Sample records for b2-adrenoceptor agonist exposure

  1. Functional assessment of recombinant human alpha(2)-adrenoceptor subtypes with cytosensor microphysiometry.

    PubMed

    Pihlavisto, M; Scheinin, M

    1999-12-03

    We applied the Cytosensor Microphysiometry system to study the three human alpha(2)-adrenoceptor subtypes, alpha(2A), alpha(2B) and alpha(2C), expressed in Chinese hamster ovary (CHO) cells, and assessed its potential in the quantitative monitoring of agonist activity. The natural full agonist, (-)-noradrenaline, was used to define agonist efficacy. The imidazole derivative dexmedetomidine was a potent full agonist of all three receptor subtypes. The imidazolines clonidine and UK 14,304 (5-bromo-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine) appeared to be partial agonists at alpha(2B)-adrenoceptors (E(max) approximately 60% of (-)-noradrenaline) but full agonists at alpha(2A)- and alpha(2C)-adrenoceptors. The responses mediated by all three alpha(2)-adrenoceptor subtypes were partly inhibited by the sodium-hydrogen (Na(+)/H(+)) exchange inhibitor, MIA (5-(N-methyl-N-isobutyl)-amiloride). The agonist responses were totally abolished by pretreatment with pertussis toxin in cells with alpha(2A)- and alpha(2C)-adrenoceptors, and partly abolished in cells with alpha(2B)-adrenoceptors. The residual signal in alpha(2B)-cells was sensitive to the intracellular Ca(2+)chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester). Cholera toxin (which acts on G(s)-proteins) had no effect on the agonist responses. The results suggest that the extracellular acidification responses mediated by all three human alpha(2)-adrenoceptor subtypes are dependent on Na(+)/H(+)exchange and G(i/o) pathways, and that alpha(2B)-adrenoceptors are capable of coupling to another, G(i/o)-independent and Ca(2+)-dependent signaling pathway.

  2. Selective inhibition of alpha1B-adrenergic receptor expression and function using a phosphorothioate antisense oligodeoxynucleotide.

    PubMed

    Gonzalez-Cabrera, P J; Iversen, P L; Liu, M F; Scofield, M A; Jeffries, W B

    1998-06-01

    To investigate alpha1B-adrenoceptor function, we developed a phosphorothioate antisense oligodeoxynucleotide (AO) to inhibit the expression of the alpha1B-adrenoceptor subtype in DDT1 MF2 cells. We measured the cellular uptake of the AO and its effect on alpha1B-adrenoceptor mRNA expression, protein density, and coupling to phospholipase C. Cells treated with either a control oligodeoxynucleotide (CO) or medium alone served as control groups. Confocal microscopy demonstrated that DDT1 MF2 cells internalized carboxyfluorescein-labeled (FAM) AO within 30 min. Analysis of cellular lysates showed that approximately 50% of the intracellular FAM-AO was present as an intact 18-mer for up to 48 hr. Incubation of cells with AO for 48 hr decreased alpha1B-adrenoceptor density ([3H]prazosin Bmax) versus control groups by 12% (1 microM AO) and 72% (10 microM AO). In time course experiments, AO (10 microM) reduced alpha1B-adrenoceptor density by 28, 64, and 68% versus controls after 24, 48, and 72 hr of exposure, respectively. alpha1B-Adrenoceptor mRNA concentration (measured by RT-PCR) was reduced by 25% in cells treated for 48 hr with 10 microM AO versus controls. AO pretreatment (10 microM, 48 hr) reduced the maximum response to agonist-stimulated [3H]inositol phosphate accumulation. The maximal response of the full agonist norepinephrine was reduced by 30% after AO treatment, and by 73% for the partial agonist naphazoline. In contrast, AO did not affect histamine-stimulated total [3H]inositol phosphate accumulation. Thus, AO effectively reduced alpha1B-adrenoceptor subtype expression and function in vitro, suggesting a potential to selectively inhibit alpha1B-adrenoceptor function in vivo.

  3. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    PubMed

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  4. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung.

    PubMed

    Donovan, Chantal; Seow, Huei Jiunn; Bourke, Jane E; Vlahos, Ross

    2016-05-01

    β2-adrenoceptor agonists are the mainstay therapy for patients with asthma but their effectiveness in cigarette smoke (CS)-induced lung disease such as chronic obstructive pulmonary disease (COPD) is limited. In addition, bronchodilator efficacy of β2-adrenoceptor agonists is decreased during acute exacerbations of COPD (AECOPD), caused by respiratory viruses including influenza A. Therefore, the aim of the present study was to assess the effects of the β2-adrenoceptor agonist salbutamol (SALB) on small airway reactivity using mouse precision cut lung slices (PCLS) prepared from CS-exposed mice and from CS-exposed mice treated with influenza A virus (Mem71, H3N1). CS exposure alone reduced SALB potency and efficacy associated with decreased β2-adrenoceptor mRNA expression, and increased tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) expression. This impaired relaxation was restored by day 12 in the absence of further CS exposure. In PCLS prepared after Mem71 infection alone, responses to SALB were transient and were not well maintained. CS exposure prior to Mem71 infection almost completely abolished relaxation, although β2-adrenoceptor and TNFα and IL-1β expression were unaltered. The present study has shown decreased sensitivity to SALB after CS or a combination of CS and Mem71 occurs by different mechanisms. In addition, the PCLS technique and our models of CS and influenza infection provide a novel setting for assessment of alternative bronchodilators. © 2016 The Author(s).

  5. Importance of agonists in alpha-adrenoceptor classification and localisation of alpha1-adrenoceptors in human prostate.

    PubMed

    McGrath, J C; Naghadeh, M A; Pediani, J D; Mackenzie, J F; Daly, C J

    1999-01-01

    alpha-Adrenoceptor blocker drugs are commonly used in the clinical (non-surgical) treatment of BPH. alpha1-adrenoceptors were originally sub-divided using agonists but, subsequently, were sub-divided using only antagonists in ligand-ligand interactions, which did not require agonists at all. Ultimately, proof that adrenoceptors are functional receptors for the natural ligands, noradrenaline and adrenaline, requires that agonists be used. The earlier excitement engendered by finding varying agonist potency series in different tissues has not been revisited to place it in the context of current concepts of alpha1-adrenoceptor subtypes. This review will consider the advantages and limitations of different agonists for the study of alpha1-adrenoceptor subtypes including 'extreme' examples where the archetypal alpha1-adrenoceptor agonist phenylephrine activates alpha2-adrenoceptors and others where UK14304, often the alpha2-adrenoceptor agonist of choice, activates alpha1-adrenoceptors. New work will also be presented showing the interaction between agonists and the fluorescent alpha1-adrenoceptor antagonist QAPB. This introduces the novel point of view of studying the displacement of antagonists by agonists. Possible errors in antagonist classification arising from complexity in the actions of agonists and the recently developed method of fluorescent ligand binding on isolated living human prostatic smooth muscle cells will be discussed.

  6. In vivo microdialysis of noradrenaline overflow: effects of alpha-adrenoceptor agonists and antagonists measured by cumulative concentration-response curves.

    PubMed Central

    van Veldhuizen, M. J.; Feenstra, M. G.; Heinsbroek, R. P.; Boer, G. J.

    1993-01-01

    1. The purpose of the present study was to compare the effects of several alpha-adrenoceptor agonists and antagonists on cerebral cortical overflow of endogenous noradrenaline (NA) in freely moving rats. One or two days after the implantation of transcerebral dialysis tubes in the frontoparietal cortex, extracellular NA levels were monitored on-line with high performance liquid chromatography and electrochemical detection. The drugs were applied locally via the dialysis membrane, and effects on NA overflow were determined in cumulative concentration-response curves. 2. The average basal cortical NA overflow of all experiments was 0.25 pg min-1. The alpha 2-adrenoceptor agonists caused a concentration-dependent decrease in NA levels. UK-14,304 was the most potent and B-HT 933 the least potent agonist. The maximal decrease in NA overflow was to 10-15% of control levels after UK-14,304 or moxonidine, to 30% after clonidine and to 50% after B-HT 933 administration. Continuous activation of the presynaptic alpha 2-adrenoceptor with 10(-6) M UK-14,304 caused a decrease in NA levels to 40-50% of basal levels. This decrease was reached within 1 h and remained stable for the entire 3 h measurement period. The alpha 1-adrenoceptor agonists, phenylephrine and methoxamine, induced an increase in NA levels to 225% and 300%, respectively, at a concentration of 10(-3) M. 3. Local application of alpha 2-adrenoceptor antagonists caused an increase in NA levels, with idazoxan being more potent than piperoxan. Yohimbine did not cause any significant change. 4. All drugs used in these in vivo experiments had in vitro recoveries across the dialysis membrane between 10 and 20%.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8102934

  7. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.

    PubMed

    Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica

    2016-06-01

    Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.

  8. Inhibition by fenoterol of human eosinophil functions including beta2-adrenoceptor-independent actions.

    PubMed

    Tachibana, A; Kato, M; Kimura, H; Fujiu, T; Suzuki, M; Morikawa, A

    2002-12-01

    Agonists at beta2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed beta2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2-) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of beta2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2- was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2- generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2- generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2- generation was not reversed by ICI-118551, a selective beta2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2- generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via beta2 adrenoceptors.

  9. Antinociceptive synergism of MD-354 and clonidine. Part II. The alpha-adrenoceptor component.

    PubMed

    Young, Shawquia; Vainio, Minna; Scheinin, Mika; Dukat, Małgorzata

    2010-08-01

    Previously, we reported that antinociceptive synergism of a 5-HT(3)/alpha(2)-adrenoceptor ligand MD-354 (m-chlorophenylguanidine) and clonidine combination occurs, in part, through a 5-HT(3) receptor antagonist mechanism. In the present investigation, a possible role for alpha(2)-adrenoceptors was examined. Mechanistic studies using yohimbine (a subtype non-selective alpha(2)-adrenoceptor antagonist), BRL 44408 (a preferential alpha(2A)-adrenoceptor antagonist) and imiloxan (a preferential alpha(2B/C)-adrenoceptor antagonist) on the antinociceptive actions of a MD-354/clonidine combination were conducted. Subcutaneous pre-treatment with all three antagonists inhibited the antinociceptive synergism of MD-354 and clonidine in the mouse tail-flick assay in a dose-dependent manner (AD(50) = 0.33, 2.1, and 0.17 mg/kg, respectively). Enhancement of clonidine antinociception by MD-354 did not potentiate clonidine's locomotor suppressant activity in a mouse locomotor assay. When [ethyl-3H]RS-79948-197 was used as radioligand, MD-354 displayed almost equal affinity to alpha(2A)- and alpha(2B)-adrenoceptors (K(i) = 110 and 220 nM) and showed lower affinity at alpha(2C)-adrenoceptors (K(i) = 4,700 nM). MD-354 had no subtype-selectivity for the alpha(2)-adrenoceptor subtypes as an antagonist in functional [35S]GTPgammaS binding assays. MD-354 was a weak partial agonist at alpha(2A)-adrenoceptors. Overall, in addition to the 5-HT(3) receptor component, the present investigation found MD-354 to be a weak partial alpha(2A)-adrenoceptor agonist that enhances clonidine's thermal antinociceptive actions through an alpha(2)-adrenoceptor-mediated mechanism without augmenting sedation.

  10. Inhibition by fenoterol of human eosinophil functions including β2-adrenoceptor-independent actions

    PubMed Central

    TACHIBANA, A; KATO, M; KIMURA, H; FUJIU, T; SUZUKI, M; MORIKAWA, A

    2002-01-01

    Agonists at β2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed β2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2−) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of β2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2− was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2− generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2− generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2− generation was not reversed by ICI-118551, a selective β2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2− generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via β2 adrenoceptors. PMID:12452831

  11. Synthesis, biological evaluation and molecular modeling of 2-amino-2-phenylethanol derivatives as novel β2-adrenoceptor agonists.

    PubMed

    Ge, Xinyue; Mo, Yongmei; Xing, Gang; Ji, Lei; Zhao, Haiyan; Chen, Jianfang; He, Bin; Chen, Xuyao; Xing, Ruijuan; Li, Xiaoqiang; Zhao, Ying; Li, Jinyan; Yan, Haining; Woo, Anthony Yiu-Ho; Zhang, Yuyang; Lin, Bin; Pan, Li; Cheng, Maosheng

    2018-04-26

    A novel series of 2-amino-2-phenylethanol derivatives were developed as β 2 -adrenoceptor agonists. Among them, 2-amino-3-fluoro-5-(2-hydroxy-1-(isopropylamino)ethyl)benzonitrile (compound 2f) exhibited the highest activity (EC 50 = 0.25 nM) in stimulating β 2 -adrenoceptor-mediated cellular cAMP production with a 763.6-fold selectivity over the β 1 -adrenoceptor. The (S)-isomer of 2f was subsequently found to be 8.5-fold more active than the (R)-isomer. Molecular docking was performed to determine the putative binding modes of this new class of β 2 -adrenoceptor agonists. Taken together, these data show that compound 2f is a promising lead compound worthy of further study for the development of β 2 -adrenoceptor agonists. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Cardiac implications for the use of β2-adrenoceptor agonists for the management of muscle wasting

    PubMed Central

    Molenaar, Peter; Chen, Lu; Parsonage, William A

    2006-01-01

    There are proposals for the implementation of β2-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that β2-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart β2-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients. PMID:16432500

  13. A cell-based assay to assess the persistence of action of agonists acting at recombinant human beta(2) adrenoceptors.

    PubMed

    Summerhill, Susan; Stroud, Timothy; Nagendra, Roshini; Perros-Huguet, Christelle; Trevethick, Michael

    2008-01-01

    The aim was to establish a robust, 96-well, cell-based assay to assess the potency and persistence of action of agonists acting at human recombinant beta(2) adrenoceptors expressed in CHO (Chinese Hamster Ovary) cells and to compare this with published duration of action data in guinea pig isolated trachea and human bronchus. Cells were treated with either: (i) beta-adrenoceptor agonist for 30 min, washed and cyclicAMP (cAMP) measured 30 min later-termed 'washed' cells or, (ii) treated with solvent for 30 min, washed, and then treated with beta-adrenoceptor agonist for 30 min and cAMP measured-termed 'unwashed' cells. The 'washed' EC(50) was divided by the 'unwashed' EC(50) to determine a rightward shift concentration ratio, which was indicative of the persistence of action at the receptor. At the beta(2) adrenoceptor salmeterol, carmoterol and indacaterol were resistant to washing with a concentration ratio of <5, indicating a long persistence of action, whereas formoterol, isoprenaline and salbutamol were washed out with a ratio of 32, >294 and >800 respectively, suggesting a shorter persistence of action. At beta(1) and beta(3) adrenoceptors all compounds washed out. The persistent effects of salmeterol at beta(2) following washing could be reversed by the selective beta(2) antagonist ICI 118551, suggesting continued receptor activation. The data presented agree well with published data assessing duration of action of beta(2) agonists in human isolated bronchus and guinea pig isolated trachea. Key features are: (a) it is a 96-well format which can be used to assess many compounds in a single experiment, (b) both potency and persistence of agonist action are assessed in the same assay, (c) any effects of concentration on the persistence of action can be highlighted, and (d) it allows triage of compounds prior to tissue bath studies thus reducing the use of animal tissue.

  14. Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues

    PubMed Central

    Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K

    2000-01-01

    Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669

  15. The costo-uterine muscle of the rat contains a homogeneous population of beta-adrenoceptors.

    PubMed Central

    Hartley, M. L.; Pennefather, J. N.

    1985-01-01

    The effects of two selective beta-adrenoceptor antagonists on the inhibitory responses to some sympathomimetic amines of electrically-stimulated preparations of costo-uterine muscle, taken from virgin rats, have been examined quantitatively. pA2 values for the antagonist, atenolol (beta 1-selective) and ICI 118,551 (beta 2-selective) were obtained using as agonists, fenoterol (beta 2-selective agonist) and noradrenaline (alpha- and beta-adrenoceptor agonist, beta 1-selective); and in addition, with ICI 118,551 only, isoprenaline (beta-agonist, non-selective) and adrenaline (alpha- and beta-adrenoceptor agonist, beta 2-selective). Catecholamine uptake mechanisms and alpha-adrenoceptors were not blocked in any of these experiments. Atenolol competitively antagonized the effects of fenoterol and noradrenaline to a similar extent, the pA2 values being 5.4 and 5.7, respectively. ICI 118,551 competitively antagonized the effects of fenoterol, isoprenaline, adrenaline and noradrenaline to a similar extent; pA2 values ranged from 8.7 with noradrenaline to 9.1 with isoprenaline. These results extend our previous observations which indicated that the adrenoceptors mediating inhibition of electrically-evoked contractions of costo-uterine muscle of the virgin rat are homogeneous and of the beta 2-subtype. The potency of the beta 1-selective agonist RO 363 in producing inhibition of electrically-evoked contractions of this tissue was also examined. RO 363 was 200 times less potent than isoprenaline but was a full agonist. This indicates that there is efficient coupling between beta 2-adrenoceptor activation and tissue response in this non-innervated preparation. PMID:2858239

  16. Role of alpha2C-adrenoceptor subtype in spatial working memory as revealed by mice with targeted disruption of the alpha2C-adrenoceptor gene.

    PubMed

    Tanila, H; Mustonen, K; Sallinen, J; Scheinin, M; Riekkinen, P

    1999-02-01

    The role of the alpha2C-adrenoceptor subtype in mediating the beneficial effect of alpha2-adrenoceptor agonists on spatial working memory was studied in adult mice with targeted inactivation of the alpha2C-receptor gene (KO) and their wild-type controls (WT). A delayed alternation task was run in a T-maze with mixed delays varying from 20 s to 120 s. Dexmedetomidine, a specific but subtype nonselective alpha2-adrenoceptor agonist, dose-dependently decreased the total number of errors. The effect was strongest at the dose of 5 microg/kg (s.c.), and was observed similarly in KO and WT mice. KO mice performed inferior to WT mice due to a higher number of perseverative errors. Dexmedetomidine slowed initiation of the motor response in the start phase at lower doses in WT mice than in KO mice but no such difference was observed in the return phase of the task, suggesting involvement of alpha2C-adrenoceptors in the cognitive aspect of response preparation or in response sequence initiation. According to these findings, enhancement of spatial working memory is best achieved with alpha2-adrenoceptor agonists which have neither agonistic nor antagonistic effects at the alpha2C-adrenoceptor subtype.

  17. beta-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses.

    PubMed Central

    Cowen, P. J.; Grahame-Smith, D. G.; Green, A. R.; Heal, D. J.

    1982-01-01

    The beta-adrenoceptor agonists, salbutamol, terbutaline and clenbuterol, were investigated for their effect on 5-hydroxytryptamine-mediated (5-HT) hyperactivity. 2 The lipophilic beta-adrenoceptor agonist, clenbuterol (5 mg/kg) enhanced the behaviours induced by quipazine (25 mg/kg), including headweaving, forepaw treading and hind-limb abduction and thus increased automated activity recording. Clenbuterol (5 mg/kg) also enhanced the hyperactivity syndrome produced by the 5-HT agonist, 5-methoxy N,N-dimethyltryptamine (2 mg/kg) and the combination of tranylcypromine (10 mg/kg) and L-tryptophan (50 mg/kg). Salbutamol and terbutaline potentiated quipazine-induced hyperactivity only when given at the higher dose of 20 mg/kg. 3 The effect of clenbuterol in enhancing quipazine hyperactivity was blocked by the centrally acting beta 1-adrenoceptor antagonist, metoprolol (5 mg/kg), but not by the beta 2-adrenoceptor antagonist, butoxamine (5 mg/kg) or the peripherally acting beta 1-adrenoceptor antagonist, atenolol (5 mg/kg). 4 Clenbuterol (5 mg/kg) did not enhance the circling responses produced by methamphetamine (0.5 mg/kg) in unilateral nigrostriatal-lesioned rats. 5 The results suggest that beta-adrenoceptor agonists in common with some established antidepressant treatments produce enhancement of 5-HT-mediated behavioural responses. PMID:6124294

  18. Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.

    PubMed

    Danner, S; Lohse, M J

    1997-07-16

    Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.

  19. Anti-inflammatory actions of clonidine, guanfacine and B-HT 920 against various inflammagen-induced acute paw oedema in rats.

    PubMed

    Kulkarni, S K; Mehta, A K; Kunchandy, J

    1986-02-01

    Clonidine (0.1-1.0 mg/kg, i.p.) exhibited anti-inflammatory activity in carrageenan-, formalin-, 5-HT- and histamine-induced paw oedema in rats. Similarly, other two alpha 2-adrenoceptor agonists, guanfacine and B-HT 920, also displayed an anti-inflammatory action in these models. The anti-inflammatory effect of all the three alpha 2-adrenoceptor agonists was reversed by yohimbine. However, prazosin failed to block the anti-inflammatory effect of clonidine. Intracerebroventricularly administered clonidine had a delayed onset of anti-inflammatory action, starting only from 60 min post carrageenan administration. This was in contrast to the systemically administered clonidine which was effective against both phases of carrageenan-induced oedema. On the other hand, irrespective of the route of administration, i.e. peripheral or central, guanfacine and B-HT 920 were effective against the early as well as against the delayed phases of the inflammatory reaction. The studies suggest that it is not the imidazoline moiety but the activation of alpha 2-adrenoceptors which is essential for the anti-inflammatory action of these agents.

  20. Dexmedetomidine: a novel sedative-analgesic agent

    PubMed Central

    2001-01-01

    Since the first report of clonidine, an α2-adrenoceptor agonist, the indications for this class of drugs have continued to expand. In December 1999, dexmedetomidine was approved as the most recent agent in this group and was introduced into clinical practice as a short-term sedative (<24 hours). α2-Adrenoceptor agonists have several beneficial actions during the perioperative period. They decrease sympathetic tone, with attenuation of the neuroendocrine and hemodynamic responses to anesthesia and surgery; reduce anesthetic and opioid requirements; and cause sedation and analgesia. They allow psychomotoric function to be preserved while letting the patient rest comfortably. With this combination of effects, α2-adrenoceptor agonists may offer benefits in the prophylaxis and adjuvant treatment of perioperative myocardial ischemia. Furthermore, their role in pain management and regional anesthesia is expanding. Side effects consist of mild to moderate cardiovascular depression, with slight decreases in blood pressure and heart rate. The development of new, more selective α2-adrenoceptor agonists with improved side effect profiles may provide a new concept for the administration of perioperative anesthesia and analgesia. This review aims to give background information to improve understanding of the properties and applications of the novel α2-adrenoceptor agonist, dexmedetomidine. PMID:16369581

  1. Evaluation of the alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives in the cardiovascular system of the pithed rat.

    PubMed

    Ruffolo, R R; Messick, K

    1985-01-01

    The alpha-1 and alpha-2 adrenoceptor-mediated effects of a series of dimethoxy-substituted tolazoline derivatives were investigated in the cardiovascular system of the pithed rat. The 2,5- and 3,5-dimethoxy-substituted tolazoline derivatives produced vasopressor responses that were inhibited by the alpha-1 adrenoceptor antagonist, prazosin (0.1 mg/kg i.v.), and were not affected by the alpha-2 adrenoceptor antagonist, yohimbine (1 mg/kg i.v.), suggesting that these derivatives selectively activate postsynaptic vascular alpha-1 adrenoceptors. The 2,5- and 3,5-dimethoxy-substituted derivatives of tolazoline did not produce an alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rats and were therefore presumed to be devoid of alpha-2 adrenoceptor agonist activity. In contrast, 2,3-dimethoxytolazoline produced a vasopressor effect that was inhibited by yohimbine but not by prazosin, suggesting selective activation of postsynaptic vascular alpha-2 adrenoceptors. Consistent with this observation is the fact that 2,3-dimethoxytolazoline elicited a dose-dependent, alpha-2 adrenoceptor-mediated inhibition of neurogenic tachycardia in cord-stimulated pithed rat. 3,4-Dimethoxytolazoline was a weak alpha-1 adrenoceptor agonist in the vasculature of the pithed rat and was devoid of agonist activity at alpha-2 adrenoceptors. However, 3,4-dimethoxytolazoline was found to be an alpha-2 adrenoceptor antagonist of similar potency as yohimbine. The results of the present study indicate that dimethoxy-substituted derivatives of tolazoline possess different activities and selectivities at alpha-1 and alpha-2 adrenoceptors depending upon the positions of substitution.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Marine Bivalve Cellular Responses to Beta Blocker Exposures

    EPA Science Inventory

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent binding of agonists such as catecholamines to β adrenoceptors. In the absence of agonist induced activation of the receptor, adenylate cyclase is not activated whi...

  3. Impaired activation of adenylyl cyclase in lung of the Basenji-greyhound model of airway hyperresponsiveness: decreased numbers of high affinity beta-adrenoceptors.

    PubMed Central

    Emala, C. W.; Aryana, A.; Hirshman, C. A.

    1996-01-01

    1. To evaluate mechanisms involved in the impaired beta-adrenoceptor stimulation of adenylyl cyclase in tissues from the Basenji-greyhound (BG) dog model of airway hyperresponsiveness, we compared agonist and antagonist binding affinity of beta-adrenoceptors, beta-adrenoceptor subtypes, percentage of beta-adrenoceptors sequestered, and coupling of the beta-adrenoceptor to Gs alpha in lung membranes from BG and control mongrel dogs. We found that lung membranes from the BG dog had higher total numbers of beta-adrenoceptors with a greater percentage of receptors of the beta 2 subtype as compared to mongrel lung membranes. 2. Agonist and antagonist binding affinity and the percentage of beta-adrenoceptors sequestered were not different in BG and mongrel dog lung membranes. However, the percentage of beta-adrenoceptors in the high affinity state for agonist was decreased in BG lung membranes suggesting an uncoupling of the receptor from Gs alpha. 3. Impaired coupling between the beta-adrenoceptor and G protein documented by the decreased numbers of beta-adrenoceptors in the high affinity state in BG lung membranes, is a plausible explanation for the reduced stimulation of adenylyl cyclase and the resultant reduction in airway smooth muscle relaxation in this model. PMID:8864536

  4. Homologous regulation of the α2C-adrenoceptor subtype in human hepatocarcinoma, HepG2

    PubMed Central

    Cayla, Cécile; Schaak, Stéphane; Roquelaine, Cyril; Gales, Céline; Quinchon, Françoise; Paris, Hervé

    1999-01-01

    Previous studies of the regulation of the α2C-adrenoceptor in OK and in transfected cells have led to discrepant conclusions. In the present work, we examined the homologous regulation of the human α2C-adrenoceptor in the hepatocarcinoma cell-line, HepG2; a model which expresses this subtype spontaneously.Short-period treatment of the cells with UK14304 provoked neither a diminution of the potency of the α2-agonist to inhibit forskolin-induced cyclic AMP-accumulation nor a change in the degree of receptor coupling to G-proteins.Long-period exposure to UK14304 resulted in a large reduction of [3H]MK912 binding sites (55% decrease). The action of UK14304 was dose-dependent (EC50=190±45 nM), rapid (t1/2 =4.2 h) and reversible. Receptor down-regulation was also observed with clonidine or (−)adrenaline (38 and 36% decrease, respectively) and was blocked by the addition of α2-antagonists.Conversely to that observed with α2-agonists, treatment of the cells with RX821002 or yohimbine alone, but not with phentolamine, promoted a significant increase of the receptor expression.The observed alterations of receptor density are not the reflection of changes at the α2C4 mRNA level. Estimation of the receptor protein turnover and measurement of its half-life demonstrated that down-regulation by α2-agonists and up-regulation by α2-antagonists, with inverse-agonist efficacy, are respectively the consequence of increased and decreased rate of receptor degradation.In conclusion, our data show that α2C-adrenoceptor does not undergo desensitization but is down-regulated in HepG2. The lack of desensitization agrees with previous results obtained in cells transfected with the α2C4 gene, but not with observations made in OK cells. Inversely, down-regulation fits with results obtained in OK but not in transfected cells. The reasons for these discrepancies are discussed. Our results also demonstrated that certain α2-antagonists behave as inverse agonist on the HepG2 model and thus provide for the first time evidence of inverse efficacy of antagonists on a cellular model expressing physiological level of a wild-type α2-adrenoceptor. PMID:10051122

  5. OPC-28326, a selective femoral vasodilator, is an alpha2C-adrenoceptor-selective antagonist.

    PubMed

    Sun, B; Lockyer, S; Li, J; Chen, R; Yoshitake, M; Kambayashi, J I

    2001-11-01

    OPC-28326 has been reported to selectively increase femoral blood flow in open-chest dogs and autoperfused canine femoral artery preparations. Preliminary data indicated that OPC-28326 has a high affinity at the alpha2-adrenoceptor. In the present study, we tested OPC-28326 in isoflurane anesthetized rats at a dose of 3 mg/kg of body weight, given intraduodenally. OPC-28326 significantly increased femoral blood flow, by 44.7 +/- 13.8%, 45 min after drug administration, whereas carotid blood flow increased by only 3.6 +/- 5.5% (n = 6). Chinese hamster ovary cell lines overexpressing rat alpha2D-, alpha2B-, or alpha2C-adrenoceptor were established. These cells also coexpress luciferase, driven by cAMP elevation. In radioligand binding assays using cell membrane preparations, OPC-28326 dose dependently competed with [3H]RX821002 binding, with calculated K(i) values of 3840 +/- 887, 633 +/- 46, and 13.7 +/- 1.9 nM on alpha2D-, alpha2B-, and alpha2C-adrenoceptor, respectively. A similar affinity and rank order of potency were also found for OPC-28326 on the alpha2-subtypes using epinephrine as agonist in luciferase assays. No agonistic effect of OPC-28326 was detected on any of the alpha2-adrenoceptors. Finally, in situ hybridization performed on skeletal muscle tissue sections collected from rat hind limb (musculus gastrocnemius) demonstrated a high level expression of alpha2C in the vascular tissues. Thus, the abundance of alpha2C in the skeletal muscle may account for the selective effect of OPC-28326 in increasing femoral blood flow.

  6. Alpha2-adrenoceptor modulation of long-term potentiation elicited in vivo in rat occipital cortex.

    PubMed

    Mondaca, Mauricio; Hernández, Alejandro; Pérez, Hernán; Valladares, Luis; Sierralta, Walter; Fernández, Victor; Soto-Moyano, Rubén

    2004-09-24

    Pretreatment with the alpha(2)-adrenoceptor agonist clonidine (31.25, 62.5, or 125 microg/kg, i.p.) dose-dependently reduced long-term potentiation (LTP) elicited in vivo in the occipital cortex of anesthetized rats, whereas pretreatment with the alpha(2)-adrenoceptor antagonist yohimbine (0.133, 0.4, or 1.2 mg/kg, i.p.) increased neocortical LTP in a dose-dependent fashion. These effects could be related to the reported disruptive and facilitatory actions induced on memory formation by pretreatment with alpha(2)-adrenoceptor agonists and antagonists, respectively.

  7. Effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on contractile receptor function in airway smooth muscle.

    PubMed

    de Vries, B; Roffel, A F; Zaagsma, J; Meurs, H

    2001-11-23

    In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.

  8. β2-Adrenoceptors and non-β-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice

    PubMed Central

    Ngala, Robert A; O'Dowd, Jacqueline; Wang, Steven J; Stocker, Claire; Cawthorne, Michael A; Arch, Jonathan RS

    2009-01-01

    Background and purpose: In previous work, 10 pM BRL37344 and 10 pM clenbuterol stimulated glucose uptake in mouse soleus muscle. Ten nM BRL37344 also stimulated uptake but 100 nM clenbuterol inhibited uptake. Antagonist studies suggested that the opposite effects of 10 nM BRL37344 and 100 nM clenbuterol are mediated by the β2-adrenoceptor. BRL37344 and clenbuterol have been studied in muscles that lack β3-, β2- or all three β-adrenoceptors. Effects of β-adrenoceptor antagonists on responses to the agonists have been studied further using muscles from wild-type mice. Experimental approach: Soleus muscles of wild-type or β-adrenoceptor knockout mice were incubated with 2-deoxy[1-14C]-glucose, and β-adrenoceptor ligands. Formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. Key results: Concentration–response relationships were similar for BRL37344 and clenbuterol in normal muscle and muscle lacking β3-adrenoceptors. Ten pM BRL37344 and clenbuterol stimulated glucose uptake in muscle lacking β2-adrenoceptors or all three β-adrenoceptors, but 10 nM BRL37344 did not stimulate uptake in either case, and 100 nM clenbuterol stimulated, rather than inhibited, uptake in muscle lacking β2-adrenoceptors. One hundred nM clenbuterol also stimulated glucose uptake in normal muscle when β2-adrenoceptors were blocked with ICI118551, and this was not prevented by antagonism of β1- or β3-adrenoceptors. Conclusions and implications: Ten nM BRL37344 and 100 nM clenbuterol have opposite effects on glucose uptake but both effects are mediated by the β2-adrenoceptor – apparently an example of agonist-directed signalling. Ten pM BRL37344, 10 pM clenbuterol and 100 nM clenbuterol in the presence of ICI118551 stimulate glucose uptake via β-adrenoceptor-independent mechanisms, demonstrating unknown properties for the agonists. PMID:19912225

  9. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    PubMed

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  10. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  11. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    PubMed

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and G i/o -protein dependent manner in H9c2 cardiomyoblasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  13. Wnt/β-Catenin Signaling Modulates Human Airway Sensitization Induced by β2-Adrenoceptor Stimulation

    PubMed Central

    Faisy, Christophe; Grassin-Delyle, Stanislas; Blouquit-Laye, Sabine; Brollo, Marion; Naline, Emmanuel; Chapelier, Alain; Devillier, Philippe

    2014-01-01

    Background Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP–PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to β2-adrenoceptor agonists in human isolated airways. Methods Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37°C), a β2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP–PKA cascade was assessed in complete bronchi and in cultured epithelial cells. Results Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/β-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1) and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535). Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2) had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP–PKA cascade. Conclusions Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/β-catenin pathway, suggesting a phenomenon of biased agonism in connection with the β2-adrenoceptor stimulation. Future experiments based on the results of the present study will be needed to determine the impact of prolonged fenoterol exposure on the extra- and intracellular Wnt signaling pathways at the protein expression level. PMID:25360795

  14. Wnt/β-catenin signaling modulates human airway sensitization induced by β2-adrenoceptor stimulation.

    PubMed

    Faisy, Christophe; Grassin-Delyle, Stanislas; Blouquit-Laye, Sabine; Brollo, Marion; Naline, Emmanuel; Chapelier, Alain; Devillier, Philippe

    2014-01-01

    Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP-PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to β2-adrenoceptor agonists in human isolated airways. Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37 °C), a β2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP-PKA cascade was assessed in complete bronchi and in cultured epithelial cells. Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/β-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1) and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535). Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2) had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP-PKA cascade. Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/β-catenin pathway, suggesting a phenomenon of biased agonism in connection with the β2-adrenoceptor stimulation. Future experiments based on the results of the present study will be needed to determine the impact of prolonged fenoterol exposure on the extra- and intracellular Wnt signaling pathways at the protein expression level.

  15. Inhibition of agonist-induced smooth muscle contraction by picotamide in the male human lower urinary tract outflow region.

    PubMed

    Hennenberg, Martin; Tamalunas, Alexander; Wang, Yiming; Keller, Patrick; Schott, Melanie; Strittmatter, Frank; Herlemann, Annika; Yu, Qingfeng; Rutz, Beata; Ciotkowska, Anna; Stief, Christian G; Gratzke, Christian

    2017-05-15

    Male lower urinary tract symptoms (LUTS) due to bladder outlet obstruction are characterized by abnormal smooth muscle contractions in the lower urinary tract. Alpha 1 -adrenoceptor antagonists may induce smooth muscle relaxation in the outflow region and represent the current gold standard of medical treatment. However, results may be unsatisfactory or inadequate. Apart from α 1 -adrenoceptor agonists, smooth muscle contraction in the outflow region may be induced by thromboxane A 2 (TXA 2 ), endothelins, or muscarinic receptor agonists. Here, we studied effects of the thromboxane A 2 receptor (TP receptor) antagonist picotamide on contraction in the human male bladder trigone and prostate. Carbachol, the α 1 -adrenoceptor agonist phenylephrine, the thromboxane A 2 analog U46619, and electric field stimulation (EFS) induced concentration- or frequency-dependent contractions of trigone tissues in an organ bath. Picotamide (300µM) inhibited carbachol-, phenylephrine-, U46619-, and EFS-induced contractions. Endothelins 1-3 induced concentration-dependent contractions of prostate tissues, which were inhibited by picotamide. Analyses using real time polymerase chain reaction and antibodies suggested expression of thromboxane A 2 receptors and synthase in trigone smooth muscle cells. Thromboxane B 2 (the stable metabolite of thromboxane A 2 ) was detectable by enzyme immune assay in trigone samples, with most values ranging between 50 and 150pg/mg trigone protein. Picotamide inhibits contractions induced by different stimuli in the human lower urinary tract, including cholinergic, adrenergic, thromboxane A 2 - and endothelin-induced, and neurogenic contractions in different locations of the outflow region. This distinguishes picotamide from current medical treatments for LUTS, and suggests that picotamide may induce urodynamic effects in vivo. Copyright © 2017. Published by Elsevier B.V.

  16. Metabolic responses to BRL37344 and clenbuterol in soleus muscle and C2C12 cells via different atypical pharmacologies and β2-adrenoceptor mechanisms

    PubMed Central

    Ngala, R A; O'Dowd, J; Wang, S J; Agarwal, A; Stocker, C; Cawthorne, M A; Arch, J R S

    2008-01-01

    Background and purpose: Picomolar concentrations of the β3-adrenoceptor agonist BRL37344 stimulate 2-deoxyglucose uptake in soleus muscle via undefined receptors. Higher concentrations alter uptake, apparently via β2-adrenoceptors. Effects of BRL37344 and β2-adrenoceptor agonists are compared. Experimental approach: Mouse soleus muscles were incubated with 2-deoxy[1-14C]-glucose, [1-14C]-palmitate or [2-14C]-pyruvate, and BRL37344, β2-adrenoceptor agonists and selective β-adrenoceptor antagonists. Formation of 2-deoxy[1-14C]-glucose-6-phosphate or 14CO2 was measured. 2-Deoxy[1-14C]-glucose uptake and β-adrenoceptor mRNA were measured in C2C12 cells. Key results: 10 pM BRL37344, 10 pM clenbuterol and 100 pM salbutamol stimulated 2-deoxyglucose uptake in soleus muscle by 33–54%. The effect of BRL37344 was prevented by 1 μM atenolol but not by 300 nM CGP20712A or IC3118551, or 1 μM SR59230A; that of clenbuterol was prevented by ICI118551 but not atenolol. 10 nM BRL37344 st4mulated 2-deoxyglucose uptake, whereas 100 nM clenbuterol and salbutamol inhibited uptake. These effects were blocked by ICI118551. Similar results were obtained in C2C12 cells, in which only β2-adrenoceptor mRNA could be detected by RT-PCR. 10 nM BRL37344 and 10 pM clenbuterol stimulated muscle palmitate oxidation. In the presence of palmitate, BRL37344 no longer stimulated 2-deoxyglucose uptake and the effect of clenbuterol was not significant. Conclusions and implications: Stimulation of glucose uptake by 10 pM BRL37344 and clenbuterol involves different atypical pharmacologies. Nanomolar concentrations of BRL37344 and clenbuterol, probably acting via β2-adrenoceptors, have opposite effects on glucose uptake. The agonists preferentially stimulate fat rather than carbohydrate oxidation, but stimulation of endogenous fat oxidation cannot explain why 100 nM clenbuterol inhibited 2-deoxyglucose uptake. PMID:18552870

  17. Evaluation of partial beta-adrenoceptor agonist activity.

    PubMed

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether this phenomenon is relevant in the setting of acute severe asthma.

  18. Structure-activity relationship studies of (+/-)-terbutaline and (+/-)-fenoterol on beta3-adrenoceptors in the guinea pig gastric fundus.

    PubMed

    Horinouchi, T; Nakagawa, Y; Wakabayashi, M; Koike, K

    2001-08-01

    (+/-)-Terbutaline and (+/-)-fenoterol are both arylethanolamine analogs that have tertbutyl and aryliso-propyl substituents respectively at the a position on the nitrogen of the ethanolamine side chain. In the present study, we have investigated the structure-activity relationships of (+/-)-terbutaline and (+/-)-fenoterol as beta3-adrenoceptor agonists in the guinea pig gastric fundus. (+/-)-Terbutaline and (+/-)-fenoterol induced concentration-dependent relaxation of the precontracted gastric fundus with pD2 values of 4.45+/-0.10 and 5.90+/-0.09, and intrinsic activities of 1.00+/-0.03 and 0.99+/-0.01 respectively. The combination of the selective beta1-adrenoceptor antagonist (+/-)-atenolol (100 microM), and the selective beta2-adrenoceptor antagonist (+/-)-butoxamine (100 microM), produced a 2 and 6 fold rightward shift of the concentration-response curves for (+/-)-terbutaline and (+/-)-fenoterol respectively, without depressing the maximal responses. The order of potency of these agonists was (pD2 value): (+/-)-fenoterol (5.09+/-0.10) > (+/-)-terbutaline (4.13+/-0.08). In the presence of (+/-)-atenolol and (+/-)-butoxamine, however, the non-selective beta1, beta2- and beta3-adrenoceptor antagonist (+/-)-bupranolol caused a concentration-dependent rightward shift of the concentration-response curves for (+/-)-terbutaline and (+/-)-fenoterol. Schild plot analyses of the effects of (+/-)-bupranolol against these agonists gave pA2 values of 6.21+/-0.07 ((+/-)-terbutaline) and 6.37+/-0.06 ((+/-)-fenoterol) respectively, and the slopes of the Schild plot were not significantly different from unity (p>0.05). These results suggest that the relaxant responses to (+/-)-terbutaline and (+/-)-fenoterol are mainly mediated through beta3-adrenoceptors in the guinea pig gastric fundus. The beta3-adrenoceptor agonist potencies of arylethanolamine analogs depend on the size of the end of the alkylamine side chain.

  19. Novel Small Airway Bronchodilator Responses to Rosiglitazone in Mouse Lung Slices

    PubMed Central

    Bai, Yan; Donovan, Chantal; Esposito, James G.; Tan, Xiahui; Sanderson, Michael J.

    2014-01-01

    There is a need to identify novel agents that elicit small airway relaxation when β2-adrenoceptor agonists become ineffective in difficult-to-treat asthma. Because chronic treatment with the synthetic peroxisome proliferator activated receptor (PPAR)γ agonist rosiglitazone (RGZ) inhibits airway hyperresponsiveness in mouse models of allergic airways disease, we tested the hypothesis that RGZ causes acute airway relaxation by measuring changes in small airway size in mouse lung slices. Whereas the β-adrenoceptor agonists albuterol (ALB) and isoproterenol induced partial airway relaxation, RGZ reversed submaximal and maximal contraction to methacholine (MCh) and was similarly effective after precontraction with serotonin or endothelin-1. Concentration-dependent relaxation to RGZ was not altered by the β-adrenoceptor antagonist propranolol and was enhanced by ALB. RGZ-induced relaxation was mimicked by other synthetic PPARγ agonists but not by the putative endogenous agonist 15-deoxy-PGJ2 and was not prevented by the PPARγ antagonist GW9662. To induce airway relaxation, RGZ inhibited the amplitude and frequency of MCh-induced Ca2+ oscillations of airway smooth muscle cells (ASMCs). In addition, RGZ reduced MCh-induced Ca2+ sensitivity of the ASMCs. Collectively, these findings demonstrate that acute bronchodilator responses induced by RGZ are PPARγ independent, additive with ALB, and occur by the inhibition of ASMC Ca2+ signaling and Ca2+ sensitivity. Because RGZ continues to elicit relaxation when β-adrenoceptor agonists have a limited effect, RGZ or related compounds may have potential as bronchodilators for the treatment of difficult asthma. PMID:24188042

  20. Effects of muscarinic receptor agonists and antagonists on alpha 2-adrenoceptors in rat brain.

    PubMed

    Hollingsworth, P J; Smith, C B

    1989-09-13

    The specific binding of [3H]clonidine to alpha 2-adrenoceptors on neural membranes isolated from six brain areas was determined with rats treated for various periods of time with the muscarinic agonists, oxotremorine or pilocarpine, or with the muscarinic antagonists atropine, atropine methyl nitrate, scopolamine and scopolamine methyl bromide. Administration of pilocarpine, 10 mg/kg, twice daily i.p. for 1 and 14 days increased markedly the number of alpha 2-adrenoceptors on neural membranes from all six brain areas. In contrast, oxotremorine, 0.3 mg/kg, twice daily i.p., for 7 days decreased the number of alpha 2-adrenoceptors on membranes from all brain areas except the brainstem and caudate nucleus. Both atropine and scopolamine increased the density of alpha 2-adrenoceptors in specific brain areas. Neither atropine methyl nitrate nor scopolamine methyl bromide had an appreciable effect upon the specific binding of [3H]clonidine to neural membranes from most brain areas.

  1. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats

    PubMed Central

    Thorn, David A; An, Xiao-Fei; Zhang, Yanan; Pigini, Maria; Li, Jun-Xu

    2012-01-01

    BACKGROUND AND PURPOSE Imidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism. EXPERIMENTAL APPROACH Different groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists. KEY RESULTS All the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2–56 mg·kg–1, i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ α2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, α2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the α2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands. PMID:22324428

  2. The design, synthesis and pharmacological characterization of novel β2-adrenoceptor antagonists

    PubMed Central

    Hothersall, J Daniel; Black, James; Caddick, Stephen; Vinter, Jeremy G; Tinker, Andrew; Baker, James R

    2011-01-01

    BACKGROUND AND PURPOSE Selective and potent antagonists for the β2-adrenoceptor are potentially interesting as experimental and clinical tools, and we sought to identify novel ligands with this pharmacology. EXPERIMENTAL APPROACH A range of pharmacological assays was used to assess potency, affinity, selectivity (β2-adrenoceptor vs. β1-adrenoceptor) and efficacy. KEY RESULTS Ten novel compounds were identified but none had as high affinity as the prototypical β2-adrenoceptor blocker ICI-118,551, although one of the novel compounds was more selective for β2-adrenoceptors. Most of the ligands were inverse agonists for β2-adrenoceptor-cAMP signalling, although one (5217377) was a partial agonist and another a neutral antagonist (7929193). None of the ligands were efficacious with regard to β2-adrenoceptor-β-arrestin signalling. The (2S,3S) enantiomers were identified as the most active, although unusually the racemates were the most selective for the β2-adrenoceptors. This was taken as evidence for some unusual enantiospecific behaviour. CONCLUSIONS AND IMPLICATIONS In terms of improving on the pharmacology of the ligand ICI-118,551, one of the compounds was more selective (racemic JB-175), while one was a neutral antagonist (7929193), although none had as high an affinity. The results substantiate the notion that β-blockers do more than simply inhibit receptor activation, and differences between the ligands could provide useful tools to investigate receptor biology. PMID:21323900

  3. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  4. beta2-Agonist modulates epithelial gene expression involved in the T- and B-cell chemotaxis and induces airway sensitization in human isolated bronchi.

    PubMed

    Faisy, Christophe; Pinto, Francisco M; Blouquit-Laye, Sabine; Danel, Claire; Naline, Emmanuel; Buenestado, Amparo; Grassin Delyle, Stanislas; Burgel, Pierre-Régis; Chapelier, Alain; Advenier, Charles; Candenas, Maria-Luz; Devillier, Philippe

    2010-02-01

    Regular use of beta(2)-adrenoceptor agonists may enhance non-specific airway responsiveness and inflammation. In earlier experimental studies, we showed that prolonged in vitro fenoterol exposure induced airway sensitization via perturbed epithelial regulation of bronchoconstriction. The aim of the present work was to examine the involvement of inflammatory mediator genes and proinflammatory cells and to investigate the role of the bronchial epithelium in these untoward effects. Bronchial tissues were surgically removed from 17 ex-smokers. Bronchial rings and primary cultures of bronchial epithelial cells were incubated with 0.1microM fenoterol for 15h. Levels of mRNA-expression were analyzed using a real-time quantitative reverse transcription-polymerase chain reaction array. Bronchial rings were contracted with endothelin-1 and immune cell infiltration was assessed by immunohistochemistry. Compared to paired controls, fenoterol up-regulated the mRNAs of cytokines/proteins implicated in the recruitment of T and B cells or the activation and proliferation of bronchial epithelial cells (CCL20/MIP-3alpha, FOXA2, PPAR-gamma) in isolated bronchi and in cultured epithelial cells. Fenoterol exposure significantly enhanced CD8(+)-T and differentiated CD138(+)-B-cells infiltration into the bronchi, especially the subepithelial area. Increase in CD8 or CD138 labeling-intensity strongly correlated with rise in maximal contraction to endothelin-1 induced by fenoterol exposure. In summary, our results show that fenoterol modulates the T and B cells chemotaxis possibly via the epithelial chemokine secretion in isolated bronchi from ex-smokers. They also suggest that the infiltration of resident T and B cells into the subepithelial area is associated with an increase in airway responsiveness due to fenoterol exposure. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. alpha(2)-adrenoceptor antagonist properties of OPC-28326, a novel selective peripheral vasodilator.

    PubMed

    Orito, K; Kishi, M; Imaizumi, T; Nakazawa, T; Hashimoto, A; Mori, T; Kambe, T

    2001-10-01

    1. Antagonistic properties of OPC-28326 ([4-(N-methyl-2-phenylethylamino)-1-(3,5-dimethyl-4-propionyl-aminobenzoyl)] piperidine hydrochloride monohydrate), a selective peripheral vasodilator, were investigated by analysing the data from functional studies in various tissues from the rat and binding studies of the drug to alpha(2)-adrenoceptor subtypes. 2. Using a human recombinant receptor and rat kidney cortex, we found that OPC-28326 displays affinities to alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptors with K(i) values of 2040, 285, and 55 nM, respectively. The K(i) values of yohimbine for alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenoceptors were 3.0, 2.0 and 11.0 nM, respectively. 3. B-HT 920, an alpha(2)-adrenoceptor agonist, produced a pressor response via peripheral postsynaptic alpha(2)-adrenoceptor stimulation (thought to be an alpha(2B)-subtype) in a reserpine-pretreated pithed rat preparation. OPC-28326 (3 - 30 mg kg(-1), i.v.) and yohimbine (0.3 - 3 mg kg(-1), i.v.) caused dose-dependent rightward shift in the pressor dose-response curve induced by B-HT 920. The apparent pA(2) values were 1.55 (0.87 - 2.75, 95% confidence interval) and 0.11 (0.06 - 0.21) mg kg(-1), respectively. The potency of OPC-28326 was about 14 times less than that of yohimbine. 4. Clonidine inhibited the tension developed by electrical stimulation, of the rat vas deferens, by its peripheral presynaptic alpha(2A/D)-adrenoceptor action. OPC-28326 (1 - 100 microM) and yohimbine (10 - 1000 nM) caused a rightward shift in the concentration-response curve of clonidine. The pA(2) values were 5.73 (5.54 - 5.91) and 7.92 (7.84 - 8.01), respectively, providing evidence for a potency of OPC-28326 of about 155 times less than that of yohimbine. 5. Mydriasis was induced by brimonidine via stimulation of central alpha(2A/D)-adrenoceptors in anaesthetized rats. Intravenous OPC-28326 had no effect on this action, even at a very high dose of 10 mg kg(-1) i.v., while yohimbine (0.1 - 0.3 mg kg(-1) i.v.) inhibited mydriasis in a dose-dependent manner, indicating that OPC-28326 was at least 100 times less potent than yohimbine in regard to the anti-mydriatic effect. 6. These data suggest that OPC-28326 preferentially exerts peripheral and postsynaptic antagonistic actions on the alpha(2B)- and alpha(2C)-adrenoceptor subtypes.

  6. A Role for Presynaptic alpha(sub 2)-Adrenoceptors in Angiotensin 2-Induced Drinking in Rats

    NASA Technical Reports Server (NTRS)

    Fregly, Melvin J.; Rowland, Neil E.; Greenleaf, John E.

    1984-01-01

    Studies from this laboratory have shown that either central or peripheral administration of clonidine, the alpha(sub 2)-adrenoceptor agonist, can attenuate a variety of dipsogenic stimuli in rats. Further, yohimbine and tolazoline, alpha(sub 2)-adrenoceptor antagonists, augment the drinking response to both peripherally administered isoproterenol and angiotensin 2. Studies reported here establish a dose-inhibition relationship between the dose of clonidine administered (2 to 32 micrograms/kg) intracerebroventricularly (IVT) and inhibition of the drinking response to peripherally administered angiotensin 2 (200 micrograms/kg, SC). DI(sub 50) was approximately 4 micrograms/kg. Yohimbine (300 micrograms/kg, SC) reversed the antidipsogenic effect of centrally administered clonidine (32 micrograms/kg, IVT) on angiotensin 2-induced (200 micrograms/kg, SC) water intake. Phenylephrine, an alpha(sub 2)-adrenoceptor agonist, administered IVT (40 and 80 micrograms/kg) also inhibited angiotensin 2-induced drinking in a dose-related fashion. The antidipsogenic effect of phenylephfine (80 micrograms/kg) was blocked by administration of yohimbine (100 micrograms/kg, SC). Thus, this effect of phenylephrine most likely occurs by way of alpha(sub 2)- adrenoceptors. These results support a role for the pre-synaptic alpha(sub 2)-adrenoceptor in the mediation of drinking in rats. Activation of alpha(sub 2)-adrenoceptors is accompanied by reduced water intake while inhibition of these receptors enhances water intake.

  7. Effect of alpha 2-adrenoceptor agonists on gastric pepsin and acid secretion in the rat.

    PubMed Central

    Tazi-Saad, K.; Chariot, J.; Del Tacca, M.; Rozé, C.

    1992-01-01

    1. The purpose of the present study was to analyze the effects of the alpha 2-adrenoceptor agonists clonidine, guanabenz, detomidine and medetomidine on pepsin secretion in conscious rats provided with gastric chronic fistula and to compare this with acid secretion. 2. Basal interdigestive gastric secretion, which is mainly neurally driven in the rat, and the secretion directly stimulated by the two main stimulants of chief cells, cholecystokinin octapeptide (CCK8) and methacholine, were studied. 3. Basal secretion of pepsin and acid was inhibited by all four drugs with comparable EC50S. 4. CCK-stimulated pepsin and acid secretion was less sensitive than basal pepsin and acid secretion to alpha 2-adrenoceptor inhibition. 5. Methacholine-stimulated pepsin and acid secretion was not changed by clonidine and guanabenz; methacholine-stimulated acid was even marginally increased by clonidine. 6. These results do not favour the presence of alpha 2-receptors on chief cells in the rat stomach. They rather suggest that pepsin inhibition by alpha 2-adrenoceptor agonists is indirect and due to central or peripheral inhibition of the discharge of nerve fibres activating pepsin secretion. PMID:1356566

  8. Effects of ovarian steroids upon responses mediated by adrenoceptors in separated layers of the myometrium and in the costo-uterine muscle of the guinea-pig

    PubMed Central

    Hartley, Margaret L.; Pennefather, Jocelyn N.; Story, Margot E.

    1983-01-01

    1 This study describes the effects of ovarian steroid hormones upon the responses to adrenoceptor agonists of isolated myometrium, separated into its longitudinal and circular layers, and of costo-uterine muscle from guinea-pigs. The preparations were field-stimulated at 100 s intervals, and the adrenoceptor agonists phenylephrine and isoprenaline produced enhancement or inhibition of the evoked contractions. 2 Isoprenaline produced propranolol-sensitive inhibitory effects in longitudinal and circular myometrium and costo-uterine muscle preparations from animals from all experimental groups: i.e. from nonsteroid-treated animals (ovariectomized and intact); intact animals treated with either oestrogen or progesterone alone; ovariectomized animals treated with oestrogen; ovariectomized and intact animals treated with progesterone following oestrogen priming; and from animals 1-4 days post-partum. Longitudinal myometrial preparations from progesterone-treated oestrogen-primed and from post-partum animals were most sensitive to this agonist. 3 Phenylephrine produced phentolamine-sensitive excitatory effects in circular myometrial and costo-uterine muscle preparations from animals from all the experimental groups. In contrast, propranolol-sensitive inhibitory responses to phenylephrine occurred in longitudinal myometrial preparations taken from animals treated with progesterone following oestrogen priming, and from post-partum animals. Longitudinal myometrium from animals from the remaining experimental groups exhibited phentolamine-sensitive excitatory responses to phenylephrine. 4 The basis for the selective effect upon the longitudinal myometrium of exposure to progesterone following a period of oestrogen priming, is discussed. The results described are consistent with the possibility that in the longitudinal layer of guinea-pig uterus exposed to progesterone following oestrogen priming there is an increase in the proportion of β-adrenoceptors in this layer. This increase may reduce the likelihood of contractions arising via direct stimulation of α-adrenoceptors in this layer in response to sympathetic activation during pregnancy. PMID:6871558

  9. Use of Optical Mapping to Evaluate Mechanisms and New Therapies for Bladder Dysfunction Due to Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    TERMS Lower urinary tract symptoms (LUTS), spinal cord injury (SCI), Botulinum Toxin Type A and β3 adrenoceptor agonists 16. SECURITY...focused on the therapeutic benefits of β3 adrenoceptor agonists, botulinum neurotoxin type A (BTX-A) intradetrusor injections and their combination...compromised by the toxin . Thus, β3 adrenoceptor agonists in combination with BTX-A are beneficial in improving bladder function in SCI patients. 15. SUBJECT

  10. Nitric oxide donor beta2-agonists: furoxan derivatives containing the fenoterol moiety and related furazans.

    PubMed

    Buonsanti, M Federica; Bertinaria, Massimo; Stilo, Antonella Di; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2007-10-04

    The structure of fenoterol, a beta2-adrenoceptor agonist used in therapy, has been joined with furoxan NO-donor moieties to give new NO-donor beta2-agonists. The furazan analogues, devoid of the property to release NO, were also synthesized for comparison. All the compounds retained beta2-agonistic activity at micromolar or submicromolar concentration when tested on guinea pig tracheal rings precontracted with carbachol. Among the furoxan derivatives, the NO contribution to trachea relaxation was evident with product 15b at micromolar concentrations. All the new NO-donor hybrids were able to dilate rat aortic strips precontracted with phenylephrine. Both furoxan and furazan derivatives displayed antioxidant activity greater than that of fenoterol.

  11. Fenoterol inhibits superoxide anion generation by human polymorphonuclear leukocytes via beta-adrenoceptor-dependent and -independent mechanisms.

    PubMed

    Mirza, Zafar Nazir; Kato, Masahiko; Kimura, Hirokazu; Tachibana, Atsushi; Fujiu, Toru; Suzuki, Masato; Mochizuki, Hiroyuki; Tokuyama, Kenichi; Morikawa, Akihiro

    2002-05-01

    Beta2-adrenoceptor agonists, used widely as bronchodilator in treating bronchial asthma, may have anti-inflammatory activity. We examined whether various widely prescribed beta2-adrenoceptor agonists differ in anti-inflammatory mechanisms. We investigated effects of these drugs on superoxide anion generation by stimulated human polymorphonuclear leukocytes in vitro using chemiluminescence. At high concentrations, fenoterol significantly inhibited both N-formylmethionyl-leucyl-phenylalanine- and phorbol myristate acetate-induced superoxide generation by neutrophils. In contrast, salbutamol or procaterol partially inhibited generation with the former stimulus but not the latter. Inhibition by salbutamol or procaterol was completely reversed by either propranolol, a nonselective beta-adrenoceptor antagonist, or ICI-118551, a beta2-adrenoceptor-selective antagonist. In contrast, the effect of fenoterol at concentrations exceeding 10(-6) M against superoxide generation with the former stimulus was only partially reversed by antagonists, and the effect of high concentrations of fenoterol against generation with the latter stimulus was not reversed. No drugs scavenged superoxide at the highest concentration used (10(-5) M). Fenoterol at high concentrations has an inhibitory effect on superoxide generation that includes a component not mediated via beta2-adrenoceptors. Direct inhibition at or downstream from protein kinase C may be involved.

  12. Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of Gi-protein-Akt-NO-pathway.

    PubMed

    Odnoshivkina, Yulia G; Sytchev, Vaycheslav I; Petrov, Alexey M

    2017-06-01

    Majority of cardiac β2-adrenoceptors is located in cholesterol-rich microdomains. Here, we have investigated the underlying mechanisms by which a slight to moderate cholesterol depletion with methyl-β-cyclodextrin (MβCD, 1 and 5mM) interferes with contractility and inotropic effect of β2-adrenergic agonist (fenoterol, 50μM) in the mouse atria. Treatment with MβCD itself increased amplitude of Ca 2+ transient but did not change the contraction amplitude due to a clamping action of elevated NO. Cholesterol depletion significantly attenuated the positive inotropic response to fenoterol which is accompanied by increase in NO generation and decrease in Ca 2+ transient. Influence of 1mM MβCD on the fenoterol-driven changes in both contractility and NO level was strongly attenuated by inhibition of G i -protein (pertussis toxin), Akt (Akt 1/2 kinase inhibitor) or NO-synthase (L-NAME). After exposure to 5mM MβCD, pertussis toxin or Akt inhibitor could recover the β2-agonist effects on contractility, NO production and Ca 2+ transient, while L-NAME only reduced NO level. An adenylyl cyclase activator (forskolin, 50nM) had no influence on the MβCD-induced changes in the β2-agonist effects. Obtained results suggest that slight cholesterol depletion upregulates G i -protein/Akt/NO-synthase signaling that attenuates the positive inotropic response to β2-adrenergic stimulation without altering the Ca 2+ transient. Whilst moderate cholesterol depletion additionally could suppress the enhancement of the Ca 2+ transient amplitude caused by the β2-adrenergic agonist administration in G i -protein/Akt-dependent but NO-independent manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Different mechanisms of action of beta2-adrenergic receptor agonists: a comparison of reproterol, fenoterol and salbutamol on monocyte cyclic-AMP and leukotriene B4 production in vitro.

    PubMed

    Juergens, Uwe R; Stöber, M; Libertus, H; Darlath, W; Gillissen, A; Vetter, H

    2004-07-30

    Beta2-adrenergic receptor agonists have several effects on airway function, most of which are mediated in a variety of cell types resulting in increased c-AMP-production and inhibition of inflammatory mediator production. However, their stimulating effects on cAMP-production became known to be inversed by increasing phosphodiesterase (PDE) activity and degradation of cAMP. Therefore, in this study we have evaluated the efficacy of reproterol, a dual acting beta2-adrenoceptor agonist and PDE-inhibitor, as compared to salbutamol and fenoterol with respect to production of cAMP and LTB4 in cultured monocytes. Isolated human monocytes (10(5)/ml) were incubated (n = 9) in suspension with beta2-adrenoceptor agonists (10(-10) -10(-4) M) for 30 minutes with and without IBMX. Then, cAMP production was determined following treatment with Triton-X100. Production of LTB4 was measured following incubation of beta2-adrenoceptor agonists for 4 hrs in the presence of LPS (10 mg/ml). cAMP and LTB subset 4 were measured in culture supernatants by enzyme immunoassay. At 10(-5) M, production of cAMP was significantly stimulated by reproterol > fenoterol > salbutamol in a dose-dependent manner to an extent of *128%, *65%, 13% (*p<0.04) respectively. In contrast, LTB4-production was inhibited significantly to a similar degree by salbutamol and reproterol in a dose-dependent manner by 59% and 49% (10(-5) M, p<0.03), respectively, with decreasing inhibition (15%) after fenoterol. Following co-incubation with IBMX, cAMP production only increased significantly (p<0.002) after fenoterol (+110%) compared to salbutamol (+29%) and reproterol (+50%) (ANOVA, p<0.001). These data suggest effects of the theophylline constituent of reproterol to inhibit adenylyl cyclase induced phosphodiesterase activity. The advantageous synergistic effects of reproterol on cAMP-production need to be further explored in trials.

  14. Acute orexigenic effect of agmatine involves interaction between central α2-adrenergic and GABAergic receptors.

    PubMed

    Taksande, Brijesh Gulabrao; Sharma, Omi; Aglawe, Manish Manohar; Kale, Mayur Bhimrao; Gawande, Dinesh Yugraj; Umekar, Milind Janraoji; Kotagale, Nandkishor Ramdas

    2017-09-01

    Agmatine and GABA have been abundantly expressed in brain nuclei involved in regulation of energy homeostasis and promoting stimulation of food intake in rodents. However, their mutual interaction, if any, in the elicitation of feeding behavior is largely remains unclear. The current study provides experimental evidence for the possible interaction of agmatine, adrenergic and GABAergic systems in stimulation of feeding in satiated rats. Satiated rats fitted with intracerebroventricular (i.c.v.) cannulae and were administered agmatine, alone or jointly with (a) GABA A receptor agonist, muscimol, diazepam or antagonist bicuculline and flumazenil, GABA A positive modulator, allopregnanolone or negative modulator of GABA A receptor, dehydroepiandrosterone (b) In view of the high affinity of agmatine for α 2 -adrenoceptors and the close association between α 2 -adrenoceptors and GABAergic system, the effect of their modulators on feeding elicited by agmatine/GABAergic agonists were also examined. I.c.v. administration of agmatine (40-80μg/rat) induces the significant orexigenic effect in satiated rats. The orexigenic effect of agmatine was potentiated by muscimol (25ng/rat, i.c.v.); diazepam (0.5mg/kg, i.p.); allopregnanolone (0.5mg/kg, s.c.) and blocked by bicuculline (1mg/kg, i.p.) and dehydroepiandrosterone (4mg/kg,s.c.). However, it remained unaffected in presence of flumazenil (25ng/rat, i.c.v.). The orexigenic effect of agmatine and GABAergic agonists was potentiated by a α 2 -adrenoceptors agonist, clonidine (10ng/rat, i.c.v.) and blocked by its antagonist, yohimbine (5μg/rat, i.c.v.). Yohimbine also blocked the hyperphagic effect elicited by ineffective dose combination of agmatine (5μg/rat, i.c.v.) with muscimol (25ng/rat, i.c.v.) or diazepam (0.5mg/kg, i.p.) or allopregnanolone (0.5mg/kg,s.c.). The results of the present study suggest that agmatine induced α 2 -adrenoceptors activation might facilitate GABAergic activity to stimulate food intake in satiated rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Suppressive effects of formoterol and salmeterol on eotaxin-1 in bronchial epithelial cells.

    PubMed

    Chu, Yu-Te; Chang, Tai-Tsung; Jong, Yuh-Jyh; Kuo, Po-Lin; Lee, Hsi-Ming; Lee, Min-Sheng; Chang, Hui-Wen; Hung, Chih-Hsing

    2010-03-01

    Eotaxin-1 (CCL11), an eosinophil-specific C-C chemokine, is a potent chemoattractant for mobilization of eosinophils into airways after allergic stimulation. Eotaxin-1 recruits eosinophils into inflammatory sites, and may play a role in the pathogenesis of asthma. Formoterol and salmeterol are two inhaled long acting beta(2) adrenoceptor agonists (LABAs), widely used for the local treatment of asthma. However, little is known about their effects on the eotaxin-1 expression of bronchial epithelial cells. BEAS-2B cells were stimulated by adding IL-4 with or without 2 h pre-treatment of formoterol or salmeterol. The protein and mRNA expression of eotaxin-1 were measured by ELISA assay and real-time PCR, respectively. Effects of formoterol and salmeterol on nuclear and cytosolic pSTAT-6 expression were evaluated by Western blot and immunofluorescence study. Formoterol and salmeterol (10(-7)-10(-10) m) significantly down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. A specific beta(2) adrenoceptor antagonist (ICI 118,551) reversed their suppression of eotaxin-1 production. Forskolin, an cAMP activator, could also suppress the expression of eotaxin-1 by IL-4 in a dose dependent manner (10(-7)-10(-10 )m). The western blot and immunofluorescence studies demonstrated that formoterol 10(-7 )m suppressed the nuclear expression of pSTAT-6. Formoterol and salmeterol, two inhaled long-acting beta(2) agonists, down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. The effect was mediated via the beta(2) adrenoceptor, and cAMP. Formoterol significantly down-regulated pSTAT6 at higher concentration, and further turned off the IL-4 signaling pathway.

  16. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    PubMed

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  17. Characterization of adrenergic receptors of the cat iris and nictitating membrane.

    PubMed

    Koss, M C; Hey, J A; Gherezghiher, T

    1990-01-01

    Graded pupillary dilations and nictitating membrane (NM) contractions were elicited in anesthetized cats by electrical stimulation of the preganglionic sympathetic nerve or by i.a. administration of norepinephrine (NE) or phenylephrine into the carotid artery. Pupil and NM responses were measured simultaneously from the same side. Alpha-adrenoceptor antagonists were administered intravenously. All of the alpha 1-adrenoceptor blockers tested produced a dose-related reduction of NM responses to both neural and agonist activation; the potency rank order was prazosin greater than WB-4101 greater than phentolamine greater than phenoxybenzamine (PBZ). In contrast, responses of the iris dilator were antagonized only by WB-4101 and PBZ. The iris was almost totally refractory to doses of prazosin and phentolamine that blocked NM responses by more than 75% of control. Neither alpha 2- nor beta-adrenoceptor antagonism produced significant inhibition of neural or agonist activation of either organ (with the exception of high doses of yohimbine on the NM). These results suggest that the postjunctional adrenoceptors of the NM are exclusively of the alpha 1-adrenoceptor subtype. In contrast, those of the iris dilator muscle cannot be easily classified pharmacologically as either alpha 1 or alpha 2-adrenoceptors.

  18. Contribution of α-adrenoceptor stimulation by phenylephrine to basal nitric oxide production in the isolated mouse aorta.

    PubMed

    van Langen, Johanna T H; Van Hove, Cor E; Schrijvers, Dorien M; Martinet, Wim; De Meyer, Guido R Y; Fransen, Paul; Bult, Hidde

    2013-04-01

    In the mouse aorta, contractions evoked by the α(1)-adrenoceptor agonist phenylephrine are strongly suppressed by the continuous production of nitric oxide (NO). We investigated whether phenylephrine itself stimulated NO production by activating endothelial α(2)-adrenoceptors. On a prostaglandin F(2α) contraction, the α(2)-adrenoceptor agonist 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) induced 29.3 ± 7.4% relaxation, which was inhibited by 0.1 μM 2-[(4,5-Dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL44408) with a pKB' corresponding to α(2)-antagonism. In the presence of NO synthase blockers, UK14304 elicited small contractions above 1 μM that were inhibited by 0.1 μM prazosin, but not influenced by 0.1 μM rauwolscine. At 3 μM or higher concentrations, phenylephrine caused only modest relaxation (up to 7.4 ± 2.3%) of segments constricted with prostaglandin F(2α) in the presence of prazosin, which was abolished with 0.1 μM BRL44408. Furthermore, BRL44408 did not increase contractions induced with 1 μM phenylephrine. These results confirm that α(1)- but not α(2)-adrenoceptors are expressed on aortic smooth muscle cells, whereas endothelial cells only express α(2)-adrenoceptors. Moreover, phenylephrine exerted a very modest relaxing effect through nonspecific stimulation of α(2)-adrenoceptors, but only at concentrations higher than 1 μM. It is concluded that the high basal output of NO in the isolated mouse aorta is not due to stimulation of α-adrenoceptors.

  19. Distribution and types of adrenoceptors in the guinea-pig ileum: the action of α-and β-adrenoceptor agonists

    PubMed Central

    Bauer, V.

    1981-01-01

    1 Segments of guinea-pig ileum and the myenteric plexus-longitudinal smooth muscle preparation were used for a study of the actions of adrenaline, noradrenaline, isoprenaline, ephedrine and phenylephrine on the responses of coaxially stimulated ileum at different distances from the ileocaecal valve. 2 The responses of the ileum to electrical stimulation were suppressed by adrenaline, nonadrenaline and ephedrine, while phenylephrine and isoprenaline inhibited them only partially. 3 The twitch inhibition elicited by these adrenoceptor agonists was the same at all distances from the ileocaecal valve. There was no significant difference between their cumulative and non-cumulative concentration-response curves. 4 Smooth muscle relaxation was induced only by isoprenaline and contraction only by phenylephrine at all distances from the ileocaecal junction. Adrenaline and noradrenaline evoked smooth muscle contraction in the terminal (0 to 20 cm), a concentration-dependent, biphasic response in the intermediate part (21 to 50 cm) and a relaxation in the proximal ileum (> 50 cm from the ilecocaecal valve). Ephedrine did not change significantly the smooth muscle tension in the terminal and the intermediate segments and induced smooth muscle relaxation in the proximal ones. 5 Ouabain and a potassium-free solution did not appear to influence the prejunctional action of noradrenaline nor the amplitude of smooth muscle relaxation in the proximal ileum, whereas the concentration-contractor response curves were significantly depressed and shifted to the right by ouabain and in a potassium-free solution. 6 The brief initial (phasic) contraction induced by acetylcholine was not influenced during the sustained increase or decrease in tension induced by catecholamines. On the contrary, the stimulatory catecholamine actions disappeared or were changed to smooth muscle relaxation by acetylcholine pretreatment. Potassium chloride pretreatment did not change the character of the adrenoceptor agonist action of the agonists studied. 7 Since there is a similar prejunctional action at all distances from the ileocaecal valve and a different postjunctional effect of the adrenoceptor agonists at different distances from the ileocaecal junction, it could be suggested that in the guinea-pig ileum there are at least two α-adrenoceptors (inhibitory prejunctional-α2, stimulatory postjunctional-α1), an inhibitory postjunctional β-adrenoceptor and an as yet uncharacterized inhibitory postjunctional receptor. 8 Based on the specific postjunctional action of phenylephrine and the prejunctional action of ephedrine in the guinea-pig ileum, these drugs could be used with success as `specific' α1- and α2-adrenoceptor stimulants. PMID:6111369

  20. alpha2-Adrenergic agonists antagonise the anxiolytic-like effect of antidepressants in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2005-10-14

    Selective serotonin reuptake inhibitors (SSRIs) and serotonin/noradrenaline reuptake inhibitors (SNRIs) has been reported to be efficient in anxiety disorders. Some animal models have demonstrated an anxiolytic-like effect following acute administration, however, it is not yet known how noradrenergic receptors are implicated in the therapeutic effects of antidepressants (ADs) in anxiety. The effects of two alpha(2)-adrenoceptor agonists (clonidine, guanabenz) on anxiolytic-like effect of two SSRIs (paroxetine and citalopram) and two SNRIs (venlafaxine and milnacipran) were evaluated in the four-plate test (FPT) in mice. Paroxetine (4 mg/kg), citalopram (8 mg/kg), venlafaxine (8 mg/kg), and milnacipran (8 mg/kg) administered intraperitoneally (i.p.) increased the number of punishments accepted by mice in the FPT. Clonidine (0.0039-0.5 mg/kg) and guanabenz (0.03-0.5mg/kg) had no effect on the number of punishments accepted by mice. Clonidine (0.03 and 0.06 mg/kg) and guanabenz (0.125 and 0.5 mg/kg) (i.p. -45 min) reversed the anti-punishment effect of paroxetine, citalopram, venlafaxine and milnacipran (i.p. -30 min). But if the antidepressants are administered 45 min before the test and alpha(2)-adrenoceptor agonists 30 min before the test, alpha(2)-adrenoceptor agonists failed to alter the anti-punishment effect of antidepressants. The results of this present study indicate that alpha(2)-adrenoceptor agonists antagonise the anxiolytic-like effect of antidepressants in mice when they are administered 15 min before the administration of antidepressant suggesting a close inter-regulation between noradrenergic and serotoninergic system in the mechanism of SSRIs and SNRIs in anxiety-like behaviour.

  1. Modulation of fear/anxiety responses, but not food intake, following α-adrenoceptor agonist microinjections in the nucleus accumbens shell of free-feeding rats.

    PubMed

    Kochenborger, Larissa; Zanatta, Débora; Berretta, Luigi Marins; Lopes, Ana Paula Fraga; Wunderlich, Bruna Luiza; Januário, Ana Cláudia; Neto, José Marino; Terenzi, Mariana Graciela; Paschoalini, Marta Aparecida; Faria, Moacir Serralvo

    2012-01-01

    This study investigated the effect of α-adrenoceptor agonists microinjected into the shell region of the accumbens nucleus (AcbSh) on feeding and anxiety-related behaviors in free-feeding rats. Male Wistar rats with a chronically implanted cannula into the AcbSh were unilaterally microinjected with either clonidine (CLON, α(2)-adrenoceptor agonist) or phenylephrine (PHEN, α(1)-adrenoceptor agonist) at the doses of 6 and 20 nmol and submitted to the elevated plus-maze (EPM), a pre-clinical test of anxiety. Immediately after the EPM test, the animals underwent food intake evaluation for 30 min. The data showed that rats microinjected with CLON (20 nmol/0.2 μl) into the AcbSh exhibited increased %Open arm time, which is compatible with an anxiolytic-like effect. The CLON-induced anxiolysis was corroborated by increased head-dipping and decreased stretched-attend posture, two ethologically derived behaviors which are fear/anxiety-motivated. The animal's locomotor activity was not changed by 20 nmol CLON microinjection into the AcbSh. However, neither dose of PHEN microinjected into the AcbSh was able to alter either the spatial-temporal or ethological variables representative of fear/anxiety and locomotion. Food intake was not altered by any dose of CLON and PHEN microinjected into the AcbSh, but the 20 nmol CLON microinjection induced increased motor activity in the feeding test. The data suggests that noradrenergic projections to the AcbSh may underlie fear/anxiety modulation through α(2)-adrenoceptor in the AcbSh, while feeding behavior was unaffected by noradrenergic modulation in the AcbSh of free-feeding rats. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Thermodynamics and docking of agonists to the β(2)-adrenoceptor determined using [(3)H](R,R')-4-methoxyfenoterol as the marker ligand.

    PubMed

    Toll, Lawrence; Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A; Tanga, Mary J; Bupp, James E; Wainer, Irving W

    2012-06-01

    G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β(2)-adrenergic receptor, we developed a new agonist radioligand for binding assays. [(3)H](R,R')-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β(2)-adrenoceptor (AR) population as determined with the antagonist [(3)H]CGP-12177. The β(2)-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and K(i) values determined for fenoterol analogs model much better the cAMP activity of the β(2)-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [(3)H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β(2)-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β(2)-adrenoceptor.

  3. Thermodynamics and Docking of Agonists to the β2-Adrenoceptor Determined Using [3H](R,R′)-4-Methoxyfenoterol as the Marker Ligand

    PubMed Central

    Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A.; Tanga, Mary J.; Bupp, James E.; Wainer, Irving W.

    2012-01-01

    G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β2-adrenergic receptor, we developed a new agonist radioligand for binding assays. [3H](R,R′)-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β2-adrenoceptor (AR) population as determined with the antagonist [3H]CGP-12177. The β2-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and Ki values determined for fenoterol analogs model much better the cAMP activity of the β2-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [3H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β2-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β2-adrenoceptor. PMID:22434858

  4. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat

    NASA Technical Reports Server (NTRS)

    Thomson, S. C.; Gabbai, F. B.; Tucker, B. J.; Blantz, R. C.

