Sample records for b12-dependent ribonucleotide reductase

  1. Ribonucleotide reductase activity is regulated by proliferating cell nuclear antigen (PCNA)

    PubMed Central

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne; Deegan, Tom; Havens, Courtney G.; MacNeill, Stuart A.; Walter, Johannes C.; Kearsey, Stephen E.

    2014-01-01

    Summary Synthesis of dNTPs is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimising the mutation rate [3-7], and this is achieved by tight regulation of ribonucleotide reductase [2, 8, 9]. In fission yeast, ribonucleotide reductase is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow up-regulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4Cdt2 ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 levels fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor PCNA, complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and ribonucleotide reductase regulation. PMID:22464192

  2. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, Mark S.; Whang, Edward E.

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator ofmore » the invasive phenotypic changes induced by RRM2 overexpression.« less

  3. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  4. Mechanism of ribonucleotide reductase from Herpes simplex virus type 1. Evidence for 3' carbon-hydrogen bond cleavage and inactivation by nucleotide analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ator, M.A.; Stubbe, J.; Spector, T.

    1986-03-15

    Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less

  5. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    PubMed

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  6. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    PubMed

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  7. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase.

    PubMed

    Liew, Li Phing; Lim, Zun Yi; Cohen, Matan; Kong, Ziqing; Marjavaara, Lisette; Chabes, Andrei; Bell, Stephen D

    2016-11-01

    In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    DOE PAGES

    Wei, Yifeng; Li, Bin; Prakash, Divya; ...

    2015-11-04

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less

  9. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  10. Studies on Marek's Disease Virus Encoded Ribonucleotide Reductase

    USDA-ARS?s Scientific Manuscript database

    Ribonucleotide reductase (RR) is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleotides in prokaryotic and eukaryotic cells. The enzyme consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme. Herpesviruses express a functional R...

  11. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host

    PubMed Central

    Taga, Michiko E.; Walker, Graham C.

    2010-01-01

    Vitamin B12 (cobalamin) is a critical cofactor for animals and protists, yet its biosynthesis is limited to prokaryotes. We previously showed that the symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti requires cobalamin to establish a symbiotic relationship with its plant host, Medicago sativa (alfalfa). Here, the specific requirement for cobalamin in the S. meliloti-alfalfa symbiosis was investigated. Of the three known cobalamin-dependent enzymes in S. meliloti, the methylmalonyl CoA mutase (BhbA) does not affect symbiosis whereas disruption of the metH gene encoding the cobalamin-dependent methionine synthase causes a significant defect in symbiosis. Expression of the cobalamin-independent methionine synthase MetE alleviates this symbiotic defect, indicating that the requirement for methionine synthesis does not reflect a need for the cobalamin-dependent enzyme. To investigate the function of the cobalamin-dependent ribonucleotide reductase (RNR) encoded by nrdJ, S. meliloti was engineered to express an Escherichia coli cobalamin-independent (Class Ia) RNR instead of nrdJ. This strain is severely defective in symbiosis. Electron micrographs show that these cells can penetrate alfalfa nodules but are unable to differentiate into nitrogen-fixing bacteroids and instead are lysed in the plant cytoplasm. Flow cytometry analysis indicates that these bacteria are largely unable to undergo endoreduplication. These phenotypes may be due to the inactivation of the Class Ia RNR by reactive oxygen species and/or inadequate oxygen availability in the nodule. These results show that the critical role of the cobalamin-dependent RNR for survival of S. meliloti in its plant host can account for the considerable resources that S. meliloti dedicates to cobalamin biosynthesis. PMID:20698752

  12. Characterization of the kinetics of Fe (II) binding by the R2 protein subunit of E. coli ribonucleotide reductase

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Dipankar; , Joseph Martin Bollinger, Jr.

    2008-07-01

    The kinetics of Fe(II) binding to Escherichia coli Ribonucleotide reductase (R2) has been studied using rapid kinetics techniques including chemical quenched flow (CQF) Mössbauer spectroscopy. Based on the stopped flow absorption (SF-Abs) and CQF Mössbauer spectroscopy results, the pre-steady kinetics of binding of Fe(II) to the two sites A and B on R2 have been established with attendant conformational changes. Fe (II) binds to Site B tighter and faster and these and other results provide important information towards the di-iron cofactor assembly mechanism in R2 and could have possible implications for the development of modified and new anticancer and antiviral drugs.

  13. Ribonucleotide reductase in melanoma tissue. EPR detection in human amelanotic melanoma and quenching of the tyrosine radical by 4-hydroxyanisole.

    PubMed

    Lassmanm, G; Liermann, B; Arnold, W; Schwabe, K

    1991-01-01

    The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50 = 5 microM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 microM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.

  14. Marek’s disease virus encoded ribonucleotide reductase large subunit is essential for in vivo replication and plays a critical role in viral pathogenesis.

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...

  15. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy.

    PubMed Central

    Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S

    1993-01-01

    Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yifeng; Li, Bin; Prakash, Divya

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less

  17. Identification of a hydroxide ligand at the iron center of ribonucleotide reductase by resonance Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoeberg, B.; Sanders-Loehr, J.; Loehr, T.M.

    1987-07-14

    The resonance Raman spectrum of protein B2 of ribonucleotide reductase from Escherichia coli shows several features related to its oxo-bridged binuclear iron center. A peak at 492 cm/sup -1/ is assigned to the symmetric stretch of the Fe-O-Fe moiety on the basis of its 13-cm/sup -1/ shift to lower energy upon /sup 18/O substitution. The /sup 18/O species shows an additional peak at 731 cm/sup -1/, which is a good candidate for the asymmetric stretch of the Fe-O-Fe moiety. Its exact location in the /sup 16/O species is obscured by the presence of a protein tryptophan vibration at 758 cm/supmore » -1/. A third resonance-enhanced peak at 598 cm/sup -1/ is identified as an Fe-OH vibration on the basis of its 24-cm/sup -1/ shift to lower energy in H/sub 2//sup 18/O, its 2-cm/sup -1/ shift to lower energy in D/sub 2/O, and its pH-dependent intensity. A hydrogen-bonded ..mu..-oxo bridge similar to that in hemerythrin is suggested by the unusually low frequency for the Fe-O-Fe symmetric stretch and the 3-cm/sup -1/ shift to higher energy of nu/sub s/ (Fe-O-Fe), an Fe-O-Fe angle of 138/sup 0/ can be calculated. This small angle suggests that the iron center consists of a tribridged core as in hemerythrin. A model for the binuclear iron center of ribonucleotide reductase is presented in which the hydroxide ligand sites provide an explanation for the half-of-sites reactivity of the enzyme.« less

  18. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms

    PubMed Central

    Liu, Cong; Powell, Kelly A.; Mundt, Kirsten; Wu, LeJung; Carr, Antony M.; Caspari, Thomas

    2003-01-01

    The signalosome is implicated in regulating cullin-dependent ubiquitin ligases. We find that two signalosome subunits, Csn1 and Csn2, are required to regulate ribonucleotide reductase (RNR) through the degradation of a small protein, Spd1, that acts to anchor the small RNR subunit in the nucleus. Spd1 destruction correlates with the nuclear export of the small RNR subunit, which, in turn, correlates with a requirement for RNR in replication and repair. Spd1 degradation is promoted by two separate CSN-dependent mechanisms. During unperturbed S phase, Spd1 degradation is independent of checkpoint proteins. In irradiated G2 cells, Spd1 degradation requires the DNA damage checkpoint. The signalosome copurifies with Pcu4 (cullin 4). Pcu4, Csn1, and Csn2 promote the degradation of Spd1, identifying a new function for the signalosome as a regulator of Pcu4-containing E3 ubiquitin ligase. PMID:12695334

  19. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    PubMed

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  20. Marek’s Disease Virus Encoded Ribonucleotide Reductase Large Subunit is not Essential for In Vitro Replication

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) infected cells express a viral ribonucleotide reductase (RR) that is distinguishable from that present in uninfected cells by monoclonal antibody T81. Open reading frames UL39 and UL40 of the MDV genome encode the large (RR1) and small (RR2) subunits of RR enzyme, respe...

  1. Identification and in vitro characterization of a Marek’s disease virus encoded ribonucleotide reductase

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...

  2. Large subunit of the ribonucleotide reductase gene is a virulent factor and plays a critical role in Marek's disease virus pathogenesis

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR) gene consisting of two subunits UL39 (RR1) and UL40 (RR2). Both RR1 and RR2 form an active holoenzyme and are necessary for enzyme activity. This gene was indentified by monoclonal antibody T81 in a gt11 MDV expression library and f...

  3. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights.

    PubMed

    Makhlynets, Olga; Boal, Amie K; Rhodes, Delacy V; Kitten, Todd; Rosenzweig, Amy C; Stubbe, JoAnne

    2014-02-28

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with Fe(II) and O2 can self-assemble a diferric-tyrosyl radical (Fe(III)2-Y(•)) cofactor (1.2 Y(•)/β2) and with the help of NrdI can assemble a Mn(III)2-Y(•) cofactor (0.9 Y(•)/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and Mn(II)2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μM) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR.

  4. Streptococcus sanguinis Class Ib Ribonucleotide Reductase

    PubMed Central

    Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.; Kitten, Todd; Rosenzweig, Amy C.; Stubbe, JoAnne

    2014-01-01

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y•) cofactor (1.2 Y•/β2) and with the help of NrdI can assemble a MnIII2-Y• cofactor (0.9 Y•/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μm) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR. PMID:24381172

  5. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization

    PubMed Central

    Zhang, Yan; Rodionov, Dmitry A; Gelfand, Mikhail S; Gladyshev, Vadim N

    2009-01-01

    Background Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized, systematic evolutionary analyses of utilization of these metals are limited. Results We carried out comparative genomic analyses to examine occurrence and evolutionary dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes. Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase, and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of environmental and other conditions and identity of organisms that show dependence on Ni or Co revealed that host-associated organisms (particularly obligate intracellular parasites and endosymbionts) have a tendency for loss of Ni/Co utilization. Conclusion Our data provide information on the evolutionary dynamics of Ni and Co utilization and highlight widespread use of these metals in the three domains of life, yet only a limited number of user proteins. PMID:19208259

  6. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli

    PubMed Central

    Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L

    2016-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917

  7. Direct photoaffinity labeling of an allosteric site on subunit protein M1 of mouse ribonucleotide reductase by dTTP.

    PubMed Central

    Eriksson, S; Caras, I W; Martin, D W

    1982-01-01

    The protein M1 subunit of ribonucleotide reductase contains at least two allosteric nucleotide binding sites that control the capacity of the enzyme to reduce ribonucleotides to the deoxyribonucleotides required for DNA synthesis. Direct photoaffinity labeling of partially purified protein M1 from mouse T-lymphoma (S49) cells was observed after UV irradiation in the presence of dTTP at 0 degrees C. The relative molar incorporation of nucleotide per subunit was 4-8%. Competition experiments showed that the dTTP was bound to an allosteric domain genetically and kinetically defined as the substrate specificity site of the enzyme. An altered protein M1 isolated from a thymidine-resistant mutant cell line showed significantly decreased photoincorporation of dTTP, consistent with the fact that its CDP reductase activity is resistant to feedback inhibition by dTTP. Specific photolabeling of several other proteins with pyrimidine and purine nucleotides was also found, indicating the general usefulness of direct photoaffinity labeling in the study of enzymes involved in nucleotide and nucleic acid metabolism. Images PMID:7033963

  8. Arrest of cell cycle by inhibition of ribonucleotide reductase induces accumulation of NAD+ by Mn2+-supplemented growth of Corynebacterium ammoniagenes.

    PubMed

    Abbouni, Bouziane; Elhariry, Hesham M; Auling, Georg

    2003-01-01

    Cell division of the wild type strain Corynebacterium (formerly Brevibacterium) ammoniagenes ATCC 6872 which requires 1 microM Mn2+ for balanced growth was inhibited by addition of 20 mM hydroxyurea (HU) or 10 mM p-methoxyphenol (MP) to a Mn2+-supplemented fermentation medium at an appropriate time. Scanning electron microscopy (SEM) showed a restricted elongation characteristic of arrest of the cell cycle in coryneform bacteria. The cultures treated with HU or MP had, respectively, a fourfold or sixfold enhanced accumulation of NAD+ by a salvage biosynthetic pathway. An assay of nucleotide-permeable cells for ribonucleotide reductase activity using [3H-CDP] as substrate revealed a pre-early and complete decline of DNA precursor biosynthesis not found in the untreated control. Overproduction of NAD+ is an alternative to the conventional fermentation process using Mn2+ deficiency. A simple model is presented to discuss the metabolic regulation of the new process based on the presence of a manganese ribonucleotide reductase (Mn-RNR) in the producing strain.

  9. Nuclear inelastic scattering at the diiron center of ribonucleotide reductase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Marx, J.; Srinivas, V.; Faus, I.; Auerbach, H.; Scherthan, L.; Jenni, K.; Chumakov, A. I.; Rüffer, R.; Högbom, M.; Haumann, M.; Schünemann, V.

    2017-11-01

    The enzyme ribonucleotide reductase R2 catalyzes an important step in the synthesis of the building blocks of DNA, and harbors a dinuclear iron center required for activity. Not only the iron valence states but also the protonation of the iron ligands govern the enzymatic activity of the enzyme. We have performed Nuclear Inelastic Scattering (NIS) experiments on the 57Fe reconstituted ribonucleotide reductase R2 subunit from Escherichia coli ( Ec R2a). Accompanying Mössbauer spectroscopic investigations show that the partial density of vibrational states (pDOS) of the 57Fe reconstituted Ec R2a sample contained contributions from both 57Fe- Ec R2a protein as well as unspecifically bound 57Fe. Subtraction of a featureless pDOS as obtained from protein-coated iron oxide particles allowed modeling of the contribution of non-specifically bound iron and thus the pDOS of 57Fe- Ec R2a could be obtained. Quantum-mechanics/molecular-mechanics (QM/MM) calculations of the whole 57Fe- Ec R2a protein with variations of the cofactor protonation were performed in order to assign characteristic bands to their corresponding molecular vibrational modes.

  10. A Functional Approach Reveals a Genetic and Physical Interaction between Ribonucleotide Reductase and CHK1 in Mammalian Cells

    PubMed Central

    Taricani, Lorena; Shanahan, Frances; Malinao, Maria-Christina; Beaumont, Maribel; Parry, David

    2014-01-01

    Ribonucleotide reductase (RNR) enzyme is composed of the homodimeric RRM1 and RRM2 subunits, which together form a heterotetramic active enzyme that catalyzes the de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. In this study, we show that ablation of RRM1 and RRM2 by siRNA induces G1/S phase arrest, phosphorylation of Chk1 on Ser345 and phosphorylation of γ-H2AX on S139. Combinatorial ablation of RRM1 or RRM2 and Chk1 causes a dramatic accumulation of γ-H2AX, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Significantly, we demonstrate for the first time that Chk1 and RNR subunits co-immunoprecipitate from native cell extracts. These functional genomic studies suggest that RNR is a critical mediator of replication checkpoint activation. PMID:25375241

  11. Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase

    PubMed Central

    Asuncion Valenzuela, Malyn M; Castro, Imilce; Gonda, Amber; Diaz Osterman, Carlos J; Jutzy, Jessica M; Aspe, Jonathan R; Khan, Salma; Neidigh, Jonathan W; Wall, Nathan R

    2015-01-01

    New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma. PMID:25767396

  12. Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis * ♦

    PubMed Central

    Rhodes, DeLacy V.; Crump, Katie E.; Makhlynets, Olga; Snyder, Melanie; Ge, Xiuchun; Xu, Ping; Stubbe, JoAnne; Kitten, Todd

    2014-01-01

    Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259–6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (FeIII2-Y•) in vitro, whereas assembly of a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor requires NrdI, and MnIII2-Y• is more active than FeIII2-Y• with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that MnIII2-Y•-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets. PMID:24381171

  13. Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis.

    PubMed

    Rhodes, DeLacy V; Crump, Katie E; Makhlynets, Olga; Snyder, Melanie; Ge, Xiuchun; Xu, Ping; Stubbe, JoAnne; Kitten, Todd

    2014-02-28

    Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259-6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (Fe(III)2-Y(•)) in vitro, whereas assembly of a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor requires NrdI, and Mn(III)2-Y(•) is more active than Fe(III)2-Y(•) with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that Mn(III)2-Y(•)-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets.

  14. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    PubMed

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  15. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  16. Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase.

    PubMed

    Sigfridsson, Kajsa G V; Chernev, Petko; Leidel, Nils; Popovic-Bijelic, Ana; Gräslund, Astrid; Haumann, Michael

    2013-04-05

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques.

  17. Investigating the intermediates in the reaction of ribonucleoside triphosphate reductase from Lactobacillus leichmannii : An application of HF EPR-RFQ technology

    NASA Astrophysics Data System (ADS)

    Manzerova, Julia; Krymov, Vladimir; Gerfen, Gary J.

    2011-12-01

    In this investigation high-frequency electron paramagnetic resonance spectroscopy (HFEPR) in conjunction with innovative rapid freeze-quench (RFQ) technology is employed to study the exchange-coupled thiyl radical-cob(II)alamin system in ribonucleotide reductase from a prokaryote Lactobacillus leichmannii. The size of the exchange coupling ( Jex) and the values of the thiyl radical g tensor are refined, while confirming the previously determined (Gerfen et al. (1996) [20]) distance between the paramagnets. Conclusions relevant to ribonucleotide reductase catalysis and the architecture of the active site are presented. A key part of this work has been the development of a unique RFQ apparatus for the preparation of millisecond quench time RFQ samples which can be packed into small (0.5 mm ID) sample tubes used for CW and pulsed HFEPR - lack of this ability has heretofore precluded such studies. The technology is compatible with a broad range of spectroscopic techniques and can be readily adopted by other laboratories.

  18. Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (β) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the β subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the β subunit to the active site of α. PMID:26727048

  19. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, J.M.; Krest, C.M.; Jiang, W.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of themore » protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.« less

  20. Spectroscopic Studies of the Iron and Manganese Reconstituted Tyrosyl Radical in Bacillus Cereus Ribonucleotide Reductase R2 Protein

    PubMed Central

    Tomter, Ane B.; Zoppellaro, Giorgio; Bell, Caleb B.; Barra, Anne-Laure; Andersen, Niels H.; Solomon, Edward I.; Andersson, K. Kristoffer

    2012-01-01

    Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g 1-value of 2.0090 for the tyrosyl radical was extracted. This g 1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g 1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity. PMID:22432022

  1. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators

    DOE PAGES

    Ahmad, Md. Faiz; Huff, Sarah E.; Pink, John; ...

    2015-10-21

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC 50s and K Ds while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive modemore » of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Finally, together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.« less

  2. Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis.

    PubMed

    Kirdis, Ebru; Jonsson, Ing-Marie; Kubica, Malgorzata; Potempa, Jan; Josefsson, Elisabet; Masalha, Mahmud; Foster, Simon J; Tarkowski, Andrzej

    2007-01-01

    Staphylococcus aureus is the most common cause of joint infections. It also contributes to several other diseases such as pneumonia, osteomyelitis, endocarditis, and sepsis. Bearing in mind that S. aureus becomes rapidly resistant to new antibiotics, many studies survey the virulence factors, with the aim to find alternative prophylaxis/treatment regimens. One potential virulence factor is the bacterial ability to survive at different oxygen tensions. S. aureus expresses ribonucleotide reductases (RNRs), which help it to grow under both aerobic and anaerobic conditions, by reducing ribonucleotides to deoxyribonucleotides. In this study, we investigated the role of RNR class III, which is required for anaerobic growth, as a virulence determinant in the pathogenesis of staphylococcal arthritis. The wild-type S. aureus strain and its isogenic mutant nrdDG mutant were inoculated intravenously into mice. Mice inoculated with the wild-type strain displayed significantly more severe arthritis, with significantly more synovitis and destruction of the bone and cartilage versus mutant strain inoculated mice. Further, the persistence of bacteria in the kidneys was significantly more pronounced in the group inoculated with the wild-type strain. Together these results indicate that RNR class III is an important virulence factor for the establishment of septic arthritis.

  3. Studies of Ribonucleotide Reductase in Crucian Carp—An Oxygen Dependent Enzyme in an Anoxia Tolerant Vertebrate

    PubMed Central

    Sandvik, Guro K.; Tomter, Ane B.; Bergan, Jonas; Zoppellaro, Giorgio; Barra, Anne-Laure; Røhr, Åsmund K.; Kolberg, Matthias; Ellefsen, Stian

    2012-01-01

    The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, the precursors for DNA. RNR requires a thiyl radical to activate the substrate. In RNR of eukaryotes (class Ia RNR), this radical originates from a tyrosyl radical formed in reaction with oxygen (O2) and a ferrous di-iron center in RNR. The crucian carp (Carassius carassius) is one of very few vertebrates that can tolerate several months completely without oxygen (anoxia), a trait that enables this fish to survive under the ice in small ponds that become anoxic during the winter. Previous studies have found indications of cell division in this fish after 7 days of anoxia. This appears nearly impossible, as DNA synthesis requires the production of new deoxyribonucleotides and therefore active RNR. We have here characterized RNR in crucian carp, to search for adaptations to anoxia. We report the full-length sequences of two paralogs of each of the RNR subunits (R1i, R1ii, R2i, R2ii, p53R2i and p53R2ii), obtained by cloning and sequencing. The mRNA levels of these subunits were measured with quantitative PCR and were generally well maintained in hypoxia and anoxia in heart and brain. We also report maintained or increased mRNA levels of the cell division markers proliferating cell nuclear antigen (PCNA), brain derived neurotrophic factor (BDNF) and Ki67 in anoxic hearts and brains. Electron paramagnetic resonance (EPR) measurements on in vitro expressed crucian carp R2 and p53R2 proteins gave spectra similar to mammalian RNRs, including previously unpublished human and mouse p53R2 EPR spectra. However, the radicals in crucian carp RNR small subunits, especially in the p53R2ii subunit, were very stable at 0°C. A long half-life of the tyrosyl radical during wintertime anoxia could allow for continued cell division in crucian carp. PMID:22916159

  4. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate: adenosylcobalamin destruction and formation of a nucleotide-based radical.

    PubMed

    Lohman, Gregory J S; Gerfen, Gary J; Stubbe, Joanne

    2010-02-23

    Ribonucleotide reductase (RNR, 76 kDa) from Lactobacillus leichmannii is a class II RNR that requires adenosylcobalamin (AdoCbl) as a cofactor. It catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is 100% inactivated by 1 equiv of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate (F(2)CTP) in <2 min. Sephadex G-50 chromatography of the inactivation reaction mixture for 2 min revealed that 0.47 equiv of a sugar moiety is covalently bound to RNR and 0.25 equiv of a cobalt(III) corrin is tightly associated, likely through a covalent interaction with C(419) (Co-S) in the active site of RNR [Lohman, G. J. S., and Stubbe, J. (2010) Biochemistry 49, DOI: 10.1021/bi902132u ]. After 1 h, a similar experiment revealed 0.45 equiv of the Co-S adduct associated with the protein. Thus, at least two pathways are associated with RNR inactivation: one associated with alkylation by the sugar of F(2)CTP and the second with AdoCbl destruction. To determine the fate of [1'-(3)H]F(2)CTP in the latter pathway, the reaction mixture at 2 min was reduced with NaBH(4) (NaB(2)H(4)) and the protein separated from the small molecules using a centrifugation device. The small molecules were dephosphorylated and analyzed by HPLC to reveal 0.25 equiv of a stereoisomer of cytidine, characterized by mass spectrometry and NMR spectroscopy, indicating the trapped nucleotide had lost both of its fluorides and gained an oxygen. High-field ENDOR studies with [1'-(2)H]F(2)CTP from the reaction quenched at 30 s revealed a radical that is nucleotide-based. The relationship between this radical and the trapped cytidine analogue provides insight into the nonalkylative pathway for RNR inactivation relative to the alkylative pathway.

  5. Inhibition of Mutation: A Novel Approach to Preventing and Treating Cancer

    DTIC Science & Technology

    2007-06-01

    Hydroxyurea (HU) is a small molecule chemotherapeutic that is thought to slow tumor growth by inhibiting RNR and thus reducing dNTP...Identification of hydroxyurea as an inhibitor of induced mutation that presumably acts by inhibiting ribonucleotide reductase and thereby decreasing the

  6. Mutations at Several Loci Cause Increased Expression of Ribonucleotide Reductase in Escherichia coli

    PubMed Central

    Feeney, Morgan Anne; Ke, Na

    2012-01-01

    Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before. PMID:22247510

  7. Unchanged thymidine triphosphate pools and thymidine metabolism in two lines of thymidine kinase 2-mutated fibroblasts.

    PubMed

    Frangini, Miriam; Rampazzo, Chiara; Franzolin, Elisa; Lara, Mari-Carmen; Vilà, Maya R; Martí, Ramon; Bianchi, Vera

    2009-02-01

    Mitochondrial thymidine kinase (TK2) catalyzes the phosphorylation of thymidine in mitochondria. Its function becomes essential for dTTP synthesis in noncycling cells, where cytosolic dTTP synthesis via R1/R2 ribonucleotide reductase and thymidine kinase 1 is turned down. Mutations in the nuclear gene for TK2 cause a fatal mtDNA depletion syndrome. Only selected cell types are affected, suggesting that the other cells compensate for the TK2 deficiency by adapting the enzyme network that regulates dTTP synthesis outside S-phase. Here we looked for such metabolic adaptation in quiescent cultures of fibroblasts from two TK2-deficient patients with a slow-progressing syndrome. In cell extracts, we measured the activities of TK2, deoxycytidine kinase, thymidine phosphorylase, deoxynucleotidases and the amounts of the three ribonucleotide reductase subunits. Patient cells contained 40% or 5% TK2 activity and unchanged activities of the other enzymes. However, their mitochondrial and cytosolic dTTP pools were unchanged, and also the overall composition of the dNTP pools was normal. TK2-dependent phosphorylation of [(3)H]thymidine in intact cells and the turnover of the dTTP pool showed that even the fibroblasts with 5% residual TK2 activity synthesized dTTP at an almost normal rate. Normal fibroblasts apparently contain more TK2 than needed to maintain dTTP during quiescence, which would explain why TK2-mutated fibroblasts do not manifest mtDNA depletion despite their reduced TK2 activity.

  8. 1-Ene-steroid reductase of Mycobacterium sp. NRRL B-3805.

    PubMed

    Goren, T; Harnik, M; Rimon, S; Aharonowitz, Y

    1983-12-01

    The microbial enzymatic reduction of 1,4-androstadiene-3,17-dione (ADD) to 4-androstene-3,17-dione (AD), testosterone and 1-dehydrotestosterone (DHT) is described. Two reducing activities observed in washed cell suspensions and cell free extracts of Mycobacterium sp. NRRL B-3805 were found to account for these bioconversions. One was a 1-ene-steroid reductase and the other a 17-keto steroid reductase. The first reducing activity was found to appear in the soluble cell fraction whereas the latter could be precipitated by centrifugation. Maximum 1-ene-steroid reductase specific activity was achieved during the exponential growth phase of the organism and significantly increased upon induction with ADD. The 1-ene-steroid reductase was partially purified (30-fold) by ammonium sulfate fractionation, gel-filtration and ion-exchange chromatography, and was eluted from a Sephacryl S-300 column with an Mr = 115,000. The 1-ene-steroid reductase activity was NADPH-dependent and had specificity towards steroid compounds containing C-1,2 double bond with an apparent Km for ADD of 2.2 X 10(-5) M. The reverse reaction catalyzing C-1,2 dehydrogenation could not be detected in our preparations. The results suggest that in Mycobacterium sp NRRL B-3805 and B-3683 the steroid C-1,2 dehydrogenation and 1-ene reduction are two separable activities.

  9. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways

    DOE PAGES

    Le, Thuc M.; Poddar, Soumya; Capri, Joseph R.; ...

    2017-08-14

    It is known that leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the diseasemore » in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.« less

  10. Gallium and its competing roles with iron in biological systems.

    PubMed

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Thuc M.; Poddar, Soumya; Capri, Joseph R.

    It is known that leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the diseasemore » in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.« less

  12. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-11-03

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with (1-/sup 14/C)iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 2.8 equiv ofmore » /sup 14/C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of /sup 14/C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 1.4 equiv of /sup 14/C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.« less

  13. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    PubMed

    Berglund, Anna-Karin; Navarrete, Clara; Engqvist, Martin K M; Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W; Gustafsson, Claes M; Falkenberg, Maria; Clausen, Anders R

    2017-02-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  14. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine

    PubMed Central

    Goss, Kelli L; Koppenhafer, Stacia L; Harmoney, Kathryn M; Terry, William W; Gordon, David J

    2017-01-01

    Ewing sarcoma is a bone and soft tissue sarcoma that occurs in children and young adults. The EWS-FLI1 gene fusion is the driver mutation in most Ewing sarcoma tumors and functions, in part, as an aberrant transcription factor. We recently identified that Ewing sarcoma cells are sensitive to inhibition of ribonucleotide reductase (RNR), which catalyzes the formation of deoxyribonucleotides from ribonucleotides. In this report, we show that Ewing sarcoma cells are sensitive to treatment with clofarabine, which is a nucleoside analogue and allosteric inhibitor of RNR. However, clofarabine is a reversible inhibitor of RNR and we found that the effect of clofarabine is limited when using a short (6-hour) drug treatment. Gemcitabine, on the other hand, is an irreversible inhibitor of the RRM1 subunit of RNR and this drug induces apoptosis in Ewing sarcoma cells when used in both 6-hour and longer drug treatments. Treatment of Ewing sarcoma cells with gemcitabine also results in activation of checkpoint kinase 1 (CHK1), which is a critical mediator of cell survival in the setting of impaired DNA replication. Notably, inhibition of CHK1 function in Ewing sarcoma cells using a small-molecule CHK1 inhibitor, or siRNA knockdown, in combination with gemcitabine results in increased toxicity both in vitro and in vivo in a mouse xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and identify a candidate therapeutic target, and drug combination, in Ewing sarcoma. PMID:29152060

  15. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme.

    PubMed

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.

  16. Cell Cycle Inhibition To Treat Sleeping Sickness.

    PubMed

    Epting, Conrad L; Emmer, Brian T; Du, Nga Y; Taylor, Joann M; Makanji, Ming Y; Olson, Cheryl L; Engman, David M

    2017-09-19

    African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens. IMPORTANCE The development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals. Copyright © 2017 Epting et al.

  17. Is the mu-oxo-mu-peroxodiiron intermediate of a ribonucleotide reductase biomimetic a possible oxidant of epoxidation reactions?

    PubMed

    de Visser, Sam P

    2008-01-01

    Density functional calculations on a mu-oxo-mu-peroxodiiron complex (1) with a tetrapodal ligand BPP (BPP=N,N-bis(2-pyridylmethyl)-3-aminopropionate) are presented that is a biomimetic of the active site region of ribonucleotide reductase (RNR). We have studied all low-lying electronic states and show that it has close-lying broken-shell singlet and undecaplet (S=0, 5) ground states with essentially two sextet spin iron atoms. In strongly distorted electronic systems in which the two iron atoms have different spin states, the peroxo group moves considerably out of the plane of the mu-oxodiiron group due to orbital rearrangements. The calculated absorption spectra of (1,11)1 are in good agreement with experimental studies on biomimetics and RNR enzyme systems. Moreover, vibrational shifts in the spectrum due to (18)O(2) substitution of the oxygen atoms in the peroxo group follow similar trends as experimental observations. To identify whether the mu-oxo-mu-1,2-peroxodiiron or the mu-oxo-mu-1,1-peroxodiiron complexes are able to epoxidize substrates, we studied the reactivity patterns versus propene. Generally, the reactions are stepwise via radical intermediates and proceed by two-state reactivity patterns on competing singlet and undecaplet spin state surfaces. However, both the mu-oxo-mu-1,2-peroxodiiron and mu-oxo-mu-1,1-peroxodiiron complex are sluggish oxidants with high epoxidation barriers. The epoxidation barriers for the mu-oxo-mu-1,1-peroxodiiron complex are significantly lower than the ones for the mu-oxo-mu-1,2-peroxodiiron complex but still are too high to be considered for catalytic properties. Thus, theory has ruled out two possible peroxodiiron catalysts as oxidants in RNR enzymes and biomimetics and the quest to find the actual oxidant in the enzyme mechanism continues.

  18. A stable Fe{sup III}-Fe{sup IV} replacement of tyrosyl radical in a class I ribonucleotide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voevodskaya, N.; Lendzian, F.; Graeslund, A.

    2005-05-20

    Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe{sup III}-Fe{sup IV} species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start themore » catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.« less

  19. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization.

    PubMed

    Fu, Yuan; Lin, Hongyu; Wisitpitthaya, Somsinee; Blessing, William A; Aye, Yimon

    2014-11-24

    Human ribonucleotide reductase (hRNR) is a target of nucleotide chemotherapeutics in clinical use. The nucleotide-induced oligomeric regulation of hRNR subunit α is increasingly being recognized as an innate and drug-relevant mechanism for enzyme activity modulation. In the presence of negative feedback inhibitor dATP and leukemia drug clofarabine nucleotides, hRNR-α assembles into catalytically inert hexameric complexes, whereas nucleotide effectors that govern substrate specificity typically trigger α-dimerization. Currently, both knowledge of and tools to interrogate the oligomeric assembly pathway of RNR in any species in real time are lacking. We therefore developed a fluorimetric assay that reliably reports on oligomeric state changes of α with high sensitivity. The oligomerization-directed fluorescence quenching of hRNR-α, covalently labeled with two fluorophores, allows for direct readout of hRNR dimeric and hexameric states. We applied the newly developed platform to reveal the timescales of α self-assembly, driven by the feedback regulator dATP. This information is currently unavailable, despite the pharmaceutical relevance of hRNR oligomeric regulation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Is Oxidized Thioredoxin a Major Trigger for Cysteine Oxidation? Clues from a Redox Proteomics Approach

    PubMed Central

    García-Santamarina, Sarela; Boronat, Susanna; Calvo, Isabel A.; Rodríguez-Gabriel, Miguel; Ayté, José; Molina, Henrik

    2013-01-01

    Abstract Cysteine oxidation mediates oxidative stress toxicity and signaling. It has been long proposed that the thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (Trr), is not only involved in recycling classical Trx substrates, such as ribonucleotide reductase, but it also regulates general cytoplasmic thiol homeostasis. To investigate such a role, we have performed a proteome-wide analysis of cells expressing or not the two components of the Trx system. We have compared the reversibly oxidized thiol proteomes of wild-type Schizosaccharomyces pombe cells with mutants lacking Trx or Trr. Specific Trx substrates are reversibly-oxidized in both strain backgrounds; however, in the absence of Trr, Trx can weakly recycle its substrates at the expense of an alternative electron donor. A massive thiol oxidation occurs only in cells lacking Trr, with 30% of all cysteine-containing peptides being reversibly oxidized; this oxidized cysteine proteome depends on the presence of Trxs. Our observations lead to the hypothesis that, in the absence of its reductase, the natural electron donor Trx becomes a powerful oxidant and triggers general thiol oxidation. Antioxid. Redox Signal. 18, 1549–1556. PMID:23121505

  1. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA

    PubMed Central

    Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W.; Gustafsson, Claes M.; Falkenberg, Maria

    2017-01-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication. PMID:28207748

  2. The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.

    PubMed

    Williams, Jessica S; Gehle, Daniel B; Kunkel, Thomas A

    2017-05-01

    Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication. Published by Elsevier B.V.

  3. Application of duplex droplet digital PCR for detection of “Candidatus Liberibacter asiaticus” using 16S rRNA and ribonucleotide reductase genes

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB) is the most destructive disease of citrus and has been detected in over 250 urban citrus trees in southern California. HLB is associated with the uncultivable bacterium “Candidatus Liberibacter asiaticus” (CLas) and is transmitted by the Asian citrus psyllid. Quarantines in Calif...

  4. Adoption and validation of Ribonucleotide Reductase (RNR)-based real-time assays for detection of HLB ‘Candidatus Liberibacter asiaticus’ (CLas)

    USDA-ARS?s Scientific Manuscript database

    Huanglongbing (HLB), aka Citrus Greening, is a well-known destructive disease that threatens the multi-billion dollar citrus industry in the United States and citrus production in other countries around the world. The presumptive causal agent of HLB, ‘Candidatus Liberibacter asiaticus' (CLas), is of...

  5. Methyl-Hydroxylamine as an Efficacious Antibacterial Agent That Targets the Ribonucleotide Reductase Enzyme

    PubMed Central

    Julián, Esther; Baelo, Aida; Gavaldà, Joan; Torrents, Eduard

    2015-01-01

    The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme. PMID:25782003

  6. The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne

    2014-10-02

    Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn{sub 2}{sup III}-Y{sm_bullet}, in their homodimeric NrdF ({beta}2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn{sub 2}{sup II} form of NrdF is an important component in understanding O{sub 2}-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is thatmore » of Escherichia coli Mn{sub 2}{sup II}-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 {angstrom} resolution crystal structure of Bacillus subtilis Mn{sub 2}{sup II}-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the {beta}2 dimer are distinct from those observed in E. coli Mn{sub 2}{sup II}-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn{sub 2}{sup II} cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly in class Ib RNRs.« less

  7. Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase.

    PubMed

    Chitambar, Christopher R; Al-Gizawiy, Mona M; Alhajala, Hisham S; Pechman, Kimberly R; Wereley, Janine P; Wujek, Robert; Clark, Paul A; Kuo, John S; Antholine, William E; Schmainda, Kathleen M

    2018-06-01

    Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) in vitro After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). IHC staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2, and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control ( P = 0.0159) and reduced tumor mitotic figures ( P = 0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals, thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted. Mol Cancer Ther; 17(6); 1240-50. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits.

    PubMed

    Qiu, Weihua; Zhou, Bingsen; Darwish, Dana; Shao, Jimin; Yen, Yun

    2006-02-10

    Ribonucleotide reductase (RR) is a highly regulated enzyme in the deoxyribonucleotide synthesis pathway. RR is responsible for the de novo conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. Besides two subunits, hRRM1 and hRRM2, p53R2 is a newly identified member of RR family that is induced by ultraviolet light in a p53-dependent manner. To understand the molecular interaction of RR subunits, we employed a eukaryotic expression system to express and purify all three subunits. After in vitro reconstitution, the results of [(3)H]CDP reduction assay showed that both eukaryotic recombinant hRRM2 and p53R2 proteins could interact with hRRM1 to form functional RR holoenzyme. The reconstituted RR activity was time-dependent and the reaction rate reached the plateau phase after 40min incubation. No matter the concentration, RR holoenzyme reconstituted from p53R2 and hRRM1 could only achieve about 40-75% kinetic activity of that from hRRM2 and hRRM1. The synthetic C-terminal heptapeptide competition assays confirmed that hRRM2 and p53R2 share the same binding site on hRRM1, but the binding site on hRRM1 demonstrated higher affinity for hRRM2 than for p53R2. In allosteric regulation assay, the effect of activation or inhibition of hRRM1 with ATP or dATP suggested that these effectors could regulate RR activity independent of different RR small subunits. Taken together, the eukaryotic expression system RR holoenzyme will provide a very useful tool to understand the molecular mechanisms of RR activity and the interactions of its subunits.

  9. Deletion of Marek’s disease virus large subunit of ribonucleotide reductase (RR) impairs virus growth in vitro and in vivo

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens, called Marek’s disease (MD). In the unique long region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits o...

  10. Structure-Guided Synthesis and Mechanistic Studies Reveal Sweetspots on Naphthyl Salicyl Hydrazone Scaffold as Non-Nucleosidic Competitive, Reversible Inhibitors of Human Ribonucleotide Reductase.

    PubMed

    Huff, Sarah E; Mohammed, Faiz Ahmad; Yang, Mu; Agrawal, Prashansa; Pink, John; Harris, Michael E; Dealwis, Chris G; Viswanathan, Rajesh

    2018-02-08

    Ribonucleotide reductase (RR), an established cancer target, is usually inhibited by antimetabolites, which display multiple cross-reactive effects. Recently, we discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH or E-3a) of human RR (hRR) binding at the catalytic site (C-site) and inhibiting hRR reversibly. We herein report the synthesis and biochemical characterization of 25 distinct analogs. We designed each analog through docking to the C-site of hRR based on our 2.7 Å X-ray crystal structure (PDB ID: 5TUS). Broad tolerance to minor structural variations preserving inhibitory potency is observed. E-3f (82% yield) displayed an in vitro IC 50 of 5.3 ± 1.8 μM against hRR, making it the most potent in this series. Kinetic assays reveal that E-3a, E-3c, E-3t, and E-3w bind and inhibit hRR through a reversible and competitive mode. Target selectivity toward the R1 subunit of hRR is established, providing a novel way of inhibition of this crucial enzyme.

  11. Ribonucleotide Reductase Inhibitors Reduce Atherosclerosis in a Double-Injury Rabbit Model

    PubMed Central

    Gallaugher, Laura D; Henry, Jon C; Kearns, Patrick N; Elford, Howard L; Bergdall, Valerie K; Cardounel, Arturo J

    2009-01-01

    Atheroproliferative disorders such as atherosclerosis are an important health problem and one of the leading causes of morbidity and mortality in the United States. Minimally invasive therapeutic procedures, including angioplasty with stent deployment, are used frequently for obstructive coronary artery disease. However, restenosis, a proliferative vascular response, is a common sequela to this procedure. The current study investigated the effect of inhibiting ribonucleotide reductase (RR), an enzyme necessary for cellular proliferation, in an attempt to ameliorate the proliferative response. Two RR inhibitors, didox and hydroxyurea, were chosen for their potent antiproliferative properties. Studies were carried out by using a double-injury rabbit model, in which endothelial denudation was followed by the administration of a high-fat diet. At 4 wk after initial endothelial denudation, the developing atherosclerotic lesion was subjected to transluminal balloon dilation to simulate clinical intervention with percutaneous transluminal angioplasty. The degree of restenosis and atheroproliferation was assessed at 8 wk. Histologic evaluation of the lesion demonstrated that treatment with didox and hydroxyurea significantly decreased lesion area and lumen loss. These results suggest that RR inhibition may be an effective new tool for the treatment of atheroproliferative disorders. PMID:20034432

  12. Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice*

    PubMed Central

    Lei, Wei; Feng, Xu-Hui; Deng, Wen-Bo; Ni, Hua; Zhang, Zhi-Rong; Jia, Bo; Yang, Xin-Ling; Wang, Tong-Song; Liu, Ji-Long; Su, Ren-Wei; Liang, Xiao-Huan; Qi, Qian-Rong; Yang, Zeng-Ming

    2012-01-01

    Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus. PMID:22403396

  13. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development.

    PubMed

    Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2017-09-05

    A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.

  14. Ribonucleotide reductase as a drug target against drug resistance Mycobacterium leprae: A molecular docking study.

    PubMed

    Mohanty, Partha Sarathi; Bansal, Avi Kumar; Naaz, Farah; Gupta, Umesh Datta; Dwivedi, Vivek Dhar; Yadava, Umesh

    2018-06-01

    Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 β turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases.

    PubMed

    Zhou, Ang; Crossland, Patrick M; Draksharapu, Apparao; Jasniewski, Andrew J; Kleespies, Scott T; Que, Lawrence

    2018-01-01

    Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of Fe III -O-Cr III and Fe III -O-Mn III complexes is described herein. The latter complexes may serve as models for the Fe III -X-Mn III active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The Fe III -O-Cr III complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with Fe III -O-Fe III complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the Fe III -O-Mn III complexes resemble Fe III -O-Fe III complexes more closely. Resonance Raman characterization of the Fe III -O-M III complexes reveals an 18 O-sensitive vibration in the range of 760-890 cm -1 . This feature has been assigned to the asymmetric Fe III -O-M III stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the Fe III -O-Mn III complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.

  16. Mutagenic cost of ribonucleotides in bacterial DNA

    PubMed Central

    Schroeder, Jeremy W.; Randall, Justin R.; Hirst, William G.; O’Donnell, Michael E.; Simmons, Lyle A.

