhancement. However, ligand exchange remains fast compared with the NMR time scale. Surprisingly, a N-terminal spin label attached to a bivalent ligand induces NMR line broadening of signals corresponding to both WW domains of the FBP21-WW1-WW2 protein. This suggests that distinct orientations of the ligand contribute to a delocalized and semispecific binding mode that should facilitate search processes within the spliceosome. PMID:21917930

  6. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  7. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteinsmore » in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.« less

  8. Brucella melitensis VirB12 recombinant protein is a potential marker for serodiagnosis of human brucellosis.

    PubMed

    Mirkalantari, Shiva; Zarnani, Amir-Hassan; Nazari, Mahboobeh; Irajian, Gholam Reza; Amirmozafari, Nour

    2017-03-03

    The numerous drawbacks of current serological tests for diagnosis of brucellosis which mainly results from cross reactivity with LPS from other gram-negative bacteria have generated an increasing interest to find more specific non-LPS antigens. Previous studies had indicated that Brucella VirB12 protein, a cell surface protein and component of type IV secretion system, induces antibody response during animal infection. However, this protein has not yet been tested as a serological diagnostic marker in human brucellosis. Recombinant VirB12 protein was prepared and evaluated the efficacy of it in an indirect enzyme-linked immunosorbent assay (ELISA) for brucellosis with sera collected from different region of Iran and the results were compared with a commercial ELISA kit. Sera from human brucellosis patients strongly reacted to the purified recombinant VirB12. The sensitivity, specificity, accuracy, negative predictive value and positive predictive value of recombinant VirB12-based ELISA related to the commercial-ELISA method were 87.8, 94, 90, 80 and 96.6% respectively. We concluded that antigenic VirB12 have a property value that can be considered as a candidate for using in serodiagnostic tests for human brucellosis.

  9. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  10. Toll like receptors TLR1/2, TLR6 and MUC5B as binding interaction partners with cytostatic proline rich polypeptide 1 in human chondrosarcoma.

    PubMed

    Galoian, Karina; Abrahamyan, Silva; Chailyan, Gor; Qureshi, Amir; Patel, Parthik; Metser, Gil; Moran, Alexandra; Sahakyan, Inesa; Tumasyan, Narine; Lee, Albert; Davtyan, Tigran; Chailyan, Samvel; Galoyan, Armen

    2018-01-01

    Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.

  11. Toll like receptors TLR1/2, TLR6 and MUC5B as binding interaction partners with cytostatic proline rich polypeptide 1 in human chondrosarcoma

    PubMed Central

    Galoian, Karina; Abrahamyan, Silva; Chailyan, Gor; Qureshi, Amir; Patel, Parthik; Metser, Gil; Moran, Alexandra; Sahakyan, Inesa; Tumasyan, Narine; Lee, Albert; Davtyan, Tigran; Chailyan, Samvel; Galoyan, Armen

    2018-01-01

    Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function. PMID:29138803

  12. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    PubMed

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  13. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    PubMed Central

    2011-01-01

    Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs. PMID:22040120

  14. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  15. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  16. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    PubMed

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  17. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  18. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    PubMed

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Enterovirus 71 2C Protein Inhibits NF-κB Activation by Binding to RelA(p65)

    PubMed Central

    Du, Haiwei; Yin, Peiqi; Yang, Xiaojie; Zhang, Leiliang; Jin, Qi; Zhu, Guofeng

    2015-01-01

    Viruses evolve multiple ways to interfere with NF-κB signaling, a key regulator of innate and adaptive immunity. Enterovirus 71 (EV71) is one of primary pathogens that cause hand-foot-mouth disease. Here, we identify RelA(p65) as a novel binding partner for EV71 2C protein from yeast two-hybrid screen. By interaction with IPT domain of p65, 2C reduces the formation of heterodimer p65/p50, the predominant form of NF-κB. We also show that picornavirus 2C family proteins inhibit NF-κB activation and associate with p65 and IKKβ. Our findings provide a novel mechanism how EV71 antagonizes innate immunity. PMID:26394554

  20. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species.

    PubMed

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-04-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular such that involve cell cultures, binding proteins present in sera might interfere in the experiments. We examined sera from five different animal species for CRISP-3 binding proteins using gel filtration and ligand blotting. We developed a rapid method for isolation of proteins that bind to human CRISP-3 and identified the isolated proteins by mass spectrometry and N-terminal sequencing. We identified A1BG as a CRISP-3 binding protein in sera from cow, horse and rabbit. CRISP-3 bound kininogen 1 in mouse serum, whereas rat serum showed no CRISP-3 binding activity. In equine serum, we furthermore detected a possible CRISP, already bound to A1BG. It seems to be a common mechanism that A1BGs bind CRISPs, also across species. Apart from the possible physiological implications hereof, complex binding of CRISPs by A1BG (and other proteins) may interfere with the detection and function of CRISPs, when these are studied in the presence of animal sera. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Purification and properties of glutamate binding protein from the periplasmic space of Escherichia coli K-12.

    PubMed

    Barash, H; Halpern, Y S

    1975-03-28

    Glutamate binding protein released from the periplasmic space of Escherichia coli K-12 by lysozyme-EDTA treatment was purified to homogeneity and its physical and chemical properties were studied. It is a basic protein with a pI of 9.1. Its molecular weight, determined in an analytical ultracentrifuge, and by gel filtration on Sephadex G-100 and dodecylsulphate acrylamide is 29 700, 27 800 and 32 000, respectively. The KD value for glutamate was 6.7 - 10- minus 6 M. L-Aspartate, reduced glutathione, G-glutamate-gamma-benzylester and L-glutamate-gamma-ethylester competitively inhibited glutamate binding with K-i; values of 7.8 - 10- minus 5, 1.1 - 10- minus 5, 1.0 - 10- minus 5 and 1.0 - 10- minus 5 M, respectively. Spheroplasts retained 40% of glutamate transport as compared to intact cells. The glutamate binding activity of a glutamate-utilizing strain (CS7), was 1.6 times as high as that of the glutamate non-utilizing parent strain (CS101). Similarly, the glutamate binding activity of a temperature conditional glutamate-utilizing mutant (CS2-TC) was 1.9 times higher when grown at the permissive temperature (42 degrees C) than when grown at the restrictive temperature (30 degrees C).

  2. Spectral Changes of Erythrosin B Luminescence Upon Binding to Bovine Serum Albumin

    NASA Astrophysics Data System (ADS)

    Sablin, N. V.; Gerasimova, M. A.; Nemtseva, E. V.

    2016-04-01

    Changes in absorption, fluorescence, phosphorescence, and delayed fluorescence spectra of erythrosin B are studied in the presence of bovine serum albumin at room temperature. Spectral and chronoscopic characteristics of the observed photophysical processes are defined. The binding of erythrosin B with the protein followed by spectral changes is demonstrated. Absorption and fluorescence spectra of the dye in the bound state are described, the binding mechanism is analyzed. The binding parameters of the dye-protein complex are estimated.

  3. Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    PubMed Central

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678

  4. Activator Protein-1: redox switch controlling structure and DNA-binding.

    PubMed

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Activator Protein-1: redox switch controlling structure and DNA-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less

  6. Comprehensive Experimental and Computational Analysis of Binding Energy Hot Spots at the NF-κB Essential Modulator (NEMO)/IKKβ Protein-Protein Interface

    PubMed Central

    Golden, Mary S.; Cote, Shaun M.; Sayeg, Marianna; Zerbe, Brandon S.; Villar, Elizabeth A.; Beglov, Dmitri; Sazinsky, Stephen L.; Georgiadis, Rosina M.; Vajda, Sandor; Kozakov, Dima; Whitty, Adrian

    2013-01-01

    We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between NF-κB Essential Modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NBD region of IKKβ contains the highest concentration of hot spot residues, the strongest of which are W739, W741 and L742 (ΔΔG = 4.3, 3.5 and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot spots residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between “pocket-forming” and “pocket occupying” hot spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces. PMID:23506214

  7. Probing of exopolysaccharides with green fluorescence protein-labeled carbohydrate-binding module in Escherichia coli biofilms and flocs induced by bcsB overexpression.

    PubMed

    Nguyen, Minh Hong; Ojima, Yoshihiro; Sakka, Makiko; Sakka, Kazuo; Taya, Masahito

    2014-10-01

    Polysaccharides are major structural constituents to develop the three-dimensional architecture of Escherichia coli biofilms. In this study, confocal laser scanning microscopy was applied in combination with a fluorescent probe to analyze the location and arrangement of exopolysaccharide (EPSh) in microcolonies of E. coli K-12 derived strains, formed as biofilms on solid surfaces and flocs in the liquid phase. For this purpose, a novel fluorescent probe was constructed by conjugating a carbohydrate-binding module 3, from Paenibacillus curdlanolyticus, with the green fluorescence protein (GFP-CBM3). The GFP-CBM3 fused protein exhibited strong affinity to microcrystalline cellulose. Moreover, GFP-CBM3 specifically bound to cell-dense microcolonies in the E. coli biofilms, and to their flocs induced by bcsB overexpression. Therefore, the fused protein presents as a novel marker for EPSh produced by E. coli cells. Overexpression of bcsB was associated with abundant EPSh production and enhanced E. coli biofilm formation, which was similarly detectable by GFP-CBM3 probing. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction.

    PubMed

    Liu, Degang; Xu, David; Liu, Min; Knabe, William Eric; Yuan, Cai; Zhou, Donghui; Huang, Mingdong; Meroueh, Samy O

    2017-03-28

    Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.

  9. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  10. Degradation of vitamin B12 in dietary supplements.

    PubMed

    Yamada, Keiko; Shimodaira, Michiko; Chida, Seiko; Yamada, Noriko; Matsushima, Norio; Fukuda, Morimichi; Yamada, Shoji

    2008-01-01

    Beverages and solid dietary supplements rich in various added vitamins and minerals have recently become available. It seems reasonable to consider that the intake of these foods is convenient for easy ingestion of nutrients, but problems caused by blending different nutrients in high concentrations have arisen. We focused on vitamin B12 (B12) among vitamins and determined the B12 contents of beverages and solid dietary supplements purchased from a retail shop. The B12 contents of three of five beverages were less than stated on the labels. On the other hand, certain beverages unexpectedly contained much more B12 than stated on the labels. In these beverages the amount of B12 decreased rapidly with time, whereas B12 content was lower than stated on the label in only one of four solid dietary supplements. The content of B12 was affected by storage time, light exposure, temperature and vitamin C. From experimental analysis with a competitive binding assay method employing a ACS Chemiluminescent B12 kit, examining differential binding by intrinsic factors and spectral analysis of B12, it was determined that some of the B12 might have been converted into B12 analogues or small degradation products by multinutrient interaction during storage.

  11. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    PubMed

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  12. PsB multiprotein complex of Dictyostelium discoideum. Demonstration of cellulose binding activity and order of protein subunit assembly.

    PubMed

    McGuire, V; Alexander, S

    1996-06-14

    The differentiated spores of Dictyostelium are surrounded by an extracellular matrix, the spore coat, which protects them from environmental factors allowing them to remain viable for extended periods of time. This presumably is a major evolutionary advantage. This unique extracellular matrix is composed of cellulose and glycoproteins. Previous work has shown that some of these spore coat glycoproteins exist as a preassembled multiprotein complex (the PsB multiprotein complex) which is stored in the prespore vesicles (Watson, N., McGuire, V., and Alexander, S (1994) J. Cell Sci. 107, 2567-2579). Later in development, the complex is synchronously secreted from the prespore vesicles and incorporated into the spore coat. We now have shown that the PsB complex has a specific in vitro cellulose binding activity. The analysis of mutants lacking individual subunits of the PsB complex revealed the relative order of assembly of the subunit proteins and demonstrated that the protein subunits must be assembled for cellulose binding activity. These results provide a biochemical explanation for the localization of this multiprotein complex in the spore coat.

  13. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga.

    PubMed Central

    Li, Shi-Sheng; Gullbo, Joachim; Lindholm, Petra; Larsson, Rolf; Thunberg, Eva; Samuelsson, Gunnar; Bohlin, Lars; Claeson, Per

    2002-01-01

    A new basic protein, designated ligatoxin B, containing 46 amino acid residues has been isolated from the mistletoe Phoradendron liga (Gill.) Eichl. (Viscaceae). The protein's primary structure, determined unambiguously using a combination of automated Edman degradation, trypsin enzymic digestion, and tandem MS analysis, was 1-KSCCPSTTAR-NIYNTCRLTG-ASRSVCASLS-GCKIISGSTC-DSGWNH-46. Ligatoxin B exhibited in vitro cytotoxic activities on the human lymphoma cell line U-937-GTB and the primary multidrug-resistant renal adenocarcinoma cell line ACHN, with IC50 values of 1.8 microM and 3.2 microM respectively. Sequence alignment with other thionins identified a new member of the class 3 thionins, ligatoxin B, which is similar to the earlier described ligatoxin A. As predicted by the method of homology modelling, ligatoxin B shares a three-dimensional structure with the viscotoxins and purothionins and so may have the same mode of cytotoxic action. The novel similarities observed by structural comparison of the helix-turn-helix (HTH) motifs of the thionins, including ligatoxin B, and the HTH DNA-binding proteins, led us to propose the working hypothesis that thionins represent a new group of DNA-binding proteins. This working hypothesis could be useful in further dissecting the molecular mechanisms of thionin cytotoxicity and of thionin opposition to multidrug resistance, and useful in clarifying the physiological function of thionins in plants. PMID:12049612

  14. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samplesmore » from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.« less

  15. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology.

    PubMed

    Tudor, E L; Galtrey, C M; Perkinton, M S; Lau, K-F; De Vos, K J; Mitchell, J C; Ackerley, S; Hortobágyi, T; Vámos, E; Leigh, P N; Klasen, C; McLoughlin, D M; Shaw, C E; Miller, C C J

    2010-05-19

    Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. RNA binding properties of the US11 protein from four primate simplexviruses.

    PubMed

    Tohme, Sarah; Cukier, Cyprian D; Severini, Alberto

    2011-11-03

    The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins.

  17. RNA binding properties of the US11 protein from four primate simplexviruses

    PubMed Central

    2011-01-01

    Background The protein encoded by the Us11 gene of herpes simplex viruses is a dsRNA binding protein which inhibits protein kinase R activity, thereby preventing the interferon-induced shut down of protein synthesis following viral infection. Us11 protein is not essential for infectivity in vitro and in mice in herpes simplex virus type 1 (HSV1), however this virus has a second, and apparently more important, inhibitor of PKR activity, the γ134.5 protein. Recently sequenced simian simplexviruses SA8, HVP2 and B virus do not have an ORF corresponding to the γ134.5 protein, yet they have similar, or greater, infectivity as HSV1 and HSV2. Methods We have expressed the US11 proteins of the simplexviruses HSV1, HSV2, HVP2 and B virus and measured their abilities to bind dsRNA, in order to investigate possible differences that could complement the absence of the γ134.5 protein. We employed a filter binding technique that allows binding of the Us11 protein under condition of excess dsRNA substrate and therefore a measurement of the true Kd value of Us11-dsRNA binding. Results and Conclusions The results show a Kd of binding in the range of 0.89 nM to 1.82 nM, with no significant difference among the four Us11 proteins. PMID:22054255

  18. Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin

    PubMed Central

    Yoo, J-Y; Wang, X W; Rishi, A K; Lessor, T; Xia, X-M; Gustafson, T A; Hamburger, A W

    2000-01-01

    The processes by which ErbB-3, an inactive tyrosine kinase, exerts its biological effects are poorly understood. Using the yeast two-hybrid system, we have isolated an ErbB-3 binding protein (Ebp1) that interacts with the juxtamembrane domain of ErbB-3. This protein is identical to that predicted to be encoded for by the human PA2G4 gene. Ebp1 is the human homologue of a previously identified cell cycle-regulated mouse protein p38-2G4. Two transcripts of ebp1 mRNA (1.7 and 2.2 kb) were detected in several normal human organs. The interaction of Ebp1 with ErbB-3 was examined in vitro and in vivo. The first 15 amino acids of the juxtamembrane domain of ErbB-3 were essential for Ebp1 binding in vitro. Treatment of AU565 cells with the ErbB-3 ligand heregulin resulted in dissociation of Ebp1 from ErbB-3. Ebp1 translocated from the cytoplasm into the nucleus following heregulin stimulation. These findings suggest that Ebp1 may be a downstream member of an ErbB-3-regulated signal transduction pathway. © 2000 Cancer Research Campaign PMID:10682683

  19. Binding Affects the Tertiary and Quaternary Structures of the Shigella Translocator Protein IpaB and its Chaperone IpgC†

    PubMed Central

    Adam, Philip R.; Patil, Mrinalini K.; Dickenson, Nicholas E.; Choudhari, Shyamal; Barta, Michael; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D.

    2012-01-01

    Shigella flexneri uses its type III secretion system (T3SS) to promote invasion of human intestinal epithelial cells as the first step in causing shigellosis, a life threatening form of dysentery. The Shigella type III secretion apparatus (T3SA) consists of a basal body that spans the bacterial envelope and an exposed needle that injects effector proteins into target cells. The nascent Shigella T3SA needle is topped with a pentamer of the needle tip protein invasion plasmid antigen D (IpaD). Bile salts trigger recruitment of the first hydrophobic translocator protein, IpaB, to the tip complex where it senses contact with a host membrane. In the bacterial cytoplasm, IpaB exists in a complex with its chaperone IpgC. Several structures of IpgC have been solved and we recently reported the 2.1-Å crystal structure of the N-terminal domain (IpaB74.224) of IpaB. Like IpgC, the IpaB N-terminal domain exists as a homodimer in solution. We now report that when the two are mixed, these homodimers dissociate and form heterodimers having a nanomolar dissociation constant. This is consistent with the equivalent complexes co-purified after being co-expressed in E. coli. Fluorescence data presented here also indicate that the N-terminal domain of IpaB possesses two regions that appear to contribute additively to chaperone binding. It is also likely that the IpaB N terminus adopts an alternative conformation as a result of chaperone binding. The importance of these findings within the functional context of these proteins is discussed. PMID:22497344

  20. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B

    PubMed Central

    Wang, Junling; Gao, Gui; Li, Yuwei; Yang, Liangzhen; Liang, Yanli; Jin, Hanyong; Han, Weiwei; Feng, Yan; Zhang, Zuoming

    2015-01-01

    The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B) were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC) and regenerated amorphous cellulose (RAC) were 118.3 and 104.0 U·mg−1, respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL−1 and 131.75 U·mg−1, respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future. PMID:26506341

  1. Four Proteins Encoded in the gspB-secY2A2 Operon of Streptococcus gordonii Mediate the Intracellular Glycosylation of the Platelet-Binding Protein GspB

    PubMed Central

    Takamatsu, Daisuke; Bensing, Barbara A.; Sullam, Paul M.

    2004-01-01

    Platelet binding by Streptococcus gordonii strain M99 is mediated predominantly by the cell surface glycoprotein GspB. This adhesin consists of a putative N-terminal signal peptide, two serine-rich regions (SRR1 and SRR2), a basic region between SRR1 and SRR2, and a C-terminal cell wall anchoring domain. The glycosylation of GspB is mediated at least in part by Gly and Nss, which are encoded in the secY2A2 locus immediately downstream of gspB. This region also encodes two proteins (Gtf and Orf4) that are required for the expression of GspB but whose functions have not been delineated. In this study, we further characterized the roles of Gly, Nss, Gtf, and Orf4 by investigating the expression and glycosylation of a series of glutathione S-transferase-GspB fusion proteins in M99 and in gly, nss, gtf, and orf4 mutants. Compared with fusion proteins expressed in the wild-type background, fusion proteins expressed in the mutant strain backgrounds showed altered electrophoretic mobility. In addition, the fusion proteins formed insoluble aggregates in protoplasts of the gtf and orf4 mutants. Glycan detection and lectin blot analysis revealed that SRR1 and SRR2 were glycosylated but that the basic region was unmodified. When the fusion protein was expressed in Escherichia coli, glycosylation of this protein was observed only in the presence of both gtf and orf4. These results demonstrate that Gly, Nss, Gtf, and Orf4 are all involved in the intracellular glycosylation of SRRs. Moreover, Gtf and Orf4 are essential for glycosylation, which in turn is important for the solubility of GspB. PMID:15489421

  2. Comparative genomics and evolution of the amylase-binding proteins of oral streptococci.

    PubMed

    Haase, Elaine M; Kou, Yurong; Sabharwal, Amarpreet; Liao, Yu-Chieh; Lan, Tianying; Lindqvist, Charlotte; Scannapieco, Frank A

    2017-04-20

    Successful commensal bacteria have evolved to maintain colonization in challenging environments. The oral viridans streptococci are pioneer colonizers of dental plaque biofilm. Some of these bacteria have adapted to life in the oral cavity by binding salivary α-amylase, which hydrolyzes dietary starch, thus providing a source of nutrition. Oral streptococcal species bind α-amylase by expressing a variety of amylase-binding proteins (ABPs). Here we determine the genotypic basis of amylase binding where proteins of diverse size and function share a common phenotype. ABPs were detected in culture supernatants of 27 of 59 strains representing 13 oral Streptococcus species screened using the amylase-ligand binding assay. N-terminal sequences from ABPs of diverse size were obtained from 18 strains representing six oral streptococcal species. Genome sequencing and BLAST searches using N-terminal sequences, protein size, and key words identified the gene associated with each ABP. Among the sequenced ABPs, 14 matched amylase-binding protein A (AbpA), 6 matched amylase-binding protein B (AbpB), and 11 unique ABPs were identified as peptidoglycan-binding, glutamine ABC-type transporter, hypothetical, or choline-binding proteins. Alignment and phylogenetic analyses performed to ascertain evolutionary relationships revealed that ABPs cluster into at least six distinct, unrelated families (AbpA, AbpB, and four novel ABPs) with no phylogenetic evidence that one group evolved from another, and no single ancestral gene found within each group. AbpA-like sequences can be divided into five subgroups based on the N-terminal sequences. Comparative genomics focusing on the abpA gene locus provides evidence of horizontal gene transfer. The acquisition of an ABP by oral streptococci provides an interesting example of adaptive evolution.

  3. Penicillin-binding protein 1A, 2B, and 2X alterations in Canadian isolates of penicillin-resistant Streptococcus pneumoniae.

    PubMed

    Nichol, Kimberly A; Zhanel, George G; Hoban, Daryl J

    2002-10-01

    Alterations within the penicillin-binding domain of penicillin-binding protein (PBP) genes pbp1a, pbp2b, and pbp2x were determined for 15 Canadian isolates of Streptococcus pneumoniae. All penicillin-nonsusceptible S. pneumoniae isolates showed a variety of PBP 2X substitutions and contained a Thr445-Ala change after the PBP 2B SSN motif. Only isolates for which penicillin MICs were > or =0.5 micro g/ml had PBP 1A alterations near the STMK and SRN motifs. Sequence analysis revealed identical PBP 1A, PBP 2B, and PBP 2X substitution patterns among all isolates for which penicillin MICs were > or =1 micro g/ml.

  4. Penicillin-Binding Protein 1A, 2B, and 2X Alterations in Canadian Isolates of Penicillin-Resistant Streptococcus pneumoniae

    PubMed Central

    Nichol, Kimberly A.; Zhanel, George G.; Hoban, Daryl J.

    2002-01-01

    Alterations within the penicillin-binding domain of penicillin-binding protein (PBP) genes pbp1a, pbp2b, and pbp2x were determined for 15 Canadian isolates of Streptococcus pneumoniae. All penicillin-nonsusceptible S. pneumoniae isolates showed a variety of PBP 2X substitutions and contained a Thr445-Ala change after the PBP 2B SSN motif. Only isolates for which penicillin MICs were ≥0.5 μg/ml had PBP 1A alterations near the STMK and SRN motifs. Sequence analysis revealed identical PBP 1A, PBP 2B, and PBP 2X substitution patterns among all isolates for which penicillin MICs were ≥1 μg/ml. PMID:12234855

  5. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes

    PubMed Central

    Sinars, Cindy R.; Cheung-Flynn, Joyce; Rimerman, Ronald A.; Scammell, Jonathan G.; Smith, David F.; Clardy, Jon

    2003-01-01

    The ability to bind immunosuppressive drugs such as cyclosporin and FK506 defines the immunophilin family of proteins, and the FK506-binding proteins form the FKBP subfamily of immunophilins. Some FKBPs, notably FKBP12 (the 12-kDa FK506-binding protein), have defined roles in regulating ion channels or cell signaling, and well established structures. Other FKBPs, especially the larger ones, participate in important biological processes, but their exact roles and the structural bases for these roles are poorly defined. FKBP51 (the 51-kDa FKBP) associates with heat shock protein 90 (Hsp90) and appears in functionally mature steroid receptor complexes. In New World monkeys, FKBP51 has been implicated in cortisol resistance. We report here the x-ray structures of human FKBP51, to 2.7 Å, and squirrel monkey FKBP51, to 2.8 Å, by using multiwavelength anomalous dispersion phasing. FKBP51 is composed of three domains: two consecutive FKBP domains and a three-unit repeat of the TPR (tetratricopeptide repeat) domain. This structure of a multi-FKBP domain protein clarifies the arrangement of these domains and their possible interactions with other proteins. The two FKBP domains differ by an insertion in the second that affects the formation of the progesterone receptor complex. PMID:12538866

  6. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  7. Blocking the interaction between S100A9 protein and RAGE V domain using S100A12 protein.