    1992-01-01

    The hypothesis that renal alpha 2 adrenoceptors influence nephron filtration rate (SNGFR) via interaction with angiotensin II (AII) was tested by renal micropuncture. The physical determinants of SNGFR were assessed in adult male Munich Wistar rats 5-7 d after ipsilateral surgical renal denervation (DNX). DNX was performed to isolate inhibitory central and presynaptic alpha 2 adrenoceptors from end-organ receptors within the kidney. Two experimental protocols were employed: one to test whether prior AII receptor blockade with saralasin would alter the glomerular hemodynamic response to alpha 2 adrenoceptor stimulation with the selective agonist B-HT 933 under euvolemic conditions, and the other to test whether B-HT 933 would alter the response to exogenous AII under conditions of plasma volume expansion. In euvolemic rats, B-HT 933 caused SNGFR to decline as the result of a decrease in glomerular ultrafiltration coefficient (LpA), an effect that was blocked by saralasin. After plasma volume expansion, B-HT 933 showed no primary effect on LpA but heightened the response of arterial blood pressure, glomerular transcapillary pressure gradient, and LpA to AII. The parallel results of these converse experiments suggest a complementary interaction between renal alpha 2-adrenergic and AII systems in the control of LpA.

  5. Investigation of the prejunctional α2-adrenoceptor mediated actions of MDMA in rat atrium and vas deferens

    PubMed Central

    Lavelle, Aisling; Honner, Valerie; Docherty, J R

    1999-01-01

    We have investigated the effects of methylenedioxymethamphetamine (MDMA, ‘ecstasy') on peripheral noradrenergic neurotransmission in the rat.In rat atrial slices pre-incubated with [3H]-noradrenaline and in the presence of desipramine (1 μM) to prevent effects of MDMA on basal outflow of tritium, MDMA (10 μM) significantly inhibited the release of tritium evoked by short trains of six pulses at 100 Hz every 10 s for 3 min. This effect did not occur in the presence of the α2-adrenoceptor antagonist yohimbine (1 μM).In epididymal portions of rat vas deferens in the presence of nifedipine (10 μM), MDMA produced a concentration-dependent inhibition of single pulse nerve stimulation-evoked contractions with a pD2 of 5.88±0.16 (n=4). Inhibitory effects of MDMA were antagonized by the α2-adrenoceptor antagonist yohimbine (0.3 μM), but not by the 5-hydroxytryptamine receptor antagonist cyanopindolol in a concentration (1 μM) which markedly antagonized the inhibitory actions of the 5-HT-1 receptor agonist 5-carboxamidotryptamine.In prostatic portions of rat vas deferens in the presence of cocaine (3 μM), MDMA produced a concentration-dependent inhibition of single pulse nerve stimulation-evoked contractions with a pD2 of 5.12±0.21 (n=4). In the absence of cocaine, only the highest concentration of MDMA (30 μM) produced an inhibition, but the α2-adrenoceptor antagonist yohimbine (0.3 μM) converted the response to MDMA from inhibition to potentiation of the stimulation-evoked contraction.In radioligand binding studies, MDMA showed similar affinities for α2B, α2C and α2D-adrenoceptor sites, with pKi values of 5.14±0.16, 5.11±0.05 and 5.31±0.14, respectively.It is concluded that MDMA has significant α2-adrenoceptor agonist actions. PMID:10556934

  6. Beta-adrenoceptor dysfunction after inhibition of NO synthesis

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    G(s) protein-coupled beta-adrenoceptors rapidly desensitize on exposure to agonists in reconstituted membrane preparations, whereas rapid tachyphylaxis to beta-adrenoceptor-mediated vasodilation does not readily occur in vivo. This study examined the possibility that endothelium-derived nitrosyl factors prevent the rapid desensitization of beta-adrenoceptors in the vascular smooth muscle of resistance arteries in pentobarbital-anesthetized rats. The fall in mean arterial blood pressure and in hindquarter vascular resistance produced by the beta-adrenoceptor agonist isoproterenol (ISO, 0.1 to 10 microg/kg IV) was slightly but significantly smaller in rats treated with the NO synthase inhibitor N:(G)-nitro-L-arginine methyl ester (L-NAME, 100 micromol/kg IV) than in saline-treated rats. The ISO-induced fall in mesenteric resistance was similar in L-NAME-treated and in saline-treated rats. The fall in hindquarter vascular resistance and in mesenteric resistance produced by ISO (8 x 10 microg/kg IV) was subject to tachyphylaxis on repeated injection in rats treated with L-NAME (100 micromol/kg IV) but not in rats treated with saline. Injections of L-S:-nitrosocysteine (1200 nmol/kg IV), a lipophobic S:-nitrosothiol, before each injection of ISO (10 microg/kg IV) prevented tachyphylaxis to ISO in L-NAME-treated rats. The vasodilator effects of ISO (0.1 to 10 microg/kg IV) in L-NAME-treated rats that received 8 injections of ISO (10 microg/kg IV) were markedly smaller than in L-NAME-treated rats that received 8 injections of saline. These results indicate that (1) the vasodilator actions of ISO in pentobarbital-anesthetized rats only minimally involve the release of endothelium-derived nitrosyl factors, (2) the effects of ISO are subject to development of tachyphylaxis in L-NAME-treated rats, and (3) tachyphylaxis to ISO is prevented by L-S:-nitrosocysteine. These findings suggest that endothelium-derived nitrosyl factors may prevent desensitization of beta-adrenoceptors in vivo.

  7. Stereochemistry of an agonist determines coupling preference of beta2-adrenoceptor to different G proteins in cardiomyocytes.

    PubMed

    Woo, Anthony Yiu-Ho; Wang, Tian-Bing; Zeng, Xiaokun; Zhu, Weizhong; Abernethy, Darrell R; Wainer, Irving W; Xiao, Rui-Ping

    2009-01-01

    A fundamental question regarding receptor-G protein interaction is whether different agonists can lead a receptor to different intracellular signaling pathways. Our previous studies have demonstrated that although most beta(2)-adrenoceptor agonists activate both G(s) and G(i) proteins, fenoterol, a full agonist of beta(2)-adrenoceptor, selectively activates G(s) protein. Fenoterol contains two chiral centers and may exist as four stereoisomers. We have synthesized a series of stereoisomers of fenoterol and its derivatives and characterized their receptor binding and pharmacological properties. We tested the hypothesis that the stereochemistry of an agonist determines selectivity of receptor coupling to different G protein(s). We found that the R,R isomers of fenoterol and methoxyfenoterol exhibited more potent effects to increase cardiomyocyte contraction than their S,R isomers. It is noteworthy that although (R,R)-fenoterol and (R,R)-methoxyfenoterol preferentially activate G(s) signaling, their S,R isomers were able to activate both G(s) and G(i) proteins as evidenced by the robust pertussis toxin sensitivities of their effects on cardiomyocyte contraction and on phosphorylation of extracellular signal-regulated kinase 1/2. The differential G protein selectivities of the fenoterol stereoisomers were further confirmed by photoaffinity labeling studies on G(s),G(i2), and G(i3) proteins. The inefficient G(i) signaling with the R,R isomers is not caused by the inability of the R,R isomers to trigger the protein kinase A (PKA)-mediated phosphorylation of the beta(2)-adrenoceptor, because the R,R isomers also markedly increased phosphorylation of the receptor at serine 262 by PKA. We conclude that in addition to receptor subtype and phosphorylation status, the stereochemistry of a given agonist plays an important role in determining receptor-G protein selectivity and downstream signaling events.

  8. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  9. Possible mechanism of the negative inotropic effect of α1-adrenoceptor agonists in rat isolated left atria after exposure to free radicals

    PubMed Central

    Peters, Stephan L M; Batink, Harry D; Michel, Martin C; Pfaffendorf, Martin; van Zwieten, Pieter A

    1998-01-01

    This study was designed to investigate the mechanism(s) of the negative inotropic effects of α1-adrenoceptor agonists observed in rat isolated left atria after exposure to free radicals.Ouabain and calphostin C were used in contraction experiments to block the sodium pump and protein kinase C. Methoxamine-induced phospholipase C and Na+/K+ ATPase activities were measured.Methoxamine (300 μM) increased contractile force by 1.6±0.2 mN in control atria but decreased contractile force in electrolysis-treated atria by 2.0±0.1 mN (P<0.05), as determined 10 min after methoxamine addition. In contrast, the positive inotropic effects of endothelin-1 (30 nM) and isoprenaline (10 μM) were reduced from 2.6±0.3 to 1.3±0.1 mN and from 2.6±0.3 to 1.7±0.2 mN, respectively, by electrolysis treatment (P<0.05), but not converted into a negative inotropic action.In an inositol phosphate assay we observed that the stimulation of phospholipase C by methoxamine was attenuated by electrolysis when the (electrolyzed) medium from the organ bath was used, but the phospholipase C responses were restored by the use of fresh medium. However, fresh medium did not counteract the negative inotropic effect of methoxamine. Accordingly, the negative inotropic effect of methoxamine is not directly related to the impaired phospholipase C responses seen in atria subjected to electrolysis.Ouabain (10 μM) and the protein kinase C inhibitor calphostin C (50 nM), completely prevented the negative inotropic effect of 300 μM methoxamine in electrolysis-treated atria.Measurement of the Na+/K+ ATPase activity, revealed that in control atria, α1-adrenoceptor stimulation with 300 μM methoxamine, decreased the Na+/K+ ATPase activity by 14.4±7.7%. In contrast, methoxamine increased the Na+/K+ ATPase activity by 48.8±8.9% (P<0.05) in electrolysis-treated atria. Interestingly, this increase in Na+/K+ ATPase activity was completely counteracted by calphostin C (1.4±0.1% over basal).These results indicate that the negative inotropic effects of α1-adrenoceptor agonists, observed in rat isolated left atria exposed to free radicals, are likely to be caused by protein kinase C-mediated phosphorylation and subsequent activation of the Na+/K+ ATPase. PMID:9535025

  10. Adverse reactions of α2-adrenoceptor agonists in cats reported in 2003-2013 in Finland.

    PubMed

    Raekallio, Marja R; Virtanen, Marika; Happonen, Irmeli; Vainio, Outi M

    2017-07-01

    To describe suspected adverse drug reactions in cats associated with use of α 2 -adrenoceptor agonists. Retrospective study. A total of 90 cats. Data were collected from reports on adverse reactions to veterinary medicines sent to the Finnish Medicines Agency during 2003-2013. All reports of suspected adverse reactions associated with use of α 2 -adrenoceptor agonists in cats were included. Probable pulmonary oedema was diagnosed based on post mortem or radiological examination, or presence of frothy or excess fluid from the nostrils or trachea. If only dyspnoea and crackles on auscultation were reported, possible pulmonary oedema was presumed. Pulmonary oedema was suspected in 61 cases. Of these cats, 37 were categorised as probable and 24 as possible pulmonary oedema. The first clinical signs had been noted between 1 minute and 2 days (median, 15 minutes) after α 2 -adrenoceptor agonist administration. Many cats probably had no intravenous overhydration when the first clinical signs were detected, as either they presumably had no intravenous cannula or the signs appeared before, during or immediately after cannulation. Of the 61 cats, 43 survived, 14 died and for four the outcome was not clearly stated. Pulmonary oedema is a perilous condition that may appear within minutes of an intramuscular administration of sedative or anaesthetic agent in cats. The symptoms were not caused by intravenous overhydration, at least in cats having no venous cannula when the first clinical signs were detected. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  11. Icilin-evoked behavioral stimulation is attenuated by alpha2-adrenoceptor activation

    PubMed Central

    Kim, Jae; Cowan, Alan; Lisek, Renata; Raymondi, Natalie; Rosenthal, Aaron; Hirsch, Daniel D.; Rawls, Scott M.

    2011-01-01

    Icilin is a transient receptor potential cation channel subfamily M (TRPM8) agonist that produces behavioral activation in rats and mice. Its hallmark overt pharmacological effect is wet-dog shakes (WDS) in rats. The vigorous shaking associated with icilin is dependent on NMDA receptor activation and nitric oxide production, but little else is known about the biological systems that modulate the behavioral phenomenon. The present study investigated the hypothesis that alpha2-adrenoceptor activation inhibits icilin-induced WDS. Rats injected with icilin (0.5, 1, 2.5, 5 mg/kg, i.p.) displayed dose-related WDS that were inhibited by pretreatment with a fixed dose of clonidine (0.15 mg/kg, s.c.). Shaking behavior caused by a fixed dose (2.5 mg/kg) of icilin was also inhibited in a dose-related manner by clonidine pretreatment (0.03–0.15 mg/kg, s.c.) and reduced by clonidine posttreatment (0.15 mg/kg, s.c.). Pretreatment with a peripherally restricted alpha2-adrenoceptor agonist, ST91 (0.075, 0.15 mg/kg), also decreased the incidence of shaking elicited by 2.5 mg/kg of icilin. Pretreatment with yohimbine (2 mg/kg, i.p.) enhanced the shaking induced by a low dose of icilin (0.5 mg/kg). The imidazoline site agonists, agmatine (150 mg/kg, i.p.) and 2-BFI (7 mg/kg, i.p.), did not affect icilin-evoked shaking. These results suggest that alpha2-adrenoceptor activation inhibits shaking induced by icilin and that increases in peripheral, as well as central, alpha2-adrenoceptor signaling oppose the behavioral stimulant effect of icilin. PMID:21315691

  12. The β2 agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via α adrenoceptor antagonism.

    PubMed

    Neumann, Vanessa; Knies, Ralf; Seidinger, Alexander; Simon, Annika; Lorenz, Kristina; Matthey, Michaela; Breuer, Johannes; Wenzel, Daniela

    2018-05-01

    Pulmonary hypertension is a severe, incurable disease with a poor prognosis. Although treatment regimens have improved during the last 2 decades, current pharmacologic strategies are limited and focus on the modulation of only a few pathways related to endothelin, NO, and prostacyclin signaling. Therefore, the identification of novel molecular targets is urgently needed. We found that the β 2 adrenoceptor (AR) agonists terbutaline (TER) and salbutamol induced a dose-dependent vasorelaxation in large pulmonary arteries but not aortas of mouse. This effect was found to be independent of β ARs and the endothelium but was determined by the type of the preconstrictor. Vasodilation by β 2 AR agonists occurred after pretreatment of pulmonary arteries with phenylephrine and serotonin, both agonists of α 1 ARs, but was absent after preconstriction with the thromboxane analog U46619. These data indicated α-adrenolytic activity of β 2 AR agonists, which was confirmed by a right shift of the phenylephrine dose-response curve by TER. This effect was physiologically relevant because TER also relaxed small intrapulmonary arteries in lung slices and diminished pulmonary arterial pressure in an isolated perfused lung model under normoxia and hypoxia. Finally, TER applied as an aerosol also selectively decreased pulmonary arterial pressure without effects on systemic blood pressure and heart rate in mouse in vivo. Thus, β 2 AR agonists display α-adrenolytic activity in pulmonary arteries ex vivo and in vivo, and may provide a novel option to reduce pulmonary arterial pressure in pulmonary hypertension.-Neumann, V., Knies, R., Seidinger, A., Simon, A., Lorenz, K., Matthey, M., Breuer, J., Wenzel, D. The β 2 agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via α adrenoceptor antagonism.

  13. Characterization and autoradiographic localization of beta-adrenoceptor subtypes in human cardiac tissues.

    PubMed Central

    Buxton, B. F.; Jones, C. R.; Molenaar, P.; Summers, R. J.

    1987-01-01

    1 Receptor autoradiography using (-)-[125I]-cyanopindolol (CYP) was used to study the distribution of beta-adrenoceptor subtypes in human right atrial appendage, left atrial free wall, left ventricular papillary muscle and pericardium. 2 The binding of (-)-[125I]-CYP to slide-mounted tissue sections of human right atrial appendage was time-dependent (K1 = 4.11 +/- 1.01 X 10(8) M-1 min-1, K-1 = 1.47 +/- 0.25 X 10(-3) min-1, n = 3), saturable (42.02 +/- 2.96 pM, n = 4) and stereoselective with respect to the optical isomers of propranolol (pKD (-):8.97 +/- 0.02, (+):6.88 +/- 0.06, n = 3). 3 The proportions of beta-adrenoceptor subtypes were determined in slide-mounted tissue sections using the antagonists CGP 20712A (beta 1-selective) and ICI 118,551 (beta 2-selective). In right atrial appendage and left ventricular papillary muscle 40% (34-45%) of the beta-adrenoceptors were of the beta 2-subtype. 4 Images from X-ray film and nuclear emulsion coated coverslips exposed to (-)-[125I]-CYP-labelled sections showed an even distribution of beta-adrenoceptor subtypes over the myocardium of the right atrial appendage, left ventricular papillary muscle and left atrial free wall. Sections of pericardium exhibited predominantly beta 2-adrenoceptors. beta 2-Adrenoceptors were localized to the intimal surface of coronary arteries. 5 The selective beta 1-adrenoceptor agonist RO363 and beta 2-selective agonist procaterol produced concentration-dependent inotropic responses in right atrial appendage strips. Responses to RO363 were antagonized by CGP 20712A (pKB = 9.29) suggesting an interaction with beta 1-adrenoceptors. Responses to procaterol were antagonized by ICI 118,551 (pKB = 9.06) suggesting an interaction at beta 2-adrenoceptors. 6 The finding that a significant proportion of human myocardial adrenoceptors are of the beta 2-subtype has important clinical implications for the involvement of these receptors in the control of heart rate and force, and the autoradiographic evidence suggests other roles in the coronary vasculature and pericardium. Images Figure 5 Figure 6 PMID:2823947

  14. Proliferation of the human urothelium is induced by atypical β1 -adrenoceptors.

    PubMed

    Winder, M; Wasén, C; Aronsson, P; Giglio, D

    2015-09-01

    We wanted to assess whether β-adrenoceptors mediate proliferation in the normal and malignant urothelial cell lines UROtsa and T24, respectively. Urothelial cells were cultured for 24 h in the presence of the β-adrenoceptor agonists isoprenaline (β1/2/3 ), dobutamine (β1 ), salbutamol (β2 ), BRL 37344 (β3 ), CGP 12177 (a partial β-agonist) or β-adrenoceptor antagonists (metoprolol; β1 , propranolol; β1/2 ). Phosphorylation of kinases was screened with a Human Phospho-Kinase Array Kit (R&D systems). Intracellular pathways activated by proliferation of urothelial cells were characterized by incubating cells with the MEK1/2 inhibitor PD 98,059, the p38 kinase inhibitor losmapimod or with the Akt 1/2 kinase inhibitor. Proliferation was assessed with the MTT proliferation assay (ATCC). Western blot and immunocytochemistry were used for detection of the β1 -adrenoceptor. Isoprenaline and dobutamine induced proliferation, while salbutamol and BRL 37344 did not. Dobutamine-induced proliferation was not affected by metoprolol or propranolol but was instead antagonized by CGP 12177 in T24 but not in UROtsa. In response to stimulation with dobutamine, Akt1/2/3 was phosphorylated in UROtsa, while ERK1/2 and p38 were phosphorylated in T24. MEK1/2 inhibition blocked basal and dobutamine-induced proliferation in T24 but only basal proliferation in UROtsa. Losmapimod slightly inhibited basal proliferation in T24 but not dobutamine-induced proliferation. Akt 1/2 inhibitor blocked basal and dobutamine-induced proliferation in UROtsa. Immunocytochemistry and Western blot revealed expression of β1 -adrenoceptors in both urothelial cell lines. The present data show that the urothelium expresses atypical β1-adrenoceptors that activate intracellular kinases inducing urothelial proliferation. © 2016 John Wiley & Sons Ltd.

  15. Adrenoceptor function and expression in bladder urothelium and lamina propria.

    PubMed

    Moro, Christian; Tajouri, Lotti; Chess-Williams, Russ

    2013-01-01

    To investigate the role of adrenoceptor subtypes in regulating the spontaneous contractile activity of the inner lining of the urinary bladder (urothelium/lamina propria). The responses of isolated strips of porcine urothelium/lamina propria to noradrenaline, phenylephrine, and isoprenaline were obtained in the absence and presence of receptor subtype-selective antagonists. Quantitative reverse-transcriptase polymerase chain reaction was undertaken to assess the expression of adrenoceptor genes. The tissues expressed all α1- and β-adrenoceptor subtypes, with the α1A-, α1B-, and β2-adrenoceptors the predominant receptors at the messenger RNA level. In the functional experiments, the rate of phasic contractions and the basal tension were increased by the α1-adrenoceptor agonists phenylephrine (100 μM) and A61603 (10 μM). The rate and tension responses to phenylephrine were reduced by low concentrations of tamsulosin (3 nM) and RS100329 (10 nM) but were unaffected by BMY7378 (100 nM), prazosin (10 nM), and RS17053 (1 μM). In contrast, isoprenaline and salbutamol (both 1 μM) induced a relaxation of tissues and slowing of phasic contractions. The rate and tension responses to isoprenaline were inhibited by propranolol (100 nM) or a combination of CGP20712A (30 nM) and ICI118551 (70 nM). The rate responses were also significantly inhibited by ICI118551 alone (70 nM). Although all α1- and β-adrenoceptor subtypes were expressed in the pig urothelium/lamina propria, the α1A/L-adrenoceptor appeared to mediate increases in the contractile rate and tension. The β-adrenoceptor induced inhibition of spontaneous contractile activity appears to be predominately mediated by β2-adrenoceptors, with β1- and β2-adrenoceptors possibly involved in the tension responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. β1 -Adrenoceptor, but not β2 -adrenoceptor, subtype regulates heart rate in type 2 diabetic rats in vivo.

    PubMed

    Cook, Rosalind F; Bussey, Carol T; Mellor, Kimberley M; Cragg, Patricia A; Lamberts, Regis R

    2017-08-01

    What is the central question of the study? The sympathetic system regulates heart rate via β-adrenoceptors; this is impaired during diabetes. However, the specific β-adrenoceptor subtype contributions in heart rate regulation in diabetes in vivo are unknown. What is the main finding and its importance? Telemetric recordings in conscious non-diabetic and type 2 diabetic rats demonstrated that the β 1 -adrenoceptor subtype, and not the β 2 -adrenoceptor, regulated the lower resting heart rate and increased β-adrenoceptor responsiveness in diabetes in vivo. This provides new physiological insight into the dysregulation of heart rate in type 2 diabetes, which is important for improving therapeutic strategies targeting the diabetic chronotropic incompetence. β-Adrenoceptor blockers are widely used to reduce heart rate, the strongest predictor of mortality in cardiac patients, but are less effective in diabetic patients. This study aimed to determine the specific contributions of β 1 - and β 2 -adrenoceptor subtypes to chronotropic responses in type 2 diabetes in vivo, which are currently unknown. Type 2 diabetic and non-diabetic rats were implanted with radiotelemeters to measure arterial blood pressure and derive heart rate in conscious conditions. Vascular access ports were implanted to inject isoprenaline (β 1 - and β 2 -adrenoceptor agonist, 0.1-300 μg kg -1 ) in the presence of atenolol (β 1 -adrenoceptor antagonist, 2000 μg kg -1 ) or nadolol (β 1 - and β 2 -adrenoceptor agonist, 4000 μg kg -1 ) to determine the chronotropic contributions of the β-adrenoceptor subtypes. Resting heart rate was reduced in diabetic rats (388 ± 62 versus 290 ± 37 beats min -1 non-diabetic versus diabetic, P < 0.05, mean ± SD), which remained after atenolol or nadolol administration. Overall β-adrenoceptor chronotropic responsiveness was increased in diabetic rats (change in heart rate at highest dose of isoprenaline: 135 ± 66 versus 205 ± 28 beats min -1 , non-diabetic versus diabetic, P < 0.05), a difference that diminished after β 1 -adrenoceptor blockade with atenolol (change in heart rate at highest dose of isoprenaline: 205 ± 37 versus 195 ± 22 beats min -1 , non-diabetic versus diabetic, P < 0.05). In conclusion, the β 1 -adrenoceptor is the main subtype to modulate chronotropic β-adrenoceptor responses in healthy and diabetic rats. This study provides new insights into the pathological basis of dysregulation of heart rate in type 2 diabetes, which could be important for improving the current therapeutic strategies targeting diabetic chronotropic incompetence. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  17. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity.

    PubMed

    Svalø, Julie; Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik; Korstanje, Cees; Bouchelouche, Pierre

    2013-01-15

    β(3)-Adrenoceptors are major players in detrusor relaxation and have been suggested as a new putative target for the treatment of overactive bladder syndrome. We determined the effects of mirabegron (YM178), a novel β(3)-adrenoceptor agonist, on carbachol-induced tone in isolated human detrusor preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced carbachol-induced tone in tissues from all groups. Isoprenaline decreased tension with higher potency than mirabegron in normal, BOO and BOO+DO detrusor strips with pIC(50) values of 7.49 ± 0.16 vs. 6.23 ± 0.26 (P=0.0002), 6.89 ± 0.34 vs. 6.04 ± 0.31 (P=0.01), and 6.57 ± 0.20 vs. 5.41 ± 0.08 (P<0.0001, n=4), respectively. The maximal relaxant effect of isoprenaline and mirabegron in the normal, BOO and BOO+DO detrusor was 37.7 ± 14.4% and 36.1 ± 23.3%, 14.4 ± 12.2% vs. 33.4 ± 21.0% and 18.3 ± 10.0% vs. 28.3 ± 12.2% (n=4, P>0.05), respectively. Mirabegron and isoprenaline reduced carbachol-induced tone in both normal bladders and obstructed bladder with and without DO. Isoprenaline had higher potency than mirabegron, but the efficacy of mirabegron effect was the same as that of isoprenaline. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Comparative 3D QSAR study on β1-, β2-, and β3-adrenoceptor agonists

    PubMed Central

    Senthil Kumar, P.

    2009-01-01

    A quantitative structure–activity relationship study of tryptamine-based derivatives of β1-, β2-, and β3-adrenoceptor agonists was conducted using comparative molecular field analysis (CoMFA). Correlation coefficients (cross-validated r2) of 0.578, 0.595, and 0.558 were obtained for the three subtypes, respectively, in three different CoMFA models. All three CoMFA models have different steric and electrostatic contributions, implying different requirements inside the binding cavity. The CoMFA coefficient contour plots of the three models and comparisons among these plots provide clues regarding the main chemical features responsible for the biological activity variations and also result in predictions which correlate very well with the observed biological activity. Based on the analysis, a summary regeospecific description of the requirements for improving β-adrenoceptor subtype selectivity is given. PMID:21170122

  19. Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization.

    PubMed

    Herrera-García, Ada María; Domínguez-Luis, María Jesús; Arce-Franco, María; Armas-González, Estefanía; Álvarez de La Rosa, Diego; Machado, José David; Pec, Martina K; Feria, Manuel; Barreiro, Olga; Sánchez-Madrid, Francisco; Díaz-González, Federico

    2014-09-15

    Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans. Copyright © 2014 by The American Association of Immunologists, Inc.

  20. Conopeptide ρ-TIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor*♦

    PubMed Central

    Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K. Johan; Lewis, Richard J.

    2013-01-01

    The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β1-adrenergic receptor crystal structure, we modeled the α1B-adrenoceptor (α1B-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α1B-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α1-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs. PMID:23184947

  1. Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor.

    PubMed

    Ragnarsson, Lotten; Wang, Ching-I Anderson; Andersson, Åsa; Fajarningsih, Dewi; Monks, Thea; Brust, Andreas; Rosengren, K Johan; Lewis, Richard J

    2013-01-18

    The G protein-coupled receptor (GPCR) superfamily is an important drug target that includes over 1000 membrane receptors that functionally couple extracellular stimuli to intracellular effectors. Despite the potential of extracellular surface (ECS) residues in GPCRs to interact with subtype-specific allosteric modulators, few ECS pharmacophores for class A receptors have been identified. Using the turkey β(1)-adrenergic receptor crystal structure, we modeled the α(1B)-adrenoceptor (α(1B)-AR) to help identify the allosteric site for ρ-conopeptide TIA, an inverse agonist at this receptor. Combining mutational radioligand binding and inositol 1-phosphate signaling studies, together with molecular docking simulations using a refined NMR structure of ρ-TIA, we identified 14 residues on the ECS of the α(1B)-AR that influenced ρ-TIA binding. Double mutant cycle analysis and docking confirmed that ρ-TIA binding was dominated by a salt bridge and cation-π between Arg-4-ρ-TIA and Asp-327 and Phe-330, respectively, and a T-stacking-π interaction between Trp-3-ρ-TIA and Phe-330. Water-bridging hydrogen bonds between Asn-2-ρ-TIA and Val-197, Trp-3-ρ-TIA and Ser-318, and the positively charged N terminus and Glu-186, were also identified. These interactions reveal that peptide binding to the ECS on transmembrane helix 6 (TMH6) and TMH7 at the base of extracellular loop 3 (ECL3) is sufficient to allosterically inhibit agonist signaling at a GPCR. The ligand-accessible ECS residues identified provide the first view of an allosteric inhibitor pharmacophore for α(1)-adrenoceptors and mechanistic insight and a new set of structural constraints for the design of allosteric antagonists at related GPCRs.

  2. α2-Adrenoceptor Functionality in Postmortem Frontal Cortex of Depressed Suicide Victims

    PubMed Central

    Valdizán, Elsa M.; Díez-Alarcia, Rebeca; González-Maeso, Javier; Pilar-Cuéllar, Fuencisla; García-Sevilla, Jesús A.; Meana, J. Javier; Pazos, Angel

    2013-01-01

    Background Alterations in brain density and signaling associated with monoamine receptors are believed to play a role in depressive disorders. This study evaluates the functional status of α2A-adrenoceptors in postmortem frontal cortex of depressed subjects. Methods G-protein activation and inhibition of adenylyl cyclase (AC) activity induced by the α2-adrenoceptor agonist UK14304 were measured in triplicate in samples from 15 suicide victims with an antemortem diagnosis of major depression and 15 matched control subjects. Results Basal [35S] guanosine γ thio-phosphate (GTPγS) binding and cyclic adenosine monophosphate accumulation did not differ between groups. In depressed victims, an increase in [35S] GTPγS binding potency (EC50 = .58 μmol/L vs. EC50 = 3.31 μmol/L; p < .01; depressed vs. control) and a significant reduction in the maximal inhibition of AC activity (Imax = 27 ± 4% vs. Imax = 47 ± 5%; p < .01) were observed after incubation with the α2-adrenoceptor agonist UK14304. No differences were found between antidepressant-free and antidepressant-treated subjects. A significant relationship between EC50 values for [35S] GTPγS and Imax values for AC assay was found (n = 30; r = −.43; p < .05). Conclusions The dual regulation of α2A-adrenoceptor signaling pathways raises the possibility that factors affecting the G-protein cycle and/or selective access of Gαi/o–protein to AC might be relevant to receptor abnormalities in depression, providing further support for the involvement of α2A-adrenoceptors in the pathogenesis of depression. PMID:20864091

  3. Fenoterol functionally activates the β₃-adrenoceptor in human urinary bladder, comparison with rat and mouse: implications for drug discovery.

    PubMed

    Palea, Stefano; Rekik, Moèz; Rouget, Céline; Camparo, Philippe; Botto, Henri; Rischmann, Pascal; Lluel, Philippe; Westfall, Timothy D

    2012-09-05

    Fenoterol has been reported to be a potent and selective β(2)-adrenoceptor agonist and is currently used clinically to treat asthma. Electrical field stimulation (EFS) of isolated urinary bladder mimics the voiding contraction by stimulating parasympathetic nerves, resulting in neurogenic contractions. To determine if stimulation of β(2)-adrenoceptors can inhibit this response, fenoterol was tested against EFS-induced contractions in human isolated urinary bladder and compared with mouse and rat. Bladder strips were mounted in organ baths and reproducible contractions induced by EFS. Fenoterol was added cumulatively in the presence of the β(2)-adrenoceptor antagonist ICI118551 or the β(3)-adrenoceptor antagonist L-748337. Fenoterol inhibited neurogenic contractions in all three species in a concentration-dependent manner with pEC(50) values of 6.66 ± 0.11, 6.86 ± 0.06 and 5.71 ± 0.1 in human, mouse and rat respectively. In human bladder strips ICI118551 (100 nM) did not affect responses to fenoterol, while L-748337 (0.3-3 μM) produced rightward shifts of the concentration-response curves with a pA(2) value of 8.10. In mouse bladder strips ICI118551 (30 nM) blocked the inhibitory effect of fenoterol (pA(2)=8.80), while L-748337 (10 μM) inhibited the response with a pA(2) of 5.79. In rat bladder ICI118551 (30 nM) was without effect, while L-748,337 (10 μM) inhibited the response to fenoterol with a pA(2) of 5.40. From these results it is clear that fenoterol potently activates β(3)-adrenoceptors in human isolated urinary bladder to inhibit EFS-induced contractions. Fenoterol also activates β(3)-adrenoceptors in rat, but β(2)-adrenoceptors in mouse bladder to inhibit EFS-induced contractions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Computer-assisted determination of minimum energy conformations. 7: A pharmacophore model of the active region of the alpha2-adrenoceptor

    NASA Astrophysics Data System (ADS)

    Ashman, William P.; Mickiewicz, A. P.; Nelson, Todd M.

    1992-09-01

    Molecular modeling and computational chemistry techniques are used to analyze compounds in developing pharmacophores of biological receptors to use as templates in structure activity relationship studies and to design new chemicals having physiological activity of interest. In this study, the results of x-ray crystal analyses and PM3 semi-empirical molecular orbital conformational analyses are used to determine the three-dimensional representations of selected adrenergic compounds known to be agonists with the alpha2-adrenoceptor in achieving optimized geometries and electrostatic parameters. The alpha2-adrenergic agonists interact with the adrenergic system receptors to produce various increases or decreases in hemodynamic responses (i.e., hypertension, hypotension, and bradycardia) and sedation. A pharmacophore model of the active region of the alpha2-adrenoceptor is described based on the superimposition of common structural, electrostatic, and physicochemical features of the compounds. Using the model to predict compound adrenergic activity and to design alpha2-adrenergic compounds is discussed.

  5. Interaction of fenoterol stereoisomers with β2-adrenoceptor-G sα fusion proteins: antagonist and agonist competition binding.

    PubMed

    Reinartz, Michael T; Kälble, Solveig; Wainer, Irving W; Seifert, Roland

    2015-05-01

    The specific interaction between G-protein-coupled receptors and ligand is the starting point for downstream signaling. Fenoterol stereoisomers were successfully used to probe ligand-specific activation (functional selectivity) of the β2-adrenoceptor (β2AR) (Reinartz et al. 2015). In the present study, we extended the pharmacological profile of fenoterol stereoisomers using β2AR-Gsα fusion proteins in agonist and antagonist competition binding assays. Dissociations between binding affinities and effector potencies were found for (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol. Our data corroborate former studies on the importance of the aminoalkyl moiety of fenoterol derivatives for functional selectivity.

  6. β2 Agonists.

    PubMed

    Billington, Charlotte K; Penn, Raymond B; Hall, Ian P

    2017-01-01

    History suggests β agonists, the cognate ligand of the β 2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β 2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

  7. CCK receptors-related signaling involved in nitric oxide production caused by gastrin 17 in porcine coronary endothelial cells.

    PubMed

    Grossini, Elena; Caimmi, Philippe; Molinari, Claudio; Uberti, Francesca; Mary, David; Vacca, Giovanni

    2012-03-05

    In anesthetized pigs gastrin-17 increased coronary blood flow through CCK1/CCK2 receptors and β(2)-adrenoceptors-related nitric oxide (NO) release. Since the intracellular pathway has not been investigated the purpose of this study was to examine in coronary endothelial cells the CCK1/CCK2 receptors-related signaling involved in the effects of gastrin-17 on NO release. Gastrin-17 caused a concentration-dependent increase of NO production (17.3-62.6%; p<0.05), which was augmented by CCK1/CCK2 receptors agonists (p<0.05). The effect of gastrin-17 was amplified by the adenylyl-cyclase activator and β(2)-adrenoceptors agonist (p<0.05), abolished by cAMP/PKA and β(2)-adrenoceptors and CCK1/CCK2 receptors blockers, and reduced by PLC/PKC inhibitor. Finally, Western-blot revealed the preferential involvement of PKA vs. PKC as downstream effectors of CCK1/CCK2 receptors activation leading to Akt, ERK, p38 and endothelial NOS (eNOS) phosphorylation. In conclusion, in coronary endothelial cells, gastrin-17 induced eNOS-dependent NO production through CCK1/CCK2 receptors- and β(2)-adrenoceptors-related pathway. The intracellular signaling involved a preferential PKA pathway over PKC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Beta2-adrenoceptor agonists for dysmenorrhoea.

    PubMed

    Fedorowicz, Zbys; Nasser, Mona; Jagannath, Vanitha A; Beaman, Jessica H; Ejaz, Kiran; van Zuuren, Esther J

    2012-05-16

    Dysmenorrhoea is a common gynaecological complaint that can affect as many as 50% of premenopausal women, 10% of whom suffer severely enough to be rendered incapacitated for one to three days during each menstrual cycle. Primary dysmenorrhoea is where women suffer from menstrual pain but lack any pathology in their pelvic anatomy. Beta2-adrenoceptor agonists have been used in the treatment of women with primary dysmenorrhoea but their effects are unclear. To determine the effectiveness and safety of beta2-adrenoceptor agonists in the treatment of primary dysmenorrhoea. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register; CENTRAL (The Cochrane Library 2011, Issue 8); MEDLINE; EMBASE; PsycINFO and the EBM Reviews databases. The last search was on 22 August 2011. Randomised controlled trials comparing beta2-adrenoceptor agonists with placebo or no treatment, each other or any other conventional treatment in women of reproductive age with primary dysmenorrhoea. Two review authors independently assessed trial quality and extracted the data. Five trials involving 187 women with an age range of 15 to 40 years were included. Oral isoxsuprine was compared with placebo in two trials; terbutaline oral spray, ritodrine chloride and oral hydroxyphenyl-orciprenalin were compared with placebo in a further three trials. Clinical diversity in the studies in terms of the interventions being evaluated, assessments at different time points and the use of different assessment tools mitigated against pooling of outcome data across studies in order to provide a summary estimate of effect for any of the comparisons. Only one study, with unclear risk of bias, reported pain relief with a combination of isoxsuprine, acetaminophen and caffeine. None of the other studies reported any significant clinical difference in effectiveness between the intervention and placebo. Adverse effects were reported with all of these medications in up to a quarter of the total number of participants. They included nausea, vomiting, dizziness, quivering, tremor and palpitations. The evidence presented in this review was based on a few relatively small-sized studies that were categorised to have unclear to high risk of bias, which does not allow confident decision-making at present about the use of beta2-adrenoceptor agonists for dysmenorrhoea. The benefits as reported in one study should be balanced against the wide array of unacceptable side effects documented with this class of medication. We have emphasised the lack of precision and limitations in the reported data where appropriate.

  9. Alpha 2-adrenoceptor blockade, pituitary-adrenal hormones, and agonistic interactions in rats.

    PubMed

    Haller, J; Barna, I; Kovács, J L

    1994-08-01

    The effects of adrenergic activation on aggressiveness and the aggression induced endocrine changes were tested in rats. Alpha 2 adrenoceptor blockers were used for enhancing activation of the adrenergic system, and changes in aggressiveness were tested in resident-intruder contests. Three experiments were conducted. In experiment 1, saline injected rats responded to the presence of an opponent by aggression and the increase in plasma ACTH and corticosterone. Intraperitoneal administration of 1 mg/kg CH-38083 (an alpha 2 adrenoceptor antagonist) produced a several fold increase in clinch fighting and mutual upright scores, and also further enhanced the plasma ACTH and corticosterone response. In experiment 2, the effect of three doses (0.5, 1 and 2 mg/kg) of three different alpha 2 adrenoceptor blockers CH-38083, idazoxan and yohimbine were tested. All the substances increased aggression at 0.5 and 1 mg/kg; at 2 mg/kg the effect of idazoxan and yohimbine disappeared, while with CH-38083 an additional increase was obtained. In yohimbine treated animals the enhancement of aggression was reduced already at 1 mg/kg. In experiment 3, indomethacin, a potent inhibitor of the catecholamine-induced ACTH release completely abolished the effects of the alpha 2 adrenoceptor antagonist CH-38083: the intensity of agonistic interactions, as well as ACTH and corticosterone plasma concentrations, returned to control levels. The possible role of catecholamines and the stress hormones in the activation of aggression is discussed.

  10. A novel label-free cell-based assay technology using biolayer interferometry.

    PubMed

    Verzijl, D; Riedl, T; Parren, P W H I; Gerritsen, A F

    2017-01-15

    Biolayer interferometry (BLI) is a well-established optical label-free technique to study biomolecular interactions. Here we describe for the first time a cell-based BLI (cBLI) application that allows label-free real-time monitoring of signal transduction in living cells. Human A431 epidermoid carcinoma cells were captured onto collagen-coated biosensors and serum-starved, followed by exposure to agonistic compounds targeting various receptors, while recording the cBLI signal. Stimulation of the epidermal growth factor receptor (EGFR) with EGF, the β 2 -adrenoceptor with dopamine, or the hepatocyte growth factor receptor (HGFR/c-MET) with an agonistic antibody resulted in distinct cBLI signal patterns. We show that the mechanism underlying the observed changes in cBLI signal is mediated by rearrangement of the actin cytoskeleton, a process referred to as dynamic mass redistribution (DMR). A panel of ligand-binding blocking and non-blocking anti-EGFR antibodies was used to demonstrate that this novel BLI application can be efficiently used as a label-free cellular assay for compound screening and characterization. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The β3 -adrenoceptor agonist mirabegron increases human atrial force through β1 -adrenoceptors: an indirect mechanism?

    PubMed

    Mo, Weilan; Michel, Martin C; Lee, Xiang Wen; Kaumann, Alberto J; Molenaar, Peter

    2017-08-01

    Mirabegron has been classified as a β 3 -adrenoceptor agonist approved for overactive bladder syndrome. We investigated possible cardiac effects of mirabegron in the absence or presence of β-adrenoceptor subtype antagonists. In view of its phenylethanolamine structure, we investigated whether mirabegron has indirect sympathomimetic activity by using neuronal uptake blockers. Right atrial trabeculae, from non-failing hearts, were paced and contractile force measured at 37°C. Single concentrations of mirabegron were added in the absence or presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), β 3 (L-748,337), β 1 (CGP 20712A), β 2 (ICI 118,551) -adrenoceptor antagonists, neuronal uptake inhibitors desipramine or phenoxybenzamine. Mirabegron significantly increased contractile force in human right atrium (1 μM, 7.6 ± 2.6%, n = 7; 10 μM, 10.2 ± 1.5%, n = 22 compared with (-)-isoprenaline P < 0.05). In the presence of IBMX, mirabegron (10 μM) caused a greater contraction. L-748,337 (100 nM) had no effect on the increase in contractile force caused by mirabegron (10 μM). In contrast, mirabegron (10 μM) reduced contractile force in the presence of CGP 20712A, which was not affected by L-748,337 (100 nM) or ICI 118,551 (50 nM). Mirabegron (10 μM) also reduced contractile force in the presence of desipramine or phenoxybenzamine. Mirabegron increases human atrial force through β 1 - but not β 3 -adrenoceptors. Desipramine and phenoxybenzamine block neuronal uptake and conceivably prevent mirabegron from releasing noradrenaline. A non-specific cardiodepressant effect is not mediated through β 3 (or β 2 )-adrenoceptors, consistent with lack of β 3 -adrenoceptor function on human atrial contractility. © 2017 The British Pharmacological Society.

  12. Modelling the Interaction of Catecholamines with the α1A Adrenoceptor Towards a Ligand-induced Receptor Structure

    NASA Astrophysics Data System (ADS)

    Kinsella, Gemma K.; Rozas, Isabel; Watson, Graeme W.

    2005-06-01

    Adrenoceptors are members of the important G protein coupled receptor family for which the detailed mechanism of activation remains unclear. In this study, we have combined docking and molecular dynamics simulations to model the ligand induced effect on an homology derived human α1A adrenoceptor. Analysis of agonist/α1A adrenoceptor complex interactions focused on the role of the charged amine group, the aromatic ring, the N-methyl group of adrenaline, the beta hydroxyl group and the catechol meta and para hydroxyl groups of the catecholamines. The most critical interactions for the binding of the agonists are consistent with many earlier reports and our study suggests new residues possibly involved in the agonist-binding site, namely Thr-174 and Cys-176. We further observe a number of structural changes that occur upon agonist binding including a movement of TM-V away from TM-III and a change in the interactions of Asp-123 of the conserved DRY motif. This may cause Arg-124 to move out of the TM helical bundle and change the orientation of residues in IC-II and IC-III, allowing for increased affinity of coupling to the G-protein.

  13. Additive anticonvulsant effects of agmatine and lithium chloride on pentylenetetrazole-induced clonic seizure in mice: involvement of α₂-adrenoceptor.

    PubMed

    Bahremand, Arash; Ziai, Pouya; Payandemehr, Borna; Rahimian, Reza; Amouzegar, Afsaneh; Khezrian, Mina; Montaser-Kouhsari, Laleh; Meibodi, Maryam Aghaei; Ebrahimi, Ali; Ghasemi, Abbas; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2011-09-01

    After 60 years, lithium is still the mainstay in the treatment of mood disorders and widely used in clinic. In addition to its mood stabilizer effects, lithium also shows some anticonvulsant properties. Similar to lithium, agmatine also plays a protective role in the CNS against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on α(2)-adrenoceptors. So, we designed this study: 1) to investigate whether agmatine and lithium show an additive effect against clonic seizures induced by pentylenetetrazole; 2) to assess whether this additive effect is mediated through the α(2)-adrenoceptor or not. In our study, acute administration of a single effective dose of lithium chloride (30 mg/kg, i.p.) increased the seizure threshold. Pre-treatment with low and, per se, non-effective doses of agmatine (1 and 3mg/kg) potentiated a sub-effective dose of lithium (10mg/kg). Interestingly, the anticonvulsant effects of these effective combinations of lithium and agmatine were prevented by pre-treatment with low and non-effective doses of yohimbine [α(2)-adrenoceptor antagonist] (0.1 and 0.5mg/kg). On the other hand, clonidine [α(2)-adrenoceptor agonist] augmented the anticonvulsant effect of a sub-effective combination of lithium (5mg/kg i.p.) and agmatine (1mg/kg) at relatively low doses (0.1 and 0.25mg/kg). In summary, our findings demonstrate that agmatine and lithium chloride exhibit additive anticonvulsant properties which seem to be mediated through α(2)-adrenoceptor. Copyright © 2011. Published by Elsevier B.V.

  14. Clenbuterol Induces Cell Cycle Arrest in C2C12 Myoblasts by Delaying p27 Degradation through β-arrestin 2 Signaling

    PubMed Central

    Chen, Min; Liu, Chuncheng; Wang, Meng; Wang, Hong; Zhang, Kuo; Zheng, Yu; Yu, Zhengquan; Li, Xiangdong; Guo, Wei; Li, Ning; Meng, Qingyong

    2017-01-01

    β2-Adrenoceptor (β2-AR) agonists promote muscle growth. The aim of this study was to elucidate some effects of the selective β2-adrenoceptor agonist clenbuterol (CLB) on myoblast proliferation. We found that CLB induces cell cycle arrest in C2C12 myoblasts. This effect is partly due to the enhanced stability of p27, rather than the increased gene transcription via cAMP response element-binding protein (CREB). Specifically, CLB treatment enhanced the accumulation of p27 in the nucleus while depleting it from the cytosol via a mechanism that requires β2-AR. Surprisingly, p27 accumulation was not reversed by the protein kinase A (PKA) inhibitor H-89, but interestingly, was alleviated by the knockdown of β-arrestin 2. Thus, our work provides a basis for β2-AR agonists inhibit myoblasts proliferation through signaling via β2-AR, β-arrestin 2, and p27. PMID:29104500

  15. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.

    PubMed

    Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre

    2007-10-01

    The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both basal and more markedly, the enhanced production of ET-1 from LPS-activated guinea pig airway EpCs. In addition, these compounds increase cyclic AMP levels in the cells. It is suggested that there is a correlation between cyclic AMP increase and inhibition of ET-1 release by guinea pig airway EpCs. Since ET-1 production was shown to be elevated in asthmatic subjects and in patients suffering from other inflammatory lung disorders, the inhibition of its production by beta adrenoceptor agonists, such as salbutamol and salmeterol, could be added to their therapeutical benefits.

  16. The beta2- and beta3-adrenoceptor-mediated relaxation induced by fenoterol in guinea pig taenia caecum.

    PubMed

    Akimoto, Yurie; Horinouchi, Takahiro; Tanaka, Yoshio; Koike, Katsuo

    2002-10-01

    Fenoterol, a beta2-adrenoceptor selective agonist, belongs to the arylethanolamine class. To understand the receptor subtypes responsible for beta-adrenoceptor-mediated relaxation of guinea pig taenia caecum, we investigated the effect of fenoterol. Fenoterol caused concentration-dependent relaxation of the guinea pig taenia caecum. Propranolol, bupranolol and butoxamine produced shifts of the concentration-response curve for fenoterol. Schild regression analyses carried out for propranolol, butoxamine and bupranolol against fenoterol gave pA2 values of 8.41, 6.33 and 8.44, respectively. However, in the presence of 3 x 10(-4) M atenolol, 10(-4) M butoxamine and 10(-6) M phentolamine to block the beta1-, beta2- and a-adrenoceptor effects, respectively, Schild regression analysis carried out for bupranolol against fenoterol gave pA2 values of 5.80. These results suggest that the relaxant response to fenoterol in the guinea pig taenia caecum is mediated by both the beta2- and the beta3-adrenoceptors.

  17. Rilmenidine produces mydriasis in cats by stimulation of CNS alpha 2-adrenoceptors.

    PubMed

    Koss, M C

    2003-02-01

    1. Experiments were undertaken to determine if the imidazoline/alpha2-adrenoceptor agonist, rilmenidine, would produce mydriasis in cats and, if so, to delineate its site of action and determine if this effect is mediated by imidazoline receptors or alpha2-adrenoceptors. 2. Rilmenidine produced dose-related pupillary dilator responses in pentobarbital anaesthetized cats that were independent of sympathetic innervation to the iris but were dependent upon intact parasympathetic neuronal tone. The ED50 for rilmenidine-induced pupillary dilation was approximately 200 microg kg(-1), i.v., and was sustained for at least 1 h. 3. The highly selective alpha2-adrenoceptor antagonist, RS-79948, administered either before or after rilmenidine, antagonized rilmenidine-induced mydriasis. Neuronally induced reflex inhibition of parasympathetic nerve activity was also inhibited by administration of RS-79948. 4. These results suggest that rilmenidine acts like clonidine to produce pupillary dilation by inhibition of parasympathetic tone to the iris sphincter and that this central nervous system parasympatho-inhibition is mediated by alpha2-adrenoceptors, rather than imidazoline receptors.

  18. β2-adrenoceptor-induced modulation of transglutaminase 2 transamidase activity in cardiomyoblasts.

    PubMed

    Vyas, Falguni S; Nelson, Carl P; Freeman, Fiona; Boocock, David J; Hargreaves, Alan J; Dickenson, John M

    2017-10-15

    Tissue transglutaminase 2 (TG2) is modulated by protein kinase A (PKA) mediated phosphorylation: however, the precise mechanism(s) of its modulation by G-protein coupled receptors coupled to PKA activation are not fully understood. In the current study we investigated the potential regulation of TG2 activity by the β 2 -adrenoceptor in rat H9c2 cardiomyoblasts. Transglutaminase transamidation activity was assessed using amine-incorporating and protein cross-linking assays. TG2 phosphorylation was determined via immunoprecipitation and Western blotting. The long acting β 2 -adrenoceptor agonist formoterol induced time- and concentration-dependent increases in TG2 transamidation. Increases in TG2 activity were reduced by the TG2 inhibitors Z-DON (Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 ((1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride). Responses to formoterol were blocked by pharmacological inhibition of PKA, extracellular signal-regulated kinase 1 and 2 (ERK1/2), or phosphatidylinositol 3-kinase (PI-3K) signalling. Furthermore, the removal of extracellular Ca 2+ also attenuated formoterol-induced TG2 activation. Fluorescence microscopy demonstrated TG2-induced biotin-X-cadaverine incorporation into proteins. Formoterol increased the levels of TG2-associated phosphoserine and phosphothreonine, which were blocked by inhibition of PKA, ERK1/2 or PI-3K signalling. Subsequent proteomic analysis identified known (e.g. lactate dehydrogenase A chain) and novel (e.g. Protein S100-A6) protein substrates for TG2. Taken together, the data obtained suggest that β 2 -adrenoceptor-induced modulation of TG2 represents a novel paradigm in β 2 -adrenoceptor cell signalling, expanding the repertoire of cellular functions responsive to catecholamine stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of norepinephrine on alpha-subtype receptors in the feline pulmonary vascular bed.

    PubMed

    Kaye, Alan D; Hoover, Jason M; Baber, Syed R; Ibrahim, Ikhlass N; Fields, Aaron M

    2004-11-01

    To test the hypothesis that norepinephrine induces a pressor response in the pulmonary vascular bed of the cat and identify the alpha-(1)adrenoceptor subtypes involved in the mediation or modulation of these effects. Prospective vehicle controlled study. University research laboratory. Intact chest preparation, adult mongrel cats. In separate experiments, the effects of 5-methyl-urapidil, a selective alpha-(1)A-subtype adrenoceptor antagonist, chloroethylclonidine, an alpha-(1)B-subtype and -(1)D-subtype adrenoceptor antagonist, and BMY 7378, the selective alpha-(1)D-subtype adrenoceptor antagonist, were investigated on pulmonary arterial responses to norepinephrine and other agonists in the pulmonary vascular bed of the cat. The systemic pressure and lobar arterial perfusion pressure were continuously monitored, electronically averaged, and permanently recorded. In the feline pulmonary vascular bed of the isolated left lower lobe, norepinephrine induced a dose-dependent vasoconstrictor response that was not significantly altered after administration of BMY 7378. However, the responses to norepinephrine were significantly attenuated following administration of 5-methyl-urapidil and chloroethylclonidine. The results of the present study suggest that norepinephrine has potent vasopressor activity in the pulmonary vascular bed of the cat and that this response may be mediated or modulated by both alpha-(1)A-subtype and -(1)B-subtype adrenoceptor sensitive pathways.

  20. Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury.

    PubMed

    Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2004-04-01

    Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.

  1. [Beta-1 adrenoceptor blockade decreases the firing rate to painful stimuli in spinal wide-dynamic range neurons in rats].

    PubMed

    Lamothe-Molina, Paul J; Lamothe-Molina, Pedro A; López-Ávila, Alberto

    2014-01-01

    It is known that epinephrine/norepinephrine inhibit acute pain transmission. However, the role of ß-adrenoceptors is not clear. Thus, we analyzed if beta-1 and/or beta-2 adrenoceptors can modulate acute pain transmission by performing in vivo single unit recordings during painful and non-painful peripheral stimulation in rats. Longitudinal study in which we analyzed seven groups of male rats Wistar: control group (n = 11): saline (0.9 %); EPI group (n = 8): epinephrine 100 mcg; beta-1 agonist group (n = 8): dobutamine 125 mcg; beta-1-antagonist group (n = 9): metoprolol 100 mcg; beta-2-agonist group (n = 7): clenbuterol 100 mcg; beta-2-antagonist group (n = 8): butoxamine 100 mcg; beta-1-antagonist + EPI group (n = 10): metoprolol 100 mcg + epinephrine 100 mcg. For the statistical analysis we used ANOVA. Epinephrine significantly reduced the basal firing rate (BFR) in 34.1 % (p < 0.05) and also the evoked response by painful stimulation in 56 % (p < 0.05). No change was observed in the evoked response by non-painful stimulation. ANTß1 was the only beta-adrenoceptor acting drug that significantly reduced the evoked response by painful stimulation in 41 % (p < 0.05). None of the other drugs alone affected either the BFR or the evoked response to non-painful or painful stimulation. It is the first time that a beta-1-adrenoceptor antagonist (metoprolol) probes to be effective in reducing the response to painful stimulation in WDR neurons.

  2. Evidence for alpha 2-adrenoceptor agonist activity of minoxidil.

    PubMed

    Sharma, N; Mehta, A A; Santani, D D; Goyal, R K

    1997-09-01

    The present investigation was undertaken to study the mechanism of action of minoxidil using various smooth muscle preparations. Minoxidil (4.7 x 10(-6) M to 4.7 x 10(-4) M) produced a concentration-dependent inhibition of field stimulation-evoked responses in rat anococcygeus muscle and vas deferens. The inhibition produced by minoxidil was antagonized by yohimbine (2.5 x 10(-7) M). Minoxidil (1.4 x 10(-5) M to 4.7 x 10(-4) M) also produced a concentration-dependent relaxation in oestrogen-primed potassium chloride-depolarized rat uterus. These responses were blocked not only by yohimbine but also by glibenclamide (2.02 x 10(-8) M). Our results suggest that minoxidil possesses alpha 2-adrenoceptor agonist activity in addition to potassium-channel-opening activity.

  3. The actions of isoprenaline and mirabegron in the isolated whole rat and guinea pig bladder.

    PubMed

    Persyn, Sara; De Wachter, Stefan; Wyndaele, Jean-Jacques; Eastham, Jane; Gillespie, James

    2016-07-01

    β3-adrenoceptor agonists influence overactive bladder in humans and animal models. However, data is emerging that the mode of action of these drugs is complex. The present study explored the actions of the β3-adrenergic agonist mirabegron and the non-selective agonist isoprenaline on the contractile systems in the rat and guinea pig bladder. Intravesical pressure was measured in isolated whole bladders from female adult animals. In both species spontaneous contractile activity was observed. The muscarinic agonist arecaidine produced complex responses consisting of an initial transient pressure rise followed by complex phasic activity. Three contractile elements were identified: intrinsic micro-contractile activity, initial transient response and steady state phasic activity. The intrinsic and steady state activity could be further divided into a baseline pressure with superimposed phasic activity. The effects of isoprenaline and mirabegron were investigated on these elements. In the rat, the micro-contractile activity could be completely inhibited by isoprenaline (full agonist). The arecaidine-induced initial and steady state baseline pressures were partially reduced, while the phasic activity was little affected. In the guinea pig, both the arecaidine-induced baseline pressure and the phasic activity were affected by isoprenaline. Mirabegron didn't produce significant inhibitory effects in any of the contractile elements in either species. These results show that complex contractile systems operate in the rat and guinea pig bladder that can be modulated by β1/β2-adrenoceptor mechanisms. No evidence was obtained for any β3-dependent regulation of contraction. These data support similar data in humans. Therefore the primary site of therapeutic action of β3-adrenergic agonists remains unknown. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of chronic treatment with the new ultra-long-acting β2 -adrenoceptor agonist indacaterol alone or in combination with the β1 -adrenoceptor blocker metoprolol on cardiac remodelling.

    PubMed

    Rinaldi, Barbara; Donniacuo, Maria; Sodano, Loredana; Gritti, Giulia; Martuscelli, Eugenio; Orlandi, Augusto; Rafaniello, Concetta; Rossi, Francesco; Calzetta, Luigino; Capuano, Annalisa; Matera, Maria Gabriella

    2015-07-01

    The ability of a chronic treatment with indacaterol, a new ultra-long-acting β2 -adrenoceptor agonist, to reverse cardiac remodelling and its effects in combination with metoprolol, a selective β1 -adrenoceptor antagonist, were investigated on myocardial infarction in a rat model of heart failure (HF). We investigated the effects of indacaterol and metoprolol, administered alone or in combination, on myocardial histology, β-adrenoceptor-mediated pathways, markers of remodelling and haemodynamic parameters in a rat model of HF. Five groups of rats were assessed: sham-operated rats; HF rats; HF + indacaterol 0.3 mg·kg(-1) ·day(-1) ; HF + metoprolol 100 mg·kg(-1) ·day(-1) ; HF + metoprolol + indacaterol. All pharmacological treatments continued for 15 weeks. Treatment with either indacaterol or metoprolol significantly reduced the infarct size in HF rats. However, the combination of indacaterol and metoprolol reduced the infarct size even further, reduced both BP and heart rate, reversed the decrease in ejection fraction, normalized left ventricular systolic and diastolic internal diameters, normalized the decreased β1 adrenoceptor mRNA expression as well as cardiac cAMP levels and reduced cardiac GPCR kinase 2 expression, compared with the untreated HF group. The results of our study demonstrated an additive interaction between indacaterol and metoprolol in normalizing and reversing cardiac remodelling in our experimental model of HF. The translation of these findings to clinical practice might be of interest, as this combination of drugs could be safer and more effective in patients suffering from HF and COPD. © 2015 The British Pharmacological Society.

  5. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro.

    PubMed

    Goepel, M; Hecker, U; Krege, S; Rübben, H; Michel, M C

    1999-02-15

    We wanted to test whether phytotherapeutic agents used in the treatment of lower urinary tract symptoms have alpha1-adrenoceptor antagonistic properties in vitro. Preparations of beta-sitosterol and extracts of stinging nettle, medicinal pumpkin, and saw palmetto were obtained from several pharmaceutical companies. They were tested for their ability to inhibit [3H]tamsulosin binding to human prostatic alpha1-adrenoceptors and [3H]prazosin binding to cloned human alpha1A- and alpha1B-adrenoceptors. Inhibition of phenylephrine-stimulated [3H]inositol phosphate formation by cloned receptors was also investigated. Up to the highest concentration which could be tested, preparations of beta-sitosterol, stinging nettle, and medicinal pumpkin were without consistent inhibitory effect in all assays. In contrast, all tested saw palmetto extracts inhibited radioligand binding to human alpha1-adrenoceptors and agonist-induced [3H]inositol phosphate formation. Saturation binding experiments in the presence of a single saw palmetto extract concentration indicated a noncompetitive antagonism. The relationship between active concentrations in vitro and recommended therapeutic doses for the saw palmetto extracts was slightly lower than that for several chemically defined alpha1-adrenoceptor antagonists. Saw palmetto extracts have alpha1-adrenoceptor-inhibitory properties. If bioavailability and other pharmacokinetic properties of these ingredients are similar to those of the chemically defined alpha1-adrenoceptor antagonists, alpha1-adrenoceptor antagonism might be involved in the therapeutic effects of these extracts in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction.

  6. Blockade of hyperpolarization-activated channels modifies the effect of beta-adrenoceptor stimulation.

    PubMed

    Zefirov, T L; Ziyatdinova, N I; Gainullin, A A; Zefirov, A L

    2002-05-01

    Experiments on rats showed that blockade of hyperpolarization-activated currents moderates tachycardia induced by beta-adrenoceptor agonist isoproterenol and potentiates the increase in stroke volume produced by this agonist. Electrical stimulation of the vagus nerve against the background of isoproterenol treatment augmented bradycardia and increased stroke volume. Blockade of hyperpolarization-activated currents followed by application of isoproterenol moderated vagus-induced bradycardia and had no effect on the dynamics of stroke volume.

  7. Effect of beta-antagonists on isoprenaline-induced secretion of fluid, amylase and protein by the parotid gland of the red kangaroo, Macropus rufus.

    PubMed

    Beal, A M

    2000-02-01

    Selective and non-selective beta-adrenoceptor antagonists were used to block the increases in fluid, protein and amylase secretion caused by sympathomimetic stimulation of the parotid gland of red kangaroos during intracarotid infusion of isoprenaline. ICI118551 at antagonist/agonist ratios up to 300:1 caused increasing but incomplete blockade of fluid secretion, and protein/amylase release. Atenolol at antagonist/agonist ratios up to 300:1 was only marginally more potent than ICI118551 at blocking the fluid, protein and amylase responses. Propranolol at antagonist/agonist ratios of 30:1 was as effective at blocking fluid and protein secretion as the highest ratios of either atenolol or ICI118551. Simultaneous administration of atenolol (30:1) with ICI118551 (30:1) was not as potent as propranolol (30:1). Thus, the beta-adrenoceptor/s in the acini of the kangaroo parotid gland appear to have antagonist-binding affinities atypical of those found for eutherian tissues. The data are consistent with the gland possessing either a single anomalous beta-adrenoceptor or functional beta(2)-receptors in addition to the beta(1)-receptors which are characteristic of eutherian salivary glands.

  8. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  9. Thiophene/thiazole-benzene replacement on guanidine derivatives targeting α2-Adrenoceptors.

    PubMed

    Flood, Aoife; Trujillo, Cristina; Sanchez-Sanz, Goar; Kelly, Brendan; Muguruza, Carolina; Callado, Luis F; Rozas, Isabel

    2017-09-29

    Searching for improved antagonists of α 2 -adrenoceptors, a thorough theoretical study comparing the aromaticity of phenyl-, pyridinyl-, thiophenyl- and thiazolylguanidinium derivatives has been carried out [at M06-2X/6-311++G(p,d) computational level] confirming that thiophene and thiazole will be good 'ring equivalents' to benzene in these guanidinium systems. Based on these results, a small but chemically diverse library of guanidine derivatives (15 thiophenes and 2 thiazoles) were synthesised to explore the effect that the bioisosteric change has on affinity and activity at α 2 -adrenoceptors in comparison with our previously studied phenyl derivatives. All compounds were tested for their α 2 -adrenoceptor affinity and unsubstituted guanidinothiophenes displayed the strongest affinities in the same range as the phenyl analogues. In the case of cycloakyl systems, thiophenes with 6-membered rings showed the largest affinities, while for the thiazoles the 5-membered analogue presented the strongest affinity. From all the compounds tested for noradrenergic activity, only one compound exhibited agonistic activity, while two compounds showed very promising antagonism of α 2 -adrenoceptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. In vitro desensitization of beta-adrenoceptors in guinea pig trachea: interactions between beta-adrenoceptor agonists and influence of adenosine and other drugs.

    PubMed

    Matran, R; Naline, E; Advenier, C; Duroux, P

    1989-01-01

    The aim of this study was to investigate quantitatively the action of and the interaction between beta-adrenergic receptor agonists in desensitizing guinea pig isolated trachea. It was also to evaluate the influence of substances whose effects on desensitization are either disputed (theophylline, indomethacin, ketotifen, hydrocortisone) or unknown (nicardipine, Bay K 8644, fenspiride, adenosine). Tracheal strips were contracted with histamine (5 x 10(-5) M) or acetylcholine (5.10(-5) M) and concentration-response (C/R) curves for various beta-adrenoceptor agonists were determined before and after incubation (20 min to 4 h) with the same beta-adrenoceptor agonist (autodesensitization), with other beta-adrenoceptor agonists (cross-desensitization), or with a beta-adrenoceptor agonist and another substance. Our results show that the autodesensitization induced by isoprenaline is concentration dependent and that concentration dependence is more pronounced with salbutamol and fenoterol than with isoprenaline and adrenaline with respect to autodesensitization: shifts (log unit) of the C/R curves were 0.59 +/- 0.06 (N = 5) for salbutamol (10(-5) M), 0.78 +/- 0.09 (N = 5) for fenoterol (10(-6) M), 0.30 +/- 0.04 (N = 9) for isoprenaline (10(-5) M), and 0.33 +/- 0.05 (N = 5) for adrenaline (10(-5) M). Our studies of cross-desensitization (desensitization to isoprenaline, adrenaline, salbutamol, and fenoterol induced by incubation with isoprenaline 10(-5) M) showed a significantly greater shift in the C/R curves for fenoterol (0.56 +/- 0.08, N = 5) and salbutamol (0.62 +/- 0.05, N = 5) than for adrenaline (0.35 +/- 0.07, N = 5) and isoprenaline itself (0.30 +/- 0.05, N = 9). Of the substances we studied, none modified the desensitization induced by isoprenaline except hydrocortisone and adenosine. Hydrocortisone (10(-8) M) reduced it significantly, although to a negligible extent. Adenosine (3 x 10(-4) M) did not shift the C/R curve to isoprenaline by itself, but incubation of tracheal strips with adenosine and isoprenaline caused a significantly greater shift of C/R curves to isoprenaline (0.30 +/- 0.04) than incubation with isoprenaline alone (0.20 +/- 0.04) (P less than 0.05, N = 5). These experiments suggest that adenosine may have increased the uncoupling and/or down-regulation phenomena induced by isoprenaline, or modified adenylate cyclase-cAMP activity.

  11. Behaviour of beta 2-adrenoceptors on lymphocytes under continuous and pulsatile tocolysis with Fenoterol.

    PubMed

    Schmidt-Rhode, Peter; Brunke, Björn; Schröer, Heinrich; Obert, Kirstin; Schlegel, Kerstin; Sturm, Gerhard; Schulz, Klaus-Dieter; von Wichert, Peter

    2003-01-01

    The present study investigates the population of beta 2-receptors on lymphocytes in pregnant women with premature labor between the 29th and 34th week of pregnancy. The population of receptors on lymphocytes correlates with that on the myometrium, which is not accessible for study during pregnancy. Fourteen patients received a pulsatile tocolysis, while ten women received a continuous tocolysis with Fenoterol. Assuming an equal population of receptors in both groups before commencement of therapy, the numbers of receptors in the patients with continuous tocolysis fell to about 35% of the initial value after 72 hours. Under pulsatile tocolysis, the numbers of receptors remained unchanged for a period of three days and was still only just below 70% of the initial value by the seventh day. Our data demonstrate that continuous administration of the short-acting beta 2-agonist Fenoterol resulted in a substantial loss of beta 2-adrenoceptors on lymphocytes. In contrast, intermittent administration of the same beta 2-adrenergic agonist prevented the onset of receptor down-regulation in pregnant women with preterm labor. Further studies are required to investigate the impact of the decreased loss of beta 2-adrenoceptor density on the good clinical experience with intermittent tocolysis.

  12. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT1A receptors. This affected markedly the affinity ratios of certain compounds. For example, (+/-)-idazoxan was only 3.6-fold selective for h alpha2A versus h5-HT1A but 51-fold selective for r alpha2A versus r5-HT1A receptors. Conversely, yohimbine was tenfold selective for h alpha2A versus h5-HT1A adrenoceptors but 4.2-fold selective for r alpha2A versus r5-HT1A receptors. Nevertheless, both atipamezole and DMT were highly selective for both rat and human alpha2A versus rat or human 5-HT1A receptors. In conclusion, these data indicate that: (1) the agonist DMT and the antagonist atipamezole are the ligands of choice to distinguish alpha2-mediated from 5-HT1A-mediated actions, whilst several of the other compounds show only low or modest selectivity for alpha2A over 5-HT1A receptors; (2) caution should be exercised in experimental and clinical interpretation of the actions of traditionally employed alpha2 ligands, such as clonidine, yohimbine and (+/-)-idazoxan, which exhibit marked agonist activity at 5-HT1A receptors.

  13. Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and β3-adrenoceptor knockout mice

    PubMed Central

    Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio

    2000-01-01

    The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880

  14. Novelty response of rats determines the effect of prefrontal alpha-2 adrenoceptor modulation on anxiety.

    PubMed

    Uzsoki, B; Tóth, M; Hernádi, I

    2011-07-25

    In this study we provide evidence that animals of the same population, although identical in age and sex, have individual reactions to the prefrontal modulation of adrenoceptors. We have examined the dose-dependent action of α(2)-adrenoceptor agents on the anxiety of rats with different response to novelty in the elevated plus maze (EPM) apparatus. Rats were divided into high (HR) and low responder (LR) groups based on their locomotor activity in a novel open field environment. HR rats also showed increased locomotion and low anxiety in the EPM. Prefrontal injection of α(2)-receptor antagonist yohimbine, BRL44408 or imiloxan caused anxiety only in HR rats. The α(2A/D)-receptor agonist guanfacine increased anxiety levels of both groups. However, the effective dose was lower in HR rats. The present results propose different prefrontal adrenoceptor sensitivity of rats showing distinct baseline activity levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Activation of alpha2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala.

    PubMed

    Davies, M Frances; Tsui, Janet; Flannery, Judy A; Li, Xiangqi; DeLorey, Timothy M; Hoffman, Brian B

    2004-02-01

    alpha(2) adrenergic agonists such as dexmedetomidine generally suppress noradrenergic transmission and have sedative, analgesic, and antihypertensive properties. Considering the importance of the neurotransmitter norepinephrine in forming memories for fearful events, we have investigated the acute and chronic effects of dexmedetomidine on discrete cue and contextual fear conditioning in mice. When administered before training, dexmedetomidine (10-20 microg/kg, i.p.) selectively suppressed discrete cue fear conditioning without affecting contextual memory. This behavioral change was associated with a decrease in memory retrieval-induced expression of c-Fos and P-CREB in the lateral, basolateral, and central nuclei of the amygdala. Dexmedetomidine's action on discrete cue memory did not occur in alpha(2A) adrenoceptor knockout (KO) mice. When dexmedetomidine was administered after training, it suppressed contextual memory, an effect that did not occur in alpha(2A) adrenoceptor KO mice. We conclude that dexmedetomidine, acting at alpha(2A) adrenoceptors, must be present during the encoding process to decrease discrete cue fear memory; however, its ability to suppress contextual memory is likely the result of blocking the consolidation process. The ability of alpha(2) agonists to suppress fear memory may be a valuable property clinically in order to suppress the formation of memories during stressful situations.

  16. Molecular mechanism of emotional stress-induced and catecholamine-induced heart attack.

    PubMed

    Ueyama, Takashi; Senba, Emiko; Kasamatsu, Ken; Hano, Takuzo; Yamamoto, Katsuhiro; Nishio, Ichiro; Tsuruo, Yoshihiro; Yoshida, Ken-ichi

    2003-01-01

    Emotional or physical stress triggers 'tako-tsubo' cardiomyopathy or 'transient left ventricular apical ballooning', but the pathogenesis is unclear. In response to the immobilization stress of rats, a useful model of emotional stress, rapid activation of p44/p42 mitogen-activated protein kinase was observed in the heart, followed by a transient upregulation of immediate early genes in the smooth muscle cells of coronary arteries, the endothelial cells and the myocardium. Heat shock protein 70 was induced in the aortic and coronary arterial smooth muscle cells and in the myocardium. Natriuretic peptide genes were also upregulated in the myocardium. Sequential gene expression can be considered as an adaptive response to emotional stress. Blocking of both alpha-adrenoceptors and beta-adrenoceptors eliminated the upregulation of immediate early genes induced by stress, while alpha-agonists and beta-agonists upregulated immediate early genes in the perfused heart. Activation of alpha-adrenoceptors and beta-adrenoceptors is the primary trigger of emotional stress-induced molecular changes in the heart.

  17. Depression of NMDA receptor-mediated synaptic transmission by four α2 adrenoceptor agonists on the in vitro rat spinal cord preparation

    PubMed Central

    Faber, E S L; Chambers, J P; Evans, R H

    1998-01-01

    α2-Adrenoceptor agonists have a spinal site of analgesic action. In the current study the synaptic depressant actions of xylazine, detomidine, romifidine and dexmedetomidine have been compared on segmental reflexes containing NMDA receptor-mediated components in the neonatal rat hemisected spinal cord preparation in vitro.Reflexes were evoked in the ventral root following either supramaximal electrical stimulation of the corresponding ipsilateral lumbar dorsal root to evoke the high intensity excitatory postsynaptic potential (e.p.s.p.) involving all primary afferent fibres, or low intensity stimulation to evoke the solely A fibre-mediated low intensity e.p.s.p. The high intensity e.p.s.p. contains a greater NMDA receptor-mediated component.Xylazine, romifidine, detomidine and dexmedetomidine all depressed both the high intensity e.p.s.p. and the low intensity e.p.s.p. giving respective EC50 values of 0.91±0.2 μM (n=12), 23.4±3 nM (n=12), 37.7±7 nM (n=8) and 0.84±0.1 nM (n=4) for depression of the high intensity e.p.s.p. and 0.76±0.1 μM (n=12), 22.0±3 nM (n=12), 24.9±6 nM (n=4) and 2.7±0.6 nM (n=4) for depression of the low intensity e.p.s.p., respectively. Unlike the other three drugs, the two values for dexmedetomidine, showing a greater selectivity for the high intensity e.p.s.p., are significantly different.Each of these depressant actions was reversed by the selective α2-adrenoceptor antagonist atipamezole (1 μM).In contrast to previous reports of the actions of α2-adrenoceptor agonists on the in vitro spinal cord preparation, at concentrations ten fold higher than the above EC50 values xylazine, romifidine, detomidine and dexmedetomidine depressed the initial population spike of motoneurons (MSR). This depression was not reversed by atipamezole.Comparison of the rank order of the present EC50 values for depression of the high intensity e.p.s.p. with potency ratios from in vivo analgesic tests in previous studies show a close correlation between the present in vitro tests and analgesic potency. There is no correlation between the present data and previously obtained affinities of the agonists at non-adrenergic imidazoline binding sites.The current findings therefore suggest that xylazine, romifidine, detomidine and dexmedetomidine are exerting their central analgesic actions at the spinal level principally through α-2-adrenoceptors. All four agonists showed the same profile of selective depression of the NMDA receptor-mediated component of reflexes similar to that reported previously for clonidine. However dexmedetomidine, unlike the other ligands, selectively depressed the high intensity e.p.s.p. PMID:9647475

  18. Autoradiographic localization of beta-adrenoceptors in asthmatic human lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spina, D.; Rigby, P.J.; Paterson, J.W.

    1989-11-01

    The autoradiographic distribution and density of beta-adrenoceptors in human non-diseased and asthmatic bronchi were investigated using (125I)iodocyanopindolol (I-CYP). Analysis of the effects of the beta-adrenoceptor antagonists on I-CYP binding demonstrated that betaxolol (20 nM, beta 1-selective) had no significant effect on specific grain density in either nonasthmatic or asthmatic human bronchus, whereas ICI-118551 (20 nM, beta 2-selective) inhibited I-CYP binding by 85 +/- 9% and 89 +/- 3%, respectively. Thus, homogeneous populations of beta 2-adrenoceptors existed in bronchi from both sources. Large populations of beta-adrenoceptors were localized to the bronchial epithelium, submucosal glands, and airway smooth muscle. Asthmatic bronchial tissuemore » featured epithelial damage with exfoliated cells associated with luminal mucus plugs. A thickened basement membrane and airway smooth muscle hyperplasia were also evident. High levels of specific I-CYP binding were also detected over asthmatic bronchial smooth muscle, as assessed by autoradiography and quantitation of specific grain densities. Isoproterenol and fenoterol were 10- and 13-fold less potent, respectively, in bronchi from asthmatic lung than in those from nonasthmatic lung. However, this attenuated responsiveness to beta-adrenoceptor agonists was not caused by reduced beta-adrenoceptor density in asthmatic airways. A defect may exist in the coupling between beta-adrenoceptors and postreceptor mechanisms in severely asthmatic lung.« less

  19. Alpha-1 adrenoceptor hyperresponsiveness in three neuropathic pain states: complex regional pain syndrome 1, diabetic peripheral neuropathic pain and central pain states following spinal cord injury.