    2017-01-01

    Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE. PMID:29078353

  17. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation.

    PubMed

    Muri, Jonathan; Heer, Sebastian; Matsushita, Mai; Pohlmeier, Lea; Tortola, Luigi; Fuhrer, Tobias; Conrad, Marcus; Zamboni, Nicola; Kisielow, Jan; Kopf, Manfred

    2018-05-10

    The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4 - CD8 - thymocyte population, whereas Txnrd1 deletion in CD4 + CD8 + thymocytes does not affect further maturation and peripheral homeostasis of αβT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.

  18. Checkpoint-dependent RNR induction promotes fork restart after replicative stress.

    PubMed

    Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica

    2015-01-20

    The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.

  19. Structure-function analysis of ribonucleotide bypass by B family DNA replicases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, Anders R.; Murray, Michael S.; Passer, Andrew R.

    2013-11-01

    Ribonucleotides are frequently incorporated into DNA during replication, they are normally removed, and failure to remove them results in replication stress. This stress correlates with DNA polymerase (Pol) stalling during bypass of ribonucleotides in DNA templates. Here we demonstrate that stalling by yeast replicative Pols δ and ε increases as the number of consecutive template ribonucleotides increases from one to four. The homologous bacteriophage RB69 Pol also stalls during ribonucleotide bypass, with a pattern most similar to that of Pol ε. Crystal structures of an exonuclease-deficient variant of RB69 Pol corresponding to multiple steps in single ribonucleotide bypass reveal thatmore » increased stalling is associated with displacement of Tyr391 and an unpreferred C2´-endo conformation for the ribose. Even less efficient bypass of two consecutive ribonucleotides in DNA correlates with similar movements of Tyr391 and displacement of one of the ribonucleotides along with the primer-strand DNA backbone. These structure–function studies have implications for cellular signaling by ribonucleotides, and they may be relevant to replication stress in cells defective in ribonucleotide excision repair, including humans suffering from autoimmune disease associated with RNase H2 defects.« less

  20. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription.

    PubMed

    Pai, Chen-Chun; Kishkevich, Anastasiya; Deegan, Rachel S; Keszthelyi, Andrea; Folkes, Lisa; Kearsey, Stephen E; De León, Nagore; Soriano, Ignacio; de Bruin, Robertus Antonius Maria; Carr, Antony M; Humphrey, Timothy C

    2017-09-12

    Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Approaching magnetic field effects in biology using the radical pair mechanism

    NASA Astrophysics Data System (ADS)

    Canfield, Jeffrey Michael

    1997-11-01

    The overall goal of this thesis has been to explain any of the reported magnetic field effects in biology (magnetic orientation of many species and/or health effects, such as cancer, due to man-made electromagnetic fields) using the radical pair mechanism, a quantum mechanical mechanism known for over 20 years that lets singlet-to-triplet yields (which can be related to reaction rates) of radical pair reactions depend on applied magnetic fields. This goal seems reasonable considering the known roles of many biological free radicals in cancer, disease, aging, development, and cellular signaling, the constant reminders in the media to take anti-oxidant vitamins to protect against certain deleterious free radicals, and the success of the radical pair mechanism in explaining magnetic field effects in photosynthetic reaction centers. To approach the above goal, this thesis develops several methods (using perturbation theory and other techniques in the Schrodinger and Liouville formalisms) for calculating singlet-to-triplet yields in combinations of steady and oscillating fields (some of these algorithms are more versatile or efficient while others give more insight, and all serve as cross-checks on each other) and uses these tools to explore and explain a number of interesting phenomena such as yields sensitive to the magnitude and orientation of earth-strength (0.5 G) steady fields as well as the magnitude, orientation, and frequency of very weak (7 mG or less) oscillating fields. In particular, this thesis examines such effects in several coenzyme B12 systems, systems long studied by EPR (Electron Paramagnetic Resonance, the chief method for determining the spin Hamiltonians, spin relaxation rates, and other parameters needed for calculations) in which organometallic cobalt-carbon bonds are often cleaved homolytically to form radical pairs. Among the B12-dependent enzymes are ribonucleotide reductase (which converts RNA to DNA nucleotides), methyl malonyl CoA mutase (which controls the metabolism of certain fatty acids in mammals), and methionine synthase (which in mammals is used to regenerate active methyl groups on S-adenosyl methionine, which is involved in DNA methylation, melatonin and epinephrine synthesis, myelination, and methylation of chemotaxis proteins).* ftn*Originally published in DAI Vol. 58, No. 10. Reprinted here with revised abstract.

  2. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

    PubMed Central

    Bradshaw, Elliot; Yoshida, Minoru; Ling, Feng

    2017-01-01

    Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR) catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+) and suppressive (rho−) or hypersuppressive (HS rho−) mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast. PMID:28717049

  4. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity.

    PubMed

    Sen, Gargi; Mukhopadhyay, Sibabrata; Ray, Manju; Biswas, Tuli

    2008-05-01

    The possibility of developing antileishmanial drugs was evaluated by intervention in the parasite's iron metabolism, utilizing quercetin (Qr) under in vivo conditions, and identifying the target of this lipophilic metal chelator against Leishmania donovani. Interaction between Qr and serum albumin (SA) was studied by using the intrinsic fluorescence of Qr as a probe. The effect of treatment with Qr and SA on the proliferation of amastigotes was determined by evaluating splenic parasite load. Disintegration of parasites in response to combination treatment was assessed from ultrastructural analysis using a transmission electron microscope. Quenching of the tyrosyl radical of ribonucleotide reductase (RR) in treated amastigotes was detected by an electron paramagnetic resonance study. Treatment with a combination of Qr and SA increased bioavailability of the flavonoid and proved to be of major advantage in promoting the effectiveness of Qr towards the repression of splenic parasite load from 75%, P < 0.01 to 95%, P < 0.002. Qr-mediated down-regulation of RR (P < 0.05), catalysing the rate-limiting step of DNA synthesis in the pathogens, could be related to the deprivation of the enzyme of iron which in turn destabilized the critical tyrosyl radical required for its catalysing activity. Results have implications for improved leishmanicidal action of Qr in combination with SA targeting RR and suggest future drug design based on interference with the parasite's iron metabolism under in vivo conditions.

  5. The expression of ribonucleotide reductase M2 in the carcinogenesis of uterine cervix and its relationship with clinicopathological characteristics and prognosis of cancer patients.

    PubMed

    Su, Ying-Fang; Wu, Tzu-Fan; Ko, Jiunn-Liang; Tsai, Hsiu-Ting; Tee, Yi-Torng; Chien, Ming-Hsien; Chou, Chi-Hung; Lin, Wea-Lung; Low, Hui-Ying; Chou, Ming-Yung; Yang, Shun-Fa; Wang, Po-Hui

    2014-01-01

    To investigate the implication of ribonucleotide reductase M2 (RRM2) in the carcinogenesis of uterine cervix and its relationship with clinicopathological characteristics and prognosis of cancer patients. The impact of RRM2 on cell viability was investigated in SiHa cervical cancer cells after RRM2 knockdown and the addition of cisplatin, which induces inter- and intra-strand DNA crosslinks. RRM2 immunoreactivity was evaluated by semi-quantitative H score among 29 normal, 30 low-grade dysplasia, 30 high-grade dysplasia and 103 invasive cancer tissue specimens of the uterine cervix, using tissue microarrays. RRM2 was then correlated with the clinicopathological variables of cervical cancer and patient survival. A greater toxic effect on cell viability using cisplatin was reflected by the greater reduction in RRM2 protein expression in SiHa cells. The RRM2 expression in cancer tissues was higher than that in high-grade dysplasia, low-grade dysplasia or normal cervical tissues. RRM2 upregulation was correlated with deep stromal invasion, large tumors and parametrial invasion and predicted poor survival. RRM2 is a new molecular marker for the diagnosis and clinical outcomes of cervical cancer. It is involved in cervical carcinogenesis and predicts poor survival, and may be a potential therapeutic target including in cisplatin treatment.

  6. Hydrogen Bond Network between Amino Acid Radical Intermediates on the Proton-Coupled Electron Transfer Pathway of E. coli α2 Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. 2H electron–nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed. PMID:25516424

  7. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy

    PubMed Central

    Dai, Xin; Jiang, Ying; Tan, Chalet

    2015-01-01

    KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors. PMID:25946136

  8. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications

    PubMed Central

    Zetterberg, Henrik

    2004-01-01

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy. PMID:14969589

  9. Methylenetetrahydrofolate reductase and transcobalamin genetic polymorphisms in human spontaneous abortion: biological and clinical implications.

    PubMed

    Zetterberg, Henrik

    2004-02-17

    The pathogenesis of human spontaneous abortion involves a complex interaction of several genetic and environmental factors. The firm association between increased homocysteine concentration and neural tube defects (NTD) has led to the hypothesis that high concentrations of homocysteine might be embryotoxic and lead to decreased fetal viability. There are several genetic polymorphisms that are associated with defects in folate- and vitamin B12-dependent homocysteine metabolism. The methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C polymorphisms cause elevated homocysteine concentration and are associated with an increased risk of NTD. Additionally, low concentration of vitamin B12 (cobalamin) or transcobalamin that delivers vitamin B12 to the cells of the body leads to hyperhomocysteinemia and is associated with NTD. This effect involves the transcobalamin (TC) 776C>G polymorphism. Importantly, the biochemical consequences of these polymorphisms can be modified by folate and vitamin B12 supplementation. In this review, I focus on recent studies on the role of hyperhomocysteinemia-associated polymorphisms in the pathogenesis of human spontaneous abortion and discuss the possibility that periconceptional supplementation with folate and vitamin B12 might lower the incidence of miscarriage in women planning a pregnancy.

  10. Genome instabilities arising from ribonucleotides in DNA.

    PubMed

    Klein, Hannah L

    2017-08-01

    Genomic DNA is transiently contaminated with ribonucleotide residues during the process of DNA replication through misincorporation by the replicative DNA polymerases α, δ and ε, and by the normal replication process on the lagging strand, which uses RNA primers. These ribonucleotides are efficiently removed during replication by RNase H enzymes and the lagging strand synthesis machinery. However, when ribonucleotides remain in DNA they can distort the DNA helix, affect machineries for DNA replication, transcription and repair, and can stimulate genomic instabilities which are manifest as increased mutation, recombination and chromosome alterations. The genomic instabilities associated with embedded ribonucleotides are considered here, along with a discussion of the origin of the lesions that stimulate particular classes of instabilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Protein hydration in solution: Experimental observation by x-ray and neutron scattering

    PubMed Central

    Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.

    1998-01-01

    The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874

  12. Homocysteine: overview of biochemistry, molecular biology, and role in disease processes.

    PubMed

    Fowler, Brian

    2005-05-01

    Homocysteine is derived from the essential amino acid methionine and plays a vital role in cellular homeostasis in man. Homocysteine levels depend on its synthesis, involving methionine adenosyltransferase, S-adenosylmethionine-dependent methyltransferases such as glycine N-methyltransferase, and S-adenosylhomocysteine hydrolase; its remethylation to methionine by methionine synthase, which requires methionine synthase reductase, vitamin B (12), and 5-methyltetrahydrofolate produced by methylenetetrahydrofolate reductase or betaine methyltransferase; and its degradation by transsulfuration involving cystathionine beta-synthase. The control of homocysteine metabolism involves changes of tissue content or inherent kinetic properties of the enzymes. In particular, S-adenosylmethionine acts as a switch between remethylation and transsulfuration through its allosteric inhibition of methylenetetrahydrofolate reductase and activation of cystathionine beta-synthase. Mutant alleles of genes for these enzymes can lead to severe loss of function and varying severity of disease. Several defects lead to severe hyperhomocysteinemia, the most common form being cystathionine beta-synthase deficiency, with more than a hundred reported mutations. Less severe elevations of plasma homocysteine are caused by folate and vitamin B (12) deficiency, and renal disease and moderate hyperhomocysteinemia are associated with several common disease states such as cardiovascular disease. Homocysteine toxicity is likely direct or caused by disturbed levels of associated metabolites; for example, methylation reactions through elevated S-adenosylhomocysteine.

  13. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c.

    PubMed

    Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos

    2018-05-01

    In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance.

    PubMed

    Leitsch, David; Kolarich, Daniel; Binder, Marina; Stadlmann, Johannes; Altmann, Friedrich; Duchêne, Michael

    2009-04-01

    Infections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazole-resistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.

  15. Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development

    PubMed Central

    Reijns, Martin A.M.; Rabe, Björn; Rigby, Rachel E.; Mill, Pleasantine; Astell, Katy R.; Lettice, Laura A.; Boyle, Shelagh; Leitch, Andrea; Keighren, Margaret; Kilanowski, Fiona; Devenney, Paul S.; Sexton, David; Grimes, Graeme; Holt, Ian J.; Hill, Robert E.; Taylor, Martin S.; Lawson, Kirstie A.; Dorin, Julia R.; Jackson, Andrew P.

    2012-01-01

    Summary The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells. PMID:22579044

  16. Downstream effects of ROCK signaling in cultured human corneal stromal cells: microarray analysis of gene expression.

    PubMed

    Harvey, Stephen A K; Anderson, Susan C; SundarRaj, Nirmala

    2004-07-01

    Rho-associated coiled-coil-containing protein kinase (ROCK) is a downstream target of Rho GTPase signaling and regulates the assembly of stress fibers. Previous reports indicate that Rho/ROCK signaling is involved in the regulation of several cellular processes, some of which may be cell-type specific and are probably critical to corneal stromal cell activation. The present study identified ROCK-regulated gene expression in corneal stromal cells. Corneal stromal cells derived from eyes of three different donors were cultured to yield the following designated phenotypes: baseline fibroblasts (DMEM with 10% serum), activated fibroblasts (10% serum+bFGF+heparin), and myofibroblasts (1% serum+TGF-beta 1). Cells were exposed to the ROCK inhibitor Y-27632 or vehicle for 12 hours, and transcript levels altered by ROCK inhibition were identified with oligonucleotide microarrays (GeneChips; Affymetrix, Santa Clara, CA). In these phenotypes, Y-27632 caused marked (twofold or more) increases or decreases in 14/4, 12/3, and 15/10 transcripts. In both fibroblast groups Y-27632-treatment increased expression of endothelin receptors and of parathyroid hormone-like hormone. The upregulation of alpha-smooth muscle actin in myofibroblasts was attenuated by Y-27632. Combining data from all groups identified ROCK-supported (Y-27632 inhibitable) expression of 10 transcripts, including ribonucleotide reductase M2, the cyclin B1-CDC2-CKS2 system, and four mitotic spindle-associated proteins. ROCK inhibition causes broad inhibition of DNA synthesis and mitosis and causes changes that are different between (bFGF-activated) fibroblasts and (TGF-beta 1-induced) myofibroblasts. Thus, Rho/ROCK signaling regulates both common and distinct downstream events in corneal stromal cells activated (differentiated) to fibroblast or myofibroblast phenotype.

  17. Gallium as a Therapeutic Agent: A Thermodynamic Evaluation of the Competition between Ga(3+) and Fe(3+) Ions in Metalloproteins.

    PubMed

    Nikolova, Valia; Angelova, Silvia; Markova, Nikoleta; Dudev, Todor

    2016-03-10

    Gallium has been employed (in the form of soluble salts) to fight various forms of cancer, infectious, and inflammatory diseases. The rationale behind this lies in the ability of Ga(3+) cation to mimic closely in appearance the native ferric ion, Fe(3+), thus interfering with the biological processes requiring ferric cofactors. However, Ga(3+) ion cannot participate in redox reactions and, when substituting for the "native" Fe(3+) ion in the enzyme active site, renders it inactive. Although a significant body of information on the Ga(3+)-Fe(3+) competition in biological systems has been accumulated, the intimate mechanism of the process is still not well understood and several questions remain: What are the basic physical principles governing the competition between the two trivalent cations in proteins? What type of metal centers are the most likely targets for gallium therapy? To what extent are the Fe(3+)-binding sites in the key enzyme ribonucleotide reductase vulnerable to Ga(3+) substitution? Here, we address these questions by studying the competition between Ga(3+) and Fe(3+) ions in model metal binding sites of various compositions and charge states. The results obtained are in line with available experimental data and shed light on the intimate mechanism of the Ga(3+)/Fe(3+) selectivity in various model metal binding sites and biological systems such as serum transferrin and ribonucleotide reductase.

  18. Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis.

    PubMed

    Paik, Sehmi; Senty, Lauren; Das, Sankar; Noe, Jody C; Munro, Cindy L; Kitten, Todd

    2005-09-01

    Streptococcus sanguinis is a gram-positive, facultative anaerobe and a normal inhabitant of the human oral cavity. It is also one of the most common agents of infective endocarditis, a serious endovascular infection. To identify virulence factors for infective endocarditis, signature-tagged mutagenesis (STM) was applied to the SK36 strain of S. sanguinis, whose genome is being sequenced. STM allows the large-scale creation, in vivo screening, and recovery of a series of mutants with altered virulence. Screening of 800 mutants by STM identified 38 putative avirulent and 5 putative hypervirulent mutants. Subsequent molecular analysis of a subset of these mutants identified genes encoding undecaprenol kinase, homoserine kinase, anaerobic ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein. Virulence reductions ranging from 2-to 150-fold were confirmed by competitive index assays. One putatively hypervirulent strain with a transposon insertion in an intergenic region was identified, though increased virulence was not confirmed in competitive index assays. All mutants grew comparably to SK36 in aerobic broth culture except for the homoserine kinase mutant. Growth of this mutant was restored by the addition of threonine to the medium. Mutants containing an insertion or in-frame deletion in the anaerobic ribonucleotide reductase gene failed to grow under strictly anaerobic conditions. The results suggest that housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions are important virulence factors in S. sanguinis endocarditis.

  19. Identification of Virulence Determinants for Endocarditis in Streptococcus sanguinis by Signature-Tagged Mutagenesis†

    PubMed Central

    Paik, Sehmi; Senty, Lauren; Das, Sankar; Noe, Jody C.; Munro, Cindy L.; Kitten, Todd

    2005-01-01

    Streptococcus sanguinis is a gram-positive, facultative anaerobe and a normal inhabitant of the human oral cavity. It is also one of the most common agents of infective endocarditis, a serious endovascular infection. To identify virulence factors for infective endocarditis, signature-tagged mutagenesis (STM) was applied to the SK36 strain of S. sanguinis, whose genome is being sequenced. STM allows the large-scale creation, in vivo screening, and recovery of a series of mutants with altered virulence. Screening of 800 mutants by STM identified 38 putative avirulent and 5 putative hypervirulent mutants. Subsequent molecular analysis of a subset of these mutants identified genes encoding undecaprenol kinase, homoserine kinase, anaerobic ribonucleotide reductase, adenylosuccinate lyase, and a hypothetical protein. Virulence reductions ranging from 2-to 150-fold were confirmed by competitive index assays. One putatively hypervirulent strain with a transposon insertion in an intergenic region was identified, though increased virulence was not confirmed in competitive index assays. All mutants grew comparably to SK36 in aerobic broth culture except for the homoserine kinase mutant. Growth of this mutant was restored by the addition of threonine to the medium. Mutants containing an insertion or in-frame deletion in the anaerobic ribonucleotide reductase gene failed to grow under strictly anaerobic conditions. The results suggest that housekeeping functions such as cell wall synthesis, amino acid and nucleic acid synthesis, and the ability to survive under anaerobic conditions are important virulence factors in S. sanguinis endocarditis. PMID:16113327

  20. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    PubMed

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  1. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zejun; Gong, Chaoju; Liu, Hong

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression ofmore » E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and invasion of CRC cells by activating RRM2. • E2F1 is upregulated in CRC tissues and positively associated with RRM2 level. • E2F1-mediated RRM2 transcription will provide a new strategy in CRC.« less

  2. Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*

    PubMed Central

    Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara

    2013-01-01

    During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407

  3. New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.

    PubMed

    Selmer, Thorsten; Pierik, Antonio J; Heider, Johann

    2005-10-01

    During the last decade, an increasing number of new enzymes containing glycyl radicals in their active sites have been identified and biochemically characterised. These include benzylsuccinate synthase (Bss), 4-hydroxyphenylacetate decarboxylase (Hpd) and the coenzyme B12-independent glycerol dehydratase (Gdh). These are involved in metabolic pathways as different as anaerobic toluene metabolism, fermentative production of p-cresol and glycerol fermentation. Some features of these newly discovered enzymes are described and compared with those of the previously known glycyl radical enzymes pyruvate formate-lyase (Pfl) and anaerobic ribonucleotide reductase (Nrd). Among the new enzymes, Bss and Hpd share the presence of small subunits, the function of which in the catalytic mechanisms is still enigmatic, and both enzymes contain metal centres in addition to the glycyl radical prosthetic group. The activating enzymes of the novel systems also deviate from the standard type, containing at least one additional Fe-S cluster. Finally, the available whole-genome sequences of an increasing number of strictly or facultative anaerobic bacteria revealed the presence of many more hitherto unknown glycyl radical enzyme (GRE) systems. Recent studies suggest that the particular types of these enzymes represent the ends of different evolutionary lines, which emerged early in evolution and diversified to yield remarkably versatile biocatalysts for chemical reactions that are otherwise difficult to perform in anoxic environments.

  4. Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB

    PubMed Central

    McClay, Kevin; Hawari, Jalal; Paquet, Louise; Malone, Thomas E.; Fox, Brian G.; Steffan, Robert J.

    2017-01-01

    The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4+), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations. PMID:19455327

  5. Copper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism

    PubMed Central

    Sullivan, Matthew J.; Gates, Andrew J.; Appia-Ayme, Corinne; Rowley, Gary; Richardson, David J.

    2013-01-01

    Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus denitrificans. Here we demonstrate that expression of the gene encoding the nitrous oxide reductase (NosZ), which converts N2O to N2, is regulated in response to the extracellular copper concentration. We show that elevated levels of N2O released as a consequence of decreased cellular NosZ activity lead to the bacterium switching from vitamin B12-dependent to vitamin B12-independent biosynthetic pathways, through the transcriptional modulation of genes controlled by vitamin B12 riboswitches. This inhibitory effect of N2O can be rescued by addition of exogenous vitamin B12. PMID:24248380

  6. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes

    PubMed Central

    2013-01-01

    Background Ribonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively. Results RNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host’s ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage. Conclusions This comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments. PMID:23391036

  7. A combination of a ribonucleotide reductase inhibitor and histone deacetylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer

    PubMed Central

    Habtemichael, Negusse; Bier, Carolin; Unruhe, Britta; Weisheit, Simona; Spange, Stephanie; Nonnenmacher, Frank; Fetz, Verena; Ginter, Torsten; Reichardt, Sigrid; Liebmann, Claus; Schneider, Günter; Krämer, Oliver H.

    2012-01-01

    Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required. We investigated how induction of replicational stress by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that at clinically achievable levels VPA/HU combinations efficiently block proliferation as well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family protein BIM, independent of wild-type p53 signaling and in the absence of increased expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from VPA/HU. Also, significantly elevated BIM levels (p<0.01) were detectable in the apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), underlining BIM's clinical relevance. Importantly, VPA/HU treatment additionally reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft mouse model, VPA/HU efficiently blocked tumor growth (P<0.001) correlating with BIM induction and EGFR downregulation. We provide a molecular rationale for the potent anti-cancer activities of this drug combination. Our data suggest its exploitation as a potential strategy for the treatment of HNSCC and other tumor entities characterized by therapy resistance linked to dysregulated EGFR activation. PMID:22289787

  8. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.

    PubMed

    Cotruvo, Joseph A; Stubbe, Joanne

    2012-10-01

    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.

  9. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Ke-Wu; Li, Jun; Dong, Xin

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators.more » Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.« less

  10. Stimulatory effect of insulin on 5alpha-reductase type 1 (SRD5A1) expression through an Akt-dependent pathway in ovarian granulosa cells.

    PubMed

    Kayampilly, Pradeep P; Wanamaker, Brett L; Stewart, James A; Wagner, Carrie L; Menon, K M J

    2010-10-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P<0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P<0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation.

  11. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

    PubMed Central

    Popović-Bijelić, Ana; Kowol, Christian R.; Lind, Maria E.S.; Luo, Jinghui; Himo, Fahmi; Enyedy, Éva A.; Arion, Vladimir B.; Gräslund, Astrid

    2012-01-01

    Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper (II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron (II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical. PMID:21955844

  12. Determination of triapine, a ribonucleotide reductase inhibitor, in human plasma by liquid chromatography tandem mass spectrometry.

    PubMed

    Feng, Ye; Kunos, Charles A; Xu, Yan

    2015-09-01

    Triapine is an inhibitor of ribonucleotide reductase (RNR). Studies have shown that triapine significantly decreases the activity of RNR and enhanced the radiation-mediated cytotoxicity in cervical and colon cancer. In this work, we have developed and validated a selective and sensitive LC-MS/MS method for the determination of triapine in human plasma. In this method, 2-[(3-fluoro-2-pyridinyl)methylene] hydrazinecarbothioamide (NSC 266749) was used as the internal standard (IS); plasma samples were prepared by deproteinization with acetonitrile; tripaine and the IS were separated on a Waters Xbridge Shield RP18 column (3.5 µm; 2.1 × 50 mm) using a mobile phase containing 25.0% methanol and 75.0% ammonium bicarbonate buffer (10.0 mM, pH 8.50; v/v); column eluate was monitored by positive turbo-ionspray tandem mass spectrometry; and quantitation of triapine was carried out in multiple-reaction-monitoring mode. The method developed had a linear calibration range of 0.250-50.0 ng/mL with correlation coefficient of 0.999 for triapine in human plasma. The IS-normalized recovery and the IS-normalized matrix factor of triapine were 101-104% and 0.89-1.05, respectively. The accuracy expressed as percentage error and precision expressed as coefficient of variation were ≤±6 and ≤8%, respectively. The validated LC-MS/MS method was applied to the measurement of triapine in patient samples from a phase I clinical trial. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Coupling of NAD+ Biosynthesis and Nicotinamide Ribosyl Transport: Characterization of NadR Ribonucleotide Kinase Mutants of Haemophilus influenzae

    PubMed Central

    Merdanovic, Melisa; Sauer, Elizabeta; Reidl, Joachim

    2005-01-01

    Previously, we characterized a pathway necessary for the processing of NAD+ and for uptake of nicotinamide riboside (NR) in Haemophilus influenzae. Here we report on the role of NadR, which is essential for NAD+ utilization in this organism. Different NadR variants with a deleted ribonucleotide kinase domain or with a single amino acid change were characterized in vitro and in vivo with respect to cell viability, ribonucleotide kinase activity, and NR transport. The ribonucleotide kinase mutants were viable only in a nadV+ (nicotinamide phosphoribosyltransferase) background, indicating that the ribonucleotide kinase domain is essential for cell viability in H. influenzae. Mutations located in the Walker A and B motifs and the LID region resulted in deficiencies in both NR phosphorylation and NR uptake. The ribonucleotide kinase function of NadR was found to be feedback controlled by NAD+ under in vitro conditions and by NAD+ utilization in vivo. Taken together, our data demonstrate that the NR phosphorylation step is essential for both NR uptake across the inner membrane and NAD+ synthesis and is also involved in controlling the NAD+ biosynthesis rate. PMID:15968050

  14. Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae.

    PubMed

    Merdanovic, Melisa; Sauer, Elizabeta; Reidl, Joachim

    2005-07-01

    Previously, we characterized a pathway necessary for the processing of NAD+ and for uptake of nicotinamide riboside (NR) in Haemophilus influenzae. Here we report on the role of NadR, which is essential for NAD+ utilization in this organism. Different NadR variants with a deleted ribonucleotide kinase domain or with a single amino acid change were characterized in vitro and in vivo with respect to cell viability, ribonucleotide kinase activity, and NR transport. The ribonucleotide kinase mutants were viable only in a nadV+ (nicotinamide phosphoribosyltransferase) background, indicating that the ribonucleotide kinase domain is essential for cell viability in H. influenzae. Mutations located in the Walker A and B motifs and the LID region resulted in deficiencies in both NR phosphorylation and NR uptake. The ribonucleotide kinase function of NadR was found to be feedback controlled by NAD+ under in vitro conditions and by NAD+ utilization in vivo. Taken together, our data demonstrate that the NR phosphorylation step is essential for both NR uptake across the inner membrane and NAD+ synthesis and is also involved in controlling the NAD+ biosynthesis rate.

  15. MITOCHONDRIAL DNA DEPLETION SYNDROME DUE TO MUTATIONS IN THE RRM2B GENE

    PubMed Central

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M.; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J.; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2014-01-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in The RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in 7 infants from 4 families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at three months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exon 6, 8 and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy. PMID:18504129

  16. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.

    PubMed

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.

  17. NrdH Redoxin Enhances Resistance to Multiple Oxidative Stresses by Acting as a Peroxidase Cofactor in Corynebacterium glutamicum

    PubMed Central

    Si, Mei-Ru; Zhang, Lei; Yang, Zhi-Fang; Xu, Yi-Xiang; Liu, Ying-Bao; Jiang, Cheng-Ying; Wang, Yao; Liu, Shuang-Jiang

    2014-01-01

    NrdH redoxins are small protein disulfide oxidoreductases behaving like thioredoxins but sharing a high amino acid sequence similarity to glutaredoxins. Although NrdH redoxins are supposed to be another candidate in the antioxidant system, their physiological roles in oxidative stress remain unclear. In this study, we confirmed that the Corynebacterium glutamicum NrdH redoxin catalytically reduces the disulfides in the class Ib ribonucleotide reductases (RNR), insulin and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), by exclusively receiving electrons from thioredoxin reductase. Overexpression of NrdH increased the resistance of C. glutamicum to multiple oxidative stresses by reducing ROS accumulation. Accordingly, elevated expression of the nrdH gene was observed when the C. glutamicum wild-type strain was exposed to oxidative stress conditions. It was discovered that the NrdH-mediated resistance to oxidative stresses was largely dependent on the presence of the thiol peroxidase Prx, as the increased resistance to oxidative stresses mediated by overexpression of NrdH was largely abrogated in the prx mutant. Furthermore, we showed that NrdH facilitated the hydroperoxide reduction activity of Prx by directly targeting and serving as its electron donor. Thus, we present evidence that the NrdH redoxin can protect against the damaging effects of reactive oxygen species (ROS) induced by various exogenous oxidative stresses by acting as a peroxidase cofactor. PMID:24375145

  18. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    PubMed

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  19. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  20. Purification, crystallization and preliminary diffraction studies of an ectromelia virus glutaredoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Brigley, Angela M.; Channon, Lisa D.

    2005-06-01

    Ectromelia virus glutaredoxin has been crystallized in the presence of the reducing agent DTT. A diffraction data set has been collected and processed to 1.8 Å resolution. Ectromelia, vaccinia, smallpox and other closely related viruses of the orthopoxvirus genus encode a glutaredoxin gene that is not present in poxviruses outside of this genus. The vaccinia glutaredoxin O2L has been implicated as the reducing agent for ribonucleotide reductase and may thus play an important role in viral deoxyribonucleotide synthesis. As part of an effort to understand nucleotide metabolism by poxviruses, EVM053, the O2L ortholog of the ectromelia virus, has been crystallized.more » EVM053 crystallizes in space group C222{sub 1}, with unit-cell parameters a = 61.98, b = 67.57, c = 108.55 Å. Diffraction data have been processed to 1.8 Å resolution and a self-rotation function indicates that there are two molecules per asymmetric unit.« less

  1. Stimulatory Effect of Insulin on 5α-Reductase Type 1 (SRD5A1) Expression through an Akt-Dependent Pathway in Ovarian Granulosa Cells

    PubMed Central

    Kayampilly, Pradeep P.; Wanamaker, Brett L.; Stewart, James A.; Wagner, Carrie L.; Menon, K. M. J.

    2010-01-01

    Elevated levels of 5α-reduced androgens have been shown to be associated with hyperandrogenism and hyperinsulinemia, the leading causes of ovulatory dysfunction in women. 5α-Dihydrotestosterone reduces ovarian granulosa cell proliferation by inhibiting FSH-mediated mitogenic signaling pathways. The present study examined the effect of insulin on 5α-reductase, the enzyme that catalyses the conversion of androgens to their 5α-derivatives. Granulosa cells isolated from immature rat ovaries were cultured in serum-free, phenol red-free DMEM-F12 media and treated with different doses of insulin (0, 0.1, 1.0, and 10.0 μg/ml) for different time intervals up to 12 h. The expression of 5α-reductase type 1 mRNA, the predominant isoform found in granulosa cells, showed a significant (P < 0.05) increase in response to the insulin treatment up to 12 h compared with control. The catalytic activity of 5α-reductase enzyme was also stimulated in a dose-depended manner (P < 0.05). Inhibiting the Akt-dependent signaling pathway abolished the insulin-mediated increase in 5α-reductase mRNA expression, whereas inhibition of the ERK-dependent pathway had no effect. The dose-dependent increase in 5α-reductase mRNA expression as well as catalytic activity seen in response to insulin treatment was also demonstrated in the human granulosa cell line (KGN). In addition to increased mRNA expression, a dose-dependent increase in 5α-reductase protein expression in response to insulin was also seen in KGN cells, which corroborated well with that of mRNA expression. These results suggest that elevated levels of 5α-reduced androgens seen in hyperinsulinemic conditions might be explained on the basis of a stimulatory effect of insulin on 5α-reductase in granulosa cells. The elevated levels of these metabolites, in turn, might adversely affect growth and proliferation of granulosa cells, thereby impairing follicle growth and ovulation. PMID:20810561

  2. A Novel Mechanism of Sugar Selection Utilized by a Human X-family DNA Polymerase†

    PubMed Central

    Brown, Jessica A.; Fiala, Kevin A.; Fowler, Jason D.; Sherrer, Shanen M.; Newmister, Sean A.; Dyum, Wade W.; Suo, Zucai

    2009-01-01

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2′-hydroxyl group and the bulky side chain of an active site residue. Here, we demonstrated that human DNA polymerase λ used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2′-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such a steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2′ position. PMID:19900463

  3. Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1

    PubMed Central

    Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun

    2015-01-01

    ABSTRACT Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. IMPORTANCE This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. PMID:26559832

  4. Herpes Simplex Virus 1 (HSV-1) and HSV-2 Mediate Species-Specific Modulations of Programmed Necrosis through the Viral Ribonucleotide Reductase Large Subunit R1.

    PubMed

    Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun; Zheng, Chunfu; He, Sudan

    2016-01-15

    Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    PubMed

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  6. C677T methylenetetrahydrofolate reductase and plasma homocysteine levels among Thai vegans and omnivores.

    PubMed

    Kajanachumpol, Saowanee; Atamasirikul, Kalayanee; Tantibhedhyangkul, Phieuvit

    2013-01-01

    Hyperhomocysteinemia among vegetarians and vegans is caused mostly by vitamin B12 deficiency. A C-to-T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene results in a thermolabile MTHFR, which may affect homocysteine (Hcy) levels. The importance of this gene mutation among populations depends on the T allele frequency. Blood Hcy, vitamin B12, folate, vitamin B6, and MTHFR C677T mutation status were determined in 109 vegans and 86 omnivores aged 30 - 50 years. The vegans had significantly higher Hcy levels than the omnivores, geometric means (95 % CI) 19.2 (17.0 - 21.7) µmol/L vs. 8.53 (8.12 - 8.95) µmol/L, p < 0.001. A C-to-T mutation in the vegans increased plasma Hcy, albeit insignificantly; geometric means 18.2 µmol/L, 20.4 µmol/L, and 30.0 µmol/L respectively in CC, CT, and TT MTHFR genotypes. There was also a significant decrease in serum folate; geometric means 12.1 ng/mL, 9.33 ng/mL, and 7.20 ng/mL respectively, in the CC, CT, and TT mutants, p = 0.006, and particularly, in the TT mutant compared with the CC wild type, 7.20 ng/mL vs. 12.1 ng/mL, p = 0.023. These findings were not seen in the omnivores. It was concluded that hyperhomocysteinemia is prevalent among Thai vegans due to vitamin B12 deficiency. C-to-T MTHFR mutation contributes only modestly to the hyperhomocysteinemia.

  7. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    PubMed Central

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 Å resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P212121, with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 Å. The Matthews coefficient (V M = 1.76 Å3 Da−1) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit. PMID:19923737

  8. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708.

    PubMed

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-11-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 angstrom resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 angstrom. The Matthews coefficient (V(M) = 1.76 angstrom(3) Da(-1)) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit.

  9. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

    NASA Astrophysics Data System (ADS)

    Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

    2014-01-01

    Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

  10. Purification and Characterization of Ferredoxin-Nicotinamide Adenine Dinucleotide Phosphate Reductase from a Nitrogen-Fixing Bacterium

    PubMed Central

    Yoch, Duane C.

    1973-01-01

    Evidence suggesting that Bacillus polymyxa has an active ferredoxin-NADP+ reductase (EC 1.6.99.4) was obtained when NADPH was found to provide reducing power for the nitrogenase of this organism; direct evidence was provided when it was shown that B. polymyxa extracts could substitute for the native ferredoxin-NADP+ reductase in the photochemical reduction of NADP+ by blue-green algal particles. The ferredoxin-NADP+ reductase was purified about 80-fold by a combination of high-speed centrifugation, ammonium sulfate fractionation, and chromatography on Sephadex G-100 and diethylaminoethyl-cellulose. The molecular weight was estimated by gel filtration to be 60,000. A small amount of the enzyme was further purified by polyacrylamide gel electrophoresis and shown to be a flavoprotein. The reductase was specific for NADPH in the ferredoxin-dependent reduction of cytochrome c and methyl viologen diaphorase reactions; furthermore, NADP+ was the acceptor of preference when the electron donor was photoreduced ferredoxin. The reductase also has an irreversible NADPH-NAD+ transhydrogenase (reduced-NADP:NAD oxidoreductase, EC 1.6.1.1) activity, the rate of which was proportional to the concentration of NAD (Km = 5.0 × 10−3M). The reductase catalyzed electron transfer from NADPH not only to B. polymyxa ferredoxin but also to the ferredoxins of Clostridium pasteurianum, Azotobacter vinelandii, and spinach chloroplasts, although less effectively. Rubredoxin from Clostridium acidi-urici and azotoflavin from A. vinelandii also accept electrons from the B. polymyxa reductase. The pH optima for the various reactions catalyzed by the B. polymyxa ferredoxin-NADP reductase are similar to those of the chloroplast reductase. NAD and acetyl-coenzyme A, which obligatorily activate NADPH- and NADH-ferredoxin reductases, respectively, in Clostridium kluyveri, have no effect on B. polymyxa reductase. PMID:4147648

  11. The utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human solid tumors.

    PubMed

    Un, Frank; Zhou, Bingsen; Yen, Yun

    2012-11-01

    Ribonucleotide reductase composed of the hRRM1 and hRRM2 subunits catalyzes the conversion of ribonucleotides to their corresponding deoxy forms for DNA replication. Anti-hRRM2 siRNA degrades hRRM2's mRNA and suppresses tumorigenesis. A Phase I clinical trial demonstrated its therapy potential. HN-1 represents a tumor-specifically internalizing peptide for targeted-drug delivery into human head and neck squamous cell carcinoma. Internalization of peptide was monitored by fluorescence microscopy. The peptide-siRNA conjugate was chemically synthesized. The hRRM2 expression was monitored by western blot analysis. HN-1(TYR) (HN-1 with two N-terminally added tyrosines) was internalized by human head and neck or breast cancer cells. Anti-hRRM2 siRNA(R) (resistant to RNase degradation) was conjugated to HN-1(TYR) without compromising their properties. The treatment with HN-1(TYR)-anti-hRRM2 siRNA(R) partly suppressed the endogenously expressed hRRM2 in human breast cancer cells. Our results establish the utility of tumor-specifically internalizing peptides for targeted siRNA delivery into human cancer cells.

  12. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.

    PubMed

    Brown, Jessica A; Fiala, Kevin A; Fowler, Jason D; Sherrer, Shanen M; Newmister, Sean A; Duym, Wade W; Suo, Zucai

    2010-01-15

    During DNA synthesis, most DNA polymerases and reverse transcriptases select against ribonucleotides via a steric clash between the ribose 2'-hydroxyl group and the bulky side chain of an active-site residue. In this study, we demonstrated that human DNA polymerase lambda used a novel sugar selection mechanism to discriminate against ribonucleotides, whereby the ribose 2'-hydroxyl group was excluded mostly by a backbone segment and slightly by the side chain of Y505. Such steric clash was further demonstrated to be dependent on the size and orientation of the substituent covalently attached at the ribonucleotide C2'-position. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Protonation of a peroxodiiron(III) complex and conversion to a diiron(III/IV) intermediate: implications for proton-assisted O-O bond cleavage in nonheme diiron enzymes.

    PubMed

    Cranswick, Matthew A; Meier, Katlyn K; Shan, Xiaopeng; Stubna, Audria; Kaizer, Jószef; Mehn, Mark P; Münck, Eckard; Que, Lawrence

    2012-10-01

    Oxygenation of a diiron(II) complex, [Fe(II)(2)(μ-OH)(2)(BnBQA)(2)(NCMe)(2)](2+) [2, where BnBQA is N-benzyl-N,N-bis(2-quinolinylmethyl)amine], results in the formation of a metastable peroxodiferric intermediate, 3. The treatment of 3 with strong acid affords its conjugate acid, 4, in which the (μ-oxo)(μ-1,2-peroxo)diiron(III) core of 3 is protonated at the oxo bridge. The core structures of 3 and 4 are characterized in detail by UV-vis, Mössbauer, resonance Raman, and X-ray absorption spectroscopies. Complex 4 is shorter-lived than 3 and decays to generate in ~20% yield of a diiron(III/IV) species 5, which can be identified by electron paramagnetic resonance and Mössbauer spectroscopies. This reaction sequence demonstrates for the first time that protonation of the oxo bridge of a (μ-oxo)(μ-1,2-peroxo)diiron(III) complex leads to cleavage of the peroxo O-O bond and formation of a high-valent diiron complex, thereby mimicking the steps involved in the formation of intermediate X in the activation cycle of ribonucleotide reductase.

  14. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ying; Xu, Feng, E-mail: xuf@xtal.tsinghua.edu.cn; Bell, Stephen G.

    Palustrisredoxin reductase (RPA3782, PuR), a flavin-dependent ferredoxin reductase, is an essential component of the Class I cytochrome P450 systems in Rhodopseudomonas palustris CGA009. Crystals of PuR that diffract to 2.2 Å resolution have been obtained. Palustrisredoxin reductase from Rhodopseudomonas palustris CGA009, a member of the oxygenase-coupled NADH-dependent ferredoxin reductase (ONFR) family, catalyzes electron transfer from NADH to ferredoxins. It is an essential component of the cytochrome P450 systems in R. palustris CGA009, a model organism with diverse metabolic pathways. Here, the crystallization of palustrisredoxin reductase is reported. The crystals belong to the trigonal space group P3{sub 2}21, with unit-cell parametersmore » a = 107.5, b = 107.5, c = 69.9 Å, and diffract to 2.2 Å resolution on a synchrotron source.« less

  16. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD+ (Rnf) as Electron Acceptors: A Historical Review

    PubMed Central

    Buckel, Wolfgang; Thauer, Rudolf K.

    2018-01-01

    Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered. PMID:29593673

  17. Depletion of Cellular Iron by Curcumin Leads to Alteration in Histone Acetylation and Degradation of Sml1p in Saccharomyces cerevisiae

    PubMed Central

    Azad, Gajendra Kumar; Singh, Vikash; Golla, Upendarrao; Tomar, Raghuvir S.

    2013-01-01

    Curcumin, a naturally occurring polyphenolic compound, is known to possess diverse pharmacological properties. There is a scarcity of literature documenting the exact mechanism by which curcumin modulates its biological effects. In the present study, we have used yeast as a model organism to dissect the mechanism underlying the action of curcumin. We found that the yeast mutants of histone proteins and chromatin modifying enzymes were sensitive to curcumin and further supplementation of iron resulted in reversal of the changes induced by curcumin. Additionally, treatment of curcumin caused the iron starvation induced expression of FET3, FRE1 genes. We also demonstrated that curcumin induces degradation of Sml1p, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. The degradation of Sml1p was mediated through proteasome and vacuole dependent protein degradation pathways. Furthermore, curcumin exerts biological effect by altering global proteome profile without affecting chromatin architecture. These findings suggest that the medicinal properties of curcumin are largely contributed by its cumulative effect of iron starvation and epigenetic modifications. PMID:23520547

  18. The therapeutic potential of iron-targeting gallium compounds in human disease: From basic research to clinical application.