    PubMed

    Katte, Revansiddha; Yu, Chin

    2018-01-01

    The proteins S100A9 and S100A12 are associated with the human S100 calcium-binding protein family. These proteins promote interaction with target proteins and alter their conformation when they bind to calcium ions in EF-hand motifs. The V domain of RAGE (Receptor for Advanced Glycation End products) is crucial for S100A9 binding. The binding of RAGE with S100 family proteins aids in cell proliferation. In this report, we demonstrate that S100A12 protein hinders the binding of S100A9 with the RAGE V-domain. We used fluorescence and NMR spectroscopy to analyze the interaction of S100A9 with S100A12. The binary complex models of S100A9-S100A12 were developed using data obtained from 1H-15N HSQC NMR titrations and the HADDOCK program. We overlaid the complex models of S100A9-S100A12 with the same orientation of S100A9 and the RAGE V-domain. This complex showed that S100A12 protein blocks the interaction between S100A9 and the RAGE V-domain. It means S100A12 may be used as an antagonist for S100A9. The results could be favorable for developing anti-cancer drugs based on S100 family proteins.

  8. How Proteins Bind Macrocycles

    PubMed Central

    Villar, Elizabeth A.; Beglov, Dmitri; Chennamadhavuni, Spandan; Porco, John A.; Kozakov, Dima; Vajda, Sandor; Whitty, Adrian

    2014-01-01

    The potential utility of synthetic macrocycles as drugs, particularly against low druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of macrocycles for good target protein-binding activity or bioavailability. To address this knowledge gap we analyze the binding modes of a representative set of macrocycle-protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic macrocycles libraries possessing structural and physicochemical features likely to favor strong binding to protein targets and also good bioavailability. We additionally provide evidence that large, natural product derived macrocycles can bind to targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product inspired synthetic macrocycles can expand the number of proteins that are druggable by synthetic small molecules. PMID:25038790

  9. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    PubMed Central

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  10. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum

    PubMed Central

    Levine, Amir A.; Guan, Zhonghui; Barco, Angel; Xu, Shiqin; Kandel, Eric R.; Schwartz, James H.

    2005-01-01

    Remodeling chromatin is essential for cAMP-regulated gene expression, necessary not only for development but also for memory storage and other enduring mental states. Histone acetylation and deacetylation mediate long-lasting forms of synaptic plasticity in Aplysia as well as cognition in mice. Here, we show that histone acetylation by the cAMP-response element binding protein (CREB)-binding protein (CBP) mediates sensitivity to cocaine by regulating expression of the fosB gene and its splice variant, ΔfosB, a transcription factor previously implicated in addiction. Using the chromatin immunoprecipitation assay with antibodies against histone H4 or CBP, we find that CBP is recruited to the fosB promoter to acetylate histone H4 in response to acute exposure to cocaine. We show that mutant mice that lack one allele of the CBP gene and have normal levels of fosB expression are less sensitive to chronic (10-day) administration of cocaine than are wild-type mice. This decreased sensitivity is correlated with decreased histone acetylation and results in decreased fosB expression and diminished accumulation of ΔfosB. Thus, CBP, which forms part of the promoter complex with CREB, mediates sensitivity to cocaine by acetylating histones. PMID:16380431

  11. Crystallographic and Molecular Dynamics Analysis of Loop Motions Unmasking the Peptidoglycan-Binding Site in Stator Protein MotB of Flagellar Motor

    PubMed Central

    Nahar, Musammat F.; Buckle, Ashley M.; Roujeinikova, Anna

    2011-01-01

    Background The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. Methodology/Principal Findings We determined the structure of a new crystalline form (Form B) of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. Conclusion/Significance Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall. PMID:21533052

  12. Binding of [51Cr]ethylenediaminetetraacetate to proteins of human plasma.

    PubMed Central

    Babiker, M M

    1986-01-01

    Binding of [51Cr]EDTA to human plasma proteins was investigated using chemical and chromatographic techniques of separation of the proteins and protein fractions. Total plasma proteins isolated with ethanol retained 12.95 +/- 0.46% of the initial plasma activity. Proteins separated by other precipitants retained about 16% of the initial radioactivity. Globulins exhibited the highest binding capacity for [51Cr]EDTA and retained about 11.7% of the initial plasma activity following chromatographic separation. This value represents about 70% of the radioactivity bound by the total proteins of the plasma. gamma-Globulins contributed most of the binding attributed to the globulins and retained about 8.7% of the initial [51Cr]EDTA activity. The repeatedly reported underestimation of the renal glomerular filtration rate when estimated as the clearance of [51Cr]EDTA could be adequately accounted for by the extent of binding of this marker to the plasma proteins. PMID:2427701

  13. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations.

    PubMed

    van der Vaart, Arjan

    2015-05-01

    Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  14. Nasal Colonisation by Staphylococcus aureus Depends upon Clumping Factor B Binding to the Squamous Epithelial Cell Envelope Protein Loricrin

    PubMed Central

    Mulcahy, Michelle E.; Geoghegan, Joan A.; Monk, Ian R.; O'Keeffe, Kate M.; Walsh, Evelyn J.

    2012-01-01

    Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the “dock, lock and latch” mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB+ S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor−/−) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB− mutant colonised wild-type mice less efficiently than the parental ClfB+ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB− mutant in the Lor−/− mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor−/− mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal

  15. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  16. Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor gamma through protein-protein interaction.

    PubMed

    Choi, Youn-Hee; Kim, Ha-il; Seong, Je Kyung; Yu, Dae-Yeul; Cho, Hyeseong; Lee, Mi-Ock; Lee, Jae Myun; Ahn, Yong-ho; Kim, Se Jong; Park, Jeon Han

    2004-01-16

    Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.

  17. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  18. Grafting odorant binding proteins on diamond bio-MEMS.

    PubMed

    Manai, R; Scorsone, E; Rousseau, L; Ghassemi, F; Possas Abreu, M; Lissorgues, G; Tremillon, N; Ginisty, H; Arnault, J-C; Tuccori, E; Bernabei, M; Cali, K; Persaud, K C; Bergonzo, P

    2014-10-15

    Odorant binding proteins (OBPs) are small soluble proteins found in olfactory systems that are capable of binding several types of odorant molecules. Cantilevers based on polycrystalline diamond surfaces are very promising as chemical transducers. Here two methods were investigated for chemically grafting porcine OBPs on polycrystalline diamond surfaces for biosensor development. The first approach resulted in random orientation of the immobilized proteins over the surface. The second approach based on complexing a histidine-tag located on the protein with nickel allowed control of the proteins' orientation. Evidence confirming protein grafting was obtained using electrochemical impedance spectroscopy, fluorescence imaging and X-ray photoelectron spectroscopy. The chemical sensing performances of these OBP modified transducers were assessed. The second grafting method led to typically 20% more sensitive sensors, as a result of better access of ligands to the proteins active sites and also perhaps a better yield of protein immobilization. This new grafting method appears to be highly promising for further investigation of the ligand binding properties of OBPs in general and for the development of arrays of non-specific biosensors for artificial olfaction applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The expression of nifB gene from Herbaspirillum seropedicae is dependent upon the NifA and RpoN proteins.

    PubMed

    Rego, Fabiane G M; Pedrosa, Fábio O; Chubatsu, Leda S; Yates, M Geoffrey; Wassem, Roseli; Steffens, Maria B R; Rigo, Liu U; Souza, Emanuel M

    2006-12-01

    The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.

  20. FK506 binding proteins: cellular regulators of intracellular Ca2+ signalling.

    PubMed

    MacMillan, Debbi

    2013-01-30

    In many cell types the intracellular Ca(2+) store performs a central role in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](c)), the elevation of which triggers diverse and fundamental activities from reproduction to apoptosis, as well as being the major trigger for contraction. Two distinct classes of Ca(2+) release channels, which mobilize Ca(2+) from the store, exist; the inositol 1,4,5-trisphosphate (IP(3)) receptor and the ryanodine receptor. Considerable attention has been directed towards the importance of modulatory proteins that interact with these channels including, FK506 binding proteins (FKBPs), FKBP12 and its isoform, FKBP12.6. Although FKBP12 was first identified as the principal intracellular target for the immunosuppressive drugs, FK506 and rapamycin, new insights into the role of FKBPs have since emerged. These regulatory proteins are reportedly important modulators of intracellular Ca(2+) release. FKBPs may regulate ryanodine and IP(3) receptors either directly, by binding to the cytoplasmic aspect of the channel, or indirectly via modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Dissociation of FKBP12 or FKBP12.6 from either Ca(2+) release channel may increase, decrease or have no effect on ryanodine receptor- or IP(3) receptor-mediated Ca(2+) release. These important controversies may be attributed to FKBPs' ability to regulate the receptor indirectly via the kinase and phosphatase pathways modulated by the accessory proteins. This brief review discusses the regulation of intracellular ryanodine and IP(3) receptor Ca(2+) release channels by accessory FKBPs, with important implications for the role of FKBPs in the pathophysiology of a number of diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. TonB-dependent ligand trapping in the BtuB transporter.

    PubMed

    Mills, Allan; Le, Hai-Tuong; Duong, Franck

    2016-12-01

    TonB-dependent transporters are β-barrel outer membrane proteins occluded by a plug domain. Upon ligand binding, these transporters extend a periplasmic motif termed the TonB box. The TonB box permits the recruitment of the inner membrane protein complex TonB-ExbB-ExbD, which drives import of ligands in the cell periplasm. It is unknown precisely how the plug domain is moved aside during transport nor have the intermediate states between TonB recruitment and plug domain movement been characterized biochemically. Here we employ nanodiscs, native gel electrophoresis, and scintillation proximity assays to determine the binding kinetics of vitamin B 12 to BtuB. The results show that ligand-bound BtuB recruits a monomer of TonB (TonB ∆1-31 ), which in turn increases retention of vitamin B 12 within the transporter. The TonB box and the extracellular residue valine 90 that forms part of the vitamin B 12 binding site are essential for this event. These results identify a novel step in the TonB-dependent transport process. They show that TonB binding to BtuB trap the ligand, possibly until the ExbB-ExbD complex is activated or recruited to ensure subsequent transport. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  3. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    PubMed

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  4. TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB.

    PubMed

    Garrison, J B; Samuel, T; Reed, J C

    2009-04-02

    Marginal zone mucosa-associated lymphoid tissue (MALT) B-cell lymphoma is the most common extranodal non-Hodgkin lymphoma. The t(11;18)(q21;q21) translocation occurs frequently in MALT lymphomas and creates a chimeric NF-kappaB-activating protein containing the baculoviral IAP repeat (BIR) domains of c-IAP2 (inhibitor of apoptosis protein 2) fused with portions of the MALT1 protein. The BIR1 domain of c-IAP2 interacts directly with TRAF2 (TNFalpha-receptor-associated factor-2), but its role in NF-kappaB activation is still unclear. Here, we investigated the role of TRAF2 in c-IAP2/MALT1-induced NF-kappaB activation. We show the BIR1 domain of c-IAP2 is essential for NF-kappaB activation, whereas BIR2 and BIR3 domains are not. Studies of c-IAP2/MALT1 BIR1 mutant (E47A/R48A) that fails to activate NF-kappaB showed loss of TRAF2 binding, but retention of TRAF6 binding, suggesting that interaction of c-IAP2/MALT1 with TRAF6 is insufficient for NF-kappaB induction. In addition, a dominant-negative TRAF2 mutant or downregulation of TRAF2 achieved by small interfering RNA inhibited NF-kappaB activation by c-IAP2/MALT1 showing that TRAF2 is indispensable. Comparisons of the bioactivity of intact c-IAP2/MALT1 oncoprotein and BIR1 E47A/R48A c-IAP2/MALT1 mutant that cannot bind TRAF2 in a lymphoid cell line provided evidence that TRAF2 interaction is critical for c-IAP2/MALT1-mediated increases in the NF-kappaB activity, increased expression of endogenous NF-kappaB target genes (c-FLIP, TRAF1), and resistance to apoptosis.

  5. QSAR modeling of β-lactam binding to human serum proteins

    NASA Astrophysics Data System (ADS)

    Hall, L. Mark; Hall, Lowell H.; Kier, Lemont B.

    2003-02-01

    The binding of beta-lactams to human serum proteins was modeled with topological descriptors of molecular structure. Experimental data was the concentration of protein-bound drug expressed as a percent of the total plasma concentration (percent fraction bound, PFB) for 87 penicillins and for 115 β-lactams. The electrotopological state indices (E-State) and the molecular connectivity chi indices were found to be the basis of two satisfactory models. A data set of 74 penicillins from a drug design series was successfully modeled with statistics: r2=0.80, s = 12.1, q2=0.76, spress=13.4. This model was then used to predict protein binding (PFB) for 13 commercial penicillins, resulting in a very good mean absolute error, MAE = 12.7 and correlation coefficient, q2=0.84. A group of 28 cephalosporins were combined with the penicillin data to create a dataset of 115 beta-lactams that was successfully modeled: r2=0.82, s = 12.7, q2=0.78, spress=13.7. A ten-fold 10% leave-group-out (LGO) cross-validation procedure was implemented, leading to very good statistics: MAE = 10.9, spress=14.0, q2 (or r2 press)=0.78. The models indicate a combination of general and specific structure features that are important for estimating protein binding in this class of antibiotics. For the β-lactams, significant factors that increase binding are presence and electron accessibility of aromatic rings, halogens, methylene groups, and =N- atoms. Significant negative influence on binding comes from amine groups and carbonyl oxygen atoms.

  6. The human fatty acid-binding protein family: Evolutionary divergences and functions

    PubMed Central

    2011-01-01

    Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868

  7. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  8. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  9. Evidence for specific annexin I-binding proteins on human monocytes.

    PubMed Central

    Goulding, N J; Pan, L; Wardwell, K; Guyre, V C; Guyre, P M

    1996-01-01

    Recombinant human annexin I and a monoclonal antibody specific for this protein (mAb 1B) were used to investigate surface binding of this member of the annexin family of proteins to peripheral blood monocytes. Flow cytometric analysis demonstrated trypsin-sensitive, saturable binding of annexin I to human peripheral blood monocytes but not to admixed lymphocytes. A monoclonal antibody that blocks the anti-phospholipase activity of annexin I also blocked its binding to monocytes. These findings suggest the presence of specific binding sites on monocytes. Furthermore, surface iodination, immunoprecipitation and SDS/PAGE analysis were used to identify two annexin I-binding proteins on the surface of monocytes with molecular masses of 15 kDa and 18 kDa respectively. The identification and characterization of these annexin I-binding molecules should help us to better understand the specific interactions of annexin I with monocytes that lead to down-regulation of pro-inflammatory cell functions. PMID:8687405

  10. Purification, crystallization and preliminary X-ray diffraction analysis of water-soluble chlorophyll-binding protein from Chenopodium album

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsuki, Takayuki; Ohshima, Shigeru; Uchida, Akira, E-mail: auchida@biomol.sci.toho-u.ac.jp

    2007-09-01

    A water-soluble chlorophyll-binding protein with photoconvertibility from C. album was extracted, purified and crystallized in a darkroom. The crystal diffracted to around 2.0 Å resolution. A water-soluble chlorophyll-binding protein (WSCP) with photoconvertibility from Chenopodium album was extracted, purified and crystallized in a darkroom. Green crystals suitable for data collection appeared in about 10 d. A native data set was collected to 2.0 Å resolution at 100 K. The space group of the crystal was determined to be orthorhombic I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.13, b = 60.59, c = 107.21 Å. Preliminary analysis ofmore » the X-ray data indicated that there is one molecule per asymmetric unit.« less

  11. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  12. cpSRP43 Is a Novel Chaperone Specific for Light-harvesting Chlorophyll a,b-binding Proteins*

    PubMed Central

    Falk, Sebastian; Sinning, Irmgard

    2010-01-01

    The biosynthesis of most membrane proteins is directly coupled to membrane insertion, and therefore, molecular chaperones are not required. The light-harvesting chlorophyll a,b-binding proteins (LHCPs) present a prominent exception as they are synthesized in the cytoplasm, and after import into the chloroplast, they are targeted and inserted into the thylakoid membrane. Upon arrival in the stroma, LHCPs form a soluble transit complex with the chloroplast signal recognition particle (cpSRP) consisting of an SRP54 homolog and the unique cpSRP43 composed of three chromodomains and four ankyrin repeats. Here we describe that cpSRP43 alone prevents aggregation of LHCP by formation of a complex with nanomolar affinity, whereas cpSRP54 is not required for this chaperone activity. Other stromal chaperones like trigger factor cannot replace cpSRP43, which implies that LHCPs require a specific chaperone. Although cpSRP43 does not have an ATPase activity, it can dissolve aggregates of LHCPs similar to chaperones of the Hsp104/ClpB family. We show that the LHCP-cpSRP43 interaction is predominantly hydrophobic but strictly depends on an intact DPLG motif between the second and third transmembrane region. The cpSRP43 ankyrin repeats that provide the binding site for the DPLG motif are sufficient for the chaperone function, whereas the chromodomains are dispensable. Taken together, we define cpSRP43 as a highly specific chaperone for LHCPs in addition to its established function as a targeting factor for this family of membrane proteins. PMID:20498370

  13. Interaction investigations of HipA binding to HipB dimer and HipB dimer + DNA complex: a molecular dynamics simulation study.

    PubMed

    Li, Chaoqun; Wang, Yaru; Wang, Yan; Chen, Guangju

    2013-11-01

    We carried out molecular dynamics simulations and free energy calculations for a series of ternary and diplex models for the HipA protein, HipB dimer, and DNA molecule to address the mechanism of HipA sequestration and the binding order of events from apo HipB/HipA to 2HipA + HipB dimer + DNA complex. The results revealed that the combination of DNA with the HipB dimer is energetically favorable for the combination of HipB dimer with HipA protein. The binding of DNA to HipB dimer induces a long-range allosteric communication from the HipB2 -DNA interface to the HipA-HipB2 interface, which involves the closeness of α1 helices of HipB dimer to HipA protein and formations of extra hydrogen bonds in the HipA-HipB2 interface through the extension of α2/3 helices in the HipB dimer. These simulated results suggested that the DNA molecule, as a regulative media, modulates the HipB dimer conformation, consequently increasing the interactions of HipB dimer with the HipA proteins, which explains the mechanism of HipA sequestration reported by the previous experiment. Simultaneously, these simulations also explored that the thermodynamic binding order in a simulated physiological environment, that is, the HipB dimer first bind to DNA to form HipB dimer + DNA complex, then capturing strongly the HipA proteins to form a ternary complex, 2HipA + HipB dimer + DNA, for sequestrating HipA in the nucleoid. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Structural basis for gene regulation by a B12-dependent photoreceptor

    PubMed Central

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S.; Elías-Arnanz, Montserrat; Drennan, Catherine L.

    2015-01-01

    Summary Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754

  15. In Situ Protein Binding Assay Using Fc-Fusion Proteins.

    PubMed

    Padmanabhan, Nirmala; Siddiqui, Tabrez J

    2017-01-01

    This protocol describes an in situ protein-protein interaction assay between tagged recombinant proteins and cell-surface expressed synaptic proteins. The assay is arguably more sensitive than other traditional protein binding assays such as co-immunoprecipitation and pull-downs and provides a visual readout for binding. This assay has been widely used to determine the dissociation constant of binding of trans-synaptic adhesion proteins. The step-wise description in the protocol should facilitate the adoption of this method in other laboratories.

  16. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  17. Selected wheat seed defense proteins exhibit competitive binding to model microbial lipid interfaces.

    PubMed

    Sanders, Michael R; Clifton, Luke A; Neylon, Cameron; Frazier, Richard A; Green, Rebecca J

    2013-07-17

    Puroindolines (Pins) and purothionins (Pths) are basic, amphiphilic, cysteine-rich wheat proteins that play a role in plant defense against microbial pathogens. This study examined the co-adsorption and sequential addition of Pins (Pin-a, Pin-b, and a mutant form of Pin-b with Trp-44 to Arg-44 substitution) and β-purothionin (β-Pth) model anionic lipid layers using a combination of surface pressure measurements, external reflection FTIR spectroscopy, and neutron reflectometry. Results highlighted differences in the protein binding mechanisms and in the competitive binding and penetration of lipid layers between respective Pins and β-Pth. Pin-a formed a blanket-like layer of protein below the lipid surface that resulted in the reduction or inhibition of β-Pth penetration of the lipid layer. Wild-type Pin-b participated in co-operative binding with β-Pth, whereas the mutant Pin-b did not bind to the lipid layer in the presence of β-Pth. The results provide further insight into the role of hydrophobic and cationic amino acid residues in antimicrobial activity.

  18. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  19. Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach

    PubMed Central

    Morgan, Hugh P.; Estibeiro, Peter; Wear, Martin A.; Max, Klaas E.A.; Heinemann, Udo; Cubeddu, Liza; Gallagher, Maurice P.; Sadler, Peter J.; Walkinshaw, Malcolm D.

    2007-01-01

    We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5′-GTCTTTG/T-3′. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA–protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function. PMID:17488853

  20. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    NASA Astrophysics Data System (ADS)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  1. Structure- and Modeling-based Identification of the Adenovirus E4orf4 Binding Site in the Protein Phosphatase 2A B55α Subunit*

    PubMed Central

    Horowitz, Ben; Sharf, Rakefet; Avital-Shacham, Meirav; Pechkovsky, Antonina; Kleinberger, Tamar

    2013-01-01

    The adenovirus E4orf4 protein regulates the progression of viral infection and when expressed outside the context of the virus it induces nonclassical, cancer cell-specific apoptosis. All E4orf4 functions known to date require an interaction between E4orf4 and protein phosphatase 2A (PP2A), which is mediated through PP2A regulatory B subunits. Specifically, an interaction with the B55α subunit is required for induction of cell death by E4orf4. To gain a better insight into the E4orf4-PP2A interaction, mapping of the E4orf4 interaction site in PP2A-B55α has been undertaken. To this end we used a combination of bioinformatics analyses of PP2A-B55α and of E4orf4, which led to the prediction of E4orf4 binding sites on the surface of PP2A-B55α. Mutation analysis, immunoprecipitation, and GST pulldown assays based on the theoretical predictions revealed that the E4orf4 binding site included the α1 and α2 helices described in the B55α structure and involved at least three residues located in these helices facing each other. Loss of E4orf4 binding was accompanied by reduced contribution of the B55α mutants to E4orf4-induced cell death. The identified E4orf4 binding domain lies above the previously described substrate binding site and does not overlap it, although its location could be consistent with direct or indirect effects on substrate binding. This work assigns for the first time a functional significance to the α1,α2 helices of B55α, and we suggest that the binding site defined by these helices could also contribute to interactions between PP2A and some of its cellular regulators. PMID:23530045

  2. Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin.

    PubMed

    Senetar, Melissa A; Foster, Stanley J; McCann, Richard O

    2004-12-14

    The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.

  3. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  4. Evidence that forskolin binds to the glucose transporter of human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavis, V.R.; Lee, D.P.; Shenolikar, S.

    1987-10-25

    Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less

  5. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  6. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  7. Functions of Intracellular Retinoid Binding-Proteins.

    PubMed

    Napoli, Joseph L

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.

  8. Visualization of a radical B 12 enzyme with its G-protein chaperone

    DOE PAGES

    Jost, Marco; Cracan, Valentin; Hubbard, Paul A.; ...

    2015-02-09

    G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. In this paper, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms ofmore » IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Finally and notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.« less

  9. NF-κB Transcriptional Activity Is Modulated by FK506-binding Proteins FKBP51 and FKBP52

    PubMed Central

    Erlejman, Alejandra G.; De Leo, Sonia A.; Mazaira, Gisela I.; Molinari, Alejandro M.; Camisay, María Fernanda; Fontana, Vanina; Cox, Marc B.; Piwien-Pilipuk, Graciela; Galigniana, Mario D.

    2014-01-01

    Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity. The inhibitory action of FKBP51 requires neither the peptidylprolyl-isomerase activity of the immunophilin nor its association with Hsp90. The TPR domain of FKBP51 is essential. On the other hand, FKBP52 favors the nuclear retention time of RelA, its association to a DNA consensus binding sequence, and NF-κB transcriptional activity, the latter effect being strongly dependent on the peptidylprolyl-isomerase activity and also on the TPR domain of FKBP52, but its interaction with Hsp90 is not required. In unstimulated cells, FKBP51 forms endogenous complexes with cytoplasmic RelA. Upon cell stimulation with phorbol ester, the NF-κB soluble complex exchanges FKBP51 for FKBP52, and the NF-κB biological effect is triggered. Importantly, FKBP52 is functionally recruited to the promoter region of NF-κB target genes, whereas FKBP51 is released. Competition assays demonstrated that both immunophilins antagonize one another, and binding assays with purified proteins suggest that the association of RelA and immunophilins could be direct. These observations suggest that the biological action of NF-κB in different cell types could be positively regulated by a high FKBP52/FKBP51 expression ratio by favoring NF-κB nuclear retention, recruitment to the promoter regions of target genes, and transcriptional activity. PMID:25104352

  10. Exo-Dye-based assay for rapid, inexpensive, and sensitive detection of DNA-binding proteins.

    PubMed

    Chen, Zaozao; Ji, Meiju; Hou, Peng; Lu, Zuhong

    2006-07-07

    We reported herein a rapid, inexpensive, and sensitive technique for detecting sequence-specific DNA-binding proteins. In this technique, the common exonuclease III (ExoIII) footprinting assay is coupled with simple SYBR Green I staining for monitoring the activities of DNA-binding proteins. We named this technique as ExoIII-Dye-based assay. In this assay, a duplex probe was designed to detect DNA-binding protein. One side of the probe contains one protein-binding site, and another side of it contains five protruding bases at 3' end for protection from ExoIII digestion. If a target protein is present, it will bind to binding sites of probe and produce a physical hindrance to ExoIII, which protects the duplex probe from digestion of ExoIII. SYBR Green I will bind to probe, which results in high fluorescence intensity. On the contrary, in the absence of the target protein, the naked duplex probe will be degraded by ExoIII. SYBR Green I will be released, which results in a low fluorescence intensity. In this study, we employed this technique to successfully detect transcription factor NF-kappaB in crude cell extracts. Moreover, it could also be used to evaluate the binding affinity of NF-kappaB. This technique has therefore wide potential application in research, medical diagnosis, and drug discovery.