    PubMed

    Teasell, Robert W; Arnold, J Malcolm O

    2004-01-01

    The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).

  20. The effects of SB 216469, an antagonist which discriminates between the alpha 1A-adrenoceptor and the human prostatic alpha 1-adrenoceptor.

    PubMed Central

    Chess-Williams, R.; Chapple, C. R.; Verfurth, F.; Noble, A. J.; Couldwell, C. J.; Michel, M. C.

    1996-01-01

    1. The affinity of the alpha 1-adrenoceptor antagonist SB 216469 (also known as REC 15/2739) has been determined at native and cloned alpha 1-adrenoceptor subtypes by radioligand binding and at functional alpha 1-adrenoceptor subtypes in isolated tissues. 2. In radioligand binding studies with [3H]-prazosin, SB 216469 had a high affinity at the alpha 1A-adrenoceptors of the rat cerebral cortex and kidney (9.5-9.8) but a lower affinity at the alpha 1B-adrenoceptors of the rat spleen and liver (7.7-8.2). 3. At cloned rat alpha 1-adrenoceptor subtypes transiently expressed in COS-1 cells and also at cloned human alpha 1-adrenoceptor subtypes stably transfected in Rat-1 cells, SB 216469 exhibited a high affinity at the alpha 1a-adrenoceptors (9.6-10.4) with a significantly lower affinity at the alpha 1b-adrenoceptor (8.0-8.4) and an intermediate affinity at the alpha 1d-adrenoceptor (8.7-9.2). 4. At functional alpha 1-adrenoceptors, SB 216469 had a similar pharmacological profile, with a high affinity at the alpha 1A-adrenoceptors of the rat vas deferens and anococcygeus muscle (pA2 = 9.5-10.0), a low affinity at the alpha 1B-adrenoceptors of the rat spleen (6.7) and guinea-pig aorta (8.0), and an intermediate affinity at the alpha 1D-adrenoceptors of the rat aorta (8.8). 5. Several recent studies have concluded that the alpha 1-adrenoceptor present in the human prostate has the pharmacological characteristics of the alpha 1A-adrenoceptor subtype. However, the affinity of SB 216469 at human prostatic alpha 1-adrenoceptors (pA2 = 8.1) determined in isolated tissue strips, was significantly lower than the values obtained at either the cloned alpha 1a-adrenoceptors (human, rat, bovine) or the native alpha 1A-adrenoceptors in radioligand binding and functional studies in the rat. 6. Our results with SB 216469, therefore, suggest that the alpha 1-adrenoceptor mediating contractile responses of the human prostate has properties which distinguish it from the cloned alpha 1a-adrenoceptor or native alpha 1A-adrenoceptor. Since it has previously been shown that the receptor is not the alpha 1B- or alpha 1D-adrenoceptor, the functional alpha 1-adrenoceptor of the human prostate may represent a novel receptor with properties which differ from any of the alpha 1-adrenoceptors currently defined by pharmacological means. PMID:8937710

  1. Synthesis and in Vitro and in Vivo Characterization of Highly β1-Selective β-Adrenoceptor Partial Agonists

    PubMed Central

    2013-01-01

    β-Adrenoceptor antagonists boast a 50-year use for symptomatic control in numerous cardiovascular diseases. One might expect highly selective antagonists are available for the human β-adrenoceptor subtype involved in these diseases, yet few truly β1-selective molecules exist. To address this clinical need, we re-evaluated LK 204-545 (1),1 a selective β1-adrenoceptor antagonist, and discovered it possessed significant partial agonism. Removal of 1’s aromatic nitrile afforded 19, a ligand with similar β1-adrenoceptor selectivity and partial agonism (log KD of −7.75 and −5.15 as an antagonist of functional β1- and β2-mediated responses, respectively, and 34% of the maximal response of isoprenaline (β1)). In vitro β-adrenoceptor selectivity and partial agonism of 19 were mirrored in vivo. We designed analogues of 19 to improve affinity, selectivity, and partial agonism. Although partial agonism could not be fully attenuated, SAR suggests that an extended alkoxyalkoxy side chain, alongside substituents at the meta- or para-positions of the phenylurea, increases ligand affinity and β1-selectivity. PMID:23614528

  2. Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment.

    PubMed

    Yanpallewar, Sudhirkumar U; Fernandes, Kimberly; Marathe, Swananda V; Vadodaria, Krishna C; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A

    2010-01-20

    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine, supporting a role for alpha(2)-heteroceptors on progenitor cells, rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore, coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants.

  3. α2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment

    PubMed Central

    Yanpallewar, Sudhirkumar U.; Fernandes, Kimberly; Marathe, Swananda V.; Vadodaria, Krishna C.; Jhaveri, Dhanisha; Rommelfanger, Karen; Ladiwala, Uma; Jha, Shanker; Muthig, Verena; Hein, Lutz; Bartlett, Perry; Weinshenker, David; Vaidya, Vidita A.

    2010-01-01

    Slow-onset adaptive changes that arise from sustained antidepressant treatment, such as enhanced adult hippocampal neurogenesis and increased trophic factor expression, play a key role in the behavioral effects of antidepressants. α2-adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of α2-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that α2-adrenoceptor agonists, clonidine and guanabenz, decrease adult hippocampal neurogenesis through a selective effect on the proliferation, but not the survival or differentiation, of progenitors. These effects persist in dopamine β-hydroxylase knockout (Dbh −/−) mice lacking norepinephrine, supporting a role for α2-heteroceptors on progenitor cells, rather than α2-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the α2-adrenoceptor subtypes, and decreased neurosphere frequency and BrdU incorporation indicate direct effects of α2-adrenoceptor stimulation on progenitors. Further, co-administration of the α2-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation, the morphological maturation of newborn neurons, and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally, short duration (7 day) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test, which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that α2-adrenoceptors, expressed by progenitor cells, decrease adult hippocampal neurogenesis, while their blockade speeds up antidepressant action, highlighting their importance as targets for faster acting antidepressants. PMID:20089918

  4. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells.

    PubMed

    Lacoste, A; De Cian, M C; Cueff, A; Poulet, S A

    2001-10-01

    Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various alpha- and beta-adrenoceptor agonists and antagonists. Results show that NA and alpha-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the alpha-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca(2+)-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that alpha-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca(2+)-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.

  5. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood sugar levels. Further studies are needed to evaluate the therapeutic role of β3-adrenoceptor agonists in insulin-resistant T1DM.

  6. Modulatory effects of the basolateral amygdala α2-adrenoceptors on nicotine-induced anxiogenic-like behaviours of rats in the elevated plus maze.

    PubMed

    Bashiri, Hamideh; Rezayof, Ameneh; Sahebgharani, Mousa; Tavangar, Seyed Mohammad; Zarrindast, Mohammad-Reza

    2016-06-01

    The present study was designed to clarify whether α2-adrenoceptors of the basolateral amygdala (BLA) are involved in nicotine-induced anxiogenic-like behaviours. Adult male Wistar rats were bilaterally cannulated in the BLA and anxiety-like behaviours were assessed in an elevated plus maze (EPM) task. Systemic intraperitoneal (i.p.) administration of nicotine (0.3, 0.5 and 0.7 mg/kg) dose-dependently decreased open arm time (%OAT) and open arm entry (%OAE), indicating the anxiogenic-like effect of nicotine. The activation of the BLA α2-adrenoceptors by the injection of α2-receptor agonist, clonidine (0.1, 0.3 and 0.5 μg/rat) into the BLA (intra-BLA) reversed nicotine-induced anxiogenic-like behaviours. It is important to note that intra-BLA injection of a higher dose of clonidine (0.5 μg/rat) by itself increased %OAT, but not %OAE which showed an anxiolytic effect of the agonist. On the other hand, intra-BLA injection of different doses of α2-adrenoceptor antagonist, yohimbine (1, 3 and 5 μg/rat) in combination with an ineffective dose of nicotine (0.3 mg/kg) decreased %OAT and %OAE, suggesting a potentiative effect of the antagonist on nicotine response. In addition, intra-BLA injection of the same doses of yohimbine did not alter %OAT and %OAE. Interestingly, intra-BLA injection of yohimbine (0.5 and 1 μg/rat) significantly reversed the inhibitory effect of clonidine on nicotine-induced anxiogenic-like behaviours. It should be considered that the drug treatments had no effect on locomotor activity in all experiments. Taken together, it can be concluded that nicotine produces anxiogenic-like behaviours which may be mediated through the BLA α2-adrenoceptor mechanism. Copyright © 2016. Published by Elsevier Ltd.

  7. Central α- and β-adrenoceptors modifying arterial blood pressure and heart rate in conscious cats

    PubMed Central

    Day, M.D.; Roach, A.G.

    1974-01-01

    1 In conscious unrestrained cats noradrenaline, α-methylnoradrenaline and clonidine, infused into the lateral cerebral ventricles (i.c.v.) caused dose-related falls in blood pressure and heart rate; both effects were abolished after i.c.v. phentolamine. 2 In 12 out of 20 cats, i.c.v. isoprenaline and salbutamol when given caused dose-related pressor responses and tachycardias. These effects were abolished after i.c.v. β-adrenoceptor blocking drugs but were unaffected by α-adrenoceptor blocking agents. 3 In 5 out of 20 cats, i.c.v. isoprenaline regularly produced dose-related falls in blood pressure with associated tachycardias; both effects were abolished after i.c.v. β-adrenoceptor blocking agents. 4 Intracerebroventricular dopamine produced cardiovascular responses which were qualitatively similar to those produced by i.c.v. isoprenaline. 5 Intracerebroventricular adrenaline produced complex responses in untreated animals but typical α-effects were obtained after prior i.c.v. treatment with a β-adrenoceptor blocking agent and typical β-effects after i.c.v. pretreatment with an α-adrenoceptor blocking agent. 6 The cardiovascular changes produced by i.c.v. β-adrenoceptor agonists were abolished after systemic administration of hexamethonium or bethanidine. 7 The results are discussed in the light of the mode of action of β-adrenoceptor stimulants and β-adrenoceptor blocking agents in the treatment of hypertension. PMID:4451747

  8. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.

    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587more » was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.« less

  9. Retigabine diminishes the effects of acetylcholine, adrenaline and adrenergic agonists on the spontaneous activity of guinea pig smooth muscle strips in vitro.

    PubMed

    Apostolova, Elisaveta; Zagorchev, Plamen; Kokova, Vesela; Peychev, Lyudmil

    2017-03-01

    The aim of this study is to evaluate the effect of retigabine on the smooth muscle response to acetylcholine, adrenaline, α-and β-adrenoceptor agonists. We studied the change in the spontaneous smooth muscle contraction of guinea pig gastric corpus strips before and after 20-min treatment with 2μM retigabine. We also evaluated the effect of retigabine on the smooth muscle response to 10μM acetylcholine, 1 and 10μM adrenaline, 1μM methoxamine, 0.1μM p-iodoclonidine and 10μM isoproterenol. We observed a significant reduction in the effects of all studied mediators and agonists when they were added to organ baths in the presence of retigabine. Retigabine diminished the effect of acetylcholine on the spontaneous smooth muscle activity. The effect was fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the role of KCNQ channels in the registered changes. The increase in the contraction force after adding of 1μM adrenaline, methoxamine, and 0.1μM p-iodoclonidine was also significantly smaller in presence of retigabine. However, comparing the effect of 10μM adrenaline on the contractility before and after treatment with retigabine, we observed increased contractility when retigabine was present in the organ baths. A possible explanation for the observed diminished effects of mediators and receptor agonists is that the effect of retigabine on smooth muscle contractility is complex. The membrane hyperpolarization, the interaction between Kv7 channels and adrenoceptors, and the influence on signaling pathways may contribute to the summary smooth muscle response. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Understanding how long‐acting β2‐adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma – an update

    PubMed Central

    Giembycz, Mark A

    2016-01-01

    In moderate‐to‐severe asthma, adding an inhaled long‐acting β2‐adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti‐inflammatory/anti‐asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid‐induced genes. Other genes, including dual‐specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up‐regulated additively by both drug classes. Synergy may also occur for LABA‐induced genes, as illustrated by the bronchoprotective gene, regulator of G‐protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene‐specific regulation. We explore the concept that each glucocorticoid‐induced gene is an independent signal transducer optimally activated by a specific, ligand‐directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2‐adrenoceptor density or biased β2‐adrenoceptor signalling. Strategies to overcome these limitations include adding‐on a phosphodiesterase inhibitor and using agonists of other Gs‐coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized. PMID:27646470

  11. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation

    PubMed Central

    Krott, Lucia M.; Piscitelli, Fabiana; Heine, Markus; Borrino, Simona; Scheja, Ludger; Silvestri, Cristoforo; Heeren, Joerg; Di Marzo, Vincenzo

    2016-01-01

    The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning. PMID:26768656

  12. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor β2.

    PubMed

    Long, Qiqi; Liu, Xishi; Qi, Qiuming; Guo, Sun-Wei

    2016-11-01

    Does chronic stress in mice accelerate the development of endometriosis, and, if so, through what mechanism? Exposure to chronic stress accelerates the development of endometriosis and exacerbates the endometriosis-associated generalized hyperalgesia, most likely through activation of the adrenoceptor β2 (ADRB2) and cAMP responsive element-binding protein (CREB). Women with endometriosis tend to have higher levels of psychological stress, which is known to impact negatively on health in general and to promote tumor growth and metastasis in particular. Exposure to chronic stress before and after the induction of endometriosis is reported to increase lesion sizes in rodents, but it is unclear whether adrenoceptors are involved or not in the stress-promoted development of endometriosis. Three independent, prospective, randomized mouse experimentations. A total of 184 virgin female Balb/C mice were used. In Experiment 1, the mice were randomly divided into four groups: the control group, which received no stress; the before, after and both groups, which received immobilization stress before, after and both before and after the induction of endometriosis, respectively. In Experiment 2, mice were randomly divided into four groups one day after the induction of endometriosis: phosphate buffer saline (PBS) and propranolol (PROP) groups, which received the mini-pump containing, respectively, PBS only and propranolol (a non-selective ADRB antagonist) but no stress, STR+PROP and STR+PBS groups, which received stress and the mini-pump containing, respectively, propranolol and PBS. The immobilization stress started after the insertion of mini-pumps. In Experiment 3, mice were induced with endometriosis. Three days after the induction, they were randomly divided into four groups: control, ADRAa, ADRB2a, and ADRBa, which received the mini-pump containing solution only, metaraminol (a non-specific α adrenoceptor agonist), tebutaline (a specific ADRB2 agonist), or isoproterenol (a non-specific ADRB agonist), respectively. In all three experiments, the bodyweight and hotplate latency were evaluated before sacrifice 14 days after the induction. In all experimentations, the lesion weight was evaluated and the harvested ectopic endometrial tissue samples were subjected to immunohistochemistry analysis of vascular endothelial growth factor (VEGF), CD31-positive microvessels, proliferating cell nuclear antigen (PCNA), phosphorylated CREB, ADRB1, ADRB2, ADRB3, adrenergic receptor α1 (ADRA1) and ADRA2. Exposure to chronic stress accelerated the development of endometriosis and exacerbated the endometriosis-associated generalized hyperalgesia. This promotional effect is likely to be mediated through the systemic activation of the sympatho-adreno-medullary (SAM) axis, which results in subsequent release of catecholamines. The surging catecholamines may activate ADRB2 and CREB, yielding increased angiogenesis and cellular proliferation in ectopic endometrium in mice with induced endometriosis. In addition, β adrenergic receptor blockade completely abolished the promotional effect of chronic stress, likely through suppression of ADRB2 and CREB activation, thus suppressing angiogenesis and proliferation. Moreover, a non-specific adrenergic β agonist and a specific adrenergic β2 agonist, but not non-specific adrenergic α agonist, acted similarly to chronic stress, accelerating the development of endometriosis and exacerbating the generalized hyperalgesia in mice with pre-existing endometriosis. NA. This study is limited by the use of immunohistochemistry analyses only and the lack of molecular data. The present study provides the experimental evidence that chronic stress can promote the development of endometriosis through the activation of ADRB2. Given ADRB2 is also expressed in human endometriosis and appears to be functional, and in light of recent awareness that adrenergic signaling plays critical roles in tumorigenesis, it is likely that adrenergic signaling may play important roles in the development of endometriosis and is potentially a target for intervention. This research was supported in part by grants (81270676,  81471434 and 81530040  to S.W.G.;  81370695 and 81671436  to X.S.L.) from the National Natural Science Foundation of China, and grant (2013ZYJB0019 to X.S.L.) from Shanghai Municipal Commission of Health and Family Planning. None of the authors has anything to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol.

    PubMed

    Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2002-12-01

    Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.

  14. Interaction of berberine with human platelet. alpha. sub 2 adrenoceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Ka Kit; Yu, Jun Liang; Chan, Wai Fong A.

    1991-01-01

    Berberine was found to inhibit competitively the specific binding of ({sup 3}H)-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, norepinephrine, with the rank order of potency (IC{sub 50}) being clonidine {gt} epinephrine {gt} norepinephrine (14.5 {mu}M) = berberine. Increasing concentrations of berberine from 0.1 {mu}M to 10 {mu}M inhibited ({sup 3}H)-yohimbine binding, shifting the saturation binding curve to the right without decreasing the maximum binding capacity. In platelet cyclic AMP accumulation experiments, berberine at concentrations of 0.1 {mu}M to 0.1 mM inhibited the cAMP accumulation induced by 10 {mu}M prostaglandin E{sub 1} in a dose dependent manner,more » acting as an {alpha}{sub 2} adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of L-epinephrine behaving as an {alpha}{sub 2} adrenoceptor antagonist.« less

  15. Agonist-induced β2-adrenoceptor desensitization and downregulation enhance pro-inflammatory cytokine release in human bronchial epithelial cells.

    PubMed

    Oehme, Susanne; Mittag, Anja; Schrödl, Wieland; Tarnok, Attila; Nieber, Karen; Abraham, Getu

    2015-02-01

    It is not clear whether increased asthma severity associated with long-term use of β2-adrenoceptor (β2-AR) agonists can be attributed to receptor degradation and increased inflammation. We investigated the cross-talk between β-AR agonist-mediated effects on β2-AR function and expression and cytokine release in human bronchial epithelial cells. In 16HBE14o(-) cells grown in the presence and absence of β-AR agonists and/or antagonists, the β2-AR density was assessed by radioligand binding; the receptor protein and mRNA was determined using laser scanning cytometer and RT-PCR; cAMP generation, the cytokines IL-6 and IL-8 release were determined using AlphaScreen Assay and ELISA, respectively. Isoprenaline (ISO) and salbutamol (Salbu) induced a concentration- and time-dependent significant decrease in β2-AR density. Both Salbu and ISO reduced cAMP generation in a concentration-dependent manner while in same cell culture the IL-6 and IL-8 release was significantly enhanced. These effects were antagonized to a greater extent by ICI 118.551 than by propranolol, but CGP 20712A had no effect. Reduction of the β2-AR protein and mRNA could be seen when cells were treated with ISO for 24 h. Our findings indicate a direct link between cytokine release and altered β2-AR expression and function in airway epithelial cells. β2-AR desensitization and downregulation induced by long-term treatment with β2-AR agonists during asthma may account for adverse reactions also due to enhanced release of pro-inflammatory mediators and should, thus, be considered in asthma therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Alpha-adrenoceptor antagonistic and calcium antagonistic effects of nicergoline in the rat isolated aorta.

    PubMed

    Heitz, C; Descombes, J J; Miller, R C; Stoclet, J C

    1986-04-16

    The activity of the alpha-adrenoceptor antagonist nicergoline, a molecule composed of two constituent parts, ergoline and bromonicotinic acid, was investigated in the rat isolated aorta. Nicergoline (10 nM-0.1 microM) displaced concentration-effect curves elicited by noradrenaline and phenylephrine to the right and inhibited maximal responses elicited by both alpha-adrenoceptor agonists without significantly affecting prostaglandin F2 alpha-induced contractions. Higher concentrations of nicergoline (1 microM-50 microM) displaced to the right the concentration-effect curves elicited by calcium in a depolarizing medium. This calcium antagonist activity was not shared by either of the constituent parts. Nicergoline 100 microM abolished the 45Ca influx induced into rat aorta by 100 mM K+-containing physiological solution. The selectivity of nicergoline for alpha 1-adrenoceptors seen in binding experiments also depends on the presence of the bromonicotinic moiety of the molecule. It is concluded that nicergoline, but not its substituent parts, displays both alpha 1-adrenoceptor and calcium antagonism. The latter property may account for some of the observed effects of this compound.

  17. Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes.

    PubMed

    Rozier, Kelvin; Bondarenko, Vladimir E

    2018-03-01

    Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the differential effects of stimulation of β 2 -adrenoceptors in wild-type and transgenic mice overexpressing β 2 -adrenoceptors.

  18. Characterizations of the α1-adrenoceptor subtypes mediating contractions of the human internal anal sphincter.

    PubMed

    Owaki, Hiroyuki; Sadahiro, Sotaro; Takaki, Miyako

    2015-04-01

    Human internal anal sphincter (IAS) is contracted by α1-adrenoceptor stimulation and thus α1-adrenoceptor agonists may be useful in treating fecal incontinence. This study characterizes the contribution of α1-adrenoceptor subtypes in contraction of human IAS and to investigate the age-related risk of patients with fecal incontinence. IAS and inferior mesenteric artery (IMA), as a predictor of systemic arterial pressure, were obtained from 11 patients. Both muscle strips were assessed by isometric-contraction experiments using phenylephrine, further in IAS, in the presence of various subtype selective α1-adrenoceptor antagonists. Immunohistochemistry and gene expression studies were performed in the same samples. The mean pEC50 values with SEM of phenylephrine in IAS (6.30 ± 0.13) were higher than those of IMA (5.60 ± 0.10). Furthermore, the age-related pEC50 change of IAS was observed between age <70 and ≥70 (6.58 ± 0.13 and 6.07 ± 0.16, respectively (P < 0.05)). In IAS, rightward shift of the concentration-response curves of phenylephrine was observed with three α1-adrenoceptor antagonists. Each pKB value of silodosin, BMY-7378 and prazosin was 9.36 ± 0.53, 7.28 ± 0.20 and 8.89 ± 0.12, respectively. These pKB values and gene expression studies indicated that α1A-adrenoceptor subtypes predominantly contributed to human IAS contraction. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Portal hypertension and liver cirrhosis in rats: effect of the β3-adrenoceptor agonist SR58611A

    PubMed Central

    Vasina, Valentina; Giannone, Ferdinando; Domenicali, Marco; Latorre, Rocco; Berzigotti, Annalisa; Caraceni, Paolo; Zoli, Marco; De Ponti, Fabrizio; Bernardi, Mauro

    2012-01-01

    BACKGROUND AND PURPOSE β3-Adrenoceptors participate in the regulation of vascular tone in physiological and pathological conditions. We aimed to assess the effect of pharmacological modulation of β3-adrenoceptors on portal pressure (PP) and systemic haemodynamics and their expression in the liver and mesenteric vessels of cirrhotic rats. EXPERIMENTAL APPROACH PP, central venous pressure (CVP) and systemic haemodynamics were invasively assessed in control and CCl4-treated cirrhotic rats before and during infusion of the selective β3-adrenoceptor agonist, SR58611A. Tissue samples were also collected from liver, heart, portal vein and mesenteric artery for immunohistochemistry and molecular biology analysis. The effect of SR58611A on isolated portal vein was assessed. KEY RESULTS At baseline, cirrhotic rats showed portal hypertension, reduced CVP and hyperdynamic circulation. SR58611A induced a significant, dose-dependent decrease in PP in cirrhotic rats, but not in controls. Although both groups manifested a dose-dependent reduction in mean arterial pressure, this effect was associated with decreased cardiac index (CI) and unchanged indicized peripheral vascular resistance (PVRI) in cirrhotic rats and increased CI and decreased PVRI in control animals. Pretreatment with the selective β3-adrenoceptor antagonist SR59230 prevented all SR58611A-induced changes in cirrhotic rats. SR58611A concentration-dependently relaxed portal vein in cirrhotic rats to a significantly greater extent than in healthy rats; pretreatment with SR59230A completely prevented SR58611A-induced cirrhotic portal vein relaxation. Finally, β3-adrenoceptors were identified in the liver, heart and portal vein of cirrhotic and control animals; their expression was increased in cirrhotic rats. CONCLUSIONS AND IMPLICATIONS β3-Adrenoceptors are altered in portal hypertension of experimental cirrhosis and may represent a novel therapeutic target. PMID:22708587

  20. Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β2-Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase-Knockout Mice.

    PubMed

    Forkuo, Gloria S; Kim, Hosu; Thanawala, Vaidehi J; Al-Sawalha, Nour; Valdez, Daniel; Joshi, Radhika; Parra, Sergio; Pera, Tonio; Gonnella, Patricia A; Knoll, Brian J; Walker, Julia K L; Penn, Raymond B; Bond, Richard A

    2016-08-01

    Mice lacking the endogenous β2-adrenoceptor (β2AR) agonist epinephrine (phenylethanolamine N-methyltransferase [PNMT]-knockout mice) are resistant to developing an "asthma-like" phenotype in an ovalbumin sensitization and challenge (Ova S/C) model, and chronic administration of β2AR agonists to PNMT-KO mice restores the phenotype. Based on these and other studies showing differential effects of various β2AR ligands on the asthma phenotype, we have speculated that the permissive effect of endogenous epinephrine and exogenous β2AR agonists on allergic lung inflammation can be explained by qualitative β2AR signaling. The β2AR can signal through at least two pathways: the canonical Gαs-cAMP pathway and a β-arrestin-dependent pathway. Previous studies suggest that β-arrestin-2 is required for allergic lung inflammation. On the other hand, cell-based assays suggest antiinflammatory effects of Gαs-cAMP signaling. This study was designed to test whether the in vitro antiinflammatory effects of phosphodiesterase 4 inhibitors, known to increase intracellular cAMP in multiple airway cell types, attenuate the asthma-like phenotype produced by the β2AR agonists formoterol and salmeterol in vivo in PNMT-KO mice, based on the hypothesis that skewing β2AR signaling toward Gαs-cAMP pathway is beneficial. Airway inflammatory cells, epithelial mucus production, and airway hyperresponsiveness were quantified. In Ova S/C PNMT-KO mice, formoterol and salmeterol restored the asthma-like phenotype comparable to Ova S/C wild-type mice. However, coadministration of either roflumilast or rolipram attenuated this formoterol- or salmeterol-driven phenotype in Ova S/C PNMT-KO. These findings suggest that amplification of β2AR-mediated cAMP by phosphodiesterase 4 inhibitors attenuates the asthma-like phenotype promoted by β-agonists.

  1. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  2. Involvement of β3-adrenoceptors in the inhibitory control of cholinergic activity in human bladder: Direct evidence by [(3)H]-acetylcholine release experiments in the isolated detrusor.

    PubMed

    D' Agostino, Gianluigi; Maria Condino, Anna; Calvi, Paolo

    2015-07-05

    Bladder overactivity (OAB) is a multifactorial bladder disorder that requires therapeutics superior to the current pharmacological treatment with muscarinic antagonists. β3-adrenoceptor (β3-ADR) agonists represent a novel promising approach that differently addresses the parasympathetic pathway, but the clinical efficacy of these drugs has not been fully elucidated to date. Therefore, we aimed to study the pharmacological mechanisms activated by β3-ADR agonists at muscular and neural sites in the isolated human bladder. Detrusor smooth muscle strips obtained from male patients undergoing total cystectomy were labelled with tritiated choline and stimulated with electrical field stimulation (EFS). EFS produced smooth muscle contraction and simultaneous acetylcholine ([(3)H]-ACh) release, which mostly reflects the neural origin of acetylcholine. Isoprenaline (INA), BRL37344 and mirabegron inhibited the EFS-evoked contraction and [(3)H]-ACh release in a concentration-dependent manner, yielding concentration-response curves (CRCs) that were shifted to the right by the selective β3-ADR antagonists L-748,337 and SR59230A. Based on the agonist potency estimates (pEC50) and apparent affinities (pKb) of antagonists evaluated from the CRCs of agonists, our data confirm the occurrence of β3-ADRs at muscle sites. Moreover, our data are consistent with the presence of inhibitory β3-ADRs that are functionally expressed at the neural site. Taken together, these findings elucidate the mechanisms activated by β3-ADR agonists because neural β3-ADRs participate in the inhibition of detrusor motor drive by reducing the amount of acetylcholine involved in the cholinergic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Treatment options for the management of exercise-induced asthma and bronchoconstriction.

    PubMed

    Millward, David T; Tanner, Lindsay G; Brown, Mark A

    2010-12-01

    Treatment for exercise-induced bronchospasm and exercise-induced asthma includes both pharmacologic and nonpharmacologic options. Pharmacologic agents that have been proven to be effective for treating these conditions include short- and long-acting β2-adrenoceptor agonists, mast cell-stabilizing agents, anticholinergics, leukotriene receptor antagonists, and inhaled corticosteroids (ICS). When selecting the most appropriate medication, factors to consider include the effectiveness of each, the duration of action, frequency of administration, potential side effects, and tolerance level. Long-acting β2-adrenoceptor agonists should not be used without ICS. Nonpharmacologic treatments include physical conditioning, incorporating a warm-up before and a cool-down period after exercise, performing nasal breathing, avoiding cold weather or environmental allergens, using a face mask or other aid to warm and humidify inhaled air, and modifying dietary intake. The data to support nonpharmacologic treatments are limited; however, they are routinely recommended because of the low risk associated with their use. This article highlights the advantages and limitations of each treatment option.

  4. Molecular cloning and functional expression of the guinea pig alpha(1a)-adrenoceptor.

    PubMed

    González-Espinosa, C; Romero-Avila, M T; Mora-Rodríguez, D M; González-Espinosa, D; García-Sáinz, J A

    2001-08-31

    In the present paper, the cloning and expression of the guinea pig alpha(1A)-adrenoceptor is presented. The nucleotide sequence had an open reading frame of 1401 bp that encoded a 466 amino-acid protein with an estimated molecular mass of approximately 51.5 kDa. When the clone was expressed in Cos-1 cells, specific high-affinity binding of [(3)H]prazosin and [(3)H]tamsulosin was observed. Chloroethylclonidine treatment of membranes slightly decreased the total binding with both radioligands. Binding competition experiments using [(3)H]tamsulosin showed the following potency order: (a) for agonists: oxymetazoline >epinephrine>norepinephrine>methoxamine, and (b) for antagonists: prazosin> or 5-methyl-urapidil=benoxathian>phentolamine>BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione). Photoaffinity labeling using [(125)I-aryl]azido-prazosin revealed a major broad band with a molecular mass between 70 and 80 kDa. The receptor was functional, as evidenced by an epinephrine-increased production of [(3)H]inositol phosphates that was blocked by prazosin.

  5. Bronchoprotection in conscious guinea pigs by budesonide and the NO-donating analogue, TPI 1020, alone and combined with tiotropium or formoterol

    PubMed Central

    Turner, DL; Ferrari, N; Ford, WR; Kidd, EJ; Nevin, B; Paquet, L; Renzi, P; Broadley, KJ

    2012-01-01

    BACKGROUND AND PURPOSE Inhaled corticosteroids, anticholinergics and β2-adrenoceptor agonists are frequently combined for treating chronic respiratory diseases. We examine the corticosteroid, budesonide, and novel NO-donating derivative, TPI 1020, against histamine- and methacholine-induced bronchoconstriction and whether they enhance the β2-adrenoceptor agonist formoterol or muscarinic antagonist tiotropium in conscious guinea pigs. EXPERIMENTAL APPROACH Dunkin-Hartley guinea pigs received inhaled histamine (3 mM) or methacholine (1.5 mM) and specific airway conductance (sGaw) was measured before and 15 or 75 min after treatment with budesonide, TPI 1020, tiotropium or formoterol alone or in combinations. KEY RESULTS Formoterol (0.7–10 µM) and budesonide (0.11–0.7 mM) inhibited histamine-induced bronchoconstriction and tiotropium (2–20 µM) inhibited methacholine-induced bronchoconstriction by up to 70.8 ± 16.6%, 34.9 ± 4.4% and 85.1 ± 14.3%, respectively. Formoterol (2.5 µM) or tiotropium (2 µM) alone exerted small non-significant bronchoprotection. However, when co-administered with TPI 1020 0.11 mM, which alone had no significant effect, there was significant inhibition of the bronchoconstriction (45.7 ± 12.2% and 79.7 ± 21.4%, respectively). Co-administering budesonide (0.11 mM) with tiotropium (2 µM), which alone had no effect, also significantly inhibited the methacholine bronchoconstriction (36.5 ± 13.0%), but there was no potentiation of formoterol against histamine. The NO scavenger, CPTIO, prevented the bronchoprotection by SNAPand TPI 1020. CONCLUSIONS AND IMPLICATIONS TPI 1020 potentiated the bronchoprotection by formoterol and tiotropium. Budesonide also enhanced the effects of tiotropium but not formoterol. Combination of TPI 1020 with a long-acting β2-adrenoceptor agonist or muscarinic receptor antagonist may therefore be a more potent therapeutic approach for treatment of chronic respiratory diseases. PMID:22563753

  6. Naftopidil inhibits 5-hydroxytryptamine-induced bladder contraction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-01-30

    Naftopidil is an α(1D) and α(1A) subtype-selective α(1)-adrenoceptor antagonist that has been used to treat lower urinary tract symptoms of benign prostatic hyperplasia. In this study, we investigated the effects of naftopidil on 5-hydroxytryptamine (5-HT)-induced rat bladder contraction (10(-8)-10(-4) M). Naftopidil (0.3, 1, and 3 μM) inhibited 5-HT-induced bladder contraction in a concentration-dependent manner. On the other hand, other α(1)-adrenoceptor antagonists, tamsulosin, silodosin or prazosin, did not inhibit 5-HT-induced bladder contraction. The 5-HT-induced bladder contraction was inhibited by both ketanserin and 4-(4-fluoronaphthalen-1-yl)-6-propan-2-ylpyrimidin-2-amine (RS127445), serotonin 5-HT(2A) and 5-HT(2B) receptor antagonists, respectively. In addition, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and α-methyl-5-HT, 5-HT(2A) and 5-HT(2) receptor agonists, respectively, induced bladder contraction. The 5-HT-induced bladder contraction was not inhibited by N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-yl-cyclohexanecarboxamide (WAY-100635), [1-[2[(methylsulfonyl)amino]ethyl]-4-piperidinyl]methyl-1-methyl-1H-indole-3-carboxylate (GR113808) or (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulphonyl]phenol (SB269970), 5-HT(1A), 5-HT(4) and 5-HT(7) receptor antagonists, respectively. Naftopidil inhibited both the 5-HT(2A) and 5-HT(2) receptor agonists-induced bladder contractions. Naftopidil binds to the human 5-HT(2A) and 5-HT(2B) receptors with pKi values of 6.55 and 7.82, respectively. These results suggest that naftopidil inhibits 5-HT-induced bladder contraction via blockade of the 5-HT(2A) and 5-HT(2B) receptors in rats. Furthermore, 5-HT-induced bladder contraction was enhanced in bladder strips obtained from bladder outlet obstructed rats, with this contraction inhibited by naftopidil. The beneficial effects of naftopidil on storage symptoms such as urinary frequency and nocturia in patients with benign prostatic hyperplasia may be due, in part, to the blockade of the 5-HT(2A) and 5-HT(2B) receptors in the bladder. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Brain α2-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA

    PubMed Central

    Ribas, Catalina; Miralles, Antonio; Busquets, Xavier; García-Sevilla, Jesús A

    2001-01-01

    This study was designed to assess the molecular and cellular events involved in the up-regulation (and receptor supersensitivity) of brain α2-adrenoceptors as a result of chronic depletion of noradrenaline (and other monoamines) by reserpine. Chronic reserpine (0.25 mg kg−1 s.c., every 48 h for 6 – 14 days) increased significantly the density (Bmax values) of cortical α2-adrenoceptor agonist sites (34 – 48% for [3H]-UK14304, 22 – 32% for [3H]-clonidine) but not that of antagonist sites (11 – 18% for [3H]-RX821002). Competition of [3H]-RX821002 binding by (−)-adrenaline further indicated that chronic reserpine was associated with up-regulation of the high-affinity state of α2-adrenoceptors. In cortical membranes of reserpine-treated rats (0.25 mg kg−1 s.c., every 48 h for 20 days), the immunoreactivities of various G proteins (Gαi1/2, Gαi3, Gαo and Gαs) were increased (25 – 34%). Because the high-affinity conformation of the α2-adrenoceptor is most probably related to the complex with Gαi2 proteins, these results suggested an increase in signal transduction through α2-adrenoceptors (and other monoamine receptors) induced by chronic reserpine. After α2-adrenoceptor alkylation, the analysis of receptor recovery (Bmax for [3H]-UK14304) indicated that the increased density of cortical α2-adrenoceptors in reserpine-treated rats was probably due to a higher appearance rate constant of the receptor (Δr=57%) and not to a decreased disappearance rate constant (Δk=7%). Northern- and dot-blot analyses of RNA extracted from the cerebral cortex of saline- and reserpine-treated rats (0.25 mg kg−1, s.c., every 48 h for 20 days) revealed that reserpine markedly increased the expression of α2a-adrenoceptor mRNA in the brain (125%). This transcriptional activation of the receptor gene expression appears to be the cellular mechanism by which reserpine induces up-regulation in the density of brain α2-adrenoceptors. PMID:11264240

  8. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice

    PubMed Central

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.

    2015-01-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  9. The involvement of peripheral alpha 2-adrenoceptors in the antihyperalgesic effect of oxcarbazepine in a rat model of inflammatory pain.

    PubMed

    Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Ugresić, Nenad D; Paranos, Sonja Lj; Prostran, Milica S; Bosković, Bogdan

    2007-11-01

    We studied whether peripheral alpha2-adrenergic receptors are involved in the antihyperalgesic effects of oxcarbazepine by examining the effects of yohimbine (selective alpha2-adrenoceptor antagonist), BRL 44408 (selective alpha(2A)-adrenoceptor antagonist), MK-912 (selective alpha2C-adrenoceptor antagonist), and clonidine (alpha2-adrenoceptor agonist) on the antihyperalgesic effect of oxcarbazepine in the rat model of inflammatory pain. Rats were intraplantarly (i.pl.) injected with the proinflammatory compound concanavalin A (Con A). A paw-pressure test was used to determine: 1) the development of hyperalgesia induced by Con A; 2) the effects of oxcarbazepine (i.pl.) on Con A-induced hyperalgesia; and 3) the effects of i.pl. yohimbine, BRL 44408, MK-912 and clonidine on the oxcarbazepine antihyperalgesia. Both oxcarbazepine (1000-3000 nmol/paw; i.pl.) and clonidine (1.9-7.5 nmol/paw; i.pl.) produced a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by Con A. Yohimbine (260 and 520 nmol/paw; i.pl.), BRL 44408 (100 and 200 nmol/paw; i.pl.) and MK-912 (10 and 20 nmol/paw; i.pl.) significantly depressed the antihyperalgesic effects of oxcarbazepine (2000 nmol/paw; i.pl.) in a dose-dependent manner. The effects of antagonists were due to local effects since they were not observed after administration into the contralateral hindpaw. Oxcarbazepine and clonidine administered jointly in fixed-dose fractions of the ED(50) (1/4, 1/2, and 3/4) caused significant and dose-dependent reduction of hyperalgesia induced by Con A. Isobolographic analysis revealed an additive antihyperalgesic effect. Our results indicate that the peripheral alpha2A and alpha2C adrenoceptors could be involved in the antihyperalgesic effects of oxcarbazepine in a rat model of inflammatory hyperalgesia.

  10. Inhibition of prostatic smooth muscle contraction by the inhibitor of G protein-coupled receptor kinase 2/3, CMPD101.

    PubMed

    Yu, Qingfeng; Gratzke, Christian; Wang, Yiming; Herlemann, Annika; Strittmatter, Frank; Rutz, Beata; Stief, Christian G; Hennenberg, Martin

    2018-07-15

    Alpha1-adrenoceptors induce prostate smooth muscle contraction, and hold a prominent role for pathophysiology and therapy of lower urinary tract symptoms in benign prostatic hyperplasia. G protein-coupled receptors are regulated by posttranslational regulation, including phosphorylation by G protein-coupled receptor kinases 2 and 3 (GRK2/3). Although posttranslational adrenoceptor regulation has been recently suggested to occur in the prostate, this is still marginally understood. With the newly developed CMPD101, a small molecule inhibitor with assumed specificity for GRK2/3 is now available. Here, we studied effects of CMPD101 on smooth muscle contraction of human prostate tissue. Electric field stimulation caused frequency-dependent contractions, which were inhibited concentration-dependently by CMPD101 (5 µM, 50 µM). 50 µM of CMPD101 did not affect myosin light chain (MCL) phosphorylation or Rho kinase activity, and did not alter contractions induced by highmolar KCl. Noradrenaline, the α 1 -adrenoceptor agonist phenylephrine, endothelin-1, and the thromboxane A 2 analogue U46619 induced concentration-dependent contractions, which were inhibited by CMPD101 (50 µM). CMPD101 (50 µM) did not change phosphorylation of β 2 -adrenoceptors or β 2 -adrenergic relaxation of prostate strips. Molecular detection by Western blot and peroxidase staining suggested expression of GRK2 and GRK3 in human prostates. Double labeling in fluorescence staining confirmed that immunoreactivity for GRK2 and GRK3 was located to smooth muscle cells in the prostate stroma. In conclusion, CMPD101 inhibits adrenergic, neurogenic, and non-adrenergic smooth muscle contractions in the human prostate. Underlying mechanisms may be independent from GRK inhibition, and from inhibition of MLC kinase and Rho kinase. This may point to unknown properties of CMPD101. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation.

    PubMed

    Jocken, J W E; Blaak, E E; Schiffelers, S; Arner, P; van Baak, M A; Saris, W H M

    2007-05-01

    Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation. Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO). In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation. These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.

  12. The influence of hormonal and neuronal factors on rat heart adrenoceptors

    PubMed Central

    Kunos, George; Mucci, Lucia; O'Regan, Seana

    1980-01-01

    1 The influence of hormonal and neuronal factors on adrenoceptors mediating increased cardiac force and rate of contraction were studied in rat isolated atria. The pharmacological properties of these receptors were deduced from the relative potencies of agonists and from the effects of selective α- and β-adrenoceptor antagonists. The numbers and affinities of α- and β-adrenoceptors were also determined by radioligand binding to ventricular membrane fragments. 2 Hypophysectomy reduced the inotropic potency of isoprenaline and increased the potency of phenylephrine and methoxamine in left atria. The effect of phenylephrine was inhibited by propranolol less effectively and by phentolamine or phenoxybenzamine more effectively in hypophysectomized than in control rats. The difference in block was smaller at low than at high antagonist concentrations. Similar but smaller changes were observed for chronotropic responses of right atria. 3 The decreased β- and increased α-receptor response after hypophysectomy was similar to that observed earlier in thyroidectomized rats (Kunos, 1977). These changes developed slowly after hypophysectomy (>2 weeks), they were both reversed within 2 days of thyroxine treatment (0.2 mg/kg daily), but were not affected by cortisone treatment (50 mg/kg every 12 h for 4 days). 4 Treatment of hypophysectomized rats for 2 days with thyroxine increased the density of [3H]-dihydroalprenolol ([3H]-DHA) binding sites from 27.5 ± 2.7 to 45.5 ± 5.7 fmol/mg protein and decreased the density of [3H]-WB-4101 binding sites from 38.7 ± 3.1 to 18.7 ± 2.5 fmol/mg protein. The affinity of either type of binding site for agonists or antagonist was not significantly altered by thyroxine treatment and the sum total of α1- and β-receptors remained the same. 5 Sympathetic denervation of thyroidectomized rats by 6-hydroxydopamine increased the inotropic potency of isoprenaline and noradrenaline and the blocking effect of propranolol, and decreased the potency of phenylephrine and the blocking effect of phenoxybenzamine to or beyond values observed in euthyroid controls. The density of [3H]-DHA binding sites was higher and that of [3H]-WB-4101 binding sites was lower in the denervated than in the innervated hypothyroid myocardium. Depletion of endogenous noradrenaline stores by reserpine did not significantly alter the adrenoceptor response pattern of the hypothyroid preparations and did not influence the density or affinity of [3H]-DHA and [3H]-WB-4101 binding sites. 6 These results indicate that thyrotropin or steroids do not contribute to the reciprocal changes in the sensitivity of cardiac α1- and β-adrenoceptors in altered thyroid states. These thyroid hormone-dependent changes are probably due to a parallel, reciprocal change in the numbers but not the affinities of α1- and β-adrenoceptors. Reciprocal regulation of cardiac α1- and β-adrenoceptors by thyroid hormones requires intact sympathetic innervation but not the presence of normal stores of the neurotransmitter. PMID:7470752

  13. Discovery of olodaterol, a novel inhaled beta2-adrenoceptor agonist with a 24 h bronchodilatory efficacy.

    PubMed

    Bouyssou, Thierry; Hoenke, Christoph; Rudolf, Klaus; Lustenberger, Philipp; Pestel, Sabine; Sieger, Peter; Lotz, Ralf; Heine, Claudia; Büttner, Frank H; Schnapp, Andreas; Konetzki, Ingo

    2010-02-15

    Compound 4p was identified from a series of 6-hydroxy-4H-benzo[1,4]oxazin-3-ones as potent agonist of the human beta2-adrenoceptor with a high beta1/beta2-selectivity. A complete reversal of acetylcholine-induced bronchoconstriction which lasted over the whole study period of 5h was demonstrated for 4p in a guinea pig in vivo model without any signs of cardiovascular effects up to 10-fold above the first dose reaching 100% bronchoprotection. The enantiomerically pure (R)-form of 4p exerted a bronchodilatory efficacy over 24 h in dogs and guinea pigs in the absence of systemic pharmacodynamic effects. Formoterol which was tested as comparator in the same in vivo models of acetylcholine-induced bronchoconstriction did not retain efficacy after 24 h. In summary, the preclinical profile of compound (R)-4p (olodaterol, also known as BI 1744 CL) suggests a potential for once-daily dosing in man accompanied with an improved safety profile. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Adrenergic factors regulating cell division in the colonic crypt epithelium during carcinogenesis and in colonic adenoma and adenocarcinoma.

    PubMed Central

    Kennedy, M. F.; Tutton, P. J.; Barkla, D. H.

    1985-01-01

    Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour. PMID:4041364

  15. Adrenergic factors regulating cell division in the colonic crypt epithelium during carcinogenesis and in colonic adenoma and adenocarcinoma.

    PubMed

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-01

    Evidence exists implicating adrenergic factors in the control of intestinal epithelial cell proliferation in both normal and diseased states. In this report, attention is focussed on changes in the amine requirements of proliferating cells during the chemical induction of tumours in the colon of mouse. Cell proliferation rates were measured stathmokinetically. Tumours were induced by s.c. injection of dimethylhydrazine (DMH). Results with a series of adrenoceptor agonists and antagonists suggest that there is an alpha 2-adrenoceptor mediated excitatory effect in normal colon but an alpha 2 adrenoceptor mediated inhibitory effect in adenoma and carcinoma. Alpha 1 adrenoceptors, on the other hand, have an inhibitory effect in normal crypts and in adenomas, and an excitatory effect in carcinomas. Beta adrenoceptors have an inhibitory effect in the normal and DMH-treated crypt, and in adenomas, but not in carcinomas. In the crypt epithelium of DMH-treated mice, two regions on cell proliferation, with differing regulatory factors, could be identified. In the upper region of the carcinogen-exposed crypt is a zone where cell proliferation is stimulated by an alpha 2 adrenergic mechanism, thus resembling the basal region of the normal crypt. By contrast, in the basal region of these crypts, cell proliferation is stimulated by an alpha 1 mechanism, thus resembling a malignant tumour.

  16. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation

    PubMed Central

    Molderings, G J; Menzel, S; Kathmann, M; Schlicker, E; Göthert, M

    2000-01-01

    In segments of rat vena cava preincubated with [3H]-noradrenaline and superfused with physiological salt solution, the influence of agmatine on the electrically evoked [3H]-noradrenaline release, the EP3 prostaglandin receptor-mediated and the α2D-adrenoceptor-mediated inhibition of evoked [3H]-noradrenaline release was investigated. Agmatine (0.1–10 μM) by itself was without effect on evoked [3H]-noradrenaline release. In the presence of 10 μM agmatine, the prostaglandin E2(PGE2)-induced EP3-receptor-mediated inhibition of [3H]-noradrenaline release was not modified, whereas the α2D-adrenoceptor-mediated inhibition of [3H]-noradrenaline release induced by noradrenaline, moxonidine or clonidine was more pronounced than in the absence of agmatine. However, 1 mM agmatine antagonized the moxonidine-induced inhibition of [3H]-noradrenaline release. Agmatine concentration-dependently inhibited the binding of [3H]-clonidine and [3H]-rauwolscine to rat brain cortex membranes (Ki values 6 μM and 12 μM, respectively). In addition, 30 and 100 μM agmatine increased the rate of association and decreased the rate of dissociation of [3H]-clonidine resulting in an increased affinity of the radioligand for the α2D-adrenoceptors. [14C]-agmatine labelled specific binding sites on rat brain cortex membranes. In competition experiments. [14C]-agmatine was inhibited from binding to its specific recognition sites by unlabelled agmatine, but not by rauwolscine and moxonidine. In conclusion, the present data indicate that agmatine both acts as an antagonist at the ligand recognition site of the α2D-adrenoceptor and enhances the effects of α2-adrenoceptor agonists probably by binding to an allosteric binding site of the α2D-adrenoceptor which seems to be labelled by [14C]-agmatine. PMID:10928978

  17. Activation of β-adrenoceptors in the bed nucleus of the stria terminalis induces food intake reduction and anxiety-like behaviors.

    PubMed

    Naka, Tomonori; Ide, Soichiro; Nakako, Tomokazu; Hirata, Mikie; Majima, Yuki; Deyama, Satoshi; Takeda, Hiroshi; Yoshioka, Mitsuhiro; Minami, Masabumi

    2013-04-01

    We previously demonstrated the critical role of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis (vBNST) in pain-induced aversion. We showed that activation of β-adrenoceptors in this brain region by intra-vBNST injection of isoproterenol, a β-adrenoceptor agonist, produced aversive responses. In the present study, we examined the effects of a β-adrenoceptor agonist injected into the vBNST on food intake and anxiety-like behaviors in male Sprague-Dawley rats. Bilateral intra-vBNST injection of isoproterenol (3 and 10 nmol/side) caused a dose-dependent decrease in food intake; this suppressive effect was reversed by co-administration of timolol, a β-adrenoceptor antagonist. Dose-dependent (10 and 30 nmol/side) induction of anxiety-like behaviors by isoproterenol was observed in the elevated plus maze (EPM) test, which was also reversed by co-administration of timolol. Off-site control injections of isoproterenol into the lateral ventricle did not show any significant effect in the food consumption and EPM tests. These results suggest that the vBNST is one of the neuroanatomical substrates which may be involved in the close relationship between negative affective states and reduction of food intake, and that noradrenergic transmission within this brain region plays a critical role in inducing anxiety-like behaviors and reduced food intake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy.

    PubMed

    Brand, T; Sharma, H S; Schaper, W

    1993-11-01

    Rat hearts infused with the beta-adrenergic agonist isoproterenol were examined for the expression of several nuclear proto-oncogenes (c-fos, fosB, c-jun, junB, and junD) and the immediate early gene Egr-1. During the first 24 h after the start of infusion, a strong but transient expression of c-fos was observed. Expression of c-jun and junD were not elevated whereas junB was. By using specific antagonists to the alpha- (prazosin) and beta-adrenergic receptor (propranolol), a beta-adrenoceptor-specific blockade of the isoproterenol-mediated nuclear response was demonstrated. In situ hybridization localized c-fos expression to cardiac myocytes. Labelling was distributed focally in the left and right ventricles, and was strong and homogeneous in the atria. In contrast to beta-adrenergic stimulation, alpha-adrenoceptor stimulation with phenylephrine and norepinephrine caused the induction of c-jun and Egr-1 in addition to the proto-oncogenes induced by isoproterenol. Thus distinct programs of early response gene expression were expressed in response to alpha- versus beta-adrenergic stimulation.

  19. Serelaxin Elicits Bronchodilation and Enhances β-Adrenoceptor-Mediated Airway Relaxation

    PubMed Central

    Lam, Maggie; Royce, Simon G.; Donovan, Chantal; Jelinic, Maria; Parry, Laura J.; Samuel, Chrishan S.; Bourke, Jane E.

    2016-01-01

    Treatment with β-adrenoceptor agonists does not fully overcome the symptoms associated with severe asthma. Serelaxin elicits potent uterine and vascular relaxation via its cognate receptor, RXFP1, and nitric oxide (NO) signaling, and is being clinically evaluated for the treatment of acute heart failure. However, its direct bronchodilator efficacy has yet to be explored. Tracheal rings were prepared from male Sprague-Dawley rats (250–350 g) and tricolor guinea pigs, and precision cut lung slices (PCLSs) containing intrapulmonary airways were prepared from rats only. Recombinant human serelaxin (rhRLX) alone and in combination with rosiglitazone (PPARγ agonist; recently described as a novel dilator) or β-adrenoceptor agonists (isoprenaline, salbutamol) were added either to pre-contracted airways, or before contraction with methacholine or endothelin-1. Regulation of rhRLX responses by epithelial removal, indomethacin (cyclooxygenase inhibitor), L-NAME (nitric oxide synthase inhibitor), SQ22536 (adenylate cyclase inhibitor) and ODQ (guanylate cyclase inhibitor) were also evaluated. Immunohistochemistry was used to localize RXFP1 to airway epithelium and smooth muscle. rhRLX elicited relaxation in rat trachea and PCLS, more slowly than rosiglitazone or isoprenaline, but potentiated relaxation to both these dilators. It markedly increased β-adrenoceptor agonist potency in guinea pig trachea. rhRLX, rosiglitazone, and isoprenaline pretreatment also inhibited the development of rat tracheal contraction. Bronchoprotection by rhRLX increased with longer pre-incubation time, and was partially reduced by epithelial removal, indomethacin and/or L-NAME. SQ22536 and ODQ also partially inhibited rhRLX-mediated relaxation in both intact and epithelial-denuded trachea. RXFP1 expression in the airways was at higher levels in epithelium than smooth muscle. In summary, rhRLX elicits large and small airway relaxation via epithelial-dependent and -independent mechanisms, likely via RXFP1 activation and generation of NO, prostaglandins and cAMP/cGMP. rhRLX also enhanced responsiveness to other dilators, suggesting its potential as an alternative or add-on therapy for severe asthma. PMID:27833558

  20. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  1. Potentiation of carbachol-induced detrusor smooth muscle contractions by beta-adrenoceptor activation.

    PubMed

    Klausner, Adam P; Rourke, Keith F; Miner, Amy S; Ratz, Paul H

    2009-03-15

    In strips of rabbit bladder free of urothelium, the beta-adrenoceptor agonist, isoproterenol, significantly reduced basal detrusor smooth muscle tone and inhibited contractions produced by low concentrations of the muscarinic receptor agonist, carbachol. During a carbachol concentration-response curve, instead of inhibiting, isoproterenol strengthened contractions produced by high carbachol concentrations. Thus, the carbachol concentration-response curve was shifted by isoproterenol from a shallow, graded relationship, to a steep, switch-like relationship. The tyrosine kinase inhibitor, genistein, inhibited carbachol-induced contractions only in the presence of isoproterenol. Contraction produced by a single high carbachol concentration (1 microM) displayed 1 fast and 1 slow peak. In the presence of isoproterenol, the slow peak was not strengthened, but was delayed, and U-0126 (mitogen-activated protein kinase kinase inhibitor) selectively inhibited this delay concomitantly with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation. Isoproterenol reduced ERK phosphorylation only in the absence of carbachol. These data support the concept that, by inhibiting weak contractions, potentiating strong contractions, and producing a more switch-like concentration-response curve, beta-adrenoceptor stimulation enhanced the effectiveness of muscarinic receptor-induced detrusor smooth muscle contraction. Moreover, beta-adrenoceptor stimulation changed the cellular mechanism by which carbachol produced contraction. The potential significance of multi-receptor and multi-cell crosstalk is discussed.

  2. Membrane Potential Controls the Efficacy of Catecholamine-induced β1-Adrenoceptor Activity*

    PubMed Central

    Birk, Alexandra; Rinne, Andreas; Bünemann, Moritz

    2015-01-01

    G protein-coupled receptors (GPCRs) are membrane-located proteins and, therefore, are exposed to changes in membrane potential (VM) in excitable tissues. These changes have been shown to alter receptor activation of certain Gi-and Gq-coupled GPCRs. By means of a combination of whole-cell patch-clamp and Förster resonance energy transfer (FRET) in single cells, we demonstrate that the activation of the Gs-coupled β1-adrenoreceptor (β1-AR) by the catecholamines isoprenaline (Iso) and adrenaline (Adr) is regulated by VM. This voltage-dependence is also transmitted to G protein and arrestin 3 signaling. Voltage-dependence of β2-AR activation, however, was weak compared with β1-AR voltage-dependence. Drug efficacy is a major target of β1-AR voltage-dependence as depolarization attenuated receptor activation, even under saturating concentrations of agonists, with significantly faster kinetics than the deactivation upon agonist withdrawal. Also the efficacy of the endogenous full agonist adrenaline was reduced by depolarization. This is a unique finding since reports of natural full agonists at other voltage-dependent GPCRs only show alterations in affinity during depolarization. Based on a Boltzmann function fit to the relationship of VM and receptor-arrestin 3 interaction we determined the voltage-dependence with highest sensitivity in the physiological range of membrane potential. Our data suggest that under physiological conditions voltage regulates the activity of agonist-occupied β1-adrenoceptors on a very fast time scale. PMID:26408198

  3. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    PubMed

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-05-23

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  4. Interactions of xylazine and detomidine with alpha2-adrenoceptors in brain tissue from cattle, swine and rats.

    PubMed

    Törneke, K; Bergström, U; Neil, A

    2003-06-01

    Xylazine is an alpha2-adrenoceptor agonist sedative with a much higher interspecies variability in effect than detomidine, another alpha2-agonist used in veterinary practice. In the present study, we have used radioligand binding in brain tissue to investigate if the high species variation in sensitivity to xylazine could be explained in terms of receptor interactions. Species known to be more (cattle) or less (swine and rats) sensitive to xylazine were used. There was no variation in the density or the subtype pattern of the alpha2-adrenoceptors that could explain the species variation recorded in vivo, as a homogenous population of the alpha2A/D-subtype (200-300 fmol/mg protein) was found in all species. The species differences in the affinities of xylazine and detomidine were minor and similar for the two drugs. The only parameter investigated where a significant species difference was found for xylazine but not for detomidine was the slope of the inhibition binding curve when the G-protein coupling was diminished. For xylazine this slope was considerably lower than unity (i.e. 0.77 +/- 0.075) using cattle preparations compared with 0.92 +/- 0.037 (mean +/- SE) and 0.90 +/- 0.028, respectively for swine and rats, while for detomidine this parameter was close to unity in all species (cattle, swine, rat). This finding indicates that the species variation in effect for xylazine could be due to differences at the G-protein level or further down-stream in the effect cascade.

  5. Pharmacokinetics of Mirabegron, a β3-Adrenoceptor Agonist for Treatment of Overactive Bladder, in Healthy East Asian Subjects.

    PubMed

    Iitsuka, Hiromi; van Gelderen, Marcel; Katashima, Masataka; Takusagawa, Shin; Sawamoto, Taiji

    2015-05-01

    The objective of these studies was to evaluate the pharmacokinetic profile, safety, and tolerability of mirabegron, a β3-adrenoceptor agonist for the treatment of overactive bladder, including food effects (low- or high-fat meals) and sex, in healthy East Asian subjects. In total, 5 pharmacokinetic studies of mirabegron were conducted in healthy East Asian subjects. Food effects were assessed in 3 randomized, single-dose studies in young Japanese male subjects (study 1), male and female subjects (study 2), and young Taiwanese male and female subjects (study 3). In the other 2 single- and multiple-dose studies in young Chinese male and female subjects (study 4 and study 5), mirabegron was administered as a single dose under fasted conditions. After the washout period, mirabegron was administered once daily under fed conditions for 8 days. Pharmacokinetic parameters were determined using noncompartmental methods. Safety and tolerability assessments included physical examinations, vital signs, 12-lead ECG, clinical laboratory tests (biochemistry, hematology, and urinalysis), and adverse event monitoring. After administration of single oral doses of mirabegron, exposure under fed conditions was lower than under fasted conditions in Japanese and Taiwanese subjects. In Japanese subjects, a greater reduction in mirabegron Cmax and AUC0-∞ was observed after a low-fat meal compared with a high-fat meal. In Chinese subjects, Cmax was reached at approximately 4.0 hours after single oral doses. Mirabegron accumulated 2- to 3-fold on once-daily dosing of multiple-dose relative to single-dose data. Steady state was reached within 7 days. After administration of mirabegron, mean values for Cmax and AUC in female subjects were higher than those in male subjects. Mirabegron was well tolerated in Japanese, Taiwanese, and Chinese subjects. Our studies confirm the higher exposure levels of mirabegron in female compared with male East Asian subjects as found earlier in Western subjects. Furthermore, the effects of food on the pharmacokinetic profiles appeared to be similar among the 3 populations tested in our studies. The findings suggest that there are no significant pharmacokinetic differences among the Japanese, Taiwanese, and Chinese populations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats.

    PubMed

    Alsufyani, Hadeel A; Docherty, James R

    2018-04-15

    We have investigated the cardiac and pressor responses to (±)-ephedrine and (-)-ephedrine in pentobarbitone anaesthetized male wistar rats. The tachycardiac responses to (±)- and (-)-ephedrine were similar, but pressor responses to (-)-ephedrine (10 mg/kg) were significantly greater than those to (±)-ephedrine, and for both, the pressor response was followed by a small depressor response. Sympathectomy did not affect pressor responses, but significantly increased the later depressor response to both compounds. Sympathectomy did not affect tachycardiac or depressor responses to the β-adrenoceptor agonist isoprenaline, but significantly reduced the tachycardia to (±)-ephedrine. (±)-Ephedrine contracted vas deferens from vehicle treatment animals, but in vas deferens from sympathectomised rats, (±)-ephedrine produced almost no tonic contraction (α 1A -adrenoceptor mediated), but the phasic contraction was unaffected (α 1D -adrenoceptor mediated). It is concluded, firstly, that (-)-ephedrine is more potent than the racemate mixture at producing pressor responses. Secondly, since the depressor response to isoprenaline was unaffected, sympathectomy presumably reduced a pressor component to the response to (±)- and (-)-ephedrine. Hence, a component of the pressor response to both (±)- and (-)-ephedrine is indirect and may involve actions at α 1A -adrenoceptors, at which ephedrine does not have marked direct actions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The effect of metoprolol and practolol on lung function and blood pressure in hypertensive asthmatics

    PubMed Central

    Formgren, H.

    1976-01-01

    1 The effect of metoprolol, a new β1-adrenoceptor blocking agent, was compared to practolol in the treatment of hypertension in seventeen asthmatics during concurrent optimum bronchodilator therapy with a selective β2-adrenoceptor-stimulant. 2 The two β-adrenoceptor antagonists were given at two dose levels, practolol (200 mg and 400 mg) daily, and metoprolol (100 mg and 200 mg) daily, in a twice-daily dosage schedule, at 12 h intervals, for 17 days. The comparison was made double-blind and a crossover design was used. The drugs were given in randomized order. The study started with a run-in placebo period and there was a washout period on placebo between the treatment periods. Spirometry, blood pressures and heart rates were recorded in a standardized manner. 3 At the lower dose levels no influence on FEV1 was noted, and no difference was found between the two active drugs. At the higher dose level FEV1 was reduced by both β-adrenoceptor-blocking drugs. Four out of twelve patients given the higher dose experienced exacerbation of their asthma. The heart rate fell with both drugs and at both dose levels. During the placebo period a marked increase of heart rate was noted. The blood pressure fell at both dose levels compared to placebo, no difference being recorded between the two drugs. 4 Metoprolol and practolol are equally effective β1-adrenoceptor blocking drugs. In this study it was found that metoprolol could be used in asthmatics who had indications for β-adrenoceptor blockade, provided that the total daily dose did not exceed 100 mg. Optimal bronchodilator treatment with a bronchoselective β-adrenoceptor agonist is an absolute prerequisite in order to avoid the risk of aggravation of asthma. PMID:22216522

  8. Translational science approach for assessment of cardiovascular effects and proarrhythmogenic potential of the beta-3 adrenergic agonist mirabegron.

    PubMed

    Korstanje, Cees; Suzuki, Masanori; Yuno, Koichiro; Sato, Shuichi; Ukai, Masashi; Schneidkraut, Marlowe J; Yan, Gan X

    2017-09-01

    Translational assessment of cardiac safety parameters is a challenge in clinical development of beta-3 adrenoceptor agonists. The preclinical tools are presented that were used for assessing human safety for mirabegron. Studies were performed on electrical conductance at ion channels responsible for cardiac repolarization (I Kr , I Ks , I to , I Na , and I Ca,L ), on QT-interval, subendocardial APD 90 , T peak-end interval, and arrhythmia's in ventricular dog wedge tissue in vitro and on cardiovascular function (BP, HR, and QT c ) in conscious dogs. In conscious dogs, mirabegron (0.01-10mg/kg, p.o.) dose-dependently increased HR, reduced SBP but DBP was unchanged. Propranolol blocked the decrease in SBP and attenuated HR increase at 100mg/kg mirabegron. Mirabegron, at 30, 60, or 100mg/kg, p.o., had no significant effect on the QT c interval. In paced dog ventricular wedge, neither mirabegron nor metabolites M5, M11, M12, M14, and M16 prolonged QT, altered transmural dispersion of repolarization, induced premature ventricular contractions, or induced ventricular tachycardia. Mirabegron nor its metabolites inhibited I Kr , I Ks , I to I Na , or I Ca,L at clinically relevant concentrations. Up to exposure levels well exceeding human clinical exposure no discernible effects on ion channel conductance or on arrhythmogenic parameters in ventricular wedge resulted for mirabegron, or its main metabolites, confirming human cardiac safety findings. In vivo, dose-related increases in HR with effects markedly higher than seen clinically, was mediated in part by cross-activation of beta-1 adrenoceptors. This non-clinical cardiac safety test program therefore proved predictive for human cardiac safety for mirabegron. Copyright © 2017. Published by Elsevier Inc.

  9. Effect of adrenaline and alpha-agonists on net rate of liquid absorption from the pleural space of rabbits.

    PubMed

    Zocchi, L; Raffaini, A; Agostoni, E

    1997-05-01

    Indirect evidence supporting a solute-coupled liquid absorption from the pleural space of rabbits has recently been provided; moreover, the beta 2-adrenoceptor agonist terbutaline has been found to increase this absorption. In this study the effect of adrenaline and alpha-adrenoceptor agonists on net rate of liquid absorption (Jnet) from albumin Ringer hydrothoraces of various sizes has been determined in anaesthetized rabbits. In hydrothoraces with adrenaline (5 x 10(-6) M) the relationship between Jnet and volume of liquid injected was displaced upwards by 0.09 ml h-1 relative to that in control hydrothoraces (P < 0.01). This displacement did not occur with lower adrenaline concentrations or after pretreatment with the beta-blocker propranolol. Hence, this increase in Jnet is mediated by stimulation of beta-receptors. It seems to be caused by an increase in solute-coupled liquid absorption, since beta-agonists inhibit lymphatic activity while, at relatively high concentrations, they may increase active transport. Conversely, the strong stimulation of lymphatic alpha-receptors that should occur with adrenaline after beta-blockade may fail to increase lymphatic drainage, because it has been shown that the increase in contraction frequency of lymphatics may be balanced by the decrease in their stroke volume. Arterial blood pressure during the hydrothoraces with adrenaline was unchanged. In hydrothoraces with the alpha 2-agonist clonidine (5 x 10(-6) M; a less potent agent than adrenaline) the slope of the relationship between Jnet and volume injected increased by 26% (P < 0.01), while its origin did not change. This increase in slope did not occur with a lower clonidine concentration or after pretreatment with the alpha-blocker phentolamine. Hence, it is caused by stimulation of alpha 2-receptors, which probably lead to an increase in lymphatic drainage related to liquid load. In hydrothoraces with the alpha 1-agonist phenylephrine (5 x 10(-6) or 10(-7) M) Jnet was simlar to control values.

  10. Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Parola, Maurizio

    2016-01-01

    Background In human cirrhosis, adrenergic hyperfunction causes proximal tubular fluid retention and contributes to diuretic-resistant ascites, and clonidine, a sympatholytic drug, improves natriuresis in difficult-to-treat ascites. Aim To compare clonidine (aspecific α2-adrenoceptor agonist) to SSP-002021R (prodrug of guanfacine, specific α2A-receptor agonist), both associated with diuretics, in experimental cirrhotic ascites. Methods and Results Six groups of 12 rats were studied: controls (G1); controls receiving furosemide and potassium canrenoate (G2); rats with ascitic cirrhosis due to 14-week CCl4 treatment (G3); cirrhotic rats treated (over the 11th-14th CCl4 weeks) with furosemide and canrenoate (G4), furosemide, canrenoate and clonidine (G5), or diuretics and SSP002021R (G6). Three rats of each group had their hormonal status and renal function assessed at the end of 11th, 12th, 13th, and 14th weeks of respective treatments.Cirrhotic rats in G3 and G4 gained weight over the 12th-14th CCl4 weeks. In G4, brief increase in sodium excretion over the 11th-12th weeks preceded worsening of inulin clearance and natriuresis (diuretic resistance). In comparison with G4, the addition of clonidine (G5) or guanfacine (G6) to diuretics improved, respectively, sodium excretion over the 11th-12th CCl4 weeks, or GFR and electrolytes excretion over the 13th-14th CCl4 weeks. Natriuretic responses in G5 and G6 were accompanied by reduced catecholamine serum levels. Conclusions α2A-receptor agonists restore glomerular filtration rate and natriuresis, and delay diuretic-resistant ascites in experimental advanced cirrhosis. Clonidine ameliorates diuretic-dependent natriuresis just for a short time. PMID:27384184

  11. Effect of Selective Prostaglandin E2 EP2 Receptor Agonist CP-533,536 on Voiding Efficiency in Rats with Midodrine-Induced Functional Urethral Obstruction.

    PubMed

    Kurihara, Ryoko; Imazumi, Katsunori; Takamatsu, Hajime; Ishizu, Kenichiro; Yoshino, Taiji; Masuda, Noriyuki

    2016-05-01

    We investigated the effect of the selective prostaglandin E2 EP2 receptor agonist CP-533,536 on voiding efficiency in rats with midodrine-induced functional urethral obstruction. The effect of CP-533,536 (0.03-0.3 mg/kg, intravenous [i.v.]) on urethral perfusion pressure (UPP) was investigated in anesthetized rats pre-treated with midodrine (1 mg/kg, i.v.), which forms an active metabolite that acts as an α1 -adrenoceptor agonist. The effect of CP-533,536 (0.03-0.3 mg/kg, i.v.) on cystometric parameters was also investigated in anesthetized rats. In addition, the effect of CP-533,536 (0.03-0.3 mg/kg, i.v.) on residual urine volume (RV) and voiding efficiency (VE) was investigated in conscious rats treated with midodrine (1 mg/kg, i.v.). CP-533,536 dose-dependently decreased UPP elevated by midodrine in anesthetized rats. In contrast, CP-533,536 did not affect maximum voiding pressure, intercontraction interval, or intravesical threshold pressure. In conscious rats, midodrine (1 mg/kg, i.v.) markedly increased RV and reduced VE. CP-533,536 dose-dependently ameliorated increases in RV and decreases in VE induced by midodrine. These results suggest that a selective EP2 receptor agonist could ameliorate the elevation of RV and improve the reduction of VE in rats with functional urethral obstruction caused by stimulation of α1 -adrenoceptors. The mechanism of action might be not potentiation of bladder contraction but rather preferential relief of urethral constriction. © 2014 Wiley Publishing Asia Pty Ltd.

  12. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/-more » and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.« less

  13. Aucubin protects against pressure overload-induced cardiac remodelling via the β3 -adrenoceptor-neuronal NOS cascades.

    PubMed

    Wu, Qing-Qing; Xiao, Yang; Duan, Ming-Xia; Yuan, Yuan; Jiang, Xiao-Han; Yang, Zheng; Liao, Hai-Han; Deng, Wei; Tang, Qi-Zhu

    2018-05-01

    Aucubin, the predominant component of Eucommia ulmoides Oliv., has been shown to have profound effects on oxidative stress. As oxidative stress has previously been demonstrated to contribute to acute and chronic myocardial injury, we tested the effects of aucubin on cardiac remodelling and heart failure. Initially, H9c2 cardiomyocytes and neonatal rat cardiomyocytes pretreated with aucubin (1, 3, 10, 25 and 50 μM) were challenged with phenylephrine. Secondly, the transverse aorta was constricted in C57/B6 and neuronal NOS (nNOS)-knockout mice, then aucubin (1 or 5 mg·kg -1 body weight day -1 ) was injected i.p. for 25 days. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histological analyses and hypertrophic markers. Oxidative stress was evaluated by examining ROS generation, oxidase activity and NO generation. NOS expression was determined by Western blotting. Aucubin effectively suppressed cardiac remodelling; in mice, aucubin substantially inhibited pressure overload-induced cardiac hypertrophy, fibrosis and inflammation, whereas knocking out nNOS abolished these cardioprotective effects of aucubin. Blocking or knocking down the β 3 -adrenoceptor abolished the protective effects of aucubin in vitro. Furthermore, aucubin enhanced the protective effects of a β 3 -adrenoceptor agonist in vitro by increasing cellular cAMP levels, whereas treatment with an adenylate cyclase (AC) inhibitor abolished the cardioprotective effects of aucubin. Aucubin suppresses oxidative stress during cardiac remodelling by increasing the expression of nNOS in a process that requires activation of the β 3 -adrenoceptor/AC/cAMP pathway. These findings suggest that aucubin could have potential as a treatment for cardiac remodelling and heart failure. © 2018 The British Pharmacological Society.

  14. The effects of nitric oxide synthase inhibitors on the sedative effect of clonidine.

    PubMed

    Soares de Moura, R; Rios, A A; de Oliveira, L F; Resende, A C; de Lemos Neto, M; Santos, E J; Correia, M L; Tano, T

    2001-11-01

    The mechanism underlying the Niteroi, Rio de Janeiro sedative effect of clonidine, an alpha2-adrenoceptor agonist, remains uncertain. Because activation of alpha2-adrenoceptors induces release of nitric oxide (NO), we tested the hypothesis that the sedative effect of clonidine depends on NO-related mechanisms. The effect of 7-nitro indazole on the sleeping time induced by clonidine was studied in Wistar rats. In addition, we examined the effect of clonidine, alpha-methyldopa, and midazolam on the thiopental-induced sleeping time in rats pretreated with N(G)-nitro-L-arginine-methyl-ester (L-NAME). The sleeping time induced by clonidine was significantly decreased by 7-nitro indazole. Thiopental sleeping time was increased by clonidine, alpha-methyldopa, and midazolam. L-NAME reduced the prolongation effect of clonidine and alpha-methyldopa, but did not alter the effect of midazolam on the thiopental-induced sleeping time. The inhibitory effect of L-NAME on clonidine-dependent prolongation of thiopental-induced sleeping time was reversed by L-arginine. These results suggest that NO-dependent mechanisms are involved in the sedative effect of clonidine. In addition, this effect seems to be specific for the sedative action of alpha2-adrenoceptors agonists. Clonidine, an antihypertensive drug, is also a sedative. This sedative effect, although an adverse event in the treatment of hypertensive patients, can be helpful for sedation of surgical patients. The mechanism of this effect, however, is unknown. In this study, we show that the sedative effect of clonidine is mediated by nitric oxide, because it could be prevented by pretreatment with nitric oxide synthase inhibitors.

  15. Effect of partial agonist activity in beta blockers in severe angina pectoris: a double blind comparison of pindolol and atenolol.

    PubMed Central

    Quyyumi, A A; Wright, C; Mockus, L; Fox, K M

    1984-01-01

    The use of beta adrenoceptor blockade in the treatment of rest angina is controversial, and the effects on severe angina of partial agonist activity in beta blockers are unknown. Eight patients with effort angina and seven with effort and nocturnal angina and severe coronary artery disease were studied initially when they were not taking any antianginal drugs. Pindolol 5 mg thrice daily (with partial agonist activity) and atenolol 100 mg daily (without partial agonist activity) were given for five days each in a double blind randomised manner. Diaries of angina were kept and treadmill exercise testing and ambulatory ST monitoring performed during the last 48 hours of each period of treatment. Daytime and nocturnal resting heart rates and the frequency of angina were significantly reduced by atenolol compared with pindolol (p less than 0.01). The duration of exercise was significantly increased and the frequency, duration, and magnitude of daytime and nocturnal episodes of ST segment depression on ambulatory monitoring were reduced by atenolol. Reduction in resting heart rate is important in the treatment of both effort and nocturnal angina. Partial agonist activity in beta adrenoceptor antagonists may be deleterious in patients with severe angina pectoris. PMID:6148991

  16. Effects of Extended-Release Guanfacine on ADHD Symptoms and Sedation-Related Adverse Events in Children with ADHD

    ERIC Educational Resources Information Center

    Faraone, Stephen V.; Glatt, Stephen J.

    2010-01-01

    Objective: Guanfacine extended release (GXR) is a selective alpha[subscript 2A]-adrenoceptor agonist that is shown to be an effective nonstimulant treatment for the symptoms of attention-deficit/hyperactivity disorder. This report documents the time course and predictors of symptom efficacy and sedation-related adverse events (AEs) that emerge…

  17. Coupling to protein kinases A and C of adenosine A2B receptors involved in the facilitation of noradrenaline release in the prostatic portion of rat vas deferens.

    PubMed

    Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge

    2004-08-01

    In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.

  18. Ultraviolet-B radiation and the immune response of rainbow trout: Chapter 18

    USGS Publications Warehouse

    Fabacher, David L.; Little, Edward E.; Jones, S.B.; DeFabo, E.C.; Webber, L.J.; Stolen, Joanne S.; Fletcher, Thelma C.

