Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution
Han, Yu-Mei; Chen, X.-Grant
2015-01-01
Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574
Combustion synthesis of boride and other composites
Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.
1989-01-01
A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.
Combustion synthesis of boride and other composites
Halverson, D.C.; Lum, B.Y.; Munir, Z.A.
1988-07-28
A self-sustaining combustion synthesis process for producing hard, tough, lightweight B/sub 4/C/TiB/sub 2/ composites is described. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B/sub 4/C and TiB/sub 2/ reactants. For lightweight products the composition must be relatively rich in the B/sub 4/C component. B/sub 4/C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component. 9 figs., 4 tabs.
Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites
NASA Astrophysics Data System (ADS)
Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid
2018-01-01
Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.
Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials
Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan
2018-01-01
Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707
Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Singh, Amandeep; Bala, Niraj
2017-10-01
Magnesium-based metal matrix composites (MMMCs) have emerged as good alternative material to conventional materials due to their promising advanced properties. In the present work, magnesium-based metal matrix composites (MMMCs) reinforced with B4C particles were successfully fabricated by cost-effective conventional stir casting technique. MMMCs with an average particle size of 63 µm and different weight percent (wt pct) of B4C between 3 and 12 were fabricated. Wear tests were carried out using a pin-on-disk against a steel disk under dry sliding condition at loads that varied between 1 and 5 kg at fixed sliding velocity of 1 m/s. The wear data clearly showed that wear resistance of cast composites is better than that of unreinforced magnesium, which is attributed to dispersion hardening caused by carbide particles. An increase in wt pct of B4C showed the wear resistance and hardness to increase significantly. The wear rate and coefficient of friction increased with an increase in applied load. The SEM and EDS analysis of the worn surfaces delineated the dominant wear mechanisms to be abrasion, adhesion, and oxidation under the different sliding conditions. At lower loads, the wear mechanism transformed from severe abrasive wear in pure magnesium (Mg) to mild abrasion, slight delamination, and oxidation in the Mg/12 wt pct B4C fabricated composite. At higher loads, severe abrasion, adhesion, delamination, and oxidation were found to be the major wear mechanisms in pure Mg, whereas in the Mg/12 wt pct B4C fabricated composites the corresponding mechanisms were mild abrasion, mild adhesion, slight delamination, and oxidation.
Classification of six ordinary chondrites from Texas
NASA Astrophysics Data System (ADS)
Ehlmann, Arthur J.; Keil, Klaus
1988-12-01
Based on optical microscopy, modal and electron microprobe analyses, six ordinary chondrites from Texas were classified in compositional groups, petrologic types, and shock facies. These meteorites are Comanche (stone), L5c; Haskell, L5c; Deport (a), H4b; Naruna (a), H4b; Naruna (b), H4b; and Clarendon (b), H5d.
NASA Astrophysics Data System (ADS)
Varol, T.; Canakci, A.
2013-06-01
In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.
Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn
2016-05-11
The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.
Metal/ceramic interface structures and segregation behavior in aluminum-based composites
Zhang, Xinming; Hu, Tao; Rufner, Jorgen F.; ...
2015-06-14
Trimodal Al alloy (AA) matrix composites consisting of ultrafine-grained (UFG) and coarse- grained (CG) Al phases and micron-sized B 4C ceramic reinforcement particles exhibit combinations of strength and ductility that render them useful for potential applications in the aerospace, defense and automotive industries. Tailoring of microstructures with specific mechanical properties requires a detailed understanding of interfacial structures to enable strong interface bonding between ceramic reinforcement and metal matrix, and thereby allow for effective load transfer. Trimodal AA metal matrix composites typically show three characteristics that are noteworthy: nanocrystalline grains in the vicinity of the B4C reinforcement particles; Mg segregation atmore » AA/B 4C interfaces; and the presence of amorphous interfacial layers separating nanocrystalline grains from B 4C particles. Interestingly, however, fundamental information related to the mechanisms responsible for these characteristics as well as information on local compositions and phases are absent in the current literature. Here in this study, we use high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy, and precession assisted electron diffraction to gain fundamental insight into the mechanisms that affect the characteristics of AA/B 4C interfaces. Specifically, we determined interfacial structures, local composition and spatial distribution of the interfacial constituents. Near atomic resolution characterization revealed amorphous multilayers and a nanocrystalline region between Al phase and B 4C reinforcement particles. The amorphous multilayers consist of nonstoichiometric Al xO y, while the nanocrystalline region is comprised of MgO nanograins. The experimental results are discussed in terms of the possible underlying mechanisms at AA/B 4C interfaces.« less
NASA Astrophysics Data System (ADS)
Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi
2017-04-01
The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.
NASA Astrophysics Data System (ADS)
Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya
2018-02-01
In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.
NASA Astrophysics Data System (ADS)
Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.
2018-02-01
The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.
B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shidong; Xu, Wu; Cao, Ruiguo
Lithium-oxygen (Li-O 2) batteries have extremely high theoretical specific capacities and energy densities when compared with Li-ion batteries. However, the instability of both electrolyte and carbon-based oxygen electrode related to the nucleophilic attack of reduced oxygen species during oxygen reduction reaction and the electrochemical oxidation during oxygen evolution reaction are recognized as the major challenges in this field. Here we report the application of boron carbide (B 4C) as the non-carbon based oxygen electrode material for aprotic Li-O 2 batteries. B 4C has high resistance to chemical attack, good conductivity, excellent catalytic activity and low density that are suitable formore » battery applications. The electrochemical activity and chemical stability of B4C are systematically investigated in aprotic electrolyte. Li-O 2 cells using B4C based air electrodes exhibit better cycling stability than those used TiC based air electrode in 1 M LiTf-Tetraglyme electrolyte. The degradation of B 4C based electrode is mainly due to be the loss of active sites on B 4C electrode during cycles as identified by the structure and composition characterizations. These results clearly demonstrate that B 4C is a very promising alternative oxygen electrode material for aprotic Li-O 2 batteries. It can also be used as a standard electrode to investigate the stability of electrolytes.« less
Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu-Li
In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hotmore » working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.« less
2015-09-16
AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a. CONTRACT NUMBER 5b. GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the
Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang
2017-08-22
It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3 + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.
Preparation, Microstructure and Performance of Nanoscale Ceramics Reinforced Hard Composite Coating
NASA Astrophysics Data System (ADS)
Li, Peng
2014-11-01
This paper is based on the dry sliding wear of Stellite SF12-B4C-TiN-Mo composite coating deposited on a pure Ti using a laser cladding technique, the parameters of which provide almost crack-free composites with low porosity. To the best of our knowledge, it is the first time that Stellite SF12-B4C-TiN-Mo mixed powders are deposited as the hard composites by a laser cladding technique. Scanning electron microscope images indicate that the nanoscale particles are produced in such coating. The fact that due to the sufficiently rapid heating and cooling rates of the laser cladding technique, the ceramics, such as TiC or TiB2 did not have enough time to grow up, resulting in the formation of the nanoscale particles. Compared with a pure Ti substrate, the increments of the micro-hardness and wear resistance are obtained for such composite coating.
Formation of MgO-B{sub 4}C composite via a thermite-based combustion reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.L.; Munir, Z.A.; Holt, J.B.
1995-03-01
The combustion synthesis of MgO-B{sub 4}C composites was investigated by coupling a highly exothermic Mg-B{sub 2}O{sub 3} thermite reaction with a weakly exothermic B{sub 4}C formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving predominantly gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. At low inert gas pressure, the initiation temperature is found to bemore » just below the melting point of Mg (650 C). As the inert gas pressure increases, the vaporization loss of reactants is reduced, and this in turn increases the combustion temperature, which promotes greater grain growth of the product phases, MgO and B{sub 4}C. The particle size of B{sub 4}C increased from about 0.2 to 5 {mu}m as the pressure changed from 1 to 30 atm.« less
Neutron absorption of Al-Si-Mg-B{sub 4}C composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Ibrahim, Anis Syukriah
2016-01-22
Al-Si-Mg-B{sub 4}C composites containing 2-8 wt% of B{sub 4}C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be{sup 241}. The result indicated that higher B{sub 4}C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactormore » application.« less
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-12-01
Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Alling, B.
2018-05-01
We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.
NASA Astrophysics Data System (ADS)
Balaraman Yadhukulakrishnan, Govindaraajan
Scope and Method of Study: Space vehicles re-entering the earth's atmosphere experience very high temperatures due to aerodynamic heating. Ultra-high temperature ceramics (UHTC) with melting point higher than 3200°C are promising materials for thermal protection systems of such space vehicles re-entering the earth's atmosphere. Among several UHTC systems ZrB2 based ceramic composites are particularly important for thermal protection systems due to their better mechanical and thermoelectric properties and high oxidation resistance. In this study spark plasma sintering of SiC, carbon nanotubes (CNT) and graphene nano platelets (GNP) reinforced ZrB2 ultra-high temperature ceramic matrix composites is reported. Findings and Conclusions: Systematic investigations on the effect of reinforcement type (SiC, CNTs and GNP) and content (10-40 vol.% SiC, 2-6 vol.% CNTs and 2-6 vol.% GNP) on densification behavior, microstructure development, and mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness) are reported. With the similar SPS parameters near-full densification (>99% relative density) was achieved with 10-40 vol.% SiC, 4-6 vol.% CNT reinforced composites. Highly dense composites were obtained in 4-6 vol.% GNP reinforced composites. The SiC, CNT and GNP reinforcement improved the indentation fracture toughness of the composites through a range of toughening mechanisms, including particle shearing, crack deflection at the particle-matrix interface, and grain pull-outs for ZrB2-SiC composites, CNT pull-outs and crack deflection in ZrB2-CNT composites and crack deflection, crack bridging and GNP sheet pull-out for ZrB2 -GNP composites.
Interfacial microstructure in a B{sub 4}C/Al composite fabricated by pressureless infiltration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Z.; Song, Y.; Zhang, S.