  11. Protein NMR Studies of Substrate Binding to Human Blood Group A and B Glycosyltransferases.

    PubMed

    Grimm, Lena Lisbeth; Weissbach, Sophie; Flügge, Friedemann; Begemann, Nora; Palcic, Monica M; Peters, Thomas

    2017-07-04

    Donor and acceptor substrate binding to human blood group A and B glycosyltransferases (GTA, GTB) has been studied by a variety of protein NMR experiments. Prior crystallographic studies had shown these enzymes to adopt an open conformation in the absence of substrates. Binding either of the donor substrate UDP-Gal or of UDP induces a semiclosed conformation. In the presence of both donor and acceptor substrates, the enzymes shift towards a closed conformation with ordering of an internal loop and the C-terminal residues, which then completely cover the donor-binding pocket. Chemical-shift titrations of uniformly 2 H, 15 N-labeled GTA or GTB with UDP affected about 20 % of all crosspeaks in 1 H, 15 N TROSY-HSQC spectra, reflecting substantial plasticity of the enzymes. On the other hand, it is this conformational flexibility that impedes NH backbone assignments. Chemical-shift-perturbation experiments with δ1-[ 13 C]methyl-Ile-labeled samples revealed two Ile residues-Ile123 at the bottom of the UDP binding pocket, and Ile192 as part of the internal loop-that were significantly disturbed upon stepwise addition of UDP and H-disaccharide, also revealing long-range perturbations. Finally, methyl TROSY-based relaxation dispersion experiments do not reveal micro- to millisecond timescale motions. Although this study reveals substantial conformational plasticity of GTA and GTB, the matter of how binding of substrates shifts the enzymes into catalytically competent states remains enigmatic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1

    PubMed Central

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S.; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-01-01

    RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RBP for maintaining cellular identity between closely related cell types. PMID:28394372

  13. Intracellular interaction of EBV/C3d receptor (CR2) with p68, a calcium-binding protein present in normal but not in transformed B lymphocytes.

    PubMed

    Barel, M; Gauffre, A; Lyamani, F; Fiandino, A; Hermann, J; Frade, R

    1991-08-15

    To analyze direct intracellular interactions of CR2 in normal human B lymphocytes, we used polyclonal anti-Id anti-CR2 antibodies (Ab2) prepared against the highly purified CR2 molecule (gp140) as original immunogen. We previously demonstrated that this Ab2 contained specificities that mimicked extracellular and intracellular domains of CR2 and was helpful for identifying CR2-specific ligands. Indeed, some Ab2 specificities recognized human C3d and EBV, two extracellular CR2 ligands. In addition, other Ab2 specificities interacted directly, as CR2, with the intracellular p53 antioncoprotein that is expressed in transformed cells and not in normal cells. We demonstrate herein that Ab2 detected in normal B lymphocytes a 68-kDa protein, p68, that was not expressed in transformed B cells. p68 was localized in purified plasma membranes and cytosol fractions. Direct interaction of purified CR2 with purified p68 was demonstrated. Competitive studies supported that CR2 and Ab2 interacted with identical sites on p68. These interactions were calcium dependent. p68 was identified as a calcium-binding protein by its ability to be solubilized from B lymphocyte membranes by EGTA, a calcium-chelating agent, to bind specifically on phenothiazine-Sepharose in a calcium-dependent interaction, and to be recognized by specific antibodies directed against human p68, a calcium-binding protein of the annexin VI family. Thus, demonstration of different intracellular interactions of CR2 with distinct regulatory proteins, such as p53, the antioncoprotein, and p68, a calcium-binding protein, supports involvement of two regulatory pathways of signal transduction through CR2, depending on the normal or transformed state of human B lymphocytes.

  14. Calcium-binding proteins and development

    NASA Technical Reports Server (NTRS)

    Beckingham, K.; Lu, A. Q.; Andruss, B. F.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    The known roles for calcium-binding proteins in developmental signaling pathways are reviewed. Current information on the calcium-binding characteristics of three classes of cell-surface developmental signaling proteins (EGF-domain proteins, cadherins and integrins) is presented together with an overview of the intracellular pathways downstream of these surface receptors. The developmental roles delineated to date for the universal intracellular calcium sensor, calmodulin, and its targets, and for calcium-binding regulators of the cytoskeleton are also reviewed.

  15. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  16. Opposite nuclear level and binding activity of STAT5B and STAT3 proteins with rat haptoglobin gene under normal and turpentine induced acute phase conditions.

    PubMed

    Grigorov, I; Lazić, T; Cvetković, I; Milosavljević, T; Petrović, M

    2001-01-01

    Transcription of the rat gene encoding haptoglobin (Hp) is highly induced during acute phase (AP) response which has been previously shown to be mediated by inducible STAT3 member of the Signal Transducer and Activators of Transcription (STATs) family proteins. In this study, we observed that under normal but not in the turpentine induced AP conditions, another member of the STAT family proteins, STAT5b is expressed and binds to the hormone regulatory element (HRE) of the rat Hp gene. We found that the nuclear amounts of constitutively active STAT5b in rat liver decreased significantly with time of turpentine treatment as opposed to that of cytosol STAT5b, suggesting possible export of constitutive STAT5b from the nucleus. Nuclear accumulation and binding of inducible STAT3 proteins to the rat Hp gene HRE following turpentine treatment implicated that STAT5b negatively regulates Hp gene expression during normal conditions.

  17. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  18. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  19. Interleukin‑12B is upregulated by decoy receptor 3 in rheumatoid synovial fibroblasts.

    PubMed

    Fukuda, Koji; Miura, Yasushi; Maeda, Toshihisa; Hayashi, Shinya; Kurosaka, Masahiro

    2016-04-01

    Decoy receptor 3 (DcR3) competitively binds to three ligands, Fas ligand, lymphotoxin‑related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells and tumor necrosis factor‑like ligand 1A (TL1A), to prevent their effects. Recent studies have suggested that DcR3 directly affects cells as a ligand. Using a microarray assay, our group newly identified interleukin (IL)‑12B, which encodes the p40 subunit common to IL‑12 and IL‑23, as one of the genes for which expression in fibroblast‑like synoviocytes from patients with rheumatoid arthritis (RA‑FLS) is induced by DcR3. The present study demonstrated that IL‑12B mRNA expression was upregulated by DcR3‑Fc in RA‑FLS in a dose‑dependent manner, but not in OA‑FLS. IL‑12B p40 protein in RA‑FLS was increased when stimulated with DcR3‑Fc. Pre‑treatment with anti‑TL1A antibody suppressed the upregulation of IL‑12B mRNA in RA‑FLS stimulated with DcR3‑Fc. DcR3 mRNA expression in RA‑FLS was induced by IL‑23, but not by IL‑12. These results indicated that DcR3 may increase IL‑12 or IL‑23 by inducing IL‑12B p40 expression via membrane‑bound TL1A on RA‑FLS and that IL‑23 reciprocally induces DcR3 expression in RA‑FLS. DcR3 and IL‑23 may interact in a feedback loop that aggravates local inflammation in patients with RA.

  20. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, Gisela K.

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  1. Light Stress-Induced One-Helix Protein of the Chlorophyll a/b-Binding Family Associated with Photosystem I1

    PubMed Central

    Andersson, Ulrica; Heddad, Mounia; Adamska, Iwona

    2003-01-01

    The superfamily of light-harvesting chlorophyll a/b-binding (Lhc) proteins in higher plants and green algae is composed of more than 20 different antenna proteins associated either with photosystem I (PSI) or photosystem II (PSII). Several distant relatives of this family with conserved chlorophyll-binding residues and proposed photoprotective functions are induced transiently under various stress conditions. Whereas “classical” Lhc proteins contain three-transmembrane α-helices, their distant relatives span the membrane with between one and four transmembrane segments. Here, we report the identification and isolation of a novel member of the Lhc family from Arabidopsis with one predicted transmembrane α-helix closely related to helix I of Lhc protein from PSI (Lhca4) that we named Ohp2 (for a second one-helix protein of Lhc family described from higher plants). We showed that the Ohp2 gene expression is triggered by light stress and that the Ohp2 transcript and protein accumulated in a light intensity-dependent manner. Other stress conditions did not up-regulate the expression of the Ohp2 gene. Localization studies revealed that Ohp2 is associated with PSI under low- or high-light conditions. Because all stress-induced Lhc relatives reported so far were found in PSII, we propose that the accumulation of Ohp2 might represent a novel photoprotective strategy induced within PSI in response to light stress. PMID:12805611

  2. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    PubMed Central

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849

  3. Active site residues critical for flavin binding and 5,6-dimethylbenzimidazole biosynthesis in the flavin destructase enzyme BluB.

    PubMed

    Yu, Ta-Yi; Mok, Kenny C; Kennedy, Kristopher J; Valton, Julien; Anderson, Karen S; Walker, Graham C; Taga, Michiko E

    2012-06-01

    The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB. Copyright © 2012 The Protein Society.

  4. Erythropoietin binding protein from mammalian serum

    DOEpatents

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  5. Tb3+-cleavage assays reveal specific Mg2+ binding sites necessary to pre-fold the btuB riboswitch for AdoCbl binding

    NASA Astrophysics Data System (ADS)

    Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.

    2017-03-01

    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.

  6. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  7. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  8. [Glutamate-binding membrane proteins from human platelets].

    PubMed

    Gurevich, V S; Popov, Iu G; Gorodinskiĭ, A I; Dambinova, S A

    1991-09-01

    Solubilization of the total membrane fraction of human platelets in a 2% solution of sodium deoxycholate and subsequent affinity chromatography on glutamate agarose resulted in two protein fractions possessing a glutamate-binding activity. As can be evidenced from radioligand binding data, the first fraction contains two types of binding sites (Kd1 = 1 microM, Bmax 1 = 100 pmol/mg of protein; Kd2 = 9.3 microMm Bmax2 = 395 pmol/mg of protein). The second fraction has only one type of binding sites (Kd = 1 microM, Bmax = = 110 pmol/mg of protein). SDS-PAAG electrophoresis revealed the presence in the first fraction of proteins with Mr of 14, 24, 56 and 155 kDa, whereas the second fraction was found to contain 14, 46, 71 and 155 kDa proteins. Solid phase immunoenzymatic analysis using poly- and monoclonal specific antibodies against mammalian brain glutamate-binding proteins revealed a marked immunochemical similarity of the isolated protein fractions with human brain synaptic membrane glutamate-binding proteins.

  9. Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation.

    PubMed

    Drakouli, Sotiria; Lyberopoulou, Aggeliki; Papathanassiou, Maria; Mylonis, Ilias; Georgatsou, Eleni

    2017-08-01

    Scaffold attachment factor B1 (SAFB1) is an integral component of the nuclear matrix of vertebrate cells. It binds to DNA on scaffold/matrix attachment region elements, as well as to RNA and a multitude of different proteins, affecting basic cellular activities such as transcription, splicing and DNA damage repair. In the present study, we show that enhancer of rudimentary homologue (ERH) is a new molecular partner of SAFB1 and its 70% homologous paralogue, scaffold attachment factor B2 (SAFB2). ERH interacts directly in the nucleus with the C-terminal Arg-Gly-rich region of SAFB1/2 and co-localizes with it in the insoluble nuclear fraction. ERH, a small ubiquitous protein with striking homology among species and a unique structure, has also been implicated in fundamental cellular mechanisms. Our functional analyses suggest that the SAFB/ERH interaction does not affect SAFB1/2 function in transcription (e.g. as oestrogen receptor α co-repressors), although it reverses the inhibition exerted by SAFB1/2 on the splicing kinase SR protein kinase 1 (SRPK1), which also binds on the C-terminus of SAFB1/2. Accordingly, ERH silencing decreases lamin B receptor and SR protein phosphorylation, which are major SRPK1 substrates, further substantiating the role of SAFB1 and SAFB2 in the co-ordination of nuclear function. © 2017 Federation of European Biochemical Societies.

  10. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ Immunoglobulin Heavy Chain Regulatory Region

    PubMed Central

    Salisbury, Richard L.; Sulentic, Courtney E. W.

    2015-01-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3′Igh regulatory region (3′IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3′IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3′IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3′IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3′IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3′IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3′IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels. PMID:26377645

  11. Protein Binding: Do We Ever Learn?▿

    PubMed Central

    Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula

    2011-01-01

    Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013

  12. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    PubMed

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  13. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.

  14. Detection of Z DNA binding proteins in tissue culture cells.

    PubMed Central

    Leith, I R; Hay, R T; Russell, W C

    1988-01-01

    A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA. Images PMID:3419919

  15. Structural basis for gene regulation by a B 12-dependent photoreceptor

    DOE PAGES

    Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; ...

    2015-09-28

    Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B 12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here in this paper, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activatesmore » transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. Finally, these results expand the biological role of vitamin B 12 and provide fundamental insight into a new mode of light-dependent gene regulation.« less

  16. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  17. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  18. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein.

    PubMed

    Ayón-Núñez, Dolores A; Fragoso, Gladis; Espitia, Clara; García-Varela, Martín; Soberón, Xavier; Rosas, Gabriela; Laclette, Juan P; Bobes, Raúl J

    2018-06-01

    The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  20. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  2. Monoclonal antibodies to human vitamin D-binding protein.

    PubMed Central

    Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F

    1985-01-01

    Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035

  3. Nature of KaiB-KaiC binding in the cyanobacterial circadian oscillator

    PubMed Central

    Pattanayek, Rekha; Yadagiri, Kirthi Kiran; Ohi, Melanie D.; Egli, Martin

    2013-01-01

    In the cyanobacteria Synechococcus elongatus and Thermosynechococcus elongatus, the KaiA, KaiB and KaiC proteins in the presence of ATP generate a post-translational oscillator (PTO) that can be reconstituted in vitro. KaiC is the result of a gene duplication and resembles a double doughnut with N-terminal CI and C-terminal CII hexameric rings. Six ATPs are bound between subunits in both the CI and CII ring. CI harbors ATPase activity, and CII catalyzes phosphorylation and dephosphorylation at T432 and S431 with a ca. 24-h period. KaiA stimulates KaiC phosphorylation, and KaiB promotes KaiC subunit exchange and sequesters KaiA on the KaiB-KaiC interface in the final stage of the clock cycle. Studies of the PTO protein-protein interactions are convergent in terms of KaiA binding to CII but have led to two opposing models of the KaiB-KaiC interaction. Electron microscopy (EM) and small angle X-ray scattering (SAXS), together with native PAGE using full-length proteins and separate CI and CII rings, are consistent with binding of KaiB to CII. Conversely, NMR together with gel filtration chromatography and denatured PAGE using monomeric CI and CII domains support KaiB binding to CI. To resolve the existing controversy, we studied complexes between KaiB and gold-labeled, full-length KaiC with negative stain EM. The EM data clearly demonstrate that KaiB contacts the CII ring. Together with the outcomes of previous analyses, our work establishes that only CII participates in interactions with KaiA and KaiB as well as with the His kinase SasA involved in the clock output pathway. PMID:23388462

  4. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Park, Yong Hwan; Lee, Jea Hwang; Hong, Jeong-Ho; Kim, Ick Young

    2014-07-01

    Selenoprotein W (SelW) is expressed in various tissues, particularly in skeletal muscle. We have previously reported that SelW is up-regulated during C2C12 skeletal muscle differentiation and inhibits binding of 14-3-3 to its target proteins. 14-3-3 reduces myogenic differentiation by inhibiting nuclear translocation of transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of TAZ at Ser89 is required for binding to 14-3-3, leading to cytoplasmic retention of TAZ and a delay in myogenic differentiation. Here, we show that myogenic differentiation was delayed in SelW-knockdown C2C12 cells. Down-regulation of SelW also increased TAZ binding to 14-3-3, which eventually resulted in decreasing translocation of TAZ to the nucleus. However, phosphorylation of TAZ at Ser89 was not affected. Although phosphorylation of TAZ at Ser89 was sustained by the phosphatase inhibitor okadaic acid, nuclear translocation of TAZ was increased by ectopic expression of SelW. This result was due to decreased binding of TAZ to 14-3-3. We also found that the interaction between TAZ and MyoD was increased by ectopic expression of SelW. Taken together, these findings strongly demonstrate that SelW enhances C2C12 cell differentiation by inhibiting TAZ binding to 14-3-3. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modeling Ionization Events iduced by Protein Protein Binding

    NASA Astrophysics Data System (ADS)

    Mitra, Rooplekha; Shyam, Radhey; Alexov, Emil

    2009-11-01

    The association of two or more biological macromolecules dramatically change the environment of the amino acids situated at binding interface and could change ionization states of titratable groups. The change of ionization due to the binding results in proton uptake/release and causes pH-dependence of the binding free energy. We apply computational method, as implemented in Multi Conformation Continuum Electrostatics (MCCE) algorithm, to study protonation evens on a large set of protein-protein complexes. Our results indicate that proton uptake/release is a common phenomena in protein binding since in vast majority of the cases (70%) the binding caused at least 0.5 units proton change. The proton uptake/release was further investigated with respect to interfacial area and charges of the monomers and it was found that macroscopic characteristics are not important determinants. Instead, charge complementarity across the interface and the number of unpaired ionizable groups at the interface are the primary source of proton uptake/release.

  6. Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice

    PubMed Central

    Sohrabi, Yahya; Volkova, Valeryia; Kobets, Tatyana; Havelková, Helena; Krayem, Imtissal; Slapničková, Martina; Demant, Peter; Lipoldová, Marie

    2018-01-01

    Interferon-induced GTPases [guanylate-binding proteins (GBPs)] play an important role in inflammasome activation and mediate innate resistance to many intracellular pathogens, but little is known about their role in leishmaniasis. We therefore studied expression of Gbp2b/Gbp1 and Gbp5 mRNA in skin, inguinal lymph nodes, spleen, and liver after Leishmania major infection and in uninfected controls. We used two different groups of related mouse strains: BALB/c, STS, and CcS-5, CcS-16, and CcS-20 that carry different combinations of BALB/c and STS genomes, and strains O20, C57BL/10 (B10) and B10.O20, OcB-9, and OcB-43 carrying different combinations of O20 and B10 genomes. The strains were classified on the basis of size and number of infection-induced skin lesions as highly susceptible (BALB/c, CcS-16), susceptible (B10.O20), intermediate (CcS-20), and resistant (STS, O20, B10, OcB-9, OcB-43). Some uninfected strains differed in expression of Gbp2b/Gbp1 and Gbp5, especially of Gbp2b/Gbp1 in skin. Uninfected BALB/c and STS did not differ in their expression, but in CcS-5, CcS-16, and CcS-20, which all carry BALB/c-derived Gbp gene-cluster, expression of Gbp2b/Gbp1 exceeds that of both parents. These data indicate trans-regulation of Gbps. Infection resulted in approximately 10× upregulation of Gbp2b/Gbp1 and Gbp5 mRNAs in organs of both susceptible and resistant strains, which was most pronounced in skin. CcS-20 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin, whereas CcS-16 expressed higher level of Gbp2b/Gbp1 than both parental strains in skin and liver. This indicates a trans-regulation present in infected mice CcS-16 and CcS-20. Immunostaining of skin of five strains revealed in resistant and intermediate strains STS, CcS-5, O20, and CcS-20 tight co-localization of Gbp2b/Gbp1 protein with most L. major parasites, whereas in the highly susceptible strain, BALB/c most parasites did not associate with Gbp2b/Gbp1. In conclusion, expression of

  7. Human milk galectin-3 binding protein and breast-feeding-associated HIV transmission.

    PubMed

    Chan, Christina S; Kim, Hae-Young; Autran, Chloe; Kim, Jae H; Sinkala, Moses; Kankasa, Chipepo; Mwiya, Mwiya; Thea, Donald M; Aldrovandi, Grace M; Kuhn, Louise; Bode, Lars

    2013-12-01

    Analysis of milk from 247 HIV-infected Zambian mothers showed that galectin-3 binding protein concentrations were significantly higher among HIV-infected mothers who transmitted HIV through breast-feeding (6.51 ± 2.12 μg/mL) than among nontransmitters but were also correlated with higher milk and plasma HIV RNA copies/mL and lower CD4+ cell counts. The association between galectin-3 binding protein and postnatal transmission was attenuated after adjustment for milk and plasma HIV load and CD4+ cell counts. This suggests that although milk galectin-3 binding protein is a marker of advanced maternal disease, it does not independently modify transmission risk.

  8. Thermodynamic characterization of two homologous protein complexes: Associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1

    PubMed Central

    Hota, Prasanta K; Buck, Matthias

    2009-01-01

    Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin-B1 and mapped its binding interface with several Rho-GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase–RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin-B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin-B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin-B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation. PMID:19388051

  9. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  10. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.

  11. Somatomedin-1 binding protein-3: insulin-like growth factor-1 binding protein-3, insulin-like growth factor-1 carrier protein.

    PubMed

    2003-01-01

    Somatomedin-1 binding protein-3 [insulin-like growth factor-1 binding protein-3, SomatoKine] is a recombinant complex of insulin-like growth factor-1 (rhIGF-1) and binding protein-3 (IGFBP-3), which is the major circulating somatomedin (insulin-like growth factor) binding protein; binding protein-3 regulates the delivery of somatomedin-1 to target tissues. Somatomedin-1 binding protein-3 has potential as replacement therapy for somatomedin-1 which may become depleted in indications such as major surgery, organ damage/failure and traumatic injury, resulting in catabolism. It also has potential for the treatment of osteoporosis; diseases associated with protein wasting including chronic renal failure, cachexia and severe trauma; and to attenuate cardiac dysfunction in a variety of disease states, including after severe burn trauma. Combined therapy with somatomedin-1 and somatomedin-1 binding protein-3 would prolong the duration of action of somatomedin-1 and would reduce or eliminate some of the undesirable effects associated with somatomedin-1 monotherapy. Somatomedin-1 is usually linked to binding protein-3 in the normal state of the body, and particular proteases clip them apart in response to stresses and release somatomedin-1 as needed. Therefore, somatomedin-1 binding protein-3 is a self-dosing system and SomatoKine would augment the natural supply of these linked compounds. Somatomedin-1 binding protein-3 was developed by Celtrix using its proprietary recombinant protein production technology. Subsequently, Celtrix was acquired by Insmed Pharmaceuticals on June 1 2000. Insmed and Avecia, UK, have signed an agreement for the manufacturing of SomatoKine and its components, IGF-1 and binding protein-3. CGMP clinical production of SomatoKine and its components will be done in Avecia's Advanced Biologics Centre, Billingham, UK, which manufactures recombinant-based medicines and vaccines with a capacity of up to 1000 litres. In 2003, manufacturing of SomatoKine is

  12. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    PubMed

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  13. Fine Specificity of Plasmodium vivax Duffy Binding Protein Binding Engagement of the Duffy Antigen on Human Erythrocytes

    PubMed Central

    Siddiqui, Asim A.; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L.; Foley, Michael; Adams, John H.

    2012-01-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax. PMID:22615246

  14. Fine specificity of Plasmodium vivax Duffy binding protein binding engagement of the Duffy antigen on human erythrocytes.

    PubMed

    Siddiqui, Asim A; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L; Foley, Michael; Adams, John H; King, Christopher L

    2012-08-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax.

  15. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein.

    PubMed

    Wallis, Christopher P; Richman, Tara R; Filipovska, Aleksandra; Rackham, Oliver

    2018-06-15

    It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.

  16. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance.

    PubMed

    Nitschke, Lars

    2014-09-01

    CD22 and Siglec-G are two B-cell expressed members of the Siglec (sialic acid-binding immunoglobulin (Ig)-like lectin) family and are potent inhibitors of B-cell signaling. Genetic approaches have provided evidence that this inhibition of B-cell antigen receptor (BCR) signaling by Siglecs is dependent on ligand binding to sialic acids in specific linkages. The cis-ligand-binding activity of CD22 leads to homo-oligomer formation, which are to a large extent found in membrane domains that are distinct from those containing the BCR. In contrast, Siglec-G is recruited via sialic acid binding to the BCR. This interaction of Siglec-G with mIgM leads to an inhibitory function that seems to be specific for B-1 cells. Both CD22 and Siglec-G control B-cell tolerance and loss of these proteins, its ligands or its inhibitory pathways can increase the susceptibility for autoimmune diseases. CD22 is a target protein both in B-cell leukemias and lymphomas, as well as in B-cell mediated autoimmune diseases. Both antibodies and synthetic chemically modified sialic acids are currently tested to target Siglecs on B cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Stoichiometry of maltodextrin-binding sites in LamB, an outer membrane protein from Escherichia coli.