    PubMed

    Chitambar, Christopher R

    2017-01-01

    Gallium, group IIIa metal, shares certain chemical characteristics with iron which enable it to function as an iron mimetic that can disrupt iron-dependent tumor cell growth. Gallium may also display antimicrobial activity by disrupting iron homeostasis in certain bacteria and fungi. Gallium's action on iron homeostasis leads to inhibition of ribonucleotide reductase, mitochondrial function, and changes in proteins of iron transport and storage. In addition, gallium induces an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Early clinical trials evaluated the efficacy of the simple gallium salts, gallium nitrate and gallium chloride. However, newer gallium-ligands such as Tris(8-quinolinolato)gallium(III) (KP46) and gallium maltolate have been developed and are undergoing clinical evaluation. Additional gallium-ligands that demonstrate antitumor activity in preclinical studies have emerged. Their mechanisms of action and their spectrum of antitumor activity may extend beyond the earlier generations of gallium compounds and warrant further investigation. This review will focus on the evolution and potential of gallium-based therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  20. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    PubMed

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  1. Generation and characterization of koi herpesvirus recombinants lacking viral enzymes of nucleotide metabolism.

    PubMed

    Fuchs, Walter; Fichtner, Dieter; Bergmann, Sven M; Mettenleiter, Thomas C

    2011-06-01

    Koi herpesvirus (KHV) causes a fatal disease in koi and common carp, but no reliable and genetically characterized vaccines are available up to now. Therefore, we generated KHV recombinants possessing deletions within the viral ribonucleotide reductase (RNR), thymidine kinase (TK), dUTPase, or TK and dUTPase genes, and their corresponding rescuants. All KHV mutants were replication competent in cultured cells. Whereas plaque sizes and titers of RNR-negative KHV were reduced, replication of the other mutants was not affected. Experimental infection of carp indicated attenuation of TK- or dUTPase-deleted KHV, and PCR analysis of tissue samples permitted differentiation of mutant from wild-type virus.

  2. Purification and Thermal Dependence of Glutathione Reductase from Two Forage Legume Species 1

    PubMed Central

    Kidambi, Saranga P.; Mahan, James R.; Matches, Arthur G.

    1990-01-01

    Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from `Cimarron' alfalfa and `PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45°C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25°C), and (c) the thermal kinetic windows (6-19°C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283

  3. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate nitrate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N2-fixing, heterocyst-forming cyanobacteria, the nirA operon, which includes the structural genes for the nitrate assimilation system, is expressed in the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Sequential steps in DNA replication are inhibited to ensure reduction of ploidy in meiosis

    PubMed Central

    Hua, Hui; Namdar, Mandana; Ganier, Olivier; Gregan, Juraj; Méchali, Marcel; Kearsey, Stephen E.

    2013-01-01

    Meiosis involves two successive rounds of chromosome segregation without an intervening S phase. Exit from meiosis I is distinct from mitotic exit, in that replication origins are not licensed by Mcm2-7 chromatin binding, but spindle disassembly occurs during a transient interphase-like state before meiosis II. The absence of licensing is assumed to explain the block to DNA replication, but this has not been formally tested. Here we attempt to subvert this block by expressing the licensing control factors Cdc18 and Cdt1 during the interval between meiotic nuclear divisions. Surprisingly, this leads only to a partial round of DNA replication, even when these factors are overexpressed and effect clear Mcm2-7 chromatin binding. Combining Cdc18 and Cdt1 expression with modulation of cyclin-dependent kinase activity, activation of Dbf4-dependent kinase, or deletion of the Spd1 inhibitor of ribonucleotide reductase has little additional effect on the extent of DNA replication. Single-molecule analysis indicates this partial round of replication results from inefficient progression of replication forks, and thus both initiation and elongation replication steps may be inhibited in late meiosis. In addition, DNA replication or damage during the meiosis I–II interval fails to arrest meiotic progress, suggesting absence of checkpoint regulation of meiosis II entry. PMID:23303250

  5. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.

  6. 2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine 5'-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase.

    PubMed

    Baker, C H; Banzon, J; Bollinger, J M; Stubbe, J; Samano, V; Robins, M J; Lippert, B; Jarvi, E; Resvick, R

    1991-06-01

    It has been found that 2'-deoxy-2'-methyleneuridine (MdUrd), 2'-deoxy-2'-methylenecytidine (MdCyd), and 2'-deoxy-2',2'-difluorocytidine (dFdCyd) 5'-diphosphates (MdUDP (1) MdCDP (2) and dFdCDP (3), respectively) function as irreversible inactivators of the Escherichia coli ribonucleoside diphosphate reductase (RDPR). 2 is a much more potent inhibitor than its uridine analogue 1. It is proposed that 2 undergoes abstraction of H3' to give an allylic radical that captures a hydrogen atom and decomposes to an active alkylating furanone species. RDPR also accepts 3 as an alternative substrate analogue and presumably executes an initial abstraction of H3' to initiate formation of a suicide species. Both 2 and 3 give inactivation results that differ from those of previously studied inhibitors. The potent anticancer activities of MdCyd and dFdCyd indicate a significant chemotherapeutic potential. The analogous RDPR of mammalian cells should be regarded as a likely target and/or activating enzyme for these novel mechanism-based inactivators.

  7. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-typemore » enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.« less

  8. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyala, Paul H.; Ravichandran, Kanchana R.; Funk, Michael A.

    Here, fluorinated tyrosines (F nY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radicaldependent nucleotide reduction process. F nY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y 122-β and the X-ray structures of each resulting β with a diferric cluster aremore » reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo F nY-β2, Fe 2+, and O 2 to produce ~1 Y·/β2 and ~3 Fe 3+/β2. The F nY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each F nY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each F nY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic F nY pK a’s (6.4 to 7.8) and reduction potentials (-30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry.« less

  9. Characterization of two genes encoding the Mycobacterium tuberculosis ribonucleotide reductase small subunit.

    PubMed Central

    Yang, F; Curran, S C; Li, L S; Avarbock, D; Graf, J D; Chua, M M; Lu, G; Salem, J; Rubin, H

    1997-01-01

    Two nrdF genes, nrdF1 and nrdF2, encoding the small subunit (R2) of ribonucleotide reductase (RR) from Mycobacterium tuberculosis have 71% identity at the amino acid level and are both highly homologous with Salmonella typhimurium R2F. The calculated molecular masses of R2-1 and R2-2 are 36,588 (322 amino acids [aa]) and 36,957 (324 aa) Da, respectively. Western blot analysis of crude M. tuberculosis extracts indicates that both R2s are expressed in vivo. Recombinant R2-2 is enzymatically active when assayed with pure recombinant M. tuberculosis R1 subunit. Both ATP and dATP are activators for CDP reduction up to 2 and 1 mM, respectively. The gene encoding M. tuberculosis R2-1, nrdF1, is not linked to nrdF2, nor is either gene linked to the gene encoding the large subunit, M. tuberculosis nrdE. The gene encoding MTP64 was found downstream from nrdF1, and the gene encoding alcohol dehydrogenase was found downstream from nrdF2. A nrdA(Ts) strain of E. coli (E101) could be complemented by simultaneous transformation with M. tuberculosis nrdE and nrdF2. An M. tuberculosis nrdF2 variant in which the codon for the catalytically necessary tyrosine was replaced by the phenylalanine codon did not complement E101 when cotransformed with M. tuberculosis nrdE. Similarly, M. tuberculosis nrdF1 and nrdE did not complement E101. Activity of recombinant M. tuberculosis RR was inhibited by incubating the enzyme with a peptide corresponding to the 7 C-terminal amino acid residues of the R2-2 subunit. M. tuberculosis is a species in which a nrdEF system appears to encode the biologically active species of RR and also the only bacterial species identified so far in which class I RR subunits are not arranged on an operon. PMID:9335290

  10. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example

    DOE PAGES

    Oyala, Paul H.; Ravichandran, Kanchana R.; Funk, Michael A.; ...

    2016-06-08

    Here, fluorinated tyrosines (F nY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radicaldependent nucleotide reduction process. F nY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y 122-β and the X-ray structures of each resulting β with a diferric cluster aremore » reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo F nY-β2, Fe 2+, and O 2 to produce ~1 Y·/β2 and ~3 Fe 3+/β2. The F nY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each F nY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each F nY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic F nY pK a’s (6.4 to 7.8) and reduction potentials (-30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry.« less

  11. Structural Basis for Assembly of the MnIV/FeIII Cofactor in the Class Ic Ribonucleotide Reductase from Chlamydia trachomatis‡

    PubMed Central

    Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.

    2013-01-01

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396

  12. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  13. Characteristics Of Bridging Oxo And Sulfido Groups In Multinuclear Iron Proteins

    NASA Astrophysics Data System (ADS)

    Loehr, Thomas M.

    1989-07-01

    The presence of oxo-bridged dinuclear iron clusters has been established in the respiratory protein, hemerythrin (Hr), and in the DNA-biosynthesis regulatory enzyme, ribonucleotide reductase (Rr). For the iron proteins uteroferrin and purple acid phosphatase (PAP) evidence for μ-oxo-bridged centers is less clear. Resonance Raman (RR) spectra obtained by excitation into an 0(2-) --> Fe(III) CT band may show strong symmetric and weak antisymmetric Fe-0-Fe vibrational modes. We have investigated the spectra of a variety of μ-oxo-bridged Fe(III) complexes to establish the dependence of Raman scattering intensities upon structural parameters. Intensities were found to relate to the nature of the ligand trans to the oxo group: nitrogen ligands with unsaturation (e.g., pyrazole and imidazole) lead to strong scattering, whereas saturated ligands provide only poor scattering. The Fe-0 bonds in Hr and Rr are strong scatterers; the former is known from x-ray crystallography to have a histidyl ligand trans to the μ-oxo group. On this basis, a similar ligand structure is likely in the reductase. In contrast, PAP shows no oxo-bridge with UV and near-UV excitation. We propose that a different structural framework is necessary to account for this result. Hydrogen bonding of protein side chains to oxo and sulfido ligands is proposed to explain changes in frequencies for samples dissolved in water vs. D20. Differences in hydrogen-bond strengths between 0...(D) and S...(D) systems are transferred to the observed Fe-0 and Fe-S bond vibrations.

  14. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    USDA-ARS?s Scientific Manuscript database

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  15. N-terminus determines activity and specificity of styrene monooxygenase reductases.

    PubMed

    Heine, Thomas; Scholtissek, Anika; Westphal, Adrie H; van Berkel, Willem J H; Tischler, Dirk

    2017-12-01

    Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH 2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s -1 , one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Balancing Act of Ribonucleotides in DNA

    PubMed Central

    Cerritelli, Susana M.; Crouch, Robert J.

    2016-01-01

    The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the Ribonucleotides Excision Repair pathway, a process similar to Okazaki fragment processing after incision by RNase H2. All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA and review the data that indicate that removal of ribonucleotides plays an important role in maintaining genome stability. PMID:26996833

  17. Incorporation of deoxyribonucleotides and ribonucleotides by a dNTP-binding cleft mutated reverse transcriptase in hepatitis B virus core particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee-Young; Kim, Hye-Young; Jung, Jaesung

    2008-01-05

    Our recent observation that hepatitis B virus (HBV) DNA polymerase (P) might initiate minus-strand DNA synthesis without primer [Kim et al., (2004) Virology 322, 22-30], raised a possibility that HBV P protein may have the potential to function as an RNA polymerase. Thus, we mutated Phe 436, a bulky amino acid with aromatic side chain, at the putative dNTP-binding cleft in reverse transcriptase (RT) domain of P protein to smaller amino acids (Gly or Val), and examined RNA polymerase activity. HBV core particles containing RT dNTP-binding cleft mutant P protein were able to incorporate {sup 32}P-ribonucleotides, but not HBV coremore » particles containing wild type (wt), priming-deficient mutant, or RT-deficient mutant P proteins. Since all the experiments were conducted with core particles isolated from transfected cells, our results indicate that the HBV RT mutant core particles containing RT dNTP-binding cleft mutant P protein could incorporate both deoxyribonucleotides and ribonucleotides in replicating systems.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Ken-ichi; Tanaka, Nobutada, E-mail: ntanaka@pharm.showa-u.ac.jp; Ishikura, Shuhei

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters amore » = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.« less

  19. Hydroxyurea enhances the activity of acyclovir and cidofovir against herpes simplex virus type 1 resistant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes.

    PubMed

    Sergerie, Yan; Boivin, Guy

    2008-01-01

    Drug-resistant herpes simplex virus type 1 (HSV-1) recombinant strains harboring mutations in the thymidine kinase and/or the DNA polymerase genes were evaluated for their susceptibility to various antivirals in the presence of 25 microg/ml of hydroxyurea (HyU). The latter compound decreased the 50% inhibitory concentrations of acyclovir by 1.5-3.8-fold and that of cidofovir by 2.7-14.4-fold. However, HyU did not affect the susceptibilities of the various recombinant mutants to foscarnet. Hydroxyurea, a ribonucleotide reductase inhibitor, can increase the activity of nucleoside/nucleotide analogues against drug-resistant viruses.

  20. Reduction of the degradation activity of umami-enhancing purinic ribonucleotide supplement in miso by the targeted suppression of acid phosphatases in the Aspergillus oryzae starter culture.

    PubMed

    Marui, Junichiro; Tada, Sawaki; Fukuoka, Mari; Wagu, Yutaka; Shiraishi, Yohei; Kitamoto, Noriyuki; Sugimoto, Tatsuya; Hattori, Ryota; Suzuki, Satoshi; Kusumoto, Ken-Ichi

    2013-09-02

    Miso (fermented soybean paste) is a traditional Japanese fermented food, and is now used worldwide. The solid-state culture of filamentous fungus, Aspergillus oryzae, grown on rice is known as rice-koji, and is important as a starter for miso fermentation because of its prominent hydrolytic enzyme activities. Recently, commercial miso products have been supplemented with purinic ribonucleotides, such as inosine monophosphate (IMP) and guanine monophosphate, to enhance the characteristic umami taste of glutamate in miso. Because the purinic ribonucleotides are degraded by enzymes such as acid phosphatases in miso, heat inactivation is required prior to the addition of these flavorings. However, heat treatment is a costly process and reduces the quality of miso. Therefore, an approach to lower acid phosphatase activities in koji culture is necessary. Transcriptional analysis using an A. oryzae KBN8048 rice-koji culture showed that eight of the 13 acid phosphatase (aph) genes were significantly down-regulated by the addition of phosphoric acid in the preparation of the culture in a concentration-dependent manner, while aphC expression was markedly up-regulated under the same conditions. The eight down-regulated genes might be under the control of the functional counterpart of the Saccharomyces cerevisiae transcriptional activator Pho4, which specifically regulates phosphatase genes in response to the ambient phosphate availability. However, the regulatory mechanism of aphC was not clear. The IMP dephosphorylation activities in rice-koji cultures of KBN8048 and the aphC deletion mutant (ΔaphC) were reduced by up to 30% and 70%, respectively, in cultures with phosphoric acid, while protease and amylase activity, which is important for miso fermentation, was minimally affected. The miso products fermented using the rice-koji cultures of KBN8048 and ΔaphC prepared with phosphoric acid had reductions in IMP dephosphorylation activity of 80% and 90%, respectively, without any adverse effects on amylase and protease activities. Thus, preparing the A. oryzae rice-koji culture under phosphate-sufficient conditions preferentially produces a fermentation starter of miso exhibiting low purinic ribonucleotide dephosphorylation activity. Moreover, aphC is a potential breeding target to reduce purinic ribonucleotide degradation activity further in commercial miso products. © 2013 Elsevier B.V. All rights reserved.

  1. Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase.

    PubMed

    Yokoo, Toshinori; Matsumoto, Ken'ichiro; Ooba, Takashi; Morimoto, Kenjiro; Taguchi, Seiichi

    2015-01-01

    Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.

  2. Crystallization and preliminary X-ray crystallographic analysis of a carbonyl reductase from Candida parapsilosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongzhen; Xu, Yan, E-mail: biosean@yahoo.com.cn; Sun, Ying

    2008-04-01

    A novel short-chain NADPH-dependent (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) has been crystallized. A novel short-chain NADPH-dependent (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) has been crystallized. Two distinct but related crystal forms of SCR were obtained using the hanging-drop vapour-diffusion method and a reservoir solution consisting of 18%(w/v) polyethylene glycol 2000 monomethyl ether and 8%(v/v) 2-propanol as the precipitant. The crystals were rhomboid in shape with average dimensions of 0.3 × 0.3 × 0.4 mm and diffracted to a resolution of 2.7–3.0 Å. The crystal forms both belong to space group P2{sub 1}2{sub 1}2{sub 1} and have unit-cell parameters a = 104.7, b = 142.8, cmore » = 151.8 Å and a = 101.1, b = 146.0, c = 159.8 Å. The calculated values of V{sub M}, rotation-function and translation-function solutions and consideration of potential crystal packing suggest that there are eight protein subunits per asymmetric unit.« less

  3. The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA.

    PubMed

    Meroni, Alice; Mentegari, Elisa; Crespan, Emmanuele; Muzi-Falconi, Marco; Lazzaro, Federico; Podestà, Alessandro

    2017-10-03

    Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    PubMed Central

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  5. Life in the Clouds of Venus? An Experimental Synthetic Biology Approach

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Paulino-Lima, I. G.; Amatya, D.; Bajar, B.; Geilich, B.; Hu, J.; Jackson, C. J.

    2015-01-01

    The surface of Venus constitutes the most hellish and biologically inhospitable planetary surface in our solar system, boasting a pH of 0, blistering winds that can melt lead, and pressures of 60 atm. However, during the earlier years of the solar system, without the runaway greenhouse effect that has plagued the planet, Venus potentially housed oceans and perhaps even life. There is a possibility that microbes could have retreated into hospitable niches in the atmosphere, as suggested by Carl Sagan as early as 1967 [1]. For example, 50 km above the raging hell of the Venusian surface, exists a relatively temperate environment that might serve as reservoir for life. This astrobiology project seeks to explore life at the extremes and to theorize whether microbial communities could not only survive but also reproduce in the Venusian atmosphere. Specifically, we ask: are aerosols viable microbial environments? But before we can test for life in the clouds, we have to develop a proper reporter to visualize cell growth in situ. For this purpose, we aimed to develop cell-growth dependent reporters to serve as remote biosensors for cell growth. We developed two using the polA promoter, a DNA-replication dependent promoter, and nrd operon promoter, a cell-cycle dependent promoter. Using these cell-growth reporters, the next step is to aerosolize microbes expressing these reporters in a suspension chamber adapted from a Millikan Drop Apparatus to assay reproduction in an aerosolized environment. Better yet is to test the reproduction of microbes in a microgravity regime such as on ISS.Approach: We engineered two cell-cycle dependent genetic reporters. One was the polA promoter which codes for DNA Polymerase I, a gene active in DNA replication [2]. The other was the nrdP. The activation of ribonucleotide reductase reduces ribonucleotides into deoxyribonucleotides and is involved in the bacterial cell cycle [3]. This promoter began activation during the initiation of DNA replication and is cell-cycle dependent [4]. These promoters were fused to a GFP reporter, transformed into E. coli. The constructs were deposited in the iGEM registry as K847210: Escherichia coli DNA-replication dependent polA promoter K847211: Escherichia coli cell-division dependent nrd promoter Results: Our constructs displayed fluorescence when transformed into NEB-5alpha competent cells. While nrdP-E0840 displayed sufficient fluorescence as verified by fluorescent microscopy, the original polAP-E0840 construct (which uses mut3b GFP) exhibited low expression; while fluorescence was visible under the microscope, the signal was too weak for the camera to recognize. The polA promoter was therefore digest-ed with EcoRI and SpeI then ligated into plasmid pNCS containing a RBS, Clover, and a terminator. Clover is a highly engineered green fluorescent protein that exhibits extreme brightness [5] Fluoresence time course data demonsrated that the genes were induced in a cell cycle dependant manner [6]. Our assays via microscopy and the bulk assay shows that our promoters are functional as cell cycle reporters.Conclusions: The application of such tools are widespread and not limited to astrobiology; nrdP could be used to determine doubling times empirically and could possibly extrapolate DNA content from intensity of signals expressed by polAP. However, we are pri-marily interested in its use in astrobiology.

  6. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    PubMed

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  7. COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2).

    PubMed

    Halimi, Yair; Dessau, Moshe; Pollak, Shaul; Ast, Tslil; Erez, Tamir; Livnat-Levanon, Nurit; Karniol, Baruch; Hirsch, Joel A; Chamovitz, Daniel A

    2011-09-01

    The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis.

  8. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    PubMed

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  9. Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators.

    PubMed

    Pijuan, Jordi; María, Carlos; Herrero, Enrique; Bellí, Gemma

    2015-12-15

    Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work, we show that, in Saccharomyces cerevisiae, defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyper-recombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2 and Rnr4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such a response, converging on Dun1. Thus, cells lacking the glutaredoxin Grx5, which are compromised at the core ISC system, show Mec1- and Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-null cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response needs to be activated upon ISC impairment to preserve cell viability. © 2015. Published by The Company of Biologists Ltd.

  10. A perspective of gene therapy in the glaucomas.

    PubMed

    Kaufman, P L; Jia, W W; Tan, J; Chen, Z; Gabelt, B T; Booth, V; Tufaro, F; Cynader, M

    1999-06-01

    Gene therapy in the anterior and posterior segment tissues may have the potential to favorably influence aqueous hydrodynamics and retinal ganglion cell biology, thereby preventing, delaying, or minimizing glaucomatous damage to the optic nerve. We demonstrated the feasibility of using a herpes viral vector (ribonucleotide reductase defective HSV-1, hrR3) to deliver the lacZ reporter gene to living cat and rat eyes. Cats received injections into the anterior chamber and rats into the vitreous cavity. In cats, lacZ expression was detectable at 1 to 2 days in the anterior outer portion of the ciliary muscle and the lining of the intertrabecular spaces of the corneoscleral and uveal meshwork. Rat eyes showed lacZ expression in the retinal pigment epithelium and photoreceptor outer segments 2 days after injection.

  11. Measuring ribonucleotide incorporation into DNA in vitro and in vivo.

    PubMed

    Clausen, Anders R; Williams, Jessica S; Kunkel, Thomas A

    2015-01-01

    Ribonucleotides are incorporated into genomes by DNA polymerases, they can be removed, and if not removed, they can have deleterious and beneficial consequences. Here, we describe an assay to quantify stable ribonucleotide incorporation by DNA polymerases in vitro, and an assay to probe for ribonucleotides in each of the two DNA strands of the yeast nuclear genome.

  12. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences*

    PubMed Central

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-01-01

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. PMID:26338705

  13. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  15. A ribonucleotide Origin for Life - Fluctuation and Near-ideal Reactions

    NASA Astrophysics Data System (ADS)

    Yarus, Michael

    2013-02-01

    Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.

  16. A ribonucleotide Origin for Life--fluctuation and near-ideal reactions.

    PubMed

    Yarus, Michael

    2013-02-01

    Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.

  17. The Active Form of the Saccharomyces cerevisiae Ribonucleotide Reductase Small Subunit Is a Heterodimer in Vitro and in Vivo†

    PubMed Central

    Perlstein, Deborah L.; Ge, Jie; Ortigosa, Allison D.; Robblee, John H.; Zhang, Zhen; Huang, Mingxia; Stubbe, JoAnne

    2015-01-01

    The class I ribonucleotide reductases (RNRs) are composed of two homodimeric subunits: R1 and R2. R2 houses a diferric-tyrosyl radical (Y•) cofactor. Saccharomyces cerevisiae has two R2s: Y2 (β2) and Y4 (β′2). Y4 is an unusual R2 because three residues required for iron binding have been mutated. While the heterodimer (ββ′) is thought to be the active form, several rnr4Δ strains are viable. To resolve this paradox, N-terminally epitope-tagged β and β′ were expressed in E. coli or integrated into the yeast genome. In vitro exchange studies reveal that when apo-(His6)-β2 (Hisβ2) is mixed with β′2, apo-Hisββ′ forms quantitatively within 2 min. In contrast, holo-ββ′ fails to exchange with apo-Hisβ2 to form holo-Hisββ and β′2. Isolation of genomically encoded tagged β or β′ from yeast extracts gave a 1:1 complex of β and β′, suggesting that ββ′ is the active form. The catalytic activity, protein concentrations, and Y• content of the rnr4Δ and wild type (wt) strains were compared to clarify the role of β′ in vivo. The Y• content of rnr4Δ is 15-fold less than that of wt, consistent with the observed low activity of rnr4Δ extracts (<0.01 nmol min−1 mg−1) versus wt (0.06 ± 0.01 nmol min−1 mg−1). FLAGβ2 isolated from the rnr4Δ strain has a specific activity of 2 nmol min−1 mg−1, similar to that of reconstituted apo-Hisβ2 (10 nmol min−1 mg−1), but significantly less than holo-Hisββ′ (~2000 nmol min−1 mg−1). These studies together demonstrate that β′ plays a crucial role in cluster assembly in vitro and in vivo and that the active form of the yeast R2 is ββ′. PMID:16285741

  18. Evidence That the [beta] Subunit of Chlamydia trachomatis Ribonucleotide Reductase Is Active with the Manganese Ion of Its Manganese(IV)/Iron(III) Cofactor in Site 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dassama, Laura M.K.; Boal, Amie K.; Krebs, Carsten

    2014-10-02

    The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the {beta} subunit oxidizes a cysteine residue {approx}35 {angstrom} away in the {alpha} subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn{sup IV} ion of a Mn{sup IV}/Fe{sup III} cluster, which assembles in a reaction between O{sub 2} and the Mn{sup II}/Fe{sup II} complex of {beta}. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn{sup IV} ion. Because site 1 is closer to the conserved locationmore » of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn{sup IV} ion most likely resides in this site (i.e., {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}), but a subsequent computational study favored its occupation of site 2 ({sup 1}Fe{sup III}/{sup 2}Mn{sup IV}). In this work, we have sought to resolve the location of the Mn{sup IV} ion in Ct RNR-{beta} by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn{sup IV}/Fe{sup III} clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both {sup 1}Mn{sup II}/{sup 2}Fe{sup II} and {sup 1}Fe{sup II}/{sup 2}Mn{sup II} complexes are competent to react with O{sub 2} to produce the corresponding oxidized states. However, with diminished Mn{sup II} loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these 'low-Mn' samples on a per-Mn basis implies that the {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}-{beta} is at least the more active of the two oxidized forms and may be the only active form.« less

  19. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study.

    PubMed

    Han, Wen-Ge; Sandala, Gregory M; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis

    2011-11-14

    The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.

  20. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-04

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+β fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.

    PubMed

    Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A

    2018-01-01

    Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.

  2. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.

    PubMed

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-10-23

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica".

    PubMed

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-09-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of 'Ca. Kuenenia stuttgartiensis' have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of 'Ca. K. stuttgartiensis', however, 'Ca. Brocadia' lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from 'Ca. K. stuttgartiensis'. Here, we studied the anammox metabolism of 'Ca. Brocadia sinica'. (15) N-tracer experiments demonstrated that 'Ca. B. sinica' cells could reduce NO2- to NH2 OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2 H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified 'Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the 'Ca. B. sinica' Hzs and cells utilized NH2 OH and NH4+, but not NO and NH4+, for N2 H4 synthesis and further oxidized N2 H4 to N2 gas. Taken together, the metabolic pathway of 'Ca. B. sinica' is NH2 OH-dependent and different from the one of 'Ca. K. stuttgartiensis', indicating metabolic diversity of anammox bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Unlocking the sugar "steric gate" of DNA polymerases.

    PubMed

    Brown, Jessica A; Suo, Zucai

    2011-02-22

    To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.

  6. Unlocking the Sugar ‘Steric Gate’ of DNA Polymerases†

    PubMed Central

    Brown, Jessica A.; Suo, Zucai

    2011-01-01

    To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2′-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the ‘steric gate’, establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review article. PMID:21226515

  7. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

    PubMed Central

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R.; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A.; Stanton, Richard A.; Suesserman, Justin E.; Lin, Biing; Lee, Sam S.; Amblard, Franck; Whitaker, Tony; Coats, Steven J.

    2016-01-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  8. Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense

    PubMed Central

    Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan

    2014-01-01

    The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792

  9. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.

    PubMed

    Chitambar, Christopher R; Antholine, William E

    2013-03-10

    Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.

  10. Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor.

    PubMed

    Jin, Mei; Zhou, Wei; Jin, Chunshi; Jiang, Zhe; Diao, Shengbao; Jin, Zhehu; Li, Gao

    2018-03-09

    Twenty-seven compounds including nine triterpenoids (1-9), eight sterols (10-17), two ribonucleotides (18, 19), four phenols (20-23), three glycosides (24-26), and one furan (27) were isolated from the fruiting bodies of Trametes versicolor (L.) Lloyd. This study is the first confirmation of the presence of the 11 compounds (3, 5, 6, 8, 18, 20, 21, 23-25, and 27) isolated from the Polyporaceae family, with six of these (2 and 12-16) from the genus Trametes. Compounds 3, 4, 10, 11, 16 and 17 were found to significantly inhibit the production of NO, TNF-α and IL-6 in a dose-dependent manner.

  11. The enzymes with benzil reductase activity conserved from bacteria to mammals.

    PubMed

    Maruyama, Reiji; Nishizawa, Mikio; Itoi, Yasushi; Ito, Seiji; Inoue, Masami

    2002-03-28

    The diketone compound, benzil is reduced to (S)-benzoin with living Bacillus cereus cells. Recently, we isolated a gene responsible for benzil reduction, and Escherichia coli cells in which this gene was overexpressed transformed benzil to (S)-benzoin. Although this benzil reductase showed high identity to the short-chain dehydrogenase/reductase (SDR) family, enzymological features were unknown. Here, we demonstrated that many B. cereus strains had benzil reductase activity in vivo, and that the benzil reductases shared 94-100% amino acid identities. Recombinant B. cereus benzil reductase produced optically pure (S)-benzoin with NADPH in vitro, and the ketone group distal to a benzene ring was asymmetrically reduced. B. cereus benzil reductase showed 31% amino acid identity to the yeast open reading frame YIR036C protein and 28-30% to mammalian sepiapterin reductases, sharing the seven residues consensus for the SDR family. We isolated the genes encoding yeast YIR036C protein and gerbil sepiapterin reductase, and both recombinant proteins also reduced benzil to (S)-benzoin in vitro. Green fluorescent protein-tagged B. cereus benzil reductase distributed in the bipolar cytoplasm in B. cereus cells. Asymmetric reduction with B. cereus benzil reductase, yeast YIR036C protein and gerbil sepiapterin reductase will be utilized to produce important chiral compounds.

  12. Insight into the theoretical and experimental studies of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N(4)-methyl-N(4)- phenylthiosemicarbazone - A potential NLO material

    NASA Astrophysics Data System (ADS)

    Sangeetha, K. G.; Aravindakshan, K. K.; Safna Hussan, K. P.

    2017-12-01

    The synthesis, geometrical parameters, spectroscopic studies, optimised molecular structure, vibrational analysis, Mullikan population analysis, MEP, NBO, frontier molecular orbitals and NLO effects of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone N-(4)-methyl-N-(4)-phenylthiosemicarbazone, C25H23N5OS (L1) have been communicated in this paper. A combined experimental and theoretical approach was used to explore the structure and properties of the compound. For computational studies, Gaussian 09 program was used. Starting geometry of molecule was taken from X-ray refinement data and has been optimized by using DFT (B3LYP) method with the 6-31+G (d, p) basis sets. NBO analysis gave insight into the strongly delocalized structure, responsible for the nonlinearity and hence the stability of the molecule. Frontier molecular orbitals have been defined to forecast the global reactivity descriptors of L1. The computed first-order hyperpolarizability (β) of the compound is 2 times higher than that of urea and this account for its nonlinear optical property. Simultaneously, a molecular docking study of the compound was performed using GLIDE Program. For this, three biological enzymes, histone deacetylase, ribonucleotide reductase and DNA methyl transferase, were selected as receptor molecules.

  13. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    PubMed Central

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  14. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyota, Eduardo; Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas-SP; Sousa, Sylvia Morais de

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automatedmore » molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.« less

  16. [Dinitrosyl iron complexes with glutathione recover rats with experimental endometriosis].

    PubMed

    Adamian, L V; Burgova, E N; Tkachev, N A; Mikoian, V D; Stepanian, A A; Sonova, M M; Vanin, A F

    2013-01-01

    The effect of binuclear dinitrosyl iron complexes (DNIC) with glutathione on endometrioid tumors in rats with experimental endometriosis has been studied. The latter was induced by an autotransplantation model, where two fragments of endometrium with myometrium (2 x 2 mm) from the left uterine horn was grafted to the inner surface of the anterior abdominal wall. The test animals received intraperitoneal injections of 0.5 ml DNIC-glutathione at the dose of 12.5 micromole per kg daily for 12 days 28 days after operation. The injections resulted in more than a 2-fold decrease in the total volume of both large tumors formed from grafts and small additive tumors formed nearby grafts. The disappearance of the additive tumors was also observed in test animals. The EPR signal with g(av) = 2.03 characteristic of protein bound DNIC with thiol-containing ligands was recorded in livers, graft and additive tumors of test and control animals pointing out intensive generation of nitric oxide in rats with experimental endometriosis. Ribonucleotide reductase activation discovered by doublet the EPR signal at g = 2.0 with 2.3 mT hyperfine structure splitting was found in small tumors. The cytotoxic effect of DNIC-glutathione on endometrioid tumors was suggested to be due to DNIC degradation nearby the tumors induced by iron chelating compounds released from the tumors. The degradation resulted in release of a high amount of nitric oxide molecules and nitrosonium ions from DNICs affecting the tumors by way of the cytotoxic effect.

  17. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family.

    PubMed

    Skrypek, N; Duchêne, B; Hebbar, M; Leteurtre, E; van Seuningen, I; Jonckheere, N

    2013-03-28

    The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar), is the main chemotherapeutic drug in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer (PC) cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-Resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells, but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells, in which the NF-κB pathway was found to have an important role in both sensitivity to gemcitabine and hCNT1 regulation. Finally, and in accordance with our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of PC cell resistance to gemcitabine, in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment.

  18. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family

    PubMed Central

    Skrypek, Nicolas; Duchêne, Bélinda; Hebbar, Mohamed; Leteurtre, Emmanuelle; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2013-01-01

    The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar®), is the main chemotherapy in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and Western-blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells in which NF-κB pathway was found to play an important role both in sensitivity to gemcitabine and in hCNT1 regulation. Finally and accordingly to our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of pancreatic cancer cell resistance to gemcitabine in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment. PMID:22580602

  19. Thermal Dependence of the Apparent Km of Glutathione Reductases from Three Plant Species

    PubMed Central

    Mahan, James R.; Burke, John J.; Orzech, Karen A.

    1990-01-01

    The thermal dependencies of the apparent Km of the glutathione reductases from spinach (Spinacia oleracea L.) corn (Zea mays L.), and cucumber (Cucumis sativus L.) were determined. The apparent Km of the enzymes were found to vary up to 9-fold between 12.5 and 45°C. Values of the apparent Km in excess of 200% of the observed minimum are suggested to be detrimental to the normal function of the enzyme. We propose the term “thermal kinetic window” to describe to the range of temperatures over which the apparent Km of the glutathione reductase is within 200% of its minimum and suggest that it may be a useful indicator of the limits of thermal stress for a given species. The thermal kinetic windows determined in this study are: <16°C for spinach, 23 to 32°C for corn, and 35 to 41°C for cucumber. PMID:16667543

  20. Identification of Genes Expressed in Premalignant Breast Disease by Microscopy-Directed Cloning

    NASA Astrophysics Data System (ADS)

    Jensen, Roy A.; Page, David L.; Holt, Jeffrey T.

    1994-09-01

    Histopathologic study of human breast biopsy samples has identified specific lesions which are associated with a high risk of development of invasive breast cancer. Presumably, these lesions (collectively termed premalignant breast disease) represent the earliest recognizable morphologic expression of fundamental molecular events that lead to the development of invasive breast cancer. To study molecular events underlying premalignant breast disease, we have developed a method for isolating RNA from histologically identified lesions from frozen human breast tissue. This method specifically obtains mRNA from breast epithelial cells and has identified three genes which are differentially expressed in premalignant breast epithelial lesions. One gene identified by this method is overexpressed in four of five noncomedo ductal carcinoma in situ lesions and appears to be the human homologue of the gene encoding the M2 subunit of ribonucleotide reductase, an enzyme involved in DNA synthesis.

  1. Cytotoxicity and Antineoplastic Activities of Alkylamines and Their Borane Derivatives

    PubMed Central

    Tse, Elaine Y.; Muhammad, Rosallah A.

    1996-01-01

    The alkylamines and their related boron derivatives demonstrated potent cytotoxicity against the growth of murine and human tissue cultured cells. These agents did not necessarily require the boron atom to possess potent cytotoxic action in certain tumor lines. Their ability to suppress tumor cell growth was based on their inhibition of DNA and protein syntheses. DNA synthesis was reduced because purine synthesis was blocked at the enzyme site of IMP dehydrogenase by the agents. In addition ribonucleotide reductase and nucleoside kinase activities were reduced by the agents which would account for the reduced d[NTP] pools. The DNA template or molecule may be a target of the drugs with regard to binding of the drug to nucleoside bases or intercalaction of the drug between DNA base pairs. Only some Of the agents caused DNA fragmentation with reduced DNA viscosity. These effects would contribute to overall cell death afforded by the agents. PMID:18472803

  2. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to themore » molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age, massive programmed cell death, and the release of transcriptional gene silencing. Our data suggests that plants can initiate programmed cell death to eliminate damaged cells despite the absence of p53 in plant genome.« less

  3. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  4. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  5. Crystallization of mitochondrial rhodoquinol-fumarate reductase from the parasitic nematode Ascaris suum with the specific inhibitor flutolanil

    PubMed Central

    Osanai, Arihiro; Harada, Shigeharu; Sakamoto, Kimitoshi; Shimizu, Hironari; Inaoka, Daniel Ken; Kita, Kiyoshi

    2009-01-01

    In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n-dodecyl-β-d-maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 123.75, b = 129.08, c = 221.12 Å, and diffracted to 2.8 Å resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120 kDa × 2) gives a crystal volume per protein mass (V M) of 3.6 Å3 Da−1. PMID:19724139

  6. Effects of supplementary folic acid and vitamin B(12) on hepatic metabolism of dairy cows according to methionine supply.

    PubMed

    Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Cardinault, N; Matte, J J; Desrochers, A; Girard, C L

    2010-05-01

    The present experiment was undertaken to study the interactions between dietary supplements of rumen-protected methionine (RPM) and intramuscular injections of folic acid and vitamin B(12), given from 3 wk before calving to 16 wk of lactation, on hepatic metabolism of lactating dairy cows. Sixty multiparous Holstein cows were assigned to 10 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply Met as 1.83% of metabolizable protein, whereas the 3 other cows were fed the same diet supplemented with 18g of RPM calculated to provide Met as 2.23% of metabolizable protein. Within each level of Met, the cows received no vitamin supplement or weekly intramuscular injections of 160mg of folic acid alone or combined with 10mg of vitamin B(12). Liver biopsies were taken at 2, 4, 8, and 16 wk of lactation. Liver concentrations of folates and vitamin B(12) were increased by their respective supplements but this response to vitamin supplements was altered by methionine supply. Concentrations of total lipids and triglycerides increased in livers of cows fed RPM, whereas concentrations of cholesterol ester, cholesterol, diglycerides, phosphatidylethanolamine, and phosphatidylcholine were not affected. Folic acid, alone or combined with vitamin B(12), tended to increase the ratio of phosphatidylcholine to phosphatidylethanolamine. Gene expression of 5,10-methylene-tetrahydrofolate reductase, microsomal transfer protein, and phosphatidylethanolamine methyltransferase were higher in liver of cows fed RPM supplements. The relative mRNA abundance of 5,10-methylene-tetrahydrofolate reductase and methylmalonyl-CoA mutase were increased by the combined injections of folic acid and vitamin B(12), whereas those of methionine synthase and methionine synthase reductase were not affected by treatments. These results suggest that increasing supply of methyl groups, as preformed labile methyl groups or through methylneogenesis, affected the methylation cycle but had a limited effect on dairy cow performance. The observed effects of the combined supplement of folic acid and vitamin B(12) on lactational performance of dairy cows probably result from an improvement of energy metabolism during early lactation. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The 2-Cys Peroxiredoxin Alkyl Hydroperoxide Reductase C Binds Heme and Participates in Its Intracellular Availability in Streptococcus agalactiae*

    PubMed Central

    Lechardeur, Delphine; Fernandez, Annabelle; Robert, Bruno; Gaudu, Philippe; Trieu-Cuot, Patrick; Lamberet, Gilles; Gruss, Alexandra

    2010-01-01

    Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a Kd of 0.5 μm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein. PMID:20332091

  8. Plasma homocysteine and vitamin B12 serum levels, red blood cell folate concentrations, C677T methylenetetrahydrofolate reductase gene mutation and risk of recurrent miscarriage: a case-control study in Spain.

    PubMed

    Creus, Montserrat; Deulofeu, Ramon; Peñarrubia, Joana; Carmona, Francisco; Balasch, Juan

    2013-03-01

    Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.

  9. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  10. Membrane remodeling, an early event in benzo[alpha]pyrene-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence

    2010-02-15

    Benzo[alpha]pyrene (B[alpha]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[alpha]P-induced apoptotic process. In this study, we report that B[alpha]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[alpha]P exposure. B[alpha]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[alpha]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[alpha]P-related H{submore » 2}O{sub 2} formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[alpha]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[alpha]P altered the composition of plasma membrane microstructures through AhR and H{sub 2}O{sub 2} dependent-regulation of lipid biosynthesis. In F258 cells, the B[alpha]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.« less

  11. Enhancement of DNA ligase I level by gemcitabine in human cancer cells.

    PubMed

    Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve

    2002-04-01

    DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of gemcitabine triphosphate into replicating DNA and inhibition of ribonucleotide reductase would trigger an increase in DNA ligase I levels in cancer cells. The elevated presence of DNA ligase I in S-phase-arrested cells leads us to speculate that DNA ligase I might have an important role in repairing DNA damage caused by stalled replication forks.

  12. Dissecting the role of NtrC and RpoN in the expression of assimilatory nitrate and nitrite reductases in Bradyrhizobium diazoefficiens.

    PubMed

    López, María F; Cabrera, Juan J; Salas, Ana; Delgado, María J; López-García, Silvina L

    2017-04-01

    Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ 54 , was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.

  13. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  14. Poliovirus RNA polymerase: in vitro enzymatic activities, fidelity of replication, and characterization of a temperature-sensitive RNA-negative mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, M.A.M.

    1985-01-01

    The in vitro activities of the purified poliovirus RNA polymerase were investigated in this study. The polymerase was shown to be a strict RNA dependent RNA polymerase. It only copied RNA templates but used either a DNA or RNA primer to initiate RNA synthesis. Partially purified polymerase has some DNA polymerase activities. Additional purification of the enzyme and studies with a mutant poliovirus RNA polymerase indicated that the DNA polymerase activities were due to a cellular polymerase. The fidelity of RNA replication in vitro by the purified poliovirus RNA polymerase was studied by measuring the rate of misincorporation of noncomplementarymore » ribonucleotide monophosphates on synthetic homopolymeric RNA templates. The results showed that the ratio of noncomplementary to complementary ribonucleotides incorporated was 1-5 x 10/sup -3/. The viral polymerase of a poliovirus temperature sensitive RNA-negative mutant, Ts 10, was isolated. This study confirmed that the mutant was viable 33/sup 0/, but was RNA negative at 39/sup 0/. Characterization of the Ts 10 polymerase showed it was significantly more sensitive to heat inactivation than was the old-type polymerase. Highly purified poliovirions were found to contain several noncapsid proteins. At least two of these proteins were labeled by (/sup 35/S)methionine infected cells and appeared to be virally encoded proteins. One of these proteins was immunoprecipitated by anti-3B/sup vpg/ antiserum. This protein had the approximate Mr = 50,000 and appeared to be one of the previously identified 3B/sup vpg/ precursor proteins.« less

  15. Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine®-Metal Complexes

    PubMed Central

    Antholine, William E.