    1994-01-01

    As part of a larger study on global climate change and ozone depletion we are investigating the effects of ultraviolet-B (UVB) radiation on fishes. We conducted a number of experiments to explore the possible effects of UVB radiation on the immune response of juvenile rainbow trout Oncorhynchus mykiss. In one study, the fish developed sunburn and fungal infection on the dorsal skin after exposure to levels of UVB that simulated ambient solar UVB levels observed at mid-latitudes. In a separate study, UVB-exposed rainbow trout with surgically administered dorsal lesions developed fungal infection on the lesions and surrounding skin. Many of these fish subsequently died within a 9 day exposure period. Fish with surgical lesions, but not exposed to UVB radiation, did not develop fungal infection and did not die. In mammals, UVB-induced immunosuppression is thought to occur through the isomerization of urocanic acid or the formation of DNA pyrimidine dimers, or through some interaction between the two. We found a substance that appeared, upon HPLC detection, to be trans-urocanic acid in the skin of UVB-exposed and unexposed rainbow trout. Neurotransmitter stimulation of adrenoceptors may be involved in changes in pigmentation observed in UVB-exposed fishes. We measured adrenoceptors in skin membranes from rainbow trout exposed to UVB and found a decrease in cz2-adrenoceptors compared with fish not exposed to UVB. Results of our study indicate that prolonged exposure of juvenile rainbow trout to mid-latitude levels of solar UVB may play an important role in the initiation of certain disease outbreaks and may decrease survival of fish that have lesions on the dorsal skin.

  19. Marine Bivalve Cellular Responses to Beta Blocker Exposures ...

    EPA Pesticide Factsheets

    β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent binding of agonists such as catecholamines to β adrenoceptors. In the absence of agonist induced activation of the receptor, adenylate cyclase is not activated which in turn limits cAMP production and protein kinase A activation, preventing increases in blood pressure and arrhythmias. After being taken therapeutically, commonly prescribed β blockers may make their way to coastal habitats via discharge from waste water treatment plants (WWTP) posing a potential risk to aquatic organisms. The aim of our research is to evaluate cellular responses of three commercially important marine bivalves - Eastern oysters, blue mussels and hard clams - upon exposure to two β blocker drugs, propranolol and metoprolol, and to find molecular initiating events (MIEs) indicative of the exposure. Bivalves were obtained from Narragansett Bay (Rhode Island, USA) and acclimated in the laboratory. Following acclimation, gills and hepatopancreas (HP) tissues were harvested and separately exposed to 0, 1, 10, 100 and 1000 ng/l of each drug. Tissues were bathed in 30 parts per thousand (ppt) filtered seawater, antibiotic mix, Leibovitz nutrient media, and the test drug. Exposures were conducted for 24 hours and samples were saved for cellular biomarker assays. A lysosomal destabilization assay, which is a marker of membrane damage, was also performed at the end of each exposure.

  20. Relative myotoxic and haemodynamic effects of the beta-agonists fenoterol and clenbuterol measured in conscious unrestrained rats.

    PubMed

    Burniston, Jatin G; Tan, Lip-Bun; Goldspink, David F

    2006-11-01

    The beta(2)-adrenoceptor (beta(2)-AR) agonists clenbuterol and fenoterol have similar beneficial effects in animal models of heart failure. However, large doses of clenbuterol can induce cardiomyocyte death, and it is not known which of these agents has the most favourable therapeutic profile. We have investigated the cardiotoxicity of clenbuterol and fenoterol alongside that of isoprenaline, and compared their haemodynamic effects. Wistar rats (n = 6 per group) were subcutaneously injected with each beta-agonist (0.003-3 mmol kg(-1)) or saline, and cardiomyocyte apoptosis was detected by caspase 3 immunohistochemistry. In a separate experiment, rats (n = 4) were given equivalent doses to those used in the myotoxicity studies, in a randomized cross-over design, and their blood pressure recorded via radiotelemetry. Injection of 0.3 mmol kg(-1) fenoterol or isoprenaline, but not clenbuterol, induced significant cardiomyocyte apoptosis (0.4 +/- 0.05%; P < 0.05). At 3 mmol kg(-1), all agonists induced apoptosis (fenoterol, 1.1 +/- 0.1%; isoprenaline, 0.9 +/- 0.8%; and clenbuterol, 0.4 +/- 0.07%; P < 0.05). beta(1)-Adrenoceptor antagonism (10 mg kg(-1) bisoprolol) prevented 92% (P < 0.05) of apoptosis induced by all three agonists, but clenbuterol-induced apoptosis could also be prevented by 96% (P < 0.05) by beta(2)-AR antagonism (10 mg kg(-1) ICI 118 551). Clenbuterol decreased diastolic (1.3- to 1.6-fold; P < 0.05) and systolic blood pressure (1.3-fold; P < 0.05), and doses > 0.3 mmol kg(-1) increased heart rate (1.4-fold; P < 0.05). Fenoterol increased heart rate (1.2- to 1.4-fold; P < 0.05), and doses > 0.3 mmol kg(-1) decreased diastolic blood pressure (1.3-fold; P < 0.05). In conclusion, the cardiotoxicity of fenoterol was similar to isoprenaline and greater than clenbuterol, and fenoterol had less desirable haemodynamic effects.

  1. Thermogenic effects of sibutramine and its metabolites

    PubMed Central

    Connoley, Ian P; Liu, Yong-Ling; Frost, Ian; Reckless, Ian P; Heal, David J; Stock, Michael J

    1999-01-01

    The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg−1 of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5–1.0°C) in body temperature. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). Combined high, non-selective doses (20 mg kg−1) of the β-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, β1-adrenoceptor-selective (atenolol) or β2-adrenoceptor-selective (ICI 118551) doses (1 mg kg−1). The ganglionic blocking agent, chlorisondamine (15 mg kg−1), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the β3-adrenoceptor-selective agonist BRL 35135. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg−1) that had no effect on VO2 when injected individually. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via β3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent. PMID:10217544

  2. 5-Methoxy-N,N-dimethyltryptamine-induced analgesia is blocked by alpha-adrenoceptor antagonists in rats.

    PubMed Central

    Archer, T.; Danysz, W.; Jonsson, G.; Minor, B. G.; Post, C.

    1986-01-01

    The effects of the alpha-adrenoceptor antagonists prazosin, phentolamine and yohimbine upon 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)-induced analgesia were tested in the hot-plate, tail-flick and shock-titration tests of nociception with rats. Intrathecally injected yohimbine and phentolamine blocked or attenuated the analgesia produced by systemic administration of 5-MeODMT in all three nociceptive tests. Intrathecally administered prazosin attenuated the analgesic effects of 5-MeODMT in the hot-plate and tail-flick tests, but not in the shock titration test. Intrathecal yohimbine showed a dose-related lowering of pain thresholds in saline and 5-MeODMT-treated animals. Phentolamine and prazosin produced normal dose-related curves in the hot-plate test and biphasic effects in the shock titration and tail-flick tests. These results demonstrate a functional interaction between alpha 2-adrenoceptors and 5-HT agonist-induced analgesia at a spinal level in rats. PMID:2877697

  3. Blunted beta-adrenoceptor-mediated fat oxidation in overweight subjects: a role for the hormone-sensitive lipase gene.

    PubMed

    Jocken, Johan W E; Blaak, Ellen E; van der Kallen, Carla J H; van Baak, Marleen A; Saris, Wim H M

    2008-03-01

    Obesity is associated with blunted beta-adrenoceptor-mediated lipolysis and fat oxidation, which persist after weight reduction. We investigated whether dinucleotide (CA)(n) repeat polymorphisms in intron 6 (i6) or 7 (i7) and a C-60G promoter substitution of the hormone-sensitive lipase (HSL) gene are associated with a blunted in vivo beta-adrenoceptor-mediated increase in circulating fatty acids and glycerol (estimation of lipolytic response) and fat oxidation in overweight-obese subjects. A total of 103 overweight (25 kg/m(2) < or = body mass index < 30 kg/m(2)) and obese (body mass index > or =30 kg/m(2)) subjects (62 men, 41 women) were included. Energy expenditure, respiratory quotient (RQ), and circulating fatty acid and glycerol were determined after stepwise infusion of increasing doses of the nonselective beta-agonist isoprenaline. The i6, i7 (CA)(n) repeat polymorphisms were determined by size-resolved capillary electrophoresis; and a C-60G promoter substitution was determined by restriction enzyme digestion assay. Female noncarriers of allele 184 i7 (n = 18) and female carriers of allele 240 i6 (n = 12) showed an overall reduced fat oxidation (as indicated by changes in RQ) after beta-adrenoceptor-mediated stimulation, explaining, respectively, 6.9% and 20.8% of the variance in RQ. These effects were not seen in male subjects. In conclusion, our results suggest that variation in i7 and i6 of the HSL gene might be associated with a physiological effect on in vivo beta-adrenoceptor-mediated fat oxidation, at least in overweight-obese female subjects.

  4. Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function.

    PubMed

    Takasu, Toshiyuki; Ukai, Masashi; Sato, Shuichi; Matsui, Tetsuo; Nagase, Itsuro; Maruyama, Tatsuya; Sasamata, Masao; Miyata, Keiji; Uchida, Hisashi; Yamaguchi, Osamu

    2007-05-01

    We evaluated the pharmacological characteristics of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]-ethyl} acetanilide (YM178). YM178 increased cyclic AMP accumulation in Chinese hamster ovary (CHO) cells expressing human beta3-adrenoceptor (AR). The half-maximal effective concentration (EC50) value was 22.4 nM. EC50 values of YM178 for human beta1- and beta2-ARs were 10,000 nM or more, respectively. The ratio of intrinsic activities of YM178 versus maximal response induced by isoproterenol (nonselective beta-AR agonist) was 0.8 for human beta3-ARs, 0.1 for human beta1-ARs, and 0.1 for human beta2-ARs. The relaxant effects of YM178 were evaluated in rats and humans bladder strips precontracted with carbachol (CCh) and compared with those of isoproterenol and 4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one hydrochloride (CGP-12177A) (beta3-AR agonist). EC50 values of YM178 and isoproterenol in rat bladder strips precontracted with 10(-6) M CCh were 5.1 and 1.4 microM, respectively, whereas those in human bladder strips precontracted with 10(-7) M CCh were 0.78 and 0.28 microM, respectively. In in vivo study, YM178 at a dose of 3 mg/kg i.v. decreased the frequency of rhythmic bladder contraction induced by intravesical filling with saline without suppressing its amplitude in anesthetized rats. These findings suggest the suitability of YM178 as a therapeutic drug for the treatment of symptoms of overactive bladder such as urinary frequency, urgency, and urge incontinence.

  5. β3-Adrenoceptor activation upregulates apolipoprotein A-I expression in HepG2 cells, which might further promote cholesterol efflux from macrophage foam cells.

    PubMed

    Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li

    2017-01-01

    The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.

  6. Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control.

    PubMed

    Schulz, Kurt P; Clerkin, Suzanne M; Fan, Jin; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2013-03-01

    Functional interactions between limbic regions that process emotions and frontal networks that guide response functions provide a substrate for emotional cues to influence behavior. Stimulation of postsynaptic α₂ adrenoceptors enhances the function of prefrontal regions in these networks. However, the impact of this stimulation on the emotional biasing of behavior has not been established. This study tested the effect of the postsynaptic α₂ adrenoceptor agonist guanfacine on the emotional biasing of response execution and inhibition in prefrontal cortex. Fifteen healthy young adults were scanned twice with functional magnetic resonance imaging while performing a face emotion go/no-go task following counterbalanced administration of single doses of oral guanfacine (1 mg) and placebo in a double-blind, cross-over design. Lower perceptual sensitivity and less response bias for sad faces resulted in fewer correct responses compared to happy and neutral faces but had no effect on correct inhibitions. Guanfacine increased the sensitivity and bias selectively for sad faces, resulting in response accuracy comparable to happy and neutral faces, and reversed the valence-dependent variation in response-related activation in left dorsolateral prefrontal cortex (DLPFC), resulting in enhanced activation for response execution cued by sad faces relative to happy and neutral faces, in line with other frontoparietal regions. These results provide evidence that guanfacine stimulation of postsynaptic α₂ adrenoceptors moderates DLPFC activation associated with the emotional biasing of response execution processes. The findings have implications for the α₂ adrenoceptor agonist treatment of attention-deficit hyperactivity disorder.

  7. Effects of Synephrine and B-Phenethylamine on Human a-Adrenoceptor Subtypes

    USDA-ARS?s Scientific Manuscript database

    Synephrine and B-phenethylamine are structurally related to ephedrine. In this study, the effects of synephrine and B-phenethylamine are investigated on a-adrenoceptor (a-AR) subtypes expressed in human embroyonic kidney (HEK293) or Chinese hamster ovary (CHO) cells, and compared to that of 1R,2S-no...

  8. Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control.

    PubMed

    Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin

    2014-09-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  9. Agmatine in the hypothalamic paraventricular nucleus stimulates feeding in rats: involvement of neuropeptide Y

    PubMed Central

    Taksande, BG; Kotagale, NR; Nakhate, KT; Mali, PD; Kokare, DM; Hirani, K; Subhedar, NK; Chopde, CT; Ugale, RR

    2011-01-01

    BACKGROUND AND PURPOSE Agmatine, a multifaceted neurotransmitter, is abundantly expressed in the hypothalamic paraventricular nucleus (PVN). Our aim was to assess (i) the effect of agmatine on feeding behaviour and (ii) its association, if any, with neuropeptide Y (NPY). EXPERIMENTAL APPROACH Satiated rats fitted with intra-PVN cannulae were administered agmatine, alone or jointly with (i) α2-adrenoceptor agonist, clonidine, or antagonist, yohimbine; (ii) NPY, NPY Y1 receptor agonist, [Leu31, Pro34]-NPY, or antagonist, BIBP3226; or (iii) yohimbine and NPY. Cumulative food intake was monitored at different post-injection time points. Furthermore, the expression of hypothalamic NPY following i.p. treatment with agmatine, alone or in combination with yohimbine (i.p.), was evaluated by immunocytochemistry. KEY RESULTS Agmatine robustly increased feeding in a dose-dependent manner. While pretreatment with clonidine augmented, yohimbine attenuated the orexigenic response to agmatine. Similarly, NPY and [Leu31, Pro34]-NPY potentiated the agmatine-induced hyperphagia, whereas BIBP3226 inhibited it. Moreover, yohimbine attenuated the synergistic orexigenic effect induced by the combination of NPY and agmatine. Agmatine increased NPY immunoreactivity in the PVN fibres and in the cells of the hypothalamic arcuate nucleus (ARC) and this effect was prevented by pretreatment with yohimbine. NPY immunoreactivity in the fibres of the ARC, dorsomedial, ventromedial and lateral nuclei of the hypothalamus was not affected by any of the above treatments. CONCLUSIONS AND IMPLICATIONS The orexigenic effect of agmatine is coupled to increased NPY activity mediated by stimulation of α2-adrenoceptors within the PVN. This signifies the importance of agmatine or α2-adrenoceptor modulators in the development of novel therapeutic agents to treat feeding-related disorders. PMID:21564088

  10. Activation of beta- and alpha-2-adrenoceptors in the basolateral amygdala has opposing effects on hippocampal-prefrontal long-term potentiation.

    PubMed

    Lim, Ee Peng; Dawe, Gavin S; Jay, Thérèse M

    2017-01-01

    Noradrenaline (NA), released by the locus coeruleus (LC), plays a key role in mediating the effects of stress on memory functions. The LC provides diffuse projections to many forebrain nuclei including the hippocampus, the prefrontal cortex (PFC), and the basolateral amygdala (BLA). These three structures are intricately interlinked. The hippocampal-prefrontal (H-PFC) pathway is involved in various cognitive functions. The first aim of this study was to examine the role of BLA in H-PFC plasticity by infusion of drugs to activate and inactivate the BLA and studying the effects on H-PFC long-term potentiation (LTP) in the rat in vivo. Activation of the BLA with glutamate impaired, while inactivation with muscimol augmented, H-PFC LTP. This study also aimed to demonstrate how directly applying noradrenaline and other noradrenergic agents in the BLA can affect H-PFC LTP. Noradrenaline at 1μg/0.2μl enhanced H-PFC LTP. Stimulating alpha-2-adrenoceptors in the BLA with clonidine enhanced LTP while blocking alpha-2 adrenoceptors with idazoxan impaired it. Propranolol, a non-selective beta antagonist, enhanced H-PFC LTP while isoprenaline, a non-selective beta agonist, decreased H-PFC LTP. These results suggest that the BLA regulates H-PFC plasticity negatively and also provide a mechanism by which noradrenaline in the BLA can affect H-PFC plasticity via alpha-2 and beta adrenoceptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An investigation into the selectivity of a novel series of benzoquinolizines for alpha 2-adrenoceptors in vivo.

    PubMed Central

    Paciorek, P. M.; Pierce, V.; Shepperson, N. B.; Waterfall, J. F.

    1984-01-01

    The potencies and selectivities of a novel series of benzoquinolizines for the alpha 2-adrenoceptor have been investigated in the rat in comparison with yohimbine and indoramin. Peripheral postjunctional alpha 2- and alpha 1-adrenoceptor blockade was measured as the reversal of B-HT 933 and methoxamine-induced pressor responses, respectively, in the pithed rat. Peripheral prejunctional alpha 2-adrenoceptor blockade was measured as the reversal of B-HT 933-induced inhibition of an electrically evoked tachycardia in the pithed rat. Central alpha 2-adrenoceptor blockade was measured as a reversal of the hypotension induced in anaesthetized rats by central (i.c.v.) administration of clonidine. Wy 25309, Wy 26392, Wy 26703 and yohimbine (0.3-3 mg kg-1 i.v.) evoked dose-dependent shifts to the right of the dose-response curves to B-HT 933 whilst having minimal effects on the methoxamine dose-response curve. The selectivity for alpha 2-adrenoceptors increased with the dose of antagonist administered. In general, the order of selectivity was Wy 25309 greater than Wy 26392 greater than Wy 26703 greater than yohimbine. Indoramin (1 mg kg-1 i.v.) shifted the methoxamine pressor dose-response curve to the right without affecting the B-HT 933 dose-response curves, confirming its selective alpha 1-antagonist activity. Peripheral administration of all three benzoquinolizines (1-100 micrograms kg-1 i.v.) led to a dose-dependent reversal of the hypotension evoked by central administration of clonidine (500 ng i.c.v.). The reversal was incomplete, higher doses causing a further decrease in blood pressure. (ABSTRACT TRUNCATED AT 250 WORDS) PMID:6329385

  12. Dual Effect of Catecholamines and Corticosterone Crosstalk on Pineal Gland Melatonin Synthesis.

    PubMed

    Fernandes, Pedro A; Tamura, Eduardo K; D'Argenio-Garcia, Letícia; Muxel, Sandra M; da Silveira Cruz-Machado, Sanseray; Marçola, Marina; Carvalho-Sousa, Cláudia E; Cecon, Erika; Ferreira, Zulma S; Markus, Regina P

    2017-01-01

    The nocturnal production of melatonin by the pineal gland is triggered by sympathetic activation of adrenoceptors and may be modulated by immunological signals. The effect of glucocorticoids on nocturnal melatonin synthesis is controversial; both stimulatory and inhibitory effects have been reported. During pathophysiological processes, an increased sympathetic tonus could result in different patterns of adrenoceptor activation in the pineal gland. Therefore, in this investigation, we evaluated whether the pattern of adrenergic stimulation of the pineal gland drives the direction of the glucocorticoid effect on melatonin production. The corticosterone effect on the pineal hormonal production induced by β-adrenoceptor or β+α1-adrenoceptor activation was evaluated in cultured glands. We also investigated whether the in vivo lipopolysaccharide (LPS)-induced inhibition of melatonin is dependent on the interaction of glucocorticoids and the α1-adrenoceptor in adrenalectomized animals and on the in vivo blockade of glucocorticoid receptors (GRs) or the α1-adrenoceptor. Corticosterone potentiated β-adrenoceptor-induced pineal melatonin synthesis, whilst corticosterone-dependent inhibition was observed when melatonin production was induced by β+α1-adrenoceptors agonists. The inhibitory effect of corticosterone is mediated by GR, as it was abolished in the presence of a GR antagonist. Moreover, LPS-induced reduction in melatonin nocturnal plasma content was reversed by adrenalectomy and by antagonizing GR or α1-adrenoceptors. The dual effect of corticosterone on pineal melatonin synthesis is determined by the activation pattern of adrenoceptors (β or β+α1) in the gland during GR activation, suggesting that increased activation of the sympathetic system and the hypothalamic-pituitary-adrenal axis are necessary for the control of melatonin production during defense responses. © 2016 S. Karger AG, Basel.

  13. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway.

    PubMed

    Zhang, Dong; Ma, Qingyong; Wang, Zheng; Zhang, Min; Guo, Kun; Wang, Fengfei; Wu, Erxi

    2011-11-26

    Smoking and stress, pancreatic cancer (PanCa) risk factors, stimulate nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  14. Insulin induces alpha1B-adrenergic receptor phosphorylation and desensitization.

    PubMed

    García-Sáinz, J Adolfo; Romero-Avila, M Teresa; Molina-Muñoz, Tzindilú; Medina, Luz del Carmen

    2004-09-03

    The ability of insulin to induce alpha1B-adrenoceptor phosphorylation and desensitization was tested in two model systems: rat-1 cells that stably express alpha1B-adrenoceptors, through transfection, and endogenously express insulin receptors and DDT1 MF2 cells that endogenously express both receptors. Insulin induced concentration-dependent increases in the phosphorylation state of the adrenergic receptors in the two models with similar EC50 values (0.5-2 nM). The effect was rapid in the two systems but it was sustained in rat-1 cells and transient in DDT1 MF2 cells. In both cell lines, the insulin-mediated phosphorylation of alpha1B-adrenoceptors was blocked by wortmannin and LY 294002, and by staurosporine and bisindolylmaleimide I, indicating that the effect involved phosphoinositide 3-kinase and protein kinase C activities. The adrenoceptor phosphorylation induced by insulin was associated to desensitization as evidences by a diminished elevation of intracellular calcium in response to noradrenaline. Inhibitors of phosphoinositide 3-kinase and protein kinase C blocked the functional desensitization induced by insulin.

  15. Analysis of the 5-HT1A receptor involvement in passive avoidance in the rat

    PubMed Central

    Misane, Ilga; Johansson, Christina; Ove Ögren, Sven

    1998-01-01

    The effects of the 5-HT2A/2C agonist DOB, the selective 5-HT1A agonist NDO 008 (3-dipropylamino-5-hydroxychroman), and the two enantiomers of the selective 5-HT1A agonist 8-OH-DPAT (R(+)-8-OH-DPAT and S(−)-8-OH-DPAT) were studied in a step-through passive avoidance (PA) test in the male rat.The 5-HT1A agonists injected prior to training (conditioning) produced a dose-dependent impairment of PA retention when examined 24 h later. R(+)-8-OH-DPAT was four times more effective than S(−)-8-OH-DPAT to cause an impairment of PA retention. Both NDO 008 and the two enantiomers of 8-OH-DPAT induced the serotonin syndrome at the dose range that produced inhibition of the PA response, thus, indicating activation of postsynaptic 5-HT1A receptors.Neither NDO 008 nor R(+)-8-OH-DPAT induced head-twitches, a behavioural response attributed to stimulation of postsynaptic 5-HT2A receptors. In contrast, DOB induced head-twitches at the 0.01 mg kg−1 dose while a 200 times higher dose was required to produce a significant impairment of PA retention.The impairment of PA retention induced by both NDO 008 and R(+)-8-OH-DPAT was fully blocked by the active S(+)- enantiomer of the selective 5-HT1A antagonist WAY 100135 and the mixed 5-HT1A/β-adrenoceptor antagonist L(−)-alprenolol. In contrast, the mixed 5-HT2A/2C antagonists ketanserin and pirenperone were found to be ineffective. Moreover, the β2-adrenoceptor antagonist ICI 118551, the β1-antagonist metoprolol as well as the mixed β-adrenoceptor blocker D(+)-alprenolol all failed to modify the deficit of PA retention by NDO 008 and R(+)-8-OH-DPAT. None of the 5-HT1A or 5-HT2A/2C receptor antagonists tested or the β-blockers altered PA retention by themselves.A 3 day pretreatment procedure (200+100+100 mg kg−1) with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA) did not alter PA retention and did not prevent the inhibitory action of the 5-HT1A agonists, indicating that their effects on PA do not depend on endogenous 5-HT.The effects of NDO 008 on PA were also studied using a state-dependent learning paradigm. NDO 008 was found to produce a disruption of PA when given either prior to training or retention or both prior to training and retention but it failed to affect PA retention when given immediately after training.These findings indicate that the deficit of passive avoidance retention induced by the 5-HT1A agonists is mainly a result of stimulation of postsynaptic 5-HT1A receptors but not 5-HT2A receptors. The 5-HT1A receptor stimulation appears to interfere with learning processes operating at both acquisition and retrieval. PMID:9806333

  16. Oxysterol, 5α-cholestan-3-one, modulates a contractile response to β2-adrenoceptor stimulation in the mouse atria: Involvement of NO signaling.

    PubMed

    Sytchev, Vaycheslav I; Odnoshivkina, Yulia G; Ursan, Roman V; Petrov, Alexey M

    2017-11-01

    Atrial β2-adrenoceptors provide an important mechanism for regulation of cardiac function and changes in their downstream signaling are involved in processes underlying heart disorders. We have investigated the mechanism by which the cholesterol metabolite 5α-cholestan-3-one (5ɑCh3) modulates inotropic effect of β2-adrenoceptor agonist fenoterol. Atria from mice were electrically stimulated and changes in contraction amplitude in response to fenoterol were studied in 5ɑCh3-pretreated samples. Intracellular Ca 2+ and NO levels were estimated using fluorescent dyes Fluo-4 and DAF-FM, respectively. By itself 5αCh3 that appears in the circulation under some pathological conditions had a negligible influence on contraction, Ca 2+ -transient and NO production. However, pretreatment with 5αCh3 markedly attenuated the positive inotropic effect of fenoterol which was accompanied by an increase in the NO synthesis. Unexpectedly, the oxysterol also augmented an enhancement of Ca 2+ -transient amplitude in response to fenoterol. Under conditions of a pharmacological inhibition of G i -protein/Akt/NO synthase/protein kinase G signaling, 5αCh3 augmented the inotropic effect of fenoterol. Herein, Akt antagonist suppressed the increase in NO production, while inhibition of NO synthesis did not modify the increased amplitude of the Ca 2+ -transient. Along similar lines, enrichment of plasma membranes with cholesterol reduced the stimulatory effect of 5αCh3 on β2-adrenoceptor-evoked NO production, but not on the Ca2+-transient amplitude, leading to an elevation of the positive inotropic response to fenoterol. These data suggest that 5ɑCh3 potentiates the effect of pharmacological β2-adrenoceptor activation on both NO production and Ca 2+ transient via independent mechanisms, thereby affecting the positive inotropy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice

    PubMed Central

    Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W.; Zhang, Gongliang

    2015-01-01

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  19. Acute systemic effects of inhaled salbutamol in asthmatic subjects expressing common homozygous beta2-adrenoceptor haplotypes at positions 16 and 27.

    PubMed

    Lee, Daniel K C; Bates, Caroline E; Lipworth, Brian J

    2004-01-01

    The relationship between beta2-adrenoceptor polymorphisms at positions 16 and 27, and the acute systemic beta2-adrenoceptor effects of inhaled salbutamol is unclear. We therefore elected to evaluate the influence of common homozygous beta2-adrenoceptor haplotypes on the acute systemic beta2-adrenoceptor effects following inhaled salbutamol in asthmatic subjects. An initial database search of 531 asthmatic subjects identified the two commonest homozygous haplotypes at positions 16 and 27 to be Arg16-Gln27 (12%) and Gly16-Glu27 (19%). After a 1-week washout period where all beta2-adrenoceptor agonists were withdrawn, 16 Caucasian subjects (Arg16-Gln27: n = 8 and Gly16-Glu27: n = 8) were given a single dose of inhaled salbutamol (1200 microg), followed by serial blood sampling for serum potassium, along with measurements of diastolic blood pressure and heart rate, at 5-min intervals for 20 min. The two groups were well matched for age, sex, FEV1, and inhaled corticosteroid dose. Baseline values for serum potassium, diastolic blood pressure and heart rate were not significantly different comparing Arg16-Gln27 vs Gly16-Glu27. The mean +/- SEM maximum serum potassium change from baseline over 20 min was significantly greater (P = 0.04) for Arg16-Gln27: -0.37 +/- 0.05 mmol l(-1) vs Gly16-Glu27: -0.23 +/- 0.04 mmol l(-1); 95% CI for difference: -0.01 to -0.28 mmol l(-1). The maximum diastolic blood pressure change from baseline over 20 min was significantly greater (P = 0.0008) for Arg16-Gln27: -13 +/- 1 mmHg vs Gly16-Glu27: -4 +/- 2 mmHg; 95% CI for difference: -5, 14 mmHg. There was no significant difference comparing the maximum heart rate change from baseline for Arg16-Gln27: 10 +/- 3 beats min(-1) vs Gly16-Glu27: 10 +/- 3 beats min(-1). Caucasian asthmatic subjects with the Arg16-Gln27 haplotype exhibited a greater systemic response to inhaled salbutamol, compared with those with the Gly16-Glu27 haplotype. The attenuated beta2-adrenoceptor response in the Gly16-Glu27 haplotype would be in keeping with increased susceptibility to prior down-regulation by endogenous catecholamines.

  20. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus

    PubMed Central

    Thompson, G W; Collier, K; Ardell, J L; Kember, G; Armour, J A

    2000-01-01

    To determine the activity characteristics displayed by different subpopulations of neurons in a single intrinsic cardiac ganglionated plexus, the behaviour and co-ordination of activity generated by neurons in two loci of the right atrial ganglionated plexus (RAGP) were evaluated in 16 anaesthetized dogs during basal states as well as in response to increasing inputs from ventricular sensory neurites. These sub-populations of right atrial neurons received afferent inputs from sensory neurites in both ventricles that were responsive to local mechanical stimuli and the nitric oxide donor nitroprusside. Neurons in at least one RAGP locus were activated by epicardial application of veratridine, bradykinin, the β1-adrenoceptor agonist prenaterol or glutamate. Epicardial application of angiotensin II, the selective β2-adrenoceptor agonist terbutaline and selective α-adrenoceptor agonists elicited inconsistent neuronal responses. The activity generated by both populations of atrial neurons studied over 5 min periods during basal states displayed periodic coupled behaviour (cross-correlation coefficients of activities that reached, on average, 0·88 ± 0·03; range 0·71–1) for 15–30 s periods of time. These periods of coupled activity occurred every 30–50 s during basal states, as well as when neuronal activity was enhanced by chemical activation of their ventricular sensory inputs. These results indicate that neurons throughout one intrinsic cardiac ganglionated plexus receive inputs from mechano- and chemosensory neurites located in both ventricles. That such neurons respond to multiple chemical stimuli, including those liberated from adjacent adrenergic efferent nerve terminals, indicates the complexity of the integrative processing of information that occurs within the intrinsic cardiac nervous system. It is proposed that the interdependent activity displayed by populations of neurons in different regions of one intrinsic cardiac ganglionated plexus, responding as they do to multiple cardiac sensory inputs, forms the basis for integrated regional cardiac control. PMID:11060132

  1. Non-adrenergic vasoconstriction and vasodilatation of guinea-pig aorta by β-phenylethylamine and amphetamine - Role of nitric oxide determined with L-NAME and NO scavengers.

    PubMed

    Broadley, Kenneth J; Broadley, Harrison D

    2018-01-05

    Sympathomimetic and trace amines, including β-phenylethylamine (PEA) and amphetamine, increase blood pressure and constrict isolated blood vessels. By convention this is regarded as a sympathomimetic response, however, recent studies suggest trace amine-associated receptor (TAAR) involvement. There is also uncertainty whether these amines also release nitric oxide (NO) causing opposing vasodilatation. These questions were addressed in guinea-pig isolated aorta, a species not previously examined. Guinea-pig aortic rings were set up to measure contractile tension. Cumulative concentration-response curves were constructed for the reference α-adrenoceptor agonist, phenylephrine, PEA or d-amphetamine before and in the presence of vehicles, the α 1 -adrenoceptor antagonist, prazosin (1µM), the nitric oxide synthase inhibitor, N ω -nitro-L-arginine (L-NAME), or NO scavengers, curcumin and astaxanthin. Prazosin inhibited phenylephrine contractions with low affinity consistent with α 1L -adrenoceptors. However, PEA and amphetamine were not antagonised, indicating non-adrenergic responses probably via TAARs. L-NAME potentiated contractions to PEA both in the absence and presence of prazosin, indicating that PEA releases NO to cause underlying opposing vasodilatation, independent of α 1 -adrenoceptors. L-NAME also potentiated amphetamine and phenylephrine. PEA was potentiated by the NO scavenger astaxanthin but less effectively. Curcumin, an active component of turmeric, however, inhibited PEA. Trace amines therefore constrict blood vessels non-adrenergically with an underlying NO-mediated non-adrenergic vasodilatation. This has implications in the pressor actions of these amines when NO is compromised. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs.

    PubMed

    Ramírez Rosas, Martha B; Labruijere, Sieneke; Villalón, Carlos M; Maassen Vandenbrink, Antoinette

    2013-08-01

    The introduction of the triptans (5-hydroxytryptamine (5-HT)1B/1D receptor agonists) was a great improvement in the acute treatment of migraine. However, shortcomings of the triptans have prompted research on novel serotonergic targets for the treatment of migraine. In this review the different types of antimigraine drugs acting at 5-HT receptors, their discovery and development are discussed. The first specific antimigraine drugs were the ergot alkaloids, consisting of ergotamine, dihydroergotamine and methysergide, which are agonists at 5-HT receptors, but can also bind α-adrenoceptors and dopamine receptors. In the 1990s, the triptans became available on the market. They are 5-HT1B/1D receptor agonists, showing fewer side effects due to their receptor specificity. In the last years, compounds that bind specifically to 5-HT1D, 5-HT1F and 5-HT7 receptors have been explored for their antimigraine potential. Furthermore, the serotonergic system seems to act in tight connection with the glutamatergic as well as the CGRP-ergic systems, which may open novel therapeutic avenues. Although the triptans are very effective in treating migraine attacks, their shortcomings have stimulated the search for novel drugs. Currently, the focus is on 5-HT1F receptor agonists, which seem devoid of vascular side effects. Moreover, novel compounds that affect multiple transmitter and/or neuropeptide systems that are involved in migraine could be of therapeutic relevance.

  3. Treating agitation with dexmedetomidine in the ICU.

    PubMed

    Boyer, Jeanne

    2009-01-01

    Patients in the intensive care unit frequently experience delirium, anxiety, and agitation, with a variety of treatments used. This article discusses the role of an alpha-adrenoceptor agonist, dexmedetomidine, and its clinical relevance and advantages for the agitated patient.

  4. Putative β4-adrenoceptors in rat ventricle mediate increases in contractile force and cell Ca2+: comparison with atrial receptors and relationship to (−)-[3H]-CGP 12177 binding

    PubMed Central

    Sarsero, Doreen; Molenaar, Peter; Kaumann, Alberto J; Freestone, Nicholas S

    1999-01-01

    We identified putative β4-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (−)-CGP 12177 and (±)-cyanopindolol and demonstrated increased Ca2+ transients by (−)-CGP 12177 in rat cardiomyocytes.(−)-[3H]-CGP 12177 labelled 13–22 fmol mg−1 protein ventricular β1, β2-adrenoceptors (pKD ∼9.0) and 50–90 fmol mg−1 protein putative β4-adrenoceptors (pKD ∼7.3). The affinity values (pKi) for (β1,β2-) and putative β4-adrenoceptors, estimated from binding inhibition, were (−)-propranolol 8.4, 5.7; (−)-bupranolol 9.7, 5.8; (±)-cyanopindolol 10.0,7.4.In left ventricular papillary muscle, in the presence of 30 μM 3-isobutyl-1-methylxanthine, (−)-CGP 12177 and (±)-cyanopindolol caused positive inotropic effects, (pEC50, (−)-CGP 12177, 7.6; (±)-cyanopindolol, 7.0) which were antagonized by (−)-bupranolol (pKB 6.7–7.0) and (−)-CGP 20712A (pKB 6.3–6.6). The cardiostimulant effects of (−)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (±)-cyanopindolol (pKP 7.0–7.4).(−)-CGP 12177 (1 μM) in the presence of 200 nM (−)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 μM 3-isobutyl-1-methylxanthine and 200 nM (−)-propranolol, 1 μM (−)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (−)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes.Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative β4-adrenoceptors, suggesting coupling to Gs protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative β4-adrenoceptors labelled with (−)-[3H]-CGP 12177. PMID:10602323

  5. The effects of alpha2-adrenoceptor agents on anti-hyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory pain.

    PubMed

    Vucković, Sonja M; Tomić, Maja A; Stepanović-Petrović, Radica M; Ugresić, Nenad; Prostran, Milica S; Bosković, Bogdan

    2006-11-01

    In this study, the effects of yohimbine (alpha2-adrenoceptor antagonist) and clonidine (alpha2-adrenoceptor agonist) on anti-hyperalgesia induced by carbamazepine and oxcarbazepine in a rat model of inflammatory pain were investigated. Carbamazepine (10-40 mg/kg; i.p.) and oxcarbazepine (40-160 mg/kg; i.p.) caused a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by concanavalin A (Con A, intraplantarly) in a paw pressure test in rats. Yohimbine (1-3 mg/kg; i.p.) significantly depressed the anti-hyperalgesic effects of carbamazepine and oxcarbazepine, in a dose- and time-dependent manner. Both drug mixtures (carbamazepine-clonidine and oxcarbazepine-clonidine) administered in fixed-dose fractions of the ED50 (1/2, 1/4 and 1/8) caused significant and dose-dependent reduction of the hyperalgesia induced by Con A. Isobolographic analysis revealed a significant synergistic (supra-additive) anti-hyperalgesic effect of both combinations tested. These results indicate that anti-hyperalgesic effects of carbamazepine and oxcarbazepine are, at least partially, mediated by activation of adrenergic alpha2-receptors. In addition, synergistic interaction for anti-hyperalgesia between carbamazepine and clonidine, as well as oxcarbazepine and clonidine in a model of inflammatory hyperalgesia, was demonstrated.

  6. Comparison of alpha 1A- and alpha 1B-adrenoceptor coupling to inositol phosphate formation in rat kidney.

    PubMed

    Büscher, R; Erdbrügger, W; Philipp, T; Brodde, O E; Michel, M C

    1994-12-01

    We have compared the coupling mechanisms of rat renal alpha 1A- and alpha 1B-like adrenoceptors to inositol phosphate formation. The experiments were performed in parallel in native renal tissue preparations and in those where alpha 1B-adrenoceptors had been inactivated by treatment with 10 mumol/l chloroethylclonidine for 30 min at 37 degrees C; renal slices were used in most experiments but isolated renal cells were also used in some cases. The Ca2+ chelating agent, EGTA (5 mmol/l), reduced noradrenaline-stimulated inositol phosphate formation in native but enhanced it in chloroethylclonidine-treated renal slices. The inhibitory effect of EGTA was not mimicked by 100 nmol/l nifedipine. Inactivation of 87% of cellular Gi by 16-20 h treatment with 500 ng/ml pertussis toxin did not significantly affect noradrenaline-stimulated inositol phosphate formation in isolated renal cells but abolished the inhibitory effect of chloroethylclonidine. The adenylate cyclase activator, forskolin (20 mumol/l), inhibited noradrenaline-stimulated inositol phosphate formation in native and chloroethylclonidine-treated slices, and the inhibitory effects of chloroethylclonidine treatment and forskolin were additive. We conclude that in rat kidney inositol phosphate formation via alpha 1B-like adrenoceptors may involve the influx of extracellular Ca2+ and a pertussis toxin-sensitive G-protein but is insensitive to inhibition by forskolin. In contrast alpha 1A-like adrenoceptor-mediated inositol phosphate formation does not require the presence of extracellular Ca2+ or of Gi and is sensitive to inhibition by forskolin. In comparison to published data from other model systems we further conclude that the signaling mechanisms of alpha 1-adrenoceptor subtypes may depend on their cellular environment.

  7. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    PubMed

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  8. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  9. Selective blockade by nicergoline of vascular responses elicited by stimulation of alpha 1A-adrenoceptor subtype in the rat.

    PubMed

    Alvarez-Guerra, M; Bertholom, N; Garay, R P

    1999-01-01

    The alpha 1-adrenergic blocking activity of nicergoline was re-examined in rats, with a particular emphasis on alpha 1-adrenoceptor subtypes. In pithed rats, nicergoline and prazosin infused at a single small dose (0.5 microgram/kg/min i.v.) produced a substantial and identical shift to the right of the control dose pressor response curve to the specific alpha 1-agonist cirazoline (ED50 = 4.0 +/- 0.1, 4.0 +/- 0.1 and 0.9 +/- 0.01 microgram/kg i.v. for nicergoline, prazosin and vehicle respectively). In the isolated perfused mesenteric vascular bed, nicergoline strongly inhibited the pressor responses elicited by cirazoline, with approximately 40-fold higher potency (pA2 = 11.1 +/- 0.3) than prazosin (pA2 = 9.5 +/- 0.3). Conversely, nicergoline was 20-fold less potent than prazosin to antagonize the contractile effects of cirazoline in isolated endothelium-denuded aorta (pA2 = 8.6 +/- 0.2 and 9.9 +/- 0.2 for nicergoline and prazosin respectively). Pretreatment of mesenteric vascular beds with chloroethylclonidine did not significantly modify nicergoline antagonistic potency (pA2 = 10.6 +/- 0.2). Nicergoline displaced [3H]-prazosin bound to rat forebrain membranes pretreated with chloroethylclonidine (pKi = 9.9 +/- 0.2) at concentrations 60-fold lower than in rat liver membranes (pKi = 8.1 +/- 0.2). Finally, of the nicergoline metabolites studied, lumilysergol acted as a modest alpha 1 antagonist (bromonicotinic acid was devoid of alpha 1 antagonist activity). In conclusion, nicergoline is a potent and selective alpha 1A-adrenoceptor subtype antagonist, an alpha 1-adrenoceptor subtype which is mainly represented in resistance arteries.

  10. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.

    PubMed

    Casella, Ida; Ambrosio, Caterina; Grò, Maria Cristina; Molinari, Paola; Costa, Tommaso

    2011-08-15

    The functional selectivity of adrenergic ligands for activation of β1- and β2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of β1- and β2-ARs to form a complex with the G-protein β-subunit or β-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of β1-/β2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the β2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the β1-AR interacts more efficiently than β2-AR with arrestin, but less efficiently than β2-AR with G-protein. A group of ligands exhibited β1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via β1-AR, but acted as a competitive antagonist of adrenaline via β2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the β1-AR subtype. © The Authors Journal compilation © 2011 Biochemical Society

  11. Inward rectifier K+ channel and T-type Ca2+ channel contribute to enhancement of GABAergic transmission induced by β1-adrenoceptor in the prefrontal cortex.

    PubMed

    Luo, Fei; Zheng, Jian; Sun, Xuan; Tang, Hua

    2017-02-01

    The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α 1 , α 2 , β 1 or β 2 -adrenoceptor. Our recent study has revealed that β 1 -adrenoceptor (β 1 -AR) activation modulates glutamatergic transmission in the PFC, whereas the roles of β 1 -AR in GABAergic transmission are elusive. In the current study, we probed the effects of the β 1 -AR agonist dobutamine (Dobu) on GABAergic transmission onto pyramidal neurons in the PFC of juvenile rats. Dobu increased both the frequency and amplitude of miniature IPSCs (mIPSCs). Ca 2+ influx through T-type voltage-gated Ca 2+ channel was required for Dobu-enhanced mIPSC frequency. We also found that Dobu facilitated GABA release probability and the number of releasable vesicles through regulating T-type Ca 2+ channel. Dobu depolarized GABAergic fast-spiking (FS) interneurons with no effects on the firing rate of action potentials (APs) of interneurons. Dobu-induced depolarization of FS interneurons required inward rectifier K + channel (Kir). Our results suggest that Dobu increase GABA release via inhibition of Kir, which further depolarizes FS interneurons resulting in Ca 2+ influx via T-type Ca 2+ channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.

    PubMed

    Rasmussen, Søren G F; Choi, Hee-Jung; Fung, Juan Jose; Pardon, Els; Casarosa, Paola; Chae, Pil Seok; Devree, Brian T; Rosenbaum, Daniel M; Thian, Foon Sun; Kobilka, Tong Sun; Schnapp, Andreas; Konetzki, Ingo; Sunahara, Roger K; Gellman, Samuel H; Pautsch, Alexander; Steyaert, Jan; Weis, William I; Kobilka, Brian K

    2011-01-13

    G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human β(2) adrenergic receptor (β(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive β(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 Å outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.

  13. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors.

    PubMed

    Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X

    2003-03-01

    The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.

  14. β-Adrenoceptor-Mediated Relaxation of Carbachol-Pre-Contracted Mouse Detrusor.

    PubMed

    Propping, Stefan; Newe, Manja; Lorenz, Kristina; Wirth, Manfred P; Ravens, Ursula

    2015-01-01

    To study the β-adrenoceptor subtypes involved in the relaxation responses to (-)-isoprenaline in carbachol-pre-contracted (CCh) mouse detrusor muscle with intact and denuded mucosa. Isolated muscle strips from the urinary bladder of male C57BL6 mice or β2-adrenoceptor knockout mice were pre-contracted with CCh, 1 µM and relaxed with increasing concentrations of the β-adrenoceptor (β-AR) agonist (-)-isoprenaline and forskolin. For estimating the β-AR subtypes involved, subtype-selective receptor blockers were used, that is, CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Unlike in KCl-pre-contracted muscle, the mucosa did not affect the sensitivity of the relaxation response to (-)-isoprenaline in CCh-pre-contracted murine detrusor strips. Increasing concentrations of (-)-isoprenaline produced a biphasic concentration-relaxation response without any difference both during the presence and absence of mucosa. The relaxation fraction produced by low (-)-isoprenaline concentrations was mediated by β2-AR as evidenced by a shift of the concentration-response curve to higher concentrations with ICI 118,551, but not with CGP 20712A and L748,337, and by the absence of this fraction in β2-AR-KO mice. The relaxation response with low sensitivity to (-)-isoprenaline was not affected by any of the β-AR subtype-selective blockers and was the only response detected in detrusor strips from β2-AR-KO mice. In CCh-pre-contracted mouse detrusor, β2-ARs are responsible for the relaxation component with high sensitivity to (-)-isoprenaline as indicated by the conversion of a biphasic into a monophasic CRC with ICI 118,551 or by its absence in β2-AR KO mice. The mucosa does not impair relaxation under these conditions. © 2015 S. Karger AG, Basel.

  15. Nociceptin inhibits vanilloid TRPV-1-mediated neurosensitization induced by fenoterol in human isolated bronchi.

    PubMed

    Faisy, Christophe; Naline, Emmanuel; Rouget, Céline; Risse, Paul-André; Guerot, Emmanuel; Fagon, Jean-Yves; Chinet, Thierry; Roche, Nicolas; Advenier, Charles

    2004-09-01

    Chronic exposure to beta(2)-adrenoceptor agonists, especially fenoterol, has been shown to increase smooth muscle contraction to endothelin-1 in human bronchi partly through tachykinin-mediated pathways. The purpose of this work was to further investigate the role of sensory nerves in fenoterol-induced sensitization of human airways and the effect of nociceptin, a nociceptin/orphanin FQ (NOP) receptor agonist, on the increase in contraction after fenoterol exposure. Human bronchi from 62 patients were sensitized to endothelin-1 by prolonged incubation with fenoterol (0.1 microM, 15 h). The sensitizing effect of fenoterol was inhibited by high concentration of capsaicin (10 microM, 30 min before fenoterol sensitization), which induces depletion of mediators from sensory nerves, or co-incubation of fenoterol and capsazepine (1 microM), a vanilloid TRPV-1 receptor antagonist. Moreover, short pretreatment of bronchi with capsaicin (10 microM) or capsazepine (1 microM) after sensitization by fenoterol decreased the rise in smooth muscle contraction to endothelin-1. Nociceptin (1 microM) also inhibited the increased contraction in fenoterol-sensitized bronchi. Tertiapin (10 microM), an inhibitor of the inward-rectifier K(+) channels, but not naloxone (0.1 microM), a DOP/KOP/MOP receptor antagonist, prevented the inhibitory effect of nociceptin. In conclusion, fenoterol induces sensitization of human isolated bronchi to endothelin-1 in part through the stimulation of the vanilloid TRPV-1 receptor on tachykininergic sensory nerves. Nociceptin inhibits airway hyperresponsiveness via NOP receptor activation. This effect involves inward-rectifier K(+) channels.

  16. Microfluidic resonant waveguide grating biosensor system for whole cell sensing

    NASA Astrophysics Data System (ADS)

    Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye

    2011-04-01

    We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.

  17. Determinants of Ligand Subtype-Selectivity at α1A-Adrenoceptor Revealed Using Saturation Transfer Difference (STD) NMR.

    PubMed

    Yong, Kelvin J; Vaid, Tasneem M; Shilling, Patrick J; Wu, Feng-Jie; Williams, Lisa M; Deluigi, Mattia; Plückthun, Andreas; Bathgate, Ross A D; Gooley, Paul R; Scott, Daniel J

    2018-04-20

    α 1A - and α 1B -adrenoceptors (α 1A -AR and α 1B -AR) are closely related G protein-coupled receptors (GPCRs) that modulate the cardiovascular and nervous systems in response to binding epinephrine and norepinephrine. The GPCR gene superfamily is made up of numerous subfamilies that, like α 1A -AR and α 1B -AR, are activated by the same endogenous agonists but may modulate different physiological processes. A major challenge in GPCR research and drug discovery is determining how compounds interact with receptors at the molecular level, especially to assist in the optimization of drug leads. Nuclear magnetic resonance spectroscopy (NMR) can provide great insight into ligand-binding epitopes, modes, and kinetics. Ideally, ligand-based NMR methods require purified, well-behaved protein samples. The instability of GPCRs upon purification in detergents, however, makes the application of NMR to study ligand binding challenging. Here, stabilized α 1A -AR and α 1B -AR variants were engineered using Cellular High-throughput Encapsulation, Solubilization, and Screening (CHESS), allowing the analysis of ligand binding with Saturation Transfer Difference NMR (STD NMR). STD NMR was used to map the binding epitopes of epinephrine and A-61603 to both receptors, revealing the molecular determinants for the selectivity of A-61603 for α 1A -AR over α 1B -AR. The use of stabilized GPCRs for ligand-observed NMR experiments will lead to a deeper understanding of binding processes and assist structure-based drug design.

  18. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    PubMed

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  19. Activation of β-adrenoceptor facilitates active avoidance learning through enhancement of glutamate levels in the hippocampal dentate gyrus.

    PubMed

    Lv, Jing; Feng, Hao; Chen, Ling; Wang, Wei-Yao; Yue, Xue-Ling; Jin, Qing-Hua

    2017-10-18

    Long-term potentiation (LTP) is widely accepted as the best studied model for neurophysiological mechanisms that could underlie learning and memory formation. Despite a number of studies indicating that β-adrenoceptors in the hippocampal dentate gyrus (DG) is involved in the modulation of learning and memory as well as LTP, few studies have used glutamate release as a visual indicator in awake animals to explore the role of β-adrenoceptors in learning-dependent LTP. Therefore, in the present study, the effects of propranolol (an antagonist of β-adrenoceptor) and isoproterenol (an agonist of β-adrenoceptor) on extracellular concentrations of glutamate and amplitudes of field excitatory postsynaptic potential were measured in the DG region during active avoidance learning in freely moving conscious rats. In the control group, the glutamate level in the DG was significantly increased during the acquisition of active avoidance behavior and returned to basal level following extinction training. In propranolol group, antagonism of β-adrenoceptors in the DG significantly reduced the change in glutamate level, and the acquisition of the active avoidance behavior was significantly inhibited. In contrast, the change in glutamate level was significantly enhanced by isoproterenol, and the acquisition of the active avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in glutamate level were accompanied by corresponding changes in field excitatory postsynaptic potential amplitude and active avoidance behavior. Our results suggest that activation of β-adrenoceptors in the hippocampal DG facilitates active avoidance learning by modulations of glutamate level and synaptic efficiency in rats.

  20. Beta-2 receptor agonist exposure in the uterus associated with subsequent risk of childhood asthma.

    PubMed

    Ogawa, Kohei; Tanaka, Satomi; Limin, Yang; Arata, Naoko; Sago, Haruhiko; Yamamoto-Hanada, Kiwako; Narita, Masami; Ohya, Yukihiro

    2017-12-01

    Although the beta-2 receptor agonist (B2RA) is occasionally prescribed in the prenatal period for women with preterm labor, few studies have referred to the long-term effects of intrauterine exposure to B2RA on fetus. We examined the association between intrauterine exposure to B2RA and asthma in the offspring. We obtained data from a hospital-based birth cohort study conducted in Tokyo, Japan. The outcomes of interest were three indicators, consisting of current wheeze, current asthma, and ever asthma at 5 years of age, based on the International Study of Asthma and Allergies in Childhood questionnaire. Logistic regression analysis was used to evaluate the association between intrauterine B2RA exposure and outcomes. To evaluate dose-dependent risk, we categorized children into three groups according to both the cumulative dose and duration (days) and conducted trend analysis. Of 1158 children, 94 (8.1%) were exposed to B2RA in utero, and 191 (16.5%), 111 (9.6%), and 168 (14.5%) children experienced current wheeze, current asthma, and ever asthma, respectively. After adjusting for confounders, we found an increased risk of current asthma caused by B2RA exposure with an adjusted odds ratio of 2.04 (95% confidence interval: 1.02-4.05). Trend analysis showed that B2RA exposure in utero was associated with a dose-dependent increased risk of current asthma in terms of both cumulative dose and duration (P values for trend were .015 and .017, respectively). These results were similar to those for other outcome measures. Exposure to B2RA in utero could be a risk for childhood asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  1. Enhancement of noradrenaline release by angiotensin II and bradykinin in mouse atria: evidence for cross-talk between Gq/11 protein- and Gi/o protein-coupled receptors

    PubMed Central

    Cox, S L; Schelb, V; Trendelenburg, A U; Starke, K

    2000-01-01

    The interaction between α2-autoreceptors and receptors for angiotensin (AT1) and bradykinin (B2) was studied in mouse isolated atria. The preparations were labelled with [3H]-noradrenaline and then superfused with desipramine-containing medium and stimulated electrically. Angiotensin II (10−11–10−7 M), angiotensin III (10−10–10−6 M) and bradykinin (10−11–10−7 M) enhanced the evoked overflow of tritium when preparations were stimulated with conditions that led to marked α2-autoinhibition (120 pulses at 3 Hz), but not when stimulated with conditions that led to little α2-autoinhibition (20 pulses at 50 Hz). Blockade of α-adrenoceptors by phentolamine (1 or 10 μM) reduced or abolished the effect of angiotensin II and bradykinin on the overflow response to 120 pulses at 3 Hz. Addition of the δ-opioid agonist [D-Ser2]-leucine enkephalin-Thr (DSLET, 0.1 μM), or of neuropeptide Y (0.1 μM), together with phentolamine, restored the effect of angiotensin II and bradykinin. The β-adrenoceptor agonist terbutaline (10−9–10−4 M) enhanced the evoked overflow of tritium irrespective of the degree of autoinhibition. The experiments show that (i) a marked prejunctional facilitatory effect of angiotensin and bradykinin in mouse isolated atria requires prejunctional α2-autoinhibition; (ii) in the absence of α2-autoinhibition, activation of other prejunctional Gi/o protein-coupled reeptors, namely opioid and neuropeptide Y receptors, restores a marked effect of angiotensin II and bradykinin; and (iii) the facilitatory effect of terbutaline is not dependent upon the degree of α2-autoinhibition. The findings indicate that the major part of the release-enhancing effect elicited through prejunctional Gq/11 protein-coupled receptors is due to disruption of an ongoing, α2-autoreceptor-triggered Gi/o protein mediated inhibition. PMID:10725257

  2. Characterization of noradrenaline release in the locus coeruleus of freely moving awake rats by in vivo microdialysis.

    PubMed

    Fernández-Pastor, Begoña; Mateo, Yolanda; Gómez-Urquijo, Sonia; Javier Meana, J

    2005-07-01

    The origin and regulation of noradrenaline (NA) in the locus coeruleus (LC) is unknown. The neurochemical features of NA overflow (nerve impulse dependence, neurotransmitter synthesis, vesicle storage, reuptake, alpha2-adrenoceptor-mediated regulation) were characterized in the LC. Brain microdialysis was performed in awake rats. Dialysates were analyzed for NA. NA in the LC decreased via local infusion of Ca2+-free medium (-42+/-5%) or the sodium channel blocker tetrodotoxine (TTX) (-47+/-8%) but increased (333+/-40%) via KCl-induced depolarization. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (250 mg kg(-1), i.p.) and the vesicle depletory drug reserpine (5 mg kg(-1), i.p.) decreased NA. Therefore, extracellular NA in the LC satisfies the criteria for an impulse flow-dependent vesicular exocytosis of neuronal origin. Local perfusion of the alpha2-adrenoceptor agonist clonidine (0.1-100 microM) decreased NA (E(max)=-79+/-5%) in the LC, whereas the opposite effect (E(max)=268+/-53%) was observed with the alpha2A-adrenoceptor antagonist BRL44408 (0.1-100 microM). This suggests a tonic modulation of NA release through local alpha2A-adrenoceptors. The selective NA reuptake inhibitor desipramine (DMI) (0.1-100 microM) administered into the LC increased NA in the LC (E(max)=223+/-40%) and simultaneously decreased NA in the cingulate cortex, confirming the modulation exerted by NA in the LC on firing activity of noradrenergic cells and on the subsequent NA release in noradrenergic terminals. Synaptic processes underlying NA release in the LC are similar to those in noradrenergic terminal areas. NA in the LC could represent local somatodendritic release, but also the presence of neurotransmitter release from collateral axon terminals.

  3. Structure-bias relationships for fenoterol stereoisomers in six molecular and cellular assays at the β2-adrenoceptor.

    PubMed

    Reinartz, Michael T; Kälble, Solveig; Littmann, Timo; Ozawa, Takeaki; Dove, Stefan; Kaever, Volkhard; Wainer, Irving W; Seifert, Roland

    2015-01-01

    Functional selectivity is well established as an underlying concept of ligand-specific signaling via G protein-coupled receptors (GPCRs). Functionally, selective drugs could show greater therapeutic efficacy and fewer adverse effects. Dual coupling of the β2-adrenoceptor (β2AR) triggers a signal transduction via Gsα and Giα proteins. Here, we examined 12 fenoterol stereoisomers in six molecular and cellular assays. Using β2AR-Gsα and β2AR-Giα fusion proteins, (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol were identified as biased ligands with preference for Gs. G protein-independent signaling via β-arrestin-2 was disfavored by these ligands. Isolated human neutrophils constituted an ex vivo model of β2AR signaling and demonstrated functional selectivity through the dissociation of cAMP accumulation and the inhibition of formyl peptide-stimulated production of reactive oxygen species. Ligand bias was calculated using an operational model of agonism and revealed that the fenoterol scaffold constitutes a promising lead structure for the development of Gs-biased β2AR agonists.

  4. Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α1A-adrenergic receptors.

    PubMed

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Alfonzo-Méndez, Marco A; Pupo, André S; García-Sáinz, J Adolfo

    2017-12-01

    In LNCaP cells that stably express α 1A -adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α 1A -Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α 1A -adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α 1A -AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepor, H.; Rigaud, G.; Shapiro, E.

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greatermore » in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments.« less

  6. Evaluation of certain veterinary drug residues in food. Eighty-first report of the Joint FAO/WHO Expert Committee on Food Additives.

    PubMed

    2016-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of residues of certain veterinary drugs in food and to recommend maximum levels for such residues in food. The first part of the report considers general principles regarding the evaluation of residues of veterinary drugs within the terms of reference of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), including MRLs for generic fish species, acute reference doses (ARfDs) for veterinary drugs, an approach for dietary exposure assessment of compounds used for multiple purposes (i.e veterinary drugs and pesticides), dietary exposure assessment for less-than-lifetime exposure, and the assessment of short-term (90-day and 12-month) studies in dogs. Summaries follow of the Committee's evaluations of toxicological and residue data on a variety of veterinary drugs: two insecticides (diflubenzuron and teflubenzuron), an antiparasitic agent (ivermectin), an ectoparasiticide (sisapronil) and a β2-adrenoceptor agonist (zilpaterol hydrochloride). In addition, the Committee considered issues raised in concern forms from the Codex Committee on Residues of Veterinary Drugs in Foods on lasalocid sodium, an antiparasitic agent. Annexed to the report is a summary of the Committee's recommendations on these drugs, including acceptable daily intakes (ADIs), ARfDs and proposed MRLs.

  7. Noradrenergic mechanisms in cocaine-induced reinstatement of drug seeking in squirrel monkeys.

    PubMed

    Platt, Donna M; Rowlett, James K; Spealman, Roger D

    2007-08-01

    Norepinephrine (NE) uptake and NE receptor mechanisms play important modulating roles in the discriminative stimulus and stimulant effects of cocaine. The present study investigated the role of NE mechanisms in cocaine priming-induced reinstatement of extinguished drug seeking. Squirrel monkeys (Saimiri sciureus) were trained to stability under a second-order fixed interval, fixed ratio schedule of drug self-administration in which operant responding was maintained jointly by i.v. cocaine injections and presentations of a cocaine-paired stimulus. Drug seeking was then extinguished by replacing cocaine with vehicle and eliminating the cocaine-paired stimulus. In test sessions during which the cocaine-paired stimulus was reintroduced but only vehicle was available for self-administration, priming with cocaine, the dopamine transport inhibitor 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909), and the NE transport inhibitors nisoxetine and talsupram induced dose-dependent reinstatement of drug seeking. The maximum effect of the NE transport inhibitors was less than half that of cocaine. Both nisoxetine and talsupram augmented the priming effects of a low but not a high dose of cocaine. The priming effects of nisoxetine were blocked by the alpha1-adrenoceptor antagonist prazosin, the alpha2-adrenoceptor agonist clonidine, and the beta-adrenoceptor antagonist propranolol, but not by the dopamine receptor antagonist flupenthixol. The priming effects of cocaine were antagonized by clonidine and flupenthixol. Neither nisoxetine nor cocaine increased physiological (salivary cortisol) or behavioral (self-directed behaviors) markers of stress. These findings suggest that NE transporter inhibition and alpha2-adrenoceptor mechanisms play a significant role in cocaine-induced reinstatement of drug seeking that is not secondary to activation of brain stress pathways.

  8. cAMP Regulation of Airway Smooth Muscle Function

    PubMed Central

    Billington, Charlotte K.; Ojo, Oluwaseun O.; Penn, Raymond B.; Ito, Satoru

    2013-01-01

    Agonists activating β2-adrenoceptors (β2ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E2 and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β2ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β2AR desensitization, and recent findings regarding the manner in which β2ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β2ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD. PMID:22634112

  9. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  10. The antagonistic effect of antipsychotic drugs on a HEK293 cell line stably expressing human alpha1A1-adrenoceptors.

    PubMed

    Nourian, Zahra; Mulvany, Michael J; Nielsen, Karsten Bork; Pickering, Darryl S; Kristensen, Torsten

    2008-10-31

    Antipsychotic drugs often cause orthostatic hypotension, probably through antagonist action on resistance vessel alpha(1A)-adrenoceptors. Here we have tested this possibility directly using cells transfected with a relevant human alpha(1A)-adrenoceptor splice variant. To determine a splice variant which was relevant, we used quantitative real-time polymerase chain reaction (qPCR) to determine the prevalence in human subcutaneous small arteries of three of the five splice variants ADRA1A_v1-5, which encode functional protein: alpha(1A1)-, alpha(1A3)-, alpha(1A4)-adrenoceptors. Our statistical analysis showed higher transcription levels of alpha(1A1)- than of alpha(1A3)- and alpha(1A4)-adrenoceptors (1.6 and 5.8 times, respectively). We therefore chose to study the alpha(1A1)-adrenoceptor, and the cDNA encoding it was transfected into the Flp-In-293 (modified from HEK-293) cell line to produce a cell line stably expressing a functional form of this splice variant. The expression of recombinant alpha(1A1)-adrenoceptor subtype was confirmed by Western immunoblot analysis, and its functionality demonstrated using a Fura-2 assay by a rise in intracellular calcium concentration ([Ca(2+)](i)) when challenged with phenylephrine (EC(50)=1.61x10(-8) M). From Schild analysis, prazosin, sertindole, risperidone, and haloperidol caused a concentration-dependent, rightward shift of the cumulative concentration-response curves for phenylephrine in cells expressing human recombinant alpha(1A1)-adrenoceptors to yield pK(B) values of 8.40, 8.05, 8.26 and 7.38, respectively. In [7-methoxy-(3)H]-prazosin binding experiments, high expression was seen (B(max)=48.5+/-16.7 pmol/mg protein, +/-S.E.M.) along with high affinity binding to a single site (K(d)=0.210+/-0.034 nM). The pharmacological profiles of recombinant human alpha(1A1)-adrenoceptors in competition binding studies confirmed much higher antagonist affinity of sertindole and risperidone than haloperidol for these receptors. In summary, it can be concluded that there is an approximately 10-fold higher adrenoceptor affinity of risperidone and sertindole for human alpha(1A1)-adrenoceptors compared to haloperidol. These findings are consistent with the observation that risperidone and sertindole have a higher incidence of orthostatic hypotension than haloperidol.

  11. α1-Adrenoceptors in the hippocampal dentate gyrus involved in learning-dependent long-term potentiation during active-avoidance learning in rats.

    PubMed

    Lv, Jing; Zhan, Su-Yang; Li, Guang-Xie; Wang, Dan; Li, Ying-Shun; Jin, Qing-Hua

    2016-11-09

    The hippocampus is the key structure for learning and memory in mammals and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. The influences of norepinephrine (NE) on the modulation of learning and memory, as well as LTP, through β-adrenoceptors are well documented, whereas the role of α1-adrenoceptors in learning-dependent LTP is not yet clear. In the present study, we measured extracellular concentrations of NE in the hippocampal dentate gyrus (DG) region using an in-vivo brain microdialysis and high-performance liquid chromatography techniques during the acquisition and extinction of active-avoidance behavior in freely moving conscious rats. Next, the effects of prazosin (an antagonist of α1-adrenoceptor) and phenylephrine (an agonist of the α1-adrenoceptor) on amplitudes of field excitatory postsynaptic potential were measured in the DG region during the active-avoidance behavior. Our results showed that the extracellular concentration of NE in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to the baseline level following extinction training. A local microinjection of prazosin into the DG significantly accelerated the acquisition of the active-avoidance behavior, whereas a local microinjection of phenylephrine retarded the acquisition of the active-avoidance behavior. Furthermore, in all groups, the changes in field excitatory postsynaptic potential amplitude were accompanied by corresponding changes in active-avoidance behavior. Our results suggest that NE activation of α1-adrenoceptors in the hippocampal DG inhibits active-avoidance learning by modulation of synaptic efficiency in rats.

  12. The second Lilly Prize Lecture, University of Newcastle, July 1977. beta-Adrenergic receptor blockade in hypertension, past, present and future.

    PubMed Central

    Prichard, B N

    1978-01-01

    All beta-adrenoceptor blocking drugs that have been described share the common property of being competitive inhibitors. They differ in their associated properties, the presence or absence of cardioselectivity, membrane stabilizing activity, and partial agonist activity. Recently some beta-adrenoceptor blocking drugs have been reported which also possess alpha-adrenoceptor blocking activity. The associated properties have been used as a basis for classifying beta-adrenoceptor blocking drugs (Fitzgerald, 1969, 1972). The presence or absence of cardioselectivity is most useful for dividing beta-adrenoceptor blocking drugs. The non-selective drugs (Division I) can be further divided according to the presence or absence of intrinsic sympathomimetic activity (ISA) and membrane stabilizing activity (Fitzgerald's groups I-IV). Group I possess both membrane activity and ISA, e.g. alprenolol, oxprenolol, group II just membrane action, e.g. propanolol, group III ISA but no membrane action, e.g. pindolol. Fitzgerald placed pindolol in group I but should be placed in group III as it possesses a high degree of beta-adrenoceptor blocking potency in relation to its membrane activity (Prichard, 1974). Finally drugs in group IV have neither ISA nor membrane action, e.g. sotalol, timolol. The cardioselective drugs (Division II) can be similarly sub-divided into groups I-IV according to the presence or absence of ISA or membrane action (Fitzgerald grouped all these together as group V). Lastly there are new beta-adrenergic receptor blocking drugs which in addition have alpha- adrenergic receptor blocking properties (Division III). PMID:26370

  13. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling

    PubMed Central

    Ivonnet, P; Salathe, M; Conner, G E

    2015-01-01

    BACKGROUND AND PURPOSE H2O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl− secretion. This study investigated signalling downstream of the receptors activated by H2O2. EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2O2, an EP4 receptor agonist or β2-adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca2+]I) changes were followed by microscopy using fura–2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca2+]i via Ca2+ store release (and not entry). Increased [Ca2+]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3−]. Ca2+-activated apical KCa1.1 channels and cAMP-activated basolateral KV7.1 channels contributed to H2O2-stimulated anion currents. A similar Epac-mediated pathway was seen following β2-adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca2+ crosstalk to activate sAC. The Epac-mediated Ca2+ signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli. PMID:25220136

  14. Modulation of resistance artery tone by the trace amine β-phenylethylamine: dual indirect sympathomimetic and α1-adrenoceptor blocking actions.

    PubMed

    Narang, Deepak; Kerr, Paul M; Lunn, Stephanie E; Beaudry, Rhys; Sigurdson, Julie; Lalies, Margaret D; Hudson, Alan L; Light, Peter E; Holt, Andrew; Plane, Frances

    2014-10-01

    The trace amine β-phenylethylamine (PEA) is normally present in the body at low nanomolar concentrations but can reach micromolar levels after ingestion of drugs that inhibit monoamine oxidase and primary amine oxidase. In vivo, PEA elicits a robust pressor response, but there is no consensus regarding the underlying mechanism, with both vasodilation and constriction reported in isolated blood vessels. Using functional and biochemical approaches, we found that at low micromolar concentrations PEA (1-30 μM) enhanced nerve-evoked vasoconstriction in the perfused rat mesenteric bed but at a higher concentration (100 μM) significantly inhibited these responses. The α2-adrenoceptor antagonist rauwolscine (1 µM) also enhanced nerve-mediated vasoconstriction, but in the presence of both rauwolscine (1 µM) and PEA (30 µM) together, nerve-evoked responses were initially potentiated and then showed time-dependent rundown. PEA (10 and 100 μM) significantly increased noradrenaline outflow from the mesenteric bed as determined by high-pressure liquid chromatography coupled with electrochemical detection. In isolated endothelium-denuded arterial segments, PEA (1 µM to 1 mM) caused concentration-dependent reversal of tone elicited by the α1-adrenoceptor agonists noradrenaline (EC50 51.69 ± 10.8 μM; n = 5), methoxamine (EC50 68.21 ± 1.70 μM; n = 5), and phenylephrine (EC50 67.74 ± 16.72 μM; n = 5) but was ineffective against tone induced by prostaglandin F2 α or U46619 (9,11-dideoxy-9α,11α-methanoepoxyprostaglandin F2 α). In rat brain homogenates, PEA displaced binding of both [(3)H]prazosin (Ki ≈ 25 μM) and [(3)H]rauwolscine (Ki ≈ 1.2 μM), ligands for α1- and α2-adrenoceptors, respectively. These data provide the first demonstration that dual indirect sympathomimetic and α1-adrenoceptor blocking actions underlie the vascular effects of PEA in resistance arteries. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  15. 77 FR 6804 - Advisory Committee for Reproductive Health Drugs; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... symptoms of urge urinary incontinence, urgency, and urinary frequency. Mirabegron is a beta-3- adrenoceptor (AR) agonist and is a new molecular entity. The benefit/ risk discussion will focus on the adequacy of... benefits and risks of mirabegron (YM178), under new drug application (NDA) 202611, submitted by Astellas...

  16. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors.

    PubMed

    Wang, Rui; Xu, Ying; Wu, Hong-Li; Li, Ying-Bo; Li, Yu-Hua; Guo, Jia-Bin; Li, Xue-Jun

    2008-01-06

    Curcuma longa is a main constituent of many traditional Chinese medicines, such as Xiaoyao-san, used to manage mental disorders effectively. Curcumin is a major active component of C. longa and its antidepressant-like effect has been previously demonstrated in the forced swimming test. The purpose of this study was to explore the possible contribution of serotonin (5-HT) receptors in the behavioral effects induced by curcumin in this animal model of depression. 5-HT was depleted by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA, 100 mg/kg, i.p.) prior to the administration of curcumin, and the consequent results showed that PCPA blocked the anti-immobility effect of curcumin in forced swimming test, suggesting the involvement of the serotonergic system. Moreover, pre-treatment of pindolol (10 mg/kg, i.p., a beta-adrenoceptors blocker/5-HT(1A/1B) receptor antagonist), 4-(2'-methoxy-phenyl)-1-[2'-(n-2''-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (p-MPPI, 1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (isamoltane, 2.5 mg/kg, i.p., a 5-HT(1B) receptor antagonist) was found to prevent the effect of curcumin (10 mg/kg) in forced swimming test. On the other hand, a sub-effective dose of curcumin (2.5 mg/kg, p.o.) produced a synergistic effect when given jointly with (+)-8-hydroxy-2-(di-n-propylamino)tetralin, (8-OH-DPAT, 1 mg/kg, i.p., a 5-HT(1A) receptor agonist), anpirtoline (0.25 mg/kg, i.p., a 5-HT(1B) receptor agonist) or ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), but not with ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist with higher affinity to 5-HT(2A) receptor) or R(-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 1 mg/kg, i.p., a 5-HT(2A) receptor agonist). Taken together, these results indicate that the antidepressant-like effect of curcumin in the forced swimming test is related to serotonergic system and may be mediated by, at least in part, an interaction with 5-HT(1A/1B) and 5-HT(2C) receptors.

  17. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR.

    PubMed

    Shiraishi, Yutaro; Natsume, Mei; Kofuku, Yutaka; Imai, Shunsuke; Nakata, Kunio; Mizukoshi, Toshimi; Ueda, Takumi; Iwaï, Hideo; Shimada, Ichio

    2018-01-15

    The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to arrestin, leading to the cellular responses. To understand the mechanism underlying the formation of the phosphorylated GPCR-arrestin complex, we performed NMR analyses of the phosphorylated β 2 -adrenoceptor (β 2 AR) and the phosphorylated β 2 AR-β-arrestin 1 complex, in the lipid bilayers of nanodisc. Here we show that the phosphorylated C-terminal region adheres to either the intracellular side of the transmembrane region or lipids, and that the phosphorylation of the C-terminal region allosterically alters the conformation around M215 5.54 and M279 6.41 , located on transemembrane helices 5 and 6, respectively. In addition, we found that the conformation induced by the phosphorylation is similar to that corresponding to the β-arrestin-bound state. The phosphorylation-induced structures revealed in this study propose a conserved structural motif of GPCRs that enables β-arrestin to recognize dozens of GPCRs.

  18. The alpha2-adrenoreceptor agonist dexmedetomidine protects against lipopolysaccharide-induced apoptosis via inhibition of gap junctions in lung fibroblasts.

    PubMed

    Zhang, Yuan; Tan, Xiaoming; Xue, Lianfang

    2018-01-01

    The α2-adrenoceptor inducer dexmedetomidine protects against acute lung injury (ALI), but the mechanism of this effect is largely unknown. The present study investigated the effect of dexmedetomidine on apoptosis induced by lipopolysaccharide (LPS) and the relationship between this effect and gap junction intercellular communication in human lung fibroblast cell line. Flow cytometry was used to detect apoptosis induced by LPS. Parachute dye coupling assay was used to measure gap junction function, and western blot analysis was used to determine the expression levels of connexin43 (Cx43). The results revealed that exposure of human lung fibroblast cell line to LPS for 24 h increased the apoptosis, and pretreatment of dexmedetomidine and 18α-GA significantly reduced LPS-induced apoptosis. Dexmedetomidine exposure for 1 h inhibited gap junction function mainly via a decrease in Cx43 protein levels in human lung fibroblast cell line. These results demonstrated that the inhibition of gap junction intercellular communication by dexmedetomidine affected the LPS-induced apoptosis through inhibition of gap junction function by reducing Cx43 protein levels. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A PET Tracer for Brain α2C Adrenoceptors, (11)C-ORM-13070: Radiosynthesis and Preclinical Evaluation in Rats and Knockout Mice.

    PubMed

    Arponen, Eveliina; Helin, Semi; Marjamäki, Päivi; Grönroos, Tove; Holm, Patrik; Löyttyniemi, Eliisa; Någren, Kjell; Scheinin, Mika; Haaparanta-Solin, Merja; Sallinen, Jukka; Solin, Olof

    2014-07-01

    We report the development of a PET tracer for α2C adrenoceptor imaging and its preliminary preclinical evaluation. α2C adrenoceptors in the human brain may be involved in various neuropsychiatric disorders, such as depression, schizophrenia, and neurodegenerative diseases. PET tracers are needed for imaging of this receptor system in vivo. High-specific-activity (11)C-ORM-13070 (1-[(S)-1-(2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]-4-(3-(11)C-methoxymethylpyridin-2-yl)-piperazine) was synthesized by (11)C-methylation of O-desmethyl-ORM-13070 with (11)C-methyl triflate, which was prepared from cyclotron-produced (11)C-methane via (11)C-methyl iodide. Rats and mice were investigated in vivo with PET and ex vivo with autoradiography. The specificity of (11)C-ORM-13070 binding to α2 adrenoceptors was demonstrated in rats pretreated with atipamezole, an α2 adrenoceptor antagonist. The α2C adrenoceptor selectivity of the tracer was determined by comparing tracer binding in wild-type and α2A- and α2AC adrenoceptor knockout (KO) mice. (11)C-ORM-13070 and its radioactive metabolites in rat plasma and brain tissue were analyzed with radio-high-performance liquid chromatography and mass spectroscopy. Human radiation dose estimates were extrapolated from rat biodistribution data. The radiochemical yield, calculated from initial cyclotron-produced (11)C-methane, was 9.6% ± 2.7% (decay-corrected to end of bombardment). The specific activity of the product was 640 ± 390 GBq/μmol (decay-corrected to end of synthesis). The radiochemical purity exceeded 99% in all syntheses. The highest levels of tracer binding were observed in the striatum and olfactory tubercle of rats and control and α2A KO mice-that is, in the brain regions known to contain the highest densities of α2C adrenoceptors. In rats pretreated with atipamezole and in α2AC KO mice, (11)C tracer binding in the striatum and olfactory tubercle was low, similar to that of the frontal cortex and thalamus, regions with low densities of α2C adrenoceptors. Two radioactive metabolites were found in rat plasma, but only one of them was found in the brain; their identity was not revealed. The estimated effective radiation dose was comparable with the average exposure level in PET studies with (11)C tracers. An efficient method for the radiosynthesis of (11)C-ORM-13070 was developed. (11)C-ORM-13070 emerged as a potential novel radiotracer for in vivo imaging of brain α2C adrenoceptors. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Oil Exposure Impairs In Situ Cardiac Function in Response to β-Adrenergic Stimulation in Cobia (Rachycentron canadum).