In this work, B{sub 4}C particulate-reinforced Al composite was fabricated by a pressureless infiltration technique, and its interfacial microstructure was studied in detail by X-ray diffraction as well as by scanning and transmission electron microscopy. The B{sub 4}C phase was unstable in Al melt during the infiltration process, forming AlB{sub 10}-type AlB{sub 24}C{sub 4} or Al{sub 2.1}B{sub 51}C{sub 8} as a major reactant phase. The Al matrix was large grains (over 10 {micro}m), which had no definite orientation relationships (ORs) with the randomly orientated B{sub 4}C or its reactant particles, except for possible nucleation sites with {l_brace}011{r_brace}{sub B{sub 4}C} almostmore » parallel to {l_brace}111{r_brace}{sub Al} at a deviation angle of 1.5 deg. Both B{sub 4}C-Al and reactant-Al interfaces are semicoherent and free of other phases. A comparison was made with the SiC/Al composite fabricated similarly by the pressureless infiltration. It was suggested that the lack of ORs between the Al matrix and reinforced particles, except for possible nucleation sites, is the common feature of the composites prepared by the infiltration method.« less
NASA Astrophysics Data System (ADS)
Rafi-ud-din; Shafqat, Q. A.; Shahzad, M.; Ahmad, Ejaz; Asghar, Z.; Rafiq, Nouman; Qureshi, A. H.; Syed, Waqar adil; asim Pasha, Riffat
2016-12-01
Sodium benzoate (SB) is used for the first time to inhibit the corrosion of Al6061-B4C composites in H3BO3 and NaCl solutions. Al6061100-x -x wt% B4C (x = 0, 5, and 10) composites are manufactured by a powder metallurgy route. The corrosion inhibition efficiency of SB is investigated as a function of the volume fractions of B4C particles by using potentiodynamic polarization and electrochemical impedance techniques. Without the use of an inhibitor, an increase of the B4C particles in the composite decreases the corrosion resistance of Al6061-B4C composites. It is found that SB is an efficient corrosion inhibitor for Al6061-B4C composites in both investigated solutions. The corrosion inhibition efficiency of SB increases with an increase in B4C content. Since SB is an adsorption type inhibitor, it is envisaged that an extremely thin layer of molecules adsorbs onto the surface and suppresses the oxidation and reduction. It is found that the inhibitor effect of SB is more pronounced in a H3BO3 environment than in NaCl solution. Further, the mechanism of corrosion inhibition by SB is illustrated by using optical and scanning electron microscopy of corroded samples. It is found that the adsorption of benzoate ions on the Al surface and its bonding with Al3+ ions forms a hydrophobic layer on top of the exposed Al surface, which enhances the protection against dissolved boride ions.
NASA Astrophysics Data System (ADS)
Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.
1997-02-01
The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.
NASA Astrophysics Data System (ADS)
Ravindranath, V. M.; Basavarajappa, G. S. Shiva Shankar S.; Suresh, R.
2016-09-01
In aluminium matrix composites, reinforcement of hard ceramic particle present inside the matrix which causes tool wear, high cutting forces and poor surface finish during machining. This paper focuses on effect of cutting parameters on thrust force, surface roughness and burr height during drilling of MMCs. In the present work, discuss the influence of spindle speed and feed rate on drilling the pure base alloy (Al-2219), mono composite (Al- 2219+8% B4C) and hybrid composite (Al-2219+8%B4C+3%Gr). The composites were fabricated using liquid metallurgy route. The drilling experiments were conducted by CNC machine with TiN coated HSS tool, M42 (Cobalt grade) and carbide tools at various spindle speeds and feed rates. The thrust force, surface roughness and burr height of the drilled hole were investigated in mono composite and hybrid composite containing graphite particles, the experimental results show that the feed rate has more influence on thrust force and surface roughness. Lesser thrust force and discontinuous chips were produced during machining of hybrid composites when compared with mono and base alloy during drilling process. It is due to solid lubricant property of graphite which reduces the lesser thrust force, burr height and lower surface roughness. When machining with Carbide tool at low feed and high speeds good surface finish was obtained compared to other two types of cutting tool materials.
Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li
2018-03-01
A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.
Multilayer ultra-high-temperature ceramic coatings
Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ
2012-03-20
A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.
Analysis of Particle Distribution in Milled Al-Based Composites Reinforced by B4C Nanoparticles
NASA Astrophysics Data System (ADS)
Alihosseini, Hamid; Dehghani, Kamran
2017-04-01
In the present work, high-energy ball milling was employed to synthesize Al-(5-10 wt.%)B4C nanocomposite. To do this, two sizes of particles of 50 nm as nanoparticles (NPs) and 50 μm as coarse particles (CPs) were used. The morphology and microstructure of the milled powders were characterized using particle size analyzer, SEM, TEM and EDX techniques. It was found that milling time, B4C particles size and their content strongly affect the characteristics of powders during milling process. The breaking and cold welding of powders was recognized as two main competitive actions during the milling process that influence the microstructural evolutions. It was found that the presence of CPs led to the formation of microcracks which promote the fracture process of Al powders. The dominated mechanisms during the fabrication of composites and nanocomposites were discussed. Also, the theoretical issues regarding the changes in morphology and distribution of B4C particles in CPs and NPs are clarified.
Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings
2015-04-01
ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
NASA Astrophysics Data System (ADS)
Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn
2018-03-01
This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.
Isotopic Composition of Molybdenum and Barium in Single Presolar Silicon Carbide Grains of Type A+B
NASA Technical Reports Server (NTRS)
Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.
2003-01-01
Presolar SiC grains fall into several groups based on C, N, and Si isotopic compositions. Approximately 93% are defined as mainstream, having 10 less than C-12/C-13 less than 100 and N-14/N-15 ranging from 50 to 20,000. A number of studies have shown that the most likely sources of mainstream grains are low mass asymptotic giant branch stars. Models of nucleosynthesis in AGB stars reproduce the s-process enhancements seen in the heavy elements in mainstream SiC grains. Among the less common grains, A+B grains, which comprise approximately 3-4% of presolar SiC, are perhaps the least well understood. Recent studies by Amari et al. show that A+B grains can be divided into at least 4 groups based on their trace element concentration patterns. Of 20 grains studied, 7 showed trace element patterns consistent with condensation from a gas of solar system composition, while the rest had varying degrees of process enhancements. Our previous measurements on 3 A+B grains showed Mo of solar isotopic composition, but Zr with a strong enhancement in 96Zr, which is an r-process isotope but can be made in an sprocess if the neutron density is high enough to bridge the unstable Zr-95 (T(sub 1/2)= 64 d). The observation of Mo with solar system isotopic composition in the same grains is puzzling however. Meyer et al. have recently shown that a neutron burst mechanism can produce a high Zr-96/Zr-94 without enhancing Mo-100, however this model leads to enhancements in Mo-95 and Mo-97 not observed in A+B grains. We report here results of Mo measurements on 7 additional A+B grains, and Ba measurements on 2 A+B grains, and compare these to the previous studies.
Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn
2016-03-15
Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less
High voltage cathode compositions for lithium-ion batteries
Lu, Zhonghua; Eberman, Kevin W
2017-03-21
A lithium transition metal oxide composition. The composition has the formula Li.sub.a[Li.sub.bNi.sub.cMn.sub.dCo.sub.e]O.sub.2, where a.gtoreq.0.9, b.gtoreq.0, c>0, d>0, e>0, b+c+d+e=1, 1.05.ltoreq.c/d.ltoreq.1.4, 0.05.ltoreq.e.ltoreq.0.30, 0.9.ltoreq.(a+b)/M.ltoreq.1.06, and M=c+d+e. The composition has an O3 type structure.
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions
2015-04-17
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions Anthony P. Shaw,*,† Giancarlo Diviacchi,‡ Ernest L. Black,‡ Jared D...have been demonstrated to produce thick white smoke clouds upon combustion. These compositions use powdered boron carbide (B4C) as a pyrotechnic...ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration
Boron Carbide Aluminum Cermets for External Pressure Housing Applications
1992-09-01
CHEMISTRY AND MICROSTRUCTURES OF THE B4C/Al SYSTEM ......................................... 4 3.2 MECHANICAL PROPERTIES OF B4C/AI COMPOSITES ....... 10...TABLES 1. Phase chemistry of B4C/A1 composites as a function of baking temperature (by stereology) .................. ...... 10 2. Summary of the...diffractometer using CuKo radiation and a scan rate of 2° per minute. The chemistry of all phases was determined from electron microprobe analysis of
Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin
2018-06-01
In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
The Effect of Time, Temperature and Composition on Boron Carbide Synthesis by Sol-gel Method
NASA Astrophysics Data System (ADS)
Hadian, A. M.; Bigdeloo, J. A.
2008-02-01
To minimize free carbon residue in the boron carbide (B4C) powder, a modified sol-gel process is performed where the starting materials as boric acid and citric acid compositions are adjusted. Because of boron loss in the form of B2O2(g) during the reduction reaction of the stoichiometric starting composition, the final B4C powders contain carbon residues. Thus, an excess H3BO3 is used in the reaction to compensate the loss and to obtain stoichiometric powders. Parameters of production have been determined using x-ray diffraction analysis and particle size analyses. The synthesized B4C powder using an excess boric acid composition shows no trace of carbon.
Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao
2018-04-04
With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.
The thermal expansion and thermophysical properties of an aluminum and Al/B4C composite
NASA Astrophysics Data System (ADS)
Gladkovsky, S. V.; Kamantsev, I. S.; Kuteneva, S. V.; Veselova, V. E.; Ryzhkov, M. A.
2017-12-01
The paper presents results of experimental studies of the thermal expansion and thermophysical properties of an Al/B4C composite with a boron carbide content of 20 wt% and technically pure aluminum in the temperature range from 100 to 600°C to evaluate the possible use of this composite as a neutron-protective material in the nuclear industry.
Mututuvari, Tamutsiwa M.; Tran, Chieu D.