    2013-01-01

    Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955

  16. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    PubMed Central

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-01-01

    Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C2221 and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å. PMID:17142919

  17. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21.

    PubMed

    Yousefi, Bahman; Rahmati, Mohammad; Ahmadi, Yasin

    2014-03-18

    Although the deregulated expression of p53R2, a p53-inducible protein and homologue of the R2 subunit of ribonucleotide reductase, has been detected in several human cancers, p53R2 roles in cancer progression and malignancy still remains controversial. In this article, we present a viable hypothesis about the roles of p53R2 in cancer progression and therapy resistance based on the roles of cytoplasmic p21 and mutant p53. Since p53R2 can up-regulate p21 and p21, it in turn has a dual role in cell cycle. Hence, p53R2 can play a dual role in cell cycle progression. In addition, because p53 is the main regulator of p53R2, the mutant p53 may induce the expression of p53R2 in some cancer cells based on the "keep of function" phenomenon. Therefore, depending on the locations of p21 and the new abilities of mutant p53, p53R2 has dual role in cell cycle progression. Since the DNA damaging therapies induce p53R2 expression through the induction of p53, p53R2 can be the main therapy resistance mediator in cancers with cytoplasmic p21. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Genomic and physical analysis of Rnr1-containing autophagosomes during environmental stress

    NASA Astrophysics Data System (ADS)

    Danon, Tamir

    The Ribonucleotide Reductase Complex (RNR), a tetramer composed of 2 large (Rnr1-Rnr1 or Rnr1-Rnr3) and 2 small (Rnr2-Rnr4) subunits, is a key regulatory node in cell growth because it controls the rate-limiting step in the synthesis of DNA. Using Green Fluorescent tagged proteins and high content imaging we show that only Rnr1-GFP will form 700-800 nm2 foci under normal growth conditions, with the number of foci increasing in response to environmental stress. Rnr1-GFP foci formation is dependent on functional autophagy pathway and we hypothesized that a key lysine residue only found in Rnr1 (K853) is used together with the post-translational modification acetylation to regulate Rnr1 targeting into the autophagosome. Using the genetically engineered mutants Rnr1-K853A-GFP and Rnr1-K853Q-GFP, which mimic constitutive de-acetylation and constitutive acetylation, respectively, we show that K853 is a key residue in Rnr1 for regulating foci size, basal levels and stress-induced numbers. Further, data from phenotypic studies support the idea that K853 is a key regulatory point for both the DNA damage and nutrient stress responses. Autophagy pathways are disrupted during cancer development and our mechanistic information provides insights into its control of the therapeutically important DNA damage response.

  19. The use of high field/frequency EPR in studies of radical and metal sites in proteins and small inorganic models

    NASA Astrophysics Data System (ADS)

    Andersson, K. Kristoffer; Barra, Anne-Laure

    2002-04-01

    Low temperature electron paramagnetic resonance (EPR) spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T have been used to study radicals and metal sites in proteins and small inorganic model complexes. We have studied radicals, Fe, Cu and Mn containing proteins. For S=1/2 systems, the high frequency method can resolve the g-value anisotropy. It was used in mouse ribonucleotide reductase (RNR) to show the presence of a hydrogen bond to the tyrosyl radical oxygen. At 285 GHz the type 2 Cu(II) signal in the complex enzyme laccase is clearly resolved from the Hg(II) containing laccase peroxide adduct. For simple metal sites, the systems over S=1/2 can be described by the spin Hamiltonian: HS= BgS+ D[ Sz2- S( S+1)/3+ E/ D ( Sx2- Sy2)]. From the high frequency EPR the D-value can be determined directly by, (I) shifts of geff for half-integer spin systems with large D-values as observed at 345 GHz on an Fe(II)NOEDTA complex, which is best described as S=3/2 system with D=11.5 cm -1, E=0.1 cm -1 and gx= gy= gz=2.0; (II) measuring the outermost signal, for systems with small D values, distant of (2 S-1)*∣ D∣ from the center of the spectrum as observed in S=5/2 Fe(III)EDTA. In Mn(II) substituted mouse RNR R2 protein the weakly interacting Mn(II) at X-band could be observed as decoupled Mn(II) at 285 GHz.

  20. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    PubMed

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  1. Structural Basis of Multifunctionality in a Vitamin B[subscript 12]-processing Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutmos, Markos; Gherasim, Carmen; Smith, Janet L.

    An early step in the intracellular processing of vitamin B{sub 12} involves CblC, which exhibits dual reactivity, catalyzing the reductive decyanation of cyanocobalamin (vitamin B{sub 12}), and the dealkylation of alkylcobalamins (e.g. methylcobalamin; MeCbl). Insights into how the CblC scaffold supports this chemical dichotomy have been unavailable despite it being the most common locus of patient mutations associated with inherited cobalamin disorders that manifest in both severe homocystinuria and methylmalonic aciduria. Herein, we report structures of human CblC, with and without bound MeCbl, which provide novel biochemical insights into its mechanism of action. Our results reveal that CblC is themore » most divergent member of the NADPH-dependent flavin reductase family and can use FMN or FAD as a prosthetic group to catalyze reductive decyanation. Furthermore, CblC is the first example of an enzyme with glutathione transferase activity that has a sequence and structure unrelated to the GST superfamily. CblC thus represents an example of evolutionary adaptation of a common structural platform to perform diverse chemistries. The CblC structure allows us to rationalize the biochemical basis of a number of pathological mutations associated with severe clinical phenotypes.« less

  2. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context

    PubMed Central

    Kim, Yong-Boum; Wacker, Anna; von Laer, Karl; Rogov, Vladimir V.; Suess, Beatrix

    2017-01-01

    Abstract The mfl-riboswitch is a transcriptional off-switch, which down-regulates expression of subunit β of ribonucleotide reductase in Mesoplasma florum upon 2΄-deoxyguanosine binding. We characterized binding of 2΄-deoxyguanosine to the mfl-aptamer domain (WT aptamer) and a sequence-stabilized aptamer (MT aptamer) under in vitro and ‘in-cell-like’ conditions by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) spectroscopy. ‘In-cell-like’ environment was simulated by Bacillus subtilis cell extract, in which both aptamers remained sufficiently stable to detect the resonances of structural elements and ligand binding in 2D NMR experiments. Under ‘in-cell-like’-environment, (i) the WT aptamer bound the endogenous metabolite guanosine and (ii) 2΄-deoxyguanosine efficiently displaced guanosine from the WT aptamer. In contrast, MT aptamer exhibited moderate binding to 2΄-deoxyguanosine and weak binding to guanosine. NMR experiments indicated that binding of guanosine was not limited to the aptamer domain of the riboswitch but also the full-length mfl-riboswitch bound guanosine, impacting on the regulation efficiency of the riboswitch and hinting that, in addition to 2΄-deoxyguanosine, guanosine plays a role in riboswitch function in vivo. Reporter gene assays in B. subtilis demonstrated the regulation capacity of the WT aptamer, whereas the MT aptamer with lower affinity to 2΄-deoxyguanosine was not able to regulate gene expression. PMID:28115631

  3. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.

    PubMed

    Ono, S; Hirano, H

    1984-04-01

    We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.

  4. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions.

    PubMed

    Colangelo-Lillis, Jesse R; Deming, Jody W

    2013-01-01

    The 104 kb genome of cold-active bacteriophage 9A, which replicates in the marine psychrophilic gamma-proteobacterium Colwellia psychrerythraea strain 34H (between -12 and 8 °C), was sequenced and analyzed to investigate elements of molecular adaptation to low temperature and phage-host interactions in the cold. Most characterized ORFs indicated closest similarity to gamma-proteobacteria and their phages, though no single module provided definitive phylogenetic grouping. A subset of primary structural features linked to psychrophily suggested that the majority of annotated phage proteins were not psychrophilic; those that were, primarily serve phage-specific functions and may also contribute to 9A's restricted temperature range for replication as compared to host. Comparative analyses suggest ribonucleotide reductase genes were acquired laterally from host. Neither restriction modification nor the CRISPR-Cas system appeared to be the predominant phage defense mechanism of Cp34H or other cold-adapted bacteria; we hypothesize that psychrophilic hosts rely more on the use of extracellular polymeric material to block cell surface receptors recognized by phages. The relative dearth of evidence for genome-specific defenses, genetic transfer events or auxiliary metabolic genes suggest that the 9A-Cp34H system may be less tightly coupled than are other genomically characterized marine phage-host systems, with possible implications for phage specificity under different environmental conditions.

  5. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Gustafsson, Tomas N; Osman, Harer; Werngren, Jim; Hoffner, Sven; Engman, Lars; Holmgren, Arne

    2016-06-01

    Bacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms. We studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis. The most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier. These results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development. We have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  7. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    PubMed

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    PubMed

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.

  9. Selenite reduction by the thioredoxin system: kinetics and identification of protein-bound selenide.

    PubMed

    Tamura, Takashi; Sato, Kumi; Komori, Kentaro; Imai, Takeshi; Kuwahara, Mitsuhiko; Okugochi, Takahiro; Mihara, Hisaaki; Esaki, Nobuyoshi; Inagaki, Kenji

    2011-01-01

    Selenite (SeO(3)(2-)) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using (75)Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).

  10. Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

    PubMed

    Martin, Hans-Jörg; Breyer-Pfaff, Ursula; Wsol, Vladimir; Venz, Simone; Block, Simone; Maser, Edmund

    2006-03-01

    Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon gel filtration and SDS-polyacrylamide gel electrophoresis. Kinetic parameters for the NADPH-dependent reduction of the antiemetic 5-HT3 receptor antagonist dolasetron, the antitumor drugs daunorubicin and oracin, and the carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) to the corresponding alcohols have been determined by HPLC. Km values ranged between 0.06 mM for dolasetron and 1.1 mM for daunorubicin. Enzymatic efficiencies calculated as kcat/Km were more than 100 mM-1 min-1 for dolasetron and 1.3, 0.43, and 0.47 mM-1 min-1 for daunorubicin, oracin, and NNK, respectively. Thus, AKR1B10 is one of the most significant reductases in the activation of dolasetron. In addition to its reducing activity, AKR1B10 catalyzed the NADP+-dependent oxidation of the secondary alcohol (S)-1-indanol to 1-indanone with high enzymatic efficiency (kcat/Km=112 mM-1 min-1). The gene encoding AKR1B10 was cloned from a human liver cDNA library and the recombinant enzyme was purified. Kinetic studies revealed lower activity of the recombinant compared with the native form. Immunoblot studies indicated large interindividual variations in the expression of AKR1B10 in human liver. Since carbonyl reduction of xenobiotics often leads to their inactivation, AKR1B10 may play a role in the occurrence of chemoresistance of tumors toward carbonyl group-bearing cytostatic drugs.

  11. Genome of Horsepox Virus

    PubMed Central

    Tulman, E. R.; Delhon, G.; Afonso, C. L.; Lu, Z.; Zsak, L.; Sandybaev, N. T.; Kerembekova, U. Z.; Zaitsev, V. L.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses. PMID:16940536

  12. Prevalence of metilentetrahidrofolate reductase C677T polymorphism, consumption of vitamins B6, B9, B12 and determination of lipidic hydroperoxides in obese and normal weight Mexican population.

    PubMed

    Hernández-Guerrero, César; Romo-Palafox, Inés; Díaz-Gutiérrez, Mary Carmen; Iturbe-García, Mariana; Texcahua-Salazar, Alejandra; Pérez-Lizaur, Ana Bertha

    2013-11-01

    Oxidative stress is a key factor in the development of the principal comorbidities of obesity. Methylenetetrahydrofolate reductase enzyme (MTHFR) participates in the metabolism of folate with the action of vitamins B6 and B12. The gene of MTHFR may present a single nucleotide polymorphism (SNP) at position 677 (C677T), which can promote homocysteinemia associated to the production of free radicals. To determine the frequency of SNP C677T of the MTHFR, evaluate the consumption of vitamins B6, B9, B12 and determine the concentration of plasma lipid hydroperoxides (LOOH) in obese and control groups. 128 Mexican mestizo according to their body mass index were classified as normal weight (Nw; n=75) and obesity (ObeI-III; n=53). Identification of SNP C677T of MTHFR was performed by PCR-RFLP technic. The consumption of vitamins B6, B9 and B12 was assessed by a validate survey. LOOH was determined as an indicator of peripheral oxidative stress. There was no statistical difference in the frequency of the C677T polymorphism between the TT homozygous genotype in Nw (0.19) and ObeI-III (0.25). The frequency of T allele in Nw was 0.45 and 0.51 in ObI-III group. There were no statistical differences in the consumption of vitamins B6, B9 and B12 between Nw and ObI-III groups. The LOOH showed statistical difference (p < 0.05) between Nw and ObI–III group. Oxidative stress is present in all grades of obesity although there were no differences in the vitamin consumption and the SNP C677T between Nw and ObeI–III groups. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  13. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  14. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  15. Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli▿

    PubMed Central

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-01-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the β clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25°C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25°C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42°C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25°C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25°C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway. PMID:18502852

  16. Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli.

    PubMed

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-08-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.

  17. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates.

    PubMed

    Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva

    2003-07-04

    Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.

  18. OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation1

    PubMed Central

    Wang, Tao; Tang, Zhong; Wu, Zhongchang; Salt, David E.; Chao, Dai-Yin

    2016-01-01

    Rice is a major dietary source of the toxic metalloid arsenic (As). Reducing its accumulation in rice (Oryza sativa) grain is of critical importance to food safety. Rice roots take up arsenate and arsenite depending on the prevailing soil conditions. The first step of arsenate detoxification is its reduction to arsenite, but the enzyme(s) catalyzing this reaction in rice remains unknown. Here, we identify OsHAC1;1 and OsHAC1;2 as arsenate reductases in rice. OsHAC1;1 and OsHAC1;2 are able to complement an Escherichia coli mutant lacking the endogenous arsenate reductase and to reduce arsenate to arsenite. OsHAC1:1 and OsHAC1;2 are predominantly expressed in roots, with OsHAC1;1 being abundant in the epidermis, root hairs, and pericycle cells while OsHAC1;2 is abundant in the epidermis, outer layers of cortex, and endodermis cells. Expression of the two genes was induced by arsenate exposure. Knocking out OsHAC1;1 or OsHAC1;2 decreased the reduction of arsenate to arsenite in roots, reducing arsenite efflux to the external medium. Loss of arsenite efflux was also associated with increased As accumulation in shoots. Greater effects were observed in a double mutant of the two genes. In contrast, overexpression of either OsHAC1;1 or OsHAC1;2 increased arsenite efflux, reduced As accumulation, and enhanced arsenate tolerance. When grown under aerobic soil conditions, overexpression of either OsHAC1;1 or OsHAC1;2 also decreased As accumulation in rice grain, whereas grain As increased in the knockout mutants. We conclude that OsHAC1;1 and OsHAC1;2 are arsenate reductases that play an important role in restricting As accumulation in rice shoots and grain. PMID:27702843

  19. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol.

    PubMed

    Smeriglio, Antonella; Giofrè, Salvatore V; Galati, Enza M; Monforte, Maria T; Cicero, Nicola; D'Angelo, Valeria; Grassi, Gianpaolo; Circosta, Clara

    2018-02-07

    Aldose reductase (ALR2) is a key enzyme involved in diabetic complications and the search for new aldose reductase inhibitors (ARIs) is currently very important. The synthetic ARIs are often associated with deleterious side effects and medicinal and edible plants, containing compounds with aldose reductase inhibitory activity, could be useful for prevention and therapy of diabetic complications. Non-psychotropic phytocannabinoids exert multiple pharmacological effects with therapeutic potential in many diseases such as inflammation, cancer, diabetes. Here, we have investigated the inhibitory effects of extracts and their fractions from two Cannabis sativa L. chemotypes with high content of cannabidiol (CBD)/cannabidiolic acid (CBDA) and cannabigerol (CBG)/cannabigerolic acid (CBGA), respectively, on human recombinant and pig kidney aldose reductase activity in vitro. A molecular docking study was performed to evaluate the interaction of these cannabinoids with the active site of ALR2 compared to known ARIs. The extracts showed significant dose-dependent aldose reductase inhibitory activity (>70%) and higher than fractions. The inhibitory activity of the fractions was greater for acidic cannabinoid-rich fractions. Comparative molecular docking results have shown a higher stability of the ALR2-cannabinoid acids complex than the other inhibitors. The extracts of Cannabis with high content of non-psychotropic cannabinoids CBD/CBDA or CBG/CBGA significantly inhibit aldose reductase activity. These results may have some relevance for the possible use of C. sativa chemotypes based preparations as aldose reductase inhibitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Drop-on-Demand Sample Delivery for Studying Biocatalysts in Action at XFELs

    PubMed Central

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; Burgie, Ernest S.; Young, Iris D.; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S.; Michels-Clark, Tara; Clinger, Jonathan A.; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J.; Zhang, Miao; Stan, Claudiu A.; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D.; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G.; Allaire, Marc; Sierra, Raymond G.; Docker, Peter T.; Glownia, James M.; Nelson, Silke; Koglin, Jason E.; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K.; Bollinger, J. Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N.; Vierstra, Richard D.; Sauter, Nicholas K.; Orville, Allen M.; Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2017-01-01

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. Implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method. PMID:28250468

  1. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers.

    PubMed

    Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira; Burgie, E Sethe; Young, Iris D; Lebrette, Hugo; Srinivas, Vivek; Brewster, Aaron S; Michels-Clark, Tara; Clinger, Jonathan A; Andi, Babak; Ibrahim, Mohamed; Pastor, Ernest; de Lichtenberg, Casper; Hussein, Rana; Pollock, Christopher J; Zhang, Miao; Stan, Claudiu A; Kroll, Thomas; Fransson, Thomas; Weninger, Clemens; Kubin, Markus; Aller, Pierre; Lassalle, Louise; Bräuer, Philipp; Miller, Mitchell D; Amin, Muhamed; Koroidov, Sergey; Roessler, Christian G; Allaire, Marc; Sierra, Raymond G; Docker, Peter T; Glownia, James M; Nelson, Silke; Koglin, Jason E; Zhu, Diling; Chollet, Matthieu; Song, Sanghoon; Lemke, Henrik; Liang, Mengning; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Boal, Amie K; Bollinger, J Martin; Krebs, Carsten; Högbom, Martin; Phillips, George N; Vierstra, Richard D; Sauter, Nicholas K; Orville, Allen M; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2017-04-01

    X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.

  2. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast

    PubMed Central

    Liu, Xianpeng; Lee, Yong Joo; Liou, Liang-Chun; Ren, Qun; Zhang, Zhaojie; Wang, Shaoxiao; Witt, Stephan N.

    2011-01-01

    Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2–7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2–10 or 96–140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein. PMID:21642386

  3. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

    DOE PAGES

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira; ...

    2017-02-27

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less

  4. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability.

    PubMed

    Kontou, Maria; Adelfalk, Caroline; Ramirez, Maria Helena; Ruppitsch, Werner; Hirsch-Kauffmann, Monica; Schweiger, Manfred

    2002-04-04

    The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for spontaneous instability. However, both are eliminated by overexpression of thioredoxin cDNA with an added nuclear localization signal. This implies that thioredoxin is lacking in the nuclei of FA cells. The total thioredoxin content in all FA cells tested is reduced. The resultant lack of nuclear thioredoxin can be the explanation for the major symptomatology in FA. Since thioredoxin is known to be the reactive cofactor of ribonucleotid reductase its shortcoming reduces the supply of deoxyribonucleotides thus hindering the DNA and replication repair with resultant chromosomal breaks. Furthermore, depression of tyrosine hydroxylase, the key enzyme of melanine synthesis, could be the basis for the pathognomotic 'café au lait' spots of FA. The observation of thioredoxin reduction in FA cells permits insight into the molecular phathophysiology of FA.

  5. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  6. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Franklin D.; Gul, Sheraz; Chatterjee, Ruchira

    X-ray crystallography at X-ray free-electron laser (XFEL) sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy (XES), both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing new insights into the interplay between the protein structure/dynamics and chemistry at an active site. However, implementing such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly impacts the data quality. We present here a new, robust way of delivering controlled sample amountsmore » on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.« less

  7. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    PubMed

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  8. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.

    PubMed

    Zhao, Xianxian; Tang, Juan; Wang, Xu; Yang, Ruoheng; Zhang, Xiaoping; Gu, Yunfu; Li, Xi; Ma, Menggen

    2015-05-01

    Furfural and 5-hydroxymethylfurfural (HMF) are the two main aldehyde compounds derived from pentoses and hexoses, respectively, during lignocellulosic biomass pretreatment. These two compounds inhibit microbial growth and interfere with subsequent alcohol fermentation. Saccharomyces cerevisiae has the in situ ability to detoxify furfural and HMF to the less toxic 2-furanmethanol (FM) and furan-2,5-dimethanol (FDM), respectively. Herein, we report that an uncharacterized gene, YNL134C, was highly up-regulated under furfural or HMF stress and Yap1p and Msn2/4p transcription factors likely controlled its up-regulated expression. Enzyme activity assays showed that YNL134C is an NADH-dependent aldehyde reductase, which plays a role in detoxification of furfural to FM. However, no NADH- or NADPH-dependent enzyme activity was observed for detoxification of HMF to FDM. This enzyme did not catalyse the reverse reaction of FM to furfural or FDM to HMF. Further studies showed that YNL134C is a broad-substrate aldehyde reductase, which can reduce multiple aldehydes to their corresponding alcohols. Although YNL134C is grouped into the quinone oxidoreductase family, no quinone reductase activity was observed using 1,2-naphthoquinone or 9,10-phenanthrenequinone as a substrate, and phylogenetic analysis indicates that it is genetically distant to quinone reductases. Proteins similar to YNL134C in sequence from S. cerevisiae and other microorganisms were phylogenetically analysed. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  10. In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide.

    PubMed

    Silva, Mariana Barros de Cerqueira E; Souza, Caio Alexandre da Cruz; Philadelpho, Biane Oliveira; Cunha, Mariana Mota Novais da; Batista, Fabiana Pacheco Reis; Silva, Jaff Ribeiro da; Druzian, Janice Izabel; Castilho, Marcelo Santos; Cilli, Eduardo Maffud; Ferreira, Ederlan S

    2018-09-01

    Previous studies have shown that cowpea protein positively interferes with cholesterol metabolism. In this study, we evaluated the ability of the fraction containing peptides of <3 kDa, as well as that of the Gln-Asp-Phe (QDF) peptide, derived from cowpea β-vignin protein, to inhibit HMG-CoA reductase activity. We established isolation and chromatography procedures to effectively obtain the protein with a purity above 95%. In silico predictions were performed to identify peptide sequences capable of interacting with HMG-CoA reductase. In vitro experiments showed that the fraction containing peptides of <3 kDa displayed inhibition of HMG-CoA reductase activity. The tripeptide QDF inhibits HMG-CoA reductase (IC 50  = 12.8 μM) in a dose-dependent manner. Furthermore, in silico studies revealed the binding profile of the QDF peptide and hinted at the molecular interactions that are responsible for its activity. Therefore, this study shows, for the first time, a peptide from cowpea β-vignin protein that inhibits HMG-CoA reductase and the chemical modifications that should be investigated to evaluate its binding profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase.

    PubMed

    Jang, Dae Sik; Park, Eun Jung; Hawthorne, Michael E; Vigo, Jose Schunke; Graham, James G; Cabieses, Fernando; Santarsiero, Bernard D; Mesecar, Andrew D; Fong, Harry H S; Mehta, Rajendra G; Pezzuto, John M; Kinghorn, A Douglas

    2002-10-23

    A new bicyclic diarylheptanoid, rel-(3S,4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphtho[2,1-b]pyran (1), as well as four known compounds, 1,2-dihydro-1,2,3-trihydroxy-9-(4-methoxyphenyl)phenalene (2), hydroxyanigorufone (3), 2-(4-hydroxyphenyl)naphthalic anhydride (4), and 1,7-bis(4-hydroxyphenyl)hepta-4(E),6(E)-dien-3-one (5), were isolated from an ethyl acetate-soluble fraction of the methanol extract of the fruits of Musa x paradisiaca cultivar, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa1c1c7 mouse hepatoma cells to monitor chromatographic fractionation. The structure and relative stereochemistry of compound 1 were elucidated unambiguously by one- and two-dimensional NMR experiments ((1)H NMR, (13)C NMR, DEPT, COSY, HMQC, HMBC, and NOESY) and single-crystal X-ray diffraction analysis. Isolates 1-5 were evaluated for their potential cancer chemopreventive properties utilizing an in vitro assay to determine quinone reductase induction and a mouse mammary organ culture assay.

  12. Measuring the Levels of Ribonucleotides Embedded in Genomic DNA.

    PubMed

    Meroni, Alice; Nava, Giulia M; Sertic, Sarah; Plevani, Paolo; Muzi-Falconi, Marco; Lazzaro, Federico

    2018-01-01

    Ribonucleotides (rNTPs) are incorporated into genomic DNA at a relatively high frequency during replication. They have beneficial effects but, if not removed from the chromosomes, increase genomic instability. Here, we describe a fast method to easily estimate the amounts of embedded ribonucleotides into the genome. The protocol described is performed in Saccharomyces cerevisiae and allows us to quantify altered levels of rNMPs due to different mutations in the replicative polymerase ε. However, this protocol can be easily applied to cells derived from any organism.

  13. Properties of an unusual DNA primase from an archaeal plasmid

    PubMed Central

    Beck, Kirsten; Lipps, Georg

    2007-01-01

    Primases are specialized DNA-dependent RNA polymerases that synthesize a short oligoribonucleotide complementary to single-stranded template DNA. In the context of cellular DNA replication, primases are indispensable since DNA polymerases are not able to start DNA polymerization de novo. The primase activity of the replication protein from the archaeal plasmid pRN1 synthesizes a rather unusual mixed primer consisting of a single ribonucleotide at the 5′ end followed by seven deoxynucleotides. Ribonucleotides and deoxynucleotides are strictly required at the respective positions within the primer. Furthermore, in contrast to other archaeo-eukaryotic primases, the primase activity is highly sequence-specific and requires the trinucleotide motif GTG in the template. Primer synthesis starts outside of the recognition motif, immediately 5′ to the recognition motif. The fidelity of the primase synthesis is high, as non-complementary bases are not incorporated into the primer. PMID:17709343

  14. Characterization of integron-mediated antimicrobial resistance among Escherichia coli strains isolated from a captive population of Amur tigers in China.

    PubMed

    Xue, Yuan; Chen, Jianfei; Wang, Yulong; Zhang, Yanlong; Liu, Dan; Hua, Yuping

    2013-12-01

    The present study was undertaken to identify and characterize integrons and integrated resistance gene cassettes among multidrug resistant Escherichia coli isolates from a captive population of Amur tigers (Panthera tigris altaica) in China. In addition, the prevalence of antimicrobial resistance and class I integrons was assessed in E. coli strains (n = 61) isolated from a captive population of Amur tigers in Heilongjiang Amur Tiger Park, China. Among the isolates, 52.46% (32 of 61) were positive for intI1, but no isolates carried intI2 or intI3. Most isolates were susceptible to amoxicillin/clavulanic acid, aztreonam, and polymyxin B, while they also exhibited high incidence rates of resistance to ampicillin, doxycycline, chloramphenicol, tetracycline, and dihydrofolate reductase. Sequencing analysis revealed three gene cassettes, which encoded resistance to dihydrofolate reductase (dfrA15), dihydrofolate reductase (dfrA12), and adenyltransferase (aadA2). The gene cassette arrays dfrA15 (31%) and dfrA12-aadA2 (19%) were most prevalent among these isolates.

  15. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  16. Retrospective approach to methylenetetrahydrofolate reductase mutations in children.

    PubMed

    Özer, Işıl; Özçetin, Mustafa; Karaer, Hatice; Kurt, Semiha G; Şahin, Şemsettin

    2011-07-01

    Methylenetetrahydrofolate reductase reduces methyltetrahydrofolate, a cosubstrate in the remethylation of homocysteine, from methylenetetrahydrofolate. Congenital defects, hematologic tumors, and intrauterine growth retardation can occur during childhood. This study evaluated clinical and laboratory treatment approaches in children diagnosed with methylenetetrahydrofolate reductase mutations. Our group included 23 boys and 14 girls, aged 103.4 ± 70.8 months S.D. Clinical findings of patients and homocysteine, vitamin B12, folate, hemogram, electroencephalography, cranial magnetic resonance imaging, and echocardiography data were evaluated in terms of treatment approach. Our patients' findings included vitamin B12 at 400.4 ± 224.6 pg/mL S.D. (normal range, 300-700 pg/mL), folate at 10.1 ± 4.5 ng/mL S.D. (normal range, 1.8-9 ng/mL), and homocysteine at 8.4 ± 4.7 μmol/L S.D. (normal range, 5.5-17 μmol/L). Eighty-eight percent of patients demonstrated clinical findings. In comparisons involving categorical variables between groups, χ(2) tests were used. No relationship was evident between mutation type, laboratory data, and clinical severity. All mothers who had MTHFR mutations and had babies with sacral dimples had taken folate supplements during pregnancy. To avoid the risk of neural tube defects, pregnant women with a MTHFR mutation may require higher than normally recommended doses of folic acid supplementation for optimum health. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae.

    PubMed Central

    Schlesinger, M B; Formosa, T

    2000-01-01

    Spt16 and Pob3 form stable heterodimers in Saccharomyces cerevisiae, and homologous proteins have also been purified as complexes from diverse eukaryotes. This conserved factor has been implicated in both transcription and replication and may affect both by altering the characteristics of chromatin. Here we describe the isolation and properties of a set of pob3 mutants and confirm that they have defects in both replication and transcription. Mutation of POB3 caused the Spt(-) phenotype, spt16 and pob3 alleles displayed severe synthetic defects, and elevated levels of Pob3 suppressed some spt16 phenotypes. These results are consistent with previous reports that Spt16 and Pob3 act in a complex that modulates transcription. Additional genetic interactions were observed between pob3 mutations and the genes encoding several DNA replication factors, including POL1, CTF4, DNA2, and CHL12. pob3 alleles caused sensitivity to the ribonucleotide reductase inhibitor hydroxyurea, indicating a defect in a process requiring rapid dNTP synthesis. Mutation of the S phase checkpoint gene MEC1 caused pob3 mutants to lose viability rapidly under restrictive conditions, revealing defects in a process monitored by Mec1. Direct examination of DNA contents by flow cytometry showed that S phase onset and progression were delayed when POB3 was mutated. We conclude that Pob3 is required for normal replication as well as for transcription. PMID:10924459

  18. Unravelling the reduction pathway as alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum.

    PubMed

    Santamaría, Laura; Reverón, Inés; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2018-05-18

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in plant-food fermentations where hydroxycinnamic acids are abundant. L. plantarum efficiently decarboxylates these compounds, and also reduces them, yielding substituted phenylpropionic acids. Although the reduction step is known to be induced by a hydroxycinnamic acid, the enzymatic machinery responsible for this reduction pathway has not been yet identified and characterized. A previous study on the transcriptomic response of L. plantarum to p -coumaric acid revealed a marked induction of two contiguous genes lp_1424 and lp_1425, encoding putative reductases. In this work, disruption of these genes abolished the hydroxycinnamate reductase activity of L. plantarum, supporting their involvement in such chemical activity. Functional in vitro studies reveal that Lp_1425 (HcrB) exhibits hydroxycinnamate reductase activity but was unstable in solution. In contrast, Lp_1424 (HcrA) was inactive but showed high stability. When the hcrAB genes were co-overexpressed, formation of an active heterodimer (HcrAB) was observed. Since L. plantarum reductase activity was only observed on hydroxycinnamic acids ( o -coumaric, m -coumaric, p -coumaric, caffeic, ferulic, and sinapic acids), the presence of a hydroxyl group substituent on the benzene ring appears to be required for activity. In addition, hydroxycinnamate reductase activity was not widely present among lactic acid bacteria, and it was associated to the presence of hcrAB genes. This study revealed that L. plantarum hydroxycinnamate reductase is a heterodimeric NADH-dependent coumarate reductase acting on a carbon-carbon double bond. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables where hydroxycinnamic acids are present. The bacterial metabolism on these compounds during fermentation plays a fundamental role on the biological activity of hydroxycinnamates. L. plantarum strains exhibit an as yet unknown reducing activity, transforming hydroxycinnamates to substituted phenylpropionic acids, which possess higher antioxidant activity that their precursors. The protein machinery involved in hydroxycinnamate reduction, HcrAB, was genetically identified and characterized. The heterodimeric NADH-dependent coumarate reductase HcrAB described in this work provides new insights on the L. plantarum metabolic response to counteract the stressful conditions generated by food phenolics. Copyright © 2018 American Society for Microbiology.

  19. A systematic review of p53 regulation of oxidative stress in skeletal muscle.

    PubMed

    Beyfuss, Kaitlyn; Hood, David A

    2018-12-01

    p53 is a tumor suppressor protein involved in regulating a wide array of signaling pathways. The role of p53 in the cell is determined by the type of imposed oxidative stress, its intensity and duration. The last decade of research has unravelled a dual nature in the function of p53 in mediating the oxidative stress burden. However, this is dependent on the specific properties of the applied stress and thus requires further analysis. A systematic review was performed following an electronic search of Pubmed, Google Scholar, and ScienceDirect databases. Articles published in the English language between January 1, 1990 and March 1, 2017 were identified and isolated based on the analysis of p53 in skeletal muscle in both animal and cell culture models. Literature was categorized according to the modality of imposed oxidative stress including exercise, diet modification, exogenous oxidizing agents, tissue manipulation, irradiation, and hypoxia. With low to moderate levels of oxidative stress, p53 is involved in activating pathways that increase time for cell repair, such as cell cycle arrest and autophagy, to enhance cell survival. However, with greater levels of stress intensity and duration, such as with irradiation, hypoxia, and oxidizing agents, the role of p53 switches to facilitate increased cellular stress levels by initiating DNA fragmentation to induce apoptosis, thereby preventing aberrant cell proliferation. Current evidence confirms that p53 acts as a threshold regulator of cellular homeostasis. Therefore, within each modality, the intensity and duration are parameters of the oxidative stressor that must be analyzed to determine the role p53 plays in regulating signaling pathways to maintain cellular health and function in skeletal muscle. Acadl: acyl-CoA dehydrogenase, long chain; Acadm: acyl-CoA dehydrogenase, C-4 to C-12 straight chain; AIF: apoptosis-inducing factor; Akt: protein kinase B (PKB); AMPK: AMP-activated protein kinase; ATF-4: activating transcription factor 4; ATM: ATM serine/threonine kinase; Bax: BCL2 associated X, apoptosis regulator; Bcl-2: B cell Leukemia/Lymphoma 2 apoptosis regulator; Bhlhe40: basic helix-loop-helix family member e40; BH3: Borane; Bim: bcl-2 interacting mediator of cell death; Bok: Bcl-2 related ovarian killer; COX-IV: cytochrome c oxidase IV; cGMP: Cyclic guanosine monophosphate; c-myc: proto-oncogene protein; Cpt1b: carnitine palmitoyltransferase 1B; Dr5: death receptor 5; eNOS: endothelial nitric oxide synthase; ERK: extracellular regulated MAP kinase; Fas: Fas Cell surface death receptor; FDXR: Ferredoxin Reductase; FOXO3a: forkhead box O3; Gadd45a: growth arrest and DNA damage-inducible 45 alpha; GLS2: glutaminase 2; GLUT 1 and 4: glucose transporter 1(endothelial) and 4 (skeletal muscle); GSH: Glutathione; Hes1: hes family bHLH transcription factor 1; Hey1: hes related family bHLH transcription factor with YRPW motif 1; HIFI-α: hypoxia-inducible factor 1, α-subunit; HK2: Hexokinase 2; HSP70: Heat Shock Protein 70; H 2 O 2 : Hydrogen Peroxide; Id2: inhibitor of DNA-binding 2; IGF-1-BP3: Insulin-like growth factor binding protein 3; IL-1β: Interleukin 1 beta; iNOS: inducible nitric oxide synthase; IRS-1: Insulin receptor substrate 1; JNK: c-Jun N-terminal kinases; LY-83583: 6-anilino-5,8-quinolinedione; inhibitor of soluble guanylate cyclase and of cGMP production; Mdm 2/ 4: Mouse double minute 2 homolog (mouse) Mdm4 (humans); mtDNA: mitochondrial DNA; MURF1: Muscle RING-finger protein-1; MyoD: Myogenic differentiation 1; MyoG: myogenin; Nanog: Nanog homeobox; NF-kB: Nuclear factor-κB; NO: nitric oxide; NoxA: phorbol-12-myristate-13-acetate-induced protein 1 (Pmaip1); NRF-1: nuclear respiratory factor 1; Nrf2: Nuclear factor erythroid 2-related factor 2; P21: Cdkn1a cyclin-dependent kinase inhibitor 1A (P21); P38 MAPK: mitogen-activated protein kinases; p53R2: p53 inducible ribonucleotide reductase gene; P66Shc: src homology 2 domain-containing transforming protein C1; PERP: p53 apoptosis effector related to PMP-22; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PGM: phosphoglucomutase; PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase; PKCβ: protein kinase c beta; PTEN: phosphatase and tensin homolog; PTIO: 2-phenyl-4, 4, 5, 5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) has been used as a nitric oxide (NO) scavenger; Puma: The p53 upregulated modulator of apoptosis; PW1: paternally expressed 3 (Peg3); RNS: Reactive nitrogen species; SIRT1: sirtuin 1; SCO2: cytochrome c oxidase assembly protein; SOD2: superoxide dismutase 2; Tfam: transcription factor A mitochondrial; TIGAR: Trp53 induced glycolysis repulatory phosphatase; TNF-a: tumor necrosis factor a; TRAF2: TNF receptor associated factor 2; TRAIL: type II transmembrane protein.

  20. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA.

    PubMed

    Heiss, Elke; Gerhäuser, Clarissa

    2005-01-01

    The chemopreventive agent sulforaphane (SFN) exerts anti-inflammatory activity by thiol-dependent inhibition of nuclear factor kappaB (NF-kappaB) DNA binding. To further analyze the underlying mechanisms, we focused on the thioredoxin/thioredoxin reductase (TrxR) system as a key redox mechanism regulating NF-kappaB DNA binding. Using cultured Raw 264.7 mouse macrophages as a model, 1-chloro-2,4-dinitrobenzene (CDNB), a known inhibitor of TrxR, was identified as an inhibitor of lipopolysaccharide (LPS)-mediated nitric oxide (NO) production and of NF-kappaB DNA binding. CDNB and SFN acted synergistically with respect to inhibition of LPS-induced NO release, and we consequently identified SFN as a novel inhibitor of TrxR enzymatic activity in vitro. Short-term treatment of Raw macrophages with SFN or CDNB resulted in the inhibition of TrxR activity in vivo with half-maximal inhibitory concentration of 25.0 +/- 3.5 microM and 9.4 +/- 3.7 microM, respectively, whereas after a 24-h treatment with 25 microM SFN, TrxR activity was >1.5-fold elevated. In additional experiments, we could exclude that inhibition of trans-activating activity of NF-kappaB contributed to the reduced expression of pro-inflammatory proteins by SFN, based on transient transfection experiments with a (kappaB)(2)- chloramphenicol acetyltransferase construct and a lack of inhibition of protein kinase A activity. These findings further emphasize the importance of redox modulation or thiol reactivity for the regulation of NF-kappaB-dependent transcription by SFN. Antioxid. Redox Signal. 7, 1601-1611. Antioxid. Redox Signal. 7, 1601-1611.

  1. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification.

    PubMed

    Wang, Wei; Kinkel, Traci; Martens-Habbena, Willm; Stahl, David A; Fang, Ferric C; Hansen, Eric J

    2011-06-01

    Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.

  2. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    PubMed

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  3. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase and thioredoxin reductase in T. solium, as has been described for very few other platyhelminths. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase†

    PubMed Central

    Brown, Jessica A.; Fowler, Jason D.; Suo, Zucai

    2010-01-01

    Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10-5) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogs, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation of the 2′-substituent of a ribonucleotide. PMID:20518555

  5. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.

    PubMed

    Takahashi, Takayuki; Okuno, Masaaki; Okamoto, Tadashi; Kishi, Takeo

    2008-01-01

    We purified an NADPH-dependent coenzyme Q reductase (NADPH-CoQ reductase) in rat liver cytosol and compared its enzymatic properties with those of the other CoQ10 reductases such as NADPH: quinone acceptor oxidoreductase 1 (NQO1), lipoamide dehydrogenase, thioredoxine reductase and glutathione reductase. NADPH-CoQ reductase was the only enzyme that preferred NADPH to NADH as an electron donor and was also different from the other CoQ10 reductases in the sensitivities to its inhibitors and stimulators. Especially, Zn2+ was the most powerful inhibitor for NADPH-CoQ reductase, but CoQ10 reduction by the other CoQ10 reductases could not be inhibited by Zn2+. Furthermore, the reduction of the CoQ9 incorporated into HeLa cells was also inhibited by Zn2+ in the presence of pyrithione, a zinc ionophore. Moreover, NQO1 gene silencing in HeLa cells by transfection of a small interfering RNA resulted in lowering of both the NQO1 protein level and the NQO1 activity by about 75%. However, this transfection did not affect the NADPH-CoQ reductase activity and the reduction of CoQ9 incorporated into the cells. These results suggest that the NADPH-CoQ reductase located in cytosol may be the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.

  6. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    PubMed

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  7. Litsea japonica Extract Inhibits Aldose Reductase Activity and Hyperglycemia-Induced Lenticular Sorbitol Accumulation in db/db Mice.

    PubMed

    Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook

    2015-01-01

    Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity.

  8. Litsea japonica Extract Inhibits Aldose Reductase Activity and Hyperglycemia-Induced Lenticular Sorbitol Accumulation in db/db Mice

    PubMed Central

    Kim, Junghyun; Kim, Chan-Sik; Sohn, Eunjin; Lee, Yun Mi; Jo, Kyuhyung; Kim, Jin Sook

    2015-01-01

    Aldose reductase (AR) is the first and rate-limiting enzyme of the polyol pathway. AR-dependent synthesis of excess polyols leads to lens opacification in diabetic cataract. The purpose of this study is to investigate the protective effect of Litsea japonica extract (LJE) on diabetes-induced lens opacification and its protective mechanism in db/db mice. Seven-week-old male db/db mice were treated with LJE (100 and 250 mg/kg body weight) once a day orally for 12 weeks. LJE dose dependently inhibited rat lens aldose reductase activity in vitro (IC50 = 13.53 ± 0.74 µg/mL). In db/db mice, lens was slightly opacified, and lens fiber cells were swollen and ruptured. In addition, lenticular sorbitol accumulation was increased in db/db mice. However, the administration of LJE inhibited these lenticular sorbitol accumulation and lens architectural changes in db/db mice. Our results suggest that LJE might be beneficial for the treatment of diabetes-induced lens opacification. The ability of LJE to suppress lenticular sorbitol accumulation may be mediated by the inhibition of AR activity. PMID:25802544

  9. Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels

    PubMed Central

    Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan

    2012-01-01

    Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer. PMID:23056178

  10. Human NRDRB1, an alternatively spliced isoform of NADP(H)-dependent retinol dehydrogenase/reductase enhanced enzymatic activity of benzil.