    PubMed

    Cox, Georgina K; Crossley, Dane A; Stieglitz, John D; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin

    2017-12-19

    Aqueous crude oil spills expose fish to varying concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs), which can have lethal and sublethal effects. The heart is particularly vulnerable in early life stages, as PAH toxicity causes developmental cardiac abnormalities and impaired cardiovascular function. However, cardiac responses of juvenile and adult fish to acute oil exposure remain poorly understood. We sought to assess cardiac function in a pelagic fish species, the cobia (Rachycentron canadum), following acute (24 h) exposure to two ecologically relevant levels of dissolved PAHs. Cardiac power output (CPO) was used to quantify cardiovascular performance using an in situ heart preparation. Cardiovascular performance was varied using multiple concentrations of the β-adrenoceptor agonist isoproterenol (ISO) and by varying afterload pressures. Oil exposure adversely affected CPO with control fish achieving maximum CPO's (4 mW g -1 Mv) greater than that of oil-exposed fish (1 mW g -1 Mv) at ISO concentrations of 1 × 10 -6 M. However, the highest concentration of ISO (1 × 10 -5 M) rescued cardiac function. This indicates an interactive effect between oil-exposure and β-adrenergic stimulation and suggests if animals achieve very large increases in β-adrenergic stimulation it could play a compensatory role that may mitigate some adverse effects of oil-exposure in vivo.

  1. Comparative Evaluation of Partial α2 -Adrenoceptor Agonist and Pure α2 -Adrenoceptor Antagonist on the Behavioural Symptoms of Withdrawal after Chronic Alcohol Administration in Mice.

    PubMed

    Arora, Shivani; Vohora, Divya

    2016-08-01

    As an addictive drug, alcohol produces withdrawal symptoms if discontinued abruptly after chronic use. Clonidine (CLN), a partial α2 -adrenergic agonist, and mirtazapine (MRT), an antagonist of α2 -adrenoceptor, both clinically aid alcohol withdrawal. Considering different mechanisms of action of the two drugs, this study was designed to see how far these two mechanistically different drugs differ in their ability to decrease the severity of ethanol withdrawal syndrome. The effect of CLN and MRT on ethanol withdrawal-induced anxiety, depression and memory impairment was analysed using EPM, FST and PAR tests, respectively. Animals received distilled water, ethanol and/or either of the drugs (CLN and MRT) in different doses. Relapse to alcohol use was analysed by CPP test. Animals received ethanol as a conditioning drug and distilled water, CLN or MRT as test drug. CLN and MRT both alleviated anxiety in a dose-dependent manner. MRT (4 mg/kg) was more effective than CLN (0.1 mg/kg) in ameliorating the anxiogenic effect of alcohol withdrawal. However, CLN treatment increased depression. It significantly decreased swimming time and increased immobility time, whereas MRT treatment decreased immobility time and increased climbing and swimming time during abstinence. The effect was dose dependent for both drugs. The results of PAR test show that CLN treatment worsens working memory. Significant increase in SDE and TSZ and decrease in SDL were observed in CLN-treated animals. MRT treatment, on the other hand, improved working memory at both doses. Further, both CLN and MRT alleviated craving. A significant decrease in time spent in the ethanol-paired chamber was seen. MRT treatment at both doses showed better effect than CLN in preventing the development of preference in CPP test. These findings indicate a potential therapeutic use and better profile of mirtazapine over clonidine in improving memory, as well as in alleviating depression, anxiety and craving associated with alcohol withdrawal. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Effect of pioglitazone on vasopressor responses to adrenergic agonists and angiotensin II in diabetic and non-diabetic spontaneously hypertensive rats.

    PubMed

    Afzal, Sheryar; Sattar, Munavvar Abdul; Akhtar, Safia; Binti Abdullah, Nor Azizan; Eseyin, Olorunfemi A; Abdulla, Mohammed H; Johns, Edward James

    2018-05-01

    Pioglitazone, peroxisome proliferator-activated receptor (PPAR-γ) agonist, is a therapeutic drug for diabetes. Present study investigated the interaction between PPAR-γ and alpha adrenoceptors in modulating vasopressor responses to Angiotensin II (Ang II) and adrenergic agonists, in diabetic & non-diabetic Spontaneously Hypertensive Rats (SHRs). Diabetes was induced with an i.p injection of streptozotocin (40 mg/kg) in two groups (STZ-CON, STZ-PIO), whereas two groups remained non diabetic (ND-CO, ND-PIO). One diabetic and non-diabetic group received Pioglitazone (10mg/kg) orally for 21 days. On day 28, the animals were anaesthetized with sodium pentobarbitone (60mg/kg) and prepared for measurement of systemic haemodynamics. Basal mean arterial pressure of STZ-CON was higher than ND-CON, whereas following pioglitazone treatment, MAP was lower compared to respective controls. MAP responses to i.v administration of NA, PE, ME and ANG II were significantly lower in diabetic SHRs: STZ-CON vs ND-CON (35%). Pioglitazone significantly decreased responses to NA, PE, ME and ANG II in ND-PIO versus ND-CON by 63%. Responses to NA and ANG II were significantly attenuated in STZ-PIO vs. ND-PIO (40%). PPAR-γ regulates systemic hemodynamic in diabetic model and cross-talk relationship exists between PPAR-γ and α1-adrenoceptors, ANG II in systemic vasculature of SHRs.

  3. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.

    PubMed

    Patel, Kruti R; Bai, Yan; Trieu, Kenneth G; Barrios, Juliana; Ai, Xingbin

    2017-10-01

    Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. © FASEB.

  4. Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, beta-adrenoceptors and protein kinase C in intestinal smooth muscle.

    PubMed Central

    Prestwich, S A; Bolton, T B

    1995-01-01

    1. The effects of caffeine, isoprenaline, dibutyryl cyclic AMP, isobutylmethylxanthine (IBMX), 12-O-tetradecanoylphorbol-13-acetate (TPA) or 1-oleoyl-2-acetylglycerol (OAG), (protein kinase C (PKC) activators), 2-methoxy verapamil (D600), thapsigargin and ryanodine on muscarinic acetylcholine receptor (AChR)-stimulated inositol phospholipid hydrolysis were studied in smooth muscle fragments from the longitudinal layer of the small intestine of the guinea-pig. 2. Incubation of the fragments with the muscarinic agonist, carbachol (CCh) (100 microM) resulted in rapid increases in the levels of all the inositol phosphate isomers with maximal increases in the [3H]-inositol (1,4,5) trisphosphate ([3H]-Ins(1,4,5)P3) isomer occurring 10 s following incubation. 3. The beta-adrenoceptor agonist, isoprenaline (10 microM) and dibutyryl cyclic AMP (10 microM), a membrane permeant analogue of cyclic AMP both reduced the CCh stimulation, but not the basal levels of [3H]-inositol phosphates. This inhibition by dibutyryl cyclic AMP was enhanced in the presence of the phosphodiesterase inhibitor, IBMX. CCh inhibited the isoprenaline-induced increases in the levels of cyclic AMP and this was via a pertussi toxin (PTX)-sensitive G-protein mechanism. 4. TPA (1 microM) and OAG (100 microM) a 1,2-diacylglycerol (DAG) analogue both reduced the CCh-induced increases in [3H]-inositol phosphates levels but neither affected basal values nor the basal levels of cyclic AMP. 5. D600 (10 microM), which blocks voltage-dependent Ca2+ channels, also reduced the CCh-stimulated levels of [3H]-inositol phosphates suggesting that some of the agonist-induced increases are due to a potentiating effect of Ca2+ entering the cell. 6. Caffeine (0.5-30 mM) significantly inhibited both the basal and CCh-induced increases in all the [3H]-inositol phosphate isomers. Its inhibitory action was not due to increases in cyclic AMP since caffeine had no effect on the levels of cyclic AMP at concentrations up to 30 mM. 7. Incubation with thapsigargin (1 microM) and ryanodine (10 microM) had no effect on either basal or CCh-induced inositol phospholipid hydrolysis or cyclic AMP levels. 8. The results indicate a reciprocal inhibition by beta-adrenoceptors and muscarinic AChRs of their effects on cyclic AMP and inositol phosphate levels respectively. Ca2+ entering the cell (but not the action of ryanodine or thapsigargin) potentiates while caffeine inhibits muscarinic AChR-induced rises in inositol phosphate levels. Diacylglycerols may exert a negative feedback inhibition on inositol phosphate production. PMID:7537591

  5. Selective regulation of beta 1- and beta 2-adrenoceptors in the human heart by chronic beta-adrenoceptor antagonist treatment.

    PubMed Central

    Michel, M. C.; Pingsmann, A.; Beckeringh, J. J.; Zerkowski, H. R.; Doetsch, N.; Brodde, O. E.

    1988-01-01

    1. In 44 patients undergoing coronary artery bypass grafting, the effect of chronic administration of the beta-adrenoceptor antagonists sotalol, propranolol, pindolol, metoprolol and atenolol on beta-adrenoceptor density in right atria (containing 70% beta 1- and 30% beta 2-adrenoceptors) and in lymphocytes (having only beta 2-adrenoceptors) was studied. 2. beta-Adrenoceptor density in right atrial membranes and in intact lymphocytes was assessed by (-)-[125I]-iodocyanopindolol (ICYP) binding; the relative amount of right atrial beta 1- and beta 2-adrenoceptors was determined by inhibition of ICYP binding by the selective beta 2-adrenoceptor antagonist ICI 118,551 and analysis of the resulting competition curves by the iterative curve fitting programme LIGAND. 3. With the exception of pindolol, all beta-adrenoceptor antagonists increased right atrial beta-adrenoceptor density compared to that observed in atria from patients not treated with beta-adrenoceptor antagonists. 4. All beta-adrenoceptor antagonists increased right atrial beta 1-adrenoceptor density; on the other hand, only sotalol and propranolol also increased right atrial beta 2-adrenoceptor density, whereas metoprolol and atenolol did not affect it and pindolol decreased it. 5. Similarly, in corresponding lymphocytes, only sotalol or propranolol increased beta 2-adrenoceptor density, while metoprolol and atenolol did not affect it and pindolol decreased it. 6. It is concluded that beta-adrenoceptor antagonists subtype-selectively regulate cardiac and lymphocyte beta-adrenoceptor subtypes. The selective increase in cardiac beta 1-adrenoceptor density evoked by metoprolol and atenolol may be one of the reasons for the beneficial effects observed in patients with end-stage congestive cardiomyopathy following intermittent treatment with low doses of selective beta 1-adrenoceptor antagonists. PMID:2902891

  6. Aminophylline preferentially inhibits chloroethylclonidine-insensitive alpha-adrenoceptor-mediated contractions in rat aorta.

    PubMed

    Duarte, J; Pérez-Vizcaíno, F; Zarzuelo, A; Jiménez, J; Tamargo, J

    1993-11-01

    1. In rat thoracic aortae, contractions induced by methoxamine were inhibited by chloroethylclonidine, whereas oxymetazoline-induced contractions, which were more dependent on Ca(2+)-entry, were insensitive to chloroethylclonidine. 2. Aminophylline inhibited the contractions and 45Ca(2+)-uptake induced by both methoxamine and oxymetazoline. However, oxymetazoline-induced contractions were more sensitive to inhibition by aminophylline and D600. 3. Thus, the partial selectivity of aminophylline for the chloroethylclonidine-resistant, highly dependent on extracellular Ca2+, oxymetazoline-mediated responses may be explained by a preferential inhibition of agonist-induced Ca2+ entry as compared to inhibition of other transduction pathways.

  7. The new generation dihydropyridine type calcium blockers, bearing 4-phenyl oxypropanolamine, display alpha-/beta-adrenoceptor antagonist and long-acting antihypertensive activities.

    PubMed

    Liang, Jhy-Chong; Yeh, Jwu-Lai; Wang, Chia-Sui; Liou, Shwu-Fen; Tsai, Chieh-Ho; Chen, Ing-Jun

    2002-03-01

    A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, were prepared. Oxypropanolamine was synthesized by replacing the phenolic OH of vanillin or other compounds, having a phenyl aldehyde group, with epichlorohydrin, followed by cleavaging the obtained epoxide compounds with tert-butylamine, n-butylamine or 2-methoxy-1-oxyethylamino benzene (guaiacoxyethylamine), respectively. Obtained various oxypropanolamine compounds, still remaining a phenyl aldehyde moiety, were then performed by Hantzsch condensation reaction with methylacetoacetate or ethylacetoacetate, respectively, to give our new series of dihydropyridine linked with the 4-phenyl ring. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that associated with calcium channel and adrenoceptor antagonist activities. Dihydropyridine derivatives that with oxypropanolamine side chain on their 4-phenyl ring associated alpha-/beta-adrenoceptor blocking activities created a new family of calcium entry and the third generation beta-adrenoceptor blockers. Optimizing this research to obtain more potent alpha-/beta-adrenoceptor blocking and long-acting antihypertensive oxypropanolamine on the 4-phenyl ring of dihydropyridine series compounds was thus accomplished and classified as third generation dihydropyridine type calcium channel blockers, in comparison with previous short-acting type nifedipine and long-acting type amlodipine. We concluded that compounds 1a, 1b and 1g showed not only markedly high calcium-antagonistic activity but also the highest antihypertensive effect; compounds 1b, 1c, 1f, 1g, 1i and 1j induced sustained antihypertensive effects are major and attributed to their calcium entry and alpha-adrenoceptor blocking activities in the blood vessel due to their introduction of 2-methoxy, 1-oxyethylamino benzene moiety in the side chain on the 4-phenyl ring of dihydropyridine. Bradycardiac effects of all the compounds 1a-1j resulted from calcium entry and beta-adrenoceptor blocking, which attenuate the sympathetic activation-associated reflex tachycardia in the heart. We selected compound 1b as candidate compound for further pharmacological and pre-clinical evaluation studies.

  8. cAMP regulation of airway smooth muscle function.

    PubMed

    Billington, Charlotte K; Ojo, Oluwaseun O; Penn, Raymond B; Ito, Satoru

    2013-02-01

    Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Involvement of α₂-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice.

    PubMed

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2013-10-01

    Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique.

  10. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia.

    PubMed

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M; Bargalló-Gispert, Núria; López-Soriano, Francisco J; Barreiro, Esther

    2018-06-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta 2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 10 8 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta 2 agonist formoterol in the cachectic muscles through several key biological pathways. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Effect of salbutamol on innervated and denervated rat soleus muscle.

    PubMed

    Soić-Vranić, T; Bobinac, D; Bajek, S; Jerković, R; Malnar-Dragojević, D; Nikolić, M

    2005-12-01

    The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a beta2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other beta2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  12. Effects of age and hypertension on α1-adrenoceptors in the major source arteries of the rat bladder and penis.

    PubMed

    Yono, Makoto; Tanaka, Takanori; Tsuji, Shigeki; Irie, Shin; Sakata, Yukikuni; Otani, Masayuki; Yoshida, Masaki; Latifpour, Jamshid

    2011-11-16

    α(1)-Adrenoceptors regulate blood pressure, regional vascular resistance and tissue blood flow. As aging and hypertension may impact pelvic arterial blood flow resulting in bladder and penile dysfunction, we investigated effects of age and hypertension on α(1)-adrenoceptors in the major source arteries of the rat bladder and penis. Using radioligand receptor binding, real-time reverse transcription-polymerase chain reaction (RT-PCR) and fluorescent microsphere infusion techniques, we compared 3 and 22-month-old male Fischer rats, and male normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Twenty-two-month-old rats and SHRs had significantly higher total α(1)-adrenoceptor density in the internal iliac artery and lower blood flow to the bladder and penis than 3-month-old and WKY rats, respectively. RT-PCR data showed an age and hypertension related increase in the expression of α(1B)-adrenoceptor mRNA in the internal iliac, vesical and internal pudendal arteries and a switch from α(1A) predominance in 3-month-old and WKY rats to α(1B)>α(1A) in 22-month-old rats and SHRs. Our data indicate the presence of age and hypertension related alterations in vascular α(1)-adrenoceptor subtype distribution and in blood flow to the rat bladder and penis. These findings suggest that pharmacological blockade of the vascular α(1B)-adrenoceptor, which could increase pelvic blood flow, may contribute to the improvement of bladder and penile dysfunctions in animal models for aging and hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Synergistic effects between intrathecal clonidine and neostigmine in the formalin test.

    PubMed

    Yoon, M H; Yoo, K Y; Jeong, C Y

    2001-08-01

    Spinal alpha-2 adrenoceptors and cholinergic receptors are involved in the regulation of acute nociception and the facilitated processing. The aim of this study was to examine the pharmacological effect of an intrathecal alpha-2 agonist and a cholinesterase inhibitor on the facilitated pain model induced by formalin injection and to determine the nature of drug interaction using an isobolographic analysis. Both intrathecal clonidine and neostigmine dose-dependently suppressed the flinching during phase 1 and phase 2. Intrathecal pretreatment with atropine reversed the antinociceptive effects of clonidine and neostigmine in both phases. Pretreatment with intrathecal yohimbine attenuated the effect of clonidine. The antinociception of clonidine and neostigmine was not reversed by mecamylamine. Isobolographic analysis showed that intrathecal clonidine and neostigmine acted synergistically in both phase 1 and 2. Intrathecal pretreatment with atropine and yohimbine antagonized the effect of the mixture of clonidine and neostigmine in both phases, but no antagonism was observed with mecamylamine pretreatment. These data indicate that spinal clonidine and neostigmine are effective to counteract the facilitated state evoked formalin stimulus, and these two drugs interact in a synergistic fashion. In addition, the analgesic action of intrathecal clonidine is mediated by spinal muscarinic receptors as well as alpha-2 adrenoceptors.

  14. Antidiarrhoeal activity of aqueous leaf extract of Caladium bicolor (Araceae) and its possible mechanisms of action.

    PubMed

    Salako, Olanrewaju A; Akindele, Abidemi J; Shitta, Omotoyosi M; Elegunde, Olajumoke O; Adeyemi, Olufunmilayo O

    2015-12-24

    Caladium bicolor (Araceae) is a horticulture plant also used by some traditional medicine practitioners in the treatment of diarrhoea and other gastrointestinal disorders. This study was conducted to evaluate the antidiarrhoeal activity of the aqueous leaf extract of C. bicolor and its possible mechanisms of action in rodents. Normal and castor oil-induced intestinal transit and castor oil-induced diarrhoea tests were carried out in mice while gastric emptying and enteropooling tests were conducted in rats following the administration of distilled water (10 ml/kg, p.o.), C. bicolor extract (1-50mg/kg, p.o.) and loperamide (5mg/kg, p.o.). The probable mechanisms of action of C. bicolor was investigated following pre-treatment with yohimbine (10mg/kg, s.c.; α2-adrenoceptor antagonist), pilocarpine (1mg/kg, s.c.; non-selective muscarinic receptor agonist), prazosin (1mg/kg, s.c.; α1-adrenoceptor antagonist) and propranolol (1mg/kg, i.p.; non-selective β-adrenoceptor antagonist) 15 min prior to administration of C. bicolor extract (50mg/kg, p.o.). After 30 min of pre-treatment with these drugs, the mice were subjected to the castor oil-induced intestinal transit test. C. bicolor extract did not produce significant (p>0.05) effect on normal intestinal transit unlike loperamide which caused significant (p<0.001) inhibition (61.57%). The extract caused significant (p<0.001) dose-dependent inhibition of castor oil-induced intestinal transit with peak effect, 100% inhibition, elicited at the dose of 50mg/kg compared to 86.97% inhibition for loperamide. Yohimbine and pilocarpine most significantly (p<0.001) reversed this effect of the extract. In the castor oil-induced diarrhoea test, the extract (1mg/kg) and loperamide significantly (p<0.05, 0.01) delayed the onset of diarrhoea. For diarrhoea score, the extract (1 and 50mg/kg) inhibited diarrhoea development (47.53% and 43.83% inhibition, respectively) like loperamide (5mg/kg; 54.94%). The in vivo antidiarrhoeal index of the extract at 1 and 50mg/kg was 50.07% and 42.81% respectively compared to 58.15% for loperamide. The results obtained in this study suggest that the aqueous leaf extract of C. bicolor possess antidiarrhoeal activity due to its anti-motility effect possibly via antagonist action on intestinal muscarinic receptors and agonist action on intestinal α2-adrenoceptors. This justifies the use of the extract in traditional medicine for the treatment of diarrhoea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    PubMed

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  16. Pharmacology of the lower urinary tract

    PubMed Central

    Hennenberg, Martin; Stief, Christian G.; Gratzke, Christian

    2014-01-01

    Pharmacology of the lower urinary tract provides the basis for medical treatment of lower urinary tract symptoms (LUTS). Therapy of LUTS addresses obstructive symptoms (frequently explained by increased prostate smooth muscle tone and prostate enlargement) in patients with benign prostate hyperplasia (BPH) and storage symptoms in patients with overactive bladder (OAB). Targets for medical treatment include G protein-coupled receptors (α1-adrenoceptors, muscarinic acetylcholine receptors, β3-adrenoceptors) or intracellular enzymes (5α-reductase; phosphodiesterase-5, PDE5). Established therapies of obstructive symptoms aim to induce prostate smooth muscle relaxation by α1-blockers or PDE5 inhibitors, or to reduce prostate growth and volume with 5α-reductase inhibitors. Available options for treatment of OAB comprise anitmuscarinics, β3-adrenoceptor agonists, and botulinum toxin A, which improve storage symptoms by inhibition of bladder smooth muscle contraction. With the recent approval of β3-antagonists, PDE inhibitors, and silodosin for therapy of LUTS, progress from basic research of lower urinary tract pharmacology was translated into new clinical applications. Further targets are in preclinical stages of examination, including modulators of the endocannabinoid system and transient receptor potential (TRP) channels. PMID:24744518

  17. Accelerometric comparison of the locomotor pattern of horses sedated with xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride.

    PubMed

    López-Sanromán, F Javier; Holmbak-Petersen, Ronald; Varela, Marta; del Alamo, Ana M; Santiago, Isabel

    2013-06-01

    To evaluate the duration of effects on movement patterns of horses after sedation with equipotent doses of xylazine hydrochloride, detomidine hydrochloride, or romifidine hydrochloride and determine whether accelerometry can be used to quantify differences among drug treatments. 6 healthy horses. Each horse was injected IV with saline (0.9% NaCl) solution (10 mL), xylazine diluted in saline solution (0.5 mg/kg), detomidine diluted in saline solution (0.01 mg/kg), or romifidine diluted in saline solution (0.04 mg/kg) in random order. A triaxial accelerometric device was used for gait assessment 15 minutes before and 5, 15, 30, 45, 60, 75, 90, 105, and 120 minutes after each treatment. Eight variables were calculated, including speed, stride frequency, stride length, regularity, dorsoventral power, propulsive power, mediolateral power, and total power; the force of acceleration and 3 components of power were then calculated. Significant differences were evident in stride frequency and regularity between treatments with saline solution and each α2-adrenoceptor agonist drug; in speed, dorsoventral power, propulsive power, total power, and force values between treatments with saline solution and detomidine or romifidine; and in mediolateral power between treatments with saline solution and detomidine. Stride length did not differ among treatments. Accelerometric evaluation of horses administered α2-adrenoceptor agonist drugs revealed more prolonged sedative effects of romifidine, compared with effects of xylazine or detomidine. Accelerometry could be useful in assessing the effects of other sedatives and analgesics. Accelerometric data may be helpful in drug selection for situations in which a horse's balance and coordination are important.

  18. Role of α1-adrenoceptor subtypes in the effects of methylenedioxy methamphetamine (MDMA) on body temperature in the mouse

    PubMed Central

    Bexis, S; Docherty, J R

    2007-01-01

    Background and purpose: We have investigated the ability of α1-adrenoceptor antagonists to affect the hyperthermia produced by methylenedioxy methamphetamine (MDMA) in conscious mice. Experimental approach: Mice were implanted with temperature probes under ether anaesthesia and allowed 2 weeks recovery. MDMA (20 mg kg−1) was administered subcutaneously 30 min after vehicle or test antagonist or combination of antagonists and effects on body temperature monitored. Key results: Following vehicle, MDMA produced a hyperthermia, reaching a maximum increase of 1.8 °C at 140 min. Prazosin (0.1 mg kg−1) revealed an early significant hypothermia to MDMA of −1.94 °C. The α1A-adrenoceptor antagonist RS 100329 (0.1 mg kg−1), or the α1D-adrenoceptor antagonist BMY 7378 (0.5 mg kg−1) given alone, did not reveal a hypothermia to MDMA, but the combination of the two antagonists revealed a significant hypothermia to MDMA. The putative α1B-adrenoceptor anatagonist cyclazosin (1 mg kg−1) also revealed a significant hypothermia to MDMA, but actions of cyclazosin at the other α1-adrenoceptor subtypes cannot be excluded. Conclusions and implications: More than one subtype of α1-adrenoceptor is involved in a component of the hyperthermic response to MDMA in mouse, probably both α1A- and α1D-adrenoceptors, and removal of this α1-adrenoceptor-mediated component reveals an initial hypothermia. PMID:18037913

  19. Influence of the low thyroid state in diabetes mellitus on cardiac function and inotropic responsiveness to alpha 1-adrenoceptor stimulation: comparison with the role of hypothyroidism alone.

    PubMed

    Beenen, O H; Pfaffendorf, M; van Zwieten, P A

    1996-10-01

    The hypothyroid state accompanying diabetes mellitus has been suggested to be partly responsible for the diabetes-induced metabolic, hemodynamic, and pharmacological cardiovascular changes. We assessed the effectivity of streptozotocin (STZ) to induce diabetes mellitus and a hypothyroid state. Furthermore, we investigated the influence of diabetes and hypothyrodism on cardiac function and the inotropic responsiveness to the alpha 1-adrenoceptor agonist cirazoline in isolated perfused hearts. Fasted or nonfasted Wistar rats were made diabetic with STZ 20, 40 or 60 mg/kg intravenously (i.v.). Another group was made hypothyroid by addition of 6-n-propyl-2-thiouracil (PTU) to their drinking water. Rats receiving PTU became hypothyroid, whereas rats receiving STZ became simultaneously diabetic and hypothyroid. Basal functional parameters obtained in isolated perfused hearts were not influenced by diabetes, whereas maximal contractility was reduced in hearts obtained from hypothyroid animals. Cardiac inotropic responses to cirazoline were increased in diabetic rats, whereas responses in hypothyroid rats were not different from those in hearts obtained from control animals. Although diabetes mellitus and hypothyroidism are associated with various similar metabolic and haemodynamic parameters, the increased inotropic response to alpha 1-adrenoceptor stimulation as observed in isolated perfused hearts of diabetic rats cannot be explained by the decrease in serum thyroxine levels.

  20. The expression of β3-adrenoceptors and their function in the human prostate.

    PubMed

    Suzuki, Takahisa; Otsuka, Atsushi; Matsumoto, Rikiya; Furuse, Hiroshi; Ozono, Seiichiro

    2016-02-01

    Little is known about β3-adrenoceptor (AR) expression and function in human prostate. We examined the expression and distribution of β-AR subtypes in normal prostate and benign prostatic hyperplasia (BPH) tissues, and investigated which selective β-AR subtype agonist was most involved in the relaxation of isolated human prostate strips. Messenger RNA (mRNA) expression for β1-, β2-, and β3 -ARs was investigated using reverse transcriptase-polymerase chain reactions (RT-PCR). Quantitative analysis of mRNA expression of β-AR subtypes between normal prostate and BPH tissues was performed using quantitative RT-PCR (qPCR). Distributions were examined by immunohistochemistry (IHC). Strips of human normal prostate or BPH were suspended in organ baths and exposed to isoproterenol, dobutamine, procaterol, and TRK-380 to investigate their relaxant effects on KCl-induced contractions, and their inhibitory effects on electrical field stimulation (EFS)-induced contractions. We confirmed the presence of mRNA for β1-, β2-, and β3-ARs both in normal prostate and in BPH tissues. For β3-AR, mRNA expression in BPH tissues was significantly higher than in normal prostate tissues, but there was no significant difference in β1- and β2-AR expression between normal and BPH tissues. IHC revealed differences in staining intensity between smooth muscle cells and glandular cells, with different proportions for different β-AR subtypes. Staining of β3-AR was particularly intense in smooth muscle cells as opposed to glandular cells. Isoproterenol and TRK-380 significantly decreased the tone of KCl-induced contractions of the normal prostate strips. The rank order of relaxant effects was isoproterenol > TRK-380 > procaterol > dobutamine. All selective β-AR agonists significantly decreased the amplitude of EFS-induced contractions of the normal prostate strips. The rank order of inhibitory effects was isoproterenol > dobutamine >TRK-380 > procaterol. In BPH strips, all selective β-AR agonists showed no significant relaxant or inhibitory effects on KCl- or EFS-induced contractions. β3 -AR is abundant in human prostate smooth muscle, whose relaxation is mediated by β1- and β3-AR stimulation. β3-AR agonists may have clinical use in the treatment of male non-BPH patients or neurogenic bladder patients with voiding dysfunction. © 2015 Wiley Periodicals, Inc.

  1. Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldridge, Justin E.; Meyer, Armando; Centro de Estudos da Saude do Trabalhador e Ecologia Humana, Escola Nacional de Saude Publica, Fundacao Oswaldo Cruz, Rio de Janeiro

    2005-03-01

    Developmental exposure to unrelated neurotoxicants can nevertheless produce similar neurobehavioral outcomes. We examined the effects of developmental exposure to terbutaline, a tocolytic {beta}{sub 2}-adrenoceptor agonist used to arrest preterm labor, and chlorpyrifos (CPF), a widely used organophosphate pesticide, on serotonin (5HT) systems. Treatments were chosen to parallel periods typical of human developmental exposures, terbutaline (10 mg/kg) on postnatal days (PN) 2-5 and CPF (5 mg/kg) on PN11-14, with assessments conducted on PN45, comparing each agent alone as well as sequential administration of both. Although neither treatment affected growth or viability, each elicited similar alterations in factors that are critical tomore » the function of the 5HT synapse: 5HT{sub 1A} receptors, 5HT{sub 2} receptors, and the presynaptic 5HT transporter (5HTT). Either agent elicited global increases in 5HT receptors and the 5HTT in brain regions possessing 5HT cell bodies (midbrain, brainstem) as well as in the hippocampus, which contains 5HT projections. For both terbutaline and CPF, males were affected more than females, although there were some regional disparities in the sex selectivity between the two agents. Both altered 5HT receptor-mediated cell signaling, suppressing stimulatory effects on adenylyl cyclase and enhancing inhibitory effects. When animals were exposed sequentially to both agents, the outcomes were no more than additive and, for many effects, less than additive, suggesting convergence of the two agents on a common set of developmental mechanisms. Our results indicate that 5HT systems represent a target for otherwise unrelated neuroteratogens.« less

  2. Guanfacine Modulates the Emotional Biasing of Amygdala-Prefrontal Connectivity for Cognitive Control

    PubMed Central

    Schulz, Kurt P.; Clerkin, Suzanne M.; Newcorn, Jeffrey H.; Halperin, Jeffrey M.; Fan, Jin

    2014-01-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1 mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. PMID:25059532

  3. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses

    PubMed Central

    Baker, Jillian G.; Kemp, Philip; March, Julie; Fretwell, Laurice; Hill, Stephen J.; Gardiner, Sheila M.

    2011-01-01

    β-Adrenoceptor antagonists differ in their degree of partial agonism. In vitro assays have provided information on ligand affinity, selectivity, and intrinsic efficacy. However, the extent to which these properties are manifest in vivo is less clear. Conscious freely moving rats, instrumented for measurement of heart rate (β1; HR) and hindquarters vascular conductance (β2; HVC) were used to measure receptor selectivity and ligand efficacy in vivo. CGP 20712A caused a dose-dependent decrease in basal HR (P<0.05, ANOVA) at 5 doses between 6.7 and 670 μg/kg (i.v.) and shifted the dose-response curve for isoprenaline to higher agonist concentrations without altering HVC responses. In contrast, at doses of 67 μg/kg (i.v.) and above, ICI 118551 substantially reduced the HVC response to isoprenaline without affecting HR responses. ZD 7114, xamoterol, and bucindolol significantly increased basal HR (ΔHR: +122±12, +129±11, and +59±11 beats/min, respectively; n=6), whereas other β-blockers caused significant reductions (all at 2 mg/kg i.v.). The agonist effects of xamoterol and ZD 7114 were equivalent to that of the highest dose of isoprenaline. Bucindolol, however, significantly antagonized the response to the highest doses isoprenaline. An excellent correlation was obtained between in vivo and in vitro measures of β1-adrenoceptor efficacy (R2=0.93; P<0.0001).—Baker, J. G., Kemp, P., March, J., Fretwell, L., Hill, S. J., Gardiner, S. M. Predicting in vivo cardiovascular properties of β-blockers from cellular assays: a quantitative comparison of cellular and cardiovascular pharmacological responses. PMID:21865315

  4. Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation

    PubMed Central

    Church, Jarrod E.; Trieu, Jennifer; Sheorey, Radhika; Chee, Annabel Y. -M.; Naim, Timur; Baum, Dale M.; Ryall, James G.; Gregorevic, Paul; Lynch, Gordon S.

    2014-01-01

    Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating β2-adrenoceptors (β-ARs) using β2-AR agonists (β2-agonists) has been demonstrated previously, the exact role β-ARs play in regulating the regenerative process remains unclear. To investigate β-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either β1-AR (β1-KO) and/or β2-ARs (β2-KO), testing the hypothesis that muscles from mice lacking the β2-AR would exhibit impaired functional regeneration after damage compared with muscles from β1-KO or β1/β2-AR null (β1/β2-KO) KO mice. At 7 days post-injury, regenerating muscles from β1/β2-KO mice produced less force than those of controls but muscles from β1-KO or β2-KO mice did not exhibit any delay in functional restoration. Compared with controls, β1/β2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the β-AR signaling pathway was unexpected and may have important implications for manipulating β-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury. PMID:25000590

  5. Alpha 2B adrenoceptor genotype moderates effect of reboxetine on negative emotional memory bias in healthy volunteers.

    PubMed

    Gibbs, Ayana A; Bautista, Carla E; Mowlem, Florence D; Naudts, Kris H; Duka, Theodora

    2013-10-23

    Evidence suggests that emotional memory plays a role in the pathophysiology of depression/anxiety disorders. Noradrenaline crucially modulates emotional memory. Genetic variants involved in noradrenergic signaling contribute to individual differences in emotional memory and vulnerability to psychopathology. A functional deletion polymorphism in the α-2B adrenoceptor gene (ADRA2B) has been linked to emotional memory and post-traumatic stress disorder. The noradrenaline reuptake inhibitor reboxetine attenuates enhanced memory for negative stimuli in healthy and depressed individuals. We examined whether the effect of reboxetine on emotional memory in healthy individuals would be moderated by ADRA2B genotype. ADRA2B deletion carriers demonstrated enhanced emotional memory for negative stimuli compared with deletion noncarriers, consistent with prior studies. Reboxetine attenuated enhanced memory for negative stimuli in deletion noncarriers but had no significant effect in deletion carriers. This is the first demonstration of genetic variation influencing antidepressant drug effects on emotional processing in healthy humans.

  6. Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons.

    PubMed

    Reilly, Joanne M; Dharmalingam, Backialakshmi; Marsh, Stephen J; Thompson, Victoria; Goebel, Andreas; Brown, David A

    2016-03-01

    Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. Depolarisation-induced [Ca(2+)]i transients were generated by applying 30 mM KCl for 2 min and monitored by Fura-2 fluorescence imaging. No IgGs tested (including 3 from CRPS patients) had any significant effect on these [Ca(2+)]i transients. However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested. Copyright © 2015. Published by Elsevier Inc.

  7. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors.

    PubMed

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L

    2015-01-01

    We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2 A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  8. R- and S-terbutaline activate large conductance and Ca2+ dependent K+ (BKCa) channel through interacting with β2 and M receptor respectively.

    PubMed

    Fan, Zhuo; Lin, Wei; Lv, Nanying; Ye, Yanrui; Tan, Wen

    2016-11-01

    This study investigated the effect of the β 2 receptor agonist terbutaline on the single channel activity of BK Ca channel. The effects of racemate and two isomers of terbutaline were all assessed. β 2 adrenoceptors were stably overexpressed on HEK293 cells by lentiviral transduction method and chicken BK Ca channels were transiently expressed on normal HEK293 cell line or HEK293 cells overexpressing β 2 receptors. Data showed that terbutaline significantly increased the single channel open probability of BK Ca channel within 10min. The channel activating effects of terbutaline are stereoselective and mainly stay with the R-enantiomers. The opening probability of BK Ca channel at 10min after drug application normalized to that just before drug application (Po10/Po0s) for R- and S-terbutaline were 7.85±3.20 and 1.06±0.45 respectively at 1μM concentration, corresponding to 28.37±9.96 and 2.68±1.09 at the higher concentration of 10μM. ICI 118551 blocked the effect of R- but not S-terbutaline (10μM), whereas atropine blocked the channel activating effects of S-terbutaline of higher concentration. In addition, the muscarinic receptor agonist carbachol increased the BK Ca channel activity in an atropine-sensitive manner as an positive control experiment, which indicate the involvement of M receptor in the channel activating effect of S-terbutaline. Copyright © 2016. Published by Elsevier B.V.

  9. Dexmedetomidine-induced Contraction Involves Phosphorylation of Caldesmon by JNK in Endothelium-denuded Rat Aortas

    PubMed Central

    Baik, Jiseok; Ok, Seong-Ho; Cho, Hyunhoo; Yu, Jongsun; Kim, Woochan; Nam, In-Koo; Choi, Mun-Jeoung; Lee, Heon-Keun; Sohn, Ju-Tae

    2014-01-01

    Caldesmon, an inhibitory actin binding protein, binds to actin and inhibits actin-myosin interactions, whereas caldesmon phosphorylation reverses the inhibitory effect of caldesmon on actin-myosin interactions, potentially leading to enhanced contraction. The goal of this study was to investigate the cellular signaling pathway responsible for caldesmon phosphorylation, which is involved in the regulation of the contraction induced by dexmedetomidine (DMT), an alpha-2 adrenoceptor agonist, in endothelium-denuded rat aortas. SP600125 (a c-Jun NH2-terminal kinase [JNK] inhibitor) dose-response curves were generated in aortas that were pre-contracted with DMT or phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator. Dose-response curves to the PKC inhibitor chelerythrine were generated in rat aortas pre-contracted with DMT. The effects of SP600125 and rauwolscine (an alpha-2 adrenoceptor inhibitor) on DMT-induced caldesmon phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) were investigated by western blot analysis. PDBu-induced caldesmon and DMT-induced PKC phosphorylation in rat aortic VSMCs was investigated by western blot analysis. The effects of GF109203X (a PKC inhibitor) on DMT- or PDBu-induced JNK phosphorylation in VSMCs were assessed. SP600125 resulted in the relaxation of aortas that were pre-contracted with DMT or PDBu, whereas rauwolscine attenuated DMT-induced contraction. Chelerythrine resulted in the vasodilation of aortas pre-contracted with DMT. SP600125 and rauwolscine inhibited DMT-induced caldesmon phosphorylation. Additionally, PDBu induced caldesmon phosphorylation, and GF109203X attenuated the JNK phosphorylation induced by DMT or PDBu. DMT induced PKC phosphorylation in rat aortic VSMCs. These results suggest that alpha-2 adrenoceptor-mediated, DMT-induced contraction involves caldesmon phosphorylation that is mediated by JNK phosphorylation by PKC. PMID:25332685

  10. The actions of two sensory neuropeptides, substance P and calcitonin gene-related peptide, on the canine hepatic arterial and portal vascular beds.

    PubMed Central

    Withrington, P. G.

    1992-01-01

    1. The two peptides, calcitonin gene-related peptide (CGRP) and substance P (SP) were administered individually as bolus injections into the separately perfused hepatic arterial and portal vascular beds of the anaesthetized dog to assess their actions and relative molar potencies at these sites. 2. CGRP caused an immediate dose-related increase in hepatic arterial flow when injected close-arterially, reflecting a fall in resistance. This vasodilator effect was slightly increased by the prior administration of the selective beta 2-adrenoceptor antagonist, ICI 118,551. 3. On a molar basis, CGRP was more potent as an hepatic arterial vasodilator than the non-selective beta-adrenoceptor agonist, isoprenaline (Iso). 4. Intra-portal injection of CGRP also evoked hepatic arterial vasodilatation unaccompanied by other cardiovascular changes. 5. CGRP in doses up to 10 nmol had no effect on portal vascular resistance when administered intra-portally. 6. SP evoked a rapid, dose-related increase in hepatic arterial flow when injected intra-arterially. The molar ED50 for this hepatic vasodilatation was 40.2 fmol, significantly less than the ED50 for either CGRP or Iso. SP was the most potent hepatic arterial vasodilator yet examined. The vasodilator effect of SP was slightly potentiated by prior beta 2-adrenoceptor blockade. 7. SP caused hepatic arterial vasodilatation when administered by intra-portal injection; its absolute and relative potency was much reduced. 8. SP when injected intra-portally caused a graded increase in hepatic portal inflow resistance. The molar potency for this portal vasoconstriction was significantly greater than that for noradrenaline (NA); however, the maximum increase in portal resistance was significantly less to SP than to NA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1384909

  11. The influence of methionine-5-enkephalin on calcium uptake by the bovine aortic media.

    PubMed

    Kokkas, B; Kotoula, M; Kouyoumtzis, A; Kouvelas, D; Papadopoulos, K; Paradelis, A G

    1990-04-01

    The influence of methionine-5-enkephalin (M-5-E), an endogenous opioid receptor agonist, on calcium uptake by bovine aortic media was investigated in vitro. 45Ca was used and radioactivity was counted in a beta scintillation counter. M-5-E increases Ca2+ uptake by the preparation. This action is inhibited by naloxone and that is proof that an opioid receptor is stimulated. A comparative study showed that phenylephrine, an alpha-adrenoceptor agonist, exhibits the same action as M-5-E, whereas morphine's action is negligible. Phenylephrine contracts the deendotheliazed ring of the bovine aorta, whereas M-5-E fails to do so. It is concluded that an opioid receptor was identified at the bovine aortic smooth muscle. This receptor is stimulated by M-5-E resulting in an increase of the extracellular Ca2+ entrance. Although no relationship was observed between the receptor and the contraction mechanism, a possible role of M-5-E in the maintenance of the vascular tone cannot be excluded.

  12. The ventral tegmental area as a putative target for tachykinins in cardiovascular regulation

    PubMed Central

    Deschamps, Kathleen; Couture, Réjean

    2005-01-01

    Tachykinin receptor agonists and antagonists were microinjected into the ventral tegmental area (VTA) to study the relative participation of the three tachykinin receptors in cardiovascular regulation in freely behaving rat. Selective agonists (1–100 pmol) for NK1 ([Sar9, Met (O2)11]SP), NK2 ([β-Ala8]NKA (4–10)) and NK3 (senktide) receptors evoked increases in blood pressure, heart rate (HR) along with behavioural manifestations (face washing, sniffing, head scratching, rearing, wet dog shake). At 1 pmol, NK1 and NK3 agonists did not affect behaviour and blood pressure but only HR. Tachykinin agonists-induced cardiovascular responses were selectively and reversibly blocked by the prior injection of antagonists for NK1 receptors (LY 303870 ((R)-1-[N-(2-methoxybenzyl)acetylamino]-3-(1H-indol-3-yl)-2-[N-(2-(4-(piperidin-1-yl)piperidin-1-yl)acetyl)amino]propane), 5 nmol), NK2 receptors (SR 48968 ([(S)-N-methyl-N-[4-acetylamino-4-phenylpiperidino-2-(3,4-dichlorophenyl)butyl]benzamide]), 250 pmol) and NK3 receptors (SB 235375 ((−)-(S)-N-(α-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide), 25 nmol). With the exception of the NK2 agonist, most behavioural effects were also blocked by antagonists. Tachykinin agonists-induced cardiovascular responses were inhibited by intravenous (i.v.) treatments with antagonists for D1 dopamine receptor (SCH23390, 0.2 mg kg−1) and β1-adrenoceptor (atenolol, 5 mg kg−1) but not for D2 dopamine receptor (raclopride, 0.16 mg kg−1). Behavioural responses were blocked by SCH23390 only. The present study provides the first pharmacological evidence that the three tachykinin receptors in the rat VTA can affect the autonomic control of blood pressure and HR by increasing midbrain dopaminergic transmission. This mechanism may be involved in the coordination of behavioural and cardiovascular responses to stress and noxious stimulation. PMID:15895109

  13. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  14. An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice.

    PubMed

    Miao, Yi-Fei; Su, Wen; Dai, Yu-Bing; Wu, Wan-Fu; Huang, Bo; Barros, Rodrigo P A; Nguyen, Hao; Maneix, Laure; Guan, You-Fei; Warner, Margaret; Gustafsson, Jan-Åke

    2016-12-06

    Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα -/- female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue.

  15. An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice

    PubMed Central

    Miao, Yi-fei; Su, Wen; Dai, Yu-bing; Wu, Wan-fu; Huang, Bo; Barros, Rodrigo P. A.; Nguyen, Hao; Maneix, Laure; Guan, You-fei; Warner, Margaret; Gustafsson, Jan-Åke

    2016-01-01

    Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα−/− female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue. PMID:27922125

  16. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis.

    PubMed

    Jiang, Lianxiang; Hu, Meizhu; Lu, Yan; Cao, Ya; Chang, Yan; Dai, Zeping

    2017-08-01

    Intracranial lesions, trauma or surgery-related damage activate immune inflammation and neuroendocrine responses, causing ischemic brain injury. Studies have shown that inflammatory cascade mediated by neuroendocrine hormones and proinflammatory mediators is implicated in the pathophysiology of ischemic brain injury. Alpha2-adrenoceptor agonists, dexmedetomidine, is widely used as neuroprotectants in anesthesia practice. However, it is still lack of a comprehensive meta-analysis to evaluate the neuroprotection of dexmedetomidine against ischemic brain injury via suppressing these two physiological responses. Searched the Cochrane Library, Pub-Med, EMBASE, EBSCO, Ovid, Chinese biological and medical database (CBM). Related literatures published in English or Chinese before January 2017 were enrolled. We assessed the quality of eligible studies and synthesized predefined outcomes with a random-effects model or fixed-effects model. Nineteen Randomized Controlled Trials including 879 patients were included. Findings for meta-analysis of various outcomes were summarised. Primary results shown that compared with placebo, dexmedetomidine reduced a surge of TNF-α [SMD=-2.34, 95%CI (-3.25, -1.44)], IL-6 [SMD=-2.44, 95%CI (-3.40, -1.47)], S100-β [SMD=-2.73, 95%CI (-3.65, -1.82)], NSE [SMD=-1.69, 95%CI (-2.77, -0.61)], cortisol [SMD=-2.48, 95%CI (-3.38, -1.58)] and glucose [SMD=-1.44, 95%CI (-1.85, -1.04)]; maintained the level of SOD [SMD=1.36, 95%CI (0.62, 2.10)]; decreased the rise in CRP level at postoperative one day. In response to stress reaction, dexmedetomidine attenuated the stress-related increasing of MAP, HR and intracranial pressure without significant effects on cerebral oxygen metabolism. Alpha2-adrenoceptor agonists, dexmedetomidine, could reduce the release of inflammatory mediators and neuroendocrine hormones as well as maintain intracranial homoeostasis, alleviating ischemic brain injury and exerting an effect on brain protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metabolic benefits of 1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one: a non-selective α-adrenoceptor antagonist.

    PubMed

    Kotańska, Magdalena; Kulig, Katarzyna; Marcinkowska, Monika; Bednarski, Marek; Malawska, Katarzyna; Zaręba, Paula

    2018-05-01

    Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α 1 -adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α 2 -adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. The α 1 - and α 2 -adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α 1B and α 2A -adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α 2A -adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.

  18. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  19. Berberine-induced pigment dispersion in Bufo melanostictus melanophores by stimulation of beta-2 adrenergic receptors.

    PubMed

    Ali, Sharique A; Naaz, Ishrat; Choudhary, Ram Kumar

    2014-02-01

    Reduced production of melanin by decreased or the absence of melanocytes leads to various hypopigmentation disorders, and the development of melanogenetic agents for photoprotection and hypopigmentation disorders is one of the top priority areas of research. Hence, the present study was carried out to elucidate the ability of berberine, a principal active ingredient present in the roots of the herb Berberis vulgaris to stimulate pigment dispersion in the isolated skin melanophores of the toad Bufo melanostictus. In the present study, mean melanophore size index of the isolated skin melanophores of B. melanostictus was assayed after treating with various concentrations of berberine. A marked melanin dispersion response leading to skin darkening was observed in the isolated melanophores of toad in response to berberine, which was found to be mediated through beta-2 adrenergic receptors. The physiologically significant dose-related melanin dispersion effects of berberine per se were found to be completely abolished by propranolol, which is a specific beta-2 adrenergic receptor blocker. These per se melanin dispersal effects were also found to be markedly potentiated by isoprenaline, which is a specific beta-adrenoceptor agonist. The results indicate that berberine causes a tremendous, dose-dependent, physiologically significant pigment dispersing in the isolated skin melanophores of B. melanostictus.

  20. Is elevated norepinephrine an etiological factor in some cases of epilepsy?

    PubMed

    Fitzgerald, Paul J

    2010-07-01

    It is well established that the neurotransmitter norepinephrine (NE) has anticonvulsant properties. However, NE may also have proconvulsant properties under some conditions, both in animal epilepsy models and in humans. This paper examines the hypothesis that this neurotransmitter has proconvulsant properties, where much of the pharmaceutical evidence comes from rodent models. In assessing the elevated NE epilepsy hypothesis, the following seven lines of evidence are examined that include studies of: (1) antidepressants that raise the level of NE; (2) clonidine and other alpha 2 adrenergic agonist drugs that lower the level of NE; (3) prazosin and other drugs that affect alpha adrenoceptors; (4) propranolol and other drugs that affect beta adrenoceptors; (5) pheochromocytoma, which is a rare cancer of the adrenal glands that can boost NE levels; (6) comorbidity of epilepsy with bipolar disorder, hypertension, and obesity, where all four conditions may involve elevated NE; and (7) psychological stress, which is associated with increased release of NE. The body of evidence supporting the NE proconvulsant hypothesis is consistent with the notion that elevated, endogenous noradrenergic transmission is an etiological factor in some cases of epilepsy. 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. Role of the NO-cGMP pathway in the systemic antinociceptive effect of clonidine in rats and mice.

    PubMed

    de Moura, Roberto Soares; Rios, Anna Amélia S; Santos, Edmar J A; Nascimento, Ana Beatriz Amorim; de Castro Resende, Angela; Neto, Miguel Lemos; de Oliveira, Luiz Fernando; Mendes Ribeiro, Antonio Cláudio; Tano, Tania

    2004-06-01

    The mechanism underlying the analgesic effect of clonidine, an alpha(2)-adrenoceptor agonist, remains uncertain. Activation of alpha(2)-adrenoceptor induces the release of nitric oxide (NO) from endothelial cells, which has led us to test the hypothesis that the observed antinociceptive effect induced by the systemic administration of clonidine depends on the NO-cGMP pathway. The possible involvement of an opioid link in the antinociceptive effect of clonidine was also evaluated. The antinociceptive effect induced by systemic administration (intravenous or intraperitoneal) of clonidine was evaluated using the rat paw formalin, mice tail-flick and writhing tests. Clonidine (3-120 microg/kg) induces a dose-dependent antinociceptive effect in the formalin, tail-flick and writhing tests. The antinociceptive effect of clonidine in a dose that had no sedative effect assessed by rota rod test, was significantly reduced by NO-synthase and guanylyl cyclase inhibition. The antinociceptive effect of morphine, but not clonidine, was inhibited by naloxone. Our current results suggest that the antinociceptive effect of systemic clonidine does not involve the opioid receptor and is modulated by the NO-cGMP pathway.

  2. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    PubMed

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  3. The effects of dexmedetomidine alone and in combination with tramadol or amitriptyline in a neuropathic pain model.

    PubMed

    Farghaly, Hanan Sm; Abd-Ellatief, Rasha B; Moftah, Marie Z; Mostafa, Mostafa G; Khedr, Eman M; Kotb, Hassan I

    2014-01-01

    Interactions between the sympathetic and somatic nervous system play an essential role in the pathophysiologic mechanisms of neuropathic pain. The α2-adrenoceptor agonists produce effective antinociception, but sedation is an important adverse effect. Multidrug therapy is potentially valuable to decrease side effects. The aim of the present study was to investigate the possible antinociceptive effect of dexmedetomidine, an α2-adrenoceptor agonist, and its combination with front-line treatment of neuropathic pain, i.e., amitriptyline or tramadol, in a chronic constriction injury (CCI) model of the sciatic nerve in rats. Controlled animal study. Following unilateral ligation of the left sciatic nerve, the effect of intraperitoneal (i.p.) dexmedetomidine (5 ug/kg), tramadol (5 mg/kg), and amitriptyline (30 mg/kg) on mechanical allodynia (measured by electrical von Frey apparatus) and hyperalgesia (measured by Randall and Selitto test) was studied. The sham-operated rats and un-operated hind paw (right paw) press normally on the floor reproduced by a weighted pain score of 0. Behavioral and mechanical tests confirmed the development of neuropathic pain after CCI. All individual drugs and dexmedetomidine combination with either tramadol or amitriptyline were effective in reducing mechanical allodynia and hyperalgesia. Dexmedetomidine, amitriptyline, tramadol, amitriptyline+dexmedetomidine, and tramadol+dexmedetomidine combination did not produce any sedation/motor impairment (P > 0.05). Although the combination of these drugs improved the CCI model of neuropathic pain in this study, an additional interpretation of the underlying mechanism(s) will be needed to confirm these findings. The combination of these drugs appears to be more effective in increasing the pain threshold after peripheral nerve injury, when compared with the administration of either of amitriptyline or tramadol alone and should be considered as a possible alternative to decrease side effects of individual drug therapy.

  4. Release inhibitory receptors activation favours the A2A-adenosine receptor-mediated facilitation of noradrenaline release in isolated rat tail artery

    PubMed Central

    Fresco, Paula; Diniz, Carmen; Queiroz, Glória; Gonçalves, Jorge

    2002-01-01

    Interactions between A2A-adenosine receptors and α2-, A1- and P2- release-inhibitory receptors, on the modulation of noradrenaline release were studied in isolated rat tail artery. Preparations were labelled with [3H]-noradrenaline, superfused with desipramine-containing medium, and stimulated electrically (100 pulses at 5 Hz or 20 pulses at 50 Hz).Blockade of α2-autoreceptors with yohimbine (1 μM) increased tritium overflow elicited by 100 pulses at 5 Hz but not by 20 pulses at 50 Hz.The selective A2A-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680; 1 – 100 nM) enhanced tritium overflow elicited by 100 pulses at 5 Hz. Yohimbine prevented the effect of CGS 21680, which was restored by the A1-receptor agonist N6-cyclopentyladenosine (CPA; 100 nM) or by the P2-receptor agonist 2-methylthioadenosine triphosphate (2-MeSATP; 80 μM).CGS 21680 (100 nM) failed to increase tritium overflow elicited by 20 pulses at 50 Hz. The α2-adrenoceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK 14304; 30 nM), the A1-receptor agonist CPA (100 nM) or the P2-receptor agonist 2-MeSATP (80 μM) reduced tritium overflow. In the presence of these agonists CGS 21680 elicited a facilitation of tritium overflow.Blockade of potassium channels with tetraethylammonium (TEA; 5 mM) increased tritium overflow elicited by 100 pulses at 5 Hz to values similar to those obtained in the presence of yohimbine but did not prevent the effect of CGS 21680 (100 nM) on tritium overflow.It is concluded that, in isolated rat tail artery, the facilitation of noradrenaline release mediated by A2A-adenosine receptors is favoured by activation of release inhibitory receptors. PMID:12010771

  5. Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT1A receptor agonists.

    PubMed

    Franchini, Silvia; Manasieva, Leda Ivanova; Sorbi, Claudia; Battisti, Umberto M; Fossa, Paola; Cichero, Elena; Denora, Nunzio; Iacobazzi, Rosa Maria; Cilia, Antonio; Pirona, Lorenza; Ronsisvalle, Simone; Aricò, Giuseppina; Brasili, Livio

    2017-01-05

    Recently, 1-(1,4-dioxaspiro[4,5]dec-2-ylmethyl)-4-(2-methoxyphenyl)piperazine (1) was reported as a potent 5-HT 1A R agonist with a moderate 5-HT 1A R selectivity. In an extension of this work a series of derivatives of 1, obtained by combining different heterocyclic rings with a more flexible amine chain, was synthesized and tested for binding affinity and activity at 5-HT 1A R and α 1 adrenoceptors. The results led to the identification of 14 and 15 as novel 5-HT 1A R partial agonists, the first being outstanding for selectivity (5-HT 1A /α 1d  = 80), the latter for potency (pD 2  = 9.58) and efficacy (E max  = 74%). Theoretical studies of ADME properties shows a good profile for the entire series and MDCKII-MDR1 cells permeability data predict a good BBB permeability of compound 15, which possess a promising neuroprotective activity. Furthermore, in mouse formalin test, compound 15 shows a potent antinociceptive activity suggesting a new strategy for pain control. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes.

    PubMed

    McMacken, Grace; Cox, Dan; Roos, Andreas; Müller, Juliane; Whittaker, Roger; Lochmüller, Hanns

    2018-05-01

    Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective β2 adrenergic agonist salbutamol and the α and β adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective β2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via β2 adrenoceptors and via a cAMP-dependent pathway.

  7. The beta-adrenergic agonist salbutamol modulates neuromuscular junction formation in zebrafish models of human myasthenic syndromes

    PubMed Central

    McMacken, Grace; Cox, Dan; Roos, Andreas; Müller, Juliane; Whittaker, Roger; Lochmüller, Hanns

    2018-01-01

    Abstract Inherited defects of the neuromuscular junction (NMJ) comprise an increasingly diverse range of disorders, termed congenital myasthenic syndromes (CMS). Therapies acting on the sympathetic nervous system, including the selective β2 adrenergic agonist salbutamol and the α and β adrenergic agonist ephedrine, have become standard treatment for several types of CMS. However, the mechanism of the therapeutic effect of sympathomimetics in these disorders is not understood. Here, we examined the effect of salbutamol on NMJ development using zebrafish with deficiency of the key postsynaptic proteins Dok-7 and MuSK. Treatment with salbutamol reduced motility defects in zebrafish embryos and larvae. In addition, salbutamol lead to morphological improvement of postsynaptic acetycholine receptor (AChR) clustering and size of synaptic contacts in Dok-7-deficient zebrafish. In MuSK-deficient zebrafish, salbutamol treatment reduced motor axon pathfinding defects and partially restored the formation of aneural prepatterned AChRs. In addition, the effects of salbutamol treatment were prevented by pre-treatment with a selective β2 antagonist. Treatment with the cyclic adenosine monophosphate (cAMP) activator forskolin, replicated the effects of salbutamol treatment. These results suggest that sympathomimetics exert a direct effect on neuromuscular synaptogenesis and do so via β2 adrenoceptors and via a cAMP-dependent pathway. PMID:29462491

  8. Atypical sympathomimetic drug lerimazoline mediates contractile effects in rat aorta predominantly by 5-HT2A receptors.

    PubMed

    Rizvić, Eldina; Janković, Goran; Kostić-Rajačić, Slađana; Savić, Miroslav M

    2017-08-20

    Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Studies on lerimazoline are rare, and its pharmacological profile is not completely understood. Here, we analyzed the affinity of lerimazoline for dopamine receptor D2, serotonin 5-HT1A and 5-HT2A receptors and α1-adrenoceptor, and investigated lerimazoline contractile effects in isolated rat thoracic aorta. We also determined the effect of several antagonists on the contractile response to lerimazoline, including prazosin (α1-adrenoceptor antagonist), RX 821002 and rauwolscine (α2-adrenoceptor antagonists), JP 1302 (α2C-adrenoceptor antagonist), methiothepin (non-selective 5-HT receptor antagonist), SB 224289 (5-HT1B receptor antagonist), BRL 15572 (5-HT1D receptor antagonist), and ketanserin (5-HT2A receptor antagonist). Lerimazoline displayed high affinity for the 5-HT1A receptor (Ki = 162.5 nM), similar to the previously reported affinity for the 5-HT1D receptor. Binding affinity estimates (Ki) for α1, 5-HT2A, and D2 receptors were 6656, 4202 and 3437.5 nM, respectively (the literature reported Ki for 5-HT1B receptor is 3480 nM). Lerimazoline caused concentration-dependent contractions in 70% of preparations, varying in the range between 40% and 55% of the maximal contraction elicited by phenylephrine. While prazosin reduced the maximum contractile response to lerimazoline, rauwolscine showed a non-significant trend in reduction of the response. Both ketanserin (10 nM and 1 µM) and methiothepin strongly suppressed the maximum response to lerimazoline. Overall, our results suggest that 5-HT2A and, less distinctly, α1-adrenergic receptors are involved in the lerimazoline-induced contractions, which makes lerimazoline an "atypical" decongestant.

  9. Effect of clonidine on ultrasonic vocalization in preweaning rats.

    PubMed

    Hård, E; Engel, J; Lindh, A S

    1988-01-01

    The present study was undertaken to investigate the involvement of the noradrenergic neurotransmission system in the ultra sonic callings emitted by rat pups separated from their mother and exposed to cold stimulation. The investigation was primarily performed by help of agents selectively affecting the alpha-adrenoceptors: the alpha 2-agonist clonidine, the alpha 1-antagonist prazosin and the alpha 2-antagonist idazoxan. Clonidine dose-dependently stimulated the amount of ultra sonic vocalization, an effect not solely dependent upon the effect of clonidine on body temperature. In a developmental study it was found that clonidine uniformly stimulated crying at all ages from 4 days of age up to 18 days of age, that is during the whole preweaning period. Clonidine stimulated ultrasonic crying in rat pups, devoid of presynaptic catecholamine (CA) neurons by combined pretreatment with the monoamine depletor, reserpine, and the inhibitor of CA-synthesis, alpha-methyl-tyrosine. This finding suggested that the stimulating effect of clonidine on ultrasonic vocalization was mediated by postsynaptic adrenoceptors. In pups, 12 days of age, idazoxan blocked the effect of cold stimulation on ultra sonic crying, suggesting that alpha 2-adrenoceptors, presumably postsynaptic ones, mediated this kind of stimulation. Idazoxan also antagonized the effect of clonidine, but only at a dose effective also in control pups. Prazosin had no effect on cold-stimulated crying, but antagonized the effect of clonidine, suggesting that the effect of clonidine was also mediated by alpha 1-receptors. At 18 days of age, prazosin no longer antagonized the effect of clonidine, whereas the antagonizing action of idazoxan was reinforced. The age-dependent variation in responsiveness to the adrenergic drugs suggest maturational changes in the function of the CA-system occurring between 12-16 days of age.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs.more » Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altered in the PCB39-treated cells. Interleukin (IL)-24 was the most highly induced gene among AhR-modulated cytokines. Cotreatment with AhR antagonist completely prevented IL-24 induction by AhR agonists in the CL5 cells. Knockdown AhR expression with short-hairpin RNA (shRNA) significantly reduced benzo[a]pyrene (BaP)-induced IL-24 mRNA levels. We further confirmed that gene transcription, but not mRNA stability, was involved in IL-24 upregulation by BaP. Particulate matter (PM) in the ambient air contains some PAHs and is reported to activate AhR. Oropharyngeal aspiration of PM significantly increased IL-24 levels in lung epithelia and in bronchoalveolar lavage fluid of mice 4 weeks after treatment. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonists. - Graphical abstract: (A) Cytokine and chemokine gene expressions were examined in CL5 cells treated with AhR and non-AhR agonists. Thirteen cytokines and chemokines genes were altered in the AhR agonist-treated cells, but not in the non-AhR agonist-treated cells. IL-24 was the most highly induced gene among the AhR-modulated cytokines. (B) Both AhR agonists and PM{sub 2.5} induced IL-24 production in the CL5 cells and macrophages. Cotreatment with an AhR antagonist (DMF) or transfections with shRNA for AhR abolished IL-24 induction by BaP in CL5 cells. Intratracheal instillation of PM activated AhR-mediated inflammatory responses and IL-24 expression in mouse lungs. Thus, our data suggests that IL-24 is a pulmonary exposure target cytokine of environmental AhR agonist. - Highlights: • IL-24 is identified as a target cytokine of environmental AhR agonist exposure. • AhR agonists increased IL-24 expression in an AhR-dependent manner in lung cells. • Ambient particulate matter induces IL-24 secretion in BALF in mice. • IL-24 can be used to evaluate environmental lung diseases.« less

  11. The antinociceptive effect of intravenous imipramine in colorectal distension-induced visceral pain in rats: the role of serotonergic and noradrenergic receptors.

    PubMed

    İlkaya, Fatih; Bilge, S Sırrı; Bozkurt, Ayhan; Baş, Duygu B; Erdal, Arzu; Çiftçioğlu, Engin; Kesim, Yüksel

    2014-07-01

    It has been shown that imipramine, a tricyclic antidepressant (TCA), is a potent analgesic agent. However, the effect of imipramine on visceral pain has not been extensively investigated. In the current study, our aim was to characterise the putative analgesic effect of intravenous imipramine on visceral pain in rats. Our second aim was to assess the involvement of serotonergic (5-HT₂,₃,₄) and noradrenergic (α(2A, 2B, 2C)) receptor subtypes in this putative antinociceptive effect of imipramine. Male Sprague Dawley rats (250-300 g) were implanted with venous catheters for drug administration and implanted with enamelled nichrome electrodes for electromyography of the external oblique muscles. Noxious visceral stimulation was applied via by colorectal distension (CRD). The visceromotor responses (VMRs) to CRD were quantified electromyographically before and after imipramine administration at 5, 15, 30, 60, 90 and 120 min. In the antagonist groups, the agents were administered 10 min before imipramine. The administration of imipramine (5-40 mg/kg) produced a dose-dependent reduction in VMR. The administration of yohimbine (a nonselective α₂-adrenoceptor antagonist, 1 mg/kg), BRL-44408 (an α(2A)-adrenoceptor antagonist, 1 mg/kg) or MK-912 (an α2C-adrenoceptor antagonist, 300 μg/kg) but not imiloxan (an α(2B)-adrenoceptor antagonist, 1 mg/kg) inhibited the antinociceptive effect of imipramine (20 mg/kg). Additionally, ketanserin (a 5-HT₂ receptor antagonist, 0.5, 1, and 2 mg/kg) and GR113808 (a 5-HT₄ receptor antagonist, 1 mg/kg) enhanced, and ondansetron (a 5-HT₃ receptor antagonist, 0.5, 1, and 2 mg/kg) failed to alter the imipramine-induced antinociceptive effect. Our data demonstrated that, in the CDR-induced rat visceral pain model, intravenous imipramine appeared to have antinociceptive potential and that α(2A)-/α(2C)-adrenoceptors and 5-HT₂/5-HT₄ receptors may be responsible for the antinociceptive effect of imipramine on visceral pain in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. H{sub 2}S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Ping, Na-na; Cao, Lei, E-mail: leicao@mail.xjtu.edu.cn

    2015-12-15

    Hydrogen sulfide (H{sub 2}S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H{sub 2}S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H{sub 2}S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-typemore » Ca{sup 2+} channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H{sub 2}S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. - Highlights: • The vasoactivity effect of NaHS, a donor of H{sub 2}S, was studied on rat cerebral arteries. • H{sub 2}S induces a constriction, not a relaxant effect on basilar arteries. • The vasoconstrictive effect is invovled in inhibiting adenylyl cyclase to reduce cAMP levels. • The vasoconstriction is partially antagonized by NO, and does not necessarily act via NO pathway.« less

  13. Imidazopyridine CB2 agonists: optimization of CB2/CB1 selectivity and implications for in vivo analgesic efficacy.

    PubMed

    Trotter, B Wesley; Nanda, Kausik K; Burgey, Christopher S; Potteiger, Craig M; Deng, James Z; Green, Ahren I; Hartnett, John C; Kett, Nathan R; Wu, Zhicai; Henze, Darrell A; Della Penna, Kimberly; Desai, Reshma; Leitl, Michael D; Lemaire, Wei; White, Rebecca B; Yeh, Suzie; Urban, Mark O; Kane, Stefanie A; Hartman, George D; Bilodeau, Mark T

    2011-04-15

    A new series of imidazopyridine CB2 agonists is described. Structural optimization improved CB2/CB1 selectivity in this series and conferred physical properties that facilitated high in vivo exposure, both centrally and peripherally. Administration of a highly selective CB2 agonist in a rat model of analgesia was ineffective despite substantial CNS exposure, while administration of a moderately selective CB2/CB1 agonist exhibited significant analgesic effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Dexmedetomidine alleviates anxiety-like behaviors and cognitive impairments in a rat model of post-traumatic stress disorder.

    PubMed

    Ji, Mu-Huo; Jia, Min; Zhang, Ming-Qiang; Liu, Wen-Xue; Xie, Zhong-Cong; Wang, Zhong-Yun; Yang, Jian-Jun

    2014-10-03

    Post-traumatic stress disorder (PTSD) is a psychiatric disease that has substantial health implications, including high rates of health morbidity and mortality, as well as increased health-related costs. Although many pharmacological agents have proven the effects on the development of PTSD, current pharmacotherapies typically only produce partial improvement of PTSD symptoms. Dexmedetomidine is a selective, short-acting α2-adrenoceptor agonist, which has anxiolytic, sedative, and analgesic effects. We therefore hypothesized that dexmedetomidine possesses the ability to prevent the development of PTSD and alleviate its symptoms. By using the rat model of PTSD induced by five electric foot shocks followed by three weekly exposures to situational reminders, we showed that the stressed rats displayed pronounced anxiety-like behaviors and cognitive impairments compared to the controls. Notably, repeated administration of 20μg/kg dexmedetomidine showed impaired fear conditioning memory, decreased anxiety-like behaviors, and improved spatial cognitive impairments compared to the vehicle-treated stressed rats. These data suggest that dexmedetomidine may exert preventive and protective effects against anxiety-like behaviors and cognitive impairments in the rats with PTSD after repeated administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Identification and characterization of (/sup 3/H)-rauwolscine binding to alpha2-adrenoceptors in the canine saphenous vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gout, B.

    1988-01-01

    The biochemical exploration of the alpha2-adrenergic receptors was investigated in the canine saphenous vein using the highly selective alpha2-adrenergic antagonist rauwolscine as a tritiated ligand. Following an enzymatic digestive pretreatment, the authors isolated a purified smooth muscle cell membranes fraction from saphenous veins in quantity sufficient to permit them to study the venous alpha2-adrenoreceptor content. The binding of tritiated rauwolscine was rapid, specific, saturable and reversible. The presence of high affinity sites with a density of binding Bmax of 125.2 /+ -/ 43.1 fmol/mg protein was demonstrated on a unique class of non interacting sites. The kinetically derived Kd wasmore » 1.28 nM, in good agreement with the value obtained from saturation isotherms. The pharmacological profile of these sites was assessed by the comparison of the potency of alpha-adrenergic agonists and antagonists to inhibit 1 nM (/sup 3/H)-rauwolscine. Their efficacy was respectively: rauwolscine > phentolamine > RX 781094 > clonidine >> prazosin > (-)-phenylephrine > (-)-noradrenaline. The results showed that (/sup 3/H)-rauwolscine bound specifically to sites in their membranal preparation, which had the pharmacological characteristics of the alpha2-adrenoceptors. The correlation between biochemical and pharmacological data revealed the usefulness of binding methods in the further study of adrenergic mechanisms in the canine saphenous vein.« less

  16. Anti-nociceptive effect of dexmedetomidine in a rat model of monoarthritis via suppression of the TLR4/NF-κB p65 pathway

    PubMed Central

    Ji, Dong; Zhou, Yalan; Li, Shuangshuang; Li, Dai; Chen, Hui; Xiong, Yuanchang; Zhang, Yuqiu; Xu, Hua

    2017-01-01

    As a therapeutic target for neuropathic pain, the anti-nociceptive effects of α 2-adrenoceptors (α2AR) have attracted attention. Dexmedetomidine (DEX), a potent and highly selective α2AR agonist, has exhibited significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. The present study investigated the effect of DEX on Toll-like receptor (TLR)4 and nuclear factor (NF)-κB p65 expression, as well as the production of pro-inflammatory cytokines. The rat monoarthritis (MA) model was induced by intra-articular injection of complete Freund's adjuvant (CFA) at the ankle joint. After induction of MA, the rats were intrathecally treated with normal saline or DEX (2.5 µg) for 3 consecutive days. The concentration of interleukin-1β and −6 as well as tumor necrosis factor-α was examined by ELISA. The expression levels of TLR4 and NF-κB p65 were determined by western blot analysis and immunohistochemistry. The results indicated that the pro-inflammatory cytokines TLR4 and NF-κB p65 were significantly upregulated in MA rats. DEX treatment markedly reduced mechanical and thermal hyperalgesia, suppressed MA-induced elevation of the pro-inflammatory cytokines and inhibited the TLR4/NF-κB p65 pathway, while these effects were blocked by pre-treatment with the selective α2AR antagonist BRL44408 (15 µg) at 30 min prior to CFA injection. These results suggested that DEX has an anti-nociceptive effect via suppressing the TLR4/NF-κB p65 pathway. PMID:29201195

  17. Noradrenaline induces peripheral antinociception by endogenous opioid release.

    PubMed

    Romero, Thiago Roberto Lima; Soares Santos, Raquel Rodrigues; Castor, Marina Gomes Miranda E; Petrocchi, Júlia Alvarenga; Guzzo, Luciana Souza; Klein, Andre; Duarte, Igor Dimitri Gama

    2018-02-23

    The aim of this study was to investigate this involvement in not inflammatory model of pain and which opioid receptor subtype mediates noradrenaline-induced peripheral antinociception. NA is involved in the intrinsic control of pain-inducing pro-nociceptive effects in the primary afferent nociceptors. However, inflammation can induce various plastic changes in the central and peripheral noradrenergic system that, upon interaction with the immune system, may contribute, in part, to peripheral antinociception. Hyperalgesia was induced by intraplantar injection of prostaglandin E 2 (PGE 2 , 2 μg) into the plantar surface of the right hind paw and the paw pressure test to evaluated the hyperalgesia was used. Noradrenaline (NA) was administered locally into right hind paw of Wistar rat (160-200 g) alone and after either agents, α 2 -adrenoceptor antagonist yohimbine, α 1 -adrenoceptor antagonist prazosin, β-adrenoceptor antagonist propranolol, μ-opioid antagonist clocinnamox, δ-opioid antagonist naltrindole and κ-opioid antagonist nor-binaltorfimina. In addition, the enkephalinase inhibitor bestatin was administered prior to NA low dose. Intraplantar injection of NA induced peripheral antinociception against hyperalgesia induced by PGE 2 . This effect was reversed, in dose dependent manner, by intraplantar injection of yohimbine, prazosin, propranolol, clocinnamox and naltrindole. However, injection of nor-binaltorfimina did not alter antinociception of NA after PGE 2 hyperalgesia. Bestatin intensified the antinociceptive effects of low-dose of NA. Besides the α 2 -adrenoceptor, the present data provide evidence that, in absence of inflammation, NA activating α 1 and β-adrenoceptor induce endogenous opioid release to produce peripheral antinociceptive effect by μ and δ opioid receptors. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Interactions of nitric oxide with α2 -adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine.

    PubMed

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M; Ugale, Rajesh R

    2016-09-01

    Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α-adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra-LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S-nitrosoglutathione, non-specific (L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), the α2 -adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra-LC before agmatine. Intra-hippocampal injections of the NMDA antagonist, MK-801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Agmatine (intra-LC or i.p.) facilitated memory retrieval in the IA test. S-nitrosoglutathione potentiated, while L-NAME and L-NIO decreased, these effects of agmatine. L-NIL and 7-NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S-nitrosoglutathione and yohimbine were blocked by intra-hippocampal MK-801. Agmatine increased the population of TH- and eNOS-immunoreactive elements in the LC. The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. © 2016 The British Pharmacological Society.

  19. Interactions of nitric oxide with α2‐adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine

    PubMed Central

    Shelkar, Gajanan P; Gakare, Sukanya G; Chakraborty, Suwarna; Dravid, Shashank M

    2016-01-01

    Background and Purpose Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α‐adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. Experimental Approach The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra‐LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S‐nitrosoglutathione, non‐specific (L‐NAME) and specific NOS inhibitors (L‐NIL, 7‐NI, L‐NIO), the α2‐adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra‐LC before agmatine. Intra‐hippocampal injections of the NMDA antagonist, MK‐801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. Key Results Agmatine (intra‐LC or i.p.) facilitated memory retrieval in the IA test. S‐nitrosoglutathione potentiated, while L‐NAME and L‐NIO decreased, these effects of agmatine. L‐NIL and 7‐NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S‐nitrosoglutathione and yohimbine were blocked by intra‐hippocampal MK‐801. Agmatine increased the population of TH‐ and eNOS‐immunoreactive elements in the LC. Conclusions and Implications The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC. PMID:27273730

  20. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    PubMed Central

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. METHODS: In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. RESULTS: Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. CONCLUSIONS: Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases. PMID:8703859

  1. Reactive oxygen species are involved in regulating alpha1-adrenoceptor-activated vascular smooth muscle contraction.

    PubMed

    Tsai, Ming-Ho; Jiang, Meei Jyh

    2010-08-23

    Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate alpha1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20), and myosin phosphatase stimulated by alpha1-adrenoceptor agonist phenylephrine were examined. An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. ROS, probably derived from NADPH oxidase and mitochondria, partially regulate alpha1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.

  2. Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain.