2013-01-01
We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and benzo-15-crown 5 (B15C5). Butylmethylimidazolium chloride [BMIm+Cl−], an ionic liquid (IL), was used as a sole solvent for dissolution and preparation of the composites. Since majority of [BMIm+Cl−] used was recovered for reuse, the method is recyclable. The [CEL/CS + B15C5] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions and organic pollutants (from B15C5 and CS). More importantly, the [CEL/CS + B15C5] composites exhibit truly supramolecular properties. By itself CS, CEL and B15C5 can effectively adsorb Cd2+, Zn2+ and 2,4,5-trichlorophenol. However, adsorption capability of the composite was substantially and synergistically enhanced by adding B15C5 to either CEL and/or CS. That is, the adsorption capacity (qe values) for Cd2+ and Zn2+ by [CS + B15C5], [CEL + B15C5] and [CEL + CS + B15C5] composites are much higher than combined qe values of individual CS, CEL and B15C5 composites. It seems that B15C5 synergistically interact with CS (or CEL) to form more stable complexes with Cd2+ (or Zn2+), and as a consequence, the [CS + B15C5] (or the [CEL + B15C5]) composite can adsorb relatively larger amount Cd2+ (or Zn2+). Moreover, the pollutants adsorbed on the composites can be quantitatively desorbed to enable the [CS + CEL + B15C5] composites to be reused with similar adsorption efficiency. PMID:24333678
Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy
NASA Astrophysics Data System (ADS)
Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang
Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian; Jolly, Brian C
2009-01-01
The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less
Formation of graphitic carbon nitride and boron carbon nitride film on sapphire substrate
NASA Astrophysics Data System (ADS)
Kosaka, Maito; Urakami, Noriyuki; Hashimoto, Yoshio
2018-02-01
As a novel production method of boron carbon nitride (BCN) films, in this paper, we present the incorporation of B into graphitic carbon nitride (g-C3N4). First, we investigated the formation of g-C3N4 films via chemical vapor deposition (CVD) using melamine powder as the precursor. The formation of g-C3N4 films on a c-plane sapphire substrate was confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. The deposition temperature of g-C3N4 films was found to be suitable between 550 and 600 °C since the degradation and desorption of hexagonal C-N bonds should be suppressed. As for BCN films, we prepared BCN films via two-zone extended CVD using ammonia borane as the B precursor. Several XPS signals from B, C, and N core levels were detected from B-incorporated g-C3N4 films. While the N composition was almost constant, the marked tendencies for increasing B composition and decreasing C composition were achieved with the increase in the B incorporation, indicating the incorporation of B atoms by the substitution for C atoms. Optical absorptions were shifted to the high-energy side by B incorporation, which indicates the successful formation of BCN films using melamine and ammonia borane powders as precursors.
Characterization of in situ synthesized TiB 2 reinforcements in iron-based composite coating
NASA Astrophysics Data System (ADS)
Zhang, Panpan; Wang, Xibao; Guo, Lijie; Cai, Lijuan; Sun, Hongling
2011-12-01
TiB2 reinforced iron-based composite coatings can be fabricated on the mild steel substrate with a powder mixture of Ti and B4C by plasma transferred arc (PTA) powder surfacing process. Characterizations of the TiB2 reinforcements in the coated surface were investigated in this paper. The experimental work enables the following findings to be obtained: (i) acicular shaped and blocky formed TiB2 phases could be synthesized in situ using PTA powder surfacing process in the iron-based composite coating. (ii) Gradient distributions of TiB2 reinforcements appeared in the composite coating from both the vertical and horizontal direction of the coating's cross-section. Significant changes of the size, shape and volume fraction for TiB2 particles appeared in different regions of the surface coating, due to the effects of the dilution rate and mass density. (iii) Values of coating dilution could have profound impacts on the characterization of TiB2 reinforcements in the coated surfaces. With the increase of coating dilution, TiB2 grain tends to be acicular shaped at the edge of the surface coating, while it remains to be granular formed in the center of the composite coating.
Determination of Optimum Cutting Parameters for Surface Roughness in Turning AL-B4C Composites
NASA Astrophysics Data System (ADS)
Channabasavaraja, H. K.; Nagaraj, P. M.; Srinivasan, D.
2016-09-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, machinability of Aluminium 1100 and Boron carbide (AL+ B4C) composite material is examined by using lathe tool dynometers (BANKA Lathe) by varying the cutting parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, surface roughness is measured against the weight % of reinforcement in the composite (0, 4 and 8 %). From the study it is observed that the hardness of a composite material increases with increase in weight % of reinforcement material (B4C) by 26.27 and 66.7 % respectively. The addition of reinforcement materials influences the machinability. The cutting force in both X and Z direction were also found increment with the reinforcement percentage.
NASA Astrophysics Data System (ADS)
Bai, L. L.; Li, J.; Chen, J. L.; Song, R.; Shao, J. Z.; Qu, C. C.
2016-01-01
TiNi/Ti2Ni-based composite coatings reinforced by TiC and TiB2 were produced on Ti6Al4V by laser cladding the mixture of a Ni-based alloy and different contents of B4C (0 wt%, 5 wt%, 15 wt%, and 25 wt%). The macromorphologies and microstructures of the coatings were examined through optical microscopy, X-ray diffractometry, scanning electron microscopy, and energy dispersive spectrometry. The microhardness, fracture toughness, and wear behaviors of the coatings were also investigated by using a microhardness tester and an ultra-functional wear testing machine. Results showed that the coatings were mainly composed of TiNi/Ti2Ni and TiC/TiB2 as the matrix and reinforcement particles, respectively. The phase constituents of the coatings were not influenced by addition of different contents of B4C. The microstructure of the reinforcements in the coatings presented the following evolution: hypereutectic consisting of blocky (TiC+TiB2)e eutectic and primary TiCp cellular dendrites (0 wt% B4C), mixture of hypereutectic and willow-shaped (TiB2+TiC)p pseudoeutectic (5 wt% B4C), and pseudoeutectic (15 and 25 wt% B4C). With increasing B4C content, the volume fraction and size of the pseudoeutectic structures as well as the average microhardness of the coatings (850, 889, 969, and 1002 HV0.2) were increased. By contrast, the average fracture toughness of the coatings was gradually decreased (4.47, 4.21, 4.06, and 3.85 Mpa m1/2) along with their wear volumes (0 wt%, 5 wt%, and 15 wt% B4C). The increase in B4C content to 25 wt% did not further reduce wear loss. The wear mechanism transformed from micro-cutting (0 wt% B4C) into a combination of micro-cutting and brittle debonding (5 wt% B4C) and finally led to brittle debonding (15 wt% and 25 wt% B4C). Coatings with suitable contents of B4C (less than 15 wt%) showed excellent comprehensive mechanical properties.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.
2018-04-01
The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.
NASA Astrophysics Data System (ADS)
Zeng, Zhensu; Kuroda, Seiji; Kawakita, Jin; Komatsu, Masayuki; Era, Hidenori
2010-01-01
The oxidation behavior of iron binary powders with addition of Si (1, 4 wt.%) and B (1, 3 wt.%) and that of a Ni-Cr based alloy powder with Si (4.3 wt.%), B (3.0 wt.%), and C (0.8 wt.%) additions during atmosphere plasma spray (APS) have been investigated. Analysis of the chemical composition and phases of oxides in the captured in-flight particles and deposited coatings was carried out. The results show that the addition of Si and B to iron effectively reduced the oxygen contents in the coatings, especially during the in-flight period at higher particles temperature. Ni-Cr based alloy powder with Si, B, and C additions reduced the oxidation of the base alloys significantly. Preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.
ZrB2-CNTs Nanocomposites Fabricated by Spark Plasma Sintering
Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong
2016-01-01
ZrB2-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB2 matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB2 grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB2-CNTs composites were compared with those of the micro-grained ZrB2-CNTs composites. Due to the small size and surface effects, the nanograined ZrB2-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m1/2, respectively. PMID:28774087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachikawa, K.; Sasaki, H.; Yamaguchi, M.
Tightly consolidated Sn-Ta and Sn-B based alloys have been prepared by the reaction among constituent metal powders at 750-775 deg. C. Sn-Ta and Sn-B based alloys exhibit quite similar microstructures. A small amount of Ti addition seems to improve the bonding between Ta or B particles and Sn matrix. Nb{sub 3}Sn wires have been fabricated by the Jelly Roll (JR) and Multi-rod (MR) process using Sn based alloy sheet and rod, respectively. Thick Nb{sub 3}Sn layers with nearly stoichiometric A15 composition are synthesized through a new diffusion mechanism between Nb and Sn based alloy. B{sub c2}(4.2 K)'s of 26.9 Tmore » (mid) and 26.5 T (mid) have been obtained in the JR and MR processed wires, respectively, using Sn-Ta based alloy. These wires exhibit enough non-Cu J{sub c} to be used above 20 T and 4.2 K. T{sub c} of JR wires using Sn-B based sheet is 18.14 K (offset) which is slightly higher than that of wires using Sn-Ta based sheet.« less
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava
2018-06-01
The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.
New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor
1990-06-01
cases. The aluminum powder was finer than 325 mesh (nominal 4 ptm diameter). The titanium diboride powder also had a median particle diameter of 4 g ~m...Al Before Heat Treatment. Sample Density Hardness Flex ( g /mL) (Rockwell A) Strength 70/30 B4 C/Al/dry 2.62±.03 81±3 57±5 ksi 70/30 B4 C/AI/wet/A 2.57...0.4 w/o nitrogen, 160 ppm calcium, 140 ppm chromium. 270 ppm iron, and 330 ppm nickel. The surface area was 7 m 2 / g . Initial dispersion and filter
Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan
2003-01-01
Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.
NASA Astrophysics Data System (ADS)
Kosarev, V. F.; Polukhin, A. A.; Ryashin, N. S.; Fomin, V. M.; Shikalov, V. S.
2017-07-01
The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.
Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Vogt, Rustin
Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.
2012-08-01
AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase
Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic
NASA Astrophysics Data System (ADS)
Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing
2013-03-01
ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).
[Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].
Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song
2015-10-01
To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P < 0.05). With regard to color stability, silorane-based composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P < 0.05) after artificial aging. With regard to translucency, composite C showed more alteration compared with composite B (P < 0.05) after thermal cycling. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and translucency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eryong, E-mail: ley401@163.com; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over amore » wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 °C, and AgVO{sub 3} and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: • NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. • AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. • NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. • Phase composition on the worn surface was varied with temperatures. • Self-adjusted action was responsible for the improvement of tribological properties.« less
Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar
2016-11-01
Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.
2016-02-01
Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.
Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A.