    PubMed Central

    Gehring, K; Cheng, C H; Nikaido, H; Jap, B K

    1991-01-01

    We have directly measured the stoichiometry of maltodextrin-binding sites in LamB. Scatchard plots and computer fitting of flow dialysis (rate-of-dialysis) experiments clearly establish three independent binding sites per LamB trimer, with a dissociation constant of approximately 60 microM for maltoheptaose. The current model for LamB's function as a specific pore is discussed with respect to the symmetry in LamB's kinetic properties and the implications of our results. Images PMID:2001992

  18. Insights into the nature of DNA binding of AbrB-like transcription factors

    PubMed Central

    Sullivan, Daniel M.; Bobay, Benjamin G.; Kojetin, Douglas J.; Thompson, Richele J.; Rance, Mark; Strauch, Mark A.; Cavanagh, John

    2008-01-01

    Summary Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these ‘transition-state regulator’ proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel shift assays, mutagenic and NMR studies to generate a structural model of the complex between AbrBN55 and its cognate promoter, abrB8. These investigations have enabled us to generate the first model for the specific nature of the transition-state regulator-DNA interaction. PMID:19000822

  19. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  20. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  1. Autoinhibition and signaling by the switch II motif in the G-protein chaperone of a radical B12 enzyme.

    PubMed

    Lofgren, Michael; Koutmos, Markos; Banerjee, Ruma

    2013-10-25

    MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.

  2. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein. Characterization and regulation by uridine and guanosine nucleotides

    PubMed Central

    Jørgensen, Casper Møller; Fields, Christopher J.; Chander, Preethi; Watt, Desmond; Burgner, John W.; Smith, Janet L.; Switzer, Robert L.

    2011-01-01

    Summary The PyrR protein regulates expression of pyrimidine biosynthetic (pyr) genes in many bacteria. PyrR binds to specific sites in the 5’ leader RNA of target operons and favors attenuation of transcription. Filter binding and gel mobility assays were used to characterize the binding of PyrR from Bacillus caldolyticus to RNA sequences (binding loops) from the three attenuation regions of the B. caldolyticus pyr operon. Binding of PyrR to the three binding loops and modulation of RNA binding by nucleotides was similar for all three RNAs. Apparent dissociation constants at 0° C ranged from 0.13 to 0.87 nM in the absence of effectors; dissociation constants were decreased by 3 to 12 fold by uridine nucleotides and increased by 40 to 200 fold by guanosine nucleotides. The binding data suggest that pyr operon expression is regulated by the ratio of intracellular uridine nucleotides to guanosine nucleotides; the effects of nucleoside addition to the growth medium on aspartate transcarbamylase (pyrB) levels in B. subtilis cells in vivo supported this conclusion. Analytical ultracentrifugation established that RNA binds to dimeric PyrR, even though the tetrameric form of unbound PyrR predominates in solution at the concentrations studied. PMID:18190533

  3. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies

    PubMed Central

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. IMPORTANCE Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene

  4. Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies.

    PubMed

    Boivin, Teela; Elmgren, Cathie; Brooks, Brian W; Huang, Hongsheng; Pagotto, Franco; Lin, Min

    2016-11-15

    Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene coding for Listeria

  5. A major integral protein of the plant plasma membrane binds flavin.

    PubMed

    Lorenz, Astrid; Kaldenhoff, Ralf; Hertel, Rainer

    2003-05-01

    Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor.

  6. Combined vitamin B-12 and balanced protein-energy supplementation affect homocysteine remethylation in the methionine cycle in pregnant south Indian women of low vitamin B-12 status

    USDA-ARS?s Scientific Manuscript database

    Low-quality dietary protein intake and vitamin B-12 deficiency could interact to decrease methionine transmethylation and remethylation rates during pregnancy, and may affect epigenetic modifications of the fetal genome. The objective of this randomized, partially open-labeled intervention trial was...

  7. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins

    PubMed Central

    Kfoury, N.; Kapatos, G.

    2009-01-01

    CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292

  8. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different.

    PubMed

    Gileva, Irina P; Nepomnyashchikh, Tatiana S; Antonets, Denis V; Lebedev, Leonid R; Kochneva, Galina V; Grazhdantseva, Antonina V; Shchelkunov, Sergei N

    2006-11-01

    Tumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains. Sequence analyses demonstrated a high homology of these proteins. The regions homologous to cd00185 domain of the TNF receptor family, determining the specificity of ligand-receptor binding, were found in the sequences of CrmB proteins. In addition, a comparative analysis of the C-terminal SECRET domain sequences of CrmB proteins was performed. The differences in the amino acid sequences of these domains characteristic of each particular orthopoxvirus species were detected. It was assumed that the species-specific distinctions between the CrmB proteins might underlie the differences in these physicochemical and biological properties. The individual recombinant proteins VARV-CrmB, MPXV-CrmB, and CPXV-CrmB were synthesized in a baculovirus expression system in insect cells and isolated. Purified VARV-CrmB was detectable as a dimer with a molecular weight of 90 kDa, while MPXV- and CPXV-CrmBs, as monomers when fractioned by non-reducing SDS-PAGE. The CrmB proteins of VARV, MPXV, and CPXV differed in the efficiencies of inhibition of the cytotoxic effects of human, mouse, or rabbit TNFs in L929 mouse fibroblast cell line. Testing of CrmBs in the experimental model of LPS-induced shock using SPF BALB/c mice detected a pronounced protective effect of VARV-CrmB. Thus, our data demonstrated the difference in anti-TNF activities of VARV-, MPXV-, and CPXV-CrmBs and efficiency of VARV-CrmB rather than CPXV- or MPXV-CrmBs against LPS-induced mortality in mice.

  9. Mechanism of DNA binding enhancement by hepatitis B virus protein pX.

    PubMed

    Palmer, C R; Gegnas, L D; Schepartz, A

    1997-12-09

    At least three hundred million people worldwide are infected with the hepatitis B virus (HBV), and epidemiological studies show a clear correlation between chronic HBV infection and the development of hepatocellular carcinoma. HBV encodes a protein, pX, which abducts the cellular transcriptional machinery in several ways including direct interactions with bZIP transcription factors. These interactions increase the DNA affinities of target bZIP proteins in a DNA sequence-dependent manner. Here we use a series of bZIP peptide models to explore the mechanism by which pX interacts with bZIP proteins. Our results suggest that pX increases bZIP.DNA stability by increasing the stability of the bZIP dimer as well as the affinity of the dimer for DNA. Additional experiments provide evidence for a mechanism in which pX recognizes the composite structure of the peptide.DNA complex, not simply the primary peptide sequence. These experiments provide a framework for understanding how pX alters the patterns of transcription within the nucleus. The similarities between the mechanism proposed for pX and the mechanism previously proposed for the human T-cell leukemia virus protein Tax are discussed.

  10. Clinical role of protein binding of quinolones.

    PubMed

    Bergogne-Bérézin, Eugénie

    2002-01-01

    Protein binding of antibacterials in plasma and tissues has long been considered a component of their pharmacokinetic parameters, playing a potential role in distribution, excretion and therapeutic effectiveness. Since the beginning of the 'antibacterial era', this factor has been extensively analysed for all antibacterial classes, showing that wide variations of the degree of protein binding occur even in the same antibacterial class, as with beta-lactams. As the understanding of protein binding grew, the complexity of the binding system was increasingly perceived and its dynamic character described. Studies of protein binding of the fluoroquinolones have shown that the great majority of these drugs exhibit low protein binding, ranging from approximately 20 to 40% in plasma, and that they are bound predominantly to albumin. The potential role in pharmacokinetics-pharmacodynamics of binding of fluoroquinolones to plasma, tissue and intracellular proteins has been analysed, but it has not been established that protein binding has any significant direct or indirect impact on therapeutic effectiveness. Regarding the factors influencing the tissue distribution of antibacterials, physicochemical characteristics and the small molecular size of fluoroquinolones permit a rapid penetration into extravascular sites and intracellularly, with a rapid equilibrium being established between intravascular and extravascular compartments. The high concentrations of these drugs achieved in tissues, body fluids and intracellularly, in addition to their wide antibacterial spectrum, mean that fluoroquinolones have therapeutic effectiveness in a large variety of infections. The tolerability of quinolones has generally been reported as good, based upon long experience in using pefloxacin, ciprofloxacin and ofloxacin in clinical practice. Among more recently developed molecules, good tolerability has been reported for levofloxacin, moxifloxacin and gatifloxacin, but certain other new

  11. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    PubMed

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells.

    PubMed

    Senga, Shogo; Kobayashi, Narumi; Kawaguchi, Koichiro; Ando, Akira; Fujii, Hiroshi

    2018-06-12

    Fatty acid-binding proteins (FABPs) are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting them to the appropriate compartments in the cell. Epidermal fatty acid-binding protein (FABP5) is an intracellular lipid-binding protein that is abundantly expressed in adipocytes and macrophages. Previous studies have revealed that the FABP5 expression level is closely related to malignancy in various types of cancer. However, its precise functions in the metabolisms of cancer cells remain unclear. Here, we revealed that FABP5 knockdown significantly induced downregulation of the genes expression, such as hormone-sensitive lipase (HSL), monoacylglycerol lipase (MAGL), elongation of long-chain fatty acid member 6 (Elovl6), and acyl-CoA synthetase long-chain family member 1 (ACSL1), which are involved in altered lipid metabolism, lipolysis, and de novo FA synthesis in highly aggressive prostate and breast cancer cells. Moreover, we demonstrated that FABP5 induced inflammation and cytokine production through the nuclear factor-kappa B signaling pathway activated by reactive oxygen species and protein kinase C in PC-3 and MDA-MB-231 cells. Thus, FABP5 might regulate lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness, survival, and inflammation in prostate and breast cancer cells. In the present study, we have revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells. Copyright © 2018. Published by Elsevier B.V.

  13. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study.

    PubMed

    Xue, Tuo; Song, Chunnian; Wang, Qing; Wang, Yan; Chen, Guangju

    2016-01-01

    The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA.

  14. Nuclear carbonic anhydrase 6B associates with PRMT5 to epigenetically promote IL-12 expression in innate response.

    PubMed

    Xu, Jia; Xu, Xiaoqing; Wang, Bingjing; Ma, Yuanwu; Zhang, Lianfeng; Xu, Henan; Hu, Ye; Wu, Jiacheng; Cao, Xuetao

    2017-08-08

    Interleukin-12 (IL-12) is critical for induction of protective immunity against intracellular bacterial infection. However, the mechanisms for efficient induction of IL-12 in innate response remain poorly understood. Here we report that the B type of carbonic anhydrase 6 ( Car6-b , which encoded CA-VI B) is essential for host defense against Listeria monocytogenes (LM) infection by epigenetically promoting IL-12 expression independent of its carbonic anhydrase activity. Deficiency of Car6-b attenuated IL-12 production upon LM infection both in vitro and in vivo. Car6 -/- mice were more susceptible to LM infection with less production of IL-12. Mechanistically, the nuclear localized CA-VI B selectively promotes IL-12 expression by interaction with protein arginine N -methyltransferase 5 (PRMT5), which reduces symmetric dimethylation of histone H3 arginine 8 modification (H3R8me2s) at Il12 promoters to facilitate chromatin accessibility, selectively enhancing c-Rel binding to the Il12b promoter. Our findings add insights to the epigenetic regulation of IL-12 induction in innate immunity.

  15. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    PubMed

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  16. The complexity of minocycline serum protein binding.

    PubMed

    Zhou, Jian; Tran, Brian T; Tam, Vincent H

    2017-06-01

    Serum protein binding is critical for understanding the pharmacology of antimicrobial agents. Tigecycline and eravacycline were previously reported to have atypical non-linear protein binding; the percentage of free fraction decreased with increasing total concentration. In this study, we extended the investigation to other tetracyclines and examined the factors that might impact protein binding. Different minocycline concentrations (0.5-50 mg/L) and perfusion media (saline, 0.1 M HEPES buffer and 0.1 and 1 M PBS) were examined by in vitro microdialysis. After equilibration, two dialysate samples were taken from each experiment and the respective antimicrobial agent concentrations were analysed by validated LC-MS/MS methods. For comparison, the serum protein bindings of doxycycline and levofloxacin were also determined. The free fraction of minocycline decreased with increasing total concentration, and the results depended on the perfusion media used. The trends of minocycline protein binding in mouse and human sera were similar. In addition, serum protein binding of doxycycline showed the same concentration-dependent trend as minocycline, while the results of levofloxacin were concentration independent. The serum protein bindings of minocycline and doxycycline are negatively correlated with their total concentrations. It is possible that all tetracyclines share the same pharmacological property. Moreover, the specific perfusion media used could also impact the results of microdialysis. Additional studies are warranted to understand the mechanism(s) and clinical implications of serum protein binding of tetracyclines. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    PubMed

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  19. Expression of calcium-binding proteins S100A8, S100A9 and S100A12 in otitis media.

    PubMed

    Hong, Wenzhou; Khampang, Pawjai; Samuels, Tina L; Kerschner, Joseph E; Yan, Ke; Simpson, Pippa

    2017-10-01

    Calgranulins (calcium-binding proteins S100A8, S100A9 and S100A12) are predominant cytoplasmic proteins of neutrophils and produced by various cells, playing multiple functions in innate immunity and the inflammatory process. Although up-regulated expression of S100A8 and S100A9 genes were observed in an animal model of otitis media (OM), their expressions have not been studied in human middle ear epithelial cells in response to the OM pathogen or in patients with recurrent or chronic OM (recurrent OM/RecOM or chronic OM with effusion/COME). Gene expressions were compared between Streptococcus pneumoniae (SP)-infected and non-infected human middle ear epithelial cells (HMEECs) as well as between chronic OM patients and control patients (CI). Gene expressions were profiled by quantitative real time PCR (qPCR). S100 proteins in OM patient and CI middle ear biopsies were detected by immunostaining. S100A8, S100A9 and S100A12 gene expressions were elevated in SP-infected HMEECs in time-dependent manner. S100A8 and S100A9 but not S100A12 gene expression was significantly elevated in the middle ear mucosa of OM patients. S100A8 and S100A9 protein were observed in middle ear mucosa of OM, but not CI patients. Minimal co-localization was observed between S100A8 and S100A9 with neutrophil elastase and cytokeratin in ME sections of OM patients. Elevated S100A8 and S100A9 gene expression in SP-infected HMEECs and in the middle ear mucosa of OM, minor co-localized with neutrophil markers suggests that middle ear epithelial cell secretion of S100A8 and S100A9 may play a role in the pathogenesis of recurrent and chronic OM. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surface properties of adipocyte lipid-binding protein: Response to lipid binding, and comparison with homologous proteins.

    PubMed

    LiCata, V J; Bernlohr, D A

    1998-12-01

    Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the

  1. Sterol Carrier Protein-2: Binding Protein for Endocannabinoids

    PubMed Central

    Liedhegner, Elizabeth Sabens; Vogt, Caleb D.; Sem, Daniel S.; Cunningham, Christopher W.

    2015-01-01

    The endocannabinoid (eCB) system, consisting of eCB ligands and the type 1 cannabinoid receptor (CB1R), subserves retrograde, activity-dependent synaptic plasticity in the brain. eCB signaling occurs “on-demand,” thus the processes regulating synthesis, mobilization and degradation of eCBs are also primary mechanisms for the regulation of CB1R activity. The eCBs, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are poorly soluble in water. We hypothesize that their aqueous solubility, and, therefore, their intracellular and transcellular distribution, are facilitated by protein binding. Using in silico docking studies, we have identified the nonspecific lipid binding protein, sterol carrier protein 2 (SCP-2), as a potential AEA binding protein. The docking studies predict that AEA and AM404 associate with SCP-2 at a putative cholesterol binding pocket with ΔG values of −3.6 and −4.6 kcal/mol, respectively. These values are considerably higher than cholesterol (−6.62 kcal/mol) but consistent with a favorable binding interaction. In support of the docking studies, SCP-2-mediated transfer of cholesterol in vitro is inhibited by micromolar concentrations of AEA; and heterologous expression of SCP-2 in HEK 293 cells increases time-related accumulation of AEA in a temperature-dependent fashion. These results suggest that SCP-2 facilitates cellular uptake of AEA. However, there is no effect of SCP-2 transfection on the cellular accumulation of AEA determined at equilibrium or the IC50 values for AEA, AM404 or 2-AG to inhibit steady state accumulation of radiolabelled AEA. We conclude that SCP-2 is a low affinity binding protein for AEA that can facilitate its cellular uptake but does not contribute significantly to intracellular sequestration of AEA. PMID:24510313

  2. Disulfide-mediated stabilization of the IκB kinase binding domain of NF-κB essential modulator (NEMO).

    PubMed

    Zhou, Li; Yeo, Alan T; Ballarano, Carmine; Weber, Urs; Allen, Karen N; Gilmore, Thomas D; Whitty, Adrian

    2014-12-23

    Human NEMO (NF-κB essential modulator) is a 419 residue scaffolding protein that, together with catalytic subunits IKKα and IKKβ, forms the IκB kinase (IKK) complex, a key regulator of NF-κB pathway signaling. NEMO is an elongated homodimer comprising mostly α-helix. It has been shown that a NEMO fragment spanning residues 44-111, which contains the IKKα/β binding site, is structurally disordered in the absence of bound IKKβ. Herein we show that enforcing dimerization of NEMO1-120 or NEMO44-111 constructs through introduction of one or two interchain disulfide bonds, through oxidation of the native Cys54 residue and/or at position 107 through a Leu107Cys mutation, induces a stable α-helical coiled-coil structure that is preorganized to bind IKKβ with high affinity. Chemical and thermal denaturation studies showed that, in the context of a covalent dimer, the ordered structure was stabilized relative to the denatured state by up to 3 kcal/mol. A full-length NEMO-L107C protein formed covalent dimers upon treatment of mammalian cells with H2O2. Furthermore, NEMO-L107C bound endogenous IKKβ in A293T cells, reconstituted TNF-induced NF-κB signaling in NEMO-deficient cells, and interacted with TRAF6. Our results indicate that the IKKβ binding domain of NEMO possesses an ordered structure in the unbound state, provided that it is constrained within a dimer as is the case in the constitutively dimeric full-length NEMO protein. The stability of the NEMO coiled coil is maintained by strong interhelix interactions in the region centered on residue 54. The disulfide-linked constructs we describe herein may be useful for crystallization of NEMO's IKKβ binding domain in the absence of bound IKKβ, thereby facilitating the structural characterization of small-molecule inhibitors.

  3. Structure and Function of Lipopolysaccharide Binding Protein

    NASA Astrophysics Data System (ADS)

    Schumann, Ralf R.; Leong, Steven R.; Flaggs, Gail W.; Gray, Patrick W.; Wright, Samuel D.; Mathison, John C.; Tobias, Peter S.; Ulevitch, Richard J.

    1990-09-01

    The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.

  4. Roles of Copper-Binding Proteins in Breast Cancer.

    PubMed

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  5. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  6. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells

    PubMed Central

    Hsieh, Ching-Lin; Tseng, Andrew; He, Hongxuan; Kuo, Chih-Jung; Wang, Xuannian; Chang, Yung-Fu

    2017-01-01

    Leptospira immunoglobulin-like protein B (LigB), a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM). Human tropoelastin (HTE), the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N). Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38) by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis. PMID:28536676

  7. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  8. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation.

    PubMed

    Wong, Joyce J W; Young, Tracy A; Zhang, Jiayan; Liu, Shiheng; Leser, George P; Komives, Elizabeth A; Lamb, Robert A; Zhou, Z Hong; Salafsky, Joshua; Jardetzky, Theodore S

    2017-10-03

    Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.

  9. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-10-25

    We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D  = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.

  10. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.

    PubMed

    Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G

    2015-11-02

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.

  11. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions

    PubMed Central

    Gillette, William K.; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H.; Grose, Carissa; Jones, Jane E.; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V.; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G.

    2015-01-01

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer’s disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5–10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ. PMID:26522388

  12. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease.

    PubMed

    Zhou, Jingran; Wu, Ruiqiong; High, Anthony A; Slaughter, Clive A; Finkelstein, David; Rehg, Jerold E; Redecke, Vanessa; Häcker, Hans

    2011-11-01

    Toll-like receptors (TLRs) are expressed on innate immune cells and trigger inflammation upon detection of pathogens and host tissue injury. TLR-mediated proinflammatory-signaling pathways are counteracted by partially characterized anti-inflammatory mechanisms that prevent exaggerated inflammation and host tissue damage as manifested in inflammatory diseases. We biochemically identified a component of TLR-signaling pathways, A20-binding inhibitor of NF-κB (ABIN1), which recently has been linked by genome-wide association studies to the inflammatory diseases systemic lupus erythematosus and psoriasis. We generated ABIN1-deficient mice to study the function of ABIN1 in vivo and during TLR activation. Here we show that ABIN1-deficient mice develop a progressive, lupus-like inflammatory disease characterized by expansion of myeloid cells, leukocyte infiltrations in different parenchymatous organs, activated T and B lymphocytes, elevated serum Ig levels, and the appearance of autoreactive antibodies. Kidneys develop glomerulonephritis and proteinuria, reflecting tissue injury. Surprisingly, ABIN1-deficient macrophages exhibit normal regulation of major proinflammatory signaling pathways and mediators but show selective deregulation of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) and its target genes, such as colony-stimulating factor 3 (Csf3), nitric oxide synthase, inducible (Nos2), and S100 calcium-binding protein A8 (S100a8). Their gene products, which are intimately linked to innate immune cell expansion (granulocyte colony-stimulating factor), cytotoxicity (inducible nitric oxide synthase), and host factor-derived inflammation (S100A8), may explain, at least in part, the inflammatory phenotype observed. Together, our data reveal ABIN1 as an essential anti-inflammatory component of TLR-signaling pathways that controls C/EBPβ activity.

  13. Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.

    PubMed

    Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K

    2006-11-01

    We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.

  14. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  15. Identification of a group of Haemophilus influenzae penicillin-binding proteins that may have complementary physiological roles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malouin, F.; Parr, T.R. Jr.; Bryan, L.E.

    (35S)penicillin bound to different Haemophilus influenzae proteins in assays performed at 20, 37, or 42{degrees}C. Penicillin-binding proteins 3a, 3b, 4, and 4' formed a group characterized by their affinity for moxalactam, cefotaxime, and piperacillin. Penicillin-binding protein 4' showed specific properties that may reflect its complementary role in septation.

  16. Isolation from genomic DNA of sequences binding specific regulatory proteins by the acceleration of protein electrophoretic mobility upon DNA binding.

    PubMed

    Subrahmanyam, S; Cronan, J E

    1999-01-21

    We report an efficient and flexible in vitro method for the isolation of genomic DNA sequences that are the binding targets of a given DNA binding protein. This method takes advantage of the fact that binding of a protein to a DNA molecule generally increases the rate of migration of the protein in nondenaturing gel electrophoresis. By the use of a radioactively labeled DNA-binding protein and nonradioactive DNA coupled with PCR amplification from gel slices, we show that specific binding sites can be isolated from Escherichia coli genomic DNA. We have applied this method to isolate a binding site for FadR, a global regulator of fatty acid metabolism in E. coli. We have also isolated a second binding site for BirA, the biotin operon repressor/biotin ligase, from the E. coli genome that has a very low binding efficiency compared with the bio operator region.

  17. Visualization of hormone binding proteins in vivo based on Mn-doped CdTe QDs

    NASA Astrophysics Data System (ADS)

    Liu, Fang fei; Yu, Ying; Lin, Bi xia; Hu, Xiao gang; Cao, Yu juan; Wu, Jian zhong

    2014-10-01

    Daminozide (B9) is a growth inhibitor with important regulatory roles in plant growth and development. Locating and quantifying B9-binding proteins in plant tissues will assist in investigating the mechanism behind the signal transduction of B9. In this study, red fluorescent Mn-doped CdTe quantum dots (CdTeMn QDs) were synthesized by a high-temperature hydrothermal process. Since CdTeMn QDs possess a maximum fluorescence emission peak at 610 nm, their fluorescence properties are more stable than those of CdTe QDs. A B9-CdTeMn probe was synthesized by coupling B9 with CdTeMn QDs. The fluorescence intensity of the probe is double that of CdTeMn QDs; its fluorescence stability is also superior under different ambient conditions. The probe retains the biological activity of B9 and is unaffected by interference from the green fluorescent protein present in plants. Therefore, we used this probe to label B9-binding proteins selectively in root tissue sections of mung bean seedlings. These proteins were observed predominantly on the surfaces of the cell membranes of the cortex and epidermal parenchyma.

  18. Three-dimensional (3D) structure prediction and function analysis of the chitin-binding domain 3 protein HD73_3189 from Bacillus thuringiensis HD73.

    PubMed

    Zhan, Yiling; Guo, Shuyuan

    2015-01-01

    Bacillus thuringiensis (Bt) is capable of producing a chitin-binding protein believed to be functionally important to bacteria during the stationary phase of its growth cycle. In this paper, the chitin-binding domain 3 protein HD73_3189 from B. thuringiensis has been analyzed by computer technology. Primary and secondary structural analyses demonstrated that HD73_3189 is negatively charged and contains several α-helices, aperiodical coils and β-strands. Domain and motif analyses revealed that HD73_3189 contains a signal peptide, an N-terminal chitin binding 3 domains, two copies of a fibronectin-like domain 3 and a C-terminal carbohydrate binding domain classified as CBM_5_12. Moreover, analysis predicted the protein's associated localization site to be the cell wall. Ligand site prediction determined that amino acid residues GLU-312, TRP-334, ILE-341 and VAL-382 exposed on the surface of the target protein exhibit polar interactions with the substrate.