    PubMed

    Yan, Yinxia; Song, Xuhong; Liu, Gefei; Su, Zhongjing; Du, Yongming; Sui, Xuxia; Chang, Xiaolan; Huang, Dongyang

    2012-01-01

    Human NRDRB1, a 226 amino acid alternatively spliced isoform of the NADP(H)- dependent retinol dehydrogenase/reductase (NRDR), lacks the complete coding region of exon 3, but preserves all the important functional motifs for NRDR catalytic activity. Nevertheless, its tissue distribution and physiological function remain to be elucidated. Expression of NRDRB1 and NRDR in cells and tissues was analyzed by semi-quantitative polymerase chain reaction (PCR) and western blot. NRDRB1 was expressed as a His(6) fusion protein and subjected to kinetics assays. Recombinant NRDRB1 had 1.2 to 8.6 fold higher k(cat)/K(m) values than recombinant NRDR, depending on the substrate. NRDRB1 catalyzed the NADPH-dependent reduction of α-dicarbonyl compounds, such as isatin, 9,10-phenanthrenequinone, and especially benzil. The significantly high catalytic activity and the relatively high expression in human liver of NRDRB1 conferred cellular resistance to benzil-induced cell toxicity and over-expression of NRDRB1 in low expressing Ec109 cells significantly enhanced cell tolerance toward benzil. Based on its substrate specificity, catalytic activity and relatively high expression in human liver tissue, our results suggest that NRDRB1, an alternatively spliced isoform of NRDR in vivo functions better than NRDR as a dicarbonyl reductase for xenobiotics containing reactive carbonyls. Our study is the first reporting this phenomenon of the enzymes involved in biochemical reactions. Copyright © 2012 S. Karger AG, Basel.

  11. A Ferredoxin- and F 420 H 2 -Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhen; Wang, Mingyu; Ferry, James G.

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less

  12. A Ferredoxin- and F 420 H 2 -Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    DOE PAGES

    Yan, Zhen; Wang, Mingyu; Ferry, James G.; ...

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; but, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2-reducing methanogenic anaerobes (methanogens) from the domainArchaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogenMethanosarcina acetivoranswith unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologsmore » of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domainsBacteriaandArchaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes inEscherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420(F 420H 2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420H 2and reduction of ferredoxin with the exergonic oxidation of F 420H 2and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) byM. acetivoransand uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth ofM. acetivoransand proposed to be essential for growth in the environment when acetate is limiting.IMPORTANCEDiscovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2-reducing methanogens to include diverse prokaryotes from the domainsBacteriaandArchaea. Furthermore, the unprecedented coenzyme F 420-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4-oxidizing pathways. Our results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth’s biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.« less

  13. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

    PubMed

    Yan, Zhen; Wang, Mingyu; Ferry, James G

    2017-02-07

    Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO 2 -reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F 420 (F 420 H 2 ) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F 420 H 2 and reduction of ferredoxin with the exergonic oxidation of F 420 H 2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO 2 -reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea The unprecedented coenzyme F 420 -dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH 4 -oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth's biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation. Copyright © 2017 Yan et al.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theil, Elizabeth C.; Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720

    Ferritins are protein nanocages that use iron and oxygen chemistry to concentrate iron and trap dioxygen or hydrogen peroxide in biominerals of hydrated ferric oxides, 5-8 nm in diameter, inside the cages. The proteins are found in nature from archea to humans. Protein catalytic sites are embedded in the protein cage and initiate mineralization by oxido-reduction of ferrous ions and dioxygen or hydrogen peroxide to couple two iron ions through a peroxo bridge, followed by decay to diferric oxo/hydroxyl mineral precursors; ferritin protein subdomains that fold/unfold independently of the protein cage control recovery of ferrous ions from the mineral. Earlymore » EXAFS (1978) was extremely useful in defining the ferritin mineral. More recent use of rapid freeze quench (RFQ) EXAFS spectroscopies, coupled with RFQ Moessbauer, Resonance Raman and rapid mixing UV-vis spectroscopy, have identified and characterized unusual ferritin protein catalytic intermediates and mineral precursors. EXAFS spectroscopy can play an important role in the future understanding of protein catalysis in metalloproteins such as ferritin, ribonucleotide reductase and methane monooxygenases. Needed are instrumentation improvements that will provide rapid-scan fluorescence spectra with high signal/noise ratios.« less

  15. HPV31 Utilizes the ATR-Chk1 Pathway to Maintain Elevated RRM2 Levels and a Replication-Competent Environment in Differentiating Keratinocytes

    PubMed Central

    Anacker, Daniel C.; Aloor, Heather L.; Shepard, Caitlin N.; Lenzi, Gina M.; Johnson, Bryan A.; Kim, Baek; Moody, Cary A.

    2016-01-01

    Productive replication of human papillomaviruses (HPV) is restricted to the uppermost layers of the differentiating epithelia. How HPV ensures an adequate supply of cellular substrates for viral DNA synthesis in a differentiating environment is unclear. Here, we demonstrate that HPV31 positive cells exhibit increased dNTP pools and levels of RRM2, a component of the ribonucleotide reductase (RNR) complex, which is required for de novo synthesis of dNTPs. RRM2 depletion blocks productive replication, suggesting RRM2 provides dNTPs for viral DNA synthesis in differentiating cells. We demonstrate that HPV31 regulates RRM2 levels through expression of E7 and activation of the ATR-Chk1-E2F1 DNA damage response, which is essential to combat replication stress upon entry into S-phase, as well as for productive replication. Our findings suggest a novel way in which viral DNA synthesis is regulated through activation of ATR and Chk1 and highlight an intriguing new virus/host interaction utilized for viral replication. PMID:27764728

  16. New developments in high field electron paramagnetic resonance with applications in structural biology

    NASA Astrophysics Data System (ADS)

    Bennati, Marina; Prisner, Thomas F.

    2005-02-01

    Recent developments in microwave technologies have led to a renaissance of electron paramagnetic resonance (EPR) due to the implementation of new spectrometers operating at frequencies >=90 GHz. EPR at high fields and high frequencies (HF-EPR) has been established up to THz (very high frequency (VHF) EPR) in continuous wave (cw) operation and up to about 300 GHz in pulsed operation. To date, its most prominent application field is structural biology. This review article first gives an overview of the theoretical basics and the technical aspects of HF-EPR methodologies, such as cw and pulsed HF-EPR, as well as electron nuclear double resonance at high fields (HF-ENDOR). In the second part, the article illustrates different application areas of HF-EPR in studies of protein structure and function. In particular, HF-EPR has delivered essential contributions to disentangling complex spectra of radical cofactors or reaction intermediates in photosynthetic reaction centres, radical enzymes (such as ribonucleotide reductase) and in metalloproteins. Furthermore, HF-EPR combined with site-directed spin labelling in membranes and soluble proteins provides new methods of investigating complex molecular dynamics and intermolecular distances.

  17. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    PubMed

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Metabolism and gene polymorphisms of the folate pathway in Brazilian women with history of recurrent abortion.

    PubMed

    Boas, Wendell Vilas; Gonçalves, Rozana Oliveira; Costa, Olívia Lúcia Nunes; Goncalves, Marilda Souza

    2015-02-01

    To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA). We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test. The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels. The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.

  19. A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea

    PubMed Central

    Yan, Zhen

    2017-01-01

    ABSTRACT Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO2-reducing methanogenic anaerobes (methanogens) from the domain Archaea. Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea. The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F420 (F420H2) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of F420H2 and reduction of ferredoxin with the exergonic oxidation of F420H2 and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. PMID:28174314

  20. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    PubMed

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  1. Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of α,β-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    Toogood, Helen S.; Fryszkowska, Anna; Hare, Victoria; Fisher, Karl; Roujeinikova, Anna; Leys, David; Gardiner, John M.; Stephens, Gill M.; Scrutton, Nigel S.

    2009-01-01

    Biocatalytic reduction of α- or β-alkyl-β-arylnitroalkenes provides a convenient and efficient method to prepare chiral substituted nitroalkanes. Pentaerythritol tetranitrate reductase (PETN reductase) from Enterobacter cloacae st. PB2 catalyses the reduction of nitroolefins such as 1-nitrocyclohexene (1) with steady state and rapid reaction kinetics comparable to other old yellow enzyme homologues. Furthermore, it reduces 2-aryl-1-nitropropenes (4a-d) to their equivalent (S)-nitropropanes 9a-d. The enzyme shows a preference for the (Z)-isomer of substrates 4a-d, providing almost pure enantiomeric products 9a-d (ees up to > 99%) in quantitative yield, whereas the respective (E)-isomers are reduced with lower enantioselectivity (63-89% ee) and lower product yields. 1-Aryl-2-nitropropenes (5a, b) are also reduced efficiently, but the products (R)-10 have lower optical purities. The structure of the enzyme complex with 1-nitrocyclohexene (1) was determined by X-ray crystallography, revealing two substrate-binding modes, with only one compatible with hydride transfer. Models of nitropropenes 4 and 5 in the active site of PETN reductase predicted that the enantioselectivity of the reaction was dependent on the orientation of binding of the (E)- and (Z)-substrates. This work provides a structural basis for understanding the mechanism of asymmetric bioreduction of nitroalkenes by PETN reductase. PMID:20396603

  2. Thioredoxin/Glutaredoxin System of Chlorella1

    PubMed Central

    Tsang, Monica Lik-Shing

    1981-01-01

    Using the thioredoxin/glutaredoxin-dependent adenosine 3′-phosphate 5′-phosphosulfate reductase coupled assay system, the Chlorella thioredoxin/glutaredoxin system has been partially purified and characterized. A NADPH-thioredoxin reductase and two thioredoxin/glutaredoxin activities, designated as Chlorella thioredoxin/glutaredoxin protein I and II (CPI and CPII), were found in crude extracts of Chlorella. Similar to their counterparts from Escherichia coli, both CPI and CPII are heat-stable low molecular proteins of ≃14,000. While CPI (but not CPII) is a substrate for its homologous NADPH-thioredoxin reductase as well as for E. coli NADPH-thioredoxin reductase, CPII is better than CPI as a substrate for reduction by the glutathione system. Based on these properties, CPI and CPII may be classified as Chlorella thioredoxin and Chlorella glutaredoxin, respectively. The Chlorella NADPH-thioredoxin reductase (Mr = 72,000, with two 36,000-dalton subunits) resembles E. coli-thioredoxin reductase in size. Besides Chlorella thioredoxin, the Chlorella thioredoxin reductase will also use E. coli thioredoxin, but not glutaredoxin, as a substrate. Although a thioredoxin-like protein has been implicated in higher plant light-dependent sulfate reaction, neither Chlorella thioredoxin nor glutaredoxin can stimulate the thiol-dependent adenosine 5′-phosphosulfate-sulfotransferase reaction. Furthermore, Chlorella thioredoxin and glutaredoxin, in conjunction with an appropriate reductase system, cannot replace the thiol requirement of Chlorella adenosine 5′-phosphosulfate-sulfotransferase. The exact physiological roles and subcellular localization of the Chlorella thioredoxin and glutaredoxin systems remain to be determined. Images PMID:16662058

  3. Refinement of the deletion in 8q22.2-q22.3: the minimum deletion size at 8q22.3 related to intellectual disability and epilepsy.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-ichi; Ida, Kazumi; Naruto, Takuya; Iai, Mizue; Kurosawa, Kenji

    2014-08-01

    Kuechler et al. [2011] reported five patients with interstitial deletions in 8q22.2-q22.3 who had intellectual disability, epilepsy, and dysmorphic features. We report on a new patient with the smallest overlapping de novo deletion in 8q22.3 and refined the phenotype. The proposita was an 8-year-old girl, who developed seizures at 10 months, and her epileptic seizure became severe and difficult to control with antiepileptic drugs. She also exhibited developmental delay and walked alone at 24 months. She was referred to us for evaluation for developmental delay and epilepsy at the age of 8 years. She had intellectual disability (IQ 37 at 7 years) and autistic behavior, and spoke two word sentences at 8 years. She had mild dysmorphic features, including telecanthus and thick vermilion of the lips. Array comparative genomic hybridization detected a 1.36 Mb deletion in 8q22.3 that encompassed RRM2B and NCALD, which encode the small subunit of p53-inducible ribonucleotide reductase and neurocalcin delta in the neuronal calcium sensor family of calcium-binding proteins, respectively. The minimum overlapping region between the present and previously reported patients is considered to be a critical region for the phenotype of the deletion in 8q22.3. We suggest that the deletion in 8q22.3 may represent a clinically recognizable condition, which is characterized by intellectual disability and epilepsy. © 2014 Wiley Periodicals, Inc.

  4. Direct cloning of the trxB gene that encodes thioredoxin reductase.

    PubMed Central

    Russel, M; Model, P

    1985-01-01

    A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase. Images PMID:2989245

  5. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas.

    PubMed

    Desjardins, Annick; Quinn, Jennifer A; Vredenburgh, James J; Sathornsumetee, Sith; Friedman, Allan H; Herndon, James E; McLendon, Roger E; Provenzale, James M; Rich, Jeremy N; Sampson, John H; Gururangan, Sridharan; Dowell, Jeannette M; Salvado, August; Friedman, Henry S; Reardon, David A

    2007-05-01

    Recent reports demonstrate the activity of imatinib mesylate, an ATP-mimetic, tyrosine kinase inhibitor, plus hydroxyurea, a ribonucleotide reductase inhibitor, in patients with recurrent glioblastoma multiforme. We performed the current phase 2 study to evaluate this regimen among patients with recurrent WHO grade III malignant glioma (MG). Patients with grade III MG at any recurrence, received imatinib mesylate plus hydroxyurea (500 mg twice a day) orally on a continuous, daily schedule. The imatinib mesylate dose was 500 mg twice a day for patients on enzyme inducing anti-epileptic drugs (EIAEDs) and 400 mg once a day for those not on EIAEDs. Clinical assessments were performed monthly and radiographic assessments were obtained at least every 2 months. The primary endpoint was 6-month progression-free survival (PFS) rate. Thirty-nine patients were enrolled. All patients had progressive disease after prior radiotherapy and at least temozolomide-based chemotherapy. The median number of episodes of prior progression was 2 (range, 1-7) and the median number of prior treatment regimens was 3 (range, 1-8). With a median follow-up of 82.9 weeks, 24% of patients were progression-free at 6 months. The radiographic response rate was 10%, while 33% achieved stable disease. Among patients who achieved at least stable disease at first evaluation, the 6-month and 12-month PFS rates were 53% and 29%, respectively. The most common grade 3 or greater toxicities were hematologic and complicated less than 4% of administered courses. Imatinib mesylate plus hydroxyurea, is well tolerated and associated with anti-tumor activity in some patients with recurrent grade 3 MG.

  6. Defective remethylation of homocysteine is related to decreased synthesis of coenzymes B2 in thyroidectomized rats.

    PubMed

    Ayav, A; Alberto, J M; Barbe, F; Brunaud, L; Gerard, P; Merten, M; Gueant, J L

    2005-02-01

    We investigated the influence of hypothyroidism on homocysteine metabolism in rats, focusing on a hypothetical deficient synthesis of FAD by riboflavin kinases. Animals were allocated in control group (n = 7), thyroidectomized rats (n = 6), rats with diet deficient in vitamin B2, B9, B12, choline and methionine (n = 7), thyroidectomized rats with deficient diet (n = 9). Homocysteine was decreased in operated rats (2.6 +/- 1.01 vs. 4.05 +/- 1.0 mumol/L, P = 0.02) and increased in deficient diet rats (29.56 +/- 4.52 vs. 4.05 +/- 1.0 micromol/L, P = 0.001), when compared to control group. Erythrocyte-Glutathione-Reductase-Activation-Coefficient (index of FAD deficiency) was increased in thyroidectomized or deficient diet rats (P = 0.004 for both). Methylenetetrahydrofolate-reductase and methionine-synthase activities were decreased in thyroidectomized rats but not in those subjected to deficient diet. Cystathionine-beta-synthase was increased only in operated rats. Taken together, these results showed a defective re-methylation in surgical hypothyroidism, which was due in part to a defective synthesis of vitamin B2 coenzymes. This defective pathway was overcompensated by the increased Cystathionine-beta-synthase activity.

  7. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  8. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  9. 3,5-Dioxopyrazolidines, Novel Inhibitors of UDP-N- Acetylenolpyruvylglucosamine Reductase (MurB) with Activity against Gram-Positive Bacteria

    PubMed Central

    Yang, Youjun; Severin, Anatoly; Chopra, Rajiv; Krishnamurthy, Girija; Singh, Guy; Hu, William; Keeney, David; Svenson, Kristine; Petersen, Peter J.; Labthavikul, Pornpen; Shlaes, David M.; Rasmussen, Beth A.; Failli, Amedeo A.; Shumsky, Jay S.; Kutterer, Kristina M. K.; Gilbert, Adam; Mansour, Tarek S.

    2006-01-01

    A series of 3,5-dioxopyrazolidines was identified as novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Compounds 1 to 3, which are 1,2-bis(4-chlorophenyl)-3,5-dioxopyrazolidine-4-carboxamides, inhibited Escherichia coli MurB, Staphyloccocus aureus MurB, and E. coli MurA with 50% inhibitory concentrations (IC50s) in the range of 4.1 to 6.8 μM, 4.3 to 10.3 μM, and 6.8 to 29.4 μM, respectively. Compound 4, a C-4-unsubstituted 1,2-bis(3,4-dichlorophenyl)-3,5-dioxopyrazolidine, showed moderate inhibitory activity against E. coli MurB, S. aureus MurB, and E. coli MurC (IC50s, 24.5 to 35 μM). A fluorescence-binding assay indicated tight binding of compound 3 with E. coli MurB, giving a dissociation constant of 260 nM. Structural characterization of E. coli MurB was undertaken, and the crystal structure of a complex with compound 4 was obtained at 2.4 Å resolution. The crystal structure indicated the binding of a compound at the active site of MurB and specific interactions with active-site residues and the bound flavin adenine dinucleotide cofactor. Peptidoglycan biosynthesis studies using a strain of Staphylococcus epidermidis revealed reduced peptidoglycan biosynthesis upon incubation with 3,5-dioxopyrazolidines, with IC50s of 0.39 to 11.1 μM. Antibacterial activity was observed for compounds 1 to 3 (MICs, 0.25 to 16 μg/ml) and 4 (MICs, 4 to 8 μg/ml) against gram-positive bacteria including methicillin-resistant S. aureus, vancomycin-resistant Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae. PMID:16436710

  10. Role of Metal Oxides in Chemical Evolution: Interaction of Ribose Nucleotides with Alumina

    NASA Astrophysics Data System (ADS)

    Arora, Avnish Kumar; Kamaluddin

    2009-03-01

    Interaction of ribonucleotides—namely, 5‧-AMP, 5‧-GMP, 5‧-CMP, and 5‧-UMP—with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and Xm and KL values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.

  11. A Novel Apoptotic Protease Activated in Human Breast Cancer Cells After Poisoning Topoisomerase I

    DTIC Science & Technology

    1999-10-01

    menadione and 1,2-naphthoquinones suggested that either one-electron reduction enzymes (p450 or b5R) or two-electron reductases (e.g., NQO1) may be...transfectants were also prevent by dicoumarol. Surprisingly, the responses of NQ01-containing compared to NQ01- deficient MDA-MB-468 cells to menadione ...exposures were opposite those of B-lap. NQ01-expressing MIDA-MB-468 cells were extremely resistant to menadione -induced apoptosis, PARP cleavage and lethality

  12. Triterpenes and meroterpenes from Ganoderma lucidum with inhibitory activity against HMGs reductase, aldose reductase and α-glucosidase.

    PubMed

    Chen, Baosong; Tian, Jin; Zhang, Jinjin; Wang, Kai; Liu, Li; Yang, Bo; Bao, Li; Liu, Hongwei

    2017-07-01

    Seven new compounds including four lanostane triterpenoids, lucidenic acids Q-S (1-3) and methyl ganoderate P (4), and three triterpene-farnesyl hydroquinone conjugates, ganolucinins A-C (5-7), one new natural product ganomycin J (8), and 73 known compounds (9-81) were isolated from fruiting bodies of Ganoderma lucidum. The structures of the compounds 1-8 were determined by spectroscopic methods. Bioactivities of compounds isolated were assayed against HMG-CoA reductase, aldose reductase, α-glucosidase, and PTP1B. Ganolucidic acid η (39), ganoderenic acid K (44), ganomycin J (8), and ganomycin B (61) showed strong inhibitory activity against HMG-CoA reductase with IC 50 of 29.8, 16.5, 30.3 and 14.3μM, respectively. Lucidumol A (67) had relatively good effect against aldose reductase with IC 50 of 19.1μM. Farnesyl hydroquinones ganomycin J (8), ganomycin B (61), ganomycin I (62), and triterpene-farnesyl hydroquinone conjugates ganoleuconin M (76) and ganoleuconin O (79) possessed good inhibitory activity against α-glucosidase with IC 50 in the range of 7.8 to 21.5μM. This work provides chemical and biological evidence for the usage of extracts of G. lucidum as herbal medicine and food supplements for the control of hyperglycemic and hyperlipidemic symptoms. Copyright © 2017. Published by Elsevier B.V.

  13. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  14. Organ and tissue-dependent effect of resveratrol and exercise on antioxidant defenses of old mice.

    PubMed

    Tung, Bui Thanh; Rodriguez-Bies, Elisabet; Thanh, Hai Nguyen; Le-Thi-Thu, Huong; Navas, Plácido; Sanchez, Virginia Motilva; López-Lluch, Guillermo

    2015-12-01

    Oxidative stress has been considered one of the causes of aging. For this reason, treatments based on antioxidants or those capable of increasing endogenous antioxidant activity have been taken into consideration to delay aging or age-related disease progression. In this paper, we determine if resveratrol and exercise have similar effect on the antioxidant capacity of different organs in old mice. Resveratrol (6 months) and/or exercise (1.5 months) was administered to old mice. Markers of oxidative stress (lipid peroxidation and glutathione) and activities and levels of antioxidant enzymes (SOD, catalase, glutathione peroxidase, glutathione reductase and transferase and thioredoxin reductases, NADH cytochrome B5-reductase and NAD(P)H-quinone acceptor oxidoreductase) were determined by spectrophotometry and Western blotting in different organs: liver, kidney, skeletal muscle, heart and brain. Both interventions improved antioxidant activity in the major organs of the mice. This induction was accompanied by a decrease in the level of lipid peroxidation in the liver, heart and muscle of mice. Both resveratrol and exercise modulated several antioxidant activities and protein levels. However, the effect of resveratrol, exercise or their combination was organ dependent, indicating that different organs respond in different ways to the same stimulus. Our data suggest that physical activity and resveratrol may be of great importance for the prevention of age-related diseases, but that their organ-dependent effect must be taken into consideration to design a better intervention.

  15. A homogeneous, high-throughput-compatible, fluorescence intensity-based assay for UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with nanomolar product detection.

    PubMed

    Shapiro, Adam B; Livchak, Stephania; Gao, Ning; Whiteaker, James; Thresher, Jason; Jahić, Haris; Huang, Jian; Gu, Rong-Fang

    2012-03-01

    A novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery. In the new assay, the UNAM product of the MurB reaction is ligated to L-alanine by the next enzyme in the peptidoglycan biosynthesis pathway, MurC, resulting in hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP). The ADP is detected with nanomolar sensitivity by converting it to oligomeric RNA with polynucleotide phosphorylase and detecting the oligomeric RNA with a fluorescent dye. The product sensitivity of the new assay is 1000-fold greater than that of the standard assay that follows the absorbance decrease resulting from the conversion of NADPH to NADP(+). This sensitivity allows inhibitor screening to be performed at the low substrate concentrations needed to make the assay sensitive to competitive inhibition of MurB.

  16. Temperature-Dependent Function of the Glutamine Phosphoribosylpyrophosphate Amidotransferase Ammonia Channel and Coupling with Glycinamide Ribonucleotide Synthetase in a Hyperthermophile†

    PubMed Central

    Bera, Aloke Kumar; Chen, Sihong; Smith, Janet L.; Zalkin, Howard

    2000-01-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90°C, with half-lives of 65 min for GPAT and 60 h for GARS at 80°C. GPAT activity is known to depend upon channeling of NH3 from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH3 for synthesis of PRA was found to increase from 34% at 37°C to a maximum of 84% at 80°C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90°C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50°C, and remained relatively constant up to 90°C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion. PMID:10850988

  17. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile.

    PubMed

    Bera, A K; Chen, S; Smith, J L; Zalkin, H

    2000-07-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90 degrees C, with half-lives of 65 min for GPAT and 60 h for GARS at 80 degrees C. GPAT activity is known to depend upon channeling of NH(3) from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH(3) for synthesis of PRA was found to increase from 34% at 37 degrees C to a maximum of 84% at 80 degrees C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90 degrees C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50 degrees C, and remained relatively constant up to 90 degrees C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion.

  18. Final technical report for award NO. DE-FG02-95ER20206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James P. Shapleigh

    2010-02-23

    ABSTRACT Initial work focused on the regulation of nitrite reductase, the defining reaction of denitrification as well as nitric oxide (NO) reductase. Expression of the genes encoding both proteins was controlled by NnrR. This regulator was shown to be responsive to NO. More recent work has shown NnrR function is also likely inhibited by oxygen. Therefore, it is this protein that sets the oxygen level at which nitrate respiration takes over from aerobic respiration. The gene encoding NO reductase appears to only require NnrR for expression. Expression of the gene encoding nitrite reductase is more complex. In addition to NnrR,more » a two component sensor regulator complex termed PrrA and PrrB is also required for expression. These proteins are global regulators and serve to link denitrification with other bioenergetic processes in the cell. They also provide an additional layer of oxygen dependent regulation. The sequencing of the R. sphaeroides 2.4.3 genome allowed us to identify several other genes regulated by NnrR. Surprisingly, most of the genes were not essential for denitrification. Their high level of conservation in related denitrifiers suggests they do provide a selectable benefit to the bacterium, however. We also examined the role of nitrate reductase in contributing to denitrification in R. sphaeroides. Strain 2.4.3 is unusual in having two distinct, but related clusters of genes encoding nitrate reductase. One of these genes clusters is expressed under high oxygen conditions but is repressed, likely by PrrB-PrrA, under low oxygen conditions. The other cluster is expressed only under low oxygen conditions. This cluster expresses the nitrate reductase used during denitrification. The high oxygen expressed cluster encodes a protein used for redox homeostasis. Surprisingly, both clusters are fully expressed even in the absence of nitrate. During the course of this work we found that the type strain of R. sphaeroides, 2.4.1, is a partial denitrifier because it has the nitrate and NO reductases but lacks nitrite reductase. Like 2.4.3 it uses NnrR to regulate NO reductase. This unexpected arrangement suggested that it may use NO reductase to detoxify NO produced in its environment. Using a green fluorescent protein based reporter system we were able to demonstrate that NO produced by a denitrifier such as 2.4.3 can induce expression of NO reductase in 2.4.1. We then went on to show that the NO produced by denitrifiers can induce a stress response in other non-denitrifying bacteria. This suggests that the NO produced during denitrification will have a significant impact on the non-denitrifiers present in the surrounding environment. We also expanded our studies to include the denitrifier Agrobacterium tumefaciens. We demonstrated that the expression of the nitrite and NO reductase genes in this bacterium follows the same general scheme as in R. sphaeroides. We also were able to show that this bacterium would induce NO reductase in response to the NO produced by plants. Importantly, we were able to demonstrate that A. tumefaciens had difficulty transitioning from aerobic respiration to denitrification if the transition was sudden. This difficulty manifested as an accumulation of NO. In some conditions cells were slowly able to switch modes of respiration but in other cases NO accumulations seemed to kill the cells. The difficulty in transition appears to be due to an inability to produce enough energy once the oxygen has been completely consumed.« less

  19. Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    PubMed

    Arlt, Volker M; Poirier, Miriam C; Sykes, Sarah E; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C Roland; Henderson, Colin J; Phillips, David H

    2012-09-03

    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. The pharmacokinetic effect of discontinuation of mesalazine on mercaptopurine metabolite levels in inflammatory bowel disease patients.

    PubMed

    Gilissen, L P L; Bierau, J; Derijks, L J J; Bos, L P; Hooymans, P M; van Gennip, A; Stockbrügger, R W; Engels, L G J B

    2005-10-01

    In vitro studies suggest interactions between mesalazine (mesalamine) and thiopurines by thiopurine S-methyltransferase (TPMT) inhibition, influencing the balance of hepatotoxic 6-methylmercaptopurine ribonucleotide and immunosuppressive tioguanine (thioguanine) metabolites. To examine the in vivo pharmacokinetic interaction between mesalazine and mercaptopurine. A prospective study was performed in quiescent inflammatory bowel disease patients using the combination of mercaptopurine and mesalazine. Laboratory parameters, 6-methylmercaptopurine ribonucleotide and tioguanine levels and thiopurine S-methyltransferase activity in erythrocytes were measured at stable medication, after mesalazine discontinuation and mesalazine reintroduction, further mercaptopurine was continued. Seventeen patients were participated. Mean mercaptopurine dose was 0.78 mg/kg/day and median of mesalazine dose was 3000 mg/day. After mesalazine discontinuation, mean tioguanine levels changed significantly from 262 to 209 pmol/8 x 10(8) red blood cell, increasing to 270 after reintroduction. Mean 6-methylmercaptopurine ribonucleotide levels were 1422, 2149 and 1503 pmol/8 x 10(8) red blood cell respectively. Mean 6-methylmercaptopurine ribonucleotide/tioguanine ratio increased significantly from 6.3 at baseline to 11.2. Mean baseline thiopurine S-methyltransferase activity was 0.58 pmol/10(6) red blood cell/h and stable. All patients had wild-type thiopurine S-methyltransferase genotypes however, leucocyte counts were stable. A significantly higher tioguanine levels and improving 6-methylmercaptopurine ribonucleotide/tioguanine ratio were found during mesalazine/mercaptopurine combination. Theoretically, mesalazine inhibits thiopurine S-methyltransferase activity. In vivo thiopurine S-methyltransferase activity did not change, however. Mesalazine has synergistic effects on mercaptopurine therapy, but the mechanism is unclear. Combining these drugs may be further indication for mesalazine in inflammatory bowel disease treatment.

  1. Spectroscopic and computational study of a nonheme iron nitrosyl center in a biosynthetic model of nitric oxide reductase.

    PubMed

    Chakraborty, Saumen; Reed, Julian; Ross, Matthew; Nilges, Mark J; Petrik, Igor D; Ghosh, Soumya; Hammes-Schiffer, Sharon; Sage, J Timothy; Zhang, Yong; Schulz, Charles E; Lu, Yi

    2014-02-24

    A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Ramos, Ruben; Departamento de Toxicologia, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, 07360 Mexico D.F.; Lopez-Carrillo, Lizbeth

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrationsmore » (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.« less

  3. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  4. Two Tropinone Reductases with Distinct Stereospecificities from Cultured Roots of Hyoscyamus niger1

    PubMed Central

    Hashimoto, Takashi; Nakajima, Keiji; Ongena, Godelieve; Yamada, Yasuyuki

    1992-01-01

    Tropinone is an alkamine intermediate at the branch point of biosynthetic pathways leading to various tropane alkaloids. Two stereospecifically distinct NADPH-dependent oxidoreductases, TR-I and TR-II, which, respectively, reduce tropinone to 3α-hydroxytropane (tropine) and 3β-hydroxytropane (ψ-tropine), were detected mainly in the root of tropane alkaloid-producing plants but not in nonproducing cultured root. Both reductases were purified to near homogeneity from cultured root of Hyoscyamus niger and characterized. The TR-I reaction was reversible, whereas the TR-II reaction was essentially irreversible, reduction of the ketone being highly favored over oxidation of the alcohol ψ-tropine. Marked differences were found between the two reductase in their affinities for tropinone substrate and in the effects of amino acid modification reagents. Some differences in substrate specificity were apparent. For example, N-propyl-4-piperidone was reduced by TR-II but not by TR-I. Conversely, 3-quinuclidinone and 8-thiabicyclo[3,2,1]octane-3-one were accepted as substrates by TR-I but hardly at all by TR-II. Both enzymes were shown to be class B oxidoreductases, which transfer the pro-S hydrogen of NAD(P)H to their substrates. Possible roles of these tropinone reductases in alkaloid biosynthesis are discussed. Images Figure 6 PMID:16653065

  5. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities.

    PubMed

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne; Tjener, Karsten; Stahnke, Louise H; Møller, Jens K S

    2008-04-01

    Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour was followed by L(∗)a(∗)b measurements and the content of nitrosylmyoglobin (MbFe(II)NO) quantified by electron spin resonance (ESR). MbFe(II)NO was rapidly formed in sausages with added nitrite independent of the presence of nitrite reducing bacteria, whereas the rate of MbFe(II)NO formation in sausages with added nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation by autofluorescence and hexanal content, respectively. No significant direct effect of the Staphylococcus addition was observed, however, there was a clear correspondence between high initial amount of MbFe(II)NO in the different sausages and the colour stability during storage. Autofluorescence data correlated well with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial for ensuring optimal colour formation during initial fermentation stages.

  6. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus

    PubMed Central

    Heylen, Kim; Keltjens, Jan

    2012-01-01

    The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581T and B. bataviensis LMG 21833T. In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium. PMID:23087684

  7. Gallium Nitrate Is Efficacious in Murine Models of Tuberculosis and Inhibits Key Bacterial Fe-Dependent Enzymes

    PubMed Central

    Olakanmi, Oyebode; Kesavalu, Banurekha; Pasula, Rajamouli; Abdalla, Maher Y.; Schlesinger, Larry S.

    2013-01-01

    Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga3+ from Fe3+. Unlike Fe3+, Ga3+ cannot be physiologically reduced to Ga2+. Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans. PMID:24060870

  8. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae.

    PubMed

    Kaniak-Golik, Aneta; Kuberska, Renata; Dzierzbicki, Piotr; Sledziewska-Gojska, Ewa

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria.

  9. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae

    PubMed Central

    Dzierzbicki, Piotr

    2017-01-01

    Rad27/FEN1 nuclease that plays important roles in the maintenance of DNA stability in the nucleus has recently been shown to reside in mitochondria. Accordingly, it has been established that Rad27 deficiency causes increased mutagenesis, but decreased microsatellite instability and homologous recombination in mitochondria. Our current analysis of mutations leading to erythromycin resistance indicates that only some of them arise in mitochondrial DNA and that the GC→AT transition is a hallmark of the mitochondrial mutagenesis in rad27 null background. We also show that the mitochondrial mutator phenotype resulting from Rad27 deficiency entirely depends on the DNA damage checkpoint kinase Dun1. DUN1 inactivation suppresses the mitochondrial mutator phenotype caused by Rad27 deficiency and this suppression is eliminated at least in part by subsequent deletion of SML1 encoding a repressor of ribonucleotide reductase. We conclude that Rad27 deficiency causes a mitochondrial mutator phenotype via activation of DNA damage checkpoint kinase Dun1 and that a Dun1-mediated increase of dNTP pools contributes to this phenomenon. These results point to the nuclear DNA instability as the source of mitochondrial mutagenesis. Consistently, we show that mitochondrial mutations occurring more frequently in yeast devoid of Rrm3, a DNA helicase involved in rDNA replication, are also dependent on Dun1. In addition, we have established that overproduction of Exo1, which suppresses DNA damage sensitivity and replication stress in nuclei of Rad27 deficient cells, but does not enter mitochondria, suppresses the mitochondrial mutagenesis. Exo1 overproduction restores also a great part of allelic recombination and microsatellite instability in mitochondria of Rad27 deficient cells. In contrast, the overproduction of Exo1 does not influence mitochondrial direct-repeat mediated deletions in rad27 null background, pointing to this homologous recombination pathway as the direct target of Rad27 activity in mitochondria. PMID:28678842

  10. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  11. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice.

    PubMed

    Dong, Ruixia; Wang, Dongxu; Wang, Xiaoxiao; Zhang, Ke; Chen, Pingping; Yang, Chung S; Zhang, Jinsong

    2016-12-01

    Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Purification, Characterization, and Overexpression of Flavin Reductase Involved in Dibenzothiophene Desulfurization by Rhodococcus erythropolis D-1

    PubMed Central

    Matsubara, Toshiyuki; Ohshiro, Takashi; Nishina, Yoshihiro; Izumi, Yoshikazu

    2001-01-01

    The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain. PMID:11229908

  13. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria.

    PubMed

    McNeil, Matthew B; Hampton, Hannah G; Hards, Kiel J; Watson, Bridget N J; Cook, Gregory M; Fineran, Peter C

    2014-01-31

    The activity of the respiratory enzyme fumarate reductase (FRD) is dependent on the covalent attachment of the redox cofactor flavin adenine dinucleotide (FAD). We demonstrate that the FAD assembly factor SdhE, which flavinylates and activates the respiratory enzyme succinate dehydrogenase (SDH), is also required for the complete activation and flavinylation of FRD. SdhE interacted with, and flavinylated, the flavoprotein subunit FrdA, whilst mutations in a conserved RGxxE motif impaired the complete flavinylation and activation of FRD. These results are of widespread relevance because SDH and FRD play an important role in cellular energetics and are required for virulence in many important bacterial pathogens. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    PubMed

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in environments where beans are grown in alkaline soils, while the QTL for iron reductase under sufficiency conditions may be useful for selecting for enhanced seed nutritional quality.

  15. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkensgaard, Kristine G.; Enzyme and Protein Chemistry, Department of Systems BioIogy, Technical University of Denmark; Hägglund, Per

    2009-09-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR,more » HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R{sub cryst} of 19.0% and an R{sub free} of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation.« less

  16. The importance of folate, vitamins B6 and B12 for the lowering of homocysteine concentrations for patients with recurrent pregnancy loss and MTHFR mutations.

    PubMed

    Serapinas, Danielius; Boreikaite, Evelina; Bartkeviciute, Agne; Bandzeviciene, Rita; Silkunas, Mindaugas; Bartkeviciene, Daiva

    2017-09-01

    In patients with MTHFR (methylenetetrahydrofolate reductase) mutations and hyperhomocysteinemia, recurrent pregnancy loss is a frequent feature. The aim of the study was to evaluate the impact of folic acid, vitamins B6 and B12 supplementation for the lowering of total homocysteine concentrations and pregnancy. 16 patients who had had 3 or more miscarriages and MTHFR mutations were used in the study. They received methylfolate (5mg/day), vitamin B6 (50mg/day) and vitamin B12 (1mg/week). Supplementation induced a decrease in homocysteine from 19.4±5.3μmol/L to 6.9±2.2μmol/L after folate supplementation (p<0.05). During one year 7 women became pregnant and delivered. Two women delivered from the homozygous C677T mutations group (7 patients) and combined heterozygous C677T/A1298C mutations group (5 patients), while 3 deliveries were in A1298C homozygous mutations group (4 patients). In conclusion, supraphysiologic methylfolate, vitamins B6 and B12 supplementation in woman with MTHFR mutations has a beneficial effect on pregnancy outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    PubMed

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.

  18. The crystal structure of galactitol-1-phosphate 5-dehydrogenase from Escherichia coli K12 provides insights into its anomalous behavior on IMAC processes.

    PubMed

    Esteban-Torres, María; Alvarez, Yanaisis; Acebrón, Iván; de las Rivas, Blanca; Muñoz, Rosario; Kohring, Gert-Wieland; Roa, Ana María; Sobrino, Mónica; Mancheño, José M

    2012-09-21

    Endogenous galactitol-1-phosphate 5-dehydrogenase (GPDH) (EC 1.1.1.251) from Escherichia coli spontaneously interacts with Ni(2+)-NTA matrices becoming a potential contaminant for recombinant, target His-tagged proteins. Purified recombinant, untagged GPDH (rGPDH) converted galactitol into tagatose, and d-tagatose-6-phosphate into galactitol-1-phosphate, in a Zn(2+)- and NAD(H)-dependent manner and readily crystallized what has permitted to solve its crystal structure. In contrast, N-terminally His-tagged GPDH was marginally stable and readily aggregated. The structure of rGPDH revealed metal-binding sites characteristic from the medium-chain dehydrogenase/reductase protein superfamily which may explain its ability to interact with immobilized metals. The structure also provides clues on the harmful effects of the N-terminal His-tag. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities.

    PubMed

    Liger, Dominique; Graille, Marc; Zhou, Cong-Zhao; Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Blondeau, Karine; Janin, Joël; van Tilbeurgh, Herman

    2004-08-13

    Flavodoxins are involved in a variety of electron transfer reactions that are essential for life. Although FMN-binding proteins are well characterized in prokaryotic organisms, information is scarce for eukaryotic flavodoxins. We describe the 2.0-A resolution crystal structure of the Saccharomyces cerevisiae YLR011w gene product, a predicted flavoprotein. YLR011wp indeed adopts a flavodoxin fold, binds the FMN cofactor, and self-associates as a homodimer. Despite the absence of the flavodoxin key fingerprint motif involved in FMN binding, YLR011wp binds this cofactor in a manner very analogous to classical flavodoxins. YLR011wp closest structural homologue is the homodimeric Bacillus subtilis Yhda protein (25% sequence identity) whose homodimer perfectly superimposes onto the YLR011wp one. Yhda, whose function is not documented, has 53% sequence identity with the Bacillus sp. OY1-2 azoreductase. We show that YLR011wp has an NAD(P)H-dependent FMN reductase and a strong ferricyanide reductase activity. We further demonstrate a weak but specific reductive activity on azo dyes and nitrocompounds.

  20. Effect of fish oil on glutathione redox system in multiple sclerosis

    PubMed Central

    Sorto-Gomez, Tania E; Ortiz, Genaro G; Pacheco-Moises, Fermín P; Torres-Sanchez, Erandis D; Ramirez-Ramirez, Viridiana; Macias-Islas, Miguel A; de la Rosa, Alfredo Celis; Velázquez-Brizuela, Irma E

    2016-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. Conclusion: Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms. PMID:27335704

  1. Predictive role of repair enzymes in the efficacy of Cisplatin combinations in pancreatic and lung cancer.

    PubMed

    Peters, Godefridus J; Avan, Abolfazl; Ruiz, Marielle Gallegos; Orsini, Vanessa; Avan, Amir; Giovannetti, Elisa; Smit, Egbert F

    2014-01-01

    Platinum combinations are the mainstay of treatment for non-small cell lung cancer (NSCLC), while for pancreatic cancer platinum combinations are being given to good-performance status patients. These platinum combinations consist of cis- or carboplatin with gemcitabine, while, for non-squamous NSCLC and mesothelioma, of pemetrexed. The combination of gemcitabine and cisplatin is based on gemcitabine-induced increased formation and retention of DNA-platinum adducts, which can be explained by a decrease of excision repair cross-complementing group-1 (ERCC1)-mediated DNA repair. In these patients, survival and response is prolonged when ERCC1 has a low protein or mRNA expression. A low expression of ribonucleotide reductase (RR) is related to a better treatment outcome after both gemcitabine and gemcitabine-platinum combinations. For pemetrexed combinations, ERCC1 expression was not related to survival. For both NSCLC and pancreatic cancer, polymorphisms in ERCC1 (C118T) and Xeroderma pigmentosum group D (XPD) (A751C) were related to survival. In currently ongoing and future prospective studies, patients should be selected based on their DNA repair status, but it still has to be determined whether this should be by immunohistochemistry, mRNA expression, or a polymorphism.

  2. A microfluidic method for synthesis of transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia

    PubMed Central

    Yang, Zhaogang; Yu, Bo; Zhu, Jing; Huang, Xiaomeng; Xie, Jing; Xu, Songlin; Yang, Xiaojuan; Wang, Xinmei; Yung, Bryant C.; Lee, L. James; Lee, Robert J.; Teng, Lesheng

    2015-01-01

    siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for targeted delivery of LOR-1284 siRNA to acute myeloid leukemia (AML) cells. In vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4–11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than free LOR-1284 in reducing the R2 mRNA and protein levels. Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific thereapeutic delivery of LOR-1284 to AML. PMID:25003978

  3. ERCC1 and RRM1: ready for prime time?

    PubMed

    Besse, Benjamin; Olaussen, Ken A; Soria, Jean-Charles

    2013-03-10

    The quest for markers of sensitivity to cytotoxic agents has been ongoing for decades. In non-small-cell lung cancer, platinum compounds represent the cornerstone of systemic therapy. They target DNA and induce damage that cancer cells struggle to overcome. Somatic excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC1), and ribonucleotide reductase M1 (RRM1) expression levels have been extensively explored as markers of DNA repair capacity in tumor cells. Although low ERCC1 and/or RRM1 expression is generally associated with sensitivity to platinum, the results published in retrospective and prospective studies are not always consistent. Against this background, we will examine in this review the function of these two biomarkers as well as the tools available for their assessment and the associated technical issues. Their prognostic and predictive values will be summarized and considered in terms of customizing systemic therapy according to biomarker (ERCC1 and RRM1) expression levels. We will also discuss why the use of both markers should at this point be restricted to clinical research and underline that functional readouts of DNA repair will help boost future strategies for biomarker discovery in the field.