Hu, Shuisheng; Ouyang, Wenjun; Guo, Longhua; Lin, Zhenyu; Jiang, Xiaohua; Qiu, Bin; Chen, Guonan
2017-06-15
A fluorescent biosensor for ochratoxin A was fabricated on the basis of a new nanocomposite (Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites). Fe 3 O 4 /g-C 3 N 4 /HKUST-1 was synthesized in this work for the first time, which combined HKUST-1 with g-C 3 N 4 to improve its chemical stability. Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites have strong adsorption capacity for dye-labeled aptamer and are able to completely quench the fluorescence of the dye through the photoinduced electron transfer (PET) mechanism. In the presence of ochratoxin A (OTA), it can bind with the aptamer with high affinity, causing the releasing of the dye-labeled aptamer from the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 and therefore results in the recovery of fluorescence. The fluorescence intensity of the biosensor has a linear relationship with the OTA concentration in the range of 5.0-160.0ng/mL. The LOD of sensor is 2.57ng/mL (S/N=3). This fluorescence sensor based on the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites has been applied to detect OTA in corn with satisfying results. Copyright © 2016. Published by Elsevier B.V.
Separation and partial characterization of guinea-pig caseins.
Craig, R K; McIlreavy, D; Hall, R L
1978-01-01
1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:697741
Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen
2015-04-28
In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. Copyright © 2015 Elsevier B.V. All rights reserved.
The electrical discharge machining of ceramics
NASA Astrophysics Data System (ADS)
Trueman, Christopher Stuart
This study introduces the concept of developing a novel and rapid rough-machining methodology for spark eroding suitable ceramic compositions based on material removal by thermal shock induced spalling, as opposed to conventional melting mechanisms. The principal materials studied were TiB2 dispersion toughened SiC, and Syalon501 - a commercially available TiN toughened sialon ceramic specifically designed for spark erosion. A preliminary study was also carried out on a range of SiC:B4C composites. Machinability and material performance were assessed where appropriate using machining parameters, material removal rate tests, surface analysis, four-point flexure testing, and tool wear. The machining technologies which supported the different mechanisms of material removal were identified, and each mechanism investigated by analysis of captured debris and sectioning of the workpiece. The SiC:B4C composites were found to be spark erodible only with B4C levels above 50% (by mass), and material removal was found to be solely by melting mechanisms. A SiC:TiB2 composition with the addition of 26.5% TiB2 (by mass) was found to be more machinable than a composition with 10% TiB2 (by mass), achieving greater material removal rates owing to its higher electrical conductivity. An in-depth study of the latter (10%TiB2) SiC composition and Syalon501 revealed surprisingly robust materials. Under conventional sparking (no arcing), material was removed by combined dissociation, melting and evaporation. Syalon501 in particular behaved with a high degree of predictability, and neither material could be made to spall under conventional sparking. However, by imposing conditions which deliberately induced arcing, both compositions spalled large flakes of material (up to several hundred microns across) in the localised region of the arc-strike. Examination of captured debris and fracture facets of the spall interface revealed the existence of small "penny cracks", each characterised by the presence of a dispersed particle (of greater thermal expansion) at its centre acting as a stress- raising nucleation point under the intense thermal loading of arcing. Sub-surface cracks in the near horizontal and near-vertical planes were discovered in line with published models based on the application of a hot-spot to brittle material, and evidence of discrete crack propagation under the thermally punctuated pulses of successive sparking was identified. Similar sub-surface cracking was also confirmed in Syalon501 which had been subjected to arcing. Sectioning of the workpiece revealed shallow sub-surface cracks which followed the profile of the machined surface in the near-horizontal plane, and which often limited the extent of near-vertical cracking to the layer of material above the crack, thereby offering the potential for a reliable and fast "planning" technique in which material would be removed in shallow layers. This research has shown that the possibility exists for increased material removal rates and improved process efficiency under a spalling-based machining regime, in which layers of material are released by thermal-shock induced fracture caused by arcing. The viability of developing a new rough-machining technology for ceramics, in which material is "planed" away prior to fine surface finishing by conventional spark erosion has, therefore, been successfully demonstrated.
Silva, Tânia Mara Da; Sales, Ana Luísa Leme Simões; Pucci, Cesar Rogerio; Borges, Alessandra Bühler; Torres, Carlos Rocha Gomes
2017-01-01
Abstract Objective: This study evaluated the effect of food-simulating media associated with brushing and coffee staining on color stability of different composite resins. Materials and methods: Eighty specimens were prepared for each composite: Grandio SO (Voco), Amaris (Voco), Filtek Z350XT (3M/ESPE), Filtek P90 (3M/ESPE). They were divided into four groups according to food-simulating media for 7 days: artificial saliva (control), heptane, citric acid and ethanol. The composite surface was submitted to 10,950 brushing cycles (200 g load) in an automatic toothbrushing machine. The specimens were darkened with coffee solution at 37 °C for 24 h. After each treatment, color measurements were assessed by spectrophotometry, using CIE L*a*b* system. The overall color change (ΔE) was determined for each specimen at baseline (C1) and after the treatments (food-simulating media immersion/C2, brushing/C3 and dye solution/C4). Data were analyzed by two-way repeated measures ANOVA and Tukey’s tests (p < .05). Results: The results of RM-ANOVA showed significant differences for composites (p = .001), time (p = .001) and chemical degradation (p = .002). The mean of ΔE for composites were: Z350XT (5.39)a, Amaris (3.89)b, Grandio (3.75)bc, P90 (3.36)c. According to food-simulating media: heptane (4.41)a, citric acid (4.24)a, ethanol (4.02)ab, artificial saliva (3.76)b. For the treatments: dye solution (4.53)a, brushing (4.26)a, after food-simulating media (3.52)b. Conclusions: The composite resin Filtek Z350XT showed significantly higher staining than all other composite resin tested. The immersion in heptane and citric acid produced the highest color alteration than other food-simulating media. The exposure of samples to brushing protocols and darkening in coffee solution resulted in significant color alteration of the composite resins. PMID:28642926
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Manjot; Krishnan, Unni; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay
2018-02-01
Boron carbide: A traditional ceramic material shows unique properties when explored in nano-range. Specially designed boron-based nanocomposite has been synthesized by reflux method. The addition of SnO2 in base matrix increases the defect states in boron carbide and shows unique catalytic properties. The calculated texture coefficient and Nelson-Riley factor show that the synthesized nanocomposite has large number of defect states. Also this composite is explored for the first time for catalysis degradation of industrial used dyes. The degradation analysis of industrial pollutants such as Novacron red Huntsman (NRH) and methylene blue (MB) dye reveals that the composite is an efficient catalyst. Degradation study shows that 1 g/L catalyst concentration of B4C/SnO2 degrades NRH and MB dye up to approximately 97.38 and 79.41%, respectively, in 20 min under sunlight irradiation. This water-insoluble catalyst can be recovered and reused.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com; Bandyopadhyay, Kaushik; Saha, Partha
2014-07-01
In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities.more » The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.« less
NASA Astrophysics Data System (ADS)
Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang
2018-03-01
Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.
Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures
NASA Astrophysics Data System (ADS)
Longbiao, Li
2017-03-01
In this paper, the fatigue life of 2D woven ceramic-matrix composites, i.e., SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate, at room and elevated temperatures has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The Budiansky-Hutchinson-Evans shear-lag model was used to describe the microstress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress and fibers strength degradation model and oxidation region propagation model have been adopted to analyze the fatigue and oxidation effects on fatigue life of the composite, which is controlled by interface frictional slip and diffusion of oxygen gas through matrix multicrackings. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composites fatigue fractures. The fatigue life S- N curves of 2D SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate composites at room temperature and 800, 1000 and 1200 °C in air and steam have been predicted.
Zaman, Chowdury Tanira; Takeuchi, Akari; Matsuya, Shigeki; Zaman, Q H M Shawket; Ishikawa, Kunio
2008-09-01
B-type carbonate apatite (CO3Ap) block may be an ideal artificial bone substitute because it is closer in chemical composition to bone mineral. In the present study, the feasibility to fabricate CO3Ap blocks was investigated using compositional transformation, which was based on the dissolution-precipitation reaction of a gypsum-calcite composite with free-molding behavior. For the compositional change, or phosphorization, gypsum-calcite composites of varying CaCO3 contents were immersed in 1 mol/L (NH4)3PO4 aqueous solution at 100 degrees C for 24 hours. No macroscopic changes were found after the treatment, whereas microscopic change was observed at SEM level. X-ray diffraction, Fourier transform infrared spectroscopy and CHN analysis indicated that the composites were B-type CO3Ap containing approximately 6-7 wt% of CO3, a value similar to that of biological bone apatite. Diametral tensile strength of the CO3Ap block was approximately 1-3 MPa. Based on the results obtained, it was therefore concluded that gypsum-calcite was a good candidate for the fabrication of CO3Ap blocks, coupled with the advantage that the composite can be molded to any shape by virtue of the setting property of gypsum.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2006-01-01
The purpose of this study was to investigate the effect of sintering temperature on flexural properties of an alumina fiber-reinforced, alumina-based ceramic (alumina-fiber/alumina composite) prepared by a tape casting technique. The alumina-based ceramic used a matrix consisting of 60 wt% Al(2)O(3) powder and 40 wt% SiO(2)-B(2)O(3) glass powder with the following composition in terms of wt%: 33 SiO(2), 32 B(2)O(3), 20 CaO, and 15 MgO. Prepreg sheets of alumina-fiber/alumina composite in which uniaxial aligned alumina fibers were infiltrated with the alumina-based matrix were fabricated continuously using a tape casting technique employing a doctor blade system. Four sintering temperatures were investigated: 900 degrees C, 1000 degrees C, 1100 degrees C, and 1200 degrees C, all for 4 hours under atmospheric pressure in a furnace. The surface of the alumina-fiber/alumina composite after sintering was observed with a field-emission scanning electron microscope (FE-SEM). A three-point bending test was carried out to measure the flexural strength and modulus of alumina-fiber/alumina composite specimens. In addition, sintered alumina fiber was characterized by X-ray diffraction (XRD). FE-SEM observation showed that alumina-fiber/alumina composite was confirmed to be densely sintered for all sintering temperatures. Three-point bending measurement revealed that alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural strengths lower than those of alumina-fiber/alumina composite produced at sintering temperatures of 900 degrees C and 1000 degrees C; alumina-fiber/alumina composite produced at sintering temperatures of 1100 degrees C and 1200 degrees C exhibit flexural moduli lower than that of alumina-fiber/alumina composite produced at a sintering temperature of 1000 degrees C. Additional XRD pattern of alumina fiber indicated that with increasing sintering temperature, the crystallographic structure of gamma-alumina transformed to mullite. There were significant differences in the flexural properties between the alumina-fiber/alumina composite sintered at the four temperatures. This indicates that the choice of optimum sintering temperature is an important factor for successful dental applications of alumina-fiber/alumina composite developed by the tape casting system.