    PubMed

    Torres-Sanchez, Sonia; Borges, Gisela Da Silva; Mico, Juan A; Berrocoso, Esther

    2018-06-01

    Tapentadol is an analgesic that acts as an agonist of µ opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively). In STZ rats, the spontaneous activity of LC neurons (0.9 ± 0.1 Hz) was lower than in naïve animals (1.5 ± 0.1 Hz), and tapentadol's inhibitory effect was also weaker. Alpha2-adrenoceptors blockade by RX821002 (100 μg/kg i.v.) in STZ animals significantly increased the spontaneous activity (from 0.8 ± 0.1 to 1.4 ± 0.2 Hz) and it dampened the inhibition of LC neurons produced by tapentadol. However, opioid receptors blockade following naloxone pre-treatment (5 mg/kg i.v.) did not alter the spontaneous firing rate (0.9 ± 0.2 vs 0.9 ± 0.2 Hz) or the inhibitory effect of tapentadol on LC neurons in STZ animals. Thus, diabetic polyneuropathy appears to exert neuroplastic changes in LC neurotransmission, enhancing the sensitivity of alpha2-adrenoceptors and dampening opioid receptors expression. Tapentadol's activity seems to be predominantly mediated through its noradrenergic effects rather than its influence on opioid receptors in the STZ model of diabetic polyneuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists

    PubMed Central

    Graham, Devon L.; Amos-Kroohs, Robyn M.; Braun, Amanda A.; Grace, Curtis E.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2015-01-01

    Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11–20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-D-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects. PMID:22391043

  4. Choline+ is a low-affinity ligand for alpha 1-adrenoceptors.

    PubMed

    Unelius, L; Cannon, B; Nedergaard, J

    1994-10-07

    The effect of choline+, a commonly used Na+ substitute, on ligand binding to alpha 1-adrenoceptors was investigated. It was found that replacement of 25% of the Na+ in a Krebs-Ringer bicarbonate buffer with choline+ led to a 3-fold decrease in the apparent affinity of [3H]prazosin for its binding site (i.e. the alpha 1-receptor) in a membrane preparation from brown adipose tissue, while no decrease in the total number of binding sites was observed. Similar effects were seen in membrane preparations from liver and brain. In competition experiments, it was found that choline+ could inhibit [3H]prazosin binding; from the inhibition curve, an affinity (Ki) of 31 mM choline+ for the [3H]prazosin-binding site could be calculated. In fully choline(+)-substituted buffers, where the level of [3H]prazosin binding was substantially reduced, both phentolamine and norepinephrine could still compete with [3H]prazosin for its binding site, with virtually unaltered affinity; thus choline+ did not substantially affect the characteristics of those receptors to which it did not bind. Choline+ did not affect the binding characteristics of the beta 1/beta 2 radioligand [3H]CGP-12177; thus, the effect on alpha 1-receptors was not due to general, unspecific effects on the membrane preparations. It is concluded that choline+ possesses characteristics similar to those of a competitive ligand for the alpha 1-adrenoceptor; it has a low affinity but the competitive type of interaction of choline may nonetheless under experimental conditions interfere with agonist interaction with the alpha 1-receptor.

  5. Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity.

    PubMed

    Maestroni, Georges J M; Mazzola, Paola

    2003-11-01

    We showed that norepinephrine (NE) hampers IL-12 and stimulates IL-10 production via adrenoceptors (ARs) in bone marrow-derived dendritic cells (BMDC) influencing their Th priming ability. Others have shown that Langerhans cells (LC) express mRNA for beta1-, beta2- and alpha1(A)-(ARs) and that catecholamines may inhibit the antigen-presenting capability via beta2-ARs. Here, we show that also BMDC express mRNA for beta1-, beta2-, alpha2(A)- and alpha2(C)-ARs. Inhibition of IL-12 is mediated by both beta2- and alpha2(A)-ARs, while stimulation of IL-10 by beta2-ARs only. In addition, LC migration, the contact hypersensitivity response (CHS) and production of IFN-gamma and IL-2 in draining lymph node cells is increased in mice treated topically with the beta2-AR antagonist ICI 118,551 during FITC sensitization. Activation of beta2-ARs in BMDC before adoptive transfer could reduce both migration and CHS response to FITC. Finally, preincubation of BMDC with LPS in presence of the specific beta2-AR agonist salbutamol impaired their chemotactic response to CCL19 and CCL21 and this effect was neutralized by anti-IL-10 mAb. We suggest that the physiological activation of beta2-ARs in DC (LC) results in stimulation of IL-10 which in turn restrains DC (LC) migration influencing antigen presentation and the consequent CHS response.

  6. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis.

    PubMed

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-02-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  7. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects

    PubMed Central

    Anttila, Markku; Penttilä, Jani; Helminen, Antti; Vuorilehto, Lauri; Scheinin, Harry

    2003-01-01

    Aim To determine the absolute bioavailability of extravascularly administered dexmedetomidine, a novel a2-adrenoceptor agonist, in healthy subjects. Methods Single 2 µg kg−1 doses of dexmedetomidine were given intravenously, intramuscularly, perorally and buccally (where the solution is not swallowed) to 12 healthy male subjects. The drug concentration-time data were analysed using linear one-compartment (buccal and peroral data), or two-compartment modelling (intravenous data), or noncompartmental methods (intramuscular data). Results Mean (95% CI) absolute bioavailability after peroral, buccal and intramuscular administration was 16% (12–20%), 82% (73–92%) and 104% (96–112%), respectively. Conclusion Dexmedetomidine is well absorbed systemically through the oral mucosa, and therefore buccal dosing may provide an effective, noninvasive route to administer the drug. PMID:14616431

  8. Fenoterol increases erythropoietin concentrations during tocolysis

    PubMed Central

    Gleiter, C H; Schreeb, K H; Goldbach, S; Herzog, S; Cunze, T; Kuhn, W

    1998-01-01

    Aims The present study was carried out to assess the effect of the selective β2- adrenoceptor agonists on erythropoietin (EPO) production. Methods Routine tocolysis with fenoterol (using the regular rate of 2 μg min−1) was used as a clinically easily accessible model. Results EPO concentrations had doubled 24 h after the start of tocolysis (P < 0.001). This increase lasted over the entire observation period of 48 h. Potassium concentrations fell significantly during the first hours of fenoterol infusion. There was no increase of human placenta lactogen during the period of EPO increase. Conclusions The data confirm our earlier results that fenoterol increases EPO concentrations following haemorrhage. In this model it was not necessary to stimulate EPO production prior to pharmacological treatment. PMID:9491829

  9. Hypothermia augments non-cholinergic neuronal bronchoconstriction in pithed guinea-pigs.

    PubMed

    Rechtman, M P; King, R G; Boura, A L

    1991-08-16

    Electrical stimulation at C4-C7 in the spinal canal of pithed guinea-pigs injected with atropine, d-tubocurarine and pentolinium caused frequency-dependent bronchoconstriction. Such non-cholinergic responses to electrical stimulation, unlike responses to substance P, were abolished by pretreatment with capsaicin but not by mepyramine or propranolol. Bronchoconstrictor responses to electrical stimulation were inversely related to rectal temperature (between 30-40 degrees C) whereas responses to substance P increased with increasing temperature over the same range. Ouabain (i.v.) augmented responses to electrical stimulation at 35-37 degrees C but depressed those at 30-32 degrees C. Both morphine and the alpha 2-adrenoceptor agonist B-HT920 (i.v.) inhibited non-cholinergic-mediated bronchoconstrictor responses at 30-32 degrees C. These results stress the importance of adequate control of body temperature in this preparation. Lowered body temperature may increase neuronal output of neuropeptides whilst depressing bronchial smooth muscle sensitivity. The data support previous conclusions regarding the role of Na+/K+ activated ATPase in temperature-induced changes in sensitivity to bronchoconstrictor stimuli.

  10. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Browning, Kirsteen N; Travagli, R Alberto

    2003-01-01

    Pancreatic polypeptides (PPs) such as neuropeptide Y (NPY) and peptide YY (PYY) exert profound, vagally mediated effects on gastrointestinal (GI) motility and secretion. Whole-cell patch clamp recordings were made from brainstem slices containing identified GI-projecting rat dorsal motor nucleus of the vagus (DMV) neurons to determine the mechanism of action of PPs. Electrical stimulation of nucleus tractus solitarii (NTS) induced excitatory postsynaptic currents (EPSCs) that were reduced in a concentration-dependent manner by NPY and PYY (both at 0.1–300 nm) in 65 % of the neurons. An increase in the paired-pulse ratio without changes in the postsynaptic membrane input resistance or EPSC rise and decay time suggested that the effects of PPs on EPSCs were due to actions at presynaptic receptors. The Y1 and Y2 receptor selective agonists [Leu31,Pro34]NPY and NPY(3–36) (both at 100 nm) mimicked the inhibition of NPY and PYY on the EPSC amplitude. The effects of 100 nm NPY, but not PYY, were antagonized partially by the Y1 receptor selective antagonist BIBP3226 (0.1 μm). In addition, the inhibition of the EPSC amplitude induced by NPY, but not PYY, was attenuated partially by pretreatment with the α2 adrenoceptor antagonist yohimbine (10 μm), and occluded partially by the α2 adrenoceptor agonist UK14,304 (10 μm) as well as by pretreatment with reserpine. Pretreatment with a combination of BIBP3226 and yohimbine almost completely antagonized the NPY-mediated effects on EPSCs. Contrary to the inhibition of EPSCs, perfusion with PPs had no effect on the amplitude of inhibitory postsynaptic currents (IPSCs) and a minimal effect on a minority of DMV neurons. Differences in the receptor subtypes utilized and in the mechanism of action of NPY and PYY may indicate functional differences in their roles within the circuitry of the dorsal vagal complex (DVC). PMID:12730340

  11. Contribution of beta 1- and beta 2-adrenoceptors of human atrium and ventricle to the effects of noradrenaline and adrenaline as assessed with (-)-atenolol.

    PubMed Central

    Lemoine, H.; Schönell, H.; Kaumann, A. J.

    1988-01-01

    1. (-)-Atenolol was used as a tool to assess the function of beta 1- and beta 2-adrenoceptors in human heart. Right atrial and left ventricular preparations from patients undergoing open heart surgery were set up to contract isometrically. Membrane particles were prepared for beta-adrenoceptor labelling with [3H]-(-)-bupranolol and adenylate cyclase assays. 2. The positive inotropic effects of (-)-noradrenaline were antagonized to a similar extent by (-)-atenolol in atrial and ventricular preparations. (-)-Atenolol consistently antagonized the effects of (-)-adrenaline to a lesser extent than those of (-)-noradrenaline in atrial preparations. In ventricular preparations (-)-atenolol antagonized the effects of low concentrations of (-)-adrenaline to a lesser extent than those of high concentrations. 3. pKB values (M) of (-)-atenolol, estimated with non-linear analysis from the blockade of the positive inotropic effects of the catecholamines, were 7.4 for beta 1-adrenoceptors and 6.0 for beta 2-adrenoceptors. 4. (-)-Atenolol inhibited the binding of [3H]-(-)-bupranolol to ventricular beta 1-adrenoceptors with a pKD (M) of 5.9 and to ventricular beta 2-adrenoceptors with a pKD of 4.6. 5. (-)-Atenolol inhibited the catecholamine-induced adenylate cyclase stimulation in the atrium and ventricle with pKB values of 5.8-6.4 for beta 1- and pKB values of 4.7-5.7 for beta 2-adrenoceptors. The binding and cyclase assays suggest a partial affinity loss for (-)-atenolol inherent to membrane preparations. 6. beta 1-Adrenoceptors mediate the maximum positive inotropic effects of (-)-noradrenaline in both the atrium and ventricle of man. beta 2-Adrenoceptors appear to be capable of mediating maximal positive inotropic effects of (-)-adrenaline in atrium. In contrast, ventricular beta 2-adrenoceptors mediated only submaximal effects of (-)-adrenaline. PMID:2851354

  12. Badger macrophages fail to produce nitric oxide, a key anti-mycobacterial effector molecule.

    PubMed

    Bilham, Kirstin; Boyd, Amy C; Preston, Stephen G; Buesching, Christina D; Newman, Chris; Macdonald, David W; Smith, Adrian L

    2017-04-06

    The European badger is recognised as a wildlife reservoir for bovine tuberculosis (bTB); the control of which is complex, costly and controversial. Despite the importance of badgers in bTB and the well-documented role for macrophages as anti-mycobacterial effector cells, badger macrophage (bdMφ) responses remain uncharacterised. Here, we demonstrate that bdMφ fail to produce nitric oxide (NO) or upregulate inducible nitric oxide synthase (iNOS) mRNA following Toll-like receptor (TLR) agonist treatment. BdMφ also failed to make NO after stimulation with recombinant badger interferon gamma (bdIFNγ) or a combination of bdIFNγ and lipopolysaccharide. Exposure of bdMφ to TLR agonists and/or bdIFNγ resulted in upregulated cytokine (IL1β, IL6, IL12 and TNFα) mRNA levels indicating that these critical pathways were otherwise intact. Although stimulation with most TLR agonists resulted in strong cytokine mRNA responses, weaker responses were evident after exposure to TLR9 agonists, potentially due to very low expression of TLR9 in bdMφ. Both NO and TLR9 are important elements of innate immunity to mycobacteria, and these features of bdMφ biology would impair their capacity to resist bTB infection. These findings have significant implications for the development of bTB management strategies, and support the use of vaccination to reduce bTB infection in badgers.

  13. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat

    PubMed Central

    Jackson, Helen C; Bearham, M Clair; Hutchins, Lisa J; Mazurkiewicz, Sarah E; Needham, Andrew M; Heal, David J

    1997-01-01

    Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.). By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems. PMID:9283694

  14. Rational design, synthesis, biologic evaluation, and structure-activity relationship studies of novel 1-indanone alpha(1)-adrenoceptor antagonists.

    PubMed

    Li, Minyong; Xia, Lin

    2007-11-01

    In the present report, a novel series of 1-indanone alpha(1)-adrenoceptor antagonists were designed and synthesized based on 3D-pharmacophore model. Their in vitro alpha(1)-adrenoceptor antagonistic assay showed that three compounds (2a, 2m, and 2o) had similar or improved alpha(1)-adrenoceptor antagonistic activities relative to the positive control prazosin. Based on these results, a three-dimensional quantitative structure-activity relationship study was performed using a Self-Organizing Molecular Field Analysis method to provide insight for the future development of alpha(1)-adrenoceptor antagonists.

  15. [(35)S]-GTPgammaS autoradiography reveals alpha(2) adrenoceptor-mediated G-protein activation in amygdala and lateral septum.

    PubMed

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2000-04-03

    alpha(2)-adrenoceptor-mediated G-protein activation was examined by [(35)S]-GTPgammaS autoradiography. In alpha(2)-adrenoceptor-rich regions (amygdala, lateral septum), noradrenaline stimulated [(35)S]-GTPgammaS binding. These actions were abolished by the selective alpha(2) antagonist, atipamezole. Conversely, in caudate nucleus, which expresses few alpha(2) receptors, noradrenaline-induced stimulation was not inhibited by atipamezole, suggesting that it is not mediated by alpha(2)-adrenoceptors.

  16. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go.

    PubMed

    García-Nafría, Javier; Nehmé, Rony; Edwards, Patricia C; Tate, Christopher G

    2018-06-20

    G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of G s to four different GPCRs have been elucidated 1-4 , but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT 1B receptor (5-HT 1B R) bound to the agonist donitriptan and coupled to an engineered G o heterotrimer. In this complex, 5-HT 1B R is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the β 2 -adrenoceptor (β 2 AR) 3 or the adenosine A 2A receptor (A 2A R) 1 in complex with G s . In contrast to the complexes with G s , the gap between the receptor and the Gβ-subunit in the G o -5-HT 1B R complex precludes molecular contacts, and the interface between the Gα-subunit of G o and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the G o α-subunit. The molecular variations between the interfaces of G o and G s in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.

  17. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries.

    PubMed Central

    Angus, J. A.; Cocks, T. M.; Satoh, K.

    1986-01-01

    Ring preparations from the carotid, coronary, renal, mesenteric and femoral arteries of the dog were precontracted with the thromboxane mimetic U46619, after ensuring that the resting conditions were comparable from the Laplace relationship. In the presence of prazosin (1 microM) and propranolol (3 microM), noradrenaline (NA) relaxed the arteries in the order coronary greater than carotid greater than femoral greater than renal = mesenteric. When maximum relaxation to nitroglycerin (10 microM) was taken to be 100% the maximum relaxation to noradrenaline in each artery was: coronary 70%; carotid 34%; femoral 19%; renal 7% and mesenteric 2%. In endothelium-intact arteries UK14304 mimicked the relaxation responses to NA and idazoxan shifted the curves to both agonists to the right, consistent with an alpha 2-adrenoceptor classification. Substance P relaxed the arteries in the same order as for NA but showed higher efficacy i.e.: coronary 100%; carotid 80%; femoral 71% renal 49%; and mesenteric 41%. Removal of the endothelium abolished the relaxation to NA. We conclude that endothelium-dependent relaxation to NA and substance P varies greatly across 5 large arteries of the dog. This may indicate that endothelium-derived relaxing factor (EDRF) release is site-dependent or that the efficacy of EDRF on smooth muscle varies; being greatest in the coronary and weakest in the renal and mesenteric arteries. PMID:2427147

  18. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    PubMed

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P = 0.005), wherein β 2 -agonist caused a repression of 25 proteins in HIT+β 2 A compared to HIT, and an upregulation of 7 proteins compared to HIT. β 2 -Agonist repressed or even downregulated training-induced enrichment of pathways related to oxidative phosphorylation and glycogen metabolism, but upregulated pathways related to histone trimethylation and the nucleosome. Muscle contractile phenotype changed differently in HIT and HIT+β 2 A (P ≤ 0.001), with a fast-to-slow twitch transition in HIT and a slow-to-fast twitch transition in HIT+β 2 A. β 2 -Agonist attenuated training-induced enhancements in maximal oxygen consumption (P ≤ 0.01) and exercise performance (6.1 vs. 11.6%, P ≤ 0.05) in HIT+β 2 A compared to HIT. These findings indicate that daily β 2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome signature towards a fast-twitch phenotype. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. Fenoterol, a beta(2)-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through beta-arrestin-2 in THP-1 cell line.

    PubMed

    Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei

    2009-11-01

    To investigate the molecular mechanism and signaling pathway by which fenoterol, a beta(2)-adrenergic receptor (beta(2)-AR) agonist, produces anti-inflammatory effects. THP-1, a monocytic cell line, was used to explore the mechanism of beta(2)-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by beta(2)-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of beta-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under beta(2)-AR stimulation. Furthermore, siRNA-mediated knockdown of beta-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by beta(2)-AR. beta(2)-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from beta-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodde, O.E.; Leifert, F.J.; Krehl, H.J.

    We determined the amount of beta 1- and beta 2-adrenoceptors in right and left atria and ventricles of rabbits. For this purpose inhibition of specific (-)-/sup 3/H-dihydroalprenolol ((-)-/sup 3/H-DHA) binding (5 nM) by beta 1-selective (practolol, metoprolol) and beta 2-selective (zinterol, IPS 339) adrenergic drugs was determined and analyzed by pseudo-Scatchard (Hofstee) plots. For both atria, inhibition of binding by the four selective beta-adrenergic drugs resulted in non-linear Hofstee plots, suggesting the coexistence of both beta-adrenoceptor subtypes. From these plots we calculated a beta 1:beta 2-adrenoceptor ratio of 72:28 for the right atrium and of 82:18 for the left. Inmore » contrast, only a very small amount of beta 2-adrenoceptors (approximately 5-7% of the total beta-adrenoceptor population) could be detected in the ventricles. For comparison we analyzed the inhibition of specific (-)-/sup 3/H-DHA binding in tissues with homogeneous population of beta-adrenoceptors (beta 1:guinea pig left ventricle; beta 2: cerebellum of mature rats). For both tissues the four selective beta-adrenergic drugs showed linear Hofstee plots, demonstrating that in tissues with homogeneous beta-receptor population interaction of each drug with the receptor followed simple mass-action kinetics. We conclude that beta 1- and beta 2-adrenoceptors coexist in rabbit atria while the ventricles are predominantly endowed the beta 1-adrenoceptors.« less

  1. Adrenoceptor-Mediated Post- and Pre-Synaptic Regulations of the Reticulospinal Neurons in Rat Caudal Pontine Reticular Nucleus.

    PubMed

    Yang, Nian; Qiao, Qi-Cheng; Liu, Yu-Hui; Zhang, Ji-Qiang; Hu, Zhi-An; Zhang, Jun

    2016-12-01

    The central noradrenergic system participates in diverse nervous functions. Nevertheless, our knowledge of the action of adrenoceptors in motor regulation is still lacking. Intriguingly, reticulospinal neurons in the caudal pontine reticular nucleus (PnC) receive fairly dense noradrenergic innervation and play an important role in motor control. Here, after demonstrating the expression of α1- and α2-adrenoceptors in the PnC, we found that noradrenaline elicited a post-synaptic effect (inward or outward whole-cell current at -70 mV holding) on PnC reticulospinal neurons. The α1- and α2-adrenoceptors were co-expressed in individual PnC reticulospinal neurons to mediate an inward and an outward current component at -70 mV holding, respectively, which, when superposed, produced the overall post-synaptic effects of noradrenaline (NA). More importantly, the activation of post-synaptic α1- or α2-adrenoceptors indeed exerted opposing modulations (excitation vs. inhibition) on the firing activities of individual PnC reticulospinal neurons. Furthermore, the activation and inhibition of the Na + -permeable non-selective cationic conductance (NSCC) were demonstrated to be coupled to α1- and α2-adrenoceptors, respectively. Additionally, the activation of α2-adrenoceptors activated K + conductance. Pre-synaptically, the α2-adrenoceptors were expressed to attenuate the miniature excitatory postsynaptic current (mEPSC) in PnC reticulospinal neurons, but not to affect the miniature inhibitory postsynaptic current (mIPSC). Consistently, the evoked EPSC in PnC reticulospinal neurons was suppressed after the activation of pre-synaptic α2-adrenoceptors. Thus, the excitatory input and post-synaptic dynamics of PnC reticulospinal neurons are indeed intricately modulated by the activation of α1- and α2-adrenoceptors, through which motor control may be regulated in an adaptive manner by the central noradrenergic system.

  2. Non-quantal release of acetylcholine in rat atrial myocardium is inhibited by noradrenaline.

    PubMed

    Borodinova, Anastasia A; Abramochkin, Denis V; Sukhova, Galina S

    2013-12-01

    In the mammalian myocardium, ACh, which is the main neurotransmitter of cardiac parasympathetic postganglionic fibres, can be released via both quantal (vesicular) and non-quantal (non-vesicular) mechanisms of secretion. Non-quantal release is continuous and independent of vagus activity and exocytosis of ACh-containing vesicles. During the incubation of myocardium in the presence of acetylcholinesterase (AChE) inhibitors, non-quantal ACh release leads to accumulation of ACh in the myocardium and cholinergic effects, which are proportional to the intensity of non-quantal secretion. The aim of the present study was to reveal whether non-quantal release of ACh can be modulated by another major cardioregulator, noradrenaline, or whether it represents uncontrolled leakage of ACh from cholinergic fibres. Cholinergic changes of electrical activity induced by the AChE inhibitor paraoxon (5 × 10(-6) M) in isolated rat right atrial preparations were determined by means of a standard microlectrode technique and used as a measure of the intensity of non-quantal release. Noradrenaline (10(-7) and 10(-6) M) substantially suppressed, but did not abolish, effects of paraoxon via stimulation of α-adrenoceptors, because all experiments were conducted in the presence of the β-blocker propranolol (5 × 10(-6) M). A blocker of ganglionic transmission, hexamethonium bromide (10(-4) M), failed to alter the inhibitory effect of noradrenaline, indicating that only non-quantal ACh release is suppressed by this neurotransmitter. The effects of noradrenaline could be reduced by the α2-antagonist yohimbine (10(-6) M). However, both the α1-agonist phenylephrine (10(-6) M) and the α2-agonist clonidine (10(-6) M) significantly inhibited the cholinergic effects of paraoxon, indicating the possible involvement of both α-adrenoceptor subtypes in mediation of the adrenergic inhibition of non-quantal ACh release. Thus, cardiac non-quantal ACh release can be negatively regulated by noradrenaline, providing another facet of sympathetic-parasympathetic interaction in the heart.

  3. RANTES release by human airway smooth muscle: effects of prostaglandin E(2) and fenoterol.

    PubMed

    Lazzeri, N; Belvisi, M G; Patel, H J; Chung, K F; Yacoub, M H; Mitchell, J A

    2001-12-21

    In human airway smooth muscle cells, the levels of RANTES were increased upon stimulation with interleukin-1beta together with tumour necrosis factor-alpha (TNF-alpha) (10 ng ml(-1) for each). In this study, we have assessed the effects of prostaglandin E(2) and the beta(2)-adrenoceptor agonist, fenoterol on RANTES (regulated upon activation, normal T cell expressed and secreted) release by these cells. The levels of RANTES released by human airway smooth muscle cells were measured after 24 h of treatment. Prostaglandin E(2) and fenoterol, only in presence of a cyclo-oxygenase inhibitor indomethacin (10(-6) M), provoked a concentration-dependent reduction in RANTES release. These data suggest that, in settings where cyclo-oxygenase activity is low, both drugs may relieve the symptoms of airway diseases by reducing RANTES production.

  4. Nebivolol and valsartan as a fixed-dose combination for the treatment of hypertension.

    PubMed

    Sander, Gary E; Giles, Thomas D

    2015-04-01

    The fixed-dose combination of nebivolol and valsartan drug has been clinically evaluated and demonstrated to represent a unique combination of nebivolol, a selective β1-adrenoceptor antagonist and a β3-adrenoceptor agonist; β3 receptor activation increases endothelial nitric oxide and produces vasodilation. Valsartan is highly selective angiotensin AT1 receptor blocker and exerts its major pharmacological effect by decreasing angiotensin II-induced vasoconstriction and production of aldosterone. The addition of nebivolol counteracts the effects of increased angiotensin II concentrations resulting from potent AT1 blockade. This review describes a recently completed trial establishing the efficacy of the nebivolol/valsartan combination. This review provides a literature search of pertinent pharmacological and clinical data that describes the mechanisms of both drugs individually and the results of a clinical trial comparing fixed-dose combinations of nebivolol with valsartan as compared with each drug as monotherapy. Fixed-dose combination drugs are intended to improve patient compliance and reduce drug costs, as well as to reduce long-term cardiovascular event rates and block counter-regulatory effects due to monotherapy. The vast majority of hypertensive patients will require at least two medications. We believe that the clinical evidence suggests that the combination of nebivolol with valsartan offers a definite clinical benefit, combining β1-adrenoceptor and angiotensin AT1 receptor blockade with β3 receptor activation and resultant increase in nitric oxide and vasodilation.

  5. Adrenoceptor Polymorphisms in Hypertension and Diabetes with obesity-update in 2014.

    PubMed

    Masuo, K

    2014-08-12

    Hypertension, diabetes mellitus (especially type 2 diabetes mellitus) and metabolic syndrome associated with obesity are rapidly growing public health problems. Sympathetic nerve activation is well documented in hypertension, diabetes mellitus, and obesity, hypertension and diabetes are determined by genetic background and environmental factors. Reduced energy expenditure and resting metabolic rate are predictive of weight gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic effects of sympathetic nervous system in obesity have been mainly mediated via the β2 and β3-adrenergic receptors in humans. Further, β2-adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. Genetic polymorphisms of the -adrenoceptor gene have been shown to alter the function of several adrenoceptor subtype and thus to modify the response to catecholamine. Among β2-adrenoceptor polymorphisms, Arg16Gly, Gln27Glu, and Thr164Ile are considered the most functionally important. β2-adrenoceptor genes have been studied in relation to hypertension. Genetic variations in the β3-adrenoceptor, such as the Try64Arg variant, are also associated with both obesity and hypertension. This review is an update of several versions published of the relationships between adrenoceptor polymorphisms and hypertension, diabetes and obesiy based on the my own review on the relationship with obesity in 2011 in "Journal of Obesity" [1], and another of my own reviews on the relationships with hypertension in 2010 in "International journal of Hypertension" [2], with 37 articles provided by the "PubMed" with the keywords of "adrenoceptor polymorphisms, obesity, hypertension and diabetes" searched on December 2013. However, the relationships of the polymorphisms of β2- and β3-adrenoceptor genes with sympathetic nervous system activity, hypertension and metabolic syndrome have been still discordant, it might be related to the ethnicity, gender, severeity of obesity, duration of hypertension or obesity, etc (refer the "Possible confounding variable affecting the relationships" section and Table 4). Therefore, this review may not be so much different from the previous ones, but, of importance, currently most investigations have shown that the β-adrenoceptor polymorphisms accompanying sympathetic nervous activity contribute to the onset and maintenance of hypertension, diabetes and obesity.

  6. Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Petrache, Irina; Van Demark, Mary J; Rashid, Badri M.; Ocana, Jesus A.; Tang, Yuxuan; Yi, Qiaofang; Turner, Matthew J.; Konger, Raymond L.; Travers, Jeffrey B.

    2013-01-01

    Previous studies have established that pro-oxidative stressors suppress host immunity due to their ability to generate oxidized lipids with PAF-receptor (PAF-R) agonist activity. Although exposure to the pro-oxidative stressor cigarette smoke (CS) is known to exert immunomodulatory effects, little is known regarding the role of platelet-activating factor (PAF) in these events. The current studies sought to determine the role of PAF-R signaling in CS-mediated immunomodulatory effects. We demonstrate that CS exposure induces the generation of a transient PAF-R agonistic activity in the blood of mice. CS exposure inhibits contact hypersensitivity in a PAF-R-dependent manner as PAF-R-deficient mice were resistant to these effects. Blocking PAF-R agonist production either by systemic antioxidants or treatment with serum PAF-acetyl hydrolase enzyme blocked both the CS-mediated generation of PAF-R-agonists and PAF-R dependent inhibition of CHS reactions, indicating a role for oxidized glycerophosphocholines with PAF-R agonistic activity in this process. In addition, cyclooxygenase-2 (COX-2) inhibition did not block PAF-R agonist production but prevented CS-induced inhibition of CHS. This suggests that COX-2 acts downstream of the PAF-R in mediating CS-induced systemic immunosuppression. Moreover, CS-exposure induced a significant increase in the expression of the regulatory T cell reporter gene in FoxP3EGFP mice but not in FoxP3EGFP mice on a PAF-R-deficient background. Finally, Treg depletion via anti-CD25 antibodies blocked CS-mediated inhibition of CHS, indicating the potential involvement of Tregs in CS-mediated systemic immunosuppression. These studies provide the first evidence that the pro-oxidative stressor CS can modulate cutaneous immunity via the generation of PAF-R agonists produced through lipid oxidation. PMID:23355733

  7. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    PubMed

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  8. Functional and Molecular Evidence for Kv7 Channel Subtypes in Human Detrusor from Patients with and without Bladder Outflow Obstruction

    PubMed Central

    Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre

    2015-01-01

    The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1–7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome. PMID:25692982

  9. Functional and molecular evidence for Kv7 channel subtypes in human detrusor from patients with and without bladder outflow obstruction.

    PubMed

    Svalø, Julie; Sheykhzade, Majid; Nordling, Jørgen; Matras, Christina; Bouchelouche, Pierre

    2015-01-01

    The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1-7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.

  10. Relative myotoxic and haemodynamic effects of the β-agonists fenoterol and clenbuterol measured in conscious unrestrained rats

    PubMed Central

    Burniston, Jatin G; Tan, Lip-Bun; Goldspink, David F

    2007-01-01

    The β2-adrenoceptor (β2-AR) agonists clenbuterol and fenoterol have similar beneficial effects in animal models of heart failure. However, large doses of clenbuterol can induce cardiomyocyte death and it is not known which of these agents has the most favourable therapeutic profile. We have investigated the cardiotoxicity of clenbuterol and fenoterol alongside that of isoproterenol, and compared their haemodynamic effects. Wistar rats (n=6, per group) were subcutaneously injected with each β-agonist (0.003 mmol kg−1 to 3 mmol kg−1) or saline and cardiomyocyte apoptosis was detected by caspase 3 immunohistochemistry. In a separate experiment rats (n=4) were given equivalent doses to those used in the myotoxicity studies, in a randomised crossover design, and their blood pressure recorded via radio telemetry. Injection of 0.3 mmol kg−1 fenoterol or isoproterenol, but not clenbuterol, induced significant cardiomyocyte apoptosis (0.4±0.05%; P<0.05). At 3 mmol kg−1, all agonists induced apoptosis (fenoterol 1.1±0.1%; isoproterenol 0.9±0.8%; clenbuterol 0.4±0.07%; P<0.05). β1-AR antagonism (10 mg kg−1 bisoprolol) prevented (92%; P<0.05) apoptosis induced by all 3 agonists, but clenbuterol-induced apoptosis could also be prevented (96%; P<0.05) by β2-AR antagonism (10 mg kg−1 ICI118551). Clenbuterol decreased diastolic (1.3-1.6 fold; P<0.05) and systolic (1.3 fold; P<0.05) blood pressure and doses >0.3 mmol kg−1 increased heart rate (1.4 fold; P<0.05). Fenoterol increased heart rate (1.2-1.4 fold; P<0.05) and doses >0.3 mmol kg−1 decreased diastolic blood pressure (1.3 fold; P<0.05). In conclusion, the cardiotoxicity of fenoterol was similar to isoproterenol and greater than clenbuterol, and fenoterol had less desirable haemodynamic effects. PMID:16973691

  11. Impaired structural and functional regeneration of skeletal muscles from β2-adrenoceptor knockout mice

    PubMed Central

    Silva, M T; Wensing, L A; Brum, P C; Câmara, N O; Miyabara, E H

    2014-01-01

    Aims β2-adrenergic stimulation causes beneficial effects on structure and function of regenerating muscles; thus, the β2-adrenoceptor may play an important role in the muscle regenerative process. Here, we investigated the role of the β2-adrenoceptor in skeletal muscle regeneration. Methods Tibialis anterior (TA) muscles from β2-adrenoceptor knockout (β2KO) mice were cryolesioned and analysed after 1, 3, 10 and 21 days. The role of β2-adrenoceptor on regenerating muscles was assessed through the analysis of morphological and contractile aspects, M1 and M2 macrophage profile, cAMP content, and activation of TGF-β signalling elements. Results Regenerating muscles from β2KO mice showed decreased calibre of regenerating myofibres and reduced muscle contractile function at 10 days when compared with those from wild type. The increase in cAMP content in muscles at 10 days post-cryolesion was attenuated in the absence of the β2-adrenoceptor. Furthermore, there was an increase in inflammation and in the number of macrophages in regenerating muscles lacking the β2-adrenoceptor at 3 and 10 days, a predominance of M1 macrophage phenotype, a decrease in TβR-I/Smad2/3 activation, and in the Smad4 expression at 3 days, while akirin1 expression increased at 10 days in muscles from β2KO mice when compared to those from wild type. Conclusions Our results suggest that the β2-adrenoceptor contributes to the regulation of the initial phases of muscle regeneration, especially in the control of macrophage recruitment in regenerating muscle through activation of TβR-I/Smad2/3 and reduction in akirin1 expression. These findings have implications for the future development of better therapeutic approaches to prevent or treat muscle injuries. PMID:24938737

  12. [High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].

    PubMed

    Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M

    2003-08-01

    As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.

  13. Morphine-induced antinociception in the rat: supra-additive interactions with imidazoline I₂ receptor ligands.

    PubMed

    Li, Jun-Xu; Zhang, Yanan; Winter, Jerrold C

    2011-11-01

    Pain remains a significant clinical challenge and currently available analgesics are not adequate to meet clinical needs. Emerging evidence suggests the role of imidazoline I(2) receptors in pain modulation primarily from studies of the non-selective imidazoline receptor ligand, agmatine. However, little is known of the generality of the effect to selective I(2) receptor ligands. This study examined the antinociceptive effects of two selective I(2) receptor ligands 2-BFI and BU224 (>2000-fold selectivity for I(2) receptors over α(2) adrenoceptors) in a hypertonic (5%) saline-induced writhing test and analyzed their interaction with morphine using a dose-addition analysis. Morphine, 2-BFI and BU224 but not agmatine produced a dose-dependent antinociceptive effect. Both composite additive curve analyses and isobolographical plots revealed a supra-additive interaction between morphine and 2-BFI or BU224, whereas the interaction between 2-BFI and BU224 was additive. The antinociceptive effect of 2-BFI and BU224 was attenuated by the I(2) receptor antagonist/α(2) adrenoceptor antagonist idazoxan but not by the selective α(2) adrenoceptor antagonist yohimbine, suggesting an I(2) receptor-mediated mechanism. Agmatine enhanced the antinociceptive effect of morphine, 2-BFI and BU224 and the enhancement was prevented by yohimbine, suggesting that the effect was mediated by α(2) adrenoceptors. Taken together, these data represent the first report that selective I(2) receptor ligands have substantial antinociceptive activity and produce antinociceptive synergy with opioids in a rat model of acute pain. These data suggest that drugs acting on imidazoline I(2) receptors may be useful either alone or in combination with opioids for the treatment of pain. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Antihypertensive effect of formononetin through regulating the expressions of eNOS, 5-HT2A/1B receptors and α1-adrenoceptors in spontaneously rat arteries.

    PubMed

    Sun, Tao; Wang, Jie; Huang, Lin-Hong; Cao, Yong-Xiao

    2013-01-15

    One of the main pathological changes of hypertension is the dysfunction of blood vessels. We have found in our previous study that formononetin, one kind of phytoestrogens, has an acute antihypertensive effect. Therefore, we hypothesized that formononetin might produce a chronic antihypertensive effect through regulating the expressions of contractile receptors and endothelial nitric oxide synthase (eNOS) in artery. The present study was conducted to verify this effect. Male spontaneously hypertensive rats (SHRs) were divided into two groups, orally administrated formononetin (50mg/kg per day) and Tween 80 vehicle, respectively, for 8 weeks. The blood pressure was measured by tail-cuff method. Isometric tension of arterial rings was recorded by a myograph system. The mRNA and protein expression in arteries was determined with quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Results showed that the systolic blood pressure of SHRs decreased significantly in formononetin group compared to Tween 80 group. The vasoconstriction induced by phenylephrine or 5-hydroxytryptamine (5-HT) in the mesenteric artery segments in formononetin group was decreased, and the relaxation induced by acetylcholine was increased compared with that in Tween 80 group. In the mesenteric arteries of the formononetin-treated SHRs, the expressions of α(1)-adrenoceptors and 5-HT(2A/1B) receptors at both mRNA and protein levels decreased, while the mRNA and protein expressions of eNOS increased. In conclusion, formononetin has a chronic antihypertensive effect in SHRs. The antihypertensive mechanism may be associated with the down-regulation of α(1)-adrenoceptors and 5-HT(2A/1B) receptors, and the up-regulation of eNOS expression in arteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    PubMed

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Inhibition by alpha- and beta-adrenoceptors of the twitch response to transmural stimulation in the guinea-pig vas deferens.

    PubMed

    Hedqvist, P; Von Euler, U S

    1976-11-01

    Noradrenaline as well as the indirectly acting amines tyramine and phenethylamine either enhance or inhibit the twitch response of the transmurally stimulated, isolated guine-pig vas deferens, thus partly confirming previous reports. In both cases enhancement is annulled by alpha-adrenoceptor blockers. The twitch inhibition caused by noradrenaline is abolished by alpha- + beta2-adrenoceptor blockers, but not by either blocker alone. The inhibition caused by the indirectly acting amines is largely abolished by alpha-adrenoceptor blockers. Clonidine strongly inhibits the twitch. This effect if promptly removed by phentolamine. After blockade of the neurally induced twitch by tetrodotoxin, noradrenaline and the indirectly acting amines have no effect or slightly enhance the twitch elicited by transmural stimulation of the smooth muscle. It is concluded that exogenous noradrenaline acts on postjunctional stimulatory alpha-adrenoceptors and on inhibitory alpha- and beta2-adrenoceptors, which are presumably prejunctional. In the unstimulated preparation contracted by acetylcholine, noradrenaline causes further contraction which is changed into relaxation after phentolamine. This relaxation is abolished by butoxamine, suggesting that noradrenaline may also act on inhibitory postjunctional beta2-adrenoceptors. The twitch-inhibiting effect of endogenous noradrenaline, released by nerve stimulation or by indirectly acting amines, appears to be primarily mediated by prejunctional alpha-adrenoceptors.

  17. The effect of prolonged ethanol administration on central alpha 2-adrenoceptors sensitivity.

    PubMed

    Szmigielski, A; Szmigielska, H; Wejman, I

    1989-01-01

    The response of an endogenous inhibitor of protein kinases (type II inhibitor) to clonidine was used as an index of sensitivity of central alpha 2-adrenoceptors. Low doses of clonidine (20-50 micrograms/kg) induced an increase in type II inhibitor activity in the nucleus accumbens, hippocampus and in the anterior and posterior hypothalamus by stimulating presynaptic alpha 2-adrenoceptors. Stimulation of postsynaptic alpha 2-adrenoceptors by high doses of clonidine 0.5-1.0 mg/kg resulted in a dose-dependent decrease in type II inhibitor activity. Prolonged treatment with ethanol (5 g/kg/day po for 21 days) greatly reduced the action of high doses of clonidine in all the examined brain areas, suggesting subsensitivity of postsynaptic alpha 2-adrenoceptors lasting for at least 48 h after the last ethanol administration. A single dose of ethanol induced a short lasting subsensitivity of postsynaptic alpha 2-adrenoceptors in the anterior hypothalamus. 12 h after administration of alcohol the response of type II inhibitor to high doses of clonidine in this brain area was the same as in untreated rats.

  18. [Ocular hypotensive effect of alpha-adrenoceptor agonist and antagonist in the conscious pigmented rabbit].

    PubMed

    Moriwaki, Y; Iizuka, T; Nakamura, A; Nakata, K; Masaoka, Y; Ueda, T; Koide, R; Inatomi, M; Fukado, Y; Uchida, E

    1992-02-01

    It has been reported that some of the topically-used antiglaucomatics have a central ocular hypotensive effect. In this study, the influence of topical and intracerebroventricular (i.c.v.) administration of phenylephrine, clonidine, guanfacine, prazosin, yohimbine on the intraocular pressure (IOP) was investigated in the rabbit. Male pigmented rabbits were used throughout the experiments. For measurement of IOP, an applanation pneumatonograph was used. By unilateral topical administration of phenylephrine, an increase in IOP in the eye in which instillation was performed was observed. On the other hand, a slight decrease in IOP was observed by similar treatment of prazosin and yohimbine. No significant change of IOP in the contralateral eye was observed with these drugs. On the contrary, unilateral topical administration of clonidine or guanfacine decreased the IOP of both eyes. Furthermore, the decrease of IOP was more remarkable in the contralateral eye compared to the eye which received instillation. The IOP of both eyes was decreased in a dose-related fashion by i.c.v. administration of clonidine or guanfacine. The ocular hypotensive effects of clonidine were diminished by the pretreatment by i.c.v. administration with yohimbine. These results suggest that the ocular hypotensive effect of clonidine and guanfacine is due to their alpha 2-adrenoceptor stimulation in the central nervous system.

  19. Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway

    PubMed Central

    Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK/ERK signaling cascade that is likely independent of coupling to Gαq. PMID:25606852

  20. Antidiarrhoeal Activity of Hydroethanolic Leaf Extract of Bryophyllum pinnatum Lam. Kurtz (Crassulaceae).

    PubMed

    Adeyemi, Olufunmilayo O; Ishola, Ismail O; Okoro, Uzodinma

    2013-01-01

    Bryophyllum pinnatum Lam. Kurtz (Crassulaceae) is used in traditional African medicine in the treatment of diarrhoea. To investigate the antidiarrhoeal action of the hydroethanolic leaf extract of Bryophyllum pinnatum (BP). Normal intestinal transit, castor oil-induced intestinal transit, castor oil-induced diarrhoea, gastric emptying and enteropooling models in rodents were used to investigate antidiarrhoeal effect. The possible mechanism of antidiarrhoeal activity was investigated using prazosin (1 mg/kg, s.c; α1, adrenoceptor antagonist), yohimbine (1 mg/kg, s.c; α2 adrenoceptor antagonist), propranolol (1 mg/kg, i.p; α- adrenoceptor non-selective antagonist), atropine (1 mg/kg, s.c; muscarinic cholinergic antagonist), pilocarpine (1 mg/kg, s.c; muscarinic cholinergic agonist), and isosorbide dinitrate (IDN) (150 mg/kg, p.o; nitric oxide donor). BP (25-100 mg/kg, p.o) produced dose-dependent and significant (P < 0.001) decrease in intestinal propulsion in normal and castor oil-induced intestinal transit models in comparison to distilled water (10 ml/kg, p.o.) treated control. This antidiarrhoeal effect was inhibited by propranolol pretreatment but yohimbine, prazosin, or atropine pretreatment failed to block this effect. BP treatment reduced the increased peristaltic activity induced by pilocarpine, however, co-treatment with IDN significantly (P < 0.001) enhanced the antidiarrhoeal effect of the extract. In castor oil-induced diarrhoea test, the extract produced a dose-dependent and significant (P < 0.001) increase in onset of diarrhoea, decreased diarrhoea score, the number and weight of wet stools when compared to control. The in vivo antidiarrhoeal index (ADI(in) vivo)) of 53.52 produced by the extract (50 mg/kg, p.o.) was similar to 76.28 ADI(in vivo) produced by morphine (10 mg/kg, s.c.). The extract produced dose- dependent and significant (P < 0.05; P < 0.001) decrease in the weight and volume of intestinal content in the intestinal fluid accumulation model. In gastric emptying test, BP treatment reduced the quantity of test meal emptied in 1 h but not significant. The results showed that the hydroethanolic leaf extract of Bryophyllum pinnatum possesses antidiarrhoeal activity possibly mediated by interaction with β adrenoceptor, muscarinic cholinergic receptor and nitric oxide pathway.

  1. Spinal Activation of Tropomyosin Receptor Kinase-B Recovers the Impaired Endogenous Analgesia in Neuropathic Pain Rats.

    PubMed

    Kato, Daiki; Suto, Takashi; Obata, Hideaki; Saito, Shigeru

    2018-06-20

    Although endogenous analgesia plays an important role in controlling pain states, chronic pain patients exhibit decreased endogenous analgesia compared to healthy individuals. In rats, noxious stimulus-induced analgesia (NSIA), which is an indicator of endogenous analgesia, diminished 6 weeks after spinal nerve ligation (SNL6W). A recent study in rats with deleted noradrenergic fibers demonstrated that the noradrenergic fibers were essential to NSIA. It has also been reported that brain-derived neurotrophic factor increased spinal noradrenergic fibers. Therefore, this study examined the effect of TrkB activation, which is the receptor for brain-derived neurotrophic factor, on impaired NSIA in SNL6W rats. In addition, we also examined the effect of endogenous analgesia on acute incisional pain. After 5 daily intraperitoneal injections of 7,8-dihydroxyflavone (7,8-DHF, TrkB agonist, 5 mg/kg), NSIA was examined by measuring the withdrawal threshold increment in the left (contralateral to nerve ligation) hindpaw at 30 minutes after capsaicin injection (250 μg) in the forepaw. K252a (TrkB antagonist, 2 μg) was administrated intrathecally for 5 days. Idazoxan (α2 adrenoceptor antagonist, 30 μg), atropine (muscarinic antagonist, 30 μg), and propranolol (nonselective β adrenoceptor antagonist, 30 μg) were administered intrathecally for 15 minutes before capsaicin injection. Microdialysis and immunohistochemistry were performed to examine the noradrenergic plasticity in the spinal dorsal horn. A hindpaw incision was performed on the left (contralateral to nerve ligation) hindpaw. Data were analyzed by 1-way analyses of variance or 2-way repeated-measures 1-way analysis of variance followed by a Student t test with Bonferroni correction. Five daily intraperitoneal injections of 7,8-DHF restored the attenuated NSIA in SNL6W rats (n = 7, P = .002; estimated treatment effect [95% CI]: 62.9 [27.0-98.7] g), with this effect blocked by 5 daily intrathecal coadministrations of K252a (n = 6, P < .001; -57.8 [-78.3 to -37.2] g). This effect was also inhibited by a single intrathecal administration of idazoxan (n = 8, P < .001; -61.6 [-92.4 to -30.9] g) and atropine (n = 8, P = .003; -52.6 [-73.3 to -31.9] g), but not by propranolol. Furthermore, 7,8-DHF increased the noradrenergic fiber in the spinal dorsal horn and the noradrenaline release in response to the capsaicin injection in the forepaw in SNL6W rats. In addition, repeated injections of 7,8-DHF prevented delayed recovery from incisional pain in SNL6W rats. Spinal activation of TrkB may recover the attenuated endogenous analgesia by improving the adrenergic plasticity, thereby leading to prevention of pain prolongation after surgery.

  2. Pharmacological analysis of the cardiac sympatho-inhibitory actions of moxonidine and agmatine in pithed spontaneously hypertensive rats.

    PubMed

    Cobos-Puc, Luis E; Sánchez-López, Araceli; Centurión, David

    2016-11-15

    This study shows that in spontaneously hypertensive rats (SHR) of 14-weeks-old, the sympathetically-induced, but not noradrenaline-induced tachycardic response are higher than age-matched Wistar normotensive rats. Furthermore, in SHR the sympathetically-induced tachycardic response was: (1) unaffected by moxonidine (3μg/kgmin); (2) partially inhibited by B-HT 933 (30μg/kgmin), both at the lowest doses; and (3) completely inhibited by the highest doses of B-HT 933 (100μg/kgmin), moxonidine (10μg/kgmin) or agmatine (1000 and 3000μg/kgmin) while the noradrenaline-induced tachycardic responses remained unaffected by the above compounds, except by 3000μg/kgmin agmatine. In SHR, 300μg/kg rauwolscine failed to block the sympatho-inhibition to 100μg/kgmin B-HT 933 or 10μg/kgmin moxonidine, but 1000μg/kg rauwolscine abolished, partially antagonized, and did not modify the sympatho-inhibition to the highest doses of B-HT 933, moxonidine, and agmatine, respectively, 3000μg/kg AGN 192403 or 300μg/kg BU224 given alone had no effect in the moxonidine- or agmatine-induced sympatho-inhibition, and the combination rauwolscine plus AGN 192403 but not plus BU224, abolished the sympatho-inhibition to the highest doses of moxonidine and agmatine. In conclusion, the sympathetically-induced tachycardic responses in SHR are inhibited by moxonidine and agmatine. The inhibition of moxonidine is mainly mediated by prejunctional α 2 -adrenoceptors and to a lesser extent by I 1 -imidazoline receptors, while the inhibition of agmatine is mediated by prejunctional α 2 -adrenoceptors and I 1 -imidazoline receptors at the same extent. Notwithstanding, the inhibitory function of α 2 -adrenoceptors seems to be altered in SHR compared with Wistar normotensive rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Basal activity of voltage-gated Ca(2+) channels controls the IP3-mediated contraction by α(1)-adrenoceptor stimulation of mouse aorta segments.

    PubMed

    Leloup, Arthur J; Van Hove, Cor E; De Meyer, Guido R Y; Schrijvers, Dorien M; Fransen, Paul

    2015-08-05

    α1-Adrenoceptor stimulation of mouse aorta causes intracellular Ca(2+) release from sarcoplasmic reticulum Ca(2+) stores via stimulation of inositoltriphosphate (IP3) receptors. It is hypothesized that this Ca(2+) release from the contractile and IP3-sensitive Ca(2+) store is under the continuous dynamic control of time-independent basal Ca(2+) influx via L-type voltage-gated Ca(2+) channels (LCC) residing in their window voltage range. Mouse aortic segments were α1-adrenoceptor stimulated with phenylephrine in the absence of external Ca(2+) (0Ca) to measure phasic isometric contractions. They gradually decreased with time in 0Ca, were inhibited with 2-aminoethoxydiphenyl borate, and declined with previous membrane potential hyperpolarization (levcromakalim) or with previous inhibition of LCC (diltiazem). Former basal stimulation of LCC with depolarization (15 mM K(+)) or with BAY K8644 increased the subsequent phasic contractions by phenylephrine in 0Ca. Although exogenous NO (diethylamine NONOate) reduced the phasic contractions by phenylephrine, stimulation of endothelial cells with acetylcholine in 0Ca failed to attenuate these phasic contractions. Finally, inhibition of the basal release of NO with N(Ω)-nitro-L-arginine methyl ester also attenuated the phasic contractions by phenylephrine. Results indicated that α1-adrenoceptor stimulation with phenylephrine causes phasic contractions, which are controlled by basal LCC and endothelial NO synthase activity. Endothelial NO release by acetylcholine was absent in 0Ca. Given the growing interest in the active regulation of arterial compliance, the dependence of contractile SR Ca(2+) store-refilling in basal conditions on the activity of LCC and basal eNOS may contribute to a more thorough understanding of physiological mechanisms leading to arterial stiffness. Copyright © 2015. Published by Elsevier B.V.

  4. Fenoterol, a β2-adrenoceptor agonist, inhibits LPS-induced membrane-bound CD14, TLR4/CD14 complex, and inflammatory cytokines production through β-arrestin-2 in THP-1 cell line

    PubMed Central

    Wang, Wei; Xu, Ming; Zhang, You-yi; He, Bei

    2009-01-01

    Aim: To investigate the molecular mechanism and signaling pathway by which fenoterol, a β2-adrenergic receptor (β2-AR) agonist, produces anti-inflammatory effects. Methods: THP-1, a monocytic cell line, was used to explore the mechanism of β2-AR stimulation in LPS-induced secretion of inflammatory cytokines and changes of toll-like receptors (TLRs). We labeled TLR4 and CD14 using monoclonal anti-TLR4 PE-conjugated and anti-CD14 FITC-conjugated antibodies in THP-1 cells stimulated by β2-AR in the presence or absence of lipopolysaccharide (LPS) and small, interfering RNA (siRNA)-mediated knockdown of β-arrestin-2, and then analyzed their changes in distribution by flow cytometry, Western blotting and confocal analysis. Results: LPS-induced membrane-bound CD14, TLR4/CD14 complex levels and elevation of inflammatory cytokines were all significantly reduced by pre-incubation of fenoterol (P<0.05). However, the total level of CD14 and TLR4 was not significantly changed. Interestingly, confocal microscopy revealed redistribution of CD14 and TLR4/CD14 complex under β2-AR stimulation. Furthermore, siRNA-mediated knockdown of β-arrestin-2 eliminated the anti-inflammatory effects and redistribution of CD14 and TLR4/CD14 complex stimulated by β2-AR. Conclusion: β2-AR agonist exerts its anti-inflammatory effects by down-regulating TLR signaling in THP-1 cells, potentially resulting from β-arrestin-2 mediated redistribution of CD14 and TLR14/CD14 complex. PMID:19890360

  5. Lower Urinary Tract Symptoms: What's New in Medical Treatment?

    PubMed

    Peyronnet, Benoit; Brucker, Benjamin M; Michel, Martin C

    2018-04-14

    Pharmacological treatment is a cornerstone in the management of patients with lower urinary tract symptoms (LUTS). To review emerging evidence in the medical treatment of LUTS. An Embase/Pubmed-based literature search was conducted in December 2017, screening for randomized controlled trials (RCTs), prospective and retrospective series, animal model studies, and reviews on medical treatment of LUTS. The main medical innovation in recent years in overactive bladder (OAB) has been the approval of the first β 3 -adrenoceptor agonists (mirabegron) and intradetrusor onabotulinum toxin A, while several other drugs such as antiepileptics, phosphodiesterase inhibitors, or other β 3 -agonists have brought promising results in phase 3 trials. Intraprostatic injections of various drugs for LUTS/benign prostatic hyperplasia have been investigated, but results of phase 3 trials are still pending, while combination therapies of phosphodiesterase type 5 inhibitors+α-blockers or finasteride have been proved as superior to single therapies in RCTs conducted in these patients. Two new formulations of desmopressin have been approved for nocturia in the USA (desmopressin nasal spray) and Europe/Canada/Australia (desmopressin orally disintegrated tablet). Fedovapagon, a vasopressin V 2 receptor agonist, has recently completed a large phase 3 trial in male patients with nocturia. Other phase 3 trials are ongoing in bladder pain syndrome (AQX 11-25, a SHIP-1 activator) and in neurogenic detrusor overactivity (mirabegron and abobotulinum toxin A). Medical treatment of LUTS is a very active research field with recently approved drugs for nocturia (desmopressin acetate nasal spray/orally disintegrated tablet) and numerous emerging drugs currently investigated in OAB, LUTS/benign prostatic hyperplasia, nocturia, bladder pain syndrome, and neurogenic detrusor overactivity. Medical treatment of lower urinary tract symptoms is a very active research field with recently approved drugs for nocturia (desmopressin acetate nasal spray/orally disintegrated tablet) and numerous emerging drugs in overactive bladder, nocturia, neurogenic detrusor overactivity, bladder pain syndrome, or benign prostatic hyperplasia. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    PubMed Central

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca2+, whereas α1-adrenoceptor stimulation enhances glutamate uptake, and β-adrenoceptor activation causes glycogenolysis and increased Na+,K+-ATPase activity. The Ca2+- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized. PMID:20380860

  7. Mechanisms responsible for the trophic effect of beta-adrenoceptors on the I(to) current density in type 1 diabetic rat cardiomyocytes.

    PubMed

    Setién, Raúl; Alday, Aintzane; Diaz-Asensio, Cristina; Urrutia, Janire; Gallego, Mónica; Casis, Oscar

    2013-01-01

    In diabetic ventricular myocytes, transient outward potassium current (Ito) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on Ito since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (βAR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the βAR agonist isoproterenol recovers Ito amplitude to normal values. Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. Ito current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Stimulation of βAR activates first a Gαs protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the Gαi protein. This leads to the activation of the βAR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. β2AR stimulation activates a Gαs and Gαi protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart. Copyright © 2012 S. Karger AG, Basel.

  8. Insertion/deletion polymorphism in alpha2-adrenergic receptor gene is a genetic risk factor for sudden cardiac death.

    PubMed

    Laukkanen, Jari A; Mäkikallio, Timo H; Kauhanen, Jussi; Kurl, Sudhir

    2009-10-01

    Adrenoceptors mediate contraction of vascular smooth muscle and induce coronary vasoconstriction in humans. A deletion variant of the human alpha(2B)-adrenoreseptor of glutamic acid residues has been associated with impaired receptor desensitization. This receptor variant could, therefore, be involved in cardiovascular diseases associated with enhanced vasoconstriction. Our aim was to study whether an insertion/deletion (I/D) polymorphism in the alpha(2B)-adrenoceptor gene is associated with the risk for sudden cardiac death. This was a prospective population-based study investigating risk factors for cardiovascular diseases in middle-aged men from 42 to 60 years from eastern Finland. The study is based on 1,606 men with complete data on DNA observed for an average time of 17 years. In this study population, 338 men (21%) had the D/D genotype, 467 (29%) had the I/I genotype, and 801 (50%) had a heterozygous genotype. There were 76 sudden cardiac deaths during follow-up (0.81 deaths/1,000 persons per year). In a Cox model adjusting for other coronary risk factors (age, systolic blood pressure, smoking, diabetes, serum low-density lipoprotein and high-density lipoprotein cholesterol, body mass index, and exercise-induced myocardial ischemia), men with the D/D or I/D genotype had 1.97 times (95% CI 1.08-3.59, P = .026) higher risk to experience sudden cardiac death (20 events for D/D genotype, 13 events for I/I genotype, and 43 events for I/D genotype) compared with men carrying the I/I genotype. In addition, the alpha(2B)-adrenoceptor D/D genotype was associated with the risk of coronary heart disease death and acute coronary events, after adjusting for risk factors. The genetic polymorphism of the alpha(2B)-adrenoreceptor is genetic risk predictor for sudden cardiac death.

  9. Respective contributions of α-adrenergic and non-adrenergic mechanisms in the hypotensive effect of imidazoline-like drugs

    PubMed Central

    Bruban, Véronique; Feldman, Josiane; Greney, Hugues; Dontenwill, Monique; Schann, Stephan; Jarry, Christian; Payard, Marc; Boutin, Jean; Scalbert, Elizabeth; Pfeiffer, Bruno; Renard, Pierre; Vanhoutte, Paul; Bousquet, Pascal

    2001-01-01

    The hypotensive effect of imidazoline-like drugs, such as clonidine, was first attributed to the exclusive stimulation of central α2-adrenoceptors (α2ARs). However, a body of evidence suggests that non-adrenergic mechanisms may also account for this hypotension. This work aims (i) to check whether imidazoline-like drugs with no α2-adrenergic agonist activity may alter blood pressure (BP) and (ii) to seek a possible interaction between such a drug and an α2ARs agonist α-methylnoradrenaline (α-MNA). We selected S23515 and S23757, two imidazoline-like drugs with negligible affinities and activities at α2ARs but with high affinities for non-adrenergic imidazoline binding sites (IBS). S23515 decreased BP dose-dependently (−27±5% maximal effect) when administered intracisternally (i.c.) to anaesthetized rabbits. The hypotension induced by S23515 (100 μg kg−1 i.c.) was prevented by S23757 (1 mg kg−1 i.c.) and efaroxan (10 μg kg−1 i.c.), while these compounds, devoid of haemodynamic action by themselves, did not alter the hypotensive effect of α-MNA (3 and 30 μg kg−1 i.c.). Moreover, the α2ARs antagonist rauwolscine (3 μg kg−1 i.c.) did not prevent the effect of S23515. Finally, whilst 3 μg kg−1 of S23515 or 0.5 μg kg−1 of α-MNA had weak hypotensive effects, the sequential i.c. administration of these two drugs induced a marked hypotension (−23±2%). These results indicate that an imidazoline-like drug with no α2-adrenergic properties lowers BP and interacts synergistically with an α2ARs agonist. PMID:11350862

  10. [The effects of perioperative continuous administration of mivazerol on early postoperative hemodynamics and plasma catecholamines after major surgery].

    PubMed

    Apitzsch, H; Olthoff, D; Thieme, V; Vetter, B; Wiegel, M

    2000-08-01

    During and after surgical procedures a strong activation of the sympatho-adrenergic system is common with correlation to adverse cardiac outcome. Several drugs (alpha 2-adrenoceptor-agonists, beta blockers) are discussed to prevent this reaction. The new alpha 2-adrenoceptor-agonist mivazerol with marked specificity for alpha 2-adrenergic receptors may be suitable for this indication. The aim of the present study was to investigate the effects of perioperative continuous administration of mivazerol on plasma catecholamines, body temperature and calculated haemodynamic parameters in the early postoperative period in cardiac risk patients undergoing non-cardiac surgery. 36 patients with known coronary heart disease or risk factors for coronary heart disease scheduled for elective abdominal or vascular surgery were included in the study. Patients received either mivazerol (n = 18) or placebo (n = 18) [initial dose 4 micrograms kg-1 for 10 minutes before induction of anaesthesia, followed by a continuous infusion of 1.5 micrograms kg-1 h-1 intraoperatively and for as long as 72 h after surgery] in a double-blinded, randomized manner. Blood pressure, heart rate and body temperature were measured every 10 minutes until 240 minutes after arrival at the ICU. During 240 minutes after arrival at the ICU measured parameters (CVP, PAP, PCWP, SaO2, SvO2, CO), calculated parameters (CI, SVR, PVR, VO2) and plasma catecholamines were measured at defined time intervalls. The plasma concentrations of epinephrine and norepinephrine and the heart rate were significantly lower in the mivazerol group in the study period. Regarding blood pressure and body temperature there were no differences between the groups. At some measuring points preload was higher in the mivazerol group, but there were no differences between the groups for measured (SaO2, SvO2, CO) and calculated (CI, SVR, PVR, VO2) cardiorespiratory parameters. The incidence of shivering, nausea and vomiting were similar in both groups. Continuous, perioperative administration of mivazerol decreased the heart rate and the plasma catecholamines in the early postoperative period, but did not affect blood pressure, body temperature and the incidence of shivering. There were also no effects of mivazerol on calculated haemodynamic parameters (CO, SVR, PVR, VO2). These findings show a selective decrease in heart rate by Mivazerol without markedly cardiorespiratory side effects.

  11. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  12. β2-adrenoceptor signaling reduction in dendritic cells is involved in the inflammatory response in adjuvant-induced arthritic rats

    PubMed Central

    Wu, Huaxun; Chen, Jingyu; Song, Shasha; Yuan, Pingfan; Liu, Lihua; Zhang, Yunfang; Zhou, Aiwu; Chang, Yan; Zhang, Lingling; Wei, Wei

    2016-01-01

    Rheumatoid arthritis (RA) is characterized by inflammation of the synovium, which leads to the progressive destruction of cartilage and bone. Adrenoreceptor (AR) signaling may play an important role in modulating dendritic cell (DC), which may be involved in the pathogenesis of RA. We examined the effect of the β-AR agonist isoprenaline (ISO) on DC function, the impact of the β2-AR agonist salbutamol on adjuvant-induced arthritic (AA) rats, and changes in β2-AR signaling in DCs during the course of AA. ISO inhibited the expression of the surface molecules CD86 and MHC-II, inhibited the stimulation of T lymphocyte proliferation by DC and TNF-α secretion, and promoted DC antigen uptake and IL-10 secretion. The effects of ISO on MHC-II expression, DC stimulation of T lymphocyte proliferation, and DC antigen uptake were mediated by β2-AR. Treatment with salbutamol ameliorated the severity of AA and histopathology of the joints and inhibited proliferation of thymus lymphocytes and FLS in vivo. β2-AR signaling was weaker in AA rats compared to the control. Elevated GRK2 and decreased β2-AR expression in DC cytomembranes were observed in AA and may have decreased the anti-inflammatory effect of β2-AR signaling. Decreased β2-AR signaling may be relevant to the exacerbation of arthritis inflammation. PMID:27079168

  13. Neurogenic vasodilatation and plasma leakage in the skin.

    PubMed

    Holzer, P

    1998-01-01

    1. Primary afferent nerve fibers control cutaneous blood flow and vascular permeability by releasing vasoactive peptides. These vascular reactions and the additional recruitment of leukocytes are commonly embodied in the term neurogenic inflammation. 2. Calcitonin gene-related peptide (CGRP) acting via CGRP1 receptors is the principal transmitter of neurogenic dilatation of arterioles whereas substance P (SP) and neurokinin A (NKA) acting via NK1 receptors mediate the increase in venular permeability. 3. Neurogenic vasodilatation and plasma protein leakage play a role in inflammation because many inflammatory and immune mediators including interleukin-1 beta, nitric oxide, prostanoids, protons, bradykinin, histamine, and 5-hydroxytryptamine can stimulate peptidergic afferent nerve fibers or enhance their excitability. 4. Neurogenic inflammatory reactions can be suppressed by alpha 2-adrenoceptor agonists, histamine acting via H1 receptors, 5-hydroxytryptamine acting via 5-HT1B receptors, opioid peptides, and somatostatin through prejunctional inhibition of peptide release from vasoactive afferent nerve fibers. CGRP, SP, and NKA receptor antagonists are powerful pharmacological tools to inhibit neurogenic inflammation at the postjunctional level. 5. Imbalance between the facilitatory and inhibitory influences on afferent nerve activity has a bearing on chronic inflammatory disease. Impaired nerve function represents a deficit in skin homeostasis while neuronal overactivity is a factor in allergic and hyperreactive disorders of the skin.

  14. The beta-3 adrenoceptor agonist, mirabegron relaxes isolated prostate from human and rabbit: new therapeutic indication?

    PubMed

    Calmasini, Fabiano B; Candido, Tuany Z; Alexandre, Eduardo C; D'Ancona, Carlos A; Silva, Daniel; de Oliveira, Marco Antonio; De Nucci, Gilberto; Antunes, Edson; Mónica, Fabíola Z

    2015-03-01

    Alpha1 (α1)-blockers, 5-alpha reductase and phosphodiesterase type-5 inhibitors are pharmacological classes currently available for benign prostatic hyperplasia (BPH) treatment. Mirabegron, a beta-3 adrenoceptor (β3-AR) agonist has been approved for the therapy of overactive bladder and may constitute a new therapeutic option for BPH treatment. This study is aimed to evaluate the in vitro effects of mirabegron in human and rabbit prostatic smooth muscle. In rabbit prostate, electrical field stimulation (EFS)-induced contraction and concentration-response curve (CRC) to mirabegron in phenylephrine pre-contracted tissues were carried out. The potency (pEC50 ) and maximal response (Emax ) values were determined. In human prostate, CRC to phenylephrine was carried out in the absence and presence of mirabegron. Immunohistochemistry analysis for β3-AR was also carried out. In human prostate, immunohistochemistry analysis revealed the presence of β3-AR on the transition zone and mirabegron reduced by 42% the phenylephrine-induced contractions. In rabbit prostate, mirabegron produced concentration-dependent relaxations (pEC50 : 6.01 ± 0.12; Emax : 106 ± 3%), which were fully resistant to the blockade of β1-AR and β2-AR. The β3-AR blocker L748,337 caused a six-fold rightward shift in mirabegron-induced relaxations. Mirabegron (10 μM) reduced by 63% the EFS-induced contractions. Inhibitors of nitric oxide (L-NAME) and of soluble guanylate cyclase (ODQ) along with a cocktail of K+ channel blockers (apamin, charybdotoxin, glibenclamide, tetraethylammonium) all failed to significantly affect the mirabegron-induced rabbit relaxations. Mirabegron relaxes prostatic smooth muscle, providing an experimental support for the clinical investigation of its combination with an α1-blockers or PDE5 inhibitors in the treatment of BPH. Prostate 75:440-447, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  15. Comparison of the effect of pindolol and propranolol on heart rate after acute and chronic administration.

    PubMed Central

    Finch, M B; O'Connor, P C; Harron, D W; Shanks, R G

    1983-01-01

    1 The present study compared the effects in healthy volunteers of the acute and chronic administration of placebo, pindolol and propranolol to see if the partial agonist activity of pindolol was reduced by the beta-adrenoceptor blocking activity of pindolol on chronic administration. 2 Five subjects received in random order for 8 days placebo, propranolol 160 mg and pindolol 10 mg; on days 1 and 8 treatments were given twice at 0 and 2 h. Heart rate in supine position and at end of exercise was recorded before dosing and at 2 and 4 h post-dosing on days 1 and 8. 3 Propranolol and pindolol reduced exercise heart rate to the same extent on days 1 and 8. 4 Propranolol reduced supine heart rate more than pindolol on days 1 and 8 but the difference was only significant on day 8. PMID:6849778

  16. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  17. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    PubMed

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  18. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the α2-adrenoceptor subtypes.

    PubMed

    Cobos-Puc, Luis; Aguayo-Morales, Hilda; Ventura-Sobrevilla, Janeth; Luque-Contreras, Diana; Chin-Chan, Miguel

    2017-06-15

    This study has investigated the role of the α 2 -adrenoceptor subtypes involved in the inhibition of the cardiac sympathetic outflow induced by intravenous (i.v) infusions of agmatine. Therefore, we analysed the effect of an i.v. bolus injections of the selective antagonists BRL 44408 (300μg/kg; α 2A ), imiloxan (3000μg/kg; α 2B ), and JP-1302 (300μg/kg; α 2C ) given separately, and their combinations: BRL 44408 plus Imiloxan, JP 1302 plus imiloxan, BRL 44408 plus JP-1302, BRL 44408 plus imiloxan plus JP-1302 on the cardiac sympatho-inhibition of agmatine. Also, the effect of the combination BRL 44408 plus JP-1302 plus AGN 192403 (3000μg/kg; I 1 antagonist) was evaluated. In this way, i.v. infusions of 1000μg/kg min of agmatine, but not 300, inhibited the tachycardic response induced by electrical stimulation. Furthermore, the antagonists used or their combinations had no effect on the electrically-induced tachycardic response. On the other hand, the inhibitory response of agmatine was: (1) partially antagonized by BRL 44408 or JP-1302 given separately, a similar response was observed when we administered their combination with imiloxan, but not by imiloxan alone, (2) antagonized in greater magnitude by the combination BRL 44408 plus JP-1302 or the combination BRL 44408 plus imiloxan plus JP-1302, and (3) abolished by the combination BRL 44408 plus JP-1302 plus AGN 192403. Taken together, these results demonstrate that the α 2A - and α 2C -adrenoceptor subtypes and I 1 -imidazoline receptors are involved in the inhibition of the cardiac sympathetic outflow induced by agmatine. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  20. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  1. Human dynamic closed-loop accommodation augmented by sympathetic inhibition.

    PubMed

    Culhane, H M; Winn, B; Gilmartin, B

    1999-05-01

    A ciliary alpha-adrenoceptor accommodative effect has been proposed, caused by a small population of alpha1-inhibitory receptors in excised human ciliary muscle. This study was intended to investigate the effect on the closed-loop dynamic accommodative process of modulating alpha1-adrenoceptor activity by topical instillation of the alpha1-adrenergic agonist, phenylephrine hydrochloride. A group of 10 visually normal subjects viewed a photopic (30 candela/m2) high-contrast Maltese cross, which was modulated sinusoidally (0.05-0.6Hz) and stepwise over a 2-D range (2-4 D). Monocular temporal accommodation responses were measured using a continuously recording dynamic tracking infrared optometer under two trial conditions: after instillation of saline control solution and 50 minutes subsequent to the instillation of 0.27 microl 0.4% benoxinate hydrochloride and 0.27 microl 2.5% phenylephrine hydrochloride. Pupil size and accommodative amplitude were measured at 90-second intervals for 50 minutes after drug instillation. All accommodative measurements were recorded through a fixed 4-mm pupil. A significant reduction in accommodative amplitude (11%; P < 0.05) was recorded, whereas pupil size showed a significant increase (33%; P < 0.05). No significant change in step-response dynamics was observed. However, phenylephrine hydrochloride caused a significant increase in accommodative gain in the low and midtemporal frequency ranges compared with the effect of a saline control treatment. No significant variation in phase lag was observed. For the first time in humans, this study shows that augmentation of the alpha1-inhibitory sympathetic contribution results in increased accommodative gain at low and midtemporal frequencies, which is consistent with findings in animal studies.

  2. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  3. Antidepressant-like activity of VN2222, a serotonin reuptake inhibitor with high affinity at 5-HT1A receptors.

    PubMed

    Tordera, Rosa M; Monge, Antonio; Del Río, Joaquín; Lasheras, Berta

    2002-05-03

    It has been suggested that drugs combining serotonin (5-hydroxytryptamine, 5-HT) transporter blockade and 5-HT1A autoreceptor antagonism could be a novel strategy for a shorter onset of action and higher therapeutic efficacy of antidepressants. The present study was aimed at characterizing the pharmacology of 1-(3-benzo[b]tiophenyl)-3-[4-(2-methoxyphenyl)-1-piperazinyl]-1-propanol (VN2222) a new synthetic compound with high affinity at both the 5-HT transporter and 5-HT1A receptors and devoid of high affinity at other receptors studied, with the only exception of alpha1-adrenoceptors. In keeping with the binding affinity at the 5-HT transporter, VN2222 inhibited 5-HT uptake in vitro both in rat cortical synaptosomes and in mesencephalic cultures and also in vivo when administered locally into the rat ventral hippocampus. After systemic administration, VN2222 exhibited an inverted U-shape effect so the inhibition of [3H]5-HT uptake ex vivo and the increase in 5-HT extracellular levels in microdialysis experiments was observed at low doses of 0.01-0.1 mg/kg whereas higher doses were ineffective. In studies related to 5-HT1A receptor function, 0.01-0.1 microM VN2222 produced a partial inhibition of forskolin-stimulated cAMP formation behaving as a weak agonist of 5-HT1A receptors. In body temperature studies, 5 mg/kg VN2222 produced a mild hypothermic effect in mice, suggesting a weak agonist activity at presynaptic 5-HT1A receptors; much lower doses (0.01-0.5 mg/kg) partially antagonized the hypothermia induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) possibly through 5-HT transporter blockade. In the learned helplessness test in rats, an animal model for antidepressants, 1-5 mg/kg VN2222 reduced significantly the number of escape failures. Consequently, VN2222 is a new compound with a dual effect on the serotonergic system, as 5-HT uptake blocker and 5-HT1A receptor partial agonist, and with a remarkable activity in an animal model of depression with high predictive validity.

  4. The effects of lower than conventional doses of oral nadolol on relative beta 1/beta 2-adrenoceptor blockade.

    PubMed

    Wheeldon, N M; McDevitt, D G; Lipworth, B J

    1994-08-01

    1. The aim of the present study was to evaluate the relative beta 1/beta 2 antagonist selectivity of the beta-adrenoceptor blocker nadolol, in lower than conventional clinical doses. 2. Eight normal volunteers received single oral doses of either placebo (PL), nadolol 5 mg (N5), 20 mg (N20) or 80 mg (N80) in a single-blind, randomised crossover design. beta 1-adrenoceptor antagonism was assessed by attenuation of exercise tachycardia, and beta 2-adrenoceptor blockade by effects on salbutamol-induced chronotropic, hypokalaemic and finger tremor responses. The relative percentage attenuation of beta 2 and beta 1-mediated responses was calculated and expressed as beta 2:beta 1 selectivity ratios. 3. Nadolol produced dose-related reductions in exercise tachycardia in keeping with increasing beta 1-adrenoceptor blockade; mean % reduction (95% CI) compared with placebo: N5 10.7 (6.6 to 14.8), N20 21.4 (17.3 to 25.4), N80 38.9 (34.8 to 42.9). However, even the lowest dose of nadolol (5 mg) produced almost complete blunting of beta 2-mediated effects and significantly increase exercise hyperkalaemia; peak exercise hyperkalaemia (mmol l-1) (means and 95% CI): PL 4.88 (4.68 to 5.07), N5 5.36 (5.17 to 5.55), N20 5.48 (5.28 to 5.67), N80 5.42 (5.22 to 5.61). beta 2:beta 1 selectivity ratios significantly increased as the dose of nadolol was reduced. 4. These data suggest that whereas in the clinical dose range nadolol behaves as a non-selective beta-adrenoceptor antagonist, as the dose is reduced this drug demonstrates an increasing degree of selectivity for the beta 2-adrenoceptor.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. A Modified Compound From Paeoniflorin, CP-25, Suppressed Immune Responses and Synovium Inflammation in Collagen-Induced Arthritis Mice.

    PubMed

    Chen, Jingyu; Wang, Ying; Wu, Huaxun; Yan, Shangxue; Chang, Yan; Wei, Wei

    2018-01-01

    Paeoniflorin-6'- O -benzene sulfonate (CP-25) is a modified paeoniflorin, which is the main bioactive component of total glucosides of peony. This study evaluated the anti-inflammatory and immunoregulatory effects of CP-25 in mice with collagen-induced arthritis (CIA) and the potential mechanisms underlying these effects. After the onset of CIA, mice were given CP-25 (17.5, 35, or 70 mg/kg) or methotrexate (MTX, 2.0 mg/kg). The arthritis index, swollen joint count, and joint and spleen histopathology were evaluated. T and B cell subsets were assayed using flow cytometry, while the proliferation of these cells and fibroblast-like synoviocytes (FLSs) were evaluated using the Cell Counting Kit-8. β2-adrenoceptor (β2-AR) expression was assayed using flow cytometry, immunohistochemistry, and western blotting. FLS migration and invasion were assayed using Transwells. CP-25 (35 or 70 mg/kg) attenuated the arthritis index and swollen joint count, alleviated joint and spleen histopathology, suppressed excessive T cell activation, and attenuated humoral immunity in CIA mice. CP-25 increased β2-AR expression on T cells, B cells, dendritic cells, and the synovium in CIA mice. CP-25 up-regulated the β2-AR agonist response and attenuated FLS activation; these effects may reflect CP-25-mediated reduction of β2-AR desensitization due to down-regulation of membrane G protein-coupled receptor kinase 2 expression. These results suggest that CP-25 suppressed immune responses and synovium inflammation in mice with CIA, effects that were associated with reduced β2-AR desensitization and the promotion of β2-AR signaling.

  6. Potentiation of oxycodone antinociception in mice by agmatine and BMS182874 via an imidazoline I2 receptor-mediated mechanism.