  4. Outcomes of methotrexate therapy for psoriasis and relationship to genetic polymorphisms.

    PubMed

    Warren, R B; Smith, R L; Campalani, E; Eyre, S; Smith, C H; Barker, J N W N; Worthington, J; Griffiths, C E M

    2009-02-01

    The use of methotrexate is limited by interindividual variability in response. Previous studies in patients with either rheumatoid arthritis or psoriasis suggest that genetic variation across the methotrexate metabolic pathway might enable prediction of both efficacy and toxicity of the drug. To assess if single nucleotide polymorphisms (SNPs) across four genes that are relevant to methotrexate metabolism [folypolyglutamate synthase (FPGS), gamma-glutamyl hydrolase (GGH), methylenetetrahydrofolate reductase (MTHFR) and 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC)] are related to treatment outcomes in patients with psoriasis. DNA was collected from 374 patients with psoriasis who had been treated with methotrexate. Data were available on individual outcomes to therapy, namely efficacy and toxicity. Haplotype-tagging SNPs (r(2) > 0.8) for the four genes with a minor allele frequency of > 5% were selected from the HAPMAP phase II data. Genotyping was undertaken using the MassARRAY spectrometric method (Sequenom). There were no significant associations detected between clinical outcomes in patients with psoriasis treated with methotrexate and SNPs in the four genes investigated. Genetic variation in four key genes relevant to the intracellular metabolism of methotrexate does not appear to predict response to methotrexate therapy in patients with psoriasis.

  5. Deoxycytidine Deaminase-Deficient Escherichia coli Strains Display Acute Sensitivity to Cytidine, Adenosine, and Guanosine and Increased Sensitivity to a Range of Antibiotics, Including Vancomycin

    PubMed Central

    Kang, Tina Manzhu; Yuan, Jessica; Zhou, Alice; Beppler, Casey

    2014-01-01

    We show here that deoxycytidine deaminase (DCD)-deficient mutants of Escherichia coli are hypersensitive to killing by exogenous cytidine, adenosine, or guanosine, whereas wild-type cells are not. This hypersensitivity is reversed by exogenous thymidine. The mechanism likely involves the allosteric regulation of ribonucleotide reductase and severe limitations of the dTTP pools, resulting in thymineless death, the phenomenon of cell death due to thymidine starvation. We also report here that DCD-deficient mutants of E. coli are more sensitive to a series of different antibiotics, including vancomycin, and we show synergistic killing with the combination of vancomycin and cytidine. One possibility is that a very low, subinhibitory concentration of vancomycin enters Gram-negative cells and that this concentration is potentiated by chromosomal lesions resulting from the thymineless state. A second possibility is that the metabolic imbalance resulting from DCD deficiency affects the assembly of the outer membrane, which normally presents a barrier to drugs such as vancomycin. We consider these findings with regard to ideas of rendering Gram-negative bacteria sensitive to drugs such as vancomycin. PMID:24633874

  6. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo.

    PubMed

    Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A

    2016-12-01

    Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  8. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  9. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).

    PubMed

    Marino, M; Ramos, H C; Hoffmann, T; Glaser, P; Jahn, D

    2001-12-01

    Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobic narGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced by ywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiD by resDE was found to be indirect via resDE-dependent activation of fnr. The ywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE --> Fnr --> YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore, ywiD was renamed arfM for anaerobic respiration and fermentation modulator.

  10. Gemcitabine-Based Chemotherapy in Adrenocortical Carcinoma: A Multicenter Study of Efficacy and Predictive Factors.

    PubMed

    Henning, Judith E K; Deutschbein, Timo; Altieri, Barbara; Steinhauer, Sonja; Kircher, Stefan; Sbiera, Silviu; Wild, Vanessa; Schlötelburg, Wiebke; Kroiss, Matthias; Perotti, Paola; Rosenwald, Andreas; Berruti, Alfredo; Fassnacht, Martin; Ronchi, Cristina L

    2017-11-01

    Adrenocortical carcinoma (ACC) is rare and confers an unfavorable prognosis in advanced stages. Other than combination chemotherapy with cisplatin, etoposide, doxorubicin, and mitotane, the second- and third-line regimens are not well-established. Gemcitabine (GEM)-based chemotherapy was suggested in a phase 2 clinical trial with 28 patients. In other solid tumors, human equilibrative nucleoside transporter type 1 (hENT1) and/or ribonucleotide reductase catalytic subunit M1 (RRM1) expression have been associated with resistance to GEM. To assess the efficacy of GEM-based chemotherapy in ACC in a real-world setting and the predictive role of molecular parameters. Retrospective multicenter study. Referral centers of university hospitals. A total of 145 patients with advanced ACC were treated with GEM-based chemotherapy (132 with concomitant capecitabine). Formalin-fixed paraffin-embedded tumor material was available for 70 patients for immunohistochemistry. The main outcome measures were progression-free survival (PFS) and an objective response to GEM-based chemotherapy. The secondary objective was the predictive role of hENT1 and RRM1. The median PFS for the patient population was 12 weeks (range, 1 to 94). A partial response or stable disease was achieved in 4.9% and 25.0% of cases, with a median duration of 26.8 weeks. Treatment was generally well tolerated, with adverse events of grade 3 or 4 occurring in 11.0% of cases. No substantial effect of hENT1 and/or RRM1 expression was observed in response to GEM-based chemotherapy. GEM-based chemotherapy is a well-tolerated, but modestly active, regimen against advanced ACC. No reliable molecular predictive factors could be identified. Owing to the scarce alternative therapeutic options, GEM-based chemotherapy remains an important option for salvage treatment for advanced ACC. Copyright © 2017 Endocrine Society

  11. New Gene Cassettes for Trimethoprim Resistance, dfr13, and Streptomycin-Spectinomycin Resistance, aadA4, Inserted on a Class 1 Integron

    PubMed Central

    Adrian, Peter V.; Thomson, Christopher J.; Klugman, Keith P.; Amyes, Sebastian G. B.

    2000-01-01

    In a previous survey of 357 trimethoprim-resistant isolates of aerobic gram-negative bacteria from commensal fecal flora, hybridization experiments showed that 25% (90 of 357) of the isolates failed to hybridize to specific oligonucleotide probes for dihydrofolate reductase types 1, 2b, 3, 5, 6, 7, 8, 9, 10, and 12. Subsequent cloning and sequencing of a plasmid-borne trimethoprim resistance gene from one of these isolates revealed a new dihydrofolate reductase gene, dfr13, which occurred as a cassette integrated in a site-specific manner in a class 1 integron. The gene product shared 84% amino acid identity with dfr12 and exhibited a trimethoprim inhibition profile similar to that of dfr12. Gene probing experiments with an oligonucleotide probe specific for this gene showed that 12.3% (44 of 357) of the isolates which did not hybridize to probes for other dihydrofolate reductases hybridized to this probe. Immediately downstream of dfr13, a new cassette, an aminoglycoside resistance gene of the class AADA [ANT(3")(9)-I], which encodes streptomycin-spectinomycin resistance, was identified. This gene shares 57% identity with the consensus aadA1 (ant(3")-Ia) and has been called aadA4 (ant(3")-Id). The 3′ end of the aadA4 cassette was truncated by IS26, which was contiguous with a truncated form of Tn3. On the same plasmid, pUK2381, a second copy of IS26 was associated with sul2, which suggests that both integrase and transposase activities have played major roles in the arrangement and dissemination of antibiotic resistance genes dfr13, aadA4, blaTEM-1, and sul2. PMID:10639362

  12. New perspectives on proanthocyanidin biochemistry and molecular regulation.

    PubMed

    Marles, M A Susan; Ray, Heather; Gruber, Margaret Y

    2003-09-01

    Our understanding of proanthocyanidin (syn. condensed tannin) synthesis has been recently extended by substantial developments concerning both structural and regulatory genes. A gene encoding leucoanthocyanidin reductase has been obtained from the tropical forage, Desmodium uncinatum, with the latter enzyme catalyzing formation of (+)-catechin. The BANYULS gene in Arabidopsis thaliana, previously proposed to encode leucoanthocyanidin reductase or to regulate proanthocyanidin biosynthesis, has been shown instead to encode anthocyanidin reductase, which in turn converts anthocyanidins (pelargonidin, cyanidin, or delphinidin) into 2,3-cis-2R,3R-flavan-3-ols (respectively, (-)-epiafzelechin, (-)-epicatechin and (-)-epigallocatechin). However, the enzyme which catalyzes the polymerization reaction remains unknown. Nevertheless, a vacuolar transmembrane protein TT12, defined by the Arabidopsis tt12 mutant, is involved in transport of proanthocyanidin polymer into the vacuole for accumulation. Six different types of regulatory elements, e.g. TFIIIA-like, WD-40-like, WRKY-like, MADS-box-like, myb-like, and bHLH (myc-like), have been cloned and identified using mutants from Arabidopsis (tt1, ttg1, ttg2, tt2, tt16, tt2, tt8) and two other species (Hordeum vulgare [ant13] and Lotus spp [tan1]). Accordingly, increases in proanthocyanidin levels have been induced in the the world's major forage, alfalfa. These advances may now lead to a detailed understanding of how PA synthesis is controlled and to useful alterations in proanthocyanidin concentration for the improvement of forage species, pulses, and other crop plants.

  13. Aldo-Keto Reductases as Early Biomarkers of Hepatocellular Carcinoma: A Comparison Between Animal Models and Human HCC.

    PubMed

    Torres-Mena, Julia Esperanza; Salazar-Villegas, Karla Noemí; Sánchez-Rodríguez, Ricardo; López-Gabiño, Belém; Del Pozo-Yauner, Luis; Arellanes-Robledo, Jaime; Villa-Treviño, Saúl; Gutiérrez-Nava, María Angélica; Pérez-Carreón, Julio Isael

    2018-04-01

    The intrinsic heterogeneity of hepatocellular carcinoma (HCC) represents a great challenge for its molecular classification and for detecting predictive biomarkers. Aldo-keto reductase (Akr) family members have shown differential expression in human HCC, while AKR1B10 overexpression is considered a biomarker; AKR7A3 expression is frequently reduced in HCC. To investigate the time-course expression of Akr members in the experimental hepatocarcinogenesis. Using DNA-microarray data, we analyzed the time-course gene expression profile from nodules to tumors (4-17 months) of 17 Akr members induced by the resistant hepatocyte carcinogenesis model in the rat. The expression of six members (Akr1c19, Akr1b10, Akr7a3, Akr1b1, Akr1cl1, and Akr1b8) was increased, comparable to that of Ggt and Gstp1, two well-known liver cancer markers. In particular, Akr7a3 and Akr1b10 expression also showed a time-dependent increment at mRNA and protein levels in a second hepatocarcinogenesis model induced with diethylnitrosamine. We confirmed that aldo-keto reductases 7A3 and 1B10 were co-expressed in nine biopsies of human HCC, independently from the presence of glypican-3 and cytokeratin-19, two well-known HCC biomarkers. Because it has been suggested that expression of Akr members is regulated through NRF2 activity at the antioxidant response element (ARE) sequences, we searched and identified at least two ARE sites in Akr1b1, Akr1b10, and Akr7a3 from rat and human gene sequences. Moreover, we observed higher NRF2 nuclear translocation in tumors as compared with non-tumor tissues. Our results demonstrate that Akr7a3 mRNA and protein levels are consistently co-expressed along with Akr1b10, in both experimental liver carcinogenesis and some human HCC samples. These results highlight the presence of AKR7A3 and AKR1B10 from early stages of the experimental HCC and introduce them as a potential application for early diagnosis, staging, and prognosis in human cancer.

  14. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    PubMed Central

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  15. Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation.

    PubMed

    Mostafa, Heba H; Thompson, Thornton W; Konen, Adam J; Haenchen, Steve D; Hilliard, Joshua G; Macdonald, Stuart J; Morrison, Lynda A; Davido, David J

    2018-04-01

    In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39 , which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo , we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39 mut ), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection. IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1. Copyright © 2018 American Society for Microbiology.

  16. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  17. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study.

    PubMed

    Cheng, Ting-Yuan David; Makar, Karen W; Neuhouser, Marian L; Miller, Joshua W; Song, Xiaoling; Brown, Elissa C; Beresford, Shirley A A; Zheng, Yingye; Poole, Elizabeth M; Galbraith, Rachel L; Duggan, David J; Habermann, Nina; Bailey, Lynn B; Maneval, David R; Caudill, Marie A; Toriola, Adetunji T; Green, Ralph; Ulrich, Cornelia M

    2015-10-15

    Investigations of folate-mediated one-carbon metabolism (FOCM) genes and gene-nutrient interactions with respect to colorectal cancer (CRC) risk are limited to candidate polymorphisms and dietary folate. This study comprehensively investigated associations between genetic variants in FOCM and CRC risk and whether the FOCM nutrient status modified these associations. Two hundred eighty-eight candidate and tagging single-nucleotide polymorphisms (SNPs) in 30 FOCM genes were genotyped for 821 incident CRC case-control matched pairs in the Women's Health Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma folate, pyridoxal-5'-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol consumption were measured at the baseline. Conditional logistic regression was implemented; effect modification was examined on the basis of known enzyme-nutrient relations. Statistically significant associations were observed between CRC risk and functionally defined candidate SNPs of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1; K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR; P450R), and PR domain containing 2 with ZNF domain (PRDM2; S450N) and a literature candidate SNP of thymidylate synthase (TYMS; g.676789A>T; nominal P < .05). In addition, suggestive associations were noted for tagging SNPs in cystathionine-β-synthase (CBS), dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3β (DNMT3B), methionine adenosyltransferase I α (MAT1A), MTHFD1, and MTRR (nominal P < .05; adjusted P, not significant). Significant interactions between nutrient biomarkers and candidate polymorphisms were observed for 1) plasma/RBC folate and folate hydrolase 1 (FOLH1), paraoxonase 1 (PON1), transcobalamin II (TCN2), DNMT1, and DNMT3B; 2) plasma PLP and TYMS TS3; 3) plasma B12 and betaine-homocysteine S-methyltransferase 2 (BHMT2); and 4) homocysteine and methylenetetrahydrofolate reductase (MTHFR) and alanyl-transfer RNA synthetase (AARS). Genetic variants in FOCM genes are associated with CRC risk among postmenopausal women. FOCM nutrients continue to emerge as effect modifiers of genetic influences on CRC risk. © 2015 American Cancer Society.

  18. TaOPR2 encodes a 12-oxo-phytodienoic acid reductase involved in the biosynthesis of jasmonic acid in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Yuan, Guoliang; Yuan, Shaohua; Duan, Wenjing; Wang, Peng; Bai, Jianfang; Zhang, Fengting; Gao, Shiqing; Zhang, Liping; Zhao, Changping

    2016-01-29

    The 12-oxo-phytodienoic acid reductases (OPRs) are involved in the various processes of growth and development in plants, and classified into the OPRⅠ and OPRⅡ subgroups. In higher plants, only OPRⅡ subgroup genes take part in the biosynthesis of endogenous jasmonic acid. In this study, we isolated a novel OPRⅡ subgroup gene named TaOPR2 (GeneBank accession: KM216389) from the thermo-sensitive genic male sterile (TGMS) wheat cultivar BS366. TaOPR2 was predicted to encode a protein with 390 amino acids. The encoded protein contained the typical oxidored_FMN domain, the C-terminus peroxisomal-targeting signal peptide, and conserved FMN-binding sites. TaOPR2 was mapped to wheat chromosome 7B and located on peroxisome. Protein evolution analysis revealed that TaOPR2 belongs to the OPRⅡ subgroup and shares a high degree of identity with other higher plant OPR proteins. The quantitative real-time PCR results indicated that the expression of TaOPR2 is inhibited by abscisic acid (ABA), salicylic acid (SA), gibberellic acid (GA3), low temperatures and high salinity. In contrast, the expression of TaOPR2 can be induced by wounding, drought and methyl jasmonate (MeJA). Furthermore, the transcription level of TaOPR2 increased after infection with Puccinia striiformis f. sp. tritici and Puccinia recondite f. sp. tritici. TaOPR2 has NADPH-dependent oxidoreductase activity. In addition, the constitutive expression of TaOPR2 can rescue the male sterility phenotype of Arabidopsis mutant opr3. These results suggest that TaOPR2 is involved in the biosynthesis of jasmonic acid (JA) in wheat. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  20. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice

    PubMed Central

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications. PMID:26446494

  1. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    PubMed

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  2. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion.

    PubMed

    Leprinc, A S; Grandbastien, M A; Christian, M

    2001-11-01

    Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate-resistant mutants selected from protoplast-derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tntl elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non-conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tntl subfamilies and that only one active Tntl subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

  3. HY5 regulates Nitrite Reductase 1 (NIR1) and Ammonium Transporter1;2 (AMT1;2) in Arabidopsis seedlings

    PubMed Central

    Huang, Lifen; Zhang, Hongcheng; Zhang, Huiyong; Deng, Xing Wang; Wei, Ning

    2016-01-01

    HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings. PMID:26259199

  4. Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.

    1998-01-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442

  5. Resolution and partial characterization of two aldehyde reductases of mammalian liver.

    PubMed

    Tulsiani, D R; Touster

    1977-04-25

    Investigation of NADP-dependent aldehyde reductase activity in mouse liver led to the finding that two distinct reductases are separable by DE52 ion exchange chromatography. Aldehyde reductase I (AR I) appears in the effluent, while aldehyde reductase II (AR II) is eluted with a salt gradient. By several procedures AR II was purified over 1100-fold from liver supernatant fraction, but AR I could be pruified only 107-fold because of its instability. The two enzymes are different in regard to pH optimum, substrate specificity, response to inhibitors, and reactivity with antibody to AR II. While both enzymes utilize aromatic aldehydes well, only AR II ACTS ON D-glucuronate, indicating that it is the aldyhyde reductase recently reported to be identical to NADP-L-gulonate dehydrogenase. The presence of two NADP-linked aldehyde reductases in liver has apparently not heretofore been reported.

  6. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  7. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers.

    PubMed

    Reddy, K Ashok; Kumar, P Uday; Srinivasulu, M; Triveni, B; Sharada, K; Ismail, Ayesha; Reddy, G Bhanuprakash

    2017-02-01

    The incidence of breast cancer in India is on the rise and is rapidly becoming the primary cancer in Indian women. The aldoketo reductase (AKR) family has more than 190 proteins including aldose reductase (AKR1B1) and aldose reductase like protein (AKR1B10). Apart from liver cancer, the status of AKR1B1 and AKR1B10 with respect to their expression and activity has not been reported in other human cancers. We studied the specific activity and expression of AKR1B1 and AKR1B10 in breast non tumor and tumor tissues and in the blood. Fresh post-surgical breast cancer and non-cancer tissues and blood were collected from the subjects who were admitted for surgical therapy. Malignant, benign and pre-surgical chemotherapy samples were evaluated by histopathology scoring. Expression of AKR1B1 and AKR1B10 was carried out by immunoblotting and immunohistochemistry (IHC) while specific activity was determined spectrophotometrically. The specific activity of AKR1B1 was significantly higher in red blood cells (RBC) in all three grades of primary surgical and post-chemotherapy samples. Specific activity of both AKR1B1 and AKR1B10 increased in tumor samples compared to their corresponding non tumor samples (primary surgical and post-chemotherapy). Immunoblotting and IHC data also indicated overexpression of AKR1B1 in all grades of tumors compared to their corresponding non tumor samples. There was no change in the specific activity of AKR1B1 in benign samples compared to all grades of tumor and non-tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Crystal Structure and Catalytic Mechanism of 7-Hydroxymethyl Chlorophyll a Reductase*

    PubMed Central

    Wang, Xiao; Liu, Lin

    2016-01-01

    7-Hydroxymethyl chlorophyll a reductase (HCAR) catalyzes the second half-reaction in chlorophyll b to chlorophyll a conversion. HCAR is required for the degradation of light-harvesting complexes and is necessary for efficient photosynthesis by balancing the chlorophyll a/b ratio. Reduction of the hydroxymethyl group uses redox cofactors [4Fe-4S] cluster and FAD to transfer electrons and is difficult because of the strong carbon-oxygen bond. Here, we report the crystal structure of Arabidopsis HCAR at 2.7-Å resolution and reveal that two [4Fe-4S]clusters and one FAD within a very short distance form a consecutive electron pathway to the substrate pocket. In vitro kinetic analysis confirms the ferredoxin-dependent electron transport chain, thus supporting a proton-activated electron transfer mechanism. HCAR resembles a partial reconstruction of an archaeal F420-reducing [NiFe] hydrogenase, which suggests a common mode of efficient proton-coupled electron transfer through conserved cofactor arrangements. Furthermore, the trimeric form of HCAR provides a biological clue of its interaction with light-harvesting complex II. PMID:27072131

  9. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.W.; Robinson, H.; Yeung, N.

    2010-07-28

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN?-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPRmore » studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.« less

  10. The diheme cytochrome c4 from Vibrio cholerae is a natural electron donor to the respiratory cbb3 oxygen reductase

    PubMed Central

    Chang, Hsin-Yang; Ahn, Young; Pace, Laura A.; Lin, Myat T.; Lin, Yun-Hui; Gennis, Robert B.

    2010-01-01

    The respiratory chain of Vibrio cholerae contains three bd-type quinol oxygen reductases as well as one cbb3 oxygen reductase. The cbb3 oxygen reductase has been previously isolated and characterized, however the natural mobile electron donor(s) which shuttles electrons between the bc1 complex and the cbb3 oxygen reductase is not known. The most likely candidates are the diheme cytochrome c4 and mono-heme cytochrome c5, which have been previously shown to be present in the periplasm of aerobically grown cultures of V. cholerae. Both cytochromes c4 and c5 from V. cholerae have been cloned and expressed heterologously in E. coli. It is shown that reduced cytochrome c4 is a substrate for the purified cbb3 oxygen reductase and can support steady state oxygen reductase activity of at least 300 e−1/s. In contrast, reduced cytochrome c5 is not a good substrate for the cbb3 oxygen reductase. Surprisingly, the dependence of the oxygen reductase activity on the concentration of cytochrome c4 does not exhibit saturation. Global spectroscopic analysis of the time course of the oxidation of cytochrome c4 indicates that the apparent lack of saturation is due to the strong dependence of KM and Vmax on the concentration of oxidized cytochrome c4. Whether this is an artifact of the in vitro assay or has physiological significance remains unknown. Cyclic voltammetry was used to determine that the midpoint potentials of the two hemes in cytochrome c4 are 240 mV and 340 mV (vs SHE), similar to the electrochemical properties of other c4-type cytochromes. Genomic analysis shows a strong correlation between the presence of a c4-type cytochrome and a cbb3 oxygen reductase within the β- and γ- proteobacterial clades, suggesting that cytochrome c4 is the likely natural electron donor to the cbb3 oxygen reductases within these organisms. These would include the β-proteobacteria Neisseria meningitidis and Neisseria gonnorhoeae, in which the cbb3 oxygen reductases are the only terminal oxidases in their respiratory chains, and the γ- proteobacterium Pseudomonas stutzeri. PMID:20715760

  11. Human DNA polymerase η accommodates RNA for strand extension.

    PubMed

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2017-11-03

    Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η in vivo . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Decrease of Nitrate Reductase Activity in Spinach Leaves during a Light-Dark Transition 1

    PubMed Central

    Riens, Burgi; Heldt, Hans Walter

    1992-01-01

    In leaves of spinach plants (Spinacia oleracea L.) performing CO2 and NO3− assimilation, at the time of sudden darkening, which eliminates photosystem I-dependent nitrite reduction, only a minor temporary increase of the leaf nitrite content is observed. Because nitrate reduction does not depend on redox equivalents generated by photosystem I activity, a continuation of nitrate reduction after darkening would result in a large accumulation of nitrite in the leaves within a very short time, which is not observed. Measurements of the extractable nitrate reductase activity from spinach leaves assayed under standard conditions showed that in these leaves the nitrate reductase activity decreased during darkening to 15% of the control value with a half-time of only 2 minutes. Apparently, in these leaves nitrate reductase is very rapidly inactivated at sudden darkness avoiding an accumulation of the toxic nitrite in the cells. PMID:16668679

  13. The role of extended Fe4S4 cluster ligands in mediating sulfite reductase hemoprotein activity.

    PubMed

    Cepeda, Marisa R; McGarry, Lauren; Pennington, Joseph M; Krzystek, J; Elizabeth Stroupe, M

    2018-05-28

    The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO 3 2- to S 2- . Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe 4 S 4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe 4 S 4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site. Copyright © 2018. Published by Elsevier B.V.

  14. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes

    PubMed Central

    Spite, Matthew; Baba, Shahid P.; Ahmed, Yonis; Barski, Oleg A.; Nijhawan, Kanchan; Petrash, J. Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-01-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are efficient phospholipid aldehyde reductases, with non-overlapping substrate specificity, and may be involved in tissue-specific metabolism of endogenous or dietary phospholipid aldehydes. PMID:17381426

  15. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.

    PubMed

    Donigan, Katherine A; McLenigan, Mary P; Yang, Wei; Goodman, Myron F; Woodgate, Roger

    2014-03-28

    Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A "steric gate" pol ι mutant is considerably more active in the presence of Mn(2+) compared with Mg(2+) and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be "at risk" for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations.

  16. Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction.

    PubMed

    Fox, B G; Liu, Y; Dege, J E; Lipscomb, J D

    1991-01-05

    Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.

  17. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum.

    PubMed

    Bhatti, Huma Aslam; Tehseen, Yildiz; Maryam, Kiran; Uroos, Maliha; Siddiqui, Bina S; Hameed, Abdul; Iqbal, Jamshed

    2017-12-01

    Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6'-hydroxyhex-3'-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC 50 value of 2.095±0.77µM compare to standard sorbinil (IC 50 =3.14±0.02µM). Moreover, the compound (1) also showed multifolds higher activity (IC 50 =0.783±0.07µM) against AKR1A1 as compared to standard valproic acid (IC 50 =57.4±0.89µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC 50 =4.324±1.25µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Hyperhomocysteinemia and vitamin B-12 deficiency are more striking in Syrians than in Germans--causes and implications.

    PubMed

    Herrmann, Wolfgang; Obeid, Rima; Jouma, Muhidien

    2003-01-01

    Hyperhomocysteinemia is an accepted risk factor for coronary artery disease, but the determining factors are not fully understood. We investigated hyperhomocysteinemia and vitamin deficiency in Syrian coronary patients and apparently healthy Syrian and German controls. We enrolled 273 Syrian patients with angiographically confirmed stenosis, along with 159 Syrian and 75 German controls. Plasma total homocysteine (HCY), cystathionine, methylmalonic acid (MMA), vitamin B-6, B-12, folate, lipids, apolipoproteins and methylenetetrahydrofolate reductase (C677T-MTHFR) mutation were analysed. There was a very high prevalence of hyperhomocysteinemia (>12 micromol/l) in Syrians (patients 61%, controls 44%, Germans 16%) together with functional vitamin B-12 deficiency diagnosed by elevated MMA (patients 49%, controls 47%, Germans 3%), which was in contrast to the low frequency of decreased serum vitamin B-12 (12% in patients, 7% in Syrian controls). The HCY concentration in German controls was lower than in Syrians, median 8.8 vs. 11.3 micromol/l. The vitamin B-12 deficiency induces folate trapping; higher levels of folate are needed to prevent hyperhomocysteinemia. Germans achieved the HCY level of < or =12 micromol/l at significantly lower folate concentrations > or =4.4 ng/ml, than Syrians with normal MMA (> or =16.7 nmol/l folate) or Syrians with high MMA (> or =23.3 nmol/l folate). Smoking and homozygous state for C677T-MTHFR mutation contributed to hyperhomocysteinemia. We could confirm that the reasons for hyperhomocysteinemia in Syrians were in fact mostly related to a relative folate deficiency, which is due to a vitamin B-12 shortage. Vitamin B-12 deficiency induces folate trapping. Besides lifestyle, other presently unknown factors may contribute to hyperhomocysteinemia and vitamin B-12 deficiency in Syrians.

  19. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    PubMed

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  20. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production.

    PubMed

    Xu, Jian-Zhong; Yang, Han-Kun; Liu, Li-Ming; Wang, Ying-Yu; Zhang, Wei-Guo

    2018-03-25

    l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L -1 ), carbon yield (from 0.35 to 0.44 g [g glucose] -1 ) and productivity (from 2.07 to 2.93 g L -1  hr -1 ) of l-lysine in JL-6 ΔdapB::Ec-dapB C115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapB C115G,G116C , followed by JL-6 Cg-dapB C37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapB C46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity. © 2018 Wiley Periodicals, Inc.

  1. Identification and Characterization of the Missing Pyrimidine Reductase in the Plant Riboflavin Biosynthesis Pathway1[W][OA

    PubMed Central

    Hasnain, Ghulam; Frelin, Océane; Roje, Sanja; Ellens, Kenneth W.; Ali, Kashif; Guan, Jiahn-Chou; Garrett, Timothy J.; de Crécy-Lagard, Valérie; Gregory, Jesse F.; McCarty, Donald R.; Hanson, Andrew D.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction. PMID:23150645

  2. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, G.W.; Harris, G.; Stubbe, J.

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its labelmore » at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.« less

  3. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beierlein, J.; Frey, K; Bolstad, D

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structuremore » of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.« less

  4. Bioactive constituents from Chinese natural medicines. XXXII. aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B(4), B(5), C(1), and D(1)-D(3).

    PubMed

    Morikawa, Toshio; Xie, Haihui; Wang, Tao; Matsuda, Hisashi; Yoshikawa, Masayuki

    2008-10-01

    From the methanolic extract of the whole plant of Sinocrassula indica (Crassulaceae), six new flavonol glycosides, sinocrassosides B(4) (1), B(5) (2), C(1) (3), D(1) (4), D(2) (5), and D(3) (6), were isolated together with 30 compounds. The structures of 1-6 were elucidated on the basis of chemical and physicochemical evidence. In addition, several constituents were found to show inhibitory effects on aminopeptidase N and aldose reductase.

  5. [Light-dependent changes in the enzyme activity of the ascorbate-glutathione cycle and ascorbate oxidase in the leaves of pea].

    PubMed

    Mittova, V O; Igamberdiev, A U

    2000-01-01

    Light-determined activation of ferments of ascorbate-glutation cycle, ascorbate-oxidase in chloroplasts and cytosol is demonstrated as well as ascorbate-peroxidase, monodehydroascorbate-reductase, glutation-reductase and ascorbate-oxydase in mitochondria. On the other hands activity of mitochondrial dehydroascorbate-reductase increased on reduction of light most likely due to function of electron transport from glutation to dehydroascorbate in mitochondria. Glutation metabolism is proved to be endogenic catalytic process where the amount reconstructed glutation changes slowly with a delay and gradually follow light changes. Light dependable changes of glutation content in chloroplasts ensure resistance of ferment system again hydrogen peroxide and superoxide radicals that generate intensively at light.

  6. Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs.

    PubMed

    Sugiyama, Y; Fujita, T; Matsumoto, M; Okamoto, K; Imada, I

    1985-12-01

    The effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in isolated brain mitochondria from rats and dogs were studied. CV-2619 was easily reduced by canine brain mitochondria in the presence of respiratory substrates. Reduced CV-2619 (2H-CV-2619) was rapidly oxidized through the cytochrome b chain, indicating that the compound functioned simply as an electron carrier of mitochondrial respiratory system. Both nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent lipid peroxidations were examined in canine brain mitochondria in the presence of adenosine diphosphate (ADP) and Fe3+. NADH-cytochrome c reductase activity was sensitive to NADPH-dependent lipid peroxidation. CV-2619 (10(-5)M) strongly inhibited both types of the lipid peroxidation reactions and protected the resultant inactivation of the NADH-cytochrome c reductase activity. Activities of succinate oxidase in rat and canine brain mitochondria were virtually unaffected by CV-2619 and its metabolites (10(-5)-10(-6) M). On the other hand, CV-2619 markedly suppressed the state 3 respiration in glutamate oxidation in a dose dependent manner without any effect on the state 4 respiration and the ADP/O ratio in intact rat brain mitochondria. The inhibitory effect of CV-2619 was also observed in NADH-cytochrome c reductase, but not in NADH-2,6-dichlorophenolindophenol (DCIP) and NADH-ubiquinone reductases in canine brain mitochondria. These facts and results of inhibitor analysis suggest that the action site of CV-2619 is NADH-linked complex I in the mitochondrial respiratory chain and is different from that of inhibitors of oxidative phosphorylation such as rotenone, oligomycin and 2,4-dinitrophenol. Finally, the above findings suggest that CV-2619 acts as an electron carrier in respiratory chains and functions as an antioxidant against membrane damage caused by lipid peroxidation in brain mitochondria. It appears likely that the inhibition of oxygen consumption caused by CV-2619 is related to the effect on non-respiratory systems such as lipid peroxidation which also consumes oxygen.

  7. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia colimore » expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.« less

  8. Haloarcula marismortui cytochrome b-561 is encoded by the narC gene in the dissimilatory nitrate reductase operon.

    PubMed

    Yoshimatsu, Katsuhiko; Araya, Osamu; Fujiwara, Taketomo

    2007-01-01

    The composition of membrane-bound electron-transferring proteins from denitrifying cells of Haloarcula marismortui was compared with that from the aerobic cells. Accompanying nitrate reductase catalytic NarGH subcomplex, cytochrome b-561, cytochrome b-552, and halocyanin-like blue copper protein were induced under denitrifying conditions. Cytochrome b-561 was purified to homogeneity and was shown to be composed of a polypeptide with a molecular mass of 40 kDa. The cytochrome was autooxidizable and its redox potential was -27 mV. The N-terminal sequence of the cytochrome was identical to the deduced amino acid sequence of the narC gene product encoded in the third ORF of the nitrate reductase operon with a unique arrangement of ORFs. The sequence of the cytochrome was homologous with that of the cytochrome b subunit of respiratory cytochrome bc. A possibility that the cytochrome bc and the NarGH constructed a supercomplex was discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beliav, Alex; Qiu, Dongru; Fredrickson, James K.

    Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our resultsmore » showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.« less

  10. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides

    NASA Astrophysics Data System (ADS)

    Stairs, Shaun; Nikmal, Arif; Bučar, Dejan-Krešimir; Zheng, Shao-Liang; Szostak, Jack W.; Powner, Matthew W.

    2017-05-01

    Understanding prebiotic nucleotide synthesis is a long standing challenge thought to be essential to elucidating the origins of life on Earth. Recently, remarkable progress has been made, but to date all proposed syntheses account separately for the pyrimidine and purine ribonucleotides; no divergent synthesis from common precursors has been proposed. Moreover, the prebiotic syntheses of pyrimidine and purine nucleotides that have been demonstrated operate under mutually incompatible conditions. Here, we tackle this mutual incompatibility by recognizing that the 8-oxo-purines share an underlying generational parity with the pyrimidine nucleotides. We present a divergent synthesis of pyrimidine and 8-oxo-purine nucleotides starting from a common prebiotic precursor that yields the β-ribo-stereochemistry found in the sugar phosphate backbone of biological nucleic acids. The generational relationship between pyrimidine and 8-oxo-purine nucleotides suggests that 8-oxo-purine ribonucleotides may have played a key role in primordial nucleic acids prior to the emergence of the canonical nucleotides of biology.

  11. Crystal structures of a subunit of the formylglycinamide ribonucleotide amidotransferase, PurS, from Thermus thermophilus , Sulfolobus tokodaii and Methanocaldococcus jannaschii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yuzo; Yanai, Hisaaki; Kanagawa, Mayumi

    2016-07-27

    The crystal structures of a subunit of the formylglycinamide ribonucleotide amidotransferase, PurS, fromThermus thermophilus,Sulfolobus tokodaiiandMethanocaldococcus jannaschiiwere determined and their structural characteristics were analyzed. For PurS fromT. thermophilus, two structures were determined using two crystals that were grown in different conditions. The four structures in the dimeric form were almost identical to one another despite their relatively low sequence identities. This is also true for all PurS structures determined to date. A few residues were conserved among PurSs and these are located at the interaction site with PurL and PurQ, the other subunits of the formylglycinamide ribonucleotide amidotransferase. Molecular-dynamics simulations ofmore » the PurS dimer as well as a model of the complex of the PurS dimer, PurL and PurQ suggest that PurS plays some role in the catalysis of the enzyme by its bending motion.« less

  12. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes

    PubMed Central

    Gibson, Douglas A.; Simitsidellis, Ioannis; Cousins, Fiona L.; Critchley, Hilary O. D.; Saunders, Philippa T. K.

    2016-01-01

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1–8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment. PMID:26817618

  13. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes.

    PubMed

    Gibson, Douglas A; Simitsidellis, Ioannis; Cousins, Fiona L; Critchley, Hilary O D; Saunders, Philippa T K

    2016-01-28

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1-8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment.

  14. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.

    PubMed Central

    Scott, R H; DeMoss, J A

    1976-01-01

    When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities. Images PMID:770433

  15. On the early emergence of reverse transcription: theoretical basis and experimental evidence

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Valverde, V.; Hernandez, G.; Gariglio, P.; Fox, G. E.; Oro, J.

    1992-01-01

    Reverse transcriptase (RT) was first discovered as an essential catalyst in the biological cycle of retroviruses. However, in the past years evidence has accumulated showing that RTs are involved in a surprisingly large number of RNA-mediated transpositional events that include both viral and nonviral genetic entities. Although it is probable that some RT-bearing genetic elements like the different types of AIDS viruses and the mammalian LINE family have arisen in recent geological times, the possibility that reverse transcription first took place in the early Archean is supported by (1) the hypothesis that RNA preceded DNA as cellular genetic material; (2) the existence of homologous regions of the subunit tau of the E. coli DNA polymerase III with the simian immunodeficiency virus RT, the hepatitis B virus RT, and the beta' subunit of the E. coli RNA polymerase (McHenry et al. 1988); (3) the presence of several conserved motifs, including a 14-amino-acid segment that consists of an Asp-Asp pair flanked by hydrophobic amino acids, which are found in all RTs and in most cellular and viral RNA polymerases. However, whether extant RTs descend from the primitive polymerase involved in the RNA-to-DNA transition remains unproven. Substrate specificity of the AMV and HIV-1 RTs can be modified in the presence of Mn2+, a cation which allows them to add ribonucleotides to an oligo (dG) primer in a template-dependent reaction. This change in specificity is comparable to that observed under similar conditions in other nucleic acid polymerases. This experimentally induced change in RT substrate specificity may explain previous observations on the misincorporation of ribonucleotides by the Maloney murine sarcoma virus RT in the minus and plus DNA of this retrovirus (Chen and Temin 1980). Our results also suggest that HIV-infected macrophages and T-cell cells may contain mixed polynucleotides containing both ribo- and deoxyribonucleotides. The evolutionary significance of these changes in substrate specificities of nucleic acid polymerases is also discussed.

  16. Cyanide, Peroxide and Nitric Oxide Formation in Solutions of Hydroxyurea Causes Cellular Toxicity and May Contribute to its Therapeutic Potency

    PubMed Central

    Kuong, Kawai J.; Kuzminov, Andrei

    2009-01-01

    Hydroxyurea is a potent remedy against a variety of ailments and an efficient inhibitor of DNA synthesis, yet its pharmacology is unclear. Hydroxyurea acts in Escherichia coli by the same mechanism as it does in eukaryotes, via inhibition of ribonucleotide reductase. When examining a controversy about concentrations of hydroxyurea that prevent thymineless death in E. coli, we found instability in hydroxyurea solutions which avoided prior detection due to its peculiar nature. In contrast to freshly dissolved hydroxyurea, which did not affect respiration and was bacteriostatic, one-day-old hydroxyurea solutions inhibited respiration and were immediately bactericidal. Respiration was inhibited by two gasses, hydrogen cyanide (HCN) and nitric oxide (NO), whose appearance we detected in “aged” hydroxyurea stocks by GC-MS; however, neither gas was bactericidal. While determining the cause of toxicity, we found that hydroxyurea damages DNA directly. We also demonstrated accumulation of peroxides in hydroxyurea solutions by enzymatic assays, which explains the toxicity, as both NO and HCN are known to kill bacteria when combined with hydrogen peroxide. Remarkably, we found that bactericidal effects of NO + H2O2 and HCN + H2O2 mixtures were further synergistic. Accumulation of decomposition products in solutions of hydroxyurea may explain the broad therapeutic effects of this drug. PMID:19467244

  17. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene

    PubMed Central

    Chan, Chi N.; Trinité, Benjamin

    2017-01-01

    ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. PMID:28652233

  18. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Yang, Zhaogang; Yu, Bo; Zhu, Jing; Huang, Xiaomeng; Xie, Jing; Xu, Songlin; Yang, Xiaojuan; Wang, Xinmei; Yung, Bryant C.; Lee, L. James; Lee, Robert J.; Teng, Lesheng

    2014-07-01

    The siRNA LOR-1284 targets the R2 subunit of ribonucleotide reductase (RRM2) and has shown promise in cancer therapy. In this study, transferrin (Tf) conjugated lipid nanoparticles (Tf-NP-LOR-1284) were synthesized by microfluidic hydrodynamic focusing (MHF) and evaluated for the targeted delivery of LOR-1284 siRNA into acute myeloid leukemia (AML) cells. The in vitro study showed that Tf-NP-LOR-1284 can protect LOR-1284 from serum nuclease degradation. Selective uptake of Tf-NP-LOR-1284 was observed in MV4-11 cells. In addition, qRT-PCR and Western blot results revealed that Tf-NP-LOR-1284 was more effective than the free LOR-1284 in reducing the R2 mRNA and protein levels. The Tf-NP-LOR-1284 showed prolonged circulation time and increased AUC after i.v. administration relative to the free LOR-1284. Furthermore, Tf-NP-LOR-1284 facilitated increased accumulation at the tumor site along with the decreased R2 mRNA and protein expression in a murine xenograft model. These results suggest that Tf-conjugated NPs prepared by MHF provide a suitable platform for efficient and specific therapeutic delivery of LOR-1284 into AML cells.

  19. Identification and Characterization of Alternative Promoters, Transcripts and Protein Isoforms of Zebrafish R2 Gene

    PubMed Central

    Shang, Hanqiao; Li, Qing; Feng, Guohui; Cui, Zongbin

    2011-01-01

    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress. PMID:21887375

  20. Identification and characterization of alternative promoters, transcripts and protein isoforms of zebrafish R2 gene.

    PubMed

    Shang, Hanqiao; Li, Qing; Feng, Guohui; Cui, Zongbin

    2011-01-01

    Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5' termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress.

  1. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    PubMed

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  2. Identification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China.

    PubMed

    Huang, X; Huang, Y; Xu, L; Wei, S; Ouyang, Z; Feng, J; Qin, Q

    2015-04-01

    Grouper Epinephelus spp. is one of the most important mariculture fish species in China and South-East Asian countries. The emerging viral diseases, evoked by iridovirus which belongs to genus Megalocytivirus and Ranavirus, have been well characterized in recent years. To date, few data on lymphocystis disease in grouper which caused by lymphocystis disease virus (LCDV) were described. Here, a novel LCDV isolate was identified and characterized. Based on the sequence of LCDV major capsid protein (MCP) and DNA polymerase gene, we found that the causative agents from different species of diseased groupers were the same one and herein were uniformly defined as grouper LCDV (GLCDV). Furthermore, H&E staining revealed that the nodules on the skin were composed of giant cells that contained inclusion bodies in the cytoplasm. Numerous virus particles with >210 nm in diameter and with hexagonal profiles were observed in the cytoplasm. In addition, phylogenetic analysis based on four iridovirus core genes, MCP, DNA polymerase, myristoylated membrane protein (MMP) and ribonucleotide reductase (RNR), consistently showed that GLCDV was mostly related to LCDV-C, followed by LCDV-1. Taken together, our data firstly provided the molecular evidence that GLCDV was a novel emerging iridovirus pathogen in grouper culture. © 2014 John Wiley & Sons Ltd.