Arévalo, Cristina; Montealegre-Meléndez, Isabel; Ariza, Enrique; Kitzmantel, Michael; Rubio-Escudero, Cristina; Neubauer, Erich
2016-01-01
This research is focused on the influence of processing temperature on titanium matrix composites reinforced through Ti, Al, and B4C reactions. In order to investigate the effect of Ti-Al based intermetallic compounds on the properties of the composites, aluminum powder was incorporated into the starting materials. In this way, in situ TixAly were expected to form as well as TiB and TiC. The specimens were fabricated by the powder metallurgy technique known as inductive hot pressing (iHP), using a temperature range between 900 °C and 1400 °C, at 40 MPa for 5 min. Raising the inductive hot pressing temperature may affect the microstructure and properties of the composites. Consequently, the variations of the reinforcing phases were investigated. X-ray diffraction, microstructural analysis, and mechanical properties (Young’s modulus and hardness) of the specimens were carried out to evaluate and determine the significant influence of the processing temperature on the behavior of the composites. PMID:28774039
Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders
NASA Astrophysics Data System (ADS)
Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li
2009-09-01
Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.
NASA Astrophysics Data System (ADS)
Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.
2018-04-01
Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.
Shi, Lang; Ding, Wang; Yang, Shuping; He, Zhen; Liu, Suqin
2018-04-05
The positively charged ultrathin g-C 3 N 4 nanosheets are prepared by ultrasonic-assisted exfoliation of the protonated g-C 3 N 4 . Compared with the protonated g-C 3 N 4 and exfoliated g-C 3 N 4 , the positively charged ultrathin g-C 3 N 4 has abundant functional groups as well as desired dispersibility in deionized water, thus it could serve as a basic building block for designing related heterojunction composites. To take a full advantage of these features, the positively charged ultrathin g-C 3 N 4 /MoS 2 composites are fabricated through a simple electrostatic adsorption and self-assembly process followed by a hydrothermal method. By loading an appropriate amount of MoS 2 on the ultrathin g-C 3 N 4 nanosheets, the as-fabricated composites exhibit considerable improvement on the photocatalytic activities toward the degradation of typical organic pollutants (i.e., methyl orange and phenol) under visible light irradiation. The composite containing 2 wt% MoS 2 shows the highest efficiency of about 96.5% for the methyl orange degradation, which is about 3.5 times and 8 times compared to those of the positively charged ultrathin g-C 3 N 4 and bulk g-C 3 N 4 , respectively. The superb photocatalytic performance benefits from the unique advantages, including richly available reaction sites, aligned energy levels between g-C 3 N 4 and the MoS 2 , and efficient electron transfer. This work opens new possibilities for the rational design and construction of the g-C 3 N 4 based composites as highly efficient and stable visible-light driven photocatalysts for the degradation of organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural analysis of bioceramic materials for denture application
NASA Astrophysics Data System (ADS)
Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad
2016-03-01
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.
2017-10-01
In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.
Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite
NASA Astrophysics Data System (ADS)
Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh
2017-02-01
Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.
NASA Technical Reports Server (NTRS)
Asthana, R.; Singh, M.
2008-01-01
Three types of hot-pressed zirconium diboride (ZrB2)-based ultra-high-temperature ceramic composites (UHTCC), ZrB2-SiC (ZS), ZrB2-SiC-C (ZSC), and ZrB2-SCS9-SiC (ZSS), were joined to Cu-clad-Mo using two Ag-Cu brazes (Cusil-ABA and Ticusil, T(sub L) approx.1073-1173 K) and two Pd-base brazes (Palco and Palni, T(sub L) approx.1493-1513 K). Scanning Electron Microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed greater chemical interaction in joints made using Pd-base brazes than in joints made using Ag-Cu based active brazes. The degree of densification achieved in hot pressed composites influenced the Knoop hardness of the UHTCC and the hardness distribution across the braze interlayer. The braze region in Pd-base system displayed higher hardness in joints made using fully-dense ZS composites than in joints made using partially-dense ZSS composites and the carbon-containing ZSC composites. Calculations indicate a small negative elastic strain energy and an increase in the UHTCC's fracture stress up to a critical clad layer thickness . Above this critical thickness, strain energy in the UHTCC is positive, and it increases with increasing clad layer thickness. Empirical projections show a reduction in the effective thermal resistance of the joints and highlight the potential benefits of joining the UHTCC to Cu-clad-Mo.
High temperature dynamic modulus and damping of aluminum and titanium matrix composites
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Maisel, J. E.
1979-01-01
Dynamic modulus and damping capacity property data were measured from 20 to over 500 C for unidirectional B/Al (1100), B/Al (6061), B/SiC/Al (6061), Al2O3/Al, SiC/Ti-6Al-4V, and SiC/Ti composites. The measurements were made under vacuum by the forced vibration of composite bars at free-free flexural resonance near 2000 Hz and at amplitudes below 0.000001. Whereas little variation was observed in the dynamic moduli of specimens with approximately the same fiber content (50 percent), the damping of B/Al composites was found at all temperatures to be significantly greater than the damping of the Al2O3/Al and SiC/Ti composites. For those few situations where slight deviations from theory were observed, the dynamic data were examined for information concerning microstructural changes induced by composite fabrication and thermal treatment. The 270 C damping peak observed in B/Al (6061) composites after heat treatment above 460 C appears to be the result of a change in the 6061 aluminum alloy microstructure induced by interaction with the boron fibers. The growth characteristics of the damping peak suggest its possible value for monitoring fiber strength degration caused by excess thermal treatment during B/Al (6061) fabrication and use.
One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Tang, Qian; Meng, Xianfeng; Wang, Zhiying; Zhou, Jianwei; Tang, Hua
2018-02-01
TiO2/g-C3N4 composite nanofibers have been successfully synthesized by one-step electrospinning method, using titanium (IV) n-butoxide (TNBT) and urea as raw materials. The structure and compositions of TiO2/g-C3N4 samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Diffuse reflectance spectroscopy (DRS), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS) and Brunauer-Emmett-Teller (BET), respectively. The results show that the porous uniform TiO2/g-C3N4 composite nanofibers, with diameter of 100-150 nm, can be successfully prepared through electrospinning method combining 550 °C calcination process. The photocatalytic activity is evaluated by the degradation of rhodamine B (RhB) under simulated solar light. The enhanced catalytic activity is attributed predominantly to the heterojunction between TiO2 and g-C3N4, which promotes the transferring of carriers and prohibits their recombination. With the optimal doping amount of 0.6 g urea (corresponding to 3 g TNBT), the TiO2/g-C3N4 composite nanofibers exhibit the highest rate towards the photocatalytic degradation of RhB. A diagram is presented to explicate the mechanism of the whole catalytic experiment. This study might provide a promising future of applying green catalysts to solving water pollution problems.
Choy, Man Tik; Tang, Chak Yin; Chen, Ling; Wong, Chi Tak; Tsui, Chi Pong
2014-09-01
Failure of the bone-implant interface in a joint prosthesis is a main cause of implant loosening. The introduction of a bioactive substance, hydroxyapatite (HA), to a metallic bone-implant may enhance its fixation on human bone by encouraging direct bone bonding. Ti6Al4V/TiC/HA composites with a reproducible porous structure (porosity of 27% and pore size of 6-89 μm) were successfully fabricated by a rapid microwave sintering technique. This method allows the biocomposites to be fabricated in a short period of time under ambient conditions. Ti6Al4V/TiC/HA composites exhibited a compressive strength of 93 MPa, compressive modulus of 2.9 GPa and microhardness of 556 HV which are close to those of the human cortical bone. The in vitro preosteoblast MC3T3-E1 cells cultured on the Ti6Al4V/TiC/HA composite showed that the composite surface could provide a biocompatible environment for cell adhesion, proliferation and differentiation without any cytotoxic effects. This is among the first attempts to study the in vivo performance of load-bearing Ti6Al4V/TiC and Ti6Al4V/TiC/HA composites in a live rabbit. The results indicated that the Ti6Al4V/TiC/HA composite had a better bone-implant interface compared with the Ti6Al4V/TiC implant. Based on the microstructural features, the mechanical properties, and the in vitro and in vivo test results from this study, the Ti6Al4V/TiC/HA composites have the potential to be employed in load-bearing orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.
24. Duplicate negative of an historic negative. 'AERIAL VIEW OF ...
24. Duplicate negative of an historic negative. 'AERIAL VIEW OF AREA 'B' HOLSTON ORDNANCE WORKS.' 1944. #OCMH 4-12.2ASAV3 in Super Explosives Program RDX and Its Composition A, B, & C, Record Group No. 319, National Archives, Washington, D.C. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN
1988-03-31
NUMBER IN POOLED SAMPLE AT EACH PLOT Al Tettigoniidao 5-- -- -- - -- -- - -- -- - -- -- - - -- - -- - Al Tettigoniidae 5 A3 Tettigoniidas 7 A4... Tettigoniidae 28 B) Tettigoniidae 10 82 Tettigoniidae 34 B3 Tettigoniidae 8 B4 Tettlioniidae 9 B5 Tettigoniidae 14 Cl Tottigoniida. 81 Acridiidae I C2...Ttttigoniidat 58 C3Tettigoniidae 28 C4 Tettigoniida . 17 15 TABLE 2 contd... TABLE 2(c) Composition of soil dwelling invertebrate fauna sampled by pitfall traps
Positioning Vascularized Composite Allotransplantation in the Spectrum of Transplantation
2017-10-01
have now shown that the efficacy of both protocols is dependent upon a radiation-sensitive donor bone marrow (BM) cell type that is of T or B cell... dependent VCA survival. IL-2C Therapy Increases the Number but Not Function of Foxp3 CD4+ Treg Cells To test the effects of JES6-1 mAb-based IL-2C...which Treg cell- dependent immunoregulation has considerable potential. These IL-2C studies are now “in press” (4). TASK 5: OPTIMAL COMBINATION
Fractographic Analysis of HfB2-SiC and ZrB2-SiC Composites
NASA Technical Reports Server (NTRS)
Mecholsky, J.J., Jr.; Ellerby, D. T.; Johnson, S. M.; Stackpoole, M. M.; Loehman, R. E.; Arnold, Jim (Technical Monitor)
2001-01-01
Hafnium diboride-silicon carbide and zirconium diboride-silicon carbide composites are potential materials for high temperature leading edge applications on reusable launch vehicles. In order to establish material constants necessary for evaluation of in-situ fracture, bars fractured in four point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values, and the crack branching constants were established to use in forensic fractography of materials for future flight applications. The fracture toughnesses range from about 13 MPam (sup 1/2) at room temperature to about 6 MPam (sup 1/2) at 1400 C for ZrB2-SiC composites and from about 11 MPam (sup 1/2) at room temperature to about 4 MPam (sup 1/2) at 1400 C for HfB2-SiC composites.