    PubMed

    Bhalla, Shaifali; Ali, Izna; Lee, Hyaera; Andurkar, Shridhar V; Gulati, Anil

    2013-01-01

    The potentiation of oxycodone antinociception by BMS182874 (endothelin-A (ET(A)) receptor antagonist) and agmatine (imidazoline receptor/α(2)-adrenoceptor agonist) is well-documented. It is also known that imidazoline receptors but not α(2)-adrenoceptors are involved in potentiation of oxycodone antinociception by agmatine and BMS182874 in mice. However, the involvement of specific imidazoline receptor subtypes (I(1), I(2), or both) in this interaction is not clearly understood. The present study was conducted to determine the involvement of imidazoline I(1) and I(2) receptors in agmatine- and BMS182874-induced potentiation of oxycodone antinociception in mice. Antinociceptive (tail flick and hot-plate) latencies were determined in male Swiss Webster mice treated with oxycodone, agmatine, BMS182874, and combined administration of oxycodone with agmatine or BMS182874. Efaroxan (imidazoline I(1) receptor antagonist) and BU224 (imidazoline I(2) receptor antagonist) were used to determine the involvement of I(1) and I(2) imidazoline receptors, respectively. Oxycodone produced significant antinociceptive response in mice which was not affected by efaroxan but was blocked by BU224. Agmatine-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. Similarly, BMS182874-induced potentiation of oxycodone antinociception was blocked by BU224 but not by efaroxan. This is the first report demonstrating that BMS182874- or agmatine-induced enhancement of oxycodone antinociception is blocked by BU224 but not by efaroxan. We conclude that imidazoline I(2) receptors but not imidazoline I(1) receptors are involved in BMS182874- and agmatine-induced potentiation of oxycodone antinociception in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells

    PubMed Central

    Joshi, Mahesh S.; Ferguson, T. Bruce; Johnson, Fruzsina K.; Johnson, Robert A.; Parthasarathy, Sampath; Lancaster, Jack R.

    2007-01-01

    Arginine contains the guanidinium group and thus has structural similarity to ligands of imidazoline and α-2 adrenoceptors (α-2 AR). Therefore, we investigated the possibility that exogenous arginine may act as a ligand for these receptors in human umbilical vein endothelial cells and activate intracellular nitric oxide (NO) synthesis. Idazoxan, a mixed antagonist of imidazoline and α-2 adrenoceptors, partly inhibited l-arginine-initiated NO formation as measured by a Griess reaction. Rauwolscine, a highly specific antagonist of α-2 AR, at very low concentrations completely inhibited NO formation. Like l-arginine, agmatine (decarboxylated arginine) also activated NO synthesis, however, at much lower concentrations. We found that dexmedetomidine, a specific agonist of α-2 AR was very potent in activating cellular NO, thus indicating a possible role for α-2 AR in l-arginine-mediated NO synthesis. d-arginine also activated NO production and could be inhibited by imidazoline and α-2 AR antagonists, thus indicating nonsubstrate actions of arginine. Pertussis toxin, an inhibitor of G proteins, attenuated l-arginine-mediated NO synthesis, thus indicating mediation via G proteins. l-type Ca2+ channel blocker nifedipine and phospholipase C inhibitor U73122 inhibited NO formation and thus implicated participation of a second messenger pathway. Finally, in isolated rat gracilis vessels, rauwolscine completely inhibited the l-arginine-initiated vessel relaxation. Taken together, these data provide evidence for binding of arginine to membrane receptor(s), leading to the activation of endothelial NO synthase (eNOS) NO production through a second messenger pathway. These findings provide a previously unrecognized mechanistic explanation for the beneficial effects of l-arginine in the cardiovascular system and thus provide new potential avenues for therapeutic development. PMID:17535904

  8. The effect of stereochemistry on the thermodynamic characteristics of the binding of fenoterol stereoisomers to the β2-adrenoceptor

    PubMed Central

    Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W.

    2010-01-01

    The binding thermodynamics of the stereoisomers of fenoterol, (R,R')-, (S,S')- , (R,S')-, and (S,R')-fenoterol, to the β2-adrenergic receptor (β2-AR) have been determined. The experiments utilized membranes obtained from HEK cells stably transfected with cDNA encoding human β2-AR. Competitive displacement studies using [3H]CGP-12177 as the marker ligand were conducted at 4°, 15°, 25°, 30° and 37°C, the binding affinities calculated and the standard enthalpic (ΔH°) and standard entropic (ΔS°) contribution to the standard free energy change (ΔG°) associated with the binding process determined through the construction of van't Hoff plots. The results indicate that the binding of (S,S')- and (S,R')-fenoterol were predominately enthalpy-driven processes while the binding of (R,R')- and (R,S')-fenoterol were entropy-driven. All of the fenoterol stereoisomers are full agonists of the β2-AR, and, therefore, the results of this study are inconsistent with the previously described “thermodynamic agonist-antagonist discrimination”, in which the binding of an agonist to the β-AR is entropy-driven and the binding of an antagonist is enthalpy driven. In addition, the data demonstrate that the chirality of the carbon atom containing the β-hydroxyl group of the fenoterol molecule (the β-OH carbon) is a key factor in the determination of whether the binding process will be enthalpy-driven or entropy-driven. When the configuration at the β-OH carbon is S the binding process is enthalpy-driven while the R configuration produces an entropy-driven process. PMID:20144591

  9. The effect of stereochemistry on the thermodynamic characteristics of the binding of fenoterol stereoisomers to the beta(2)-adrenoceptor.

    PubMed

    Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W

    2010-06-01

    The binding thermodynamics of the stereoisomers of fenoterol, (R,R')-, (S,S')-, (R,S')-, and (S,R')-fenoterol, to the beta(2)-adrenergic receptor (beta(2)-AR) have been determined. The experiments utilized membranes obtained from HEK cells stably transfected with cDNA encoding human beta(2)-AR. Competitive displacement studies using [(3)H]CGP-12177 as the marker ligand were conducted at 4, 15, 25, 30 and 37 degrees C, the binding affinities calculated and the standard enthalpic (DeltaH degrees ) and standard entropic (DeltaS degrees ) contribution to the standard free energy change (DeltaG degrees ) associated with the binding process determined through the construction of van't Hoff plots. The results indicate that the binding of (S,S')- and (S,R')-fenoterol were predominately enthalpy-driven processes while the binding of (R,R')- and (R,S')-fenoterol were entropy-driven. All of the fenoterol stereoisomers are full agonists of the beta(2)-AR, and, therefore, the results of this study are inconsistent with the previously described "thermodynamic agonist-antagonist discrimination", in which the binding of an agonist to the beta-AR is entropy-driven and the binding of an antagonist is enthalpy-driven. In addition, the data demonstrate that the chirality of the carbon atom containing the beta-hydroxyl group of the fenoterol molecule (the beta-OH carbon) is a key factor in the determination of whether the binding process will be enthalpy-driven or entropy-driven. When the configuration at the beta-OH carbon is S the binding process is enthalpy-driven while the R configuration produces an entropy-driven process. Published by Elsevier Inc.

  10. Neuropeptide Y as a presynaptic modulator of norepinephrine release from the sympathetic nerve fibers in the pig pineal gland.

    PubMed

    Ziółkowska, N; Lewczuk, B; Przybylska-Gornowicz, B

    2015-01-01

    Norepinephrine (NE) released from the sympathetic nerve endings is the main neurotransmitter controlling melatonin synthesis in the mammalian pineal gland. Although neuropeptide Y (NPY) co-exists with NE in the pineal sympathetic nerve fibers it also occurs in a population of non-adrenergic nerve fibers located in this gland. The role of NPY in pineal physiology is still enigmatic. The present study characterizes the effect of NPY on the depolarization-evoked 3H-NE release from the pig pineal explants. The explants of the pig pineal gland were loaded with 3H-NE in the presence of pargyline and superfused with Tyrode medium. They were exposed twice to the modified Tyrode medium containing 60 mM of K+ to evoke the 3H-NE release via depolarization. NPY, specific agonists of Y1- and Y2- receptors and pharmacologically active ligands of α2-adrenoceptors were added to the medium before and during the second depolarization. The radioactivity was measured in medium fractions collected every 2 minutes during the superfusion. NPY (0.1-10 μM) significantly decreased the depolarization-induced 3H-NE release. Similar effect was observed after the treatment with Y2-agonist: NPY13-36, but not with Y1-agonist: [Leu31,Pro34]-NPY. The tritium overflow was lower in the explants exposed to the 5 μM NPY and 1 μM rauwolscine than to rauwolscine only. The effects of 5 μM NPY and 0.05 μM UK 14,304 on the depolarization-evoked 3H-NE release were additive. The results show that NPY is involved in the regulation of NE release from the sympathetic terminals in the pig pineal gland, inhibiting this process via Y2-receptors.

  11. Water exposure assessment of aryl hydrocarbon receptor agonists in Three Gorges Reservoir, China using SPMD-based virtual organisms.

    PubMed

    Wang, Jingxian; Bernhöft, Silke; Pfister, Gerd; Schramm, Karl-Werner

    2014-10-15

    SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for <11% of the observed AhR responses (TEQbio). Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent in VOs from TGR. High TEQbio value in diluted extract and low TEQbio in concentrated extract of the same sample was observed suggesting potential non-additive effects in the mixture. The levels of AhR agonists in VOs from upstream TGR were in general higher than those from downstream reservoir, indicating urbanization effect on AhR agonist pollution. The temporal variation showed that levels of AhR agonists in 2009 and 2011 were higher than those in 2008, and the potential non-additive effects in the area close to the dam were also obviously higher in 2009 and 2011 than in 2008, indicating big changes in the composition of pollutants in the area after water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Combined Interactions with I1-, I2-Imidazoline Binding Sites and α2-Adrenoceptors To Manage Opioid Addiction

    PubMed Central

    2016-01-01

    Tolerance and dependence associated with chronic opioid exposure result from molecular, cellular, and neural network adaptations. Such adaptations concern opioid and nonopioid systems, including α2-adrenoceptors (α2-ARs) and I1- and I2-imidazoline binding sites (IBS). Agmatine, one of the hypothesized endogenous ligands of IBS, targeting several systems including α2-ARs and IBS, proved to be able to regulate opioid-induced analgesia and to attenuate the development of tolerance and dependence. Interested in the complex pharmacological profile of agmatine and considering the nature of its targets, we evaluated two series of imidazolines, rationally designed to simultaneously interact with I1-/I2-IBS or I1-/I2-IBS/α2-ARs. The compounds showing the highest affinities for I1-/I2-IBS or I1-/I2-IBS/α2-ARs have been selected for their in vivo evaluation on opiate withdrawal syndrome. Interestingly, 9, displaying I1-/I2-IBS/α2-ARs interaction profile, appears more effective in reducing expression and acquisition of morphine dependence and, therefore, might be considered a promising tool in managing opioid addiction. PMID:27774136

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, D.R.; Palmer, K.J.; Johnson, A.M.

    The effects of prolonged oral administration of the antidepressants paroxetine and amitriptyline on rat brain cortical {beta}{sub 1}- and {beta}{sub 2}-adrenoceptor numbers and affinities were investigated using ({sup 3}H)-CGP 12177. Although amitriptyline, 27 mg/kg, caused a significant 20% reduction in the number of {beta}{sub 1}-adrenoceptors, paroxetine, at does up to 8.9 mg/kg p.o., did not influence binding of ({sup 3}H)-CGP 12177 to cortical {beta}{sub 1}- or {beta}{sub 2}-adrenoceptors. This study with paroxetine provides further evidence that the down-regulation of central {beta}{sub 1}-adrenoceptors in rat brain after repeated administration is not a property of all antidepressant drugs.

  14. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  15. Facilitation of the flexor reflex in the cat by intrathecal injection of catecholamines

    PubMed Central

    Dhawan, B. N.; Sharma, J. N.

    1970-01-01

    1. Effects of some α- and β-adrenoceptor stimulants and antagonists were investigated on flexor reflex (FR) in chloralosed cats. 2. Noradrenaline (NA) produced facilitation of FR which was dose-dependent and reproducible and was blocked by α-adrenoceptor blocking agents. 3. Strychnine also produced facilitation of FR but the response was unaffected by α-adrenoceptor blocking agents. 4. Metaraminol and α-methyl-noradrenaline had little effect on FR but blocked the NA response. 5. β-adrenoceptor stimulants and antagonists had neither any effect on FR nor modified the NA response. 6. Vasopressin and histamine also failed to modify FR. 7. Possibility of α-adrenoceptors in the neurones integrating FR is suggested. PMID:4395376

  16. Evaluation of certain veterinary drug residues in food. Seventy-eighth report of the Joint FAO/WHO Expert Committee on Food Additives.

    PubMed

    2014-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of residues of certain veterinary drugs in food and to recommend maximum levels for such residues of food. The first part of the report considers general principles regarding the evaluation of residues of veterinary drugs within the terms of reference of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), including extrapolation of maximum residue limits (MRLs) to minor species, MRLs for veterinary drug residues in honey, MRLs relating to fish and fish species, dietary exposure assessment methodologies, the decision-tree approach to the evaluation of residues of veterinary drugs and guidance for JECFA experts. Summaries follow of the Committee's evaluations of toxicology and residue data on a variety of veterinary drugs: two anthelminthic agents (derquantel, monepantel), three antiparasitic agents (emanectin benzoate, ivermectin, lasalocid sodium), one antibacterial, antifungal and anthelminthic agent (gentian violet), a production aid (recombinant bovine somatotropins) and an adrenoceptor agonist and growth promoter (zilpaterol hydorchloride). Annexed to the report is a summary of the Committee's recommendations on these drugs, including acceptable daily intakes (ADIs)) and proposed MRLs.

  17. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    PubMed

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Alpha1B-adrenoceptor signaling and cell motility: GTPase function of Gh/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits.

    PubMed

    Kang, Sung Koo; Yi, Kye Sook; Kwon, Nyoun Soo; Park, Kwang-Hyun; Kim, Uh-Hyun; Baek, Kwang Jin; Im, Mie-Jae

    2004-08-27

    A multifunctional enzyme, G(h), is a GTP-binding protein that couples to the alpha(1B)-adrenoreceptor and stimulates phospholipase C-delta1 but also displays transglutaminase 2 (TG2) activity. G(h)/TG2 has been implicated to play a role in cell motility. In this study we have examined which function of G(h)/TG2 is involved in this cellular response and the molecular basis. Treatment of human aortic smooth muscle cell with epinephrine inhibits migration to fibronectin and vitronectin, and the inhibition is blocked by the alpha(1)-adrenoreceptor antagonist prazosin or chloroethylclonidine. Up-regulation or overexpression of G(h)/TG2 in human aortic smooth muscle cells, DDT1-MF2, or human embryonic kidney cells, HEK 293 cells, results in inhibition of the migratory activity, and stimulation of the alpha(1B)-adrenoreceptor with the alpha(1) agonist further augments the inhibition of migration of human aortic smooth muscle cells and DDT1-MF2. G(h)/TG2 is coimmunoprecipitated by an integrin alpha(5) antibody and binds to the cytoplasmic tail peptide of integrins alpha(5), alpha(v), and alpha(IIb) subunits in the presence of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). Mutation of Lys-Arg residues in the GFFKR motif, present in the alpha(5)-tail, significantly reduces the binding of GTPgammaS-G(h)/TG2. Moreover, the motif-containing integrin alpha(5)-tail peptides block G(h)/TG2 coimmunoprecipitation and reverse the inhibition of the migratory activity of HEK 293 cells caused by overexpression G(h)/TG2. These results provide evidence that G(h) function initiates the modulation of cell motility via association of GTP-bound G(h)/TG2 with the GFFKR motif located in integrin alpha subunits.

  19. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  20. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  1. Ethanol Inhibition of Constitutively Open N-Methyl-d-Aspartate Receptors

    PubMed Central

    Xu, Minfu; Smothers, C. Thetford; Trudell, James

    2012-01-01

    N-Methyl-d-aspartate (NMDA) receptors gate a slow and calcium-rich component of the postsynaptic glutamate response. Like all ionotropic glutamate receptors, NMDA subunits contain a highly conserved motif (SYTANLAAF) in the transmembrane (TM) 3 domain that is critically involved in channel gating. Mutation of an alanine in this domain (A7; underlined above) results in constitutively open receptors that show reduced sensitivity to several allosteric modulators. In this study, we examined the effects of ethanol, a substance that inhibits NMDA currents via an unknown mechanism, on tonically active NMDA receptors expressed in human embryonic kidney 293 cells. Ethanol (100 mM) inhibited currents from GluN1(A7R)/GluN2A and GluN1(A7R)/GluN2B receptors by approximately 50%, whereas those from GluN1/GluN2B(A7R) receptors were reduced by less than 10%. In cysteine-substituted GluN1 and GluN2 A7 mutants, estimated ethanol IC50 values for agonist-gated currents were 101, 117, 103, and 69 mM for GluN1(A7C)/GluN2A, GluN1(A7C)/GluN2B, GluN1/GluN2A(A7C), and GluN1/GluN2B(A7C) receptors, respectively. After exposure to the thiol-modifying reagent 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET), A7C mutants showed robust agonist-independent currents and reduced sensitivity to ethanol (IC50 values of 371, 256, 715, and 958 mM, respectively, as above). In contrast, cysteine modification of the ligand-binding domain resulted in constitutively open receptors that showed robust ethanol inhibition. Ethanol inhibition of MTSET-treated GluN1(A7C) receptors was further reduced by TM3/TM4 mutations previously shown to reduce ethanol sensitivity of agonist-gated receptors. Overall, these results show that ethanol affects NMDA receptor function at a site distal from agonist binding and appears to exert greater effects via perturbation of GluN2 subunits. PMID:22005043

  2. Desensitization of B-adrenergic receptors following repeated injections of 2-substituted-4-phenylquinolines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaider, A.A.

    1986-03-05

    In a previous work, they synthesized some new 2-substituted-4-phenylquinoline derivatives which demonstrated potent antidepressant activities as revealed by their antagonism to the uptake of /sup 3/(H)-norepinephrine and /sup 3/(H)-serotonin into brain synaptosomal preparation. Also, these compounds have demonstrated less anticholinergic, antihistamine and cardiovascular effects as compared to imipramine in animal models. In this present work, the chronic effects of some of these compounds on the sensitivity of the noradrenergic cyclic-AMP generating system on rat brain cortex has been conducted by the daily injection of 20 mg/kg i.p. for a period of three weeks. Imipramine and trazodone were utilized as standards,more » representing typical and atypical antidepressants, respectively. Acute treatment (single dose 20 mg/kg) and subchronic treatment (20 mg/kg for 10 days) produced no significant desensitization of the B-adrenoceptors. However, chronic treatment with the compounds significantly decreased isoprenaline-induced increase in c-AMP in the cortex which suggests desensitization of B-adrenoceptors. This effect coupled with the previous findings point to a potential rule of these compounds as suitable antidepressant candidates.« less

  3. Potentiation of vasoconstriction and pressor response by low concentration of monomethylarsonous acid (MMA(III)).

    PubMed

    Lim, Kyung-Min; Shin, Yoo-Sun; Kang, Seojin; Noh, Ji-Yoon; Kim, Keunyoung; Chung, Seung-Min; Yun, Yeo-Pyo; Chung, Jin-Ho

    2011-09-10

    A close link between arsenic exposure and hypertension has been well-established through many epidemiological reports, yet the mechanism underlying it remains unclear. Here we report that nanomolar concentrations of monomethylarsonous acid (MMA(III)), a toxic trivalent methylated arsenic metabolite, can potentiate agonist-induced vasoconstriction and pressor responses. In freshly isolated rat aortic ring, exposure to nanomolar MMA(III) (100-500 nM) potentiated phenylephrine (PE)-induced vasoconstriction while at higher concentrations (≥2.5 μM), suppression of vasoconstriction and apoptosis of vascular smooth muscle were observed. Potentiation of agonist-induced vasoconstriction was also observed with other contractile agonists and it was retained in endothelium-denuded aortic rings, suggesting that these events are agonist-independent and smooth muscle cell dependent. Interestingly, exposure to MMA(III) resulted in increased myosin light chain phosphorylation while PE-induced Ca2+ influx was not affected, reflecting that Ca2+ sensitization is involved. In line with this, MMA(III) enhanced agonist-induced activation of small GTPase RhoA, a key contributor to Ca2+ sensitization. Of note, treatment of MMA(III) to rats induced significantly higher pressor responses in vivo, demonstrating that this event can occur in vivo indeed. We believe that RhoA-mediated Ca2+ sensitization and the resultant potentiation of vasoconstriction by MMA(III) may shed light on arsenic-associated hypertension. Copyright © 2011. Published by Elsevier Ireland Ltd.

  4. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling

    PubMed Central

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A.

    2014-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. PMID:25289859

  6. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist.

    PubMed

    Toledo, Míriam; Busquets, Sílvia; Penna, Fabio; Zhou, Xiaolan; Marmonti, Enrica; Betancourt, Angelica; Massa, David; López-Soriano, Francisco J; Han, H Q; Argilés, Josep M

    2016-04-15

    Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species. Myostatin/activin inhibition reverses skeletal muscle loss and prolongs survival of tumor-bearing animals. The aim of this investigation was to evaluate the effects of a combination of the soluble myostatin receptor ActRIIB (sActRIIB) and the β2-agonist formoterol in the cachectic Lewis lung carcinoma model. The combination of formoterol and sActRIIB was extremely effective in reversing muscle wasting associated with experimental cancer cachexia in mice. Muscle weights from tumor-bearing animals were completely recovered following treatment and this was also reflected in the measured grip strength. This combination increased food intake in both control and tumor-bearing animals. The double treatment also prolonged survival significantly without affecting the weight and growth of the primary tumor. In addition, it significantly reduced the number of metastasis. Concerning the mechanisms for the preservation of muscle mass during cachexia, the effects of formoterol and sActRIIB seemed to be additive, since formoterol reduced the rate of protein degradation (as measured in vitro as tyrosine release, using incubated isolated individual muscles) while sActRIIB only affected protein synthesis (as measured in vivo using tritiated phenylalanine). Formoterol also increased the rate of protein synthesis and this seemed to be favored by the presence of sActRIIB. Combining formoterol and sActRIIB seemed to be a very promising treatment for experimental cancer cachexia. Further studies in human patients are necessary and may lead to a highly effective treatment option for muscle wasting associated with cancer. © 2015 UICC.

  7. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-10-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles.

  8. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    PubMed Central

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-01-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles. PMID:2866785

  9. Significance of the imidazoline receptors in toxicology.

    PubMed

    Lowry, J A; Brown, J T

    2014-06-01

    The alpha-2 adrenergic (AA-2) receptor agonists and imidazolines are common exposures in the American Association of Poison Control Centers (AAPCC) National Poison Data System (NPDS). Although the interaction between the AA-2 receptor and imidazoline receptors has been extensively studied, it largely remains unknown to health-care professionals. This review describes these interactions and mechanisms by which agonists affect physiologic responses binding to these receptors. Papers published in English from 1960 to 2013 were retrieved from PubMed. A total of 323 original articles were identified and 173 were included. Background. The toxicity associated with clonidine (e.g., bradycardia, miosis, and hypotension) is largely assumed to be secondary to the functional overlap of the AA-2 receptors and the mu receptors. However, the effects at the AA-2 receptor could not fully account for these symptoms. Subsequently, clonidine was found to produce its pharmacologic effect in the central nervous system (CNS) by interaction not only with the AA-2 receptor but also on selective imidazoline receptors. IMIDAZOLINE RECEPTORS: Since their discovery, three distinct classes of imidazoline receptors, also known as imidazoline binding sites or imidazoline/guanidinium receptive sites, have been characterized. Imidazoline-1 (I-1) receptors are involved in the hypotensive activity of clonidine and related compounds supporting the idea that the I-1 receptors are upstream from the AA-2 receptor and work in tandem for its effect on blood pressure. Additionally, stimulation of N-type Calcium-2 channels, G-protein inwardly rectifying potassium channel, adenosine receptors, phosphatidyl-choline-specific phospholipase C, and nicotinic receptors have been implicated to be involved. Previous studies have shown that I-1 receptors may also be involved in other physiologic responses beyond cardiac function. Imidazoline-2 (I-2) receptors interact with monoamine oxidase A and monoamine oxidase B leading to research that has focused on the effect of I-2 receptors and depression and the suggestion of a possible antidepressant action of the imidazolines. I-2 receptor ligands may have substantial antinociceptive activity and work synergistically with opioids in acute pain. Imidazoline-3 (I-3) receptors are located on the pancreatic β-cells and modulate glucose homeostasis. IMIDAZOLINE LIGANDS: Four endogenous compounds have been found to bind and include clonidine-displacing substance, agmatine, harmane, and imidazole acetic acid. Significant interest in developing new agents with higher selectivity and affinity for I-1 receptors has resulted. Toxicology. Alpha-2 adrenoceptor and imidazoline receptor agonists such as clonidine and tetrahydrozoline are common ingestions reported to poison control centers. The most common toxic effects of clonidine are similar to those of the over-the-counter imidazolines and include CNS depression, bradycardia, hypotension, respiratory depression, miosis, hypothermia, and hypertension (early and transient). Based on their structure and subsequent studies, imidazoline receptors seem to be the primary binding site for these chemicals. Case reports typically illustrate rapid onset of action with serious side effects following ingestion of relatively small amounts. These agents have been reportedly used in drug-assisted sexual assaults. Much of the toxicity associated with drugs such as clonidine, guanfacine, and tetrahydrozoline are due to their binding to imidazoline receptors. Knowledge of the imidazoline receptors may lead to new therapeutic agents and inform management of patients with imidazoline overdose.

  10. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    PubMed

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  11. Group II metabotropic glutamate receptor activation attenuates peripheral sensitization in inflammatory states

    PubMed Central

    Du, Junhui; Zhou, Shengtai; Carlton, Susan M.

    2008-01-01

    Several lines of evidence indicate that Group II metabotropic glutamate receptor (mGluR) activation can depress sensory transmission. We have reported the expression of Group II mGluRs on unmyelinated axons, many of which were presumed to be nociceptors, in the rat digital nerve (Carlton et al., 2001b). The goals of the present study are to further our understanding of Group II modulation of nociceptor processing in the periphery, documenting behavioral changes using inflammatory models and documenting, for the first time, cutaneous single fiber activity following exposure to a Group II agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and antagonist LY341495 (LY). The data indicate that peripheral Group II mGluR activation does not depress nociceptive behaviors or nociceptor fiber responses in the non-sensitized state (i.e. following brief nociceptive mechanical or thermal stimulation) but can depress these responses when nociceptors are sensitized by exposure to formalin or inflammatory soup. Group II mGluR agonist-induced inhibition can be blocked by a selective Group II antagonist. Peripheral Group II mGluR-induced inhibition evoked in these studies occurs through activation of local receptors and not through spinal or supraspinal mechanisms. The data indicate that administration of selective Group II agonists may be potent therapeutic agents for prevention of peripheral sensitization and for treatment of inflammatory pain. PMID:18487022

  12. Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries.

    PubMed

    Stott, Jennifer B; Barrese, Vincenzo; Greenwood, Iain A

    2016-12-01

    To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to β-adrenoceptor-mediated vasorelaxations. Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the β-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries. © 2016 American Heart Association, Inc.

  13. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits induced by both cholinergic and glutamatergic antagonist. Hence, 5-HT1B receptor inverse agonists or antagonists could represent drugs for the treatment of learning and memory dysfunctions.

  14. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{submore » i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. • α{sub 1}-, α{sub 2}-, β{sub 1}-, β{sub 3}-adrenoceptors all activate Erk1/2—but EGF receptor transactivation is not involved. • Adrenergic regulation of proliferation, apoptosis, differentiation must utilize cell-specific pathways in brown adipocytes. • EGF receptor transactivation is not universal in mediating GPCR-induced Erk1/2 activation.« less

  15. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome.

    PubMed

    Hoyt, Laura R; Randall, Matthew J; Ather, Jennifer L; DePuccio, Daniel P; Landry, Christopher C; Qian, Xi; Janssen-Heininger, Yvonne M; van der Vliet, Albert; Dixon, Anne E; Amiel, Eyal; Poynter, Matthew E

    2017-08-01

    Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774) amplifies IL-1β secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells), effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K + efflux or Zn 2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD + . Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH) mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1β hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1β hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation. Copyright © 2017. Published by Elsevier B.V.

  16. Dexmedetomidine's inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation.

    PubMed

    Mikami, Maya; Zhang, Yi; Kim, Benjamin; Worgall, Tilla S; Groeben, Harald; Emala, Charles W

    2017-03-29

    Airway instrumentation can evoke upper airway reflexes including bronchoconstriction and cough which can cause serious complications including airway trauma, laryngospasm or bronchospasm which may in turn lead to difficulty with ventilation and hypoxemia. These airway events are mediated in part by irritant-induced neuronal modulation of airway tone and cough responses. We investigated whether the commonly used anesthetic agents dexmedetomidine, lidocaine or remifentanil attenuated neuronal and airway smooth muscle responses in the upper airways of guinea pigs. The ability of dexmedetomidine, lidocaine or remifentanil to attenuate direct cholinergic nerve stimulation, C-fiber stimulation or direct smooth muscle contraction were studied using isolated tracheal rings from male guinea pigs under four paradigms; (1) the magnitude of contractile force elicited by cholinergic electrical field stimulation (EFS); (2) the amount of acetylcholine released during cholinergic EFS; (3) the direct airway smooth muscle relaxation of a sustained acetylcholine-induced contraction and (4) the magnitude of C-fiber mediated contraction. Dexmedetomidine (1-100 μM) and lidocaine (1 mM) attenuated cholinergic 30Hz EFS-induced tracheal ring contraction while remifentanil (10 μM) had no effect. Dexmedetomidine at 10 μM (p = 0.0047) and 100 μM (p = 0.01) reduced cholinergic EFS-induced acetylcholine release while lidocaine (10 μM-1 mM) and remifentanil (0.1-10 μM) did not. Tracheal ring muscle force induced by the exogenous addition of the contractile agonist acetylcholine or by a prototypical C-fiber analogue of capsaicin were also attenuated by 100 μM dexmedetomidine (p = 0.0061 and p = 0.01, respectively). The actual tracheal tissue concentrations of dexmedetomidine achieved (0.54-26 nM) following buffer application of 1-100 μM of dexmedetomidine were within the range of clinically achieved plasma concentrations (12 nM). The α2 adrenoceptor agonist dexmedetomidine reduced cholinergic EFS-induced contractions and acetylcholine release consistent with the presence of inhibitory α2 adrenoceptors on the prejunctional side of the postganglionic cholinergic nerve-smooth muscle junction. Dexmedetomidine also attenuated both exogenous acetylcholine-induced contraction and C-fiber mediated contraction, suggesting a direct airway smooth muscle effect and an underlying mechanism for cough suppression, respectively.

  17. Sub-chronic lead exposure produces β1-adrenoceptor downregulation decreasing arterial pressure reactivity in rats.

    PubMed

    Toscano, Cindy Medici; Simões, Maylla Ronacher; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim; Fioresi, Mirian

    2017-07-01

    Lead is considered a causative factor for hypertension and other cardiovascular diseases. To investigate the effects of sub-chronic lead exposure on blood pressure reactivity and cardiac β 1 -adrenoceptor activity and to evaluate whether the effects found in vitro are similar to those found in vivo. Male Wistar rats were randomly distributed into two groups: control rats (Ct) and rats administered drinking water containing 100ppm lead (Pb) for 30days. Blood pressure in the Pb rats increased starting from the first week of treatment until the end of the study [systolic blood pressure, Ct: 122±4 vs. Pb: 143±3mmHg; diastolic blood pressure, Ct: 63±4 vs. Pb: 84±4mmHg]. The heart rate was also increased (Ct: 299±11 vs. Pb: 365±11bpm), but the pressure reactivity to phenylephrine was decreased. Losartan and hexamethonium exhibited a greater reduction in blood pressure of Pb rats than in the Ct rats. Isoproterenol increased the left ventricular systolic and end-diastolic pressure, and heart rate only in Ct rats, suggesting that lead induced β 1 -adrenoceptor downregulation. Indomethacin reduced the blood pressure and heart rate in the Pb rats, suggesting the involvement of cyclooxygenase-derived products (which are associated with reduced nitric oxide bioavailability) in this process. These findings offer further evidence that the effects of sub-chronic lead exposure in vitro can be reproduced in vivo-even at low concentrations-thus triggering mechanisms for the development of hypertension. Therefore, lead should be considered an environmental risk factor for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Mechanism of action of substance P in guinea-pig ileum longitudinal smooth muscle: a re-evaluation.

    PubMed Central

    Hall, J M; Morton, I K

    1990-01-01

    1. A proposed mechanism of contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in membrane K+ permeability (PK) has been re-examined. 2. Potentiation of responses to substance P by the K+ channel blocker tetraethylammonium (TEA) was originally proposed as evidence for a mechanism of action of substance P involving a decrease in PK. Potentiation was confirmed; however this was found not to be specific to substance P since a similar potentiation of responses was seen with agonists not thought to act via a decrease in PK. 3. Antagonism of contractile responses to substance P by noradrenaline was similarly confirmed. However, this antagonism was found to represent a non-specific functional interaction through the inhibitory actions of beta-adrenoceptors rather than the proposed specific interaction with an increase in PK by noradrenaline which is normally alpha 1-adrenoceptor mediated. 4. Experiments were made measuring 86Rb efflux, in depolarized guinea-pig ileum longitudinal smooth muscle, to estimate PK. These studies confirmed a reported decrease in PK with TEA, but failed to detect the previously reported decrease with substance P. 5. These results, although not disproving a suggested mechanism of direct contractile action of substance P in guinea-pig ileum longitudinal smooth muscle involving a decrease in PK, do throw doubt on either the evidence, or its interpretation, as proposed by the original authors in support of such a mechanism. PMID:1712846

  19. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  20. Sensitivity of bronchopulmonary receptors to cold and heat mediated by transient receptor potential cation channel subtypes in an ex vivo rat lung preparation.

    PubMed

    Zhou, Yun; Sun, Biying; Li, Qian; Luo, Pin; Dong, Li; Rong, Weifang

    2011-08-15

    Changes in airway temperature can result in respiratory responses such as cough, bronchoconstriction and mucosal secretion after cold exposure and hyperventilation after heat exposure. In the present investigation, we examined the activity of bronchopulmonary receptors in response to activators of thermo-sensitive transient receptor potential (TS-TRP) cation channels using an ex vivo rat lung preparation. Receptive fields in small bronchioles were probed with von Frey hair monofilaments, warm (50°C) or cold (8°C) saline or saline containing TS-TRP agonists. Among 233 fibers tested, 159 (68.2%) responded to heat (50°C). A large proportion of heat-responsive receptors (107/145) were also activated by capsaicin. Heat and capsaicin-evoked responses were both blocked by TRPV1 antagonist, capsazepine. Only 15.3% of airway receptors responded to cold, which was associated with sensitivity to TRPM8 agonist menthol but not to TRPA1 agonist cinnamaldehyde (CA). Moreover, cold-evoked responses was unaffected by TRPA1 antagonist HC-03001. Our observations suggest that TRPV1 and TRPM8 are involved in transducing heat and cold in the lower respiratory tract, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. REGULATION OF POSTNATAL B-ADRENERGIC RECEPTOR/ADENYLATE CYCLASE DEVELOPMENT BY PRENATAL AGONIST STIMULATION AND STEROIDS: ALTERATIONS IN RAT KIDNEY AND LUNG AFTER EXPOSURE TO TERBUTALINE OR DEXAMETHASONE

    EPA Science Inventory

    Glucocorticoids and adrenergic stimulation are both thought to control the development of adrenergic receptors/responses. n the current study, rats were exposed to dexamethasone or terbutaline during late gestation and the development of B-binding capabilities and adenylate cycla...

  2. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Trek2a regulates gnrh3 expression under control of melatonin receptor Mt1 and α2-adrenoceptor.

    PubMed

    Loganathan, Kavinash; Moriya, Shogo; Parhar, Ishwar S

    2018-02-12

    Gonadotrophin-releasing hormone (GnRH) expression is associated with the two-pore domain potassium ion (K + ) channel-related K + (TREK) channel trek2a expression and melatonin levels. We aimed to investigate correlation of trek2a expression with gnrh3 expression, and regulatory mechanisms of trek2a expression by the melatonin receptor Mt1 and α 2 -adrenoceptor which are regulated by melatonin. trek2a specific siRNA, Mt1 antagonist luzindole and α 2 -adrenoceptor antagonist prazosin were administered into the adult zebrafish brain and gene expressions were examined by real-time PCR. trek2a specific siRNA administration significantly reduced expression levels of trek2a, gnrh3 and mt1. Luzindole administration suppressed trek2a and gnrh3 expressions. Prazosin administration reduced trek2a and gnrh3 expressions. It is suggested that Trek2a regulates gnrh3 expression under the control of Mt1 and α 2 -adrenoceptor. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of nitric oxide synthase inhibition on sympathetically-mediated tachycardia

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aim of the present study was to determine whether inhibition of nitric oxide (NO) synthesis directly alters the tachycardia produced by sympathetically-derived norepinephrine. The NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 50 micromol/kg, i.v.), produced a marked rise in mean arterial blood pressure. This pressor response was associated with a fall in heart rate which involved the withdrawal of cardiac sympathetic nerve activity. The NO-donor, sodium nitroprusside (5 microg/kg, i.v.), produced a pronounced fall in mean arterial blood pressure but only a minor increase in heart rate. The beta-adrenoceptor agonist, isoproterenol (0.5 micromol/kg, i.v.), and the membrane-permeable cAMP analogue, 8-(4-chlorophenylthiol)-cAMP (10 micromol/kg, i.v.), produced falls in mean arterial blood pressure and pronounced increases in heart rate. The indirectly acting sympathomimetic agent, tyramine (0.5 mg/kg, i.v.), produced a pressor response and a tachycardia. The effects of sodium nitroprusside, tyramine, isoproterenol and 8-(4-chlorophenylthiol)-cAMP on mean arterial blood pressure were not markedly affected by L-NAME. However, the tachycardia produced by these agents was considerably exaggerated in the presence of this NO synthesis inhibitor. These findings suggest that L-NAME potentiates the tachycardia produced by sympathetically-derived norepinephrine. The increased responsiveness to norepinephrine may involve (i) a rapid up-regulation of cardiac beta1-adrenoceptors and cAMP signaling in cardiac pacemaker cells due to the loss of the inhibitory influence of cardiac NO, and (ii) the up-regulation of beta1-adrenoceptor-mediated signal transduction processes in response to the L-NAME-induced withdrawal of cardiac sympathetic nerve activity.

  5. The subtype of alpha-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit.

    PubMed Central

    Hesse, I F; Johns, E J

    1984-01-01

    A study was undertaken in pentobarbitone anaesthetized rabbits, undergoing a saline diuresis, to determine the subtype of alpha-adrenoceptor mediating renal tubular sodium reabsorption. Stimulation of the renal nerves at low rates, to cause an 11% fall in renal blood flow, did not change glomerular filtration rate but significantly reduced urine flow rate, and absolute and fractional sodium excretions by approximately 40%. These responses were reproducible in different groups of animals and with time. Renal nerve stimulation during an intra-renal arterial infusion of prazosin, to block alpha 1-adrenoceptors, had no effect on the renal haemodynamic response but completely abolished the reductions in urine flow rate, and absolute and fractional sodium excretion. During intra-renal arterial infusion of yohimbine, to block renal alpha 2-adrenoceptors, stimulation of the renal nerves to cause similar renal haemodynamic changes resulted in significantly larger reductions in urine flow rate, and absolute and fractional sodium excretion of about 52-58%. These results indicate that in the rabbit alpha 1-adrenoceptors are present on the renal tubules, which mediate the increase in sodium reabsorption caused by renal nerve stimulation. They further suggest the presence of presynaptic alpha 2-adrenoceptors on those nerves innervating the renal tubules. PMID:6086915

  6. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    PubMed

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Inhibition of α-adrenergic tone disturbs the distribution of blood flow in the exercising human limb.

    PubMed

    Heinonen, Ilkka; Wendelin-Saarenhovi, Maria; Kaskinoro, Kimmo; Knuuti, Juhani; Scheinin, Mika; Kalliokoski, Kari K

    2013-07-15

    The role of neuronal regulation of human cardiovascular function remains incompletely elucidated, especially during exercise. Here we, by positron emission tomography, monitored tissue-specific blood flow (BF) changes in nine healthy young men during femoral arterial infusions of norepinephrine (NE) and phentolamine. At rest, the α-adrenoceptor agonist NE reduced BF by ~40%, similarly in muscles (from 3.2 ± 1.9 to 1.4 ± 0.3 ml·min(-1)·100 g(-1) in quadriceps femoris muscle), bone (from 1.1 ± 0.4 to 0.5 ± 0.2 ml·min(-1)·100 g(-1)) and adipose tissue (AT) (from 1.2 ± 0.7 to 0.7 ± 0.3 ml·min(-1)·100 g(-1)). During exercise, NE reduced exercising muscle BF by ~16%. BF in AT was reduced similarly as rest. The α-adrenoceptor antagonist phentolamine increased BF similarly in the different muscles and other tissues of the limb at rest. During exercise, BF in inactive muscle was increased 3.4-fold by phentolamine compared with exercise without drug, but BF in exercising muscles was not influenced. Bone and AT (P = 0.055) BF were also increased by phentolamine in the exercise condition. NE increased and phentolamine decreased oxygen extraction in the limb during exercise. We conclude that inhibition of α-adrenergic tone markedly disturbs the distribution of BF and oxygen extraction in the exercising human limb by increasing BF especially around inactive muscle fibers. Moreover, although marked functional sympatholysis also occurs during exercise, the arterial NE infusion that mimics the exaggerated sympathetic nerve activity commonly seen in patients with cardiovascular disease was still capable of directly limiting BF in the exercising leg muscles.

  8. Regulation of β1- and β3-adrenergic agonist-stimulated lipolytic response in hyperthyroid and hypothyroid rat white adipocytes

    PubMed Central

    Germack, Renée; Starzec, Anna; Perret, Gérard Y

    2000-01-01

    This study examined the effects of thyroid status on the lipolytic responses of rat white adipocytes to β-adrenoceptor (β-AR) stimulation. The β1- and β3-AR mRNAs and proteins were measured by Northern and saturation analyses, respectively. Glycerol production and adenyl cyclase (AC) activity induced by various non-selective and selective β1/β3-AR agonists and drugs which act distal to the receptor in the signalling cascade were measured in cells from untreated, tri-iodothyronine (T3)-treated and thyroidectomized rats. The β3-AR density was enhanced (72%) by T3-treatment and reduced (50%) by introduction of a hypothyroid state while β1-AR number remained unaffected. The β1- and β3-AR density was correlated with the specific mRNA level in all thyroid status. The lipolytic responses to isoprenaline, noradrenaline (β1/β3/β3-AR agonists) and BRL 37344 (β3-AR agonist) were potentiated by 48, 58 and 48%, respectively in hyperthyroidism and reduced by about 80% in hypothyroidism. T3-treatment increased the maximal lipolytic response to the partial β3-AR (CGP 12177) and β1-AR (xamoterol) agonists by 234 and 260%, respectively, increasing their efficacy (intrinsic activity: 0.95 versus 0.43 and 1.02 versus 0.42). The maximal AC response to these agonists was increased by 84 and 58%, respectively, without changing their efficacy. In the hypothyroid state, the maximal lipolytic and AC responses were decreased with CGP (0.17±0.03 versus 0.41±0.08 μmol glycerol/106 adipocytes; 0.048±0.005 versus 0.114±0.006 pmol cyclic AMP min−1 mg−1) but not changed with xamoterol. The changes in lipolytic responses to postreceptor-acting agents (forskolin, enprofylline and dibutenyl cyclic AMP, (Bu)2cAMP) suggest the modifications on receptor coupling and phosphodiesterase levels in both thyroid states. Thyroid status affects lipolysis by modifying β3-AR density and postreceptor events without changes in the β1-AR functionality. PMID:10711342

  9. Pathological prolongation of action potential duration as a cause of the reduced alpha-adrenoceptor-mediated negative inotropy in streptozotocin-induced diabetic mice myocardium.

    PubMed

    Kanae, Haruna; Hamaguchi, Shogo; Wakasugi, Yumi; Kusakabe, Taichi; Kato, Keisuke; Namekata, Iyuki; Tanaka, Hikaru

    2017-11-01

    Effect of pathological prolongation of action potential duration on the α-adrenoceptor-mediated negative inotropy was studied in streptozotocin-induced diabetic mice myocardium. In streptozotocin-treated mouse ventricular myocardium, which had longer duration of action potential than that in control mice, the negative inotropic response induced by phenylephrine was smaller than that in control mice. 4-Aminopyridine prolonged the action potential duration and decreased the negative inotropy in control mice. Cromakalim shortened the action potential duration and increased the negative inotropy in streptozotocin-treated mice. These results suggest that the reduced α-adrenoceptor-mediated inotropy in the diabetic mouse myocardium is partly due to its prolonged action potential. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  10. Mild prenatal protein malnutrition increases alpha2C-adrenoceptor density in the cerebral cortex during postnatal life and impairs neocortical long-term potentiation and visuo-spatial performance in rats.

    PubMed

    Soto-Moyano, Rubén; Valladares, Luis; Sierralta, Walter; Pérez, Hernán; Mondaca, Mauricio; Fernández, Victor; Burgos, Héctor; Hernández, Alejandro

    2005-06-01

    Mild reduction in the protein content of the mother's diet from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but leads to significant enhancements in the concentration and release of cortical noradrenaline during early postnatal life. Since central noradrenaline and some of its receptors are critically involved in long-term potentiation (LTP) and memory formation, this study evaluated the effect of mild prenatal protein malnutrition on the alpha2C-adrenoceptor density in the frontal and occipital cortices, induction of LTP in the same cortical regions and the visuo-spatial memory. Pups born from rats fed a 25% casein diet throughout pregnancy served as controls. At day 8 of postnatal age, prenatally malnourished rats showed a threefold increase in neocortical alpha2C-adrenoceptor density. At 60 days-of-age, alpha2C-adrenoceptor density was still elevated in the neocortex, and the animals were unable to maintain neocortical LTP and presented lower visuo-spatial memory performance. Results suggest that overexpression of neocortical alpha2C-adrenoceptors during postnatal life, subsequent to mild prenatal protein malnutrition, could functionally affect the synaptic networks subserving neocortical LTP and visuo-spatial memory formation.

  11. Childhood asthma exacerbations and the Arg16 β2-receptor polymorphism: A meta-analysis stratified by treatment.

    PubMed

    Turner, Steve; Francis, Ben; Vijverberg, Susanne; Pino-Yanes, Maria; Maitland-van der Zee, Anke H; Basu, Kaninika; Bignell, Lauren; Mukhopadhyay, Somnath; Tavendale, Roger; Palmer, Colin; Hawcutt, Daniel; Pirmohamed, Munir; Burchard, Esteban G; Lipworth, Brian

    2016-07-01

    The Gly-to-Arg substitution at the 16 position (rs1042713) in the β2-adrenoceptor gene (ADRB2) is associated with enhanced downregulation and uncoupling of β2-receptors. We sought to undertake a meta-analysis to test the hypothesis that there is an interaction between the A allele of rs1042713 (Arg16 amino acid) and long-acting β-agonist (LABA) exposure for asthma exacerbations in children. Children with diagnosed asthma were recruited in 5 populations (BREATHE, Genes-Environments and Admixture in Latino Americans II, PACMAN, the Paediatric Asthma Gene Environment Study, and the Pharmacogenetics of Adrenal Suppression with Inhaled Steroid Study). A history of recent exacerbation and asthma treatment was determined from questionnaire data. DNA was extracted, and the Gly16Arg genotype was determined. Data from 4226 children of white Northern European and Latino origin were analyzed, and the odds ratio for exacerbation increased by 1.52 (95% CI, 1.17-1.99; P = .0021) for each copy of the A allele among the 637 children treated with inhaled corticosteroids (ICSs) plus LABAs but not for treatment with ICSs alone (n = 1758) or ICSs plus leukotriene receptor antagonist (LTRAs; n = 354) or ICSs plus LABAs plus LTRAs (n = 569). The use of a LABA but not an LTRA as an "add-on controller" is associated with increased risk of asthma exacerbation in children carrying 1 or 2 A alleles at rs1042713. Prospective genotype-stratified clinical trials are now required to explore the potential role of rs1042713 genotyping for personalized asthma therapy in children. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. beta(2)-adrenoceptor antagonist ICI 118,551 decreases pulmonary vascular tone in mice via a G(i/o) protein/nitric oxide-coupled pathway.

    PubMed

    Wenzel, Daniela; Knies, Ralf; Matthey, Michaela; Klein, Alexandra M; Welschoff, Julia; Stolle, Vanessa; Sasse, Philipp; Röll, Wilhelm; Breuer, Johannes; Fleischmann, Bernd K

    2009-07-01

    beta(2)-adrenoceptors are important modulators of vascular tone, particularly in the pulmonary circulation. Because neurohormonal activation occurs in pulmonary arterial hypertension, we have investigated the effect of different adrenergic vasoactive substances on tone regulation in large and small pulmonary arteries, as well as in systemic vessels of mice. We found that the beta(2)-adrenoceptor antagonist ICI 118,551 (ICI) evoked a decrease of vascular tone in large pulmonary arteries and reduced the sensitivity of pulmonary arteries toward different contracting agents, eg, norepinephrine, serotonin, or endothelin. ICI proved to act specifically on pulmonary vessels, because it shifted the dose-response curve of norepinephrine to the right in pulmonary arteries, whereas there was no effect in the aorta. Pharmacological experiments proved that the right shift of the norepinephrine dose-response curve by ICI was mediated via a beta(2)-adrenoceptor/G(i/o) protein-dependent pathway enhancing NO production in the endothelium; these results were corroborated in beta-adrenoceptor and endothelial NO synthase knockout mice where ICI had no effect. ICI increased vascular lumen diameter in lung sections and reduced pulmonary arterial pressure under normoxia and under hypoxia in the isolated perfused lung model. These effects were found to be physiologically relevant, because ICI specifically decreased pulmonary but not systemic blood pressure in vivo. Thus, the beta(2)-adrenoceptor antagonist ICI is a pulmonary arterial-specific vasorelaxant and, therefore, a potentially interesting novel therapeutic agent for the treatment of pulmonary arterial hypertension.

  14. Biological profile and bioavailability of imidazoline compounds on morphine tolerance modulation.

    PubMed

    Caprioli, Giovanni; Mammoli, Valerio; Ricciutelli, Massimo; Sagratini, Gianni; Ubaldi, Massimo; Domi, Esi; Mennuni, Laura; Sabatini, Chiara; Galimberti, Chiara; Ferrari, Flora; Milia, Chiara; Comi, Eleonora; Lanza, Marco; Giannella, Mario; Pigini, Maria; Del Bello, Fabio

    2015-12-15

    Tolerance to opioid administration represents a serious medical alert in different chronic conditions. This study compares the effects of the imidazoline compounds 1, 2, and 3 on morphine tolerance in an animal model of inflammatory pain in the rat. 1, 2, and 3 have been selected in that, although bearing a common scaffold, preferentially bind to α2-adrenoceptors, imidazoline I2 receptors, or both systems, respectively. Such compounds have been tested in vivo by measuring the paw withdrawal threshold to mechanical pressure after complete Freund's adjuvant injection. To determine the ligand levels in rat plasma, an HPLC-mass spectrometry method has been developed. All the compounds significantly reduced the induction of morphine tolerance, showing different potency and duration of action. Indeed, the selective imidazoline I2 receptor interaction (2) restored the analgesic response by maintaining the same time-dependent profile observed after a single morphine administration. Differently, the selective α2C-adrenoceptor activation (1) or the combination between α2C-adrenoceptor activation and imidazoline I2 receptor engagement (3) promoted a change in the temporal profile of morphine analgesia by maintaining a mild but long lasting analgesic effect. Interestingly, the kinetics of compounds in rat plasma supported the pharmacodynamic data. Therefore, this study highlights that both peculiar biological profile and bioavailability of such ligands complement each other to modulate the reduction of morphine tolerance. Based on these observations, 1-3 can be considered useful leads in the design of new drugs able to turn off the undesired tolerance induced by opioids. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Visual selective attention is impaired in children prenatally exposed to opioid agonist medication.

    PubMed

    Konijnenberg, Carolien; Melinder, Annika

    2015-01-01

    To examine whether prenatal exposure to opioid agonist medication is associated with visual selective attention and general attention problems in early childhood. Twenty-two children (mean age = 52.17 months, SD = 1.81) prenatally exposed to methadone, 9 children (mean age = 52.41 months, SD = 1.42) prenatally exposed to buprenorphine and 25 nonexposed comparison children (mean age = 51.44 months, SD = 1.31) were tested. Visual selective attention was measured with a Tobii 1750 Eye Tracker using a spatial negative priming paradigm. Attention problems were measured using the Child Behavior Checklist. The comparison group demonstrated a larger spatial negative priming effect (mean = 23.50, SD = 45.50) than the exposed group [mean = -6.84, SD = 86.39, F(1,50) = 5.91, p = 0.019, η(2) = 0.11]. No difference in reported attention problems was found [F(1,51) = 1.63, p = 0.21, η(2) = 0.03]. Neonatal abstinence syndrome and prenatal exposure to marijuana were found to predict slower saccade latencies in the exposed group (b = 54.55, SE = 23.56, p = 0.03 and b = 88.86, SE = 32.07, p = 0.01, respectively). Although exposed children did not appear to have attention deficits in daily life, lower performance on the SNP task indicates subtle alteration in the attention system. © 2014 S. Karger AG, Basel.

  17. Do saw palmetto extracts block human alpha1-adrenoceptor subtypes in vivo?

    PubMed

    Goepel, M; Dinh, L; Mitchell, A; Schäfers, R F; Rübben, H; Michel, M C

    2001-02-15

    To test whether saw palmetto extracts, which act as alpha1-adrenoceptor antagonists in vitro, also do so in vivo in man. In a placebo-controlled, double-blind, four-way cross-over study 12 healthy young men were treated with three different saw palmetto extract preparations (320 mg o.d.) for 8 days each. On the last day, before and 2, 4 and 6 hr after drug intake blood pressure and heart rate were determined and blood samples obtained, which were used in an ex vivo radioreceptor assay with cloned human alpha1-adrenoceptor subtypes. Saw palmetto extract treatment did not result in alpha1-adrenoceptor subtype occupancy in the radioreceptor assay. Although the saw palmetto extracts caused minor reductions of supine blood pressure, they did not affect blood pressure during orthostatic stress testing and did not alter heart rate under either condition. Moreover, plasma catecholamines remained largely unaltered. Despite their alpha1-adrenoceptor antagonist effects in vitro, therapeutically used doses of saw palmetto extracts do not cause alpha1-adrenoceptor antagonism in man in vivo. Copyright 2001 Wiley-Liss, Inc.

  18. 7,8-dihydroxyflavone, a TrkB receptor agonist, blocks long-term spatial memory impairment caused by immobilization stress in rats.

    PubMed

    Andero, Raül; Daviu, Núria; Escorihuela, Rosa Maria; Nadal, Roser; Armario, Antonio

    2012-03-01

    Post-traumatic stress disorder (PTSD) patients show cognitive deficits, but it is unclear whether these are a consequence of the pathology or a pre-existing factor of vulnerability to PTSD. Animal models may help to demonstrate whether or not exposure to certain stressors can actually induce long-lasting (LL; days) impairment of hippocampus-dependent memory tasks and to characterize neurobiological mechanisms. Adult male rats were exposed to 2-h immobilization on boards (IMO), a severe stressor, and spatial learning in the Morris water maze (MWM) was studied days later. Exposure to IMO did not modify learning or short-term memory in the MWM when learning started 3 or 9 days after IMO, but stressed rats did show impaired long-term memory at both times, in accordance with the severity of the stressor. New treatments to prevent PTSD symptoms are needed. Thus, considering the potential protective role of brain-derived neurotrophic factor (BDNF) on hippocampal function, 7,8-dihydroxyflavone (7,8-DHF), a recently characterized agonist of the BDNF receptor TrkB, was given before or after IMO in additional experiments. Again, exposure to IMO resulted in LL deficit in long-term memory, and such impairment was prevented by the administration of 7,8-DHF either 2 h prior IMO or 8 h after the termination of IMO. The finding that IMO-induced impairment of spatial memory was prevented by pharmacological potentiation of TrkB pathway with 7,8-DHF even when the drug was given 8 h after IMO suggests that IMO-induced impairment is likely to be a LL process that is strongly dependent on the integrity of the BDNF-TrkB system and is susceptible to poststress therapeutic interventions. 7,8-DHF may represent a new therapeutic approach for early treatment of subjects who have suffered traumatic experiences. Copyright © 2010 Wiley Periodicals, Inc.

  19. Exposure of a distinct PDCA-1+ (CD317) B cell population to agonistic anti-4-1BB (CD137) inhibits T and B cell responses both in vitro and in vivo.

    PubMed

    Vinay, Dass S; Lee, Seung J; Kim, Chang H; Oh, Ho Sik; Kwon, Byoung S

    2012-01-01

    4-1BB (CD137) is an important T cell activating molecule. Here we report that it also promotes development of a distinct B cell subpopulation co-expressing PDCA-1. 4-1BB is expressed constitutively, and its expression is increased when PDCA-1(+) B cells are activated. We found that despite a high level of surface expression of 4-1BB on PDCA-1(+) B cells, treatment of these cells with agonistic anti-4-1BB mAb stimulated the expression of only a few activation markers (B7-2, MHC II, PD-L2), cytokines (IL-12p40/p70), and chemokines (MCP-1, RANTES), as well as sTNFR1, and the immunosuppressive enzyme, IDO. Although the PDCA-1(+) B cells stimulated by anti-4-1BB expressed MHC II at high levels and took up antigens efficiently, Ig class switching was inhibited when they were pulsed with T-independent (TI) or T-dependent (TD) Ags and adoptively transferred into syngeneic recipients. Furthermore, when anti-4-1BB-treated PDCA-1(+) B cells were pulsed with OVA peptide and combined with Vα2(+)CD4(+) T cells, Ag-specific cell division was inhibited both in vitro and in vivo. Our findings suggest that the 4-1BB signal transforms PDCA-1(+) B cells into propagators of negative immune regulation, and establish an important role for 4-1BB in PDCA-1(+) B cell development and function.

  20. Inhibition of excitatory non-adrenergic non-cholinergic bronchoconstriction in guinea-pig airways in vitro by activation of an atypical 5-HT receptor.

    PubMed

    Ward, J K; Fox, A J; Barnes, P J; Belvisi, M G

    1994-04-01

    1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM. 5. Selective 5-HT receptor agonists were also tested on excitatory NANC responses. 5-Carboxamidotryptamine (5-CT, 0.1-100 MicroM) was the most potent, producing a concentration-dependent inhibition with an EC50 of 0.13 MicroM. Calculation of approximate IC25 values (concentration of the agonist required to give a 25% inhibition of the excitatory NANC response) gave a rank order of potency 5-CT > 5-HT> > 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) >alpha-methyl-5-hydroxytryptamine (alpha-Me-5HT). Sumatriptan, 5-methoxytryptamine (5-MeOT) and 2-methyl-5-hydroxytryptamine (2-Me-5HT) were essentially inactive with IC25> 100 MicroM.6. 5-HT (10 microM) did not significantly affect contractile responses to exogenously applied substance P(1 nM-10 Microm).7. The effect of 5-HT was unchanged after incubation with the nitric oxide (NO) synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME, 100 Microm). However, pretreatment with charybdotoxin (ChTX,0.1-30 nM), a blocker of the large conductance Ca2+-activated K+channel (K+ca), produced a concentration-dependent inhibition of the effect of 5-HT (10 MicroM).8. 5-HT evokes a concentration-dependent inhibition of e-NANC bronchoconstriction in guinea-pig isolated bronchi but does not affect cumulative concentration-dependent contractile responses to substance P, suggesting that inhibition is via a prejunctional receptor. Effects of selective antagonists and agonists suggest that an atypical 5-HT receptor mediates this inhibition. The inhibitory effect of 5-HT does not involve the production of NO, but may involve the opening a ChTX-sensitive K+ca channel.These data suggest that an atypical 5-HT receptor inhibits the release of neuropeptides from sensory C fibres and may act as other inhibitory neuromodulators via the opening of a common K'channel.

  1. Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes.

    PubMed

    Vo, L; Drummond, P D

    2016-03-01

    In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS. © 2015 European Pain Federation - EFIC®

  2. The novel, peripherally restricted GABAB receptor agonist lesogaberan (AZD3355) inhibits acid reflux and reduces esophageal acid exposure as measured with 24-h pHmetry in dogs.

    PubMed

    Brändén, Lena; Fredriksson, Anita; Harring, Emelie; Jensen, Jörgen; Lehmann, Anders

    2010-05-25

    While patients with symptoms of gastroesophageal reflux disease generally respond well to proton pump inhibitors, 20-30% continue to experience troublesome symptoms. In such cases, agents that target transient lower esophageal sphincter (LES) relaxation may be useful as add-on therapy to proton pump inhibitors. The GABAB receptor agonist baclofen inhibits transient LES relaxation but it is not an ideal agent due to central nervous system activity. Lesogaberan (AZD3355) is a peripherally restricted GABAB receptor agonist with limited central nervous system activity that inhibits transient LES relaxation in dogs. In the present study, the comparative effects of lesogaberan (7 micromol/kg) and baclofen (2.8 micromol/kg) on reflux were studied in dogs using 24-h pHmetry. Drugs (or vehicle control) were administered orally prior to the first meal of the day, and the number of reflux episodes (pH<4 for > or = 5 s) and acid exposure time were computed for the 24-h monitoring period. The mean (S.E.M.) number of reflux episodes/24 h was 4.6 (0.4) and 6.4 (0.6) for lesogaberan and baclofen, respectively, versus 10.7 (0.5) for control (P<0.0001 for both). Acid exposure time was 51.2 (4.5) min for control versus 23.6 (3.8) min for lesogaberan (P<0.0001) and 35.4 (6.5) min with baclofen (P=0.05). It is concluded that lesogaberan significantly reduces acid reflux in dogs, with comparable efficacy to baclofen. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2

    PubMed Central

    Barboza, Renato; Câmara, Niels Olsen Saraiva; Gomes, Eliane; Sá-Nunes, Anderson; Florsheim, Esther; Mirotti, Luciana; Labrada, Alexis; Alcântara-Neves, Neuza Maria; Russo, Momtchilo

    2013-01-01

    Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation. PMID:23805294

  4. Comparison of propranolol and practolol in the management of hyperthyroidism.

    PubMed

    Murchison, L E; Bewsher, P D; Chesters, M I; Ferrier, W R

    1976-04-01

    Twenty-one hyperthyroid patients participated in an 8-week double-blind crossover trial of propranolol and practolol, and the effecte of these drugs on the clinical and metabolic features of the disease were studied. Propranolol was marginally more effective than practolol, as measured by the hyperthyroid diagnostic index and anxiety scale. Propranolol produced a significant reduction in the serum concentration ratio of tri-iodothyronine to thyroxine, compatible with partial inhibition of peripheral deiodination of thyroxine. Adverse reactions occurred more frequently with propranolol than with practolol. In veiw of the efficacy of practoloo, further trials in hyperthyroid patients of newer beta1-adrenoceptor antagonists, preferably without partial agonist activity, are indicated.

  5. Genetic Variation in the β2-Adrenocepter Gene Is Associated with Susceptibility to Bacterial Meningitis in Adults

    PubMed Central

    Adriani, Kirsten S.; Brouwer, Matthijs C.; Baas, Frank; Zwinderman, Aeilko H.; van der Ende, Arie; van de Beek, Diederik

    2012-01-01

    Recently, the biased β2-adrenoceptor/β-arrestin pathway was shown to play a pivotal role in crossing of the blood brain barrier by Neisseria meningitidis. We hypothesized that genetic variation in the β2-adrenoceptor gene (ADRB2) may influence susceptibility to bacterial meningitis. In a prospective genetic association study we genotyped 542 patients with CSF culture proven community acquired bacterial meningitis and 376 matched controls for 2 functional single nucleotide polymorphisms in the β2-adrenoceptor gene (ADRB2). Furthermore, we analyzed if the use of non-selective beta-blockers, which bind to the β2-adrenoceptor, influenced the risk of bacterial meningitis. We identified a functional polymorphism in ADRB2 (rs1042714) to be associated with an increased risk for bacterial meningitis (Odds ratio [OR] 1.35, 95% confidence interval [CI] 1.04–1.76; p = 0.026). The association remained significant after correction for age and was more prominent in patients with pneumococcal meningitis (OR 1.52, 95% CI 1.12–2.07; p = 0.007). For meningococcal meningitis the difference in genotype frequencies between patients and controls was similar to that in pneumococcal meningitis, but this was not statistically significant (OR 1.43, 95% CI 0.60–3.38; p = 0.72). Patients with bacterial meningitis had a lower frequency of non-selective beta-blockers use compared to the age matched population (0.9% vs. 1.8%), although this did not reach statistical significance (OR 1.96 [95% CI 0.88–4.39]; p = 0.09). In conclusion, we identified an association between a genetic variant in the β2-adrenoceptor and increased susceptibility to bacterial meningitis. The potential benefit of pharmacological treatment targeting the β2-adrenoceptor to prevent bacterial meningitis in the general population or patients with bacteraemia should be further studied in both experimental studies and observational cohorts. PMID:22624056

  6. Enantioselective resolution of Rac-terbutaline and evaluation of optically pure R-terbutaline hydrochloride as an efficient anti-asthmatic drug.

    PubMed

    Beng, Huimin; Zhang, Hao; Jayachandra, R; Li, Junxiao; Wu, Jie; Tan, Wen

    2018-06-01

    Terbutaline is a β 2 -adrenoceptor agonist for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Among the two isomers of terbutaline (TBT 2), R-isomer was found to be the potent enantiomer in generating therapeutic effect, while S-isomer has been reported to show side effects. In this study, R-terbutaline hydrochloride (R-TBH 6) was synthesized through chiral resolution from the racemic terbutaline sulfate (rac-TBS 1) with 99.9% enantiomeric excess (ee) in good overall yield (53.6%). Further, R-TBH 6 nebulized solution was prepared in half dosage of Bricanyl®, which is a marketed product of racemic terbutaline and evaluated in vitro aerosol performance and in vivo anti-asthmatic effect on guinea pigs via. pulmonary delivery. From the investigation, it is evident that R-TBH 6 nebulized solution of half dosage performed similar fine aerosol characteristics and anti-asthmatic effect with Bricanyl®. © 2018 Wiley Periodicals, Inc.

  7. Beta 2-adrenergic receptor agonists are novel regulators of macrophage activation in diabetic renal and cardiovascular complications.

    PubMed

    Noh, Hyunjin; Yu, Mi Ra; Kim, Hyun Joo; Lee, Ji Hye; Park, Byoung-Won; Wu, I-Hsien; Matsumoto, Motonobu; King, George L

    2017-07-01

    Macrophage activation is increased in diabetes and correlated with the onset and progression of vascular complications. To identify drugs that could inhibit macrophage activation, we developed a cell-based assay and screened a 1,040 compound library for anti-inflammatory effects. Beta2-adrenergic receptor (β2AR) agonists were identified as the most potent inhibitors of phorbol myristate acetate-induced tumor necrosis factor-α production in rat bone marrow macrophages. In peripheral blood mononuclear cells isolated from streptozotocin-induced diabetic rats, β2AR agonists inhibited diabetes-induced tumor necrosis factor-α production, which was prevented by co-treatment with a selective β2AR blocker. To clarify the underlying mechanisms, THP-1 cells and bone marrow macrophages were exposed to high glucose. High glucose reduced β-arrestin2, a negative regulator of NF-κB activation, and its interaction with IκBα. This subsequently enhanced phosphorylation of IκBα and activation of NF-κB. The β2AR agonists enhanced β-arrestin2 and its interaction with IκBα, leading to downregulation of NF-κB. A siRNA specific for β-arrestin2 reversed β2AR agonist-mediated inhibition of NF-κB activation and inflammatory cytokine production. Treatment of Zucker diabetic fatty rats with a β2AR agonist for 12 weeks attenuated monocyte activation as well as pro-inflammatory and pro-fibrotic responses in the kidneys and heart. Thus, β2AR agonists might have protective effects against diabetic renal and cardiovascular complications. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Presynaptic imidazoline receptors and non-adrenoceptor[3H]-idazoxan binding sites in human cardiovascular tissues

    PubMed Central

    Molderings, G J; Likungu, J; Jakschik, J; Göthert, M

    1997-01-01

    In segments of human right atrial appendages and pulmonary arteries preincubated with [3H]-noradrenaline and superfused with physiological salt solution containing desipramine and corticosterone, the involvement of imidazoline receptors in the modulation of [3H]-noradrenaline release was investigated. In human atrial appendages, the guanidines aganodine and DTG (1,3-di(2-tolyl)guanidine) which activate presynaptic imidazoline receptors, inhibited electrically-evoked [3H]-noradrenaline release. The inhibition was not affected by blockade of α2-adrenoceptors with 1 μM rauwolscine, but antagonized by extremely high concentrations of this drug (10 and/or 30 μM; apparent pA2 against aganodine and DTG: 5.55 and 5.21, respectively). In the presence of 1 μM rauwolscine, [3H]-noradrenaline release in human atrial appendages was also inhibited by the imidazolines idazoxan and cirazoline, but not by agmatine and noradrenaline. The inhibitory effects of 100 μM idazoxan and 30 μM cirazoline were abolished by 30 μM rauwolscine. In the atrial appendages, the rank order of potency of all guanidines and imidazolines for their inhibitory effect on electrically-evoked [3H]-noradrenaline release in the presence of 1 μM rauwolscine was: aganodine⩾BDF 6143 [4-chloro-2-(2-imidazolin-2-yl-amino)-isoindoline]>DTG⩾clonidine>cirazoline>idazoxan (BDF 6143 and clonidine were previously studied under identical conditions). This potency order corresponded to that previously determined at the presynaptic imidazoline receptors in the rabbit aorta. When, in the experiments in the human pulmonary artery, rauwolscine was absent from the superfusion fluid, the concentration-response curve for BDF 6143 (a mixed α2-adrenoceptor antagonist/imidazoline receptor agonist) for its facilitatory effect on electrically-evoked [3H]-noradrenaline release was bell-shaped. In the presence of 1 μM rauwolscine, BDF 6143 and cirazoline concentration-dependently inhibited the evoked [3H]-noradrenaline release. In human atrial appendages, non-adrenoceptor [3H]-idazoxan binding sites were identified and characterized. The binding of [3H]-idazoxan was specific, reversible, saturable and of high affinity (KD: 25.5 nM). The specific binding of [3H]-idazoxan (defined by cirazoline 0.1 mM) to membranes of human atrial appendages was concentration-dependently inhibited by several imidazolines and guanidines, but not by rauwolscine and agmatine. In most cases, the competition curves were best fitted to a two-site model. The rank order of affinity for the high affinity site (in a few cases for the only detectable site; cirazoline=idazoxan>BDF 6143>DTG⩾clonidine) is compatible with the pharmacological properties of I2-imidazoline binding sites, but is clearly different from the rank order of potency for inhibiting evoked noradrenaline release from sympathetic nerves in the same tissue. It is concluded that noradrenaline release in the human atrium and, less well established, in the pulmonary artery is inhibited via presynaptic imidazoline receptors. These presynaptic imidazoline receptors appear to be related to those previously characterized in rabbit aorta and pulmonary artery, but differ clearly from I1 and I2 imidazoline binding sites. PMID:9298527

  9. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  10. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice

    PubMed Central

    Qin, Cheng Xue; May, Lauren T.; Li, Renming; Cao, Nga; Rosli, Sarah; Deo, Minh; Alexander, Amy E.; Horlock, Duncan; Bourke, Jane E.; Yang, Yuan H.; Stewart, Alastair G.; Kaye, David M.; Du, Xiao-Jun; Sexton, Patrick M.; Christopoulos, Arthur; Gao, Xiao-Ming; Ritchie, Rebecca H.

    2017-01-01

    Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. PMID:28169296

  11. Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of garlic extract in mice

    PubMed Central

    Dhingra, Dinesh; Kumar, Vaibhav

    2008-01-01

    Objectives: The present study was undertaken to investigate the effect of the ethanolic extract of Allium sativum L. (Family: Lilliaceae), commonly known as garlic, on depression in mice. Materials and Methods: Ethanolic extract of garlic (25, 50 and 100 mg/kg) was administered orally for 14 successive days to young Swiss albino mice of either sex and antidepressant-like activity was evaluated employing tail suspension test (TST) and forced swim test (FST). The efficacy of the extract was compared with standard antidepressant drugs like fluoxetine and imipramine. The mechanism of action of the extract was investigated by co-administration of prazosin (α1-adrenoceptor antagonist), sulpiride (selective D2-receptor antagonist), baclofen (GABAB agonist) and p-CPA (serotonin antagonist) separately with the extract and by studying the effect of the extract on brain MAO-A and MAO-B levels. Results: Garlic extract (25, 50 and 100 mg/kg) significantly decreased immobility time in a dose-dependent manner in both TST and FST, indicating significant antidepressant-like activity. The efficacy of the extract was found to be comparable to fluoxetine (20 mg/kg p.o.) and imipramine (15 mg/kg p.o.) in both TST and FST. The extract did not show any significant effect on the locomotor activity of the mice. Prazosin, sulpiride, baclofen and p-CPA significantly attenuated the extract-induced antidepressant-like effect in TST. Garlic extract (100 mg/kg) administered orally for 14 successive days significantly decreased brain MAO-A and MAO-B levels, as compared to the control group. Conclusion: Garlic extract showed significant antidepressant-like activity probably by inhibiting MAO-A and MAO-B levels and through interaction with adrenergic, dopaminergic, serotonergic and GABAergic systems. PMID:20040952

  12. Clonidine Reduces Nociceptive Responses in Mouse Orofacial Formalin Model: Potentiation by Sigma-1 Receptor Antagonist BD1047 without Impaired Motor Coordination.

    PubMed

    Yoon, Seo-Yeon; Kang, Suk-Yun; Kim, Hyun-Woo; Kim, Hyung-Chan; Roh, Dae-Hyun

    2015-01-01

    Although the administration of clonidine, an alpha-2 adrenoceptor agonist, significantly attenuates nociception and hyperalgesia in several pain models, clinical trials of clonidine are limited by its side effects such as drowsiness, hypotension and sedation. Recently, we determined that the sigma-1 receptor antagonist BD1047 dose-dependently reduced nociceptive responses in a mouse orofacial formalin model. Here we examined whether intraperitoneal injection of clonidine suppressed the nociceptive responses in the orofacial formalin test, and whether co-administration with BD1047 enhances lower-dose clonidine-induced anti-nociceptive effects without the disruption of motor coordination and blood pressure. Formalin (5%, 10 µL) was subcutaneously injected into the right upper lip, and the rubbing responses with the ipsilateral fore- or hind-paw were counted for 45 min. Clonidine (10, 30 or 100 µg/kg) was intraperitoneally administered 30 min before formalin injection. Clonidine alone dose-dependently reduced nociceptive responses in both the first and second phases. Co-localization for alpha-2A adrenoceptors and sigma-1 receptors was determined in trigeminal ganglion cells. Interestingly, the sub-effective dose of BD1047 (3 mg/kg) significantly potentiated the anti-nociceptive effect of lower-dose clonidine (10 or 30 µg/kg) in the second phase. In particular, the middle dose of clonidine (30 µg/kg) in combination with BD1047 produced an anti-nociceptive effect similar to that of the high-dose clonidine, but without a significant motor dysfunction or hypotension. In contrast, mice treated with the high dose of clonidine developed severe impairment in motor coordination and blood pressure. These data suggest that a combination of low-dose clonidine with BD1047 may be a novel and safe therapeutic strategy for orofacial pain management.

  13. Anabolic effects of clenbuterol after long-term treatment and withdrawal in t the rat.

    PubMed

    Cartañà, J; Segués, T; Yebras, M; Rothwell, N J; Stock, M J

    1994-09-01

    Injection of rats with the beta 2-adrenoceptor agonist clenbuterol (1 mg/kg/d for 15 days) stimulated an increase in body weight (9%) and protein (8%) and water (7%) content, but reduced food intake (4%) and epididymal fat pad mass (39%). Nine days after termination of treatment, ex-clenbuterol rats were heavier (5%) and had a greater protein (7%) and water (6%) content and lower fat pad mass (32%) than controls. Clenbuterol-fed rats (2 mg/kg diet for 10 days, providing an average of 0.04 mg clenbuterol/kg/d) increased body weight (7%), muscle mass (15% to 21%), and muscle protein content (9% to 26%), whereas epididymal fat pad weight and muscle glycogen content were reduced. During the withdrawal period, the greater body weight of ex-clenbuterol rats was sustained overall (ANOVA, P < .00005), but by day 10 this difference was no longer significant. At this point, gastrocnemius muscle mass was still higher (11%) when compared with that of control animals, but soleus muscle mass, muscle glycogen concentration, and epididymal fat pad weight had reverted to control values. These results were corroborated in a subsequent experiment using older rats. It was concluded that, unlike other beta-adrenoceptor-mediated effects, muscle protein accumulated during clenbuterol treatment can be maintained in certain muscles after removal of the drug for a period of time that is at least equivalent to the duration of treatment. This could have implications for the potential therapeutic use of this class of compound, and differences in the response observed between muscle types may help to elucidate the mechanisms responsible for the muscle protein deposition induced by clenbuterol.

  14. Renal and femoral venous blood flows are regulated by different mechanisms dependent on α-adrenergic receptor subtypes and nitric oxide in anesthetized rats.

    PubMed

    Fioretti, Alexandre C; Ogihara, Cristiana A; Cafarchio, Eduardo M; Venancio, Daniel P; de Almeida, Roberto Lopes; Antonio, Bruno B; Sato, Monica A

    2017-12-01

    Venous and arterial walls are responsive to sympathetic system and circulating substances, nevertheless, very few is known about the venous blood flow regulation simultaneously to arterial vascular beds. In this study, we compared the venous and arterial blood flow regulation in visceral and muscular beds upon injection of different doses of vasoactive drugs which act in arterial vascular beds. Anesthetized adult male Wistar rats underwent to right femoral artery and vein cannulation for hemodynamic recordings and infusion of drugs. Doppler flow probes were placed around the left renal artery and vein, and left femoral artery and vein to evaluate the changes in flood flow. Phenylephrine (PHE) injection (α 1 -adrenergic receptor agonist) elicited vasoconstriction in all arteries and veins. Intravenous prazosin (PZS) (1mg/kg, α 1 -adrenergic receptor blocker) caused renal artery vasodilation, but not in the other beds. Vasoconstrictor effect of PHE was abolished by PZS in all vascular beds, except in femoral vein. Phentolamine (PTL) injection (1mg/kg, α 1 /α 2 -adrenergic receptor blocker) produced renal artery vasodilation with no change in other beds. After PTL, the vasoconstriction evoked by PHE was abolished in all vascular beds. Sodium Nitroprusside (SNP), a nitric oxide donor, elicited vasodilation in all beds, and after PTL but not post PZS injection, SNP enhanced the vasodilatory effect in femoral vein. Our findings suggest that the vasoconstriction in renal and femoral veins is mediated by different subtypes of α-adrenoceptors. The nitric oxide-dependent vasodilation in femoral vein enhances when α 2 -adrenoceptors are not under stimulation, but not in the other vascular beds investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

    PubMed Central

    Samuels, E. R; Szabadi, E

    2008-01-01

    The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system. PMID:19506724

  16. Ineffectiveness of intravenous beta 2-agonists on improving exercise tolerance in patients with reversible chronic airway obstruction.