  3. Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine's Drug Conjugates on Cancer Therapy.

    PubMed

    Dyawanapelly, Sathish; Kumar, Animesh; Chourasia, Manish K

    2017-01-01

    Currently, drug delivery systems have a high impact in cancer therapy and are receiving more attention than conventional cancer treatment modalities. Compared with current cancer therapies, gemcitabine (2', 2'-difluoro-2'-deoxycytidine) has been proven to be an effective chemotherapeutic agent against pancreatic, colon, bladder, breast, ovarian, non-small-cell lung, and head and neck cancers in combination with other anticancer agents. To improve the safety and efficacy of cytotoxic drugs, several drug delivery systems have been explored. This review outlines the recent work directed toward gemcitabine delivery systems for cancer therapy, including aerosols, polymeric nanoparticles, liposomes, microparticles, carbon nanotubes, and multifunctional theranostic nanomedicines. It also provides insight into the design and development of gemcitabine conjugation for safe and effective cancer therapy. Despite the clinical promises of gemcitabine, many therapeutic challenges remain. Specifically, its therapeutic use in cancer chemotherapy is impeded by a short biological half-life, caused by its rapid metabolism, and resistance due to increased expression of ribonucleotide reductase. In our opinion, many research investigations have contributed to improve the selectivity and efficacy of gemcitabine. This combined approach of drug delivery systems and gemcitabine conjugates has shown promising efficacy in preclinical models and significant potential for future clinical cancer-therapeutic applications. Also, these strategies overcome most of the aforementioned limits of gemcitabine.

  4. Status of Vitamins B-12 and B-6 but Not of Folate, Homocysteine, and the Methylenetetrahydrofolate Reductase C677T Polymorphism Are Associated with Impaired Cognition and Depression in Adults123

    PubMed Central

    Moorthy, Denish; Peter, Inga; Scott, Tammy M.; Parnell, Laurence D.; Lai, Chao-Qiang; Crott, Jimmy W.; Ordovás, José M.; Selhub, Jacob; Griffith, John; Rosenberg, Irwin H.; Tucker, Katherine L.; Troen, Aron M.

    2012-01-01

    The C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene differs in frequency in various ethnic groups that have differing prevalence of age-related cognitive impairments. We used a series of neuro-psychological tests to examine the association of the MTHFR C677T polymorphism with cognition and depression and also to assess whether genotype modifies the association of folate and homocysteine with these outcomes. This study analyzed pooled cross-sectional data from 2 ethnically diverse cohorts of community-living adults: the Boston Puerto Rican Health Study (n = 939) and the Nutrition, Aging, and Memory in Elders study (n = 1017). Individuals in both cohorts underwent anthropometric and laboratory measurements and dietary and health assessments using validated questionnaires between the years 2003 and 2007. Cognitive outcomes included measures of global cognition [Mini-Mental Status Exam (MMSE)], depression (Center for Epidemiological Studies Depression Scale), and 3 factor scores for the domains of attention, executive function, and memory that were derived from a detailed set of neuropsychological tests. Low plasma vitamin B-12 concentrations were associated with poorer MMSE scores and higher depression scores, and low vitamin B-6 concentrations were associated with lower MMSE and worse attention and executive function in the multivariate analysis. In contrast, MTHFR genotype, folate, and homocysteine were not associated with cognition or depression in either ethnicity-pooled or stratified analysis. The current study did not find evidence of an association between the MTHFR C677T TT genotype and impaired cognition or depression in a population with adequate folate status and a high prevalence of cognitive impairment and depression. PMID:22739363

  5. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats.

    PubMed

    Eraslan, G; Kanbur, M; Karabacak, M; Arslan, K; Siliğ, Y; Soyer Sarica, Z; Tekeli, M Y; Taş, A

    2017-01-01

    A total of 66 male Wistar rats were used and six groups (control: 10 animals and experimental: 12 animals) were formed. While a separate control group was established for each study period, mad honey application to the animals in the experimental group was carried out with a single dose (12.5 g kg -1 body weight (b.w.); acute stage), at a dose of 7.5 g kg -1 b.w. for 21 days (subacute stage), and at a dose of 5 g kg -1 b.w. for 60 days (chronic stage). Tissue and blood oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (HNE), superoxide dismutase, catalase, glutathione (GSH) peroxidase, and glucose-6-phosphate dehydrogenase), hepatic chemical metabolizing parameters in the liver (cytochrome P450 2E1, nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase (CYTC), GSH S-transferase (GST), and GSH), and micronucleus and comet test in some samples were examined. Findings from the study showed that single and repeated doses given over the period increased MDA, NO, and HNE levels while decreasing/increasing tissue and blood antioxidant enzyme activities. From hepatic chemical metabolizing parameters, GST activity increased in the subacute and chronic stages and CYTC activity increased in the acute period, whereas GSH level decreased in the subacute stage. Changes in tail and head intensities were found in most of the comet results. Mad honey caused oxidative stresses for each exposure period and made some significant changes on the comet test in certain periods for some samples obtained. In other words, according to the available research results obtained, careless consumption of mad honey for different medical purposes is not appropriate.

  6. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  7. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family

    PubMed Central

    Bevans, Carville G.; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant α-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades. PMID:26230708

  8. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    PubMed

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  9. Vitamin C. Biosynthesis, recycling and degradation in mammals.

    PubMed

    Linster, Carole L; Van Schaftingen, Emile

    2007-01-01

    Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.

  10. The cryoprotective effects of vitamin B12 supplementation on bovine semen quality.

    PubMed

    Hu, J-H; Tian, W-Q; Zhao, X-L; Zan, L-S; Xin, Y-P; Li, Q-W

    2011-02-01

    The present study aimed to investigate the effects of vitamin B(12) supplementation on standard bovine semen quality parameters and anti-oxidative enzyme activities. Vitamin B(12) was supplemented at concentrations of 1.25, 2.5, 3.75 and 5.0 mg/ml to bovine semen cryoprotective medium. The results indicated that the motility and straight line velocity, curvilinear velocity, mean coefficient, velocity of the average path values of sperm supplemented with 2.50 mg/ml vitamin B(12) were significantly higher than that of other groups (p<0.05). No significant difference was observed for linearity index, lateral head displacement values and the percentage of grade A spermatozoa between the extenders containing 2.50 and 3.75 mg/ml vitamin B(12) (p>0.05). The percentages of acrosome-intact and plasma membrane-intact spermatozoa were significantly improved (p<0.05) by supplementing with 2.50 mg/ml vitamin B(12) . The results of biochemical assay revealed that vitamin B(12) supplementation did not cause significant changes in superoxide dismutase levels compared with control (p>0.05). However, the catalase levels were higher in the treatment supplemented with vitamin B(12) at 2.50 mg/ml, when compared with other groups (p<0.05). The extender supplemented with vitamin B(12) significantly decreased glutathione peroxidase activity compared with the control (p<0.05). The supplementation of 3.75 mg/ml vitamin B(12) caused the highest value of glutathione reductase activity, compared with other groups (p<0.05). In conclusion, the extender supplemented with vitamin B(12) could reduce the oxidative stress provoked by freezing-thawing and improve bovine semen quality. Further studies are required to obtain more concrete results on the determination of lipid peroxidation and antioxidant capacities of vitamin B(12) in cryopreserved bovine semen. © 2010 Blackwell Verlag GmbH.

  11. Intact Plastids Are Required for Nitrate- and Light-Induced Accumulation of Nitrate Reductase Activity and mRNA in Squash Cotyledons 1

    PubMed Central

    Oelmüller, Rolf; Briggs, Winslow R.

    1990-01-01

    Induction of nitrate reductase activity and mRNA by nitrate and light is prevented if chloroplasts are destroyed by photooxidation in norflurazon-treated squash (Cucurbita maxima L.) cotyledons. The enzyme activity and mRNA can be induced if norflurazon-treated squash seedlings are kept in low-intensity red light, which minimizes photodamage to the plastids. It is concluded that induction of nitrate reductase activity and nitrate reductase mRNA requires intact plastids. If squash seedlings grown in low-intensity red light are transferred to photooxidative white light, nitrate reductase activity accumulates during the first 12 hours after the shift and declines thereafter. Thus photodamage to the plastids and the disappearance of nitrate reductase activity and mRNA are events separable in time, and disappearance of the enzyme activity is a consequence of the damage to the plastids. Images Figure 1 Figure 3 Figure 4 PMID:16667294

  12. Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats.

    PubMed

    Fouad, Amr A; Alwadani, Fahad

    2015-11-01

    The possible protective effect of thymoquinone against eye lens changes in diabetic rats was investigated. Following diabetes induction by a single injection of streptozotocin (45 mg/kg, i.p.), thymoquinone was administered in three different doses (20, 40, and 80 mg/kg/day, p.o.) for 12 weeks. Thymoquinone significantly and dose-dependently attenuated the hypoinsulinemia and hyperglycemia in diabetic rats. Also, thymoquinone (particularly 40 and 80 mg/kg) significantly decreased the elevations of malondialdehyde, nitric oxide, tumor necrosis factor-α, glycated proteins, aldose reductase activity, sorbitol level, and caspase-3 activity in the lens tissues of diabetic rats. In addition, thymoquinone (particularly 40 and 80 mg/kg) significantly ameliorated the diabetes-induced reductions of glutathione peroxidase, superoxide dismutase, and catalase activities, and total and soluble protein contents in the lens tissues. It was concluded that thymoquinone significantly protected the lens tissue against changes induced by diabetes in rats through its antioxidant, anti-inflammatory, and antidiabetic effects. Copyright © 2015. Published by Elsevier B.V.

  13. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer

    PubMed Central

    Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R.; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele

    2017-01-01

    The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate–enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA’s highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt–substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B12-dependent biochemistry and represents an effective mode of RDase catalysis. PMID:28671181

  14. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.

    PubMed

    Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele

    2017-07-03

    The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.

  15. Superoxide reductase from the syphilis spirochete Treponema pallidum: crystallization and structure determination using soft X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Silva, Teresa; Trincão, José; Carvalho, Ana L.

    2005-11-01

    Superoxide reductase is a non-haem iron-containing protein involved in resistance to oxidative stress. The oxidized form of the protein has been crystallized and its three-dimensional structure solved. A highly redundant X-ray diffraction data set was collected on a rotating-anode generator using Cu Kα X-ray radiation. Four Fe atoms were located in the asymmetric unit corresponding to four protein molecules arranged as a dimer of homodimers. Superoxide reductase is a 14 kDa metalloprotein containing a catalytic non-haem iron centre [Fe(His){sub 4}Cys]. It is involved in defence mechanisms against oxygen toxicity, scavenging superoxide radicals from the cell. The oxidized form of Treponemamore » pallidum superoxide reductase was crystallized in the presence of polyethylene glycol and magnesium chloride. Two crystal forms were obtained depending on the oxidizing agents used after purification: crystals grown in the presence of K{sub 3}Fe(CN){sub 6} belonged to space group P2{sub 1} (unit-cell parameters a = 60.3, b = 59.9, c = 64.8 Å, β = 106.9°) and diffracted beyond 1.60 Å resolution, while crystals grown in the presence of Na{sub 2}IrCl{sub 6} belonged to space group C2 (a = 119.4, b = 60.1, c = 65.6 Å, β = 104.9°) and diffracted beyond 1.55 Å. A highly redundant X-ray diffraction data set from the C2 crystal form collected on a copper rotating-anode generator (λ = 1.542 Å) clearly defined the positions of the four Fe atoms present in the asymmetric unit by SAD methods. A MAD experiment at the iron absorption edge confirmed the positions of the previously determined iron sites and provided better phases for model building and refinement. Molecular replacement using the P2{sub 1} data set was successful using a preliminary trace as a search model. A similar arrangement of the four protein molecules could be observed.« less

  16. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.

    PubMed

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J; Nitschke, Wolfgang

    2014-09-06

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of gastrointestinal cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Microenvironmental Effect of 2'-O-(1-Pyrenylmethyl)uridine Modified Fluorescent Oligonucleotide Probes on Sensitive and Selective Detection of Target RNA.

    PubMed

    Imincan, Gülnur; Pei, Fen; Yu, Lijia; Jin, Hongwei; Zhang, Liangren; Yang, Xiaoda; Zhang, Lihe; Tang, XinJing

    2016-04-19

    2'-O-(1-Pyrenylmethyl)uridine modified oligoribonucleotides provide highly sensitive pyrene fluorescent probes for detecting specific nucleotide mutation of RNA targets. To develop more stable and cost-effective oligonucleotide probes, we investigated the local microenvironmental effects of nearby nucleobases on pyrene fluorescence in duplexes of RNAs and 2'-O-(1-pyrenylmethyl)uridine modified oligonucleotides. By incorporation of deoxyribonucleotides, ribonucleotides, 2'-MeO-nucleotides and 2'-F-nucleotides at both sides of 2'-O-(1-pyrenylmethyl)uridine (U(p)) in oligodeoxynucleotide probes, we synthesized a series of pyrene modified oligonucleotide probes. Their pyrene fluorescence emission spectra indicated that only two proximal nucleotides have a substantial effect on the pyrene fluorescence properties of these oligonucleotide probes hybridized with target RNA with an order of fluorescence sensitivity of 2'-F-nucleotides > 2'-MeO-nucleotides > ribonucleotides ≫ deoxyribonucleotides. While based on circular dichroism spectra, overall helix conformations (either A- or B-form) of the duplexes have marginal effects on the sensitivity of the probes. Instead, the local substitution reflected the propensity of the nucleotide sugar ring to adopt North type conformation and, accordingly, shifted their helix geometry toward a more A-type like conformation in local microenvironments. Thus, higher enhancement of pyrene fluorescence emission favored local A-type helix structures and more polar and hydrophobic environments (F > MeO > OH at 2' substitution) of duplex minor grooves of probes with the target RNA. Further dynamic simulation revealed that local microenvironmental effect of 2'-F-nucleotides or ribonucleotides was enough for pyrene moiety to move out of nucleobases to the minor groove of duplexes; in addition, 2'-F-nucleotide had less effect on π-stack of pyrene-modified uridine with upstream and downstream nucleobases. The present oligonucleotide probes successfully distinguished target RNA from single-mutated RNA analyte during an in vitro assay of RNA synthesis.

  19. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Lin; N Yeung; Y Gao

    2011-12-31

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN{sup -}-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site.more » EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.« less

  20. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04097c

  1. Engineering Transgenic Plants for the Sustained Containment and In Situ Treatment of Energetic Materials

    DTIC Science & Technology

    2009-06-01

    yielding nitrite, formaldehyde and 4-nitro- 2,4-diazabutanal (Figure 2) [37, 38]. So far, xplA and xplB, a reductase encoded adjacently to xplA have been...increase transformation frequencies of recalcitrant plants, including rice and maize . This plasmid carries kanamycin resistance for selection in...5 and 12 kb was extracted from all samples, as confirmed by gel electrophoresis (Figure 24). Typical yields were 4 ± 1 μg/g soil. Denaturing

  2. H2O2 Production in Species of the Lactobacillus acidophilus Group: a Central Role for a Novel NADH-Dependent Flavin Reductase

    PubMed Central

    Hertzberger, Rosanne; Arents, Jos; Dekker, Henk L.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel

    2014-01-01

    Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii. PMID:24487531

  3. Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance.

    PubMed

    Toulouse, Jacynthe L; Edens, Thaddeus J; Alejaldre, Lorea; Manges, Amee R; Pelletier, Joelle N

    2017-05-01

    Whole-genome sequencing of trimethoprim-resistant Escherichia coli clinical isolates identified a member of the trimethoprim-resistant type II dihydrofolate reductase gene family ( dfrB ). The dfrB4 gene was located within a class I integron flanked by multiple resistance genes. This arrangement was previously reported in a 130.6-kb multiresistance plasmid. The DfrB4 protein conferred a >2,000-fold increased trimethoprim resistance on overexpression in E. coli Our results are consistent with the finding that dfrB4 contributes to clinical trimethoprim resistance. Copyright © 2017 American Society for Microbiology.

  4. Carbonyl Reduction of NNK by Recombinant Human Lung Enzymes. Identification of HSD17β12 as the Reductase important in (R)-NNAL formation in Human Lung.

    PubMed

    Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip

    2018-05-17

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.

  5. Depressed Levels of Prostaglandin F2α in Mice Lacking Akr1b7 Increase Basal Adiposity and Predispose to Diet-Induced Obesity

    PubMed Central

    Volat, Fanny E.; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-01-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F2α (PGF2α) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF2α synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7−/− mice in 129/Sv background. Akr1b7−/− mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF2α WAT contents. Cloprostenol (PGF2α agonist) administration to Akr1b7−/− mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7−/− mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF2α-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis. PMID:22851578

  6. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulatorsmore » Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.« less

  7. MTHFR C677T polymorphism, homocysteine and B-vitamins status in a sample of Chinese and Malay subjects in Universiti Putra Malaysia.

    PubMed

    Choo, S C; Loh, S P; Khor, G L; Sabariah, M N; Rozita, R

    2011-08-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T is involved in folate and homocysteine metabolism. Disruption in the activity of this enzyme will alter their levels in the body. This study assessed MTHFR C677T polymorphism and its relationship with serum homocysteine and B-vitamins levels in a sample of Chinese and Malays subjects in UPM, Serdang. One hundred subjects were randomly selected from among the university population. Folate, vitamin B12, B6, and homocysteine levels were determined using MBA, ECLIA, and HPLC, respectively. PCR coupled with HinfI digestion was used for detection of MTHFR C677T polymorphism. The frequency of T allele was higher in the Chinese subjects (0.40) compared to the Malay (0.14). Folate, vitamin B12 and B6 levels were highest in the wild genotype in both ethnic groups. Subjects with heterozygous and homozygous genotype showed the highest homocysteine levels. The serum folate and homocysteine were mainly affected by homozygous genotype. MTHFR C677T polymorphism plays an important role in influencing the folate and homocysteine metabolism.

  8. Plasma Homocysteine, Serum Folic Acid, Serum Vitamin B12, Serum Vitamin B6, MTHFR, and Risk of Normal-Tension Glaucoma.

    PubMed

    Li, Jinmiao; Xu, Fan; Zeng, Rui; Gong, Haijun; Lan, Yuqing

    2016-02-01

    This meta-analysis aims to comprehensively evaluate the association between total homocysteine (tHcy) levels, serum folic acid, vitamin B12, vitamin B6 levels, methylenetetrahydrofolate reductase (MTHFR) C677T genotype, and risk of normal-tension glaucoma (NTG). A systematic search of the EMBASE and PubMed databases was performed to evaluate plasma tHcy levels, serum folic acid, B vitamins' mean difference, and odds ratios of MTHFR C677T genotype between cases and controls. A total of 7 studies including 458 cases and 555 controls meeting the inclusion criteria were involved in this meta-analysis. There were 4 studies for tHcy (149 cases and 148 controls), 2 studies for vitamin B6, vitamin B12, and folate (90 cases and 82 controls), and 4 studies for MTHFR (343 cases and 449 controls). Overall, the mean plasma tHcy levels, serum folic acids, vitamin B12, and vitamin B6 levels were 1.16 μmol/L [95% confidence interval (CI), -0.13, 2.45], -0.62 μmol/L (95% CI, -1.98, 0.74), 5.81 μmol/L (95% CI, -3.53, 15.14), and -16.79 μmol/L (95% CI, -86.09, 52.51). MTHFR TT genotype was found to be unrelated to NTG risk (odds ratio=1.08; 95% CI, 0.69, 1.69). NTG is not associated with elevated plasma tHcy, serum folic acid, serum vitamin B12, serum vitamin B6, and MTHFR C677T genotype.

  9. The Steric Gate of DNA Polymerase ι Regulates Ribonucleotide Incorporation and Deoxyribonucleotide Fidelity*

    PubMed Central

    Donigan, Katherine A.; McLenigan, Mary P.; Yang, Wei; Goodman, Myron F.; Woodgate, Roger

    2014-01-01

    Accurate DNA synthesis in vivo depends on the ability of DNA polymerases to select dNTPs from a nucleotide pool dominated by NTPs. High fidelity replicative polymerases have evolved to efficiently exclude NTPs while copying long stretches of undamaged DNA. However, to bypass DNA damage, cells utilize specialized low fidelity polymerases to perform translesion DNA synthesis (TLS). Of interest is human DNA polymerase ι (pol ι), which has been implicated in TLS of oxidative and UV-induced lesions. Here, we evaluate the ability of pol ι to incorporate NTPs during DNA synthesis. pol ι incorporates and extends NTPs opposite damaged and undamaged template bases in a template-specific manner. The Y39A “steric gate” pol ι mutant is considerably more active in the presence of Mn2+ compared with Mg2+ and exhibits a marked increase in NTP incorporation and extension, and surprisingly, it also exhibits increased dNTP base selectivity. Our results indicate that a single residue in pol ι is able to discriminate between NTPs and dNTPs during DNA synthesis. Because wild-type pol ι incorporates NTPs in a template-specific manner, certain DNA sequences may be “at risk” for elevated mutagenesis during pol ι-dependent TLS. Molecular modeling indicates that the constricted active site of wild-type pol ι becomes more spacious in the Y39A variant. Therefore, the Y39A substitution not only permits incorporation of ribonucleotides but also causes the enzyme to favor faithful Watson-Crick base pairing over mutagenic configurations. PMID:24532793

  10. Catalysis of nitrite generation from nitroglycerin by glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

    PubMed

    Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M

    2013-11-30

    Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. The oxidation of apomorphine and other catechol compounds by horseradish peroxidase: relevance to the measurement of dihydropteridine reductase activity.

    PubMed

    Milstien, S; Kaufman, S

    1987-03-19

    It has been reported by Shen et al. (Shen, R.-S., Smith, R.V., Davis, P.J. and Abell, C.W. (1984) J. Biol. Chem. 259, 8894-9000) that apomorphine and dopamine are potent, non-competitive inhibitors of quinonoid dihydropteridine reductase. In this paper we show that apomorphine, dopamine and other catechol-containing compounds are oxidized rapidly to quinones by the horseradish peroxidase-H2O2 system which is used to generate the quinonoid dihydropterin substrate. These quinones react non-enzymatically with reduced pyridine nucleotides, depleting the other substrate of dihydropteridine reductase. When true initial rates of dihydropteridine reductase-dependent reduction of quinonoid dihydropterins are measured, neither apomorphine nor any other catechol-containing compound that has been tested has been found to inhibit dihydropteridine reductase.

  12. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.

    PubMed Central

    Miller, J B; Amy, N K

    1983-01-01

    We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982

  13. Structural and biochemical characterization of N[superscript 5]-carboxyaminoimidazole ribonucleotide synthetase and N[superscript 5]-carboxyaminoimidazole ribonucleotide mutase from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brugarolas, Pedro; Duguid, Erica M.; Zhang, Wen

    With the rapid rise of methicillin-resistant Staphylococcus aureus infections, new strategies against S. aureus are urgently needed. De novo purine biosynthesis is a promising yet unexploited target, insofar as abundant evidence has shown that bacteria with compromised purine biosynthesis are attenuated. Fundamental differences exist within the process by which humans and bacteria convert 5-aminoimidazole ribonucleotide (AIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). In bacteria, this transformation occurs through a two-step conversion catalyzed by PurK and PurE; in humans, it is mediated by a one-step conversion catalyzed by class II PurE. Thus, these bacterial enzymes are potential targets for selective antibiotic development. Here,more » the first comprehensive structural and biochemical characterization of PurK and PurE from S. aureus is presented. Structural analysis of S. aureus PurK reveals a nonconserved phenylalanine near the AIR-binding site that occupies the putative position of the imidazole ring of AIR. Mutation of this phenylalanine to isoleucine or tryptophan reduced the enzyme efficiency by around tenfold. The K{sub m} for bicarbonate was determined for the first time for a PurK enzyme and was found to be {approx}18.8 mM. The structure of PurE is described in comparison to that of human class II PurE. It is confirmed biochemically that His38 is essential for function. These studies aim to provide foundations for future structure-based drug-discovery efforts against S. aureus purine biosynthesis.« less

  14. Metabolism of Cytokinin 1

    PubMed Central

    Chen, Chong-Maw; Kristopeit, Susan M.

    1981-01-01

    Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells. PMID:16661701

  15. Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui

    2007-06-01

    The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less

  16. The influence of fruit and vegetable intake on the nutritional status and plasma homocysteine levels of institutionalised elderly people.

    PubMed

    Bermejo, L M; Aparicio, A; Andrés, P; López-Sobaler, A M; Ortega, R M

    2007-03-01

    To determine the difference in the nutritional status of elderly people depending on their consumption of fruits and vegetables, and to study the possible association between the consumption of these foods and different cardiovascular risk factors, especially total plasma homocysteine (t-Hcys) levels. A cross-sectional study in 152 institutionalised older people from Madrid aged > or = 65 years. Food and nutrient intakes were recorded over 7 days using the 'precise individual weighing' method. The weight, height, and waist and hip circumferences of all subjects were recorded, as were their alpha-erythrocyte glutathione reductase, serum B6, B12 and folate levels, erythrocyte folate levels, t-Hcys levels, serum lipids and blood pressure. The experimental population was then divided into tertiles depending on the serving intake of fruit and vegetables (T1, < 2.29 servings day(-1); T2, 2.29-2.79 servings day(-1); and T3, >2.79 servings day(-1)). Compared with T1 subjects, T3 subjects showed consumptions of cereals, pulses, meat, fish and eggs closer to those recommended (P < 0.05). In addition, the contribution of their diet towards covering the recommended daily intake of vitamin B1, niacin, vitamin B6, folic acid, vitamin C, B12, vitamin A, and P, Mg, Zn and Fe was higher. The intake of fibre increased with consumption of fruit and vegetables (r = 0.6839, P < 0.001). T3 subjects also had better serum and erythrocyte folate levels than T1 and T2 subjects (P < 0.05). A positive correlation was found between the consumption of fruit and vegetables and serum folate (r = 0.2665, P < 0.01) and with erythrocyte folate levels (r = 0.2034, P < 0.05), and a negative correlation with t-Hcys (r = -0.2493, P < 0.01). Greater consumption of fruit and vegetables is associated with better food habits, increased vitamin and mineral intakes and lower t-Hcys levels. Considering that the fruit and vegetable intake in Spanish elderly people is very low, it is recommended that the consumption of fruits and vegetables by elderly people be increased.

  17. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    PubMed Central

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  19. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype.

    PubMed

    Sri Lakshmi Sunita, M; Prashant, S; Bramha Chari, P V; Nageswara Rao, S; Balaravi, Padma; Kavi Kishor, P B

    2012-01-01

    In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers.

  20. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    PubMed Central

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  1. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  2. A four-gene operon in Bacillus cereus produces two rare spore-decorating sugars

    PubMed Central

    Li, Zi; Mukherjee, Thiya; Bowler, Kyle; Namdari, Sholeh; Snow, Zachary; Prestridge, Sarah; Carlton, Alexandra; Bar-Peled, Maor

    2017-01-01

    Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3-C-methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM:C-methyltransferase, and NADPH-dependent CDP-3-C-methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3-C-methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3-C-methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3-C-methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C-methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2–1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3-C-methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus. PMID:28298443

  3. A four-gene operon in Bacillus cereus produces two rare spore-decorating sugars.

    PubMed

    Li, Zi; Mukherjee, Thiya; Bowler, Kyle; Namdari, Sholeh; Snow, Zachary; Prestridge, Sarah; Carlton, Alexandra; Bar-Peled, Maor

    2017-05-05

    Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3- C -methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM: C -methyltransferase, and NADPH-dependent CDP-3- C -methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3- C -methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3- C -methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3- C -methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C -methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3- C -methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases.

    PubMed

    Khurana, S; Sanli, G; Powers, D B; Anderson, S; Blaber, M

    2000-04-01

    2,5-diketo-D-gluconic acid reductase (2,5-DKGR; E.C. 1.1.1.-) catalyzes the Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent stereo-specific reduction of 2, 5-diketo-D-gluconate (2,5-DKG) to 2-keto-L-gulonate (2-KLG), a precursor in the industrial production of vitamin C (L-ascorbate). Microorganisms that naturally ferment D-glucose to 2,5-DKG can be genetically modified to express the gene for 2,5-DKGR, and thus directly produce vitamin C from D-glucose. Two naturally occurring variants of DKGR (DKGR A and DKGR B) have been reported. DKGR B exhibits higher specific activity toward 2,5-DKG than DKGR A; however, DKGR A exhibits a greater selectivity for this substrate and significantly higher thermal stability. Thus, a modified form of DKGR, combining desirable properties from both enzymes, would be of substantial commercial interest. In the present study we use a molecular dynamics-based approach to understand the conformational changes in DKGR A as the active site is mutated to include two active site residue changes that occur in the B form. The results indicate that the enhanced kinetic properties of the B form are due, in part, to residue substitutions in the binding pocket. These substitutions augment interactions with the substrate or alter the alignment with respect to the putative proton donor group. Proteins 2000;39:68-75. Copyright 2000 Wiley-Liss, Inc.

  5. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  6. Functional properties and structural characterization of rice δ 1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice ( Oryza sativa L.) for δ 1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was ablemore » to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP + were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP + ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  7. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    PubMed

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to that reported for the established prescription drug standard of therapy, finasteride.

  8. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    PubMed

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  9. Digging deep into “dirty” drugs – modulation of the methylation machinery

    PubMed Central

    Pleyer, Lisa; Greil, Richard

    2015-01-01

    Abstract DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2′-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80–90%) as well as DNA (10–20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation. PMID:25566693

  10. H2AX foci in late S/G2- and M-phase cells after hydroxyurea- and aphidicolin-induced DNA replication stress in Vicia.

    PubMed

    Rybaczek, Dorota; Bodys, Aleksandra; Maszewski, Janusz

    2007-09-01

    Immunocytochemistry using alpha-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases alpha and delta, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX aggregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.

  11. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    PubMed

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  12. Effect of methotrexate/vitamin B12 on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity.

    PubMed

    Forster, Victoria J; McDonnell, Alex; Theobald, Rachel; McKay, Jill A

    2017-09-01

    Methotrexate (MTX) is administered to treat childhood acute lymphoblastic leukemia (ALL). It acts by inhibiting dihydrofolate reductase which reduces methyltetrahydrofolate, a key component in one carbon metabolism, thus reducing cell proliferation. Further perturbations to one carbon metabolism, such as reduced vitamin B 12 levels via the use of nitrous oxide for sedation during childhood ALL treatment, may increase neurotoxicity risk. With B 12 as an enzymatic cofactor, methyltetrahydrofolate is essential to produce methionine, which is critical for DNA methylation. We investigated global and gene specific DNA methylation in neuronal cell lines in response to MTX treatment and vitamin B 12 concentration individually, and in combination. MTX treatment alone significantly increased LINE-1 methylation in SH-SY5Y (p = 0.040) and DAOY (p < 0.001), and increased FKBP5 methylation in MO3.13 cells (p = 0.009). We conclude that altered DNA methylation of brain/central nervous system cells could be one mechanism involved in MTX treatment-related neurotoxicities and neurocognitive late effects in ALL survivors. This work is licensed under a Creative Commons Attribution 4.0 License

  13. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer.

    PubMed

    Ravichandran, Kanchana R; Zong, Allan B; Taguchi, Alexander T; Nocera, Daniel G; Stubbe, JoAnne; Tommos, Cecilia

    2017-03-01

    Redox-active tyrosines (Ys) play essential roles in enzymes involved in primary metabolism including energy transduction and deoxynucleotide production catalyzed by ribonucleotide reductases (RNRs). Thermodynamic characterization of Ys in solution and in proteins remains a challenge due to the high reduction potentials involved and the reactive nature of the radical state. The structurally characterized α 3 Y model protein has allowed the first determination of formal reduction potentials (E°') for a Y residing within a protein (Berry, B. W.; Martı́nez-Rivera, M. C.; Tommos, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9739-9743). Using Schultz's technology, a series of fluorotyrosines (F n Y, n = 2 or 3) was site-specifically incorporated into α 3 Y. The global protein properties of the resulting α 3 (3,5)F 2 Y, α 3 (2,3,5)F 3 Y, α 3 (2,3)F 2 Y and α 3 (2,3,6)F 3 Y variants are essentially identical to those of α 3 Y. A protein film square-wave voltammetry approach was developed to successfully obtain reversible voltammograms and E°'s of the very high-potential α 3 F n Y proteins. E°'(pH 5.5; α 3 F n Y(O•/OH)) spans a range of 1040 ± 3 mV to 1200 ± 3 mV versus the normal hydrogen electrode. This is comparable to the potentials of the most oxidizing redox cofactors in nature. The F n Y analogues, and the ability to site-specifically incorporate them into any protein of interest, provide new tools for mechanistic studies on redox-active Ys in proteins and on functional and aberrant hole-transfer reactions in metallo-enzymes. The former application is illustrated here by using the determined α 3 F n Y ΔE°'s to model the thermodynamics of radical-transfer reactions in F n Y-RNRs and to experimentally test and support the key prediction made.

  14. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.

    PubMed

    Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin

    2017-05-01

    P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB 1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB 1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB 1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Hyperhomocysteinemia and neurologic disorders: a review.

    PubMed

    Ansari, Ramin; Mahta, Ali; Mallack, Eric; Luo, Jin Jun

    2014-10-01

    Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. It has a physiologic role in DNA metabolism via methylation, a process governed by the presentation of folate, and vitamins B6 and B12. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy (eHcy) can be caused by deficiency of either vitamin B12 or folate, or a combination thereof. Certain genetic factors also cause eHcy, such as C667T substitution of the gene encoding methylenetetrahydrofolate reductase. eHcy has been observed in several medical conditions, such as cardiovascular disorders, atherosclerosis, myocardial infarction, stroke, minimal cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and eclampsia. There is evidence from laboratory and clinical studies that Hcy, and especially eHcy, exerts direct toxic effects on both the vascular and nervous systems. This article provides a review of the current literature on the possible roles of eHcy relevant to various neurologic disorders.

  17. Hyperhomocysteinemia and Neurologic Disorders: a Review

    PubMed Central

    Ansari, Ramin; Mallack, Eric; Luo, Jin Jun

    2014-01-01

    Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. It has a physiologic role in DNA metabolism via methylation, a process governed by the presentation of folate, and vitamins B6 and B12. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy (eHcy) can be caused by deficiency of either vitamin B12 or folate, or a combination thereof. Certain genetic factors also cause eHcy, such as C667T substitution of the gene encoding methylenetetrahydrofolate reductase. eHcy has been observed in several medical conditions, such as cardiovascular disorders, atherosclerosis, myocardial infarction, stroke, minimal cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and eclampsia. There is evidence from laboratory and clinical studies that Hcy, and especially eHcy, exerts direct toxic effects on both the vascular and nervous systems. This article provides a review of the current literature on the possible roles of eHcy relevant to various neurologic disorders. PMID:25324876

  18. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP +

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.

    2005-01-11

    Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP + were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP +-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contactsmore » of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P) + in the wild-type remains partly disordered in the NADP +-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.« less

  19. Vitamin status in elderly people in relation to the use of nutritional supplements.

    PubMed

    Fabian, E; Bogner, M; Kickinger, A; Wagner, K H; Elmadfa, I

    2012-03-01

    This study aimed to evaluate the status of several vitamins and to investigate the effect of regular individual supplementation on their status in this population. An observational study. State of Burgenland, Austria. A total of 102 non-institutionalized subjects (49% supplementing regularly, 51% without supplementation) aged between 70-90 years were recruited. Plasma levels of vitamins A, D, E, K and C were determined by HPLC. The functional parameters of vitamins B1, B2 and B6, i.e. the activities of the erythrocyte enzymes transketolase, glutathione reductase and glutamic oxaloacetic transaminase, were analyzed photometrically; plasma folate and vitamin B12 were determined by RIA. The status of vitamins A, E and C was generally satisfactory. Eighty-eight percent and 42% of participants were deficient in vitamins D and K, respectively, as were 29% for B6; up to 10% of participants were deficient in vitamins B1, B2, B12 and folate. A considerable percentage of participants was, however, at risk for vitamin deficiencies (vitamins B1, B6, B12, folate: 20-30%, vitamin B2: 60%). Except for vitamins A and K, regular intake of supplements had a significant positive influence on vitamin levels. These results indicate that use of supplements significantly improved the status of several vitamins in elderly people. Due to age-related problems concerning the intake and digestion of nutrients, a moderate, regular supplementation might be a useful option for older people who are otherwise unable to satisfy their micronutrient requirements.

  20. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  1. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  2. Hydrogen saline prevents selenite-induced cataract in rats

    PubMed Central

    Yang, Chun-xiao; Ding, Tian-bing

    2013-01-01

    Purpose The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. Methods Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. Results The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). Conclusions This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation. PMID:23922487

  3. The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe.

    PubMed

    Ewen, Kerstin M; Schiffler, Burkhard; Uhlmann-Schiffler, Heike; Bernhardt, Rita; Hannemann, Frank

    2008-05-01

    Mitochondrial cytochromes P450 are essential for biosynthesis of steroid hormones, vitamin D and bile acids. In mammals, the electrons needed for these reactions are provided via adrenodoxin and adrenodoxin reductase (AdR). Recently, Schizosaccharomyces pombe was introduced as a new host for the functional expression of human mitochondrial steroid hydroxylases without the coexpression of their natural redox partners. This fact qualifies S. pombe for the biotechnological production of steroids and for application as inhibitor test organism of heterologously expressed cytochromes P450. In this paper, we present evidence that the S. pombe ferredoxin reductase, arh1, and ferredoxin, etp1fd provide mammalian class I cytochromes P450 with reduction equivalents. The recombinant reductase showed an unusual weak binding of flavin adenine dinucleotide (FAD), which was mastered by modifying the FAD-binding region by site-directed mutagenesis yielding a stable holoprotein. The modified reductase arh1_A18G displayed spectroscopic characteristics similar to AdR and was shown to be capable of accepting electrons with no evident preference for NADH or NADPH, respectively. Arh1_A18G can substitute for AdR by interacting not only with its natural redox partner etp1fd but also with the mammalian homolog adrenodoxin. Cytochrome P450-dependent substrate conversion with all combinations of the mammalian and yeast redox proteins was evaluated in a reconstituted system.

  4. Congenital methemoglobinemia misdiagnosed as polycythemia vera: Case report and review of literature.

    PubMed

    Soliman, Dina Sameh; Yassin, Mohamed

    2018-03-02

    Methemoglobinemia is a rare overlooked differential diagnosis in patients presented with cyanosis and dyspnea unrelated to cardiopulmonary causes. Our patient is 29 year old Indian non-smoker male, his story started 6 months prior to presentation to our center when he had generalized fatigue and discoloration of hands. He presented with persistent polycythemia with elevated hemoglobin level. The patient was misdiagnosed in another center as polycythemia and treated with Imatinib. The diagnosis of PV was revisited and ruled out in view of negative JAK2, normal erythropoietin level and absence of features of panmyelosis. Clinical cyanosis and lowoxygen saturation in the presence of normal arterial oxygen tension was highly suggestive of methemoglobinemia. Arterial blood gas revealed a methemoglobin level of 38% (normal: 0-1.5%). Cytochrome B5 reductase (Methemoglobin reductase B) was deficient at level of <2.6 U/g Hb) (normal: 6.6-13.3), consistent with methemoglobin reductase (cytochrome b5) deficiency and hence the diagnosis of congenital methemoglobinemia was established. The role of Imatinib in provoking methemoglobinemia is questionable and association between Imatinib and methemoglobinemia never described before. In our case, there were no other offending drugs in aggravating the patients' symptoms and cyanosis. The patient started on Vitamin C 500 mg once daily for which he responded well with less cyanosis and significant reduction of methemoglobin level. Congenital methemoglobinemia is a rare underreported hemoglobin disease and often clinically missed. Upon extensive review of English literature for cases of congenital methemoglobinemia due to deficiency of cytochrome b5 reductase, we found 23 cases diagnosed as type I (including the case reported here). 17 cases (~74%) of type I and 6 cases (27%) of type II. There is male predominance 73% versus 26% in females. Almost half of reported cases 12 cases (52%) are Indian, 2 Japanese, 3 English, 2 Arabic, one case Spanish and one case Italian. For type I, the median calculated age is 31 years with cyanosis and shortness of breath being the most common sign and symptoms. For type II: Six cases were reported in English literature, all in pediatric age group with median calculated age at presentation is 6 years with neurologic manifestations and mental retardation are the most common type II associated symptoms. Due to lack of systematic epidemiological studies, congenital methemoglobinemia is under diagnosed as it is under investigated and usually overlooked especially when presenting in adulthood and in absence of obvious acquired agents.

  5. Quinoid radio-toxin (QRT) induced metabolic changes in mice: An ex vivo and in vivo EPR investigation

    PubMed Central

    Ibragimova, M.I.; Petukhov, V.Yu.; Zheglov, E.P.; Khan, N.; Hou, H.; Swartz, H.M.; Konjukhov, G.V.; Nizamov, R.N.

    2013-01-01

    Radio-toxins are toxic metabolites produced by ionizing irradiation and have toxic effects similar to those caused by direct irradiation. We have investigated the effect of a quinoid radio-toxin (QRT) obtained from γ-irradiated potato tuber on various organs in mice using ex vivo and in vivo EPR spectroscopy. Results indicate a decrease in the activity of ribonucleotide reductase enzyme in spleen of mice treated with 0.2 mg QRT. A dose of 2 mg QRT was fatal to mice within 45–60 min of treatment. Nitrosyl hemoglobin complexes α-(Fe2+–NO)α-(Fe2+)β-(Fe2+)2 were detected from spleen, blood, liver, kidney, heart, and lung tissue samples of mice treated with lethal doses of QRT. A significant decrease of pO2 in liver and brain was observed after administration of QRT at the lethal dose. The time of the appearance of the nitrosyl hemoglobin complex and its intensity varied with the dose of QRT and the type of tissue. These results indicate that the effect of the QRT is more prominent in spleen and to a lesser extent in liver and blood. The QRT action at the lethal doses resulted in an increased hypoxia over time with disruption of compensatory adaptive response. The results indicate similar outcome of QRT as observed with γ-irradiation. PMID:18230367

  6. Can we customize chemotherapy? Individualizing cytotoxic regimens in advanced non-small-cell lung cancer.

    PubMed

    Rosell, Rafael; Manegold, Christian; Moran, Teresa; Garrido, Pilar; Blanco, Remei; Lianes, Pilar; Stahel, Rolf; Trigo, Jose Manuel; Wei, Jia; Taron, Miquel

    2008-03-01

    Metastatic non-small-cell lung cancer remains a fatal disease with a median survival of < 1 year. A critical challenge is to develop predictive markers for customizing platinum-based treatment. The first studies focused on the excision repair cross-complementing 1 (ERCC1) gene in this difficult task. Several layers of evidence indicate that ERCC1 mRNA expression could be a predictive marker for cisplatin alone or in combination with certain drugs such as etoposide, gemcitabine, and 5-fluorouracil but not in combination with antimicrotubule drugs. Several retrospective studies demonstrated an impressive survival advantage for gemcitabine plus cisplatin but not for other combinations in tumors with low ERCC1 expression. A customized phase III ERCC1-based trial met the primary endpoint of improvement in response but not in survival, leading us to hypothesize that docetaxel might not be the most appropriate partner for cisplatin in the presence of low ERCC1 levels or for gemcitabine in the presence of high ERCC1 levels. A phase II study demonstrated the feasibility of combining carboplatin, gemcitabine, docetaxel, and vinorelbine according to ERCC1 and ribonucleotide reductase subunit M1 expression levels. These findings highlight the importance of continual learning, and decision-making strategies for customizing treatment should reflect the limitations of our knowledge. Copyright © 2008 Elsevier Inc. All rights reserved.