NASA Technical Reports Server (NTRS)
Smith, S. R.; Carter, W. J., III; Mateescu, G. D.; Kohl, F. J.; Fryburg, G. C.; Stearns, C. A.
1980-01-01
A study of the high-temperature oxidation and Na2SO4-induced hot corrosion of nickel-base superalloys has been accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Hot corrosion of B-1900 was induced by applying a coating of Na2SO4 to preoxidized samples, then heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy showed a marked surface enrichment of Ti. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed before the onset of rapidly accelerating weight gain. Marked changes in surface composition coincided with the beginning of accelerating corrosion, the most striking of which were a tenfold decrease in the sulfur to sodium ratio and an increase in the Cr(VI) to Cr(III) ratio.
Development of 1100 °C Capable Alumina-Forming Austenitic Alloys
Brady, M. P.; Muralidharan, G.; Yamamoto, Y.; ...
2016-11-18
Recently dalumina-forming austenitic (AFA) alloys based on ~12–32 weight % (wt%) Ni have been developed and offer an attractive combination of oxidation resistance and creep resistance at relatively low alloy cost. But, they exhibit a transition to internal oxidation and nitridation of Al above ~750–950 °C depending on composition and exposure environment. In order to identify AFA compositions capable of higher-temperature operation for applications such as ethylene cracking, the oxidation behavior of a series of developmental, as-cast nominal Fe–(25–45)Ni–(10–25)Cr–(4–5)Al–1Si–0.15Hf–0.07Y–0.01B wt% base alloys with and without Nb, Ti, and C additions was evaluated at 1100 °C in air with 10% watermore » vapor. Furthermore, we observed protective alumina scale formation at levels of 35Ni, 25Cr, and 4Al with additions of Nb and C, indicating promise for 1100°C capable cast AFA alloys.« less
Pressure-reaction synthesis of titanium composite materials
Oden, Laurance L.; Ochs, Thomas L.; Turner, Paul C.
1993-01-01
A pressure-reaction synthesis process for producing increased stiffness and improved strength-to-weight ratio titanium metal matrix composite materials comprising exothermically reacting a titanium powder or titanium powder alloys with non-metal powders or gas selected from the group consisting of C, B, N, BN, B.sub.4 C, SiC and Si.sub.3 N.sub.4 at temperatures from about 900.degree. to about 1300.degree. C., for about 5 to about 30 minutes in a forming die under pressures of from about 1000 to 5000 psi.
Giant dielectric constant in CaCu3Ti4O12-MgB2 composites near the percolation threshold
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Fernandez, Lucia; Lawes, Gavin; Nadgorny, Boris
2013-03-01
We have investigated the enhancement of the dielectric constant K in CaCu3Ti4O12 (CCTO)-MgB2 composite near the percolation threshold. To optimize the dielectric properties of pure CCTO we have sintered the samples at variuos temperatures. We will present the results of the measurements of K in a broad frequency for pure CCTO for the samples sintered at 1100°C and 500°C. Commercially available MgB2 powder was mixed with different weight fractions of CCTO and the pressure of 1GPa was applied to form composite pellets. Near the percolation threshold PC, CCTO/MgB2 composite system exhibit a dramatic increase of the dielectric constant K by several orders of magnitude, compared to pure CCTO. We will also discuss the magnetic field dependence of the capacitance of CCTO composite powders.
Evaluation of low-cost aluminum composites for aircraft engine structural applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Signorelli, R. A.
1983-01-01
Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites.
Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong
2013-01-01
The ablation and oxidation of ZrB2-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters (i.e., heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance. PMID:28809239
Esatbeyoglu, Tuba; Wray, Victor; Winterhalter, Peter
2010-07-14
Fifty-seven samples have been analyzed with regard to the occurrence of dimeric procyanidins B1-B8 as well as the composition of polymeric procyanidins. Fifty-two samples were found to contain polymeric procyanidins. In most of the samples, (-)-epicatechin was the predominant unit present. In white willow bark (Salix alba), however, large amounts of (+)-catechin (81.0%) were determined by means of phloroglucinolysis. White willow bark has therefore been used for the semisynthetic formation of dimeric procyanidins B3 [(+)-C-4alpha --> 8-(+)-C)], B4 [(+)-C-4alpha --> 8-(-)-EC)], B6 [(+)-C-4alpha --> 6-(+)-C)], and B8 [(+)-C-4alpha --> 6-(-)-EC)]. The reaction mixtures of the semisynthesis were successfully fractionated with high-speed countercurrent chromatography (HSCCC), and dimeric procyanidins B3, B4, B6, and B8 were obtained on a preparative scale.
NASA Astrophysics Data System (ADS)
Gu, Dongdong; Ma, Chenglong
2018-05-01
Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.
NASA Astrophysics Data System (ADS)
Pan, Hai; Xu, Mingzhen; Liu, Xiaobo
2017-12-01
PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.
Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; ...
2017-07-25
Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less
NASA Astrophysics Data System (ADS)
Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.
2017-11-01
Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir
Here, Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe 100–xNi x) 80Nb 4Si 2B 14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in allmore » alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe 30Ni 70) 80Nb 4Si 2B 14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr 23C 6-type structure and a likely composition of Fe 21Nb 2B 6. Toroidal losses have been measured for (Fe 70Ni 30) 80Nb 4Si y B 16–y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W 1.0T, 400 Hz = 0.9 W/kg and W 1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad
Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051more » Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.« less
Facile synthesis of Fe3O4/C composites for broadband microwave absorption properties
NASA Astrophysics Data System (ADS)
Liu, Xiang; Ma, Yating; Zhang, Qinfu; Zheng, Zhiming; Wang, Lai-Sen; Peng, Dong-Liang
2018-07-01
Rod-like and flower-like Fe3O4/C composites were successfully synthesized via a facile approach in aqueous phase. The morphologies, structures and static magnetic properties of as-prepared rod-like and flower-like Fe3O4/C composites were characterized thoroughly. The relative complex permittivity and permeability of Fe3O4/C/paraffin composites were recorded by a vector network analyzer (VNA) in the range of 1-18 GHz. The resonant-antiresonant electromagnetic behavior was observed simultaneously in both rod-like and flower-like Fe3O4/C composites. Moreover, the resonant-antiresonant behavior was explained using displacement current lag at the "core/shell" interface. The flower-like Fe3O4/C/paraffin composites show superior microwave absorption performance with minimum reflection loss (RL) of up to -18.73 dB at 15.37 GHz. Comparatively, the rod-like Fe3O4/C/paraffin composites have uncommon continuous trinal absorption peaks at a thickness of 2.5 mm that effectively broadens the absorption bandwidth which is from 8.0 to 13.4 GHz. Furthermore, the microwave absorption mechanism has been discussed to provide a novel design for microwave absorption materials.
Synthesis and processing of nanostructured BN and BN/Ti composites
NASA Astrophysics Data System (ADS)
Horvath, Robert Steven
Superhard materials, such as cubic-BN, are widely used in machine tools, grinding wheels, and abrasives. Low density combined with high hardness makes c-BN and its composites attractive candidate materials for personnel and vehicular armor. However, improvements in toughness, and ballistic-impact performance, are needed to meet anticipated performance requirements. To achieve such improvements, we have targeted for development nanostructured c-BN, and its composites with Ti. Current research utilizes an experimental high pressure/high temperature (HPHT) method to produce these materials on a laboratory scale. Results from this work should transfer well into the industrial arena, utilizing high-tonnage presses used in the production of synthetic diamond and c-BN. Progress has been made in: (1) HPHT synthesis of cBN powder using Mg as catalyst; (2) HPHT consolidation of cBN powder to produce nanostructured cBN; (3) reactive-HPHT consolidation of mixed cBN/Ti powder to produce nanostructured Ti- or TiB2/TiN-bonded cBN; and (4) reactive-HPHT consolidation of mixed hBN/Ti powder to produce nanostructured Ti-bonded TiB2/TiN or TiB2/TiN. Even so, much remains to be done to lay a firm scientific foundation to enable the reproducible fabrication of large-area panels for armor applications. To this end, Rutgers has formed a partnership with a major producer of hard and superhard materials. The ability to produce hard and superhard nanostructured composites by reacting cBN or hBN with Ti under high pressure also enables multi-layered structures to be developed. Such structures may be designed to satisfy impedance-mismatch requirements for high performance armor, and possibly provide a multi-hit capability. A demonstration has been made of reactive-HPHT processing of multi-layered composites, consisting of alternating layers of superhard Ti-bonded cBN and tough Ti. It is noteworthy that the pressure requirements for processing Ti-bonded cBN, Ti-bonded TiB2/TiN, and their corresponding multi-layered structures are in the 0.1-1.0 GPa range, well within the capabilities of today's hot-pressing technologies; thus scaling this new reactive-HPHT processing technology seems assured. Future research will focus on establishing mechanisms and kinetics of the various phase transformations observed during reactive-HPHT processing, with the objective of being able to optimize processing parameters to generate nanostructured cBN-based and TiB2/TiN-based composites that display superior mechanical properties, particularly under high-strain-rate conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
Development of high-energy silicon-based anode materials for lithium-ion storage
NASA Astrophysics Data System (ADS)
Yi, Ran
The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underneath electrochemical performance have been revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro-sized Si-based anodes. To further improve the the rate capability of Si-based anode materials, an effecitive method of facile boron doping was demonstrated. Boron-doped Si-C composite can deliver a high capacity of 575 mAh/g at 6.4 A/g without addition of any conductive additives, 80% higher than that of undoped composite. Compared to the obvious capacity fading of undoped Si-C composite, boron-doped Si-C composite maintains its capacity well upon long cycling at a high current density. Electrochemical impedance spectroscopy (EIS) measurement shows boron-doped Si-C composite has lower charge transfer resistance, which helps improve its rate capability. A novel micro-sized graphene/Si-C composite (G/Si-C) was then developed to translate the performance of such micro-sized Si-C composites from the material level to the electrode level aiming to achieve high areal capacities (mAh/cm2) besides gravimetric capacities (mAh/g). Owing to dual conductive networks both within single particles formed by carbon and between different particles formed by graphene, low electrical resistance can be maintained at high mass loading, which enables a high degree of material utilization. Areal capacity thus increases almost linearly with mass loading. As a result, G/Si-C exhibits a high areal capacity of 3.2 mAh/cm2 after 100 cycles with high coulombic efficiency (average 99.51% from 2nd to 100th cycle), comparable to that of commercial anodes. Finally, a micro-sized Si-based material (B-Si/SiO2/C) featuring high rate performance was developed via a facile route without use of toxic hydrofluoric acid. A Li-ion hybrid battery constructed of such a Si-based anode and a porous carbon cathode was demonstrated with both high power and energy densities. Boron-doping is employed to improve the rate capability of B-Si/SiO2/C. At a high current density of 6.4 A/g, B-Si/SiO 2/C delivers a capacity of 685 mAh/g, 2.4 times that of the undoped Si/SiO2/C. Benefiting from the high rate performance along with low working voltage, high capacity and good cycling stability of B-Si/SiO 2/C, the hybrid battery exhibits a high energy density of 128 Wh/kg at 1229 W/kg. Even when power density increases to the level of a conventional supercapacitor (9704 W/kg), 89 Wh/kg can be obtained, the highest values of any hybrid battery to date. Long cycling life (capacity retention of 70% after 6000 cycles) and low self-discharge rate (voltage retention of 82% after 50 hours) are also achieved.