    PubMed

    Malerba, M; Boni, E; Tantucci, C; Filippi, B; Romagnoni, G; Grassi, V

    1996-01-01

    The effects on exercise tolerance after acute administration of beta 2-agonists were investigated in 11 patients with partly reversible chronic airway obstruction after 400 micrograms of salbutamol (S) given intravenously (i.v.) and after 400 micrograms i.v. of a new selective beta 2-agonist, broxaterol (B), by a cardiopulmonary incremental exercise test. At rest, while VE increased in respect to basal conditions (C) after S (from 13.3 +/- 2.2 to 14.4 +/- 2.8 l/min; p < 0.05) and after B (from 13.6 +/- 3.1 to 15.5 +/- 3.6 l/min; p < 0.05), VO2, VCO2 and VO2/HR showed no substantial variations. A small, not significant reduction of PaO2 was observed both after S (from 82.7 +/- 11.7 to 79.1 +/- 16.7 mm Hg) and B (from 81.6 +/- 10.5 to 78.0 +/- 11.0 mm Hg). The maximum workload increased neither after S (from 67.5 +/- 39.1 to 66.6 +/- 37.0 W) nor after B (from 65.7 +/- 39.3 to 60.0 +/- 35.8 W). At peak of exercise, VO2, VCO2 and VO2/HR did not change after S and B as compared with C, whereas VE remained higher after both beta 2-agonists throughout the effort. VO2 at ventilatory anaerobic threshold (AT) was significantly greater either after S (from 744 +/- 378 to 815 +/- 302 ml/min; p < 0.05) and after B (from 756 +/- 290 to 842 +/- 292 ml/min; p < 0.05). The PaO2 increase shown by these patients during effort was greater after beta 2-agonists administration, delta PaO2 from rest to peak of exercise amounting to 14.9 +/- 14.3 vs. 7.8 +/- 8.2 mm Hg after S and to 17.8 +/- 15.1 vs. 8.8 +/- 10.9 mm Hg after B, in respect to relative baseline (p < 0.05). We conclude that beta 2-agonists, when given acutely, do not improve exercise tolerance in patients with reversible chronic airflow obstruction, although these drugs can induce a small increment of ventilatory AT. In addition, arterial blood gases do not deteriorate at rest and are better preserved during exercise after beta 2-agonists.

  17. Human exposures to immobilising agents: results of an online survey.

    PubMed

    Haymerle, A; Fahlman, A; Walzer, C

    2010-08-28

    Cases of human exposure to veterinary injectable anaesthetics were reviewed following a literature search and completion of an online questionnaire in an attempt to provide an objective approach to the problem. The modified Glasgow Coma Scale was used to rank cases according to their severity. From the cases examined, results showed that intoxication with potent opioids, such as etorphine, carfentanil and thiafentanil, need to be treated with antagonists such as naloxone, nalmefene or naltrexone, and not with antagonists with agonistic properties, such as diprenorphine. With regard to the alpha(2)-agonists xylazine, detomidine, medetomidine and romifidine, no antagonist is currently accredited for human use. Atipamezole, a specific alpha(2)-antagonist, is widely used in veterinary medicine and has been used experimentally to reverse dexmetomidine in a study in human medicine. The high concentrations of alpha(2)-agonists being used in zoo and wildlife medicine warrant the accreditation of atipamezole for use in cases of human exposure. Knowledge and availability of the appropriate antagonist are essential in cases of human intoxication with injectable anaesthetics. Preventive measures, such as wearing gloves and eye protection, need to be used more regularly to reduce the risk of exposure.

  18. β-Adrenergic Stimulation Induces Histone Deacetylase 5 (HDAC5) Nuclear Accumulation in Cardiomyocytes by B55α-PP2A-Mediated Dephosphorylation.

    PubMed

    Weeks, Kate L; Ranieri, Antonella; Karaś, Agnieszka; Bernardo, Bianca C; Ashcroft, Alexandra S; Molenaar, Chris; McMullen, Julie R; Avkiran, Metin

    2017-03-25

    Class IIa histone deacetylase (HDAC) isoforms such as HDAC5 are critical signal-responsive repressors of maladaptive cardiomyocyte hypertrophy, through nuclear interactions with transcription factors including myocyte enhancer factor-2. β-Adrenoceptor (β-AR) stimulation, a signal of fundamental importance in regulating cardiac function, has been proposed to induce both phosphorylation-independent nuclear export and phosphorylation-dependent nuclear accumulation of cardiomyocyte HDAC5. The relative importance of phosphorylation at Ser259/Ser498 versus Ser279 in HDAC5 regulation is also controversial. We aimed to determine the impact of β-AR stimulation on the phosphorylation, localization, and function of cardiomyocyte HDAC5 and delineate underlying molecular mechanisms. A novel 3-dimensional confocal microscopy method that objectively quantifies the whole-cell nuclear/cytoplasmic distribution of green fluorescent protein tagged HDAC5 revealed the β-AR agonist isoproterenol to induce β 1 -AR-mediated and protein kinase A-dependent HDAC5 nuclear accumulation in adult rat cardiomyocytes, which was accompanied by dephosphorylation at Ser259/279/498. Mutation of Ser259/Ser498 to Ala promoted HDAC5 nuclear accumulation and myocyte enhancer factor-2 inhibition, whereas Ser279 ablation had no such effect and did not block isoproterenol-induced nuclear accumulation. Inhibition of the Ser/Thr phosphatase PP2A blocked isoproterenol-induced HDAC5 dephosphorylation. Co-immunoprecipitation revealed a specific interaction of HDAC5 with the PP2A targeting subunit B55α, as well as catalytic and scaffolding subunits, which increased >3-fold with isoproterenol. Knockdown of B55α in neonatal cardiomyocytes attenuated isoproterenol-induced HDAC5 dephosphorylation. β-AR stimulation induces HDAC5 nuclear accumulation in cardiomyocytes by a mechanism that is protein kinase A-dependent but requires B55α-PP2A-mediated dephosphorylation of Ser259/Ser498 rather than protein kinase A-mediated phosphorylation of Ser279. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Physiological and anatomical studies of the development of the sympathetic innervation to rat iris arterioles.

    PubMed

    Sandow; Hill

    1999-09-24

    The development of the sympathetic innervation to rat irideal arterioles has been investigated using histochemical and in vitro pharmacological and electrophysiological methods. A plexus of fibres and varicosities appeared over the surface of the vessels after the first postnatal week and increased to reach a maximum density during the fourth postnatal week. Transmural nerve stimulation produced small, consistent contractions that were first recorded in arterioles of 7-day old rats. Contractions became larger and faster, reaching the adult form during the fourth postnatal week. Contractions became more sensitive to the alpha1-adrenoceptor antagonists, prazosin and naftopidil, and less sensitive to the alpha1A/D antagonist, WB4101 and alpha2 antagonist, yohimbine, during development. At both 10 and 21 days, contractile responses resulted from the release of intracellular calcium as they were abolished by caffeine (10(-3) M), thapsigargin (2 x 10(-6) M) and cyclopiazonic acid (3 x 10(-6) M), but not by nifedipine (10(-6) M). Intracellular recordings showed that nerve stimulation produced large, slow depolarizations at all ages tested. Time to peak potential decreased during development, while the amplitude of the depolarizations did not vary significantly. Results suggest that, throughout development, sympathetic nerves cause constriction of iris arterioles due to the release of noradrenaline and activation of alpha-adrenoceptors on the smooth muscle cells. Early responses involved both alpha1- and alpha2-adrenoceptors, while later responses were due to alpha1-adrenoceptors only. Irrespective of these changes in adrenoceptor subtypes, smooth muscle contraction resulted from the mobilization of intracellular calcium suggesting that both alpha1- and alpha2-adrenoceptors were coupled to pathways which accessed this source of calcium.

  20. Involvement of alpha-adrenoceptors in myometrial responses in the pro-oestral rat.

    PubMed Central

    Acritopoulou-Fourcroy, S.; Marçais-Collado, H.

    1988-01-01

    1. Myometrial responses to different agents acting on adrenoceptors were examined in vivo in the pro-oestrous rat. Changes in spontaneous uterine mechanical activity were recorded isometrically and evaluated in terms of amplitude and duration of uterine contractions. 2. Phenylephrine (10 micrograms kg-1) markedly increased the amplitude and duration of contractions and 40 micrograms kg-1 gave rise to tetanic contractions. 3. Administration of either nicergoline (400 micrograms kg-1) or phentolamine (1000 micrograms kg-1) to phenylephrine-primed rat uterus reduced the strength of contractions and phentolamine abolished the phenylephrine-induced uterine contracture. 4. Following blockade of alpha 2-adrenoceptors by yohimbine (1000 micrograms kg-1) and beta-adrenoceptors by propranolol (2400 micrograms kg-1), a single injection of phenylephrine (100 micrograms kg-1) increased the amplitude of uterine contractions by 30%. 5. Noradrenaline reduced the amplitude of contractions and caused elevation of the baseline level. The response of myometrium to the combination of both propranolol and noradrenaline was the establishment of uterine contracture with subsequent increase of the duration of contractions. 6. These results clearly demonstrate the involvement of alpha-adrenoceptors in the myometrial activity of the rat in vivo during pro-oestrus. PMID:2832026

  1. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  2. PDE3, but not PDE4, reduces β1- and β2-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients

    PubMed Central

    Molenaar, Peter; Christ, Torsten; Hussain, Rizwan I; Engel, Andreas; Berk, Emanuel; Gillette, Katherine T; Chen, Lu; Galindo-Tovar, Alejandro; Krobert, Kurt A; Ravens, Ursula; Levy, Finn Olav; Kaumann, Alberto J

    2013-01-01

    Background and Purpose PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3–1 μM) or PDE4 inhibitor rolipram (1–10 μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental Approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1 adrenoceptors (β2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2 adrenoceptors (β1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key Results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and Implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1 and β2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle. Linked Article This article is commented on by Eschenhagen, pp 524–527 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12168 PMID:23489141

  3. Design and synthesis of novel δ opioid receptor agonists with an azatricyclodecane skeleton for improving blood-brain barrier penetration.

    PubMed

    Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi

    2017-08-01

    We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fixed-dose combination therapy of nebivolol and valsartan for the treatment of hypertension.

    PubMed

    Sander, Gary E; Fernandez, Camilo; Giles, Thomas D

    2016-01-01

    Recent large clinical trials have refuted earlier suggestions from the Joint National Committee 8 committee that less aggressive targets for blood pressure control were all that could be justified in most hypertensive patients. It now does appear that in fact "lower is better," with blood pressure targets < 120/80 mm Hg appropriate for many hypertensive patients. Two drug combinations are often indicated as initial therapy if a 20/10 mm Hg or greater blood pressure reduction is necessary to reach target. Combinations consisting of β-blockers and renin-angiotensin-aldosterone system inhibitors have previously been deemed "less effective," based on partially overlapping mechanisms of action and limited clinical trial evidence. Nebivolol is a vasodilating β1-selective blocker and β3- adrenoceptor agonist; β3-adrenoceptor activation increases nitric oxide concentrations and thus explains the vasodilatory effect. A recent 8-week randomized trial (N=4,161) in individuals with stage 1-2 hypertension demonstrated that single-pill fixed dose combinations (FDC) of nebivolol and valsartan, an angiotensin II subtype 1 receptor blocker, were more effective in reducing blood pressure than the corresponding monotherapies, with comparable tolerability. In addition, an ABPM-biomarkers substudy from that trial (n=805) demonstrated that the FDC prevented a valsartan-induced increase in plasma renin activity, and that the nebivolol/valsartan 20/320 mg/day dose reduced plasma aldosterone concentration significantly more than valsartan 320 mg/day. This article will describe the properties of nebivolol that make it unique and separate it from other β-blockers, and will further support the pharmacological advantages of this particular combination.

  5. Time Trends of Period Prevalence Rates of Patients with Inhaled Long-Acting Beta-2-Agonists-Containing Prescriptions: A European Comparative Database Study

    PubMed Central

    Rottenkolber, Marietta; Voogd, Eef; van Dijk, Liset; Primatesta, Paola; Becker, Claudia; Schlienger, Raymond; de Groot, Mark C. H.; Alvarez, Yolanda; Durand, Julie; Slattery, Jim; Afonso, Ana; Requena, Gema; Gil, Miguel; Alvarez, Arturo; Hesse, Ulrik; Gerlach, Roman; Hasford, Joerg; Fischer, Rainald; Klungel, Olaf H.; Schmiedl, Sven

    2015-01-01

    Background Inhaled, long-acting beta-2-adrenoceptor agonists (LABA) have well-established roles in asthma and/or COPD treatment. Drug utilisation patterns for LABA have been described, but few studies have directly compared LABA use in different countries. We aimed to compare the prevalence of LABA-containing prescriptions in five European countries using a standardised methodology. Methods A common study protocol was applied to seven European healthcare record databases (Denmark, Germany, Spain, the Netherlands (2), and the UK (2)) to calculate crude and age- and sex-standardised annual period prevalence rates (PPRs) of LABA-containing prescriptions from 2002–2009. Annual PPRs were stratified by sex, age, and indication (asthma, COPD, asthma and COPD). Results From 2002–2009, age- and sex-standardised PPRs of patients with LABA-containing medications increased in all databases (58.2%–185.1%). Highest PPRs were found in men ≥ 80 years old and women 70–79 years old. Regarding the three indications, the highest age- and sex-standardised PPRs in all databases were found in patients with “asthma and COPD” but with large inter-country variation. In those with asthma or COPD, lower PPRs and smaller inter-country variations were found. For all three indications, PPRs for LABA-containing prescriptions increased with age. Conclusions Using a standardised protocol that allowed direct inter-country comparisons, we found highest rates of LABA-containing prescriptions in elderly patients and distinct differences in the increased utilisation of LABA-containing prescriptions within the study period throughout the five European countries. PMID:25706152

  6. Rapid corticosteroid actions on synaptic plasticity in the mouse basolateral amygdala: relevance of recent stress history and β-adrenergic signaling.

    PubMed

    Sarabdjitsingh, R A; Joëls, M

    2014-07-01

    The rodent stress hormone corticosterone rapidly enhances long-term potentiation in the CA1 hippocampal area, but leads to a suppression when acting in a more delayed fashion. Both actions are thought to contribute to stress effects on emotional memory. Emotional memory formation also involves the basolateral amygdala, an important target area for corticosteroid actions. We here (1) investigated the rapid effects of corticosterone on amygdalar synaptic potentiation, (2) determined to what extent these effects depend on the mouse's recent stress history or (3) on prior β-adrenoceptor activation; earlier studies at the single cell level showed that especially a recent history of stress changes the responsiveness of basolateral amygdala neurons to corticosterone. We report that, unlike the hippocampus, stress enhances amygdalar synaptic potentiation in a slow manner. In vitro exposure to 100 nM corticosterone quickly decreases synaptic potentiation, and causes only transient potentiation in tissue from stressed mice. This transient type of potentiation is also seen when β-adrenoceptors are blocked during stress and this is further exacerbated by subsequent in vitro administered corticosterone. We conclude that stress and corticosterone change synaptic potentiation in the basolateral amygdala in a manner opposite to that seen in the hippocampus and that renewed exposure to corticosterone only allows induction of non-persistent forms of synaptic potentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Activation of TrkB with TAM-163 Results in Opposite Effects on Body Weight in Rodents and Non-Human Primates

    PubMed Central

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J.; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M.; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E.

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  8. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  9. Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling.

    PubMed

    Maltsev, Alexander V; Kokoz, Yuri M; Evdokimovskii, Edward V; Pimenov, Oleg Y; Reyes, Santiago; Alekseev, Alexey E

    2014-03-01

    Evidence suggests that intracellular Ca(2+) levels and contractility of cardiomyocytes can be modulated by targeting receptors other than already identified adrenergic or non-adrenergic sarcolemmal receptors. This study uncovers the presence in myocardial cells of adrenergic α2 (α2-AR) and imidazoline I1 (I1R) receptors. In isolated left ventricular myocytes generating stationary spontaneous Ca(2+) transients in the absence of triggered action potentials, the prototypic agonist of both receptors agmatine can activate corresponding signaling cascades with opposing outcomes on nitric oxide (NO) synthesis and intracellular Ca(2+) handling. Specifically, activation of α2-AR signaling through PI3 kinase and Akt/protein kinase B stimulates NO production and abolishes Ca(2+) transients, while targeting of I1R signaling via phosphatidylcholine-specific phospholipase C (PC-PLC) and protein kinase C (PKC) suppresses NO synthesis and elevates averaged intracellular Ca(2+). We identified that endothelial NO synthase (eNOS) is a major effector for both signaling cascades. According to the established eNOS transitions between active (Akt-dependent) and inactive (PKC-dependent) conformations, we suggest that balance between α2-AR and I1R signaling pathways sets eNOS activity, which by defining operational states of myocellular sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) can adjust Ca(2+) re-uptake and thereby cardiac inotropy. These results indicate that the conventional catalog of cardiomyocyte sarcolemmal receptors should be expanded by the α2-AR and I1R populations, unveiling previously unrecognized targets for endogenous ligands as well as for existing and potential pharmacological agents in cardiovascular medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Use of GnRH agonist implants for long-term suppression of fertility in extensively managed heifers and cows.

    PubMed

    D'Occhio, Michael J; Fordyce, Geoffry; Whyte, Tim R; Jubb, Tristan F; Fitzpatrick, Lee A; Cooper, Neil J; Aspden, William J; Bolam, Matt J; Trigg, Timothy E

    2002-12-16

    The ability of gonadotrophin releasing hormone (GnRH) agonist implants to suppress ovarian activity and prevent pregnancies, long-term, was examined in heifers and cows maintained under extensive management. At three cattle stations, heifers (2-year-old) and older cows (3- to 16-year-old) were assigned to a control group that received no treatment, or were treated with high-dose (12 mg, Station A) or low-dose (8 mg, Station B and Station C) GnRH agonist implants. The respective numbers of control and GnRH agonist-treated animals (heifers + cows) at each station were: Station A, 20 and 99; Station B, 19 and 89; Station C, 20 and 76. Animals were maintained with 4% bulls and monitored for pregnancy at 2-monthly intervals for approximately 12 months. Pregnancy rates for control heifers and control cows ranged from 60-90% and 80-100%, respectively, depending on the study site. The respective number of animals (heifers + cows) treated with GnRH agonist that conceived, and days to first conception, were: Station A, 9 (9%) and 336 +/- 3 days; Station B, 8 (10%) and 244 +/- 13 days; Station C, 20 (26%) and 231 +/- 3 days. Treatment with high-dose GnRH agonist prevented pregnancies for longer (approximately 300 days) than treatment with low-dose GnRH agonist (approximately 200 days). In the majority of heifers and cows treated with GnRH agonist, ovarian follicular growth was restricted to early antral follicles (2-4mm). The findings indicate that GnRH agonist implants have considerable potential as a practical technology to suppress ovarian activity and control reproduction in female cattle maintained in extensive rangelands environments. The technology also has broader applications in diverse cattle production systems. Copyright 2002 Elsevier Science B.V.

  11. Beta-2 adrenoceptor genotype and progress in term and late preterm active labor

    PubMed Central

    MILLER, Russell S.; SMILEY, Richard M.; DANIEL, Danette; WENG, Chunhua; EMALA, Charles W.; BLOUIN, Jean-Louis; FLOOD, Pamela D.

    2011-01-01

    OBJECTIVE To evaluate whether beta-2 adrenoceptor genotype at a functional polymorphic site encoding for amino acid residue 16 influences rate of cervical dilatation in term and late preterm active labor. STUDY DESIGN Subjects that underwent vaginal delivery at 34 or greater weeks gestational age between May, 2006, and August, 2007, were identified. Each subject had provided venous blood from which DNA was extracted for beta-2 adrenoceptor genotyping. Digital cervical examinations with paired examination times were collected from intrapartum records. Rate of cervical dilatation in active labor was determined using linear regression and rates were compared between genotype groups. RESULTS Among 401 subjects with satisfactory genotype and intrapartum data, overall rate of active labor was 0.76+/−0.01 cm/hr. When labor was compared by genotype, homozygous Arg/Arg16 subjects progressed at a slower rate (0.64+/−0.03 cm/hr) than all other pooled genotypes (0.8+/−0.02 cm/hr). CONCLUSION Homozygous beta-2 adrenoceptor genotype encoding for Arg/Arg16 was associated with slower progress in active labor. PMID:21600547

  12. Activation of neurotensin receptors and purinoceptors in human colonic adenocarcinoma cells detected with the microphysiometer.

    PubMed

    Richards, M; van Giersbergen, P; Zimmermann, A; Lesur, B; Hoflack, J

    1997-10-01

    Activation of endogenous neurotensin (NT) receptors and P2-purinoceptors expressed by human colonic adenocarcinoma HT-29 cells increased extracellular acidification rates that were detected in the microphysiometer. NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu), NT[8-13] (Arg-Arg-Pro-Tyr-Ile-Leu), NT[9-13] (Arg-Pro-Tyr-Ile-Leu), and NT1 (N alpha methyl-Arg-Lys-Pro-Trp-Tle-Leu [Tle = tert-leucine]) were full agonists, whereas XL 775 (N-[N-[2-[3-[[6-amino-1-oxo-2-[[(phenylmethoxy)carbonyl]-amino]hex yl]amino]phenyl]-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-L-isoleucyl]-L-le ucine) was a partial agonist for activating NT receptors expressed by HT-29 cells. Desensitization induced by NT was rapid and monophasic with 85% of the initial response lost by a 30-s exposure. Once initiated, the rate and extent of desensitization were similar for different concentrations of a given agonist, for agonists of different potencies, and for agonists of different efficacies, which suggests that desensitization may be independent of receptor occupancy or agonist efficacy. Resensitization was a much slower process, requiring 60 min before the full agonist response to NT was recovered. ATP, via P2-purinoceptors, also activated cellular acidification rates in a concentration-dependent manner. ATP induced a biphasic desensitization of purinoceptors with a loss of ca. 50% of the initial stimulation detectable between 30 and 90 s of exposure to the agonist. Desensitization of NT receptors did not influence the activation of P2-purinoceptors by ATP, suggesting there was no heterologous desensitization between the two types of receptors. Superfusion with NT receptor agonists for 15 min at concentrations that did not elicit changes in extracellular acidification rates blocked, in a concentration-dependent manner, the agonist response induced by 100 nM NT. This may reflect sequestration of the receptor. These results suggest that the high agonist affinity state of NT receptors may modulate receptor sequestration, whereas activation of the low agonist affinity state may be linked to cellular metabolism. Comparison of our results with published data found differences as well as similarities of NT responses among three lines of HT-29 cells.

  13. Identification of SR3335 (ML176): a Synthetic RORα Selective Inverse Agonist

    PubMed Central

    Kumar, Naresh; Kojetin, Douglas J.; Solt, Laura A.; Kumar, K. Ganesh; Nuhant, Philippe; Duckett, Derek R.; Cameron, Michael D.; Butler, Andrew A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    Several nuclear receptors (NRs) are still characterized as orphan receptors since ligands have not yet been identified for these proteins. The retinoic acid receptor-related receptors (RORs) have no well-defined physiological ligands. Here, we describe the identification of a selective RORα synthetic ligand, SR3335 (ML-176). SR3335 directly binds to RORα, but not other RORs, and functions as a selective partial inverse agonist of RORα in cell-based assays. Furthermore, SR3335 suppresses the expression of endogenous RORα target genes in HepG2 involved in hepatic gluconeogenesis including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Pharmacokinetic studies indicate that SR3335 displays reasonable exposure following an i.p. injection into mice. We assess the ability of SR3335 to suppress gluconeogenesis in vivo using a diet induced obesity (DIO) mouse model where the mice where treated with 15 mg/kg b.i.d., i.p. for 6-days followed by a pyruvate tolerance test. SR3335 treated mice displayed lower plasma glucose levels following the pyruvate challenge consistent with suppression of gluconeogenesis. Thus, we have identified the first selective synthetic RORα inverse agonist and this compound can be utilized as a chemical tool to probe the function of this receptor both in vitro and in vivo. Additionally, our data suggests that RORα inverse agonists may hold utility for suppression of elevated hepatic glucose production in type 2 diabetics. PMID:21090593

  14. Novel approaches to the treatment of cocaine addiction.

    PubMed

    Sofuoglu, Mehmet; Kosten, Thomas R

    2005-01-01

    Cocaine addiction continues to be an important public health problem with over 1.7 million users in the US alone. Although there are no approved pharmacotherapies for cocaine addiction, a number of medications have been tested with some promising results. In this review, we summarise some of the emerging targets for cocaine pharmacotherapy including dopaminergic and GABA medications, adrenoceptor antagonists, vasodilators and immunotherapies. The brain dopamine system plays a significant role in mediating the rewarding effects of cocaine. Among dopaminergic agents tested for cocaine pharmacotherapy, disulfiram has decreased cocaine use in a number of studies. Amantadine, another medication with dopaminergic effects, may also be effective in cocaine users with high withdrawal severity. GABA is the main inhibitory neurotransmitter in the brain, and accumulating evidence suggests that the GABA system modulates the dopaminergic system and cocaine effects. Two anticonvulsant medications with GABAergic effects, tiagabine and topiramate, have yielded positive findings in clinical trials. Baclofen, a GABA(B) receptor agonist, is also promising, especially in those with more severe cocaine use. Some of the physiological and behavioural effects of cocaine are mediated by activation of the adrenergic system. In cocaine users, propranolol, a beta-adrenoceptor antagonist, had promising effects in individuals with more severe cocaine withdrawal symptoms. Cerebral vasodilators are another potential target for cocaine pharmacotherapy. Cocaine users have reduced cerebral blood flow and cortical perfusion deficits. Treatment with the vasodilators amiloride or isradipine has reduced perfusion abnormalities found in cocaine users. The functional significance of these improvements needs to be further investigated. All these proposed pharmacotherapies for cocaine addiction act on neural pathways. In contrast, immunotherapies for cocaine addiction are based on the blockade of cocaine effects peripherally, and as a result, prevent or at least slow the entry of cocaine into the brain. A cocaine vaccine is another promising treatment for cocaine addiction. The efficacy of this vaccine for relapse prevention is under investigation. Many initial promising findings need to be replicated in larger, controlled clinical trials.

  15. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    PubMed

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  16. Impact and benefit of A(2B)-adenosine receptor agonists for the respiratory tract: mucociliary clearance, ciliary beat frequency, trachea muscle tonus and cytokine release.

    PubMed

    Walaschewski, Robin; Begrow, Frank; Verspohl, Eugen J

    2013-01-01

    Adenosine is known to induce a bronchospasm in asthma- and COPD patients. The role of A(2B) receptors was investigated with respect to several parameters of the respiratory tract: tonus of smooth muscle, ciliary beat frequency as measured by high-speed video camera connected to a microscope (both in rats) and mucociliary clearance (MCC; transport of a fluorescent dye using a microdialysis procedure) in mice.  NECA (5'-N-ethylcarboxamidoadenosine) (a non-selective adenosine receptor agonist) was able to acutely induce a contraction, which was reversed to a relaxation after repeated dosing. This relaxation was completely abolished by PSB-1115, an A(2B) receptor antagonist. IL-13 (cytokine) was not involved mediating acute contractility effects. MCC was increased by BAY 60-6583 (A(2B) receptor agonist) and NECA (counteracted by the A(2B) receptor antagonist PSB-1115). Activation of A(2B) adenosine receptors by BAY 60-6583 induced an increase of the ciliary beat frequency, which could be reduced by administration of PSB-1115. Several cytokines were increased by NECA although only some are relevant because they are not blocked by A(2B) receptor antagonism. The A(2B) receptors are involved in airway relaxation, MCC improvement and ciliary beat frequency. A(2B) receptor agonists may be of therapeutic value and should be developed. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  17. Specific neurokinin receptors mediate plasma extravasation in the rat knee joint.

    PubMed Central

    Lam, F. Y.; Ferrell, W. R.

    1991-01-01

    1 Plasma extravasation in the rat knee joint was induced by intra-articular injection of neurokinins and specific neurokinin receptor agonists. 2 Pronounced plasma extravasation was produced by substance P (SP, 4-185 microM) and to a lesser extent by neurokinin-B (NKB, 83-413 microM), whereas neurokinin-A (NKA, 88-440 microM) and calcitonin gene-related peptide (CGRP, 26-130 microM) had no significant effect. 3 The specific neurokinin1 receptor agonist [Sar9, Met(O2)11]-substance P (NK1 agonist) in doses of 0.4-70 microM appeared to be more potent than SP in eliciting plasma extravasation. The neurokinin2 receptor agonist [Nle10]-neurokinin A4-10 (NK2 agonist) was not effective at 70 microM but produced a small and significant effect at 330 microM, whereas the neurokinin3 receptor agonist [MePhe7]-neurokinin B (NK3 agonist) was without effect at 40 microM or 400 microM. 4 Injections of SP or NKA into the synovial cavity of the rat knee were equally effective in producing marked plasma extravasation in remote sites such as the forelimb and hindlimb paws. 5 Co-administration experiments showed that the effects of SP were synergistic with NKA or the NK1 receptor agonist, but not with CGRP or the NK2 receptor agonist. 6 The rank order of potency was NK1 agonist greater than or equal to SP greater than NKB greater than NK2 agonist suggesting that NK1 receptors mediate plasma extravasation in the rat knee joint. PMID:1715229

  18. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts.

    PubMed

    Aflaki, Mona; Qi, Xiao-Yan; Xiao, Ling; Ordog, Balazs; Tadevosyan, Artavazd; Luo, Xiaobin; Maguy, Ange; Shi, Yanfen; Tardif, Jean-Claude; Nattel, Stanley

    2014-03-14

    β-Adrenoceptor activation contributes to sudden death risk in heart failure. Chronic β-adrenergic stimulation, as occurs in patients with heart failure, causes potentially arrhythmogenic reductions in slow delayed-rectifier K(+) current (IKs). To assess the molecular mechanisms of IKs downregulation caused by chronic β-adrenergic activation, particularly the role of exchange protein directly activated by cAMP (Epac). Isolated guinea pig left ventricular cardiomyocytes were incubated in primary culture and exposed to isoproterenol (1 μmol/L) or vehicle for 30 hours. Sustained isoproterenol exposure decreased IKs density (whole cell patch clamp) by 58% (P<0.0001), with corresponding decreases in potassium voltage-gated channel subfamily E member 1 (KCNE1) mRNA and membrane protein expression (by 45% and 51%, respectively). Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) mRNA expression was unchanged. The β1-adrenoceptor antagonist 1-[2-((3-Carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propanol dihydrochloride (CGP-20712A) prevented isoproterenol-induced IKs downregulation, whereas the β2-antagonist ICI-118551 had no effect. The selective Epac activator 8-pCPT-2'-O-Me-cAMP decreased IKs density to an extent similar to isoproterenol exposure, and adenoviral-mediated knockdown of Epac1 prevented isoproterenol-induced IKs/KCNE1 downregulation. In contrast, protein kinase A inhibition with a cell-permeable highly selective peptide blocker did not affect IKs downregulation. 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate-AM acetoxymethyl ester (BAPTA-AM), cyclosporine, and inhibitor of nuclear factor of activated T cell (NFAT)-calcineurin association-6 (INCA6) prevented IKs reduction by isoproterenol and INCA6 suppressed isoproterenol-induced KCNE1 downregulation, consistent with signal-transduction via the Ca(2+)/calcineurin/NFAT pathway. Isoproterenol induced nuclear NFATc3/c4 translocation (immunofluorescence), which was suppressed by Epac1 knockdown. Chronic in vivo administration of isoproterenol to guinea pigs reduced IKs density and KCNE1 mRNA and protein expression while inducing cardiac dysfunction and action potential prolongation. Selective in vivo activation of Epac via sp-8-pCPT-2'-O-Me-cAMP infusion decreased IKs density and KCNE1 mRNA/protein expression. Prolonged β1-adrenoceptor stimulation suppresses IKs by downregulating KCNE1 mRNA and protein via Epac-mediated Ca(2+)/calcineurin/NFAT signaling. These results provide new insights into the molecular basis of K(+) channel remodeling under sustained adrenergic stimulation.

  19. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation

    PubMed Central

    Hughes, J.; Vane, J. R.

    1970-01-01

    1. A pharmacological analysis of the inhibitory innervation of the isolated portal vein of the rabbit has been made. 2. In untreated preparations, transmural stimulation elicited a long-lasting relaxation at low frequencies (0·2-1 Hz); at higher frequencies a contraction followed by a prolonged after-relaxation occurred. Tetrodotoxin abolished the contractions but a higher dose was required to abolish the relaxations. Veratrine lowered the threshold of stimulation for producing relaxations in the untreated vein. The relaxations were unaffected by hyoscine or hexamethonium. They were reduced or altered by antagonists of α-adrenoceptors for catecholamines and by adrenergic neurone blockade. They were sometimes slightly reduced by antagonists of β-adrenoceptors. 3. In the presence of antagonists of α-adrenoceptors, electrical stimulation elicited relaxations which increased with frequency of stimulation and became maximal at 20-30 Hz. These relaxations were partially reduced by antagonists of β-adrenoceptors, or by adrenergic neurone block; the antagonisms were more pronounced at the higher frequencies of stimulation. Noradrenaline also caused relaxations which were abolished by β-adrenoceptor blocking drugs. Cocaine increased the sensitivity to noradrenaline by 7-8 fold after α-adrenoceptor blockade but had little or no effect on the relaxations induced by electrical stimulation at high frequencies. 4. In the presence of antagonists of α- and β-adrenoceptors, or adrenergic neurone blocking agents, or in veins taken from rabbits pretreated with reserpine, electrical stimulation elicited rapid relaxations which were greatest at 20-30 Hz. These relaxations were increased by veratrine and abolished by tetrodotoxin or by storing the vein for 9 days at 4° C. They were unaffected by antagonists of acetylcholine, or by dipyridamole. 5. Prostaglandins E1, E2 and F2α inhibited contractions elicited by electrical stimulation and noradrenaline, but in higher doses caused contractions themselves. 6. Nicotine (10-6-10-5 g/ml) relaxed the portal vein; higher concentrations elicited mixed inhibitory and excitatory effects. All these effects were abolished by tetrodotoxin, cocaine, hexamethonium or storage. The contractor effects were abolished by drugs or procedures that blocked adrenergic mechanisms. 7. The relaxations produced by nicotine in untreated preparations and in veins from rabbits pretreated with reserpine were mediated mainly by a non-adrenergic non-cholinergic nervous mechanism. Relaxations induced by nicotine in the presence of antagonists of a-adrenoceptors were only partially antagonized by antagonists of f3-adrenoceptors. 8. It was concluded that all the effects of nicotine and transmural stimulation were mediated by nerves. Part of the inhibitory effects was mediated by non-adrenergic, non-cholinergic nerves. PMID:4394338

  20. The effects of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on T-cell-related cytokine production in vitro and in vivo.

    PubMed

    Yamamoto, Satoshi; Sugahara, Shingo; Naito, Ryo; Ichikawa, Atsushi; Ikeda, Ken; Yamada, Toshimitsu; Shimizu, Yasuaki

    2006-07-10

    YM-393059, (+/-)-N-(4,6-dimethylpyrimidin-2-yl)-4-[2-(4-methoxy-3-methylphenyl)-5-(4-methylpiperazin-1-yl)-4,5,6,7-tetrahydro-1H-indol-1-yl]benzenesulfonamide difumarate, is a novel phosphodiesterase (PDE) inhibitor that inhibited the PDE7A isoenzyme with a high potency (IC50=14 nM) and PDE4 with a moderate potency (IC50=630 nM). In a cell-based assay, YM-393059 was found to inhibit anti-CD3 antibody, Staphylococcal enterotoxin B, and phytohaemagglutinin-induced interleukin (IL)-2 production in mouse splenocytes with IC50 values ranging from 0.48 to 1.1 microM. It also inhibited anti-CD3 antibody-induced interferon (IFN)-gamma and IL-4 production in splenocytes with IC50 values of 1.8 and 2.8 microM, respectively. YM-393059's inhibition of anti-CD3 antibody-stimulated cytokine (IL-2, IFN-gamma, and IL-4) production was 20- to 31-fold weaker than that of YM976, a selective PDE4 inhibitor. However, orally administered YM-393059 and YM976 inhibited anti-CD3 antibody-induced IL-2 production equipotently in mice. In addition, YM-393059 inhibited lipopolysaccharide-induced tumor necrosis factor-alpha production in vivo more potently than IL-2 (ED50 values of 2.1 mg/kg and 74 mg/kg). In contrast to YM976, YM-393059 did not shorten the duration of alpha2-adrenoceptor agonist-induced sleep in mice, which is a model for the assessment of the typical side effects caused by PDE4 inhibitors, nausea and emesis. YM-393059 is a novel and attractive compound for the treatment of a wide variety of T-cell-mediated diseases.

  1. Cachexia.

    PubMed

    Graul, A I; Stringer, M; Sorbera, L

    2016-09-01

    Cachexia is a multiorgan, multifactorial and often irreversible wasting syndrome associated with cancer and other serious, chronic illnesses including AIDS, chronic heart failure, chronic kidney disease and chronic obstructive pulmonary disease. Treatment of the patient with cachexia is currently targeted to correcting the two underlying features of the condition: anorexia and metabolic disturbances. Greater understanding of the mechanisms behind cachexia and muscle wasting have led to new therapeutic possibilities, however. Several classes of drugs are under active development for cachexia including drugs acting on hormone receptors or cytokine receptors, myostatin/activin pathway antagonists, beta-adrenoceptor agonists and cannabinoids. This review will cover the pathophysiology, epidemiology, diagnosis, treatment, drug candidates under active development and targets for therapeutic intervention of cachexia. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  2. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function?

    PubMed Central

    Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela

    2014-01-01

    Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168

  3. Bisphosphonate-Linked TrkB Agonist: Cochlea-Targeted Delivery of a Neurotrophic Agent as a Strategy for the Treatment of Hearing Loss.

    PubMed

    Kempfle, Judith S; Nguyen, Kim; Hamadani, Christine; Koen, Nicholas; Edge, Albert S; Kashemirov, Boris A; Jung, David H; McKenna, Charles E

    2018-04-18

    Hearing loss affects more than two-thirds of the elderly population, and more than 17% of all adults in the U.S. Sensorineural hearing loss related to noise exposure or aging is associated with loss of inner ear sensory hair cells (HCs), cochlear spiral ganglion neurons (SGNs), and ribbon synapses between HCs and SGNs, stimulating intense interest in therapies to regenerate synaptic function. 7,8-Dihydroxyflavone (DHF) is a selective and potent agonist of tropomyosin receptor kinase B (TrkB) and protects the neuron from apoptosis. Despite evidence that TrkB agonists can promote survival of SGNs, local delivery of drugs such as DHF to the inner ear remains a challenge. We previously demonstrated in an animal model that a fluorescently labeled bisphosphonate, 6-FAM-Zol, administered to the round window membrane penetrated the membrane and diffused throughout the cochlea. Given their affinity for bone mineral, including cochlear bone, bisphosphonates offer an intriguing modality for targeted delivery of neurotrophic agents to the SGNs to promote survival, neurite outgrowth, and, potentially, regeneration of synapses between HCs and SGNs. The design and synthesis of a bisphosphonate conjugate of DHF (Ris-DHF) is presented, with a preliminary evaluation of its neurotrophic activity. Ris-DHF increases neurite outgrowth in vitro, maintains this ability after binding to hydroxyapatite, and regenerates synapses in kainic acid-damaged cochlear organ of Corti explants dissected in vitro with attached SGNs. The results suggest that bisphosphonate-TrkB agonist conjugates have promise as a novel approach to targeted delivery of drugs to treat sensorineural hearing loss.

  4. Serotonin antagonists fail to alter MDMA self-administration in rats.

    PubMed

    Schenk, Susan; Foote, Jason; Aronsen, Dane; Bukholt, Natasha; Highgate, Quenten; Van de Wetering, Ross; Webster, Jeremy

    2016-09-01

    Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA. Rats received extensive experience with self-administered MDMA prior to tests with 5-HT ligands. Doses of the 5-HT1A antagonist, WAY 100635 (0.1-1.0mg/kg), 5-HT1B antagonist, GR 127935 (1.0-3.0mg/kg), and the 5-HT2A antagonist, ketanserin (1.0-3.0mg/kg) that have previously been shown to decrease self-administration of other psychostimulants and that decreased MDMA-produced hyperactivity in the present study did not alter MDMA self-administration. Experimenter-administered injections of MDMA (10.0mg/kg, ip) reinstated extinguished drug-taking behavior, but this also was not decreased by any of the antagonists. In contrast, both WAY 100635 and ketanserin, but not GR 127935, decreased cocaine-produced drug seeking in rats that had been trained to self-administered cocaine. The 5-HT1A agonist, 8-OH-DPAT (0.1-1.0mg/kg), but not the 5-HT1B/1A agonist, RU 24969 (0.3-3.0mg/kg), decreased drug-seeking produced by the reintroduction of a light stimulus that had been paired with self-administered MDMA infusions. These findings suggest a limited role of activation of 5-HT1A, 5-HT1B or 5-HT2 receptor mechanisms in MDMA self-administration or in MDMA-produced drug-seeking following extinction. The data suggest, however, that 5-HT1A agonists inhibit cue-induced drug-seeking following extinction of MDMA self-administration and might, therefore, be useful adjuncts to therapies to limit relapse to MDMA use. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The effects of acute multiple intraperitoneal injections of the GABAB receptor agonist baclofen on food intake in rats.

    PubMed

    Patel, Sunit M; Ebenezer, Ivor S

    2008-12-28

    This study was undertaken to examine the effects of acute repeated administration of the GABA(B) receptor agonist baclofen on food intake in rats. In Experiment 1, the effects of repeated intraperitoneal (i.p.) injections of the GABA(B) receptor agonist baclofen (1 and 2 mg/kg) at 2 h intervals were investigated on food intake in non-deprived male Wistar rats. Both doses of baclofen significantly increased food intake after the 1st injection (P<0.05), but had no effects on intake following the 2nd and 3rd injections. By contrast, in Experiment 2, diazepam (1 and 2 mg/kg, i.p.) significantly increased food intake (at least, P<0.05) after each of 3 injection separated by 2 h in non-deprived rats. These data show that tolerance occurs to the hyperphagic effects of baclofen with acute multiple injections, and may have important implications for future studies investigating the effects of GABA(B) receptor agonists on food intake and energy homeostasis.

  6. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases.

    PubMed

    Lam, Maggie; Royce, Simon G; Samuel, Chrishan S; Bourke, Jane E

    2018-07-01

    The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β 2 -adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Kinin receptor classification.

    PubMed

    Regoli, D; Jukic, D; Tousignant, C; Rhaleb, N E

    1992-01-01

    Apparent affinities of kinin agonists and antagonists were determined in terms of pD2 and pA2 respectively, on three isolated smooth muscles: rabbit jugular vein (Rb.J.V.), rabbit aorta (Rb.A.) and guinea pig ileum (G.P.I.). Both kinin agonists and antagonists were evaluated for their ability to induce the release of histamine from rat mastocytes. Our results indicate that the kininase I metabolites (desArg9-BK and desArg10-KD) were inactive on Rb.J.V. and G.P.I. (B2 preparations) and were full agonists on Rb.A. (B1) while [Tyr(Me)8]-BK and [Hyp3,Tyr(Me)8]-BK were inactive on Rb.A. and maintain a high affinity on Rb.J.V. and G.P.I. In addition, [Hyp3]-BK was a potent agonist on Rb.J.V. (pD2 = 8.88) and was of a moderate affinity on G.P.I. (pD2 = 7.27). On the other hand, the affinity of [Aib7]-BK was identical to that of BK on G.P.I. (pD2 = 7.90) but drastically reduced in Rb.J.V. (pD2 = 6.28). Conctractile effects of kinins in the Rb.J.V. and G.P.I. were reduced or eliminated by B2 receptor antagonists but at different concentration levels (e.g. DArg[Hyp3,DPhe7,Leu8]-BK showed pA2 values of 8.86 on Rb.J.V., but only 6.77 on G.P.I. DArg[Hyp3,Gly6,Leu8]BK showed high affinity on Rb.J.V. (pA2 = 7.60) but was a full agonist on G.P.I. Conversely, DArg[Tyr3,DPhe7,Leu8,BK] showed high agonistic activity on Rb.J.V. (pD2 = 8.30, alpha E = 1.0) and showed a pA2 value of 6.80 on G.P.I. All compounds (agonists and antagonists) were quite potent on histamine release induced in rat mastocytes. [Arg1(Tos),Hyp3,Thi5,DTic7,Oic8]-BK and DArg[Hyp3,Thi5,DTic7,Oic8]-BK showed almost similar pA2 values on both Rb.J.V. and G.P.I., but were inactive on Rb.A. (B1). These results suggest that kinins act on at least four functional sites: B1 (Rb.A.), B2A (Rb.J.V.), B2B (G.P.I.) and BH. However, there is no clear evidence of a kinin receptor on rat mast cells and the release of histamine may simply be a non-receptor phenomenon. Our data also show that B2A and B2B receptor subtypes might simply be variations of the B2 receptor in different species.

  8. Prenatal exposure to methyldopa leading to hypertensive crisis and cardiac failure in a neonate.

    PubMed

    Su, Jennifer A; Tang, William; Rivero, Niurka; Bar-Cohen, Yaniv

    2014-05-01

    A 2-week-old infant with normal intracardiac anatomy presented to the emergency department in a hypertensive crisis with acute cardiac failure. Despite extensive evaluation, no underlying disease was found. The patient's hypertension and cardiac dysfunction resolved after 1 week of supportive care in the PICU, and she was discharged within 2 weeks of presentation. The patient's history revealed transplacental exposure to the α-adrenergic agonist methyldopa for 10 weeks before delivery. Her age at presentation and the self-limited nature of cardiac sequelae with complete resolution of cardiac dysfunction suggest withdrawal effects from this exposure. Whereas the rebound hypertensive effects of α-adrenergic agonists are well established in the adult population, this report shows an unusual adverse outcome of in utero exposure to methyldopa. Copyright © 2014 by the American Academy of Pediatrics.

  9. Agonist-induced glycogenolysis in rabbit retinal slices and cultures.

    PubMed Central

    Ghazi, H.; Osborne, N. N.

    1989-01-01

    1. The effects of different putative retinal transmitters and/or modulators on glycogenolysis in rabbit retinal slices and in retinal Müller cell cultures were examined. 2. Incubation of rabbit retinal slices or primary retinal cultures (either 3-5 day-old or 25-30 day-old) in a buffer solution containing [3H]-glucose resulted in the accumulation of newly synthesized [3H]-glycogen. 3. Noradrenaline (NA), isoprenaline, vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) and 8-hydroxy-dipropylaminetetralin (8-OH-DPAT) stimulated the hydrolysis of this newly formed 3H-polymer. The potency order of maximal stimulations was: VIP greater than NA greater than isoprenaline greater than 5-HT greater than 8-OH-DPAT. 4. The putative retinal transmitters, dopamine, gamma-aminobutyric acid (GABA), glycine and taurine and the muscarinic agonist carbachol (CCh) had no effect on [3H]-glycogen content. 5. The glycogenolytic effects of NA/isoprenaline and 5-HT/8-OH-DPAT appear to be mediated by beta-adrenoceptors and 5-HT1 receptors (possibly 5-HT1A), respectively while the VIP-induced response involved another receptor subtype. 6. Agonists which mediated [3H]-glycogen hydrolysis also stimulated an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. Both responses are blocked to a similar extent by the same antagonists and so are probably mediated via the same receptor subtypes. Moreover, dibutyryl cyclic AMP (db cyclic AMP) promoted tritiated glycogen breakdown in the three retinal preparations. 7. Not all receptors linked to cyclic AMP production however promote glycogenolysis. Dopamine and apomorphine stimulated cyclic AMP formation via D1-receptors without influencing glycogenolysis. These receptors are exclusively associated with neurones. PMID:2568145

  10. Analysing the effect of I1 imidazoline receptor ligands on DSS-induced acute colitis in mice.

    PubMed

    Fehér, Ágnes; Tóth, Viktória E; Al-Khrasani, Mahmoud; Balogh, Mihály; Lázár, Bernadette; Helyes, Zsuzsanna; Gyires, Klára; Zádori, Zoltán S

    2017-02-01

    Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I 1 -IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I 1 -IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha 2 -adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I 1 -IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I 1 -IR agonists), AGN 192403 (highly selective I 1 -IR ligand, putative antagonist), efaroxan (I 1 -IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.

  11. AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice.

    PubMed

    Goettel, Jeremy A; Gandhi, Roopali; Kenison, Jessica E; Yeste, Ada; Murugaiyan, Gopal; Sambanthamoorthy, Sharmila; Griffith, Alexandra E; Patel, Bonny; Shouval, Dror S; Weiner, Howard L; Snapper, Scott B; Quintana, Francisco J

    2016-10-25

    Existing therapies for inflammatory bowel disease that are based on broad suppression of inflammation result in variable clinical benefit and unwanted side effects. A potential therapeutic approach for promoting immune tolerance is the in vivo induction of regulatory T cells (Tregs). Here we report that activation of the aryl hydrocarbon receptor using the non-toxic agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces human Tregs in vitro that suppress effector T cells through a mechanism mediated by CD39 and Granzyme B. We then developed a humanized murine system whereby human CD4 + T cells drive colitis upon exposure to 2,4,6-trinitrobenzenesulfonic acid and assessed ITE as a potential therapeutic. ITE administration ameliorated colitis in humanized mice with increased CD39, Granzyme B, and IL10-secreting human Tregs. These results develop an experimental model to investigate human CD4 + T responses in vivo and identify the non-toxic AHR agonist ITE as a potential therapy for promoting immune tolerance in the intestine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    PubMed

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  13. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  14. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    PubMed

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  15. Comparison of changes in the extracellular concentration of noradrenaline in rat frontal cortex induced by sibutramine or d-amphetamine: modulation by α2-adrenoceptors

    PubMed Central

    Wortley, K E; Hughes, Z A; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1, i.p.) on extracellular noradrenaline concentration in the frontal cortex of halothane-anaesthetized rats were compared with those of d-amphetamine (1–3 mg kg−1, i.p.) using in vivo microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of these drugs on extracellular noradrenaline concentration were also investigated by pretreating rats with the selective α2-adrenoceptor antagonist, RX821002.Sibutramine induced a gradual and sustained increase in extracellular noradrenaline concentration. The dose-response relationship was described by a bell-shaped curve with a maximum effect at 0.5 mg kg−1. In contrast, d-amphetamine induced a rapid increase in extracellular noradrenaline concentration, the magnitude of which paralleled drug dose.Pretreatment with the α2-adrenoceptor antagonist, RX821002 (dose 3 mg kg−1, i.p.) increased by 5 fold the accumulation of extracellular noradrenaline caused by sibutramine (10 mg kg−1) and reduced the latency of sibutramine to reach its maximum effect from 144–56 min.RX821002-pretreatment increased by only 2.5 fold the increase in extracellular noradrenaline concentration caused by d-amphetamine alone (10 mg kg−1) and had no effect on the latency to reach maximum.These findings support evidence that sibutramine acts as a noradrenaline uptake inhibitor in vivo and that the effects of this drug are blunted by indirect activation of presynaptic α2-adreno-ceptors. In contrast, the rapid increase in extracellular noradrenaline concentration induced by d-amphetamine is consistent with this being mainly due to an increase in Ca2+-independent release of noradrenaline. PMID:10482917

  16. Pregnancy rate in women with adenomyosis undergoing fresh or frozen embryo transfer cycles following gonadotropin-releasing hormone agonist treatment.

    PubMed

    Park, Chan Woo; Choi, Min Hye; Yang, Kwang Moon; Song, In Ok

    2016-09-01

    To determine the preferred regimen for women with adenomyosis undergoing in vitro fertilization (IVF), we compared the IVF outcomes of fresh embryo transfer (ET) cycles with or without gonadotropin-releasing hormone (GnRH) agonist pretreatment and of frozen-thawed embryo transfer (FET) cycles following GnRH agonist treatment. This retrospective study included 241 IVF cycles of women with adenomyosis from January 2006 to January 2012. Fresh ET cycles without (147 cycles, group A) or with (105 cycles, group B) GnRH agonist pretreatment, and FET cycles following GnRH agonist treatment (43 cycles, group C) were compared. Adenomyosis was identified by using transvaginal ultrasound at the initial workup and classified into focal and diffuse types. The IVF outcomes were also subanalyzed according to the adenomyotic region. GnRH agonist pretreatment increased the stimulation duration (11.5±2.1 days vs. 9.9±2.0 days) and total dose of gonadotropin (3,421±1,141 IU vs. 2,588±1,192 IU), which resulted in a significantly higher number of retrieved oocytes (10.0±8.2 vs. 7.9±6.8, p=0.013) in group B than in group A. Controlled ovarian stimulation for freezing resulted in a significantly higher number of retrieved oocytes (14.3±9.2 vs. 10.0±8.2, p=0.022) with a lower dose of gonadotropin (2,974±1,112 IU vs. 3,421±1,141 IU, p=0.037) in group C than in group B. The clinical pregnancy rate in group C (39.5%) tended to be higher than those in groups B (30.5%) and A (25.2%) but without a significant difference. FET following GnRH agonist pretreatment tended to increase the pregnancy rate in patients with adenomyosis. Further large-scale prospective studies are required to confirm this result.

  17. Induction of cell expansion of goldfish melanocytoma cells (GMM-1) by epinephrine and dexamethasone requires external calcium.

    PubMed

    Shih, Y L; Lo, S J

    1993-05-01

    Treatment of GMM-1 (a goldfish melanocytoma cell line) cells with epinephrine induced a rapid cell expansion (flattening of cells, extension and broadening of cellular processes) similar to the effect of dexamethasone reported previously (Shih et al., 1990). Studies on the possible involvement of secondary messengers in cell expansion indicated that (i) both 8-bromo-CAMP and forskolin caused cell shrinking (the opposite of cell expansion); (ii) TPA also caused cell shrinking; (iii) phospholipid derivatives, such as 1,2-dioctanoyl-sn-glycerol, lysophosphatidic acid, and arachidonic acid caused cell expansion; and (iv) EGTA (calcium chelator) and nifedipine (calcium channel blocker) inhibited the effect of epinephrine. Together with the previous findings, these observations indicate that epinephrine and dexamethasone may share a common pathway in triggering an external calcium influx to cause cell expansion. The results of the effects of epinephrine agonists and antagonists, together with those of other workers, also show that there are multiple isoforms of adrenoceptor in the goldfish.

  18. Cetamolol: a new cardioselective beta-adrenoceptor blocking agent without membrane-stabilizing activity.

    PubMed

    Beaulieu, G; Jaramillo, J; Cummings, J R

    1984-03-01

    Cetamolol, a new beta-adrenoceptor blocker with partial agonist activity and cardioselectivity, was studied in vivo to determine its membrane-stabilizing effects. Comparisons were carried out with atenolol, pindolol, practolol, propranolol, timolol, dexpropranolol, lidocaine, and procaine. The following results indicated that cetamolol lacked membrane-stabilizing activity: (i) failure to cause local anesthesia on the rabbit cornea and motor nerve of the rat tail; (ii) ineffectiveness in reversing ventricular arrhythmias induced by coronary artery litigation in dogs; (iii) failure to reduce cardiac automaticity in catecholamine-depleted dogs as determined by the rate of a subatrial rhythm during ventricular (vagal) escape; and (iv) lack of a significant increase in atrioventricular conduction time in vagotomized or atropinized dogs in contrast to the effect in normal dogs indicating a reflex effect of cetamolol. Other results include a restoration of sinus rhythm in dogs with ventricular tachycardia induced by ouabain, and a dose-related decline in the force of cardiac contraction in anesthetized dogs at doses from 3 to 15 mg/kg, which occurred after an initial increase in force owing to intrinsic sympathomimetic activity. Although the mechanisms for the latter two effects are not clear at this time, explanations other than membrane-stabilizing activity have been considered in view of the other findings. It is concluded that cetamolol lacks membrane-stabilizing activity even at inordinately high doses.

  19. Repeated adolescent 3,4-methylenedioxymethamphetamine (MDMA) exposure in rats attenuates the effects of a subsequent challenge with MDMA or a 5-hydroxytryptamine(1A) receptor agonist.

    PubMed

    Piper, Brian J; Vu, Huyen L; Safain, Mina G; Oliver, Andrew J; Meyer, Jerrold S

    2006-05-01

    Adolescent users of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) may escalate their dose because of the development of tolerance. We examined the influence of intermittent adolescent MDMA exposure on the behavioral, physiological, and neurochemical responses to a subsequent MDMA "binge" or to a 5-hydroxytryptamine(1A) (5-HT(1A)) receptor challenge. Male Sprague-Dawley rats were given MDMA (10 mg/kg b.i.d.) or saline every 5th day on postnatal days (PDs) 35 to 60. One week later on PD 67, animals were challenged with either multiple doses of MDMA (four 5 or 10 mg/kg doses) or a single dose of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.1 or 0.5 mg/kg). Adolescent MDMA exposure partially attenuated the hyperthermic effects of the PD 67 MDMA challenge, completely blocked the locomotor hypoactivity otherwise observed on the day after the challenge, and also prevented MDMA-induced serotonin neurotoxicity assessed on PD 74 by measuring regional [(3)H]citalopram binding to the serotonin transporter (SERT). Adolescent MDMA-treated animals also showed a partial attenuation of the serotonin syndrome but not the hypothermic response to the high dose of 8-OH-DPAT. However, there was no effect of MDMA administration on regional [(3)H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide trihydrochloride (WAY-100635) binding to 5-HT(1A) receptors in the brain or spinal cord. These results suggest that chronic, intermittent MDMA exposure during adolescence induces neuroadaptive changes that can protect against the adverse consequences of a subsequent dose escalation. On the other hand, the same exposure pattern appears to produce a partial 5-HT(1A) receptor desensitization, which may negatively influence the therapeutic responses of chronic MDMA users treated with serotonergic agents for various affective or anxiety disorders.

  20. Reversal of alcohol dependence-induced deficits in cue-guided behavior via mGluR2/3 signaling in mice.

    PubMed

    Barker, Jacqueline M; Lench, Daniel H; Chandler, L Judson

    2016-01-01

    Alcohol use disorders are associated with deficits in adaptive behavior. While some behavioral impairments that are associated with alcohol use disorders may predate exposure to drugs of abuse, others may result directly from exposure to drugs of abuse, including alcohol. Identifying a causal role for how alcohol exposure leads to these impairments will enable further investigation of the neurobiological mechanisms by which it acts to dysregulate adaptive behavior. In the present study, we examined the effects of chronic intermittent ethanol exposure (CIE) on the use of reward-paired cues to guide consummatory behaviors in a mouse model, and further, how manipulations of mGluR2/3 signaling-known to be dysregulated after chronic alcohol exposure-may alter the expression of this behavior. Adult male C57B/6J mice were trained to self-administer 10 % ethanol and exposed to CIE via vapor inhalation. After CIE exposure, mice were trained in a Pavlovian task wherein a cue (tone) was paired with the delivery of a 10 % sucrose unconditioned stimulus. The use of the reward-paired cue to guide licking behavior was determined across training. The effect of systemic mGluR2/3 manipulation on discrimination between cue-on and cue-off intervals was assessed by administration of the mGluR2/3 agonist LY379268 or the antagonist LY341495 prior to a testing session. Exposure to CIE resulted in reductions in discrimination between cue-on and cue-off intervals, with CIE-exposed mice exhibiting significantly lower consummatory behavior during reward-paired cues than air controls. In addition, systemic administration of an mGluR2/3 agonist restored the use of reward-paired cues in CIE-exposed animals without impacting behavior in air controls. Conversely, administration of an mGluR2/3 antagonist mimicked the effects of CIE on cue-guided licking behavior, indicating that mGluR2/3 signaling can bidirectionally regulate the ability to use reward-paired cues to guide behavior. Together, these data suggest that chronic ethanol exposure drives impairments in the ability to use reward-paired cues to adaptively regulate behavior and that mGluR2/3 receptors represent a therapeutic target for restoration of these deficits in behavioral control in the alcoholic.

  1. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    PubMed Central

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  2. Electrophysiological Perspectives on the Therapeutic Use of Nicotinic Acetylcholine Receptor Partial AgonistsS⃞

    PubMed Central

    Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A.

    2011-01-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)2(β2)3, (α4)3(β2)2, and (α4)2(β2)2α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, “run-up” of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development. PMID:21285282

  3. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    PubMed

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest that the attenuation of PTH stimulation of cAMP production in treated bone cells may be, at least in part, due to receptor-mediated endocytosis of the hormone.

  4. Neuropeptide Y (NPY) and peptide YY (PYY) effects in the epididymis of the guinea-pig: evidence of a pre-junctional PYY-selective receptor

    PubMed Central

    Haynes, John M; Hill, Stephen J; Selbie, Lisa A

    1997-01-01

    The effects of peptide YY (PYY), neuropeptide Y (NPY) and structurally related peptides upon field stimulation-induced and phenylephrine-mediated contractile responses in the cauda epididymis of the guinea-pig were investigated.Preparations of cauda epididymis responded to field stimulation with contractions which were completely attenuated by both the neurotoxin, tetrodotoxin (500 nM), and also by the α-adrenoceptor antagonist, phentolamine (3 μM). PYY (n=7) and the truncated peptide analogue PYY(3–36) (n=5) inhibited field stimulation-induced contractions (pIC50+s.e.mean: 8.9±0.2 and 9.4±0.2, respectively). Pancreatic polypeptide (PP, up to 1 μM, n=6), NPY (up to 100 nM, n=6) and the NPY analogues [Leu31,Pro34]NPY (n=6) and NPY (13–36) (both up to 1 μM, n=5) had no significant effect.The NPY Y1 receptor antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N[(4-hydroxyphenyl)-methyl]-argininamide) at 750 nM (n=6) and 7.5 μM (n=6) did not affect the PYY-mediated inhibition of field stimulation-induced contractions (pIC50 8.9±0.3 and 9.0±0.3, respectively). In the presence of BIBP3226 (7.5 μM), NPY (n=6) inhibited field stimulation-induced contractions (pIC50 8.0±0.2).NPY, PYY and PYY(3–36) inhibited [3H]-noradrenaline release from preparations of epididymis (pIC50 values 7.9±0.7, 9.6±0.8 and 10.0±0.9, respectively, all n=6). The agonists PP and [Leu31,Pro34]PYY (both up to 100 nM) were without significant effect (both n=6).In preparations of cauda epididymis, stimulated with threshold concentrations of the α1-adrenoceptor agonist, phenylephrine (1 μM), both NPY (n=6) and PYY (n=7) elicited concentration-dependent increases in contractile force (with pEC50 values of 8.9±0.2 and 8.6±0.1, respectively). The effects of both NPY (n=6) and PYY (n=6) were antagonized by preincubation with BIBP3226 (75 nM; apparent pKB±s.e. values 8.3±1.0 and 8.2±0.6, respectively). The peptide analogues NPY(13–36) (n=5), PYY (3–36) (n=7) and [Leu31,Pro34]NPY (n=5) did not significantly augment responses to threshold concentrations of phenylephrine.These results are consistent with the proposal that distinct NPY receptors mediate the (prejunctional) inhibition of field stimulation-induced contractions and the (postjunctional) potentiation of responses to phenylephrine in the cauda epididymis of the guinea-pig. The rank order of agonist potency (NPY⩾PYY≫NPY(13–36), [Leu31,Pro34]NPY and PYY(3–36) and the high potency of BIBP3226 indicate that the postjunctional receptor may be Y1-like. The rank orders of agonist potency in inhibiting field stimulation-induced contractile responses and [3H]-noradrenaline release (PYY(3–36)⩾PYY> NPY≫PP, NPY(13–36), [Leu31,Pro34]NPY and PYY(3–36)⩾PYY>NPY≫;PP,[Leu31,Pro34]PYY, respectively) are consistent with the action of these peptides at a PYY-preferring receptor subtype, which may be distinct from the presently characterized NPY receptor subtypes. PMID:9421306

  5. Marketing medicines: charting the rise of modern therapeutics through a systematic review of adverts in UK medical journals (1950-1980).

    PubMed

    Green, A Richard; Haddad, Peter M; Aronson, Jeffrey K

    2018-02-14

    To examine how pharmaceutical products that were first marketed between 1950 and 1980 were promoted to physicians through advertisements and briefly review advertising regulations and accuracy of the advertisements in the light of modern knowledge. We systematically reviewed advertisements promoting drugs for specific therapeutic areas, namely central nervous system disorders (anxiety and sleep disorders, depression, psychoses, and Parkinson's disease), respiratory disorders, cardiovascular disorders, and gastrointestinal disorders. We examined about 800 issues of the British Medical Journal (1950-1980) and about 150 issues of World Medicine (1965-1984). Advertising material was minimally regulated until the mid-1970s. Many drugs were marketed with little preclinical or clinical knowledge and some with the expectation that prescribers would obtain further data. The peak of advertising occurred in parallel with the surge in the release of novel drugs during the 1960s, but declined markedly after the mid-1970s. Advertisements generally contained little useful prescribing information. The period we investigated saw the release of many novel pharmaceuticals in the therapeutic areas we examined, and many (or their class successors) still play important therapeutic roles, including benzodiazepines, tricyclic antidepressants, phenothiazines, levodopa, selective and non-selective β-adrenoceptor antagonists, thiazide diuretics, β-adrenoceptor agonists, and histamine H 2 receptor antagonists. Advertising pharmaceuticals in the BMJ and World Medicine in 1950-1980 was poorly regulated and often lacked rigour. However, advertisements were gradually modified in the light of increasing clinical pharmacological knowledge, and they reflect an exciting period for the introduction of many drugs that continue to be of benefit today. © 2018 The British Pharmacological Society.

  6. Preferential reduction of binding of sup 125 I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordway, G.A.; Gambarana, C.; Tejani-Butt, S.M.

    1991-05-01

    This study utilized quantitative receptor autoradiography to examine the effects of repeated administration of antidepressants to rats on the binding of the beta adrenoceptor antagonist, {sup 125}I-iodopindolol ({sup 125}I-IPIN) to either beta-1 or beta-2 adrenoceptors in various regions of brain. Antidepressants were selected to represent various chemical and pharmacological classes including tricyclic compounds (desipramine and protriptyline), monoamine oxidase inhibitors (clorgyline, phenelzine and tranylcypromine), atypical antidepressants (mianserin and trazodone) and selective inhibitors of the uptake of serotonin (citalopram and sertraline). Additionally, rats were treated with various psychotropic drugs that lack antidepressant efficacy (cocaine, deprenyl, diazepam and haloperidol). Repeated treatment of ratsmore » with desipramine, protriptyline, clorgyline, phenelzine, tranylcypromine or mianserin reduced the binding of {sup 125}I-IPIN to beta-1 adrenoceptors in many brain areas. Only in the basolateral and lateral nuclei of the amygdala did all six of these antidepressants significantly reduce {sup 125}I-IPIN binding to beta-1 adrenoceptors. In these amygdaloid nuclei, the magnitude of the reduction in the binding of {sup 125}I-IPIN caused by each of these drugs was comparable to or greater than the reduction in binding produced in any other region of brain. Reductions of binding of {sup 125}I-IPIN after antidepressant treatments were not consistently observed in the cortex, the area of brain examined most often in homogenate binding studies. Only the monoamine oxidase inhibitors caused reductions in the binding of {sup 125}I-IPIN to beta-2 adrenoceptors, and this effect was generally localized to the amygdala and hypothalamus.« less

  7. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    PubMed Central

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  8. From the Cover: 7,8-Dihydroxyflavone Rescues Lead-Induced Impairment of Vesicular Release: A Novel Therapeutic Approach for Lead Intoxicated Children.

    PubMed

    Zhang, Xiao-Lei; McGlothan, Jennifer L; Miry, Omid; Stansfield, Kirstie H; Loth, Meredith K; Stanton, Patric K; Guilarte, Tomás R

    2018-01-01

    Childhood lead (Pb2+) intoxication is a public health problem of global proportion. Lead exposure during development produces multiple effects on the central nervous system including impaired synapse formation, altered synaptic plasticity, and learning deficits. In primary hippocampal neurons in culture and hippocampal slices, Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites, an effect associated with Pb2+ inhibition of NMDA receptor-mediated trans-synaptic Brain-Derived Neurotrophic Factor (BDNF) signaling. The objective of this study was to determine if activation of TrkB, the cognate receptor for BDNF, would rescue Pb2+-induced impairments of vesicular release. Rats were chronically exposed to Pb2+ prenatally and postnatally until 50 days of age. This chronic Pb2+ exposure paradigm enhanced paired-pulse facilitation of synaptic potentials in Schaffer collateral-CA1 synapses in the hippocampus, a phenomenon indicative of reduced vesicular release probability. Decreased vesicular release probability was confirmed by both mean-variance analysis and direct 2-photon imaging of vesicular release from hippocampal slices of rats exposed to Pb2+in vivo. We also found a Pb2+-induced impairment of calcium influx in Schaffer collateral-CA1 synaptic terminals. Intraperitoneal injections of Pb2+ rats with the TrkB receptor agonist 7,8-dihydroxyflavone (5 mg/kg) for 14-15 days starting at postnatal day 35, reversed all Pb2+-induced impairments of presynaptic transmitter release at Schaffer collateral-CA1 synapses. This study demonstrates for the first time that in vivo pharmacological activation of TrkB receptors by small molecules such as 7,8-dihydroxyflavone can reverse long-term effects of chronic Pb2+ exposure on presynaptic terminals, pointing to TrkB receptor activation as a promising therapeutic intervention in Pb2+-intoxicated children. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  10. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons.

    PubMed

    Du, X; Iacovitti, L

    1995-07-01

    The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.

  11. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.

    PubMed

    Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel

    2010-04-01

    Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation. Our results point to PPARdelta activation as a pharmacological target to prevent insulin resistance.

  12. PPAR agonist-mediated protection against HIV Tat-induced cerebrovascular toxicity is enhanced in MMP-9-deficient mice

    PubMed Central

    Huang, Wen; Chen, Lei; Zhang, Bei; Park, Minseon; Toborek, Michal

    2014-01-01

    The strategies to protect against the disrupted blood–brain barrier (BBB) in HIV-1 infection are not well developed. Therefore, we investigated the potential of peroxisome proliferator-activated receptor (PPAR) agonists to prevent enhanced BBB permeability induced by HIV-1-specific protein Tat. Exposure to Tat via the internal carotid artery (ICA) disrupted permeability across the BBB; however, this effect was attenuated in mice treated with fenofibrate (PPARα agonist) or rosiglitazone (PPARγ agonist). In contrast, exposure to GW9662 (PPARγ antagonist) exacerbated Tat-induced disruption of the BBB integrity. Increased BBB permeability was associated with decreased tight junction (TJ) protein expression and activation of ERK1/2 and Akt in brain microvessels; these effects were attenuated by cotreatment with fenofibrate but not with rosiglitazone. Importantly, both PPAR agonists also protected against Tat-induced astrogliosis and neuronal loss. Because disruption of TJ integrity has been linked to matrix metalloproteinase (MMP) activity, we also evaluated Tat-induced effects in MMP-9-deficient mice. Tat-induced cerebrovascular toxicity, astrogliosis, and neuronal loss were less pronounced in MMP-9-deficient mice as compared with wild-type controls and were further attenuated by PPAR agonists. These results indicate that enhancing PPAR activity combined with targeting MMPs may provide effective therapeutic strategies in brain infection by HIV-1. PMID:24424383

  13. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    PubMed

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Influence of acute treatment with sibutramine on the sympathetic neurotransmission of the young rat vas deferens.

    PubMed

    de Souza, Bruno Palmieri; da Silva, Edilson Dantas; Jurkiewicz, Aron; Jurkiewicz, Neide Hyppolito

    2014-09-05

    The effects of acute treatment with sibutramine on the peripheral sympathetic neurotransmission in vas deferens of young rats were still not evaluated. Therefore, we carried out this study in order to verify the effects of acute sibutramine treatment on the neuronal- and exogenous agonist-induced contractions of the young rat vas deferens. Young 45-day-old male Wistar rats were pretreated with sibutramine 6 mg/kg and after 4h the vas deferens was used for experiment. The acute treatment with sibutramine was able to increase the potency (pD2) of noradrenaline and phenylephrine. Moreover, the efficacy (Emax) of noradrenaline was increased while the efficacy of serotonin and nicotine were decreased. The maximum effect induced by a single concentration of tyramine was diminished in the vas deferens from treated group. Moreover, the leftward shift of the noradrenaline curves promoted by uptake blockers (cocaine and corticosterone) and β-adrenoceptor antagonist (propranolol) was reduced in the vas deferens of treated group. The initial phasic and secondary tonic components of the neuronal-evoked contractions of vas deferens from treated group at the frequencies of 2 Hz were decreased. Moreover, only the initial phasic component at 5 Hz was diminished by the acute treatment with sibutramine. In conclusion, we showed that the acute treatment with sibutramine in young rats was able to affect the peripheral sympathetic nervous system by inhibition of noradrenaline uptake and reduction of the neuronal content of this neurotransmitter, leading to an enhancement of vas deferens sensitivity to noradrenaline. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  17. Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system.

    PubMed

    Chicca, Andrea; Arena, Chiara; Bertini, Simone; Gado, Francesca; Ciaglia, Elena; Abate, Mario; Digiacomo, Maria; Lapillo, Margherita; Poli, Giulio; Bifulco, Maurizio; Macchia, Marco; Tuccinardi, Tiziano; Gertsch, Jürg; Manera, Clementina

    2018-05-14

    The endocannabinoid system (ECS) represents one of the major neuromodulatory systems involved in different physiological and pathological processes. Multi-target compounds exert their activities by acting via multiple mechanisms of action and represent a promising pharmacological modulation of the ECS. In this work we report 4-substituted and 4,5-disubstituted 1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives with a broad spectrum of affinity and functional activity towards both cannabinoid receptors and additional effects on the main components of the ECS. In particular compound B3 showed high affinity for CB1R (K i  = 23.1 nM, partial agonist) and CB2R (K i  = 6.9 nM, inverse agonist) and also significant inhibitory activity (IC 50  = 70 nM) on FAAH with moderate inhibition of ABHD12 (IC 50  = 2.5 μΜ). Compounds B4, B5 and B6 that act as full agonists at CB1R and as partial agonists (B5 and B6) or antagonist (B4) at CB2R, exhibited an additional multi-target property by inhibiting anandamide uptake with sub-micromolar IC 50 values (0.28-0.62 μΜ). The best derivatives showed cytotoxic activity on U937 lymphoblastoid cells. Finally, molecular docking analysis carried out on the three-dimensional structures of CB1R and CB2R and of FAAH allowed to rationalize the structure-activity relationships of this series of compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. A Double-Blind Randomized Controlled Trial Comparing Epidural Clonidine vs Bupivacaine for Pain Control During and After Lower Abdominal Surgery

    PubMed Central

    Abd-Elsayed, Alaa A.; Guirguis, Maged; DeWood, Mark S.; Zaky, Sherif S.

    2015-01-01

    Background Alpha-2 adrenergic agonists produce safe and effective analgesia, but most investigations studying the analgesic effect of alpha-2 adrenoceptor agonists postoperatively included previous or concomitant administration of other analgesics. Because clonidine potentiates the effect of these drugs, its own intrinsic analgesic effect has been difficult to establish. This study was designed to compare the intraoperative and postoperative effects of epidural clonidine vs bupivacaine for patients undergoing lower abdominal surgery. Methods This randomized controlled trial included 40 patients aged 18-50 who were scheduled for elective lower abdominal surgery. Patients were randomly divided into 2 groups. Group I (n=20) received epidural clonidine; Group II (n=20) received epidural bupivacaine. Intraoperative and postoperative hemodynamics, pain scores, and complications were monitored. Results Mean pain scores were significantly lower in Group I compared to Group II (1.5 ± 0.5 compared to 3.4 ± 1.0, respectively) in the first 12 hours after surgery. Sedation was more prominent in Group I until 9 hours after surgery. Opioid requirements were significantly lower in Group I. Respiratory rate was similar in the 2 groups. Group I had larger decreases from baseline in systolic blood pressure and diastolic blood pressure than Group II. Heart rate in Group I was reduced from baseline, while it was increased in Group II. Less postoperative nausea and vomiting, urinary retention, pruritus, and shivering were observed in Group I. Conclusion Compared to bupivacaine, epidural clonidine provided effective intraoperative and postoperative analgesia in selected patients, resulting in a decreased intravenous pain medication requirement and prolonged duration of analgesia after epidural infusion was discontinued. PMID:26130975

  19. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their functional profiles in vivo.

  20. Neurokinin-neurotrophin interactions in airway smooth muscle

    PubMed Central

    Meuchel, Lucas W.; Stewart, Alecia; Smelter, Dan F.; Abcejo, Amard J.; Thompson, Michael A.; Zaidi, Syed I. A.; Martin, Richard J.

    2011-01-01

    Neurally derived tachykinins such as substance P (SP) play a key role in modulating airway contractility (especially with inflammation). Separately, the neurotrophin brain-derived neurotrophic factor (BDNF; potentially derived from nerves as well as airway smooth muscle; ASM) and its tropomyosin-related kinase receptor, TrkB, are involved in enhanced airway contractility. In this study, we hypothesized that neurokinins and neurotrophins are linked in enhancing intracellular Ca2+ concentration ([Ca2+]i) regulation in ASM. In rat ASM cells, 24 h exposure to 10 nM SP significantly increased BDNF and TrkB expression (P < 0.05). Furthermore, [Ca2+]i responses to 1 μM ACh as well as BDNF (30 min) effects on [Ca2+]i regulation were enhanced by prior SP exposure, largely via increased Ca2+ influx (P < 0.05). The enhancing effect of SP on BDNF signaling was blunted by the neurokinin-2 receptor antagonist MEN-10376 (1 μM, P < 0.05) to a greater extent than the neurokinin-1 receptor antagonist RP-67580 (5 nM). Chelation of extracellular BDNF (chimeric TrkB-Fc; 1 μg/ml), as well as tyrosine kinase inhibition (100 nM K252a), substantially blunted SP effects (P < 0.05). Overnight (24 h) exposure of ASM cells to 50% oxygen increased BDNF and TrkB expression and potentiated both SP- and BDNF-induced enhancement of [Ca2+]i (P < 0.05). These results suggest a novel interaction between SP and BDNF in regulating agonist-induced [Ca2+]i regulation in ASM. The autocrine mechanism we present here represents a new area in the development of bronchoconstrictive reflex response and airway hyperreactive disorders. PMID:21515660

Top