  19. New Binding Mode to TNF-Alpha Revealed by Ubiquitin-Based Artificial Binding Protein

    PubMed Central

    Hoffmann, Andreas; Kovermann, Michael; Lilie, Hauke; Fiedler, Markus; Balbach, Jochen; Rudolph, Rainer; Pfeifer, Sven

    2012-01-01

    A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1∶3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins – designed ankyrin repeat proteins – without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies. PMID:22363609

  20. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  1. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  2. Metal-binding proteins as metal pollution indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effectsmore » on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.« less

  3. Phage display of engineered binding proteins.

    PubMed

    Levisson, Mark; Spruijt, Ruud B; Winkel, Ingrid Nolla; Kengen, Servé W M; van der Oost, John

    2014-01-01

    In current purification processes optimization of the capture step generally has a large impact on cost reduction. At present, valuable biomolecules are often produced in relatively low concentrations and, consequently, the eventual selective separation from complex mixtures can be rather inefficient. A separation technology based on a very selective high-affinity binding may overcome these problems. Proteins in their natural environment manifest functionality by interacting specifically and often with relatively high affinity with other molecules, such as substrates, inhibitors, activators, or other proteins. At present, antibodies are the most commonly used binding proteins in numerous applications. However, antibodies do have limitations, such as high production costs, low stability, and a complex patent landscape. A novel approach is therefore to use non-immunoglobulin engineered binding proteins in affinity purification. In order to obtain engineered binders with a desired specificity, a large mutant library of the new to-be-developed binding protein has to be created and screened for potential binders. A powerful technique to screen and select for proteins with desired properties from a large pool of variants is phage display. Here, we indicate several criteria for potential binding protein scaffolds and explain the principle of M13 phage display. In addition, we describe experimental protocols for the initial steps in setting up a M13 phage display system based on the pComb3X vector, including construction of the phagemid vector, production of phages displaying the protein of interest, and confirmation of display on the M13 phage.

  4. Antifreeze Protein Binds Irreversibly to Ice

    NASA Astrophysics Data System (ADS)

    Braslavsky, I.; Pertaya, N.; di Prinzio, C. L.; Wilen, L.; Thomson, E.; Wettlaufer, J. S.; Marshall, C. B.; Davies, P. L.

    2006-03-01

    Many organisms are protected from freezing by antifreeze proteins (AFPs), which bind to ice and prevent its growth by a mechanism not completely understood. Although it has been postulated that AFPs would have to bind irreversibly to arrest the growth of an ice crystal bathed in excess liquid water, the binding forces seem insufficient to support such a tight interaction. By putting a fluorescent tag on a fish AFP, we were able to visualize AFP binding to ice and demonstrate, by lack of recovery after photo-bleaching, that it is indeed irreversible. Because even the most avid protein/ligand interactions exhibit reversibility, this finding is key to understanding the mechanism of antifreeze proteins, which are becoming increasingly valuable in cryopreservation and improving the frost tolerance of crops.

  5. Theoretical studies of protein-protein and protein-DNA binding rates

    NASA Astrophysics Data System (ADS)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  6. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA

    PubMed Central

    Mori, Tetsuya; Saveliev, Sergei V.; Xu, Yao; Stafford, Walter F.; Cox, Michael M.; Inman, Ross B.; Johnson, Carl H.

    2002-01-01

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecA/DnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecA/DnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns. PMID:12477935

  7. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    PubMed

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  8. Lactoferrin-binding proteins in Shigella flexneri.

    PubMed Central

    Tigyi, Z; Kishore, A R; Maeland, J A; Forsgren, A; Naidu, A S

    1992-01-01

    The ability of Shigella flexneri to interact with lactoferrin (Lf) was examined with a 125I-labeled protein-binding assay. The percent binding of human lactoferrin (HLf) and bovine lactoferrin (BLf) to 45 S. flexneri strains was 19 +/- 3 and 21 +/- 3 (mean +/- standard error of the mean), respectively. 125I-labeled HLf and BLf binding to strain M90T reached an equilibrium within 2 h. Unlabeled HLf and BLf displaced the 125I-HLf-bacteria interaction in a dose-dependent manner. The Lf-bacterium complex was uncoupled by KSCN or urea, but not by NaCl. The interaction was specific, and approximately 4,800 HLf binding sites (affinity constant [Ka], 690 nM) or approximately 5,700 BLf binding sites (Ka, 104 nM) per cell were estimated in strain M90T by a Scatchard plot analysis. The native cell envelope (CE) and outer membrane (OM) did not reveal Lf-binding components in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, after being boiled, the CE and OM preparations showed three distinct horseradish peroxidase-Lf reactive bands of about 39, 22, and 16 kDa. The 39-kDa component was also reactive to a monoclonal antibody specific for porin (PoI) proteins of members of the family Enterobacteriaceae. The Lf-binding protein pattern was similar with BLf or HLf, for Crb+ and Crb- strains. The protein-Lf complex was dissociable by KSCN or urea and was stable after treatment with NaCl. Variation (loss) in the O chain of lipopolysaccharide (LPS) markedly enhanced the Lf-binding capacity in the isogenic rough strain SFL1070-15 compared with its smooth parent strain, SFL1070. These data establish that Lf binds to specific components in the bacterial OM; the heat-modifiable, anti-PoI-reactive, and LPS-associated properties suggested that the Lf-binding proteins are porins in S. flexneri. Images PMID:1319403

  9. Mapping of ligand-binding cavities in proteins.

    PubMed

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.

  10. Mapping of Ligand-Binding Cavities in Proteins

    PubMed Central

    Andersson, C. David; Chen, Brian Y.; Linusson, Anna

    2010-01-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113

  11. Sequence-Based Prediction of RNA-Binding Residues in Proteins.

    PubMed

    Walia, Rasna R; El-Manzalawy, Yasser; Honavar, Vasant G; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein-RNA complexes is important for understanding the molecular determinants of protein-RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein-RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein-RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner.

  12. Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TU901.

    PubMed

    Campos-Olivas, R; Hörr, I; Bormann, C; Jung, G; Gronenborn, A M

    2001-05-11

    AFP1 is a recently discovered anti-fungal, chitin-binding protein from Streptomyces tendae Tü901. Mature AFP1 comprises 86 residues and exhibits limited sequence similarity to the cellulose-binding domains of bacterial cellulases and xylanases. No similarity to the Cys and Gly-rich domains of plant chitin-binding proteins (e.g. agglutinins, lectins, hevein) is observed. AFP1 is the first chitin-binding protein from a bacterium for which anti-fungal activity was shown. Here, we report the three-dimensional solution structure of AFP1, determined by nuclear magnetic resonance spectroscopy. The protein contains two antiparallel beta-sheets (five and four beta-strands each), that pack against each other in a parallel beta-sandwich. This type of architecture is conserved in the functionally related family II of cellulose-binding domains, albeit with different connectivity. A similar fold is also observed in other unrelated proteins (spore coat protein from Myxococcus xanthus, beta-B2 and gamma-B crystallins from Bos taurus, canavalin from Jack bean). AFP1 is therefore classified as a new member of the betagamma-crystallin superfamily. The dynamics of the protein was characterized by NMR using amide 15N relaxation and solvent exchange data. We demonstrate that the protein exhibits an axially symmetric (oblate-like) rotational diffusion tensor whose principal axis coincides to within 15 degrees with that of the inertial tensor. After completion of the present structure of AFP1, an identical fold was reported for a Streptomyces killer toxin-like protein. Based on sequence comparisons and clustering of conserved residues on the protein surface for different cellulose and chitin-binding proteins, we postulate a putative sugar-binding site for AFP1. The inability of the protein to bind short chitin fragments suggests that certain particular architectural features of the solid chitin surface are crucial for the interaction. Copyright 2001 Academic Press.

  13. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  14. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  15. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  16. SpyB, a small heme-binding protein, affects the composition of the cell wall in Streptococcus pyogenes

    DOE PAGES

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...

    2016-10-13

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less

  17. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes.

    PubMed

    Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.

  18. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Role of indirect readout mechanism in TATA box binding protein-DNA interaction.

    PubMed

    Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay

    2015-03-01

    Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.

  20. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.).

    PubMed

    Tian, Z; Zhang, Y

    2016-12-01

    A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment. © 2016 The Royal Entomological Society.

  1. Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer.

    PubMed

    Liang, Shuang; Hosur, Kavita B; Lu, Shanyun; Nawar, Hesham F; Weber, Benjamin R; Tapping, Richard I; Connell, Terry D; Hajishengallis, George

    2009-03-01

    The pentameric B subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B(5)), a doughnut-shaped oligomeric protein from enterotoxigenic E. coli, activates the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B(5) interaction with TLR2/1 to define the structure-function relationship of LT-IIb-B(5) and, moreover, to gain an insight into how TLR2/1 recognizes large, nonacylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam(3)CysSerLys(4) (Pam(3)CSK(4)) lipopeptide. We first identified four critical residues in the upper region of the LT-IIb-B(5) pore. Corresponding point mutants (M69E, A70D, L73E, S74D) were defective in binding TLR2 or TLR1 and could not activate APCs, despite retaining full ganglioside-binding capacity. Point mutations in the TLR2/1 dimer interface, as determined in the crystallographic structure of the TLR2/1-Pam(3)CSK(4) complex, resulted in diminished activation by both Pam(3)CSK(4) and LT-IIb-B(5). Docking analysis of the LT-IIb-B(5) interaction with this apparently predominant activation conformation of TLR2/1 revealed that LT-IIb-B(5) might primarily contact the convex surface of the TLR2 central domain. Although the TLR1/LT-IIb-B(5) interface is relatively smaller, the leucine-rich repeat motifs 9-12 in the central domain of TLR1 were found to be critical for cooperative TLR2-induced cell activation by LT-IIb-B(5). Moreover, the putative LT-IIb-B(5) binding site overlaps partially with that of Pam(3)CSK(4); consistent with this, Pam(3)CSK(4) suppressed TLR2 binding of LT-IIb-B(5), albeit not as potently as self-competitive inhibition. We identified the upper pore region of LT-IIb-B(5) as a TLR2/1 interactive domain, which contacts the heterodimeric receptor at a site that is distinct from, although it overlaps with, that of Pam(3)CSK(4).

  2. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  3. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  4. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    PubMed

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  5. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins.

    PubMed

    Raman, Rajeev; Rajanikanth, V; Palaniappan, Raghavan U M; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P; Sharma, Yogendra; Chang, Yung-Fu

    2010-12-29

    Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.

  6. Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302).

    PubMed

    Watanabe, Tanya A; Geary, Richard S; Levin, Arthur A

    2006-01-01

    In vitro ultrafiltration was used to determine the plasma protein-binding characteristics of phosphorothioate oligonucleotides (PS ODNs). Although there are binding data on multiple PS ODNs presented here, the focus of this research is on the protein-binding characteristics of ISIS 2302, a PS ODN targeting human intercellular adhesion molecule-1 (ICAM-1) mRNA, which is currently in clinical trials for the treatment of ulcerative colitis. ISIS 2302 was shown to be highly bound (> 97%) across species (mouse, rat, monkey, human), with the mouse having the least degree of binding. ISIS 2302 was highly bound to albumin and, to a lesser, extent alpha2-macroglobulin and had negligible binding to alpha1-acid glycoprotein. Ten shortened ODN metabolites (8, 10, and 12-19 nucleotides [nt] in length, truncated from the 3' end) were evaluated in human plasma. The degree of binding was reduced as the ODN metabolite length decreased. Three additional 20-nt (20-mer) PS ODNs (ISIS 3521, ISIS 2503, and ISIS 5132) of varying sequence but similar chemistry were evaluated. Although the tested PS ODNs were highly bound to plasma proteins, suggesting a commonality within the chemical class, these results suggested that the protein-binding characteristics in human plasma may be sequence dependent. Lastly, drug displacement studies with ISIS 2302 and other concomitant drugs with known protein-binding properties were conducted to provide information on potential drug interactions. Coadministered ISIS 2302 and other high-binding drugs evaluated in this study did not displace one another at supraclinical plasma concentrations and, thus, are not anticipated to cause any pharmacokinetic interaction in the clinic as a result of the displacement of binding to plasma proteins.

  7. Retinol Binding Protein 4 in Relation to Diet, Inflammation, Immunity, and Cardiovascular Diseases12

    PubMed Central

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-01-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine. PMID:26567199

  8. Proteomics of vitamin B12 processing.

    PubMed

    Hannibal, Luciana; DiBello, Patricia M; Jacobsen, Donald W

    2013-03-01

    The causes of cobalamin (B12, Cbl) deficiency are multifactorial. Whether nutritional due to poor dietary intake, or functional due to impairments in absorption or intracellular processing and trafficking events, the major symptoms of Cbl deficiency include megaloblastic anemia, neurological deterioration and in extreme cases, failure to thrive and death. The common biomarkers of Cbl deficiency (hyperhomocysteinemia and methylmalonic acidemia) are extremely valuable diagnostic indicators of the condition, but little is known about the changes that occur at the protein level. A mechanistic explanation bridging the physiological changes associated with functional B12 deficiency with its intracellular processers and carriers is lacking. In this article, we will cover the effects of B12 deficiency in a cblC-disrupted background (also referred to as MMACHC) as a model of functional Cbl deficiency. As will be shown, major protein changes involve the cytoskeleton, the neurological system as well as signaling and detoxification pathways. Supplementation of cultured MMACHC-mutant cells with hydroxocobalamin (HOCbl) failed to restore these variants to the normal phenotype, suggesting that a defective Cbl processing pathway produces irreversible changes at the protein level.

  9. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  11. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    PubMed

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. The Extracytoplasmic Domain of the Mycobacterium tuberculosis Ser/Thr Kinase PknB Binds Specific Muropeptides and Is Required for PknB Localization

    PubMed Central

    Mir, Mushtaq; Asong, Jinkeng; Li, Xiuru; Cardot, Jessica; Boons, Geert-Jan; Husson, Robert N.

    2011-01-01

    The Mycobacterium tuberculosis Ser/Thr kinase PknB has been implicated in the regulation of cell growth and morphology in this organism. The extracytoplasmic domain of this membrane protein comprises four penicillin binding protein and Ser/Thr kinase associated (PASTA) domains, which are predicted to bind stem peptides of peptidoglycan. Using a comprehensive library of synthetic muropeptides, we demonstrate that the extracytoplasmic domain of PknB binds muropeptides in a manner dependent on the presence of specific amino acids at the second and third positions of the stem peptide, and on the presence of the sugar moiety N-acetylmuramic acid linked to the peptide. We further show that PknB localizes strongly to the mid-cell and also to the cell poles, and that the extracytoplasmic domain is required for PknB localization. In contrast to strong growth stimulation by conditioned medium, we observe no growth stimulation of M. tuberculosis by a synthetic muropeptide with high affinity for the PknB PASTAs. We do find a moderate effect of a high affinity peptide on resuscitation of dormant cells. While the PASTA domains of PknB may play a role in stimulating growth by binding exogenous peptidoglycan fragments, our data indicate that a major function of these domains is for proper PknB localization, likely through binding of peptidoglycan fragments produced locally at the mid-cell and the cell poles. These data suggest a model in which PknB is targeted to the sites of peptidoglycan turnover to regulate cell growth and cell division. PMID:21829358

  13. The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization.

    PubMed

    Mir, Mushtaq; Asong, Jinkeng; Li, Xiuru; Cardot, Jessica; Boons, Geert-Jan; Husson, Robert N

    2011-07-01

    The Mycobacterium tuberculosis Ser/Thr kinase PknB has been implicated in the regulation of cell growth and morphology in this organism. The extracytoplasmic domain of this membrane protein comprises four penicillin binding protein and Ser/Thr kinase associated (PASTA) domains, which are predicted to bind stem peptides of peptidoglycan. Using a comprehensive library of synthetic muropeptides, we demonstrate that the extracytoplasmic domain of PknB binds muropeptides in a manner dependent on the presence of specific amino acids at the second and third positions of the stem peptide, and on the presence of the sugar moiety N-acetylmuramic acid linked to the peptide. We further show that PknB localizes strongly to the mid-cell and also to the cell poles, and that the extracytoplasmic domain is required for PknB localization. In contrast to strong growth stimulation by conditioned medium, we observe no growth stimulation of M. tuberculosis by a synthetic muropeptide with high affinity for the PknB PASTAs. We do find a moderate effect of a high affinity peptide on resuscitation of dormant cells. While the PASTA domains of PknB may play a role in stimulating growth by binding exogenous peptidoglycan fragments, our data indicate that a major function of these domains is for proper PknB localization, likely through binding of peptidoglycan fragments produced locally at the mid-cell and the cell poles. These data suggest a model in which PknB is targeted to the sites of peptidoglycan turnover to regulate cell growth and cell division.

  14. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    PubMed

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  16. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations.

    PubMed

    Solomentsev, Gleb; Diehl, Carl; Akke, Mikael

    2018-03-06

    FKBP12 (FK506 binding protein 12 kDa) is an important drug target. Nuclear magnetic resonance (NMR) order parameters, describing amplitudes of motion on the pico- to nanosecond time scale, can provide estimates of changes in conformational entropy upon ligand binding. Here we report backbone and methyl-axis order parameters of the apo and FK506-bound forms of FKBP12, based on 15 N and 2 H NMR relaxation. Binding of FK506 to FKBP12 results in localized changes in order parameters, notably for the backbone of residues E54 and I56 and the side chains of I56, I90, and I91, all positioned in the binding site. The order parameters increase slightly upon FK506 binding, indicating an unfavorable entropic contribution to binding of TΔ S = -18 ± 2 kJ/mol at 293 K. Molecular dynamics simulations indicate a change in conformational entropy, associated with all dihedral angles, of TΔ S = -26 ± 9 kJ/mol. Both these values are significant compared to the total entropy of binding determined by isothermal titration calorimetry and referenced to a reactant concentration of 1 mM ( TΔ S = -29 ± 1 kJ/mol). Our results reveal subtle differences in the response to ligand binding compared to that of the previously studied rapamycin-FKBP12 complex, despite the high degree of structural homology between the two complexes and their nearly identical ligand-FKBP12 interactions. These results highlight the delicate dependence of protein dynamics on drug interactions, which goes beyond the view provided by static structures, and reinforce the notion that protein conformational entropy can make important contributions to the free energy of ligand binding.

  17. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  18. Identification of poly(rC) binding protein 2 (PCBP2) as a target protein of immunosuppressive agent 15-deoxyspergualin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murahashi, Masataka; Simizu, Siro; Morioka, Masahiko

    15-Deoxyspergualin (DSG) is an immunosuppressive agent being clinically used. Unlike tacrolimus and cyclosporine A, it does not inhibit the calcineurin pathway, and its mechanism of action and target molecule have not been elucidated. Therefore, we previously prepared biotinylated derivative of DSG (BDSG) to fish up the target protein. In the present research, we identified poly(rC) binding protein 2 (PCBP2) as a DSG-binding protein using this probe. DSG was confirmed to bind to PCBP2 by pull-down assay. Intracellular localization of PCBP2 was changed from the nucleus to the cytoplasm by DSG treatment. DSG inhibited the cell growth, and over-expression of PCBP2more » reduced the anti-proliferative activity of DSG. PCBP2 is known to regulate various proteins including STAT1/2. Thus, we found PCBP2 as the first target protein of DSG that can explain the immunosuppressive activity. -- Highlights: •Fifteen-deoxyspergualin (DSG) is an immunosuppressive agent clinically used. •We have identified PCBP2, an RNA-binding protein, as a molecular target of DSG. •Alteration of PCBP2 activity may explain the immunosuppressive activity of DSG.« less

  19. The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.

    PubMed

    Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James

    2016-12-01

    RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).

  20. A novel assay to identify the trafficking proteins that bind to specific vesicle populations

    PubMed Central

    Bentley, Marvin; Banker, Gary

    2016-01-01

    Here we describe a method capable of identifying interactions between candidate trafficking proteins and a defined vesicle population in intact cells. The assay involves the expression of an FKBP12-rapamycin–binding domain (FRB)–tagged candidate vesicle-binding protein that can be inducibly linked to an FKBP-tagged molecular motor. If the FRB-tagged candidate protein binds the labeled vesicles, then linking the FRB and FKBP domains recruits motors to the vesicles and causes a predictable, highly distinctive change in vesicle trafficking. We describe two versions of the assay: a general protocol for use in cells with a typical microtubule-organizing center and a specialized protocol designed to detect protein-vesicle interactions in cultured neurons. We have successfully used this assay to identify kinesins and Rabs that bind to a variety of different vesicle populations. In principle, this assay could be used to investigate interactions between any category of vesicle trafficking proteins and any vesicle population that can be specifically labeled. PMID:26621371

  1. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  2. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  3. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  4. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement of...

  5. Molecular dynamics simulation of S100B protein to explore ligand blockage of the interaction with p53 protein

    NASA Astrophysics Data System (ADS)

    Zhou, Zhigang; Li, Yumin

    2009-10-01

    As a tumor suppressor, p53 plays an important role in cancer suppression. The biological function of p53 as a tumor suppressor is disabled when it binds to S100B. Developing the ligands to block the S100B-p53 interaction has been proposed as one of the most important approaches to the development of anti-cancer agents. We screened a small compound library against the binding interface of S100B and p53 to identify potential compounds to interfere with the interaction. The ligand-binding effect on the S100B-p53 interaction was explored by molecular dynamics at the atomic level. The results show that the ligand bound between S100B and p53 propels the two proteins apart by about 2 Å compared to the unligated S100B-p53 complex. The binding affinity of S100B and p53 decreases by 8.5-14.6 kcal/mol after a ligand binds to the interface from the original unligated state of the S100B-p53 complex. Ligand-binding interferes with the interaction of S100B and p53. Such interference could impact the association of S100B and p53, which would free more p53 protein from the pairing with S100B and restore the biological function of p53 as a tumor suppressor. The analysis of the binding mode and ligand structural features would facilitate our effort to identify and design ligands to block S100B-p53 interaction effectively. The results from the work suggest that developing ligands targeting the interface of S100B and p53 could be a promising approach to recover the normal function of p53 as a tumor suppressor.

  6. MURF2B, a Novel LC3-Binding Protein, Participates with MURF2A in the Switch between Autophagy and Ubiquitin Proteasome System during Differentiation of C2C12 Muscle Cells

    PubMed Central

    Pizon, Véronique; Rybina, Sofia; Gerbal, Fabien; Delort, Florence; Vicart, Patrick; Baldacci, Giuseppe; Karsenti, Eric

    2013-01-01

    The ubiquitin proteasome system and macroautophagy are proteolytic pathways essential in the maintenance of cellular homeostasis during differentiation and remodelling of skeletal muscle. In both pathways, proteins to be degraded are tagged with polyubiquitin. In skeletal muscles, the MURF2 proteins display E3 ubiquitin ligase structure suggesting that they may covalently attach ubiquitin polypeptides to still unknown target proteins. So far only MURF2A isoforms were studied and shown to interact with p62/SQSTM1, a protein implicated in macroautophagic and ubiquitin proteasome system degradations. Here, we analyzed the MURF2B and MURF2A proteins and show that the ratio of the isoforms changes during differentiation of muscle C2C12 cells and that the shift of the isoforms expression follows the sequential activation of autophagic or proteasomal degradation. We also show that MURF2B has a functional domain needed for its interaction with LC3, a protein needed for autophagic vesicles formation. Using specific MURF2 RNAi cells we observed that MURF2A and MURF2B are both needed for the formation of autophagosomes and that in the absence of MURF2B, the cells expressing MURF2A display an activated ubiquitin proteasome system implicated in the degradation of p62/SQSTM1 by UPS. Altogether, our results indicate that MURF2A and MURF2B proteins could participate in the molecular switch between the two ubiquitin degradative pathways. PMID:24124537

  7. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    PubMed Central

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597

  8. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  9. Monitoring ssDNA Binding to the DnaB Helicase from Helicobacter pylori by Solid-State NMR Spectroscopy.

    PubMed

    Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H

    2016-11-02

    DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates.

    PubMed

    Ota, Takayuki; Doyle-Cooper, Colleen; Cooper, Anthony B; Doores, Katherine J; Aoki-Ota, Miyo; Le, Khoa; Schief, William R; Wyatt, Richard T; Burton, Dennis R; Nemazee, David

    2013-09-15

    Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.

  11. Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Manetsch, Melanie; Darabi, Masoud; Cairns, Rose; Hoque, Monira; Chan, Karen Cecilia; Reverter, Meritxell; Alvarez-Guaita, Anna; Rye, Kerry-Anne; Rentero, Carles; Heeren, Joerg; Enrich, Carlos; Grewal, Thomas

    2013-01-01

    Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation

  12. Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*

    PubMed Central

    Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun

    2012-01-01

    Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. PMID:22303017

  13. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    PubMed

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  14. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing

    PubMed Central

    Mohammad, Dara K.; Ali, Raja H.; Turunen, Janne J.; Nore, Beston F.; Smith, C. I. Edvard

    2016-01-01

    Protein kinase B (AKT) phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR) activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206) dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins. PMID:27487157

  15. A brave new world of RNA-binding proteins.

    PubMed

    Hentze, Matthias W; Castello, Alfredo; Schwarzl, Thomas; Preiss, Thomas

    2018-05-01

    RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one or multiple globular RNA-binding domains (RBDs) and change the fate or function of the bound RNAs. Several hundred such RBPs have been discovered and investigated over the years. Recent proteome-wide studies have more than doubled the number of proteins implicated in RNA binding and uncovered hundreds of additional RBPs lacking conventional RBDs. In this Review, we discuss these new RBPs and the emerging understanding of their unexpected modes of RNA binding, which can be mediated by intrinsically disordered regions, protein-protein interaction interfaces and enzymatic cores, among others. We also discuss the RNA targets and molecular and cellular functions of the new RBPs, as well as the possibility that some RBPs may be regulated by RNA rather than regulate RNA.