Synthesis and Comparison of Two cBN Composites with Starting Ternary Carbide Binders
NASA Astrophysics Data System (ADS)
Yue, Zhenming; Yang, Limin; Gong, Jianhong; Gao, Jun
2018-04-01
Ti3SiC2 and Ti3AlC2 are two promising binders for the ultrahard composite polycrystalline cubic boron nitride (PcBN). In this study, the cBN composites with Ti3SiC2 and Ti3AlC2 binders with different binder contents were synthesized under the same high pressure ( 5.5 GPa) and high temperature (1350 °C) conditions. Their mechanical properties were measured separately, including Vickers hardness, bending hardening, and compression hardening. Together with XRD results, the phase compounds were also investigated. The decomposition and reaction processes were affected by binder content. Some new compounds formed during sintering, these compounds were TiC, TiSi2, SiC, TiB2, SiB4, TiB2, and TiC0.7N0.3 in Ti3SiC2-cBN composites, as well as TiC0.7N0.3, TiB2, and AlN in Ti3AlC2-cBN composites. The microstructure of the cracks surface was obtained after the bending tests, and was used to further investigate and compare their crack mode by SEM. The crack surface profile and elementary analysis on the oxidative surface were also discussed.
Synthesis and Comparison of Two cBN Composites with Starting Ternary Carbide Binders
NASA Astrophysics Data System (ADS)
Yue, Zhenming; Yang, Limin; Gong, Jianhong; Gao, Jun
2018-05-01
Ti3SiC2 and Ti3AlC2 are two promising binders for the ultrahard composite polycrystalline cubic boron nitride (PcBN). In this study, the cBN composites with Ti3SiC2 and Ti3AlC2 binders with different binder contents were synthesized under the same high pressure ( 5.5 GPa) and high temperature (1350 °C) conditions. Their mechanical properties were measured separately, including Vickers hardness, bending hardening, and compression hardening. Together with XRD results, the phase compounds were also investigated. The decomposition and reaction processes were affected by binder content. Some new compounds formed during sintering, these compounds were TiC, TiSi2, SiC, TiB2, SiB4, TiB2, and TiC0.7N0.3 in Ti3SiC2-cBN composites, as well as TiC0.7N0.3, TiB2, and AlN in Ti3AlC2-cBN composites. The microstructure of the cracks surface was obtained after the bending tests, and was used to further investigate and compare their crack mode by SEM. The crack surface profile and elementary analysis on the oxidative surface were also discussed.
Liu, Min Hsien; Chen, Cheng; Hong, Yaw Shun
2005-02-08
A three-parametric modification equation and the least-squares approach are adopted to calibrating hybrid density-functional theory energies of C(1)-C(10) straight-chain aldehydes, alcohols, and alkoxides to accurate enthalpies of formation DeltaH(f) and Gibbs free energies of formation DeltaG(f), respectively. All calculated energies of the C-H-O composite compounds were obtained based on B3LYP6-311++G(3df,2pd) single-point energies and the related thermal corrections of B3LYP6-31G(d,p) optimized geometries. This investigation revealed that all compounds had 0.05% average absolute relative error (ARE) for the atomization energies, with mean value of absolute error (MAE) of just 2.1 kJ/mol (0.5 kcal/mol) for the DeltaH(f) and 2.4 kJ/mol (0.6 kcal/mol) for the DeltaG(f) of formation.
Thermal fatigue-and-oxidation-resistant alloy
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Waters, W. J.; Spera, D. A.
1976-01-01
Cast nickel-base alloy designated as NASA TAZ-8A has been developed for use in high temperature aircraft engine components. TAZ-8A composition is 8Ta, 6Cr, 6A1, 4Mo, 4W, 2Cb, 0.5Zr, 0.125C, 0.004B, and balance Ni (weight percent). Its specific gravity at room temperature is 8.65.
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
2015-03-06
was formed by ZrO2 rounded grains containing W traces and covered by H3BO3 acicular crystals deriving from hydration of B2O3 after exposure to...TaSi2 grains tended to form large pockets as wide as 3-8 m. Other spurious phases formed upon decomposition of the additive, were identified as SiC
Türker, Onur Can; Baran, Talat
2017-06-15
Boron exists in various types of water environments, and it is difficult and costly to remove B with conventional treatment methods from drinking water. Clearly, alternative and cost effective treatment techniques are imperative. In the present study, an innovative and environment friendly method based on hybrid systems consisting of various chitosan composite beads and Lemna gibba were evaluated for removal of B from drinking water. Our results from batch adsorption experiment indicated that a plant-based chitosan composite bead has a higher capacity of B removal than mineral-based chitosan composite beads. Almost 50% of total B removal was achieved using the hybrid system based on dried Lemna-chitosan composite beads and Lemna gibba combination in 4 days. Even at the high B concentration (8mgBL -1 ), B in drinking water could be reduced to less than 2.4mgL -1 when 0.05g plant-based chitosan composite beads and 12 Lemna fronds were used for 50mL test solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature
NASA Astrophysics Data System (ADS)
Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen
2018-05-01
A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.
Nie, Jinfeng; Wang, Fang; Li, Yusheng; Cao, Yang; Liu, Xiangfa; Zhao, Yonghao; Zhu, Yuntian
2017-01-01
In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM). The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies. PMID:28772467
Polyimide Composites Based on Asymmetric Dianhydrides (a-ODPA vs a-BPDA)
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.
2009-01-01
Two series of low-melt viscosity imide resins (2-15 poise at 260-280 C) were formulated from either asymmetric oxydiphthalic anhydride (a-ODPA) or asymmetric biphenyl dianhydride (a- BPDA) with 4-phenylethynyl endcap (PEPA), along with 3,4'-oxydianiline, 3,4 - methylenedianiline, 3,3 -methylenedianiline or 3,3 -diaminobenzophenone, using a solvent-free melt process. These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fabric composites by resin transfer molding (RTM). Composites from a-ODPA based resins display better open-hole compression strength and short beam shear strength from room temperature to 288 C than that of the corresponding a-BPDA based resins. However, due to the lower Tg s of a-ODPA based resins (265-330 C), their corresponding composites do not possess 315 C use capability while the a-BPDA based composites do. In essence, RTM 370 (T g = 370 C), derived from a-BPDA and 3,4 -ODA and PEPA, exhibits the best overall property performance at 315 C (600 F).
Two-step infiltration of aluminum melts into Al-Ti-B4C-CuO powder mixture pellets
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Lee, Jung-Moo; Cho, Young-Hee; Kim, Su-Hyeon; Yu, Huashun
2016-03-01
Aluminum matrix composites with a high volume fraction of B4C and TiB2 were fabricated by a novel processing technique - a quick spontaneous infiltration process. The process combines a pressureless infiltration with the combustion reaction of Al-Ti-B4C-CuO in molten aluminum. The process is realized in a simple and economical way in which the whole process is performed in air in a few minutes. To verify the rapidity of the process, the infiltration kinetics was calculated based on the Washburn equation in which melt flows into a porous skeleton. However, there was a noticeable deviation from the calculated results with the experimental results. Considering the cross-sections of the samples at different processing times, a new infiltration model (two step infiltration) consisting of macro-infiltration and micro-infiltration is suggested. The calculated kinetics results in light of the proposed model agree well with the experimental results.
Effects of gravity on combustion synthesis of functionally graded biomaterials
NASA Astrophysics Data System (ADS)
Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.
2003-07-01
Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.