  7. In Vitro/In Vivo Evaluation of Radiolabeled [(99m)Tc(CO)3](+)-Hydroxyurea and Fluorescein Isothiocyanate-Hydroxyurea.

    PubMed

    Yilmaz, Baris; Teksoz, Serap; Kilcar, Ayfer Yurt; Ucar, Eser; Ichedef, Cigdem; Medine, Emin Ilker; Ari, Kadir

    2016-02-01

    The aim of current study is to examine hydroxyurea (HU), which is an antineoplastic drug used for the treatment of leukemia, sickle-cell disease, HIV, psoriasis, thrombocythemia, and various neoplastic diseases in two aspects. The active ingredient hydroxyurea was obtained by purification of the capsule form drug, commercially named as HYDREA. Then, [(99m)Tc(CO)3](+)core radiolabeling with HU was performed as first aspect. Quality control studies of (99m)Tc(CO)3-HU complex were performed by thin-layer radiochromatography and high-performance liquid radiochromatography methods. The results demonstrated that the radiolabeling yield was quite high (98.43% ± 2.29%). Also, (99m)Tc(CO)3-HU complex has good stability during the 24-hour period. Biological behavior of (99m)Tc(CO)3-HU complex is evaluated by biodistribution studies on Wistar Albino rats. Fluorescein isothiocyanate (FITC) labeling of HU was performed as second aspect. Fluorometric evaluation of binding efficacy and fluorescence imaging studies on MCF7 and Hela cell lines were carried out. It was thought that the knowledge achieved in this study would contribute to using (99m)Tc(CO)3-HU complex as an imaging agent, which inhibits the DNA synthesis selectively, by inhibiting ribonucleotide reductase enzyme. It was observed that FITC-HU has noteworthy incorporation on both cell lines.

  8. Folic acid and the methylation of homocysteine by Bacillus subtilis

    PubMed Central

    Salem, A. R.; Pattison, J. R.; Foster, M. A.

    1972-01-01

    1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes. PMID:4627401

  9. ClaRNA: a classifier of contacts in RNA 3D structures based on a comparative analysis of various classification schemes

    PubMed Central

    Waleń, Tomasz; Chojnowski, Grzegorz; Gierski, Przemysław; Bujnicki, Janusz M.

    2014-01-01

    The understanding of folding and function of RNA molecules depends on the identification and classification of interactions between ribonucleotide residues. We developed a new method named ClaRNA for computational classification of contacts in RNA 3D structures. Unique features of the program are the ability to identify imperfect contacts and to process coarse-grained models. Each doublet of spatially close ribonucleotide residues in a query structure is compared to clusters of reference doublets obtained by analysis of a large number of experimentally determined RNA structures, and assigned a score that describes its similarity to one or more known types of contacts, including pairing, stacking, base–phosphate and base–ribose interactions. The accuracy of ClaRNA is 0.997 for canonical base pairs, 0.983 for non-canonical pairs and 0.961 for stacking interactions. The generalized squared correlation coefficient (GC2) for ClaRNA is 0.969 for canonical base pairs, 0.638 for non-canonical pairs and 0.824 for stacking interactions. The classifier can be easily extended to include new types of spatial relationships between pairs or larger assemblies of nucleotide residues. ClaRNA is freely available via a web server that includes an extensive set of tools for processing and visualizing structural information about RNA molecules. PMID:25159614

  10. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  11. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies.

    PubMed

    Grönberg, Karin L C; Watmough, Nicholas J; Thomson, Andrew J; Richardson, David J; Field, Sarah J

    2004-04-23

    The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.

  12. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  13. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    USGS Publications Warehouse

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  14. 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea.

    PubMed

    Kaur, Harpreet; Sirhindi, Geetika; Bhardwaj, Renu; Alyemeni, M N; Siddique, Kadambot H M; Ahmad, Parvaiz

    2018-06-07

    Brassinosteroids (BRs) are a group of naturally occurring plant steroid hormones that can induce plant tolerance to various plant stresses by regulating ROS production in cells, but the underlying mechanisms of this scavenging activity by BRs are not well understood. This study investigated the effects of 28-homobrassinolide (28-HBL) seed priming on Brassica juncea seedlings subjected to the combined stress of extreme temperatures (low, 4 °C or high, 44 °C) and salinity (180 mM), either alone or supplemented with 28-HBL treatments (0, 10 -6 , 10 -9 , 10 -12  M). The combined temperature and salt stress treatments significantly reduced shoot and root lengths, but these improved when supplemented with 28-HBL although the response was dose-dependent. The combined stress alone significantly increased H 2 O 2 content, but was inhibited when supplemented with 28-HBL. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) increased in response to 28-HBL. Overall, the 28-HBL seed priming treatment improved the plant's potential to combat the toxic effects imposed by the combined temperature and salt stress by tightly regulating the accumulation of ROS, which was reflected in the improved redox state of antioxidants.

  15. Dysfunction of methionine sulfoxide reductases to repair damaged proteins by nickel nanoparticles.

    PubMed

    Feng, Po-Hao; Huang, Ya-Li; Chuang, Kai-Jen; Chen, Kuan-Yuan; Lee, Kang-Yun; Ho, Shu-Chuan; Bien, Mauo-Ying; Yang, You-Lan; Chuang, Hsiao-Chi

    2015-07-05

    Protein oxidation is considered to be one of the main causes of cell death, and methionine is one of the primary targets of reactive oxygen species (ROS). However, the mechanisms by which nickel nanoparticles (NiNPs) cause oxidative damage to proteins remain unclear. The objective of this study is to investigate the effects of NiNPs on the methionine sulfoxide reductases (MSR) protein repairing system. Two physically similar nickel-based nanoparticles, NiNPs and carbon-coated NiNP (C-NiNPs; control particles), were exposed to human epithelial A549 cells. Cell viability, benzo(a)pyrene diolepoxide (BPDE) protein adducts, methionine oxidation, MSRA and B3, microtubule-associated protein 1A/1B-light chain 3 (LC3) and extracellular signal-regulated kinase (ERK) phosphorylation were investigated. Exposure to NiNPs led to a dose-dependent reduction in cell viability and increased BPDE protein adduct production and methionine oxidation. The methionine repairing enzymatic MSRA and MSRB3 production were suppressed in response to NiNP exposure, suggesting the oxidation of methionine to MetO by NiNP was not reversed back to methionine. Additionally, LC3, an autophagy marker, was down-regulated by NiNPs. Both NiNP and C-NiNP caused ERK phosphorylation. LC3 was positively correlated with MSRA (r = 0.929, p < 0.05) and MSRB3 (r = 0.893, p < 0.05). MSR was made aberrant by NiNP, which could lead to the dysfunction of autophagy and ERK phosphorylation. The toxicological consequences may be dependent on the chemical characteristics of the nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Analysis of leukotriene B4 metabolism in human promyelocytic HL-60 cells.

    PubMed

    Kasimir, S; Schönfeld, W; Hilger, R A; König, W

    1991-10-01

    We previously reported that human alveolar macrophages rapidly metabolize the chemotactic active lipid mediator leukotriene B4 (LTB4) into the dihydro-LTB4 by reduction of one of the conjugated double bonds. We herein report that human HL-60 cells (a myeloid precursor which can be differentiated into granulocyte- as well as monocyte-like cells by dimethyl sulphoxide or phorbol myristate acetate) express a highly active LTB4 reductase in the undifferentiated state. Differentiation by dimethyl sulphoxide (1.3%) along the granulocyte lineage, as confirmed by light microscopy, conversion of NitroBlue Tetrazolium into formazan, failed to induce a substantial capacity for omega-oxidation of LTB4; this reaction is exclusively found in mature granulocytes. Studies with the cell homogenate of undifferentiated HL-60 cells indicated that the activity of the enzyme depends on the presence of NADPH, Ca2+ and Mg2+, with a pH optimum of 7.5 at 37 degrees C. The enzyme was not released into the supernatant after stimulation of HL-60 cells with phorbol myristate acetate (100 ng) or Ca2+ ionophore (7.5 microM). Subcellular fractionation revealed evidence that the LTB4 reductase is located within the membrane fraction. Purification of the enzyme by gel filtration and gel electrophoresis suggests an apparent molecular mass of 40 kDa.

  17. [Effect of enalapril on nitric oxide synthesis, oxidative metabolism, and vascular tone in aging rats].

    PubMed

    Sahach, V F; Baziliuk, O V; Stepanenko, L H; Korkach, Iu P; Kotsiuruba, A V

    2007-01-01

    Endothelium-dependent and endothelium-independent reactions of relaxations of vascular smooth muscle (VSM) were examined in the aorta preparations of the two groups (6-8 and 21-22 month). The studies also two NO synthase (NOS) isoform activity--inducible (iNOS) and constitutive (cNOS), activity of arginase and nitrate reductase and the content of high-molecular nitrosothiols (HMNT) and low-molecular nitrosothiols (LMNT) and stable metabolites of NO (NO(-)2, NO(-)3). Aging rats demonstrated only endothelium-dependent responses of VSM to acethylcholine lowering. This endothelial dysfunction depend on high activity of arginase, iNOS and salvage (by nitrate reductase) NO synthesis, both reactive oxigen species (ROS) (by xanthine oxidase) and peroxynitrite generation, as well as low activity of constitutive (eNOS, nNOS) NO synthesis. Angiotensin-converting enzyme inhibitor (enalapril) administration (20 mg/kg, 30 or 55 days) up regalate constitutive NO synthesis by arginase, iNOS, nitrate reductase activity and ROS and peroxynitrite generation inhibition thus restore endothelium-dependent relaxations of VSM in aging rats. The result obtained suggest a new roles for the renin-angiotensin system in vascular tone regulation. Thus enalapril might serve as a novel tool to prevent aging-associated endothelial dysfunction.

  18. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.

    PubMed

    Arias, D G; Herrera, F E; Garay, A S; Rodrigues, D; Forastieri, P S; Luna, L E; Bürgi, M D L M; Prieto, C; Iglesias, A A; Cravero, R M; Guerrero, S A

    2017-01-05

    The rational design and synthesis of a series of 5-nitro-2-furoic acid analogues are presented. The trypanocidal activity against epimastigote forms of Trypanosoma cruzi and the toxic effects on human HeLa cells were tested. Between all synthetic compounds, three of thirteen had an IC 50 value in the range of Nfx, but compound 13 exhibited an improved effect with an IC 50 of 1.0 ± 0.1 μM and a selective index of 70 in its toxicity against HeLa cells. We analyzed the activity of compounds 8, 12 and 13 to interfere in the central redox metabolic pathway in trypanosomatids, which is dependent of reduced trypanothione as the major pivotal thiol. The three compounds behaved as better inhibitors of trypanothione reductase than Nfx (Ki values of 118 μM, 61 μM and 68 μM for 8, 12 and 13, respectively, compared with 245 μM for Nfx), all following an uncompetitive enzyme inhibition pattern. Docking analysis predicted a binding of inhibitors to the enzyme-substrate complex with binding energy calculated in-silico that supports such molecular interaction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7.

    PubMed

    Zwerger, Monika; Kolb, Thorsten; Richter, Karsten; Karakesisoglou, Iakowos; Herrmann, Harald

    2010-01-15

    Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.

  20. Glutathione Reductase-Mediated Synthesis of Tellurium-Containing Nanostructures Exhibiting Antibacterial Properties

    PubMed Central

    Pugin, Benoit; Cornejo, Fabián A.; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M.; Vargas-Pérez, Joaquín I.; Arenas, Felipe A.

    2014-01-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  1. Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease.

    PubMed

    Lo Presti, M Silvina; Bazán, P Carolina; Strauss, Mariana; Báez, Alejandra L; Rivarola, H Walter; Paglini-Oliva, Patricia A

    2015-05-01

    Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Inhibitory effect of rhetsinine isolated from Evodia rutaecarpa on aldose reductase activity.

    PubMed

    Kato, A; Yasuko, H; Goto, H; Hollinshead, J; Nash, R J; Adachi, I

    2009-03-01

    Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC(50) values of 24.1 microM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 microM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.

  3. Lamin B receptor regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: implications for cholesterol biosynthesis in regulating myelopoiesis.

    PubMed

    Subramanian, Gayathri; Chaudhury, Pulkit; Malu, Krishnakumar; Fowler, Samantha; Manmode, Rahul; Gotur, Deepali; Zwerger, Monika; Ryan, David; Roberti, Rita; Gaines, Peter

    2012-01-01

    Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin-binding domains plus a C-terminal sterol Δ(14) reductase domain. LBR expression increases during neutrophil differentiation, and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus, LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (erythroid, myeloid, and lymphoid [EML]-derived promyelocytes) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. In this study, we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EML-derived promyelocytes, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full-length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ(14) reductase domain of LBR plays a critical role in cholesterol biosynthesis and that this process is essential to both myeloid cell growth and functional maturation.

  4. Lamin B receptor (LBR) regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: Implications for cholesterol biosynthesis in regulating myelopoiesis

    PubMed Central

    Subramanian, Gayathri; Chaudhury, Pulkit; Malu, Krishnakumar; Fowler, Samantha; Manmode, Rahul; Gotur, Deepali; Zwerger, Monika; Ryan, David; Roberti, Rita; Gaines, Peter

    2011-01-01

    Lamin B receptor (LBR) is a bifunctional nuclear membrane protein with N-terminal lamin B and chromatin binding domains plus a C-terminal sterol Δ14 reductase domain. LBR expression increases during neutrophil differentiation and deficient expression disrupts neutrophil nuclear lobulation characteristic of Pelger-Huët anomaly. Thus LBR plays a critical role in regulating myeloid differentiation, but how the two functional domains of LBR support this role is currently unclear. We previously identified abnormal proliferation and deficient functional maturation of promyelocytes (EPRO cells) derived from EML-ic/ic cells, a myeloid model of ichthyosis (ic) bone marrow that lacks Lbr expression. Here we provide new evidence that cholesterol biosynthesis is important to myeloid cell growth and is supported by the sterol reductase domain of Lbr. Cholesterol biosynthesis inhibitors caused growth inhibition of EML cells that increased in EPRO cells, whereas cells lacking Lbr exhibited complete growth arrest at both stages. Lipid production increased during wild-type neutrophil maturation, but ic/ic cells exhibited deficient levels of lipid and cholesterol production. Ectopic expression of a full length Lbr in EML-ic/ic cells rescued both nuclear lobulation and growth arrest in cholesterol starvation conditions. Lipid production also was rescued, and a deficient respiratory burst was corrected. Expression of just the C-terminal sterol reductase domain of Lbr in ic/ic cells also improved each of these phenotypes. Our data support the conclusion that the sterol Δ14 reductase domain of LBR plays a critical role in cholesterol biosynthesis, and that this process is essential to both myeloid cell growth and functional maturation. PMID:22140257

  5. Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor.

    PubMed

    Guo, X J; Lu, Z Y; Wang, P; Li, H; Huang, Z Z; Lin, K F; Liu, Y D

    2015-10-01

    Petrochemical wastewater often contains high concentrations of phenol and sulfate that must be properly treated to meet discharge standards. This study acclimated anaerobic-activated sludge to treat saline phenolic wastewater with sulfate reduction and clarified the diversity and degradation mechanism of the microbial community. The active sludge in an upflow anaerobic sludge blanket (UASB) reactor could remove 90 % of phenol and maintain the effluent concentration of SO4 (2-) below 400 mg/L. Cloning and sequencing showed that Clostridium spp. and Desulfotomaculum spp. were major phenol-degrading bacteria. Phenol was probably degraded through the carboxylation pathway and sulfate reduction catalyzed by adenosine-5'-phosphosulfate (APS) reductase and dissimilatory sulfite reductase (DSR). A real-time polymerase chain reaction (RT-PCR) showed that as phenol concentration increased, the quantities of 16S rRNA gene, dsrB, and mcrA in the sludge all decreased. The relative abundance of dsrB dropped to 12.46 %, while that of mcrA increased to 56.18 %. The change in the electron flow ratio suggested that the chemical oxygen demand (COD) was removed mainly by sulfate-reducing bacteria under a phenol concentration of 420 mg/L, whereas it was removed mainly by methanogens above 630 mg/L.

  6. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.

  7. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system.

    PubMed

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen - 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive - some have shown significant results, and others have not - possibly the result of varying bioactivities of the SPEs used in the studies. To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%-75% inhibition of 5α-reductase type II. SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride, the established standard of therapy among prescription drugs. Future in vitro and clinical trials involving SPEs would be useful for elucidating their comparative differences, as well as appropriate patient selection for their use.

  8. Determination of the potency of a novel saw palmetto supercritical CO2 extract (SPSE) for 5α-reductase isoform II inhibition using a cell-free in vitro test system

    PubMed Central

    Pais, Pilar; Villar, Agustí; Rull, Santiago

    2016-01-01

    Background The nicotinamide adenine dinucleotide phosphate-dependent membrane protein 5α-reductase catalyses the conversion of testosterone to the most potent androgen – 5α-dihydrotestosterone. Two 5α-reductase isoenzymes are expressed in humans: type I and type II. The latter is found primarily in prostate tissue. Saw palmetto extract (SPE) has been used extensively in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The pharmacological effects of SPE include the inhibition of 5α-reductase, as well as anti-inflammatory and antiproliferative effects. Clinical studies of SPE have been inconclusive – some have shown significant results, and others have not – possibly the result of varying bioactivities of the SPEs used in the studies. Purpose To determine the in vitro potency in a cell-free test system of a novel SP supercritical CO2 extract (SPSE), an inhibitor of the 5α-reductase isoenzyme type II. Materials and methods The inhibitory potency of SPSE was compared to that of finasteride, an approved 5α-reductase inhibitor, on the basis of the enzymatic conversion of the substrate androstenedione to the 5α-reduced product 5α-androstanedione. Results By concentration-dependent inhibition of 5α-reductase type II in vitro (half-maximal inhibitory concentration 3.58±0.05 μg/mL), SPSE demonstrated competitive binding toward the active site of the enzyme. Finasteride, the approved 5α-reductase inhibitor tested as positive control, led to 63%–75% inhibition of 5α-reductase type II. Conclusion SPSE effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is comparatively low. It can be confirmed from the results of this study that SPSE has bioactivity that promotes prostate health at a level that is superior to that of many other phytotherapeutic extracts. The bioactivity of SPSE corresponds favorably to that reported for the hexane extract used in a large number of positive BPH clinical trials, as well as to finasteride, the established standard of therapy among prescription drugs. Future in vitro and clinical trials involving SPEs would be useful for elucidating their comparative differences, as well as appropriate patient selection for their use. PMID:27186566

  9. Function of Coenzyme F420 in Aerobic Catabolism of 2,4,6-Trinitrophenol and 2,4-Dinitrophenol by Nocardioides simplex FJ2-1A

    PubMed Central

    Ebert, Sybille; Rieger, Paul-Gerhard; Knackmuss, Hans-Joachim

    1999-01-01

    2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these π-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme. PMID:10217752

  10. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  12. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  13. The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on NorQ and NorD accessory proteins.

    PubMed

    Kahle, Maximilian; Ter Beek, Josy; Hosler, Jonathan P; Ädelroth, Pia

    2018-06-03

    Bacterial NO reductases (NOR) catalyze the reduction of NO into N 2 O, either as a step in denitrification or as a detoxification mechanism. cNOR from Paracoccus (P.) denitrificans is expressed from the norCBQDEF operon, but only the NorB and NorC proteins are found in the purified NOR complex. Here, we established a new purification method for the P. denitrificans cNOR via a His-tag using heterologous expression in E. coli. The His-tagged enzyme is both structurally and functionally very similar to non-tagged cNOR. We were also able to express and purify cNOR from the structural genes norCB only, in absence of the accessory genes norQDEF. The produced protein is a stable NorCB complex containing all hemes and it can bind gaseous ligands (CO) to heme b 3 , but it is catalytically inactive. We show that this deficient cNOR lacks the non-heme iron cofactor Fe B . Mutational analysis of the nor gene cluster revealed that it is the norQ and norD genes that are essential to form functional cNOR. NorQ belongs to the family of MoxR P-loop AAA+ ATPases, which are in general considered to facilitate enzyme activation processes often involving metal insertion. Our data indicates that NorQ and NorD work together in order to facilitate non-heme Fe insertion. This is noteworthy since in many cases Fe cofactor binding occurs spontaneously. We further suggest a model for NorQ/D-facilitated metal insertion into cNOR. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of chitosan oligosaccharides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage.

    PubMed

    Jia, Shiliang; Liu, Xiaochang; Huang, Zhan; Li, Yan; Zhang, Longteng; Luo, Yongkang

    2018-03-02

    This study evaluated the effects of chitosan oligosaccharides (COS) on the changes in quality and microbiota of silver carp fillets stored at 4 °C. During storage, 1% (w/v) COS treated samples maintained good quality, as evidenced by retarding sensory deterioration, inhibiting microbial growth, attenuating the production of total volatile basic nitrogen, putrescine, cadaverine and hypoxanthine, and delaying degradation of inosine monophosphate and hypoxanthine ribonucleotide. Meanwhile, variability in the predominant microbiota in different samples was investigated by culture-dependent and -independent methods. Based on sensory analysis, shelf-life of silver carp fillets was 4 days for the control and 6 days for COS treated samples. Meanwhile, Pseudomonas, followed by Aeromonas, Acinetobacter, and Shewanella were dominated in the control samples at day 4 and contributed to fish spoilage at day 6. However, COS inhibited the growth of Pseudomonas, Aeromonas, and Shewanella significantly. Consequently, Acinetobacter followed by Pseudomonas became the predominant microbiota in COS treated samples at day 6. With the growth of Pseudomonas, COS treated samples were spoiled at day 8. Therefore, COS improved the quality of fillets and prolonged the shelf life of silver carp fillets by 2 days during chilled storage, which was mainly due to their modulating effects on microbiota. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. 11β-hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione.

    PubMed

    Swart, Amanda C; Schloms, Lindie; Storbeck, Karl-Heinz; Bloem, Liezl M; Toit, Therina du; Quanson, Jonathan L; Rainey, William E; Swart, Pieter

    2013-11-01

    11β-Hydroxyandrostenedione (11OHA4), which is unique to the adrenal, was first isolated from human adrenal tissue in the fifties. It was later shown in the sixties that 11β-hydroxytestosterone (11OHT) was also produced by the human adrenal. Attention has shifted back to these adrenal androgens once more, as improved analytical techniques have enabled more accurate detection of steroid hormones. In this paper, we investigated the origin of these metabolites as well as their subsequent metabolism and examined a possible physiological role for 11OHA4 in prostate cancer cells. In H295R cells treated with forskolin and trilostane, etomidate, a reported cytochrome P450 11β-hydroxylase (CYP11B1) inhibitor, blocked the production of corticosterone, cortisol, 11OHA4 and 11OHT. The metabolism of androstenedione and testosterone by CYP11B1 and aldosterone synthase (CYP11B2) was assayed. Androstenedione was converted by CYP11B1, while the conversion by CYP11B2 was negligible. Both enzymes readily converted testosterone. The metabolism of these 11β-hydroxylated metabolites by 11β-hydroxysteroid dehydrogenase (11βHSD) types 1 and 2 was subsequently investigated. 11βHSD2 catalyzed the conversion of both 11OHA4 and 11OHT to their respective keto-steroids, while 11βHSD1 catalyzed the conversion of 11-ketoandrostenedione and 11-ketotestosterone to their respective hydroxy-steroids in Chinese hamster ovary cells. Investigating a functional role, steroid 5α-reductase types 1 and 2 converted 11OHA4 to 11β-hydroxy-5α-androstanedione (11OH-5α-dione), identified by accurate mass detection. UPLC-MS/MS analyses of 11OHA4 metabolism in LNCaP androgen-dependent prostate cancer cells, identified the 5α-reduced metabolite as well as 11-ketoandrostenedione and 11-ketotestosterone, with the latter indicating conversion by 17β-hydroxysteroid dehydrogenase. Downstream metabolism by 11βHSD2 and by 5α-reductase may therefore indicate a physiological role for 11OHA4 and/or 11OH-5α-dione in normal and prostate cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  18. The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L.

    PubMed

    Yang, Ke; Monfared, Sajad Rashidi; Monafared, Rashidi Sajad; Wang, Hongzhen; Lundgren, Anneli; Brodelius, Peter E

    2015-07-01

    The artemisinic aldehyde double bond reductase (DBR2) plays an important role in the biosynthesis of the antimalarial artemisinin in Artemisia annua. Artemisinic aldehyde is reduced into dihydroartemisinic aldehyde by DBR2. Artemisinic aldehyde can also be oxidized by amorpha-4,11-diene 12-hydroxylase and/or aldehyde dehydrogenase 1 to artemisinic acid, a precursor of arteannuin B. In order to better understand the effects of DBR2 expression on the flow of artemisinic aldehyde into either artemisinin or arteannuin B, we determined the content of dihydroartemisinic aldehyde, artemisinin, artemisinic acid and arteannuin B content of A. annua varieties sorted into two chemotypes. The high artemisinin producers (HAPs), which includes the '2/39', 'Chongqing' and 'Anamed' varieties, produce more artemisinin than arteannuin B; the low artemisinin producers (LAPs), which include the 'Meise', 'Iran#8', 'Iran#14', 'Iran#24' and 'Iran#47' varieties, produce more arteannuin B than artemisinin. Quantitative PCR showed that the relative expression of DBR2 was significantly higher in the HAP varieties. We cloned and sequenced the promoter of the DBR2 gene from varieties of both the LAP and the HAP groups. There were deletions/insertions in the region just upstream of the ATG start codon in the LAP varities, which might be the reason for the different promoter activities of the HAP and LAP varieties. The relevance of promoter variation, DBR2 expression levels and artemisinin biosynthesis capabilities are discussed and a selection method for HAP varieties with a DNA marker is suggested. Furthermore, putative cis-acting regulatory elements differ between the HAP and LAP varieties.

  19. Characterization of a Gene Cluster Involved in 4-Chlorocatechol Degradation by Pseudomonas reinekei MT1▿

    PubMed Central

    Cámara, Beatriz; Nikodem, Patricia; Bielecki, Piotr; Bobadilla, Roberto; Junca, Howard; Pieper, Dietmar H.

    2009-01-01

    Pseudomonas reinekei MT1 has previously been reported to degrade 4- and 5-chlorosalicylate by a pathway with 4-chlorocatechol, 3-chloromuconate, 4-chloromuconolactone, and maleylacetate as intermediates, and a gene cluster channeling various salicylates into an intradiol cleavage route has been reported. We now report that during growth on 5-chlorosalicylate, besides a novel (chloro)catechol 1,2-dioxygenase, C12OccaA, a novel (chloro)muconate cycloisomerase, MCIccaB, which showed features not yet reported, was induced. This cycloisomerase, which was practically inactive with muconate, evolved for the turnover of 3-substituted muconates and transforms 3-chloromuconate into equal amounts of cis-dienelactone and protoanemonin, suggesting that it is a functional intermediate between chloromuconate cycloisomerases and muconate cycloisomerases. The corresponding genes, ccaA (C12OccaA) and ccaB (MCIccaB), were located in a 5.1-kb genomic region clustered with genes encoding trans-dienelactone hydrolase (ccaC) and maleylacetate reductase (ccaD) and a putative regulatory gene, ccaR, homologous to regulators of the IclR-type family. Thus, this region includes genes sufficient to enable MT1 to transform 4-chlorocatechol to 3-oxoadipate. Phylogenetic analysis showed that C12OccaA and MCIccaB are only distantly related to previously described catechol 1,2-dioxygenases and muconate cycloisomerases. Kinetic analysis indicated that MCIccaB and the previously identified C12OsalD, rather than C12OccaA, are crucial for 5-chlorosalicylate degradation. Thus, MT1 uses enzymes encoded by a completely novel gene cluster for degradation of chlorosalicylates, which, together with a gene cluster encoding enzymes for channeling salicylates into the ortho-cleavage pathway, form an effective pathway for 4- and 5-chlorosalicylate mineralization. PMID:19465655

  20. Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase.

    PubMed

    Chen, Wei; Colon, Ricardo; Louda, J William; Del Rey, Freddy Rodriguez; Durham, Michaella; Rein, Kathleen S

    2018-01-01

    The Florida red tide dinoflagellate, Karenia brevis, is the major harmful algal bloom dinoflagellate of the Gulf of Mexico and plays a destructive role in the region. Blooms of K. brevis can produce brevetoxins: ladder-shaped polyether (LSP) compounds, which can lead to adverse human health effects, such as reduced respiratory function through inhalation exposure, or neurotoxic shellfish poisoning through consumption of contaminated shellfish. The endogenous role of the brevetoxins remains uncertain. Recent work has shown that some forms of NADPH dependent thioredoxin reductase (NTR) are inhibited by brevetoxin-2 (PbTx-2). The study presented herein reveals that high toxin and low toxin K. brevis, which have a ten-fold difference in toxin content, also show a significant difference in their ability, not only to produce brevetoxin, but also in their cellular redox status and distribution of xanthophyll cycle pigments. These differences are likely due to the inhibition of NTR by brevetoxin. The work could shed light on the physiological role that brevetoxin fills for K. brevis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hair-Loss Preventing Effect of Grateloupia elliptica

    PubMed Central

    Kang, Jung-Il; Kim, Sang-Cheol; Han, Sang-Chul; Hong, Hye-Jin; Jeon, You-Jin; Kim, Bora; Koh, Young-Sang; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2012-01-01

    This study was conducted to evaluate the effect of Grateloupia elliptica, a seaweed native to Jeju Island, Korea, on the prevention of hair loss. When immortalized rat vibrissa dermal papilla cells were treated with extract of G. elliptica, the proliferation of dermal papilla cells significantly increased. In addition, the G. elliptica extract significantly inhibited the activity of 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), a main cause of androgenetic alopecia. On the other hand, the G. elliptica extract promoted PGE2 production in HaCaT cells in a dose-dependent manner. The G. elliptica extract exhibited particularly high inhibitory effect on LPS-stimulated IL-12, IL-6, and TNF-α production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells. The G. elliptica extract also showed inhibitory activity against Pityrosporum ovale, a main cause of dandruff. These results suggest that G. elliptica extract has the potential to treat alopecia via the proliferation of dermal papilla, 5α-reductase inhibition, increase of PGE2 production, decrease of LPS-stimulated pro-inflammatory cytokines and inhibitory activity against Pityrosporum ovale. PMID:24116284

  2. Biotransformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Catalyzed by a NAD(P)H: Nitrate Oxidoreductase from Aspergillus niger

    DTIC Science & Technology

    2002-01-01

    Biotransformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine Catalyzed by a NAD(P)H: Nitrate Oxidoreductase from Aspergillus niger B H A R A T B H U...reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 °C under anaerobic conditions using NADPH as...nitroreductase. We selected a nitrate reductase (EC 1.6.6.2) from a fungus Aspergillus niger to transform RDX under anaerobic condi- tions because nitrate

  3. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity

    PubMed Central

    Günther, Claudia; Kind, Barbara; Reijns, Martin A.M.; Berndt, Nicole; Martinez-Bueno, Manuel; Wolf, Christine; Tüngler, Victoria; Chara, Osvaldo; Lee, Young Ae; Hübner, Norbert; Bicknell, Louise; Blum, Sophia; Krug, Claudia; Schmidt, Franziska; Kretschmer, Stefanie; Koss, Sarah; Astell, Katy R.; Ramantani, Georgia; Bauerfeind, Anja; Morris, David L.; Cunninghame Graham, Deborah S.; Bubeck, Doryen; Leitch, Andrea; Ralston, Stuart H.; Blackburn, Elizabeth A.; Gahr, Manfred; Witte, Torsten; Vyse, Timothy J.; Melchers, Inga; Mangold, Elisabeth; Nöthen, Markus M.; Aringer, Martin; Kuhn, Annegret; Lüthke, Kirsten; Unger, Leonore; Bley, Annette; Lorenzi, Alice; Isaacs, John D.; Alexopoulou, Dimitra; Conrad, Karsten; Dahl, Andreas; Roers, Axel; Alarcon-Riquelme, Marta E.; Jackson, Andrew P.; Lee-Kirsch, Min Ae

    2014-01-01

    Genome integrity is continuously challenged by the DNA damage that arises during normal cell metabolism. Biallelic mutations in the genes encoding the genome surveillance enzyme ribonuclease H2 (RNase H2) cause Aicardi-Goutières syndrome (AGS), a pediatric disorder that shares features with the autoimmune disease systemic lupus erythematosus (SLE). Here we determined that heterozygous parents of AGS patients exhibit an intermediate autoimmune phenotype and demonstrated a genetic association between rare RNASEH2 sequence variants and SLE. Evaluation of patient cells revealed that SLE- and AGS-associated mutations impair RNase H2 function and result in accumulation of ribonucleotides in genomic DNA. The ensuing chronic low level of DNA damage triggered a DNA damage response characterized by constitutive p53 phosphorylation and senescence. Patient fibroblasts exhibited constitutive upregulation of IFN-stimulated genes and an enhanced type I IFN response to the immunostimulatory nucleic acid polyinosinic:polycytidylic acid and UV light irradiation, linking RNase H2 deficiency to potentiation of innate immune signaling. Moreover, UV-induced cyclobutane pyrimidine dimer formation was markedly enhanced in ribonucleotide-containing DNA, providing a mechanism for photosensitivity in RNase H2–associated SLE. Collectively, our findings implicate RNase H2 in the pathogenesis of SLE and suggest a role of DNA damage–associated pathways in the initiation of autoimmunity. PMID:25500883

  4. Genetic and molecular characterization of the guaC-nadC-aroP region of Escherichia coli K-12.

    PubMed

    Roberts, R E; Lienhard, C I; Gaines, C G; Smith, J M; Guest, J R

    1988-01-01

    The guaC (GMP reductase), nadC (quinolinate phosphoribosyltransferase), and aroP (aromatic amino acid permease) genes of Escherichia coli K-12 were located in the 2.5-min region of the chromosome (muT-guaC-nadC-aroP-aceE) by a combination of linkage analysis, deletion mapping, restriction analysis, and plasmid subcloning. The guaC locus expressed a product of Mr 37,000 with a clockwise transcriptional polarity, and the GMP reductase activities of guaC+ plasmid-containing strains were amplified 15- to 20-fold.

  5. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  6. Ascorbate synthesis pathway, dual role of ascorbate in bone homeostasis

    USDA-ARS?s Scientific Manuscript database

    Using mouse gene knock-out models, we identify aldehyde reductase (EC 1.1.1.2, Akr1a4 (GR)) and aldose reductase (EC 1.1.1.21, Akr1b3 (AR)) as the enzymes responsible for conversion of D-glucuronate to L-gulonate, a key step in the ascorbate (ASC) synthesis pathway in mice. The gene knock-out (KO) m...

  7. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity

    PubMed Central

    Cervilla, Luis M.; Blasco, Begoña; Ríos, Juan J.; Romero, Luis; Ruiz, Juan M.

    2007-01-01

    Background and Aims Boron (B) toxicity triggers the formation of reactive oxygen species in plant tissues. However, there is still a lack of knowledge as to how B toxicity affects the plant antioxidant defence system. It has been suggested that ascorbate could be important against B stress, although existing information is limited in this respect. The objective of this study was to analyse how ascorbate and some other components of the antioxidant network respond to B toxicity. Methods Two tomato (Solanum lycopersicum) cultivars (‘Kosaco’ and ‘Josefina’) were subjected to 0·05 (control), 0·5 and 2 mm B. The following were studied in leaves: dry weight; relative leaf growth rate; total and free B; H2O2; malondialdehyde; ascorbate; glutathione; sugars; total non-enzymatic antioxidant activity, and the activity of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, ascorbate oxidase and l-galactose dehydrogenase. Key Results The B-toxicity treatments diminished growth and boosted the amount of B, malondialdehyde and H2O2 in the leaves of the two cultivars, these trends being more pronounced in ‘Josefina’ than in ‘Kosaco’. B toxicity increased ascorbate concentration in both cultivars and increased glutathione only in ‘Kosaco’. Activities of antioxidant- and ascorbate-metabolizing enzymes were also induced. Conclusions High B concentration in the culture medium provokes oxidative damage in tomato leaves and induces a general increase in antioxidant enzyme activity. In particular, B toxicity increased ascorbate pool size. It also increased the activity of l-galactose dehydrogenase, an enzyme involved in ascorbate biosynthesis, and the activity of enzymes of the Halliwell–Asada cycle. This work therefore provides a starting point towards a better understanding of the role of ascorbate in the plant response against B stress. PMID:17660516

  8. Respiratory arsenate reductase as a bidirectional enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, Christine; Chovanec, Peter; Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function asmore » a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.« less

  9. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  10. The identification of the heat-stable microsomal protein required for methoxyflurane metabolism as cytochrome b5.

    PubMed

    Canova-Davis, E; Waskell, L

    1984-02-25

    Methoxyflurane is an anesthetic whose metabolism by cytochrome P-450LM2 has been shown to be dependent upon a heat-stable microsomal protein (Canova-Davis, E., and Waskell, L. A. (1982) Biochem. Biophys. Res. Commun. 108, 1264-1270). Treatment of this protein with diethylpyrocarbonate, which modifies selected amino acids, caused a dose-dependent loss in its ability to effect the metabolism of methoxyflurane by purified cytochrome P-450LM2. This protein factor has been identified as cytochrome b5 by demonstrating that cytochrome b5 and the heat-stable factor coelute during cytochrome b5 purification. Neither ferriheme nor apocytochrome b5 was able to substitute for the activating factor, while cytochrome b5 reconstituted from apocytochrome b5 and heme exhibited an activity similar to that of native b5. Examination of the cytochrome b5 molecule by computer graphics suggested that diethylpyrocarbonate did not inactivate b5 by reacting with the anionic surface of the cytochrome b5 molecule. Maximal rates of methoxyflurane metabolism were obtained at a ratio of 1:1:1 of the three proteins, cytochrome P-450LM2:reductase:cytochrome b5. In summary, it has been demonstrated that the heat-stable protein, cytochrome b5, is obligatory for the metabolism of methoxyflurane by cytochrome P-450LM2. These data also suggest that cytochrome b5 may be acting as an electron donor to P-450LM2 in the O-demethylation of methoxyflurane.

  11. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

    PubMed

    Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C

    2014-11-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism.

    PubMed

    Dräger, Birgit

    2006-02-01

    Two stereospecific oxidoreductases constitute a branch point in tropane alkaloid metabolism. Products of tropane metabolism are the alkaloids hyoscyamine, scopolamine, cocaine, and polyhydroxylated nortropane alkaloids, the calystegines. Both tropinone reductases reduce the precursor tropinone to yield either tropine or pseudotropine. In Solanaceae, tropine is incorporated into hyoscyamine and scopolamine; pseudotropine is the first specific metabolite on the way to the calystegines. Isolation, cloning and heterologous expression of both tropinone reductases enabled kinetic characterisation, protein crystallisation, and structure elucidation. Stereospecificity of reduction is achieved by binding tropinone in the respective enzyme active centre in opposite orientation. Immunolocalisation of both enzyme proteins in cultured roots revealed a tissue-specific protein accumulation. Metabolite flux through both arms of the tropane alkaloid pathway appears to be regulated by the activity of both enzymes and by their access to the precursor tropinone. Both tropinone reductases are NADPH-dependent short-chain dehydrogenases with amino acid sequence similarity of more than 50% suggesting their descent from a common ancestor. Putative tropinone reductase sequences annotated in plant genomes other that Solanaceae await functional characterisation.

  13. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  14. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.

  15. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds.

    PubMed

    Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang

    2011-05-30

    Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Flavonoids from Litsea japonica Inhibit AGEs Formation and Rat Lense Aldose Reductase In Vitro and Vessel Dilation in Zebrafish.

    PubMed

    Lee, Ik-Soo; Kim, Yu Jin; Jung, Seung-Hyun; Kim, Joo-Hwan; Kim, Jin Sook

    2017-02-01

    In our ongoing efforts to identify effective naturally sourced agents for the treating of diabetic complications, two new ( 1 and 2 ) and 11 known phenolic compounds ( 3 - 13 ) were isolated from an 80 % ethanol extract of Litsea japonica leaves. The structures of the new compounds were established by spectroscopic and chemical studies. These isolates ( 1 - 13 ) were subjected to an in vitro bioassay evaluating their inhibitory activity on advanced glycation end products formation and rat lens aldose reductase activity. Of the compounds evaluated, the flavonoids ( 3, 4, 6 - 8, 11 , and 12 ) markedly inhibited advanced glycation end products formation, with IC 50 values of 7.4-72.0 µM, compared with the positive control, aminoguanidine (IC 50  = 975.9 µM). In the rat lens aldose reductase assay, consistent with the inhibition of advanced glycation end products formation, the flavonoids ( 3, 4, 6 - 8, 11 , and 12 ) exhibited considerable inhibition of rat lens aldose reductase activity, with IC 50 values of 1.1-12.5 µM. In addition, the effects of kaempferol ( 4 ) and tiliroside ( 7 ) on the dilation of hyaloid-retinal vessels induced by high glucose in larval zebrafish were investigated. Only kaempferol significantly reduced the diameters of high glucose-induced hyaloid-retinal vessels, by 52.2 % at 10 µM, compared with those in the high glucose-treated control group. Georg Thieme Verlag KG Stuttgart · New York.

  17. [Patients with inherited trombophilia and recurrent pregnancy loss: incidence].

    PubMed

    Flores-Alatriste, José Daniel; Jacobo-Nájera, Sara; Segura-Rodríguez, Rubén; Stern-Colin y Nunes, Jorge Jaroslav

    2014-06-01

    Inherited thrombophilia is a genetic tendency to suffer thrombotic events clinically evident at an early age, with frequent re- currences without apparent cause. In recent years thrombophilia has earned a place as a primary risk factor for abnormal pregnancy. To determine the incidence of hereditary thrombophilia in patients with recurrent pregnancy loss. A retrospective, linear and descriptive study was conducted at Clinic of Reproduction IMMUNOREP with patients treated from January 2007 to December 2012. The study included patients with a diagnosis of recurrent pregnancy loss and inherited thrombophilia with laboratory studies of thrombophilia including different genes: G1619A (factor V Leiden), R2 H1299R (factor V polymorphism), C677T (methylenetetrahydrofolate reductase enzyme polymorphism), A1298C (methylenetetrahydrofolate reductase enzyme mutation), G20210A (mutation of the prothrombin gene), V34L (factor XIII polymorphism), 455G > A (fibrinogen gene mutation), 4G/5G (plasminogen activator inhibitor) and a/b L33P (ribosomal polymorphism of methylenetetrahydrofolate reductase enzyme). 211 files were reviewed and only 10.4% of patients were negative for hereditary thrombophilia, a percentage that is consistent with the results of different series of studies in patients with unexplained recurrent pregnancy loss. The most prevalent genetic condition was 4G/5G (plasminogen activator inhibitor, 85.5%) in homozygous and heterozygous with 63.4% (120) and 22.4% (42), respectively. It was demonstrated the direct relationship between thrombophilia and recurrent pregnancy loss depending on whether the patient is heterozygous or homozygous for the disease.

  18. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.

    PubMed

    Salusjärvi, Laura; Kaunisto, Sanna; Holmström, Sami; Vehkomäki, Maija-Leena; Koivuranta, Kari; Pitkänen, Juha-Pekka; Ruohonen, Laura

    2013-12-01

    Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.

  19. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster.

    PubMed

    Sgraja, Tanja; Ulschmid, Julia; Becker, Katja; Schneuwly, Stephan; Klebe, Gerhard; Reuter, Klaus; Heine, Andreas

    2004-10-01

    In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.

  20. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    PubMed Central

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S230 in hBVR 225RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR’s PDK1 binding 161RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.—Miralem, T., Lerner-Marmarosh, N., Gibbs, P. E. M., Jenkins, J. L., Heimiller, C., Maines, M. D. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation. PMID:27166089

Top