  16. The phosphatidylinositol transfer protein RdgBβ binds 14-3-3 via its unstructured C-terminus, whereas its lipid-binding domain interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein).

    PubMed

    Garner, Kathryn; Li, Michelle; Ugwuanya, Natalie; Cockcroft, Shamshad

    2011-10-01

    PITPs [PI (phosphatidylinositol) transfer proteins] bind and transfer PI between intracellular membranes and participate in many cellular processes including signalling, lipid metabolism and membrane traffic. The largely uncharacterized PITP RdgBβ (PITPNC1; retinal degeneration type B β), contains a long C-terminal disordered region following its defining N-terminal PITP domain. In the present study we report that the C-terminus contains two tandem phosphorylated binding sites (Ser(274) and Ser(299)) for 14-3-3. The C-terminus also contains PEST sequences which are shielded by 14-3-3 binding. Like many proteins containing PEST sequences, the levels of RdgBβ are regulated by proteolysis. RdgBβ is degraded with a half-life of 4 h following ubiquitination via the proteasome. A mutant RdgBβ which is unable to bind 14-3-3 is degraded even faster with a half-life of 2 h. In vitro, RdgBβ is 100-fold less active than PITPα for PI transfer, and RdgBβ proteins (wild-type and a mutant that cannot bind 14-3-3) expressed in COS-7 cells or endogenous proteins from heart cytosol do not exhibit transfer activity. When cells are treated with PMA, the PITP domain of RdgBβ interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein; also known as AGTRAP) causing membrane recruitment. We suggest that RdgBβ executes its function following recruitment to membranes via its PITP domain and the C-terminal end of the protein could regulate entry to the hydrophobic cavity.

  17. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B.

    PubMed

    Chi, Wenying; Meng, Fanjun; Li, Yan; Li, Peilong; Wang, Guizhi; Cheng, Hong; Han, Song; Li, Junfa

    2014-12-10

    As a newly discovered member of the HSP70 family, heat shock protein A12B (HSPA12B) is involved in brain ischemic injury. According to our previous study, microRNA-134 (miR-134) could target HSPA12B by binding to its 3'-untranslated region (UTR). However, the regulation of miR-134 on HSPA12B and their role in protecting neuronal cells from ischemic injury are unclear. In this study, the miR-134 expression level was manipulated, and the HSPA12B protein levels were also determined in oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells in vitro and mouse brain after middle cerebral artery occlusion (MCAO)-induced ischemic stroke in vivo. The results showed that miR-134 expression levels increased in primary cultured neuronal cells and mouse brain from 12h to 7 day reoxygenation/reperfusion after 1h OGD or 1h MCAO treatment. miR-134 overexpression promoted neuronal cell death and apoptosis by decreasing HSPA12B protein levels. Conversely, downregulating miR-134 reduced neuronal cell death and apoptosis by enhancing HSPA12B protein levels. Also, HSPA12B siRNA could block miR-134 inhibitor-mediated neuroprotection against OGD-induced neuronal cell injury in vitro. Taken together, miR-134 might influence neuronal cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by negatively modulating HSPA12B protein expression in a posttranscriptional manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  19. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  20. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  1. Carbene footprinting accurately maps binding sites in protein-ligand and protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.

    2016-11-01

    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.

  2. Determination of Surface-Exposed, Functional Domains of Gonococcal Transferrin-Binding Protein A

    PubMed Central

    Yost-Daljev, Mary Kate; Cornelissen, Cynthia Nau

    2004-01-01

    The gonococcal transferrin receptor is composed of two distinct proteins, TbpA and TbpB. TbpA is a member of the TonB-dependent family of integral outer membrane transporters, while TbpB is lipid modified and thought to be peripherally surface exposed. We previously proposed a hypothetical topology model for gonococcal TbpA that was based upon computer predictions and similarity with other TonB-dependent transporters for which crystal structures have been determined. In the present study, the hemagglutinin epitope was inserted into TbpA to probe the surface topology of this protein and secondarily to test the functional impacts of site-specific mutagenesis. Twelve epitope insertion mutants were constructed, five of which allowed us to confirm the surface exposure of loops 2, 3, 5, 7, and 10. In contrast to the predictions set forth by the hypothetical model, insertion into the plug region resulted in an epitope that was surface accessible, while epitope insertions into two putative loops (9 and 11) were not surface accessible. Insertions into putative loop 3 and β strand 9 abolished transferrin binding and utilization, and the plug insertion mutant exhibited decreased transferrin-binding affinity concomitant with an inability to utilize it. Insertion into putative β strand 16 generated a mutant that was able to bind transferrin normally but that was unable to mediate utilization. Mutants with insertions into putative loops 2, 9, and 11 maintained wild-type binding affinity but could utilize only transferrin in the presence of TbpB. This is the first demonstration of the ability of TbpB to compensate for a mutation in TbpA. PMID:14977987

  3. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielmann, Regula; Habann, Matthias; Eugster, Marcel R.

    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wallmore » teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.« less

  4. Tangeretin Inhibits IL-12 Expression and NF-κB Activation in Dendritic Cells and Attenuates Colitis in Mice.

    PubMed

    Eun, Su-Hyeon; Woo, Je-Te; Kim, Dong-Hyun

    2017-04-01

    In the preliminary study, tangeretin (5,6,7,8,4'-pentamethoxy flavone), a major constituent of the pericarp of Citrus sp., inhibited TNF- α , IL-12, and IL-23 expression and nuclear factor kappa-B activation in lipopolysaccharide-stimulated dendritic cells; however, it did not affect IL-10 expression. Furthermore, tangeretin (5, 10, and 20 µM) suppressed the activation and translocation of nuclear factor kappa-B (p65) into the nuclei in vitro by inhibiting the binding of lipopolysaccharide on dendritic cells. Oral administration of tangeretin (10 and 20 mg/kg) suppressed the inflammatory responses, such as nuclear factor kappa-B and mitogen-activated protein kinase activation and myeloperoxidase activity, in the colon of mice with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed expression of tight junction proteins occludin, claudin-1, and ZO-1. Tangeretin also inhibited 2,4,6-trinitrobenzene sulfonic acid-induced differentiation of Th1 and Th17 cells as well as the expression of T-bet, ROR γ t, interferon- γ , IL-12, IL-17, and TNF- α . However, tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed differentiation of regulatory T cells as well as the expression of Foxp3 and IL-10. These results suggest that oral administration of tangeretin may attenuate colitis by suppressing IL-12 and TNF- α expression and nuclear factor kappa-B activation through the inhibition of lipopolysaccharide binding on immune cells such as dendritic cells. Georg Thieme Verlag KG Stuttgart · New York.

  5. [Influence of fluorine on expression of androgen-binding protein and inhibin B mRNA in rat testis sertoli cells].

    PubMed

    Xu, Rui; Shang, Weichao; Liu, Jianmin; Duan, Liju; Ba, Yue; Zhang, Huizhen; Cheng, Xuemin; Cui, Liuxin

    2010-09-01

    To study the influence of fluorine on the transcription level of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats. A method was set up the model to culture the Sertoli cells. Use a series of concentrations of NaF solutions of 2.5, 5.0, 10.0 and 20.0 mg/L to poison the cells and then, measure the relative expression amount of ABP and INHB mRNA by RT-PCR method. (1) Compare the relative expression amount of ABP mRNA of each group of different concentration with the control group. 2.5 mg/L group was higher than that in the control group, and the difference has the statistical significance (P < 0.05). The 5.0 mg/L group was also higher than that of the control group, and the difference has no statistical significance (P > 0.05). (2) Compare the relative expression amount of INH B mRNA of each group of different concentration with the control group. Both the 2.5 mg/L group and the 5.0 mg/L group were higher than that in the control group, and the difference has the statistical significance (P < 0.05). The rest 2 groups were lower than that in the control group and the difference has no statistical significance (P > 0.05). In the range of concentrations between 2.5 and 20.0 mg/L, no distinct influence of fluorine on the expression of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats.

  6. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    ERIC Educational Resources Information Center

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  8. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  9. Mapping of a Microbial Protein Domain Involved in Binding and Activation of the TLR2/TLR1 Heterodimer 1

    PubMed Central

    Liang, Shuang; Hosur, Kavita B.; Lu, Shanyun; Nawar, Hesham F.; Weber, Benjamin R.; Tapping, Richard I.; Connell, Terry D.; Hajishengallis, George

    2009-01-01

    LT-IIb-B5, a doughnut-shaped oligomeric protein from enterotoxigenic Escherichia coli, is known to activate the TLR2/TLR1 heterodimer (TLR2/1). We investigated the molecular basis of the LT-IIb-B5 interaction with TLR2/1 in order to define the structure-function relationship of LT-IIb-B5 and, moreover, to gain an insight into how TLR2/1 recognizes large, non-acylated protein ligands that cannot fit within its lipid-binding pockets, as previously shown for the Pam3CSK4 lipopeptide. We first identified four critical residues in the upper region of the LT-IIb-B5 pore: Corresponding point mutants (M69E, A70D, L73E, S74D) were defective in binding TLR2 or TLR1 and could not activate antigen-presenting cells, despite retaining full ganglioside-binding capacity. Point mutations in the TLR2/1 dimer interface, as determined in the crystallographic structure of the TLR2/1-Pam3CSK4 complex, resulted in diminished activation by both Pam3CSK4 and LT-IIb-B5. Docking analysis of the LT-IIb-B5 interaction with this apparently “predominant” activation conformation of TLR2/1 revealed that LT-IIb-B5 may primarily contact the convex surface of the TLR2 central domain. Although the TLR1/LT-IIb-B5 interface is relatively smaller, the leucine-rich repeat motifs 9–12 in the central domain of TLR1 were found to be critical for cooperative TLR2-induced cell activation by LT-IIb-B5. Moreover, the putative LT-IIb-B5 binding site overlaps partially with that of Pam3CSK4; consistent with this, Pam3CSK4 suppressed TLR2 binding of LT-IIb-B5, albeit not as potently as self-competitive inhibition. In conclusion, we identified the upper pore region of LT-IIb-B5 as a TLR2/1 interactive domain, which contacts the heterodimeric receptor at a site that is distinct from, though overlaps with, that of Pam3CSK4. PMID:19234193

  10. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Clinical relevance of drug binding to plasma proteins

    NASA Astrophysics Data System (ADS)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  12. A Mutation Directs the Structural Switch of DNA Binding Proteins under Starvation to a Ferritin-like Protein Cage.

    PubMed

    Williams, Sunanda Margrett; Chandran, Anu Vijayakumari; Prakash, Sunita; Vijayan, Mamannamana; Chatterji, Dipankar

    2017-09-05

    Proteins of the ferritin family are ubiquitous in living organisms. With their spherical cage-like structures they are the iron storehouses in cells. Subfamilies of ferritins include 24-meric ferritins and bacterioferritins (maxiferritins), and 12-meric Dps (miniferritins). Dps safeguards DNA by direct binding, affording physical protection and safeguards from free radical-mediated damage by sequestering iron in its core. The maxiferritins can oxidize and store iron but cannot bind DNA. Here we show that a mutation at a critical interface in Dps alters its assembly from the canonical 12-mer to a ferritin-like 24-mer under crystallization. This structural switch was attributed to the conformational alteration of a highly conserved helical loop and rearrangement of the C-terminus. Our results demonstrate a novel concept of mutational switch between related protein subfamilies and corroborate the popular model for evolution by which subtle substitutions in an amino acid sequence lead to diversification among proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular beacons for DNA binding proteins: an emerging technology for detection of DNA binding proteins and their ligands.

    PubMed

    Dummitt, Benjamin; Chang, Yie-Hwa

    2006-06-01

    Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.

  14. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.

    PubMed

    Legendre-Guillemin, Valerie; Metzler, Martina; Charbonneau, Martine; Gan, Lu; Chopra, Vikramjit; Philie, Jacynthe; Hayden, Michael R; McPherson, Peter S

    2002-05-31

    Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.

  15. Big Domains Are Novel Ca2+-Binding Modules: Evidences from Big Domains of Leptospira Immunoglobulin-Like (Lig) Proteins

    PubMed Central

    Palaniappan, Raghavan U. M.; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P.; Sharma, Yogendra; Chang, Yung-Fu

    2010-01-01

    Background Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca2+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca2+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. Principal Findings We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9th (Lig A9) and 10th repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca2+ with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. Conclusions We demonstrate that the Lig are Ca2+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca2+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca2+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca2+ binding. PMID:21206924

  16. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions

    PubMed Central

    Wang, Chao; Wei, Zhiyi

    2017-01-01

    Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins. PMID:28841137

  17. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress

    PubMed Central

    Topolska-Woś, Agnieszka M.; Shell, Steven M.; Kilańczyk, Ewa; Szczepanowski, Roman H.; Chazin, Walter J.; Filipek, Anna

    2015-01-01

    CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.—Topolska-Woś, A. M., Shell, S. M., Kilańczyk, E., Szczepanowski, R. H., Chazin, W. J., Filipek, A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. PMID:25609429

  18. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    PubMed Central

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  19. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways.

    PubMed

    Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro

    2008-01-01

    Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.

  20. Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities.

    PubMed

    Phippen, Sean W; Stevens, Corey A; Vance, Tyler D R; King, Neil P; Baker, David; Davies, Peter L

    2016-12-13

    Antifreeze proteins (AFPs) are small monomeric proteins that adsorb to the surface of ice to inhibit ice crystal growth and impart freeze resistance to the organisms producing them. Previously, monomeric AFPs have been conjugated to the termini of branched polymers to increase their activity through the simultaneous binding of more than one AFP to ice. Here, we describe a superior approach to increasing AFP activity through oligomerization that eliminates the need for conjugation reactions with varying levels of efficiency. A moderately active AFP from a fish and a hyperactive AFP from an Antarctic bacterium were genetically fused to the C-termini of one component of the 24-subunit protein cage T33-21, resulting in protein nanoparticles that multivalently display exactly 12 AFPs. The resulting nanoparticles exhibited freezing point depression >50-fold greater than that seen with the same concentration of monomeric AFP and a similar increase in the level of ice-recrystallization inhibition. These results support the anchored clathrate mechanism of binding of AFP to ice. The enhanced freezing point depression could be due to the difficulty of overgrowing a larger AFP on the ice surface and the improved ice-recrystallization inhibition to the ability of the nanoparticle to simultaneously bind multiple ice grains. Oligomerization of these proteins using self-assembling protein cages will be useful in a variety of biotechnology and cryobiology applications.

  1. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  2. The structural basis of transferrin sequestration by transferrin-binding protein B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmettes, Charles; Alcantara, Joenel; Yu, Rong-Hua

    2012-03-28

    Neisseria meningitidis, the causative agent of bacterial meningitis, acquires the essential element iron from the host glycoprotein transferrin during infection through a surface transferrin receptor system composed of proteins TbpA and TbpB. Here we present the crystal structures of TbpB from N. meningitidis in its apo form and in complex with human transferrin. The structure reveals how TbpB sequesters and initiates iron release from human transferrin.

  3. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  4. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

    PubMed Central

    Wafer, Lucas N; Tzul, Franco O; Pandharipande, Pranav P; McCallum, Scott A; Makhatadze, George I

    2014-01-01

    Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins. PMID:24947426

  5. Protein-protein binding before and after photo-modification of albumin

    NASA Astrophysics Data System (ADS)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  6. Investigation of the binding of Salvianolic acid B to human serum albumin and the effect of metal ions on the binding

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Cao, Hui; Zhu, Shajun; Lu, Yapeng; Shang, Yanfang; Wang, Miao; Tang, Yanfeng; Zhu, Li

    2011-10-01

    The studies on the interaction between HSA and drugs have been an interesting research field in life science, chemistry and clinical medicine. There are also many metal ions present in blood plasma, thus the research about the effect of metal ions on the interaction between drugs and plasma proteins is crucial. In this study, the interaction of Salvianolic acid B (Sal B) with human serum albumin (HSA) was investigated by the steady-state, synchronous fluorescence and circular dichroism (CD) spectroscopies. The results showed that Sal B had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Binding parameters calculated showed that Sal B was bound to HSA with the binding affinities of 10 5 L mol -1. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes, and hydrophobic interactions were the predominant intermolecular forces to stabilize the complex. The specific binding distance r (2.93 nm) between donor (HSA) and acceptor (Sal B) was obtained according to Förster non-radiative resonance energy transfer theory. The synchronous fluorescence experiment revealed that Sal B cannot lead to the microenvironmental changes around the Tyr and Trp residues of HSA, and the binding site of Sal B on HSA is located in hydrophobic cavity of subdomain IIA. The CD spectroscopy indicated the secondary structure of HSA is not changed in the presence of Sal B. Furthermore, The effect of metal ions (e.g. Zn 2+, Cu 2+, Co 2+, Ni 2+, Fe 3+) on the binding constant of Sal B-HSA complex was also discussed.

  7. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  8. Dissecting binding of a β-barrel membrane protein by phage display.

    PubMed

    Meneghini, Luz M; Tripathi, Sarvind; Woodworth, Marcus A; Majumdar, Sudipta; Poulos, Thomas L; Weiss, Gregory A

    2017-07-25

    Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.

  9. Sequence-Based Prediction of RNA-Binding Residues in Proteins

    PubMed Central

    Walia, Rasna R.; EL-Manzalawy, Yasser; Honavar, Vasant G.; Dobbs, Drena

    2017-01-01

    Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding the molecular determinants of protein–RNA recognition and has many potential applications. Recent technical advances have led to several high-throughput experimental methods for identifying partners in protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time-consuming. This chapter focuses on available computational methods for identifying which amino acids in an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three different web-based servers to predict RNA-binding residues are described. In addition, currently available web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify interfacial residues without the requirement for structural information regarding either the RNA-binding protein or its RNA partner. PMID:27787829

  10. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortisugu, Kei; Njunda, Brigitte; Smith, Jeremy C

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure whilemore » gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.« less

  11. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    PubMed

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  12. Characterization of binding of N'-nitrosonornicotine to protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding tomore » liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.« less

  13. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB.

    PubMed

    Hutchinson, Catherine L; Lowe, Peter N; McLaughlin, Stephen H; Mott, Helen R; Owen, Darerca

    2013-11-12

    Protein kinase C-related kinases (PRKs) are members of the protein kinase C superfamily of serine-threonine kinases and can be activated by binding to members of the Rho family of GTPases via a Rho-binding motif known as an HR1 domain. Three tandem HR1 domains reside at the N-terminus of the PRKs. We have assessed the ability of the HR1a and HR1b domains from the three PRK isoforms (PRK1, PRK2, and PRK3) to interact with the three Rho isoforms (RhoA, RhoB, and RhoC). The affinities of RhoA and RhoC for a construct encompassing both PRK1 HR1 domains were similar to those for the HR1a domain alone, suggesting that these interactions are mediated solely by the HR1a domain. The affinities of RhoB for both the PRK1 HR1a domain and the HR1ab didomain were higher than those of RhoA or RhoC. RhoB also bound more tightly to the didomain than to the HR1a domain alone, implicating the HR1b domain in the interaction. As compared with PRK1 HR1 domains, PRK2 and PRK3 domains bind less well to all Rho isoforms. Uniquely, however, the PRK3 domains display a specificity for RhoB that requires both the C-terminus of RhoB and the PRK3 HR1b domain. The thermal stability of the HR1a and HR1b domains was also investigated. The PRK2 HR1a domain was found to be the most thermally stable, while PRK2 HR1b, PRK3 HR1a, and PRK3 HR1b domains all exhibited lower melting temperatures, similar to that of the PRK1 HR1a domain. The lower thermal stability of the PRK2 and PRK3 HR1b domains may impart greater flexibility, driving their ability to interact with Rho isoforms.

  15. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.

    PubMed

    Cala, Olivier; Dufourc, Erick J; Fouquet, Eric; Manigand, Claude; Laguerre, Michel; Pianet, Isabelle

    2012-12-18

    While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth.

  16. CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli.

    PubMed Central

    Kipling, D; Mitchell, A R; Masumoto, H; Wilson, H E; Nicol, L; Cooke, H J

    1995-01-01

    Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B. PMID:7623797

  17. Lipids and lipid binding proteins: a perfect match.

    PubMed

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less

  19. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    USDA-ARS?s Scientific Manuscript database

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  20. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.

    PubMed

    Hierrezuelo, J M; Carnero Ruiz, C

    2015-08-01

    Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  2. PilN binding modulates the structure and binding partners of the Pseudomonas aeruginosa type IVa pilus protein PilM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallum, Matthew; Tammam, Stephanie; Little, Dustin J.

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that expresses type IVa pili. The pilus assembly system, which promotes surface-associated twitching motility and virulence, is composed of inner and outer membrane subcomplexes, connected by an alignment subcomplex composed of PilMNOP. PilM binds to the N terminus of PilN, and we hypothesize that this interaction causes functionally significant structural changes in PilM. To characterize this interaction, we determined the crystal structures of PilM and a PilM chimera where PilM was fused to the first 12 residues of PilN (PilM·PilN(1–12)). Structural analysis, multiangle light scattering coupled with size exclusion chromatography, and bacterial two-hybridmore » data revealed that PilM forms dimers mediated by the binding of a novel conserved motif in the N terminus of PilM, and binding PilN abrogates this binding interface, resulting in PilM monomerization. Structural comparison of PilM with PilM·PilN(1–12) revealed that upon PilN binding, there is a large domain closure in PilM that alters its ATP binding site. Using biolayer interferometry, we found that the association rate of PilN with PilM is higher in the presence of ATP compared with ADP. Bacterial two-hybrid data suggested the connectivity of the cytoplasmic and inner membrane components of the type IVa pilus machinery in P. aeruginosa, with PilM binding to PilB, PilT, and PilC in addition to PilN. Pull-down experiments demonstrated direct interactions of PilM with PilB and PilT. As a result, we propose a working model in which dynamic binding of PilN facilitates functionally relevant structural changes in PilM.« less

  3. PilN binding modulates the structure and binding partners of the Pseudomonas aeruginosa type IVa pilus protein PilM

    DOE PAGES

    McCallum, Matthew; Tammam, Stephanie; Little, Dustin J.; ...

    2016-03-28

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen that expresses type IVa pili. The pilus assembly system, which promotes surface-associated twitching motility and virulence, is composed of inner and outer membrane subcomplexes, connected by an alignment subcomplex composed of PilMNOP. PilM binds to the N terminus of PilN, and we hypothesize that this interaction causes functionally significant structural changes in PilM. To characterize this interaction, we determined the crystal structures of PilM and a PilM chimera where PilM was fused to the first 12 residues of PilN (PilM·PilN(1–12)). Structural analysis, multiangle light scattering coupled with size exclusion chromatography, and bacterial two-hybridmore » data revealed that PilM forms dimers mediated by the binding of a novel conserved motif in the N terminus of PilM, and binding PilN abrogates this binding interface, resulting in PilM monomerization. Structural comparison of PilM with PilM·PilN(1–12) revealed that upon PilN binding, there is a large domain closure in PilM that alters its ATP binding site. Using biolayer interferometry, we found that the association rate of PilN with PilM is higher in the presence of ATP compared with ADP. Bacterial two-hybrid data suggested the connectivity of the cytoplasmic and inner membrane components of the type IVa pilus machinery in P. aeruginosa, with PilM binding to PilB, PilT, and PilC in addition to PilN. Pull-down experiments demonstrated direct interactions of PilM with PilB and PilT. As a result, we propose a working model in which dynamic binding of PilN facilitates functionally relevant structural changes in PilM.« less

  4. Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43).

    PubMed

    Romano, Maurizio; Buratti, Emanuele; Romano, Giulia; Klima, Raffaella; Del Bel Belluz, Lisa; Stuani, Cristiana; Baralle, Francisco; Feiguin, Fabian

    2014-03-07

    Human TDP-43 represents the main component of neuronal inclusions found in patients with neurodegenerative diseases, especially frontotemporal lobar degeneration and amyotrophic lateral sclerosis. In vitro and in vivo studies have shown that the TAR DNA-binding protein 43 (TDP-43) Drosophila ortholog (TBPH) can biochemically and functionally overlap the properties of the human factor. The recent direct implication of the human heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1, known TDP-43 partners, in the pathogenesis of multisystem proteinopathy and amyotrophic lateral sclerosis supports the hypothesis that the physical and functional interplay between TDP-43 and hnRNP A/B orthologs might play a crucial role in the pathogenesis of neurodegenerative diseases. To test this hypothesis and further validate the fly system as a useful model to study this type of diseases, we have now characterized human TDP-43 and Drosophila TBPH similarity in terms of protein-protein interaction pathways. In this work we show that TDP-43 and TBPH share the ability to associate in vitro with Hrp38/Hrb98DE/CG9983, the fruit fly ortholog of the human hnRNP A1/A2 factors. Interestingly, the protein regions of TDP-43 and Hrp38 responsible for reciprocal interactions are conserved through evolution. Functionally, experiments in HeLa cells demonstrate that TDP-43 is necessary for the inhibitory activity of Hrp38 on splicing. Finally, Drosophila in vivo studies show that Hrp38 deficiency produces locomotive defects and life span shortening in TDP-43 with and without animals. These results suggest that hnRNP protein levels can play a modulatory role on TDP-43 functions.

  5. Identification of a conserved B-cell epitope on duck hepatitis A type 1 virus VP1 protein.

    PubMed

    Wu, Xiaoying; Li, Xiaojun; Zhang, Qingshan; Wulin, Shaozhou; Bai, Xiaofei; Zhang, Tingting; Wang, Yue; Liu, Ming; Zhang, Yun

    2015-01-01

    The VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized. To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1-positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope. We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.

  6. Activated protein kinase C binds to intracellular receptors in rat hepatocytes.

    PubMed

    Robles-Flores, M; García-Sáinz, J A

    1993-12-01

    The aim of this study was to identify in rat hepatocytes cellular polypeptides that bind protein kinase C (PKC) and may influence its activity and its compartmentation. At least seven proteins, with apparent M(r) values between 12,000 and 36,000, that behave like Receptors for Activated C-Kinase (RACKs) were found in the Triton-X-100-insoluble fraction of these cells; i.e. PKC bound to these polypeptides when it was in its active form. RACKS seem to be PKC substrates. Studies using isotype-specific PKC antibodies suggested some selectivity of RACKs, i.e. RACKs in the M(r) approximately 28,000-36,000 region bound PKC-alpha and PKC-beta in the presence of phosphatidylserine, diolein and Ca2+, whereas those of M(r) approximately 12,000-14,000 bound all isoforms studied, and, in contrast with the other RACKs, they did this even in the absence of Ca2+. Peptide I (KGDYEKILVALCGGN), which has a sequence suggested to be involved in the PKC-RACKs interaction [Mochly-Rosen, Khaner, Lopez and Smith (1991) J. Biol. Chem. 266, 14866-14868], inhibited PKC activity. Preincubation of RACKs with antisera directed against peptide I prevented PKC binding to them. The data suggest that peptide I blocks PKC binding to RACKs by two mechanisms: inhibition of PKC activity and competition with a putative binding site.

  7. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    PubMed

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mapping the B cell epitopes within the major capsid protein L1 of human papillomavirus type 16.

    PubMed

    Wang, Aiping; Li, Ning; Zhou, Jingming; Chen, Yumei; Jiang, Min; Qi, Yanhua; Liu, Hongliang; Liu, Yankai; Liu, Dongmin; Zhao, Jianguo; Wang, Yanwei; Zhang, Gaiping

    2018-06-26

    Persistent infection with human papillomavirus type16 (HPV16) has much association with the development of cervical cancer. L1 is the major capsid protein of HPV, it has been well investigated as a potential vaccine candidate. However, B cell epitopes present on L1 have not been well characterized. To identify the potential B-cell antigenic epitopes within HPV16 L1 protein, sixteen serial overlapping truncations (H1-H16) covering the whole region were expressed in E. coli and used in mice immunization. The mice antisera were tested in ELISA binding, IFA and HI assays. Finally, four fragments (H2, H4, H11, H12) were found to contain B cell epitopes of HPV16 L1 protein in ELISA and IFA assays, three fragments (H2, H3, H9) might contain neutralizing epitopes of HPV16 L1 protein in HI assay. Among them, H11 and H12 fragments contain B cell epitopes have never been reported before, and H3 was found as hemagglutination inhibition epitope for the first time. This work provides new insights to B cell epitopes on HPV16 L1 protein. Several new epitopes were identified and may provide some guidance for HPV16 subunit vaccine design. The results of this study might open new perspectives on the antibody-antigen reaction and have important implications for the development of epitopes-based protective HPV16 vaccines. Copyright © 2018. Published by Elsevier B.V.

  9. Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry.

    PubMed

    Li, Weichao; Zhou, Yiqing; Tang, Guanghui; Xiao, Youli

    2016-12-21

    Despite the fact that multiple artemisinin-alkylated proteins in Plasmodium falciparum have been identified in recent studies, the alkylation mechanism and accurate binding site of artemisinin-protein interaction have remained elusive. Here, we report the chemical-probe-based enrichment of the artemisinin-binding peptide and characterization of the artemisinin-binding site of P. falciparum translationally controlled tumor protein (TCTP). A peptide fragment within the N-terminal region of TCTP was enriched and found to be alkylated by an artemisinin-derived probe. MS2 fragments showed that artemisinin could alkylate multiple amino acids from Phe12 to Tyr22 of TCTP, which was supported by labeling experiments upon site-directed mutagenesis and computational modeling studies. Taken together, the "capture-and-release" strategy affords consolidated advantages previously unavailable in artemisinin-protein binding site studies, and our results deepened the understanding of the mechanism of protein alkylation via heme-activated artemisinin.

  10. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter.

    PubMed

    Borghaei, Ruth C; Rawlings, P Lyle; Javadi, Masoud; Woloshin, Joanna

    2004-03-26

    A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.

  11. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  12. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains.

    PubMed

    Bowden, Catherine F M; Verstraete, Meghan M; Eltis, Lindsay D; Murphy, Michael E P

    2014-04-15

    The Isd (iron-regulated surface determinant) system is a multiprotein transporter that allows bacterium Staphylococcus aureus to take up iron from hemoglobin (Hb) during human infection. In this system, IsdB is a cell wall-anchored surface protein that contains two near iron transporter (NEAT) domains, one of which binds heme. IsdB rapidly extracts heme from Hb and transfers it to IsdA for relay into the bacterial cell. Using a series of recombinant IsdB constructs that included at least one NEAT domain, we demonstrated that both domains are required to bind Hb with high affinity (KD = 0.42 ± 0.05 μM) and to extract heme from Hb. Moreover, IsdB extracted heme only from oxidized metHb, although it also bound oxyHb and the Hb-CO complex. In a reconstituted model of the biological heme relay pathway, IsdB catalyzed the transfer of heme from metHb to IsdA with a Km for metHb of 0.75 ± 0.07 μN and a kcat of 0.22 ± 0.01 s(-1). The latter is consistent with the transfer of heme from metHb to IsdB being the rate-limiting step. With both NEAT domains and the linker region present in a single contiguous polypeptide, high-affinity Hb binding was achieved, rapid heme uptake was observed, and multiple turnovers of heme extraction from metHb and transfer to IsdA were conducted, representing all known Hb-heme uptake functions of the full-length IsdB protein.

  13. Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles

    PubMed Central

    Sytnikova, Yuliya A.; Kubarenko, Andriy V.; Schäfer, Andrea; Weber, Alexander N. R.; Niehrs, Christof

    2011-01-01

    Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle. PMID:21249130

  14. MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.

    PubMed

    Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R

    2016-07-08

    Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  16. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  17. A specific binding protein from Tenebrio molitor for the insecticidal toxin of Bacillus thuringiensis subsp. tenebrionis.

    PubMed

    Belfiore, C J; Vadlamudi, R K; Osman, Y A; Bulla, L A

    1994-04-15

    Biopesticides based on the bacterium Bacillus thuringiensis have attracted wide attention as safe alternatives to chemical insecticides. In this paper, we report, for the first time, the identification of a single binding protein from a coleopteran insect, Tenebrio molitor, that is specific for the cryIII toxin of B. thuringiensis. The protein appeared as a single band of 144 kDa on radioligand and immunoblots of total proteins extracted from brush border membrane vesicles of the midgut of T. molitor. Radiolabelled cryIIIA toxin bound to the protein with a Kd value of 17.5 nM and could be specifically blocked by unlabelled toxin but not by toxins from other subspecies of B. thuringiensis. This study lays the groundwork to clone the cryIIIA toxin binding protein and to determine the molecular mechanism(s) of toxin action.

  18. Trans‐acting translational regulatory RNA binding proteins

    PubMed Central

    Harvey, Robert F.; Smith, Tom S.; Mulroney, Thomas; Queiroz, Rayner M. L.; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa

    2018-01-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans‐acting regulatory RNA‐binding proteins (RBPs) are necessary to provide mRNA‐specific translation, and these interact with 5′ and 3′ untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans‐acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans‐acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans‐acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: 1RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes2Translation > Translation Regulation3Translation > Translation Mechanisms PMID:29341429

  19. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots.

    PubMed

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots.

  20. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots

    PubMed Central

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422

  1. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantlymore » reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.« less

  2. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding.

    PubMed

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R; Stevens, Raymond C

    2010-04-16

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-A X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent. Copyright (c) 2010. Published by Elsevier Ltd.

  3. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  4. Core Histones and HIRIP3, a Novel Histone-Binding Protein, Directly Interact with WD Repeat Protein HIRA

    PubMed Central

    Lorain, Stéphanie; Quivy, Jean-Pierre; Monier-Gavelle, Frédérique; Scamps, Christine; Lécluse, Yann; Almouzni, Geneviève; Lipinski, Marc

    1998-01-01

    The human HIRA gene has been named after Hir1p and Hir2p, two corepressors which together appear to act on chromatin structure to control gene transcription in Saccharomyces cerevisiae. HIRA homologs are expressed in a regulated fashion during mouse and chicken embryogenesis, and the human gene is a major candidate for the DiGeorge syndrome and related developmental disorders caused by a reduction to single dose of a fragment of chromosome 22q. Western blot analysis and double-immunofluorescence experiments using a specific antiserum revealed a primary nuclear localization of HIRA. Similar to Hir1p, HIRA contains seven amino-terminal WD repeats and probably functions as part of a multiprotein complex. HIRA and core histone H2B were found to physically interact in a yeast double-hybrid protein interaction trap, in GST pull-down assays, and in coimmunoprecipitation experiments performed from cellular extracts. In vitro, HIRA also interacted with core histone H4. H2B- and H4-binding domains were overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction was mapped to the amino-terminal tail of H2B and the second α helix of H4. HIRIP3 (HIRA-interacting protein 3) is a novel gene product that was identified from its HIRA-binding properties in the yeast protein interaction trap. In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. Insufficient production of HIRA, which we report elsewhere interacts with homeodomain-containing DNA-binding factors during mammalian embryogenesis, could perturb the stoichiometric assembly of multimolecular complexes required for normal embryonic development. PMID:9710638

  5. A tetrodotoxin-binding protein in the hemolymph of shore crab Hemigrapsus sanguineus: purification and properties.

    PubMed

    Nagashima, Yuji; Yamamoto, Kazuhiko; Shimakura, Kuniyoshi; Shiomi, Kazuo

    2002-06-01

    The shore crab Hemigrapsus sanguineus hemolymph contains soluble proteins that bind tetrodotoxin (TTX) and are responsible for high resistance of the crab to TTX. The TTX-binding protein was purified from the hemolymph by ultrafiltration, lectin affinity chromatography and gel filtration HPLC. The purified protein gave only one band in native-polyacrylamide gel electrophoresis (PAGE), confirming its homogeneity. Its molecular weight was estimated to be about 400k by gel filtration HPLC, while it was estimated to be about 82k under non-reducing conditions and about 72 and 82k under reducing conditions by SDS-PAGE, indicating that the TTX-binding protein was composed of at least two distinct subunits. The TTX-binding protein was an acidic glycoprotein with pI 3.5, abundant in Asp and Glu but absent in Trp, and contained 6% reducing sugar and 12% amino sugar. The protein selectively bound to TTX, with a neutralizing ability of 6.7 mouse unit TTX/mg protein, but not to paralytic shellfish poisoning toxins. However, its neutralizing activity was almost lost by treatments with enzymes (protease XIV, thermolysin, trypsin, amyloglucosidase and alpha-amylase) and denaturing agents (1% SDS, 1% dithiothreitol, 8 M urea and 6 M guanidine hydrochloride), suggesting the involvement of both proteinaceous and sugar moieties in the binding to TTX and the importance of the steric conformation of the TTX-binding protein. Copright 2002 Elsevier Science Ltd.

  6. iDBPs: a web server for the identification of DNA binding proteins

    PubMed Central

    Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir

    2010-01-01

    Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514

  7. Acemannan increases NF-κB/DNA binding and IL-6/-8 expression by selectively binding Toll-like receptor-5 in human gingival fibroblasts.

    PubMed

    Thunyakitpisal, Pasutha; Ruangpornvisuti, Vithaya; Kengkwasing, Pattrawadee; Chokboribal, Jaroenporn; Sangvanich, Polkit

    2017-04-01

    Acemannan, an acetylated polymannose from Aloe vera, has immunomodulatory effects. We investigated whether acemannan induces IL-6 and -8 expression and NF-κB/DNA binding in human gingival fibroblasts. IL-6 and -8 expression levels were assessed via RT-PCR and ELISA. The NF-κB p50/p65-DNA binding was determined. The structures of acemannan mono-pentamers and Toll-like receptor 5 (TLR5) were simulated. The binding energies between acemannan and TLR5 were identified. We found that acemannan significantly stimulated IL-6/-8 expression at both the mRNA and protein level and significantly increased p50/DNA binding. Preincubation with an anti-TLR5 neutralizing antibody abolished acemannan-induced IL-6/-8 expression and p50/DNA binding, and co-incubation of acemannan with Bay11-7082, a specific NF- κB inhibitor, abolished IL-6/-8 expression. The computer modeling indicated that monomeric/dimeric single stranded acemannan molecules interacted with the TLR5 flagellin recognition sites with a high binding affinity. We conclude that acemannan induces IL-6/-8 expression, and p50/DNA binding in gingival fibroblasts, at least partly, via a TLR5/NF-κB-dependent signaling pathway. Furthermore, acemannan selectively binds with TLR5 ectodomain flagellin recognition sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  9. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  10. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous

  11. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences

    PubMed Central

    Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa

    2016-01-01

    Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200

  12. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  13. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  14. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  15. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  16. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    PubMed

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project.

  17. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    NASA Technical Reports Server (NTRS)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  18. Conformational selection in protein binding and function

    PubMed Central

    Weikl, Thomas R; Paul, Fabian

    2014-01-01

    Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241

  19. The DNA-recognition mode shared by archaeal feast/famine-regulatory proteins revealed by the DNA-binding specificities of TvFL3, FL10, FL11 and Ss-LrpB

    PubMed Central

    Yokoyama, Katsushi; Nogami, Hideki; Kabasawa, Mamiko; Ebihara, Sonomi; Shimowasa, Ai; Hashimoto, Keiko; Kawashima, Tsuyoshi; Ishijima, Sanae A.; Suzuki, Masashi

    2009-01-01

    The DNA-binding mode of archaeal feast/famine-regulatory proteins (FFRPs), i.e. paralogs of the Esherichia coli leucine-responsive regulatory protein (Lrp), was studied. Using the method of systematic evolution of ligands by exponential enrichment (SELEX), optimal DNA duplexes for interacting with TvFL3, FL10, FL11 and Ss-LrpB were identified as TACGA[AAT/ATT]TCGTA, GTTCGA[AAT/ATT]TCGAAC, CCGAAA[AAT/ATT]TTTCGG and TTGCAA[AAT/ATT]TTGCAA, respectively, all fitting into the form abcdeWWWedcba. Here W is A or T, and e.g. a and a are bases complementary to each other. Apparent equilibrium binding constants of the FFRPs and various DNA duplexes were determined, thereby confirming the DNA-binding specificities of the FFRPs. It is likely that these FFRPs recognize DNA in essentially the same way, since their DNA-binding specificities were all explained by the same pattern of relationship between amino-acid positions and base positions to form chemical interactions. As predicted from this relationship, when Gly36 of TvFL3 was replaced by Thr, the b base in the optimal DNA duplex changed from A to T, and, when Thr36 of FL10 was replaced by Ser, the b base changed from T to G/A. DNA-binding characteristics of other archaeal FFRPs, Ptr1, Ptr2, Ss-Lrp and LysM, are also consistent with the relationship. PMID:19468044

  20. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    ERIC Educational Resources Information Center

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  1. Mechanistic events underlying odorant binding protein chemoreception.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien; Cabrol-Bass, Daniel

    2007-05-01

    Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin. (c) 2007 Wiley-Liss, Inc.

  2. Unconventional RNA-binding proteins: an uncharted zone in RNA biology.

    PubMed

    Albihlal, Waleed S; Gerber, André P

    2018-06-16

    RNA-binding proteins play essential roles in the post-transcriptional regulation of gene expression. While hundreds of RNA-binding proteins can be predicted computationally, the recent introduction of proteome-wide approaches has dramatically expanded the repertoire of proteins interacting with RNA. Besides canonical RNA-binding proteins that contain characteristic RNA-binding domains, many proteins that lack such domains but have other well-characterised cellular functions were identified; including metabolic enzymes, heat shock proteins, kinases, as well as transcription factors and chromatin-associated proteins. In the context of these recently published RNA-protein interactome datasets obtained from yeast, nematodes, flies, plants and mammalian cells, we discuss examples for seemingly evolutionary conserved "unconventional" RNA-binding proteins that act in central carbon metabolism, stress response or regulation of transcription. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  4. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  5. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting

    PubMed Central

    Bartelle, Benjamin B.; Mana, Miyeko D.; Suero-Abreu, Giselle A.; Rodriguez, Joe J.; Turnbull, Daniel H.

    2014-01-01

    Purpose Manganese (Mn) is an effective contrast agent and biologically active metal, which has been widely utilized for Mn-enhanced MRI (MEMRI). The purpose of this study was to develop and test a Mn binding protein for use as an genetic reporter for MEMRI. Methods The bacterial Mn-binding protein, MntR was identified as a candidate reporter protein. MntR was engineered for expression in mammalian cells, and targeted to different subcellular organelles, including the Golgi Apparatus where cellular Mn is enriched. Transfected HEK293 cells and B16 melanoma cells were tested in vitro and in vivo, using immunocytochemistry and MR imaging and relaxometry. Results Subcellular targeting of MntR to the cytosol, endoplasmic reticulum and Golgi apparatus was verified with immunocytochemistry. After targeting to the Golgi, MntR expression produced robust R1 changes and T1 contrast in cells, in vitro and in vivo. Co-expression with the divalent metal transporter DMT1, a previously described Mn-based reporter, further enhanced contrast in B16 cells in culture, but in the in vivo B16 tumor model tested was not significantly better than MntR alone. Conclusion This second-generation reporter system both expands the capabilities of genetically-encoded reporters for imaging with MEMRI and provides important insights into the mechanisms of Mn biology which create endogenous MEMRI contrast. PMID:25522343

  6. Overproduction, purification, and ATPase activity of the Escherichia coli RuvB protein involved in DNA repair.

    PubMed Central

    Iwasaki, H; Shiba, T; Makino, K; Nakata, A; Shinagawa, H

    1989-01-01

    The ruvA and ruvB genes of Escherichia coli constitute an operon which belongs to the SOS regulon. Genetic evidence suggests that the products of the ruv operon are involved in DNA repair and recombination. To begin biochemical characterization of these proteins, we developed a plasmid system that overproduced RuvB protein to 20% of total cell protein. Starting from the overproducing system, we purified RuvB protein. The purified RuvB protein behaved like a monomer in gel filtration chromatography and had an apparent relative molecular mass of 38 kilodaltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which agrees with the value predicted from the DNA sequence. The amino acid sequence of the amino-terminal region of the purified protein was analyzed, and the sequence agreed with the one deduced from the DNA sequence. Since the deduced sequence of RuvB protein contained the consensus sequence for ATP-binding proteins, we examined the ATP-binding and ATPase activities of the purified RuvB protein. RuvB protein had a stronger affinity to ADP than to ATP and weak ATPase activity. The results suggest that the weak ATPase activity of RuvB protein is at least partly due to end product inhibition by ADP. Images PMID:2529252

  7. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  8. The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor.

    PubMed

    Ingham, R J; Holgado-Madruga, M; Siu, C; Wong, A J; Gold, M R

    1998-11-13

    Gab1 is a member of the docking/scaffolding protein family which includes IRS-1, IRS-2, c-Cbl, p130(cas), and p62(dok). These proteins contain a variety of protein-protein interaction motifs including multiple tyrosine residues that when phosphorylated can act as binding sites for Src homology 2 (SH2) domain-containing signaling proteins. We show in the RAMOS human B cell line that Gab1 is tyrosine-phosphorylated in response to B cell antigen receptor (BCR) engagement. Moreover, tyrosine phosphorylation of Gab1 correlated with the binding of several SH2-containing signaling proteins to Gab1 including Shc, Grb2, phosphatidylinositol 3-kinase, and the SHP-2 tyrosine phosphatase. Far Western analysis showed that the SH2 domains of Shc, SHP-2, and the p85 subunit of phosphatidylinositol 3-kinase could bind directly to tyrosine-phosphorylated Gab1 isolated from activated RAMOS cells. In contrast, the Grb2 SH2 domain did not bind directly to Gab1 but instead to the Shc and SHP-2 associated with Gab1. We also show that Gab1 is present in the membrane-enriched particulate fraction of RAMOS cells and that Gab1/signaling protein complexes are found in this fraction after BCR engagement. Thus, tyrosine-phosphorylated Gab1 may recruit cytosolic signaling proteins to cellular membranes where they can act on membrane-bound targets. This may be a critical step in the activation of multiple BCR signaling pathways.

  9. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  10. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  12. The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein (CbpA) has specific interactions with endoglucanases.

    PubMed Central

    Takagi, M; Hashida, S; Goldstein, M A; Doi, R H

    1993-01-01

    We overexpressed one of the hydrophobic repeated domains (HBDs) (110 amino acid residues) of the cellulose-binding protein (CbpA) from Clostridium cellulovorans by making a hybrid protein with the Escherichia coli maltose-binding protein (MalE). The HBD was purified to homogeneity, and interactions between the HBD and endoglucanases were analyzed by a novel interaction Western blotting (immunoblotting) method. The HBD had specific interactions with endoglucanases (EngB and EngD) from C. cellulovorans. These results indicated that the HBD was an endoglucanase binding site of CbpA. Images PMID:8226657

  13. Molecular Basis of the Binding of YAP Transcriptional Regulator to the ErbB4 Receptor Tyrosine Kinase

    PubMed Central

    Schuchardt, Brett J.; Bhat, Vikas; Mikles, David C.; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    The newly discovered transactivation function of ErbB4 receptor tyrosine kinase is believed to be mediated by virtue of the ability of its proteolytically-cleaved intracellular domain (ICD) to physically associate with YAP2 transcriptional regulator. In an effort to unearth the molecular basis of YAP2-ErbB4 interaction, we have conducted a detailed biophysical analysis of the binding of WW domains of YAP2 to PPXY motifs located within the ICD of ErbB4. Our data show that the WW1 domain of YAP2 binds to PPXY motifs within the ICD in a differential manner and that this behavior is by and large replicated by the WW2 domain. Remarkably, while both WW domains absolutely require the integrity of the PPXY consensus sequence, non-consensus residues within and flanking this motif do not appear to be critical for binding. In spite of this shared mode of binding, the WW domains of YAP2 display distinct conformational dynamics in complex with PPXY motifs derived from ErbB4. Collectively, our study lends new insights into the molecular basis of a key protein-protein interaction involved in a diverse array of cellular processes. PMID:24472438

  14. NMR Mapping of Protein Conformational Landscapes using Coordinated Behavior of Chemical Shifts upon Ligand Binding

    PubMed Central

    Cembran, Alessandro; Kim, Jonggul; Gao, Jiali; Veglia, Gianluigi

    2014-01-01

    Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria following linear trajectories of NMR chemical shifts. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues’ response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins. PMID:24604024

  15. SCOWLP classification: Structural comparison and analysis of protein binding regions

    PubMed Central

    Teyra, Joan; Paszkowski-Rogacz, Maciej; Anders, Gerd; Pisabarro, M Teresa

    2008-01-01

    Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs) might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions. The hierarchical

  16. Trans-acting translational regulatory RNA binding proteins.

    PubMed

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  17. Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays.

    PubMed

    Kojima, Takaaki; Mizoguchi, Takuro; Ota, Eri; Hata, Jumpei; Homma, Keisuke; Zhu, Bo; Hitomi, Kiyotaka; Nakano, Hideo

    2016-02-01

    A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  19. Selective binding of proteins on functional nanoparticles via reverse charge parity model: an in vitro study

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata; Barick, K. C.

    2014-03-01

    The conformation of proteins absorbed on nanoparticles surface plays a crucial role in applications of nanoparticles in biomedicine. The surface protein conformation depends on several factors, namely, nature of protein-nanoparticles interaction, chemical composition of the surface of nanoparticles etc. A model of the electrostatic binding of proteins on charged surface nanoparticles has been proposed earlier (Ghosh et al 2013 Colloids Surf. B 103 267). Also, the irreversible denaturation of the protein conformation due to binding of counterions was reported. In this paper, we have used this model, involving reverse charge parity, to show selective binding of proteins on charged surface iron oxide nanoparticles (IONPs). IONPs were surface functionalized with cetylpyridinium chloride (CPC), cetyl(trimethyl)ammonium bromide (CTAB) and cetylpyridinium iodide (CPI). The effect of counterions (Cl-, Br- and I-) on protein conformation has also been investigated. Several proteins such as α-lactalbumin (ALA), β-lactoglobulin (BLG), ovalbumin (OVA), bovin serum albumin (BSA) and HEWL were chosen for this investigation.

  20. Characterisation of zinc-binding domains of peroxisomal RING finger proteins using size exclusion chromatography/inductively coupled plasma-mass spectrometry.

    PubMed

    Koellensperger, Gunda; Daubert, Simon; Erdmann, Ralf; Hann, Stephan; Rottensteiner, Hanspeter

    2007-11-01

    We determined the zinc binding stoichiometry of peroxisomal RING finger proteins by measuring sulfur/metal ratios using inductively coupled plasma-mass spectrometry coupled to size exclusion chromatography, a strategy that provides a fast and quantitative overview on the binding of metals in proteins. As a quality control, liquid chromatography-electrospray ionisation-time of flight-mass spectrometry was used to measure the molar masses of the intact proteins. The RING fingers of Pex2p, Pex10p, and Pex12p showed a stoichiometry of 2.0, 2.1, and 1.2 mol zinc/mol protein, respectively. Thus, Pex2p and Pex10p possess a typical RING domain with two coordinated zinc atoms, whereas that of Pex12p coordinates only a single zinc atom.

  1. MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*

    PubMed Central

    Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.

    2016-01-01

    The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707

  2. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    PubMed Central

    Peng, Tao; Free, Paul; Fernig, David G.; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of

  3. PRECLINICAL PHARMACOKINETIC ANALYSIS OF (E)-METHYL-4-ARYL-4-OXABUT-2-ENOATE, A NOVEL SER/THR PROTEIN KINASE B INIBITOR, IN RATS.

    PubMed

    Zhai, Qian-Qian; Pang, Jing; Li, Guo-Qing; Li, Cong-Ran; Wang, Yu-Cheng; Yu, Li-Yan; Li, Jian; YOUm, Xue-Fu

    2017-01-01

    (E)-Methyl-4-aryl-4-oxabut-2-enoate, designated YH-8, is a novel Serflhr protein kinase B (PknB) inhibitor, which is designed for the treatment of tuberculosis. The aim of this study was to investigate the pharmacokinetics, bioavailability, tissue distribution and excretion characteristics of YH-8 in rats and study its plasma protein binding in vitro. The pharmacokinetic properties were examined after intravenously injected YH-8 at 10 and 20 mg/kg and oral administrated YH-8 at 50, 100 and 200 mg/kg to rats. The concentrations of YH-8 in plasma were determined with LC-MS/MS, with a liquid-liquid extraction. The tissue distribution and urinary, fecal and -biliary excretion patterns of YH-8 were investigated following a single oral dosing of 100 mg/kg. The plasma protein binding rates of YH-8 were determined using ultra-filtration method. After intra- venous and oral administration, YH-8 showed dose-independent pharmacokinetic characteristics, with T(1/2) of approximately 5.5 h and 7.1 h, respectively. The oral absolute bioavailability of YH-8 was relatively low (about 12%). YH-8 was widely distributed in various tissues and showed substantial deposition in intestine, stomach, liver, lung and kidney. The drug was mainly eliminated via fecal excretion and its binding rate with plasma protein was concentration-dependent. In conclusion, this study as first provided the full pharmacokinetic characteristics of YH-8, which would be helpful for its further development and clinical application.

  4. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  5. Loss of calreticulin function decreases NFκB activity by stabilizing IκB protein.

    PubMed

    Massaeli, Hamid; Jalali, Shahrzad; Viswanathan, Divya; Mesaeli, Nasrin

    2014-11-01

    Transcription factor NFκB is activated by several processes including inflammation, endoplasmic-reticulum (ER) stress, increase in Akt signaling and enhanced proteasomal degradation. Calreticulin (CRT) is an ER Ca(2+)-binding chaperone that regulates many cellular processes. Gene-targeted deletion of CRT has been shown to induce ER stress that is accompanied with a significant increase in the proteasome activity. Loss of CRT function increases the resistance of CRT-deficient (crt-/-) cells to UV- and drug-induced apoptosis. Based on these reports we hypothesized that loss of CRT will activate NFκB signaling thus contributing to enhanced resistance to apoptosis. In contrast to our hypothesis, we observed a significant decrease in the basal transcriptional activity of NFκB in CRT-deficient cells. Treatment with lipopolysaccharide failed to increase the transcriptional activity of NFκB in the crt-/- cells to the same level as in the wt cells. Our data illustrate that the mechanism of decreased NFκB activity in CRT-deficient cells is mediated by a significant increase in IκB protein expression. Furthermore, we showed a significant increase in protein phosphatase 2A activity inhibition which resulted in decreased IκBα protein level in CRT-deficient cells. Based on our data we concluded that loss of CRT increases the stability of IκB protein thus reducing NFκB activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions.

    PubMed

    Glover, Karen; Mei, Yang; Sinha, Sangita C

    2016-10-01

    Many proteins contain intrinsically disordered regions (IDRs) lacking stable secondary and ordered tertiary structure. IDRs are often implicated in macromolecular interactions, and may undergo structural transitions upon binding to interaction partners. However, as binding partners of many protein IDRs are unknown, these structural transitions are difficult to verify and often are poorly understood. In this study we describe a method to identify IDRs that are likely to undergo helical transitions upon binding. This method combines bioinformatics analyses followed by circular dichroism spectroscopy to monitor 2,2,2-trifluoroethanol (TFE)-induced changes in secondary structure content of these IDRs. Our results demonstrate that there is no significant change in the helicity of IDRs that are not predicted to fold upon binding. IDRs that are predicted to fold fall into two groups: one group does not become helical in the presence of TFE and includes examples of IDRs that form β-strands upon binding, while the other group becomes more helical and includes examples that are known to fold into helices upon binding. Therefore, we propose that bioinformatics analyses combined with experimental evaluation using TFE may provide a general method to identify IDRs that undergo binding-induced disorder-to-helix transitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The modular architecture of protein-protein binding interfaces.

    PubMed

    Reichmann, D; Rahat, O; Albeck, S; Meged, R; Dym, O; Schreiber, G

    2005-01-04

    Protein-protein interactions are essential for life. Yet, our understanding of the general principles governing binding is not complete. In the present study, we show that the interface between proteins is built in a modular fashion; each module is comprised of a number of closely interacting residues, with few interactions between the modules. The boundaries between modules are defined by clustering the contact map of the interface. We show that mutations in one module do not affect residues located in a neighboring module. As a result, the structural and energetic consequences of the deletion of entire modules are surprisingly small. To the contrary, within their module, mutations cause complex energetic and structural consequences. Experimentally, this phenomenon is shown on the interaction between TEM1-beta-lactamase and beta-lactamase inhibitor protein (BLIP) by using multiple-mutant analysis and x-ray crystallography. Replacing an entire module of five interface residues with Ala created a large cavity in the interface, with no effect on the detailed structure of the remaining interface. The modular architecture of binding sites, which resembles human engineering design, greatly simplifies the design of new protein interactions and provides a feasible view of how these interactions evolved.

  8. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  9. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system...

  10. Insight from TonB Hybrid Proteins into the Mechanism of Iron Transport through the Outer Membrane▿

    PubMed Central

    Kaserer, Wallace A.; Jiang, Xiaoxu; Xiao, Qiaobin; Scott, Daniel C.; Bauler, Matthew; Copeland, Daniel; Newton, Salete M. C.; Klebba, Phillip E.

    2008-01-01

    We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB+ bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepAΔ3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of

  11. Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B

    NASA Astrophysics Data System (ADS)

    Leriche, Tammy; Skorey, Kathryn; Roy, Patrick; McKay, Dan; Bateman, Kevin P.

    2004-11-01

    Protein tyrosine phosphatase 1B (PTP1B) is a potential target for the treatment of Type II diabetes and several companies are developing small molecule inhibitors of this enzyme. Part of the characterization of these compounds as PTP1B inhibitors is the understanding of how they bind in the enzyme active site. The use of photo-activated inhibitors that target the active site can provide such insight. This paper describes the characterization of a photoprobe directed at the active site of PTP1B. Mass spectrometry revealed the specific binding of the probe to the intact protein. Digestion of the labeled protein followed by LC-MS and LC-MS/MS was used to show that the photoprobe binds to a specific active site amino acid. This was confirmed by comparison with the X-ray structure of PTP1B with a PTP1B inhibitor. The probe labels a conserved acidic residue (Asp) that is required for catalytic activity. This photoprobe may prove to be a useful tool for the development of a PTP1B inhibitor or for the study of PTPs in general.

  12. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins

    PubMed Central

    Radakovics, Katharina; Smith, Terry K.; Bobik, Nina; Round, Adam; Djinović-Carugo, Kristina; Usón, Isabel

    2016-01-01

    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1–83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1–83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1–240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88. PMID:27973613

  13. The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization

    PubMed Central

    2010-01-01

    Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD) is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1) RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to date. This, along with the

  14. Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics

    PubMed Central

    Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.

    2017-01-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523

  15. Binding sites for interaction of peroxiredoxin 6 with surfactant protein A.

    PubMed

    Krishnaiah, Saikumari Y; Dodia, Chandra; Sorokina, Elena M; Li, Haitao; Feinstein, Sheldon I; Fisher, Aron B

    2016-04-01

    Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A2 (PLA2) activities. This protein participates in the degradation and remodeling of internalized dipalmitoylphosphatidylcholine (DPPC), the major phospholipid component of lung surfactant. We have shown previously that the PLA2 activity of Prdx6 is inhibited by the lung surfactant-associated protein called surfactant protein A (SP-A) through direct protein-protein interaction. Docking of SPA and Prdx6 was modeled using the ZDOCK (zlab.bu.edu) program in order to predict molecular sites for binding of the two proteins. The predicted peptide sequences were evaluated for binding to the opposite protein using isothermal titration calorimetry and circular dichroism measurement followed by determination of the effect of the SP-A peptide on the PLA2 activity of Prdx6. The sequences 195EEEAKKLFPK204.in the Prdx6 helix and 83DEELQTELYEIKHQIL99 in SP-A were identified as the sites for hydrophobic interaction and H(+)-bonding between the 2 proteins. Treatment of mouse endothelial cells with the SP-A peptide inhibited their recovery from lipid peroxidation associated with oxidative stress indicating inhibition of Prdx6 activity by the peptide in the intact cell. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less

  17. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    PubMed

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  18. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  19. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    PubMed

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  1. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  2. Crystallization and preliminary X-ray diffraction analysis of the Bacillus subtilis replication termination protein in complex with the 37-base-pair TerI-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivian, J. P.; Porter, C.; Wilce, J. A.

    2006-11-01

    A preparation of replication terminator protein (RTP) of B. subtilis and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. The replication terminator protein (RTP) of Bacillus subtilis binds to specific DNA sequences that halt the progression of the replisome in a polar manner. These terminator complexes flank a defined region of the chromosome into which they allow replication forks to enter but not exit. Forcing the fusion of replication forks in a specific zone is thought to allow the coordination of post-replicative processes. The functional terminator complex comprises two homodimers each of 29more » kDa bound to overlapping binding sites. A preparation of RTP and a 37-base-pair TerI sequence (comprising two binding sites for RTP) has been purified and crystallized. A data set to 3.9 Å resolution with 97.0% completeness and an R{sub sym} of 12% was collected from a single flash-cooled crystal using synchrotron radiation. The diffraction data are consistent with space group P622, with unit-cell parameters a = b = 118.8, c = 142.6 Å.« less

  3. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    PubMed Central

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  4. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    PubMed

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV

  5. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors.

    PubMed

    Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok

    2004-01-01

    IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.

  6. Functional roles and efficiencies of the thioredoxin boxes of calcium-binding proteins 1 and 2 in protein folding.

    PubMed Central

    Kramer, B; Ferrari, D M; Klappa, P; Pöhlmann, N; Söling, H D

    2001-01-01

    The rat luminal endoplasmic-recticulum calcium-binding proteins 1 and 2 (CaBP1 and CaBP2 respectively) are members of the protein disulphide-isomerase (PDI) family. They contain two and three thioredoxin boxes (Cys-Gly-His-Cys) respectively and, like PDI, may be involved in the folding of nascent proteins. We demonstrate here that CaBP1, similar to PDI and CaBP2, can complement the lethal phenotype of the disrupted Saccharomyces cerevisiae PDI gene, provided that the natural C-terminal Lys-Asp-Glu-Leu sequence is replaced by His-Asp-Glu-Leu. Both the in vitro RNase AIII-re-activation assays and in vivo pro-(carboxypeptidase Y) processing assays using CaBP1 and CaBP2 thioredoxin (trx)-box mutants revealed that, whereas the three trx boxes in CaBP2 seem to be functionally equivalent, the first trx box of CaBP1 is significantly more active than the second trx box. Furthermore, only about 65% re-activation of denatured reduced RNase AIII could be obtained with CaBP1 or CaBP2 compared with PDI, and the yield of PDI-catalysed reactions was significantly reduced in the presence of either CaBP1 or CaBP2. In contrast with PDI, neither CaBP1 nor CaBP2 could catalyse the renaturation of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is a redox-independent process, and neither protein had any effect on the PDI-catalysed refolding of GAPDH. Furthermore, although PDI can bind peptides via its b' domain, a property it shares with PDIp, the pancreas-specific PDI homologue, and although PDI can bind malfolded proteins such as 'scrambled' ribonuclease, no such interactions could be detected for CaBP2. We conclude that: (1) both CaBP2 and CaBP1 lack peptide-binding activity for GAPDH attributed to the C-terminal region of the a' domain of PDI; (2) CaBP2 lacks the general peptide-binding activity attributed to the b' domain of PDI; (3) interaction of CaBP2 with substrate (RNase AIII) is different from that of PDI and substrate; and (4) both CaBP2 and CaBP1 may

  7. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  8. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism).

    PubMed

    Daughaday, W H; Trivedi, B

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  9. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    PubMed

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  10. A core viral protein binds host nucleosomes to sequester immune danger signals

    PubMed Central

    Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.

    2016-01-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  11. Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site.

    PubMed

    Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J

    2011-05-01

    Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.

  12. RIBEYE(B)-domain binds to lipid components of synaptic vesicles in an NAD(H)-dependent, redox-sensitive manner.

    PubMed

    Schwarz, Karin; Schmitz, Frank

    2017-03-20

    Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD + , the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: study of binding interaction and structural changes of protein.

    PubMed

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-01-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    PubMed

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  15. Phosphoinositide-binding proteins in autophagy.

    PubMed

    Lystad, Alf Håkon; Simonsen, Anne

    2016-08-01

    Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.

  16. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  17. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  18. A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency

    PubMed Central

    Le Blanc, Alexander; Mahrhold, Stefan; Piesker, Janett; Luppa, Peter B.

    2018-01-01

    The exceptional toxicity of botulinum neurotoxins (BoNTs) is mediated by high avidity binding to complex polysialogangliosides and intraluminal segments of synaptic vesicle proteins embedded in the presynaptic membrane. One peculiarity is an exposed hydrophobic loop in the toxin’s cell binding domain HC, which is located between the ganglioside- and protein receptor-binding sites, and that is particularly pronounced in the serotypes BoNT/B, DC, and G sharing synaptotagmin as protein receptor. Here, we provide evidence that this HC loop is a critical component of their tripartite receptor recognition complex. Binding to nanodisc-embedded receptors and toxicity were virtually abolished in BoNT mutants lacking residues at the tip of the HC loop. Surface plasmon resonance experiments revealed that only insertion of the HC loop into the lipid-bilayer compensates for the entropic penalty inflicted by the dual-receptor binding. Our results represent a new paradigm of how BoNT/B, DC, and G employ ternary interactions with a protein, ganglioside, and lipids to mediate their extraordinary neurotoxicity. PMID:29718991

  19. Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy.

    PubMed

    Custer, Sara K; Todd, Adrian G; Singh, Natalia N; Androphy, Elliot J

    2013-10-15

    Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA.

  20. The Murine Factor H-Related Protein FHR-B Promotes Complement Activation.

    PubMed

    Cserhalmi, Marcell; Csincsi, Ádám I; Mezei, Zoltán; Kopp, Anne; Hebecker, Mario; Uzonyi, Barbara; Józsi, Mihály

    2017-01-01

    Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

  1. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2.

    PubMed Central

    Nan, X; Meehan, R R; Bird, A

    1993-01-01

    MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M. Images PMID:8177735

  2. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  3. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  4. Structural Analysis of Semi-specific Oligosaccharide Recognition by a Cellulose-binding Protein of Thermotoga maritima Reveals Adaptations for Functional Diversification of the Oligopeptide Periplasmic Binding Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Matthew J.; Beese, Lorena S.; Hellinga, Homme W.

    Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T.more » maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of {beta}(1 {yields} 4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.« less

  5. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein.

    PubMed

    Chao, Kinlin L; Kulakova, Liudmila; Herzberg, Osnat

    2017-02-14

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88 DNVD 91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.

  6. Determination of the small RNA GcvB regulon in the Gram-negative bacterial pathogen Pasteurella multocida and identification of the GcvB seed binding region.

    PubMed

    Gulliver, Emily L; Wright, Amy; Lucas, Deanna Deveson; Mégroz, Marianne; Kleifeld, Oded; Schittenhelm, Ralf B; Powell, David R; Seemann, Torsten; Bulitta, Jürgen B; Harper, Marina; Boyce, John D

    2018-05-01

    Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB , 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA . © 2018 Gulliver et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. A phorbol ester-binding protein is required downstream of Rab5 in endosome fusion.

    PubMed

    Aballay, A; Barbieri, M A; Colombo, M I; Arenas, G N; Stahl, P D; Mayorga, L S

    1998-12-28

    Previous observations indicate that a zinc and phorbol ester binding factor is necessary for endosome fusion. To further characterize the role of this factor in the process, we used an in vitro endosome fusion assay supplemented with recombinant Rab5 proteins. Both zinc depletion and addition of calphostin C, an inhibitor of protein kinase C, inhibited endosome fusion in the presence of active Rab5. Addition of the phorbol ester PMA (phorbol 12-myristate 13-acetate) reversed the inhibition of endosome fusion caused by a Rab5 negative mutant. Moreover, PMA stimulated fusion in the presence of Rab5 immunodepleted cytosol. These results suggest that the phorbol ester binding protein is acting downstream of Rab5 in endosome fusion.

  8. Identification of a second binding site on the TRIM25 B30.2 domain.

    PubMed

    D'Cruz, Akshay A; Kershaw, Nadia J; Hayman, Thomas J; Linossi, Edmond M; Chiang, Jessica J; Wang, May K; Dagley, Laura F; Kolesnik, Tatiana B; Zhang, Jian-Guo; Masters, Seth L; Griffin, Michael D W; Gack, Michaela U; Murphy, James M; Nicola, Nicos A; Babon, Jeffrey J; Nicholson, Sandra E

    2018-01-23

    The r etinoic acid- i nducible g ene- I (RIG-I) receptor recognizes short 5'-di- and triphosphate base-paired viral RNA and is a critical mediator of the innate immune response against viruses such as influenza A, Ebola, HIV and hepatitis C. This response is reported to require an orchestrated interaction with the tri partite m otif 25 (TRIM25) B30.2 protein-interaction domain. Here, we present a novel second RIG-I-binding interface on the TRIM25 B30.2 domain that interacts with CARD1 and CARD2 ( c aspase a ctivation and r ecruitment d omains) of RIG-I and is revealed by the removal of an N-terminal α-helix that mimics dimerization of the full-length protein. Further characterization of the TRIM25 coiled-coil and B30.2 regions indicated that the B30.2 domains move freely on a flexible tether, facilitating RIG-I CARD recruitment. The identification of a dual binding mode for the TRIM25 B30.2 domain is a first for the SPRY/B30.2 domain family and may be a feature of other SPRY/B30.2 family members. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Prevalence of factor H-binding protein variants and NadA among meningococcal group B isolates from the United States: implications for the development of a multicomponent group B vaccine.

    PubMed

    Beernink, Peter T; Welsch, Jo Anne; Harrison, Lee H; Leipus, Arunas; Kaplan, Sheldon L; Granoff, Dan M

    2007-05-15

    Two promising recombinant meningococcal protein vaccines are in development. One contains factor H-binding protein (fHBP) variants (v.) 1 and 2, whereas the other contains v.1 and 4 other antigens discovered by genome mining (5 component [5C]). Antibodies against fHBP are bactericidal against strains within a variant group. There are limited data on the prevalence of strains expressing different fHBP variants in the United States. A total of 143 group B isolates from patients hospitalized in the United States were tested for fHBP variant by quantitative polymerase chain reaction, for reactivity with 6 anti-fHBP monoclonal antibodies (MAb) by dot immunoblotting, and for susceptibility to bactericidal activity of mouse antisera. fHBP v.1 isolates predominated in California (83%), whereas isolates expressing v.1 (53%) or v.2 (42%) were common in 9 other states. Isolates representative of 5 anti-fHBP MAb-binding phenotypes (70% of isolates) were highly susceptible to anti-fHBP v.1 or v.2 bactericidal activity, whereas 3 phenotypes were approximately 50% susceptible. Collectively, antibodies against the fHBP v.1 and v.2 vaccine and the 5C vaccine killed 76% and 83% of isolates, respectively. Susceptibility to bactericidal activity can be predicted, in part, on the basis of fHBP phenotypes. Both vaccines have the potential to prevent most group B disease in the United States.

  10. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatani, Miyuki; Ito, Jumpei; Japan Society for the Promotion of Science, Tokyo, 102-0083

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the firstmore » step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.« less

  11. Role of binding ligand in toxic hybrid proteins: a comparison of EGF-ricin, EGF-ricin A-chain, and ricin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herschman, H.R.

    1984-10-30

    To analyze the influence of ricin B-chain on (i) the toxicity of hybrid-protein conjugates, (ii) the rate of cellular uptake of conjugates, and (iii) the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, toxic hybrid proteins have been constructed consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37/sup 0/ before the onset ofmore » protein synthesis inhibition occurred. Results suggest that (i) RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and (ii) the ricin B chain is not required for these processes.« less

  12. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  13. Cyclosporin A and FK-506 both affect DNA binding of regulatory nuclear proteins to the human interleukin-2 promoter.

    PubMed

    Baumann, G; Geisse, S; Sullivan, M

    1991-03-01

    The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.

  14. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  15. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  16. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization

    PubMed Central

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2016-01-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. one chimera consists of a FK506-binding protein (FKBp12) fused to a cellular ‘address’ (nuclear localization signal or nuclear export sequence). the second chimera consists of a target protein fused to a fluorescent protein and the FKBp12-rapamycin-binding (FrB) domain from FKBp-12-rapamycin associated protein 1 (Frap1, also known as mtor). rapamycin induces dimerization of the FKBp12- and FrB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment. PMID:21030958

  17. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype.

    PubMed

    Lamers, Ideke J C; Reijnders, Margot R F; Venselaar, Hanka; Kraus, Alison; Jansen, Sandra; de Vries, Bert B A; Houge, Gunnar; Gradek, Gyri Aasland; Seo, Jieun; Choi, Murim; Chae, Jong-Hee; van der Burgt, Ineke; Pfundt, Rolph; Letteboer, Stef J F; van Beersum, Sylvia E C; Dusseljee, Simone; Brunner, Han G; Doherty, Dan; Kleefstra, Tjitske; Roepman, Ronald

    2017-11-02

    The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  18. Expression, purification and biochemical characterization of a single-stranded DNA binding protein from Herbaspirillum seropedicae.

    PubMed

    Vernal, Javier; Serpa, Viviane I; Tavares, Carolina; Souza, Emanuel M; Pedrosa, Fábio O; Terenzi, Hernán

    2007-05-01

    An open reading frame encoding a protein similar in size and sequence to the Escherichia coli single-stranded DNA binding protein (SSB protein) was identified in the Herbaspirillum seropedicae genome. This open reading frame was cloned into the expression plasmid pET14b. The SSB protein from H. seropedicae, named Hs_SSB, was overexpressed in E. coli strain BL21(DE3) and purified to homogeneity. Mass spectrometry data confirmed the identity of this protein. The apparent molecular mass of the native Hs_SSB was estimated by gel filtration, suggesting that the native protein is a tetramer made up of four similar subunits. The purified protein binds to single-stranded DNA (ssDNA) in a similar manner to other SSB proteins. The production of this recombinant protein in good yield opens up the possibility of obtaining its 3D-structure and will help further investigations into DNA metabolism.

  19. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  20. Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase.

    PubMed

    Schuchardt, Brett J; Bhat, Vikas; Mikles, David C; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-06-01

    The newly discovered transactivation function of ErbB4 receptor tyrosine kinase is believed to be mediated by virtue of the ability of its proteolytically-cleaved intracellular domain (ICD) to physically associate with YAP2 transcriptional regulator. In an effort to unearth the molecular basis of YAP2-ErbB4 interaction, we have conducted a detailed biophysical analysis of the binding of WW domains of YAP2 to PPXY motifs located within the ICD of ErbB4. Our data show that the WW1 domain of YAP2 binds to PPXY motifs within the ICD in a differential manner and that this behavior is by and large replicated by the WW2 domain. Remarkably, while both WW domains absolutely require the integrity of the PPXY consensus sequence, non-consensus residues within and flanking this motif do not appear to be critical for binding. In spite of this shared mode of binding, the WW domains of YAP2 display distinct conformational dynamics in complex with PPXY motifs derived from ErbB4. Collectively, our study lends new insights into the molecular basis of a key protein-protein interaction involved in a diverse array of cellular processes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.