NASA Astrophysics Data System (ADS)
Nanjunda Reddy, B. H.; Ranjan Rauta, Pradipta; Venkatalakshimi, V.; Sreenivasa, Swamy
2018-02-01
The aim of this research is to inspect the effect of Cloisite-30B (C30B) modified clay dispersed poly (acrylamide-co-Sodiumalginate)/AgNp hydrogel nanocomposites (PASA/C30B/Ag) for drug delivery and antibacterial activity. A novel hydrogel composite based sodium alginate (SA) and the inorganic modified clay with silver nano particle (C30B/AgNps)polymer hydrogel composites are synthesized via the graft copolymerization of acrylamide (AAm) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium per sulfate(APS) as an initiator. The UV/Visible spectroscopy of obtained composites is successfully studied, which confirms the occurrence of AgNps in the hydrogel composites. And the swelling capacity and bovine serum albumin (BSA) protein as model drug delivery study for these hydrogel nanocomposites have been carried out. The C30B/Ag filled hydrogel composites exhibit superior water absorbency or swelling capacity compared to pure samples and it is establish that the formulations with clay (C30B) dispersed silver nanocomposite hydrogels show improved and somewhat faster rate of drug delivery than other formulations(pure systems) and SEM and TEM reports suggests that the size of AgNps in the composite hydrogels is in the range of 5-10 nm with shrunken surface and the antibacterial characterizations for gram positive and gram negative bacteria are carried out by using Streptococcus faecalis (S. Faecalis) and Escherichia coli (E.coli) as model bacteria and the hydrogel composites of PASA/C30B/Ag shows exceptional antibacterial activity against both the bacteria as compared to pure hydrogel composites samples.
Deformation mechanisms in advanced structural ceramics due to indentation and scratch processes
NASA Astrophysics Data System (ADS)
Ghosh, Dipankar
Plasma pressure compaction technique was used to develop boron carbide (B4C) and zirconium diboride-silicon carbide (ZrB2-SiC) composite. B4C ceramics are extensively used as body armor in military and civilian applications, and ZrB2-SiC composite has been recognized as a potential candidate for high-temperature aerospace applications. In this dissertation, processing parameters, quasistatic and high-strain rate mechanical response, and fundamental deformation mechanisms of these materials have been investigated. In the case of B4C, the rate sensitivity of indentation hardness was determined using a dynamic indentation hardness tester that can deliver loads in 100 micros. By comparing dynamic hardness with the static hardness, it was found that B4C exhibits a lower hardness at high-strain rate, contrary to known behavior in many structural ceramics. However, these results are consistent with the ballistic testing of B4C armors as reported in recent literature. This behavior was further investigated using a series of spectroscopic techniques such as visible and UV micro-Raman, photoluminescence and infrared. These studies not only confirmed that structural transformation occurred during indentation experiments similar to that in ballistic testing of B4C but also suggested a greater degree of structural changes under dynamic loading compared to static loading. Due to the potential application as external heat shields in supersonic vehicles, scratch studies were conducted on the ZrB2-SiC composite. These studies revealed metal-like slip-line patterns which are indeed an unusual in brittle solids at room-temperature. Utilizing classical stress field solutions under combined normal and tangential loads, a rationale was developed for understanding the formation of scratch-induced deformation features. Also, an analytical framework was developed, combining the concept of 'blister field' and the 'secular equation' relating Raman peaks to strain, to measure scratch-induced residual stress employing micro-Raman spectroscopy. Transmission electron microscopic investigations confirmed the existence of dislocations within the ZrB2 phase. It has been argued here that readily detectable slipline patterns are reflection of metallicity in chemical bonding present in ZrB2 ceramics which has also been suggested in recent literature from chemical bonding and electronic structure investigations.
NASA Astrophysics Data System (ADS)
Raju, K.; Sonber, J. K.; Murthy, T. S. R. Ch.; Sairam, K.; Majumdar, S.; Kain, V.; Nageswar Rao, G. V. S.
2018-05-01
This paper reports the results of investigation on densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. CrB2 + EuB6 (10 and 20 wt.%) composites have been fabricated by hot pressing at a temperature of 1700 °C and 35 MPa pressure. The hardness and flexural strength were measured in the range of 21.25-24.48 GPa and 171-199 MPa, respectively. The fracture toughness increased from 3.3 to 4.01 MPa m1/2 by the addition of 20% EuB6. Microstructural evolution revealed the uniform distribution of EuB6 and absence of any reaction product. Fracture surface analysis confirmed the presence of transgranular mode of fracture. Oxidation study at 1200 °C revealed that the developed composites have good oxidation resistance and followed the parabolic rate of oxidation.
Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites
NASA Astrophysics Data System (ADS)
Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan
2018-02-01
This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.
Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei
2015-09-16
An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).
Characterization of B4C-composite-reinforced aluminum alloy composites
NASA Astrophysics Data System (ADS)
Singh, Ram; Rai, R. N.
2018-04-01
Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance
2005-01-01
Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.
Investigation of the fracture mechanics of boride composites
NASA Technical Reports Server (NTRS)
Kaufman, L.; Clougherty, E. V.; Nesor, H.
1971-01-01
Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.
Noble gases in CH 4-rich gas fields, Alberta, Canada
NASA Astrophysics Data System (ADS)
Hiyagon, H.; Kennedy, B. M.
1992-04-01
The elemental and isotopic compositions of helium, neon, argon, and xenon in twenty-one CH 4-rich natural gas samples from Cretaceous and Devonian reservoirs in the Alberta, Canada, sedimentary basin were measured. In all but a few cases, radiogenic ( 4He, 40Ar, and 131-136Xe) and nucleogenic ( 21,22Ne) isotopes dominated. Based solely on the noble gas composition, two types of natural gas reservoirs are identified. One (Group B) is highly enriched in radiogenic-nucleogenic noble gases and varies little in composition: 3He /4He = 1.5 ± 0.5 × 10 -8, 40Ar /36Ar = 5000-6500 , 40∗Ar /4He = 0.10 , 136∗Xe /4He ~ 0.7 × 10 -9, and 21∗Ne /22∗Ne = 0.452 ± 0.041 (∗ denotes radiogenic or nucleogenic origin; all 4He is radiogenic). High nitrogen content with 4He /N 2 ~ 0.06 is also characteristic of Group B samples. The remaining samples (Group A) contain a radiogenic-nucleogenic component with a different composition and, relative to Group B samples, the extent of enrichment in this component is less and more variable: 3He /4He = 10-70 × 10 -8, 40Ar /36Ar < 1550 , and 40∗Ar /4He ~ 0.25 . The composition of Group B radiogenic-nucleogenic noble gases is consistent with production in crust of average composition. Enrichment in Group B noble gases and nitrogen increases with proximity to the underlying Precambrian basement, consistent with a present-day mass flux into the overlying sedimentary basin. Inferred 40∗Ar /136∗Xe 4He ratios imply a basement source enriched in thorium relative to uranium and potassium (Th/U > 20). Combined, the overall lower total radiogenic-nucleogenic content of Group A reservoirs, the greater variability in composition, and the appearance of Group A noble gases in reservoirs higher in the sedimentary sequence relative to the underlying basement implies that the Group A radiogenic-nucleogenic noble gases are indigenous to the sediments. The most interesting aspect of the Group A noble gases are the very high 3He /4He ratios; ~ 10-70 times greater than expected if derived from average crust. The mantle, surface cosmogenic 3He production, cosmic dust, or production in a lithium-enriched environment as potential sources for the 3He excesses are evaluated. The present data set would seem to rule out cosmogenic 3He. The mantle, cosmic dust, or high Li, however, remain viable candidates. The relative abundances of the nonradiogenic, non-nucleogenic noble gases show no correlation with the Group A-B reservoir classification. Compositional variations indicate three-component mixing between air or an air-like component, 10°C air-saturated water, and a third component enriched in xenon. Apparently, the latter cannot be derived from equilibrium solubility degassing of air-saturated water or oil-water mixtures, and may have been derived from devolatilization of C-rich petroleum source sediments.
NASA Technical Reports Server (NTRS)
Garlick, R. G.; Lowell, C.
1973-01-01
High temperature X-ray diffraction studies were performed to investigate isothermal and cyclic oxidation at 1000 and 1100 C of the nickel-base superalloys VIA, B-1900, 713C, and 738X. Oxidation was complex. The major oxides, Al2O3, Cr2O3, and the spinels, formed in amounts consistent with alloy chemistry. The alloys VIA and B-1900 (high Al, low Cr alloys) tended to form Al2O3 and NiAl2O4; 738X (high Cr, low Al) formed Cr2O3 and NiCr2O4. A NiTa2O6 type of oxide formed in amounts approximately proportional to the refractory metal content of the alloy. One of the effects of cycling was to increase the amount of spinels formed.
NASA Astrophysics Data System (ADS)
Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan
2018-01-01
(Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.
Montealegre-Melendez, Isabel; Arévalo, Cristina; Ariza, Enrique; Rubio-Escudero, Cristina; Kitzmantel, Michael; Neubauer, Erich
2017-01-01
In the last decade, titanium metal matrix composites (TMCs) have received considerable attention thanks to their interesting properties as a consequence of the clear interface between the matrix and the reinforcing phases formed. In this work, TMCs with 30 vol % of B4C are consolidated by hot pressing. This technique is a powder metallurgy rapid process. Incorporation of the intermetallic to the matrix, 20 vol % (Ti-Al), is also evaluated. Here, the reinforcing phases formed by the reaction between the titanium matrix and the ceramic particles, as well as the intermetallic addition, promote substantial variations to the microstructure and to the properties of the fabricated composites. The influences of the starting materials and the consolidation temperature (900 °C and 1000 °C) are investigated. By X-ray diffraction, scanning and transmission electron microscopy analysis, the in-situ-formed phases in the matrix and the residual ceramic particles were studied. Furthermore, mechanical properties are studied through tensile and bending tests in addition to other properties, such as Young’s modulus, hardness, and densification of the composites. The results show the significant effect of temperature on the microstructure and on the mechanical properties from the same starting powder. Moreover, the Ti-Al addition causes variation in the interface between the reinforcement and the matrix, thereby affecting the behaviour of the TMCs produced at the same temperature. PMID:29077066
Effect of Sb on physical properties and microstructures of laser nano/amorphous-composite film
NASA Astrophysics Data System (ADS)
Li, Jia-Ning; Gong, Shui-Li; Sun, Mei; Shan, Fei-Hu; Wang, Xi-Chang; Jiang, Shuai
2013-11-01
A nano/amorphous-composite film was fabricated by laser cladding (LC) of the Co-Ti-B4C-Sb mixed powders on a TA15 alloy. Such film mainly consisted of Ti-Al, Co-Ti, Co-Sb intermetallics, TiC, TiB2, TiB, and the amorphous phases. Experimental results indicated that the crystal systems of TiB2 (hexagonal)/TiC (cubic) and Sb (rhombohedral) played important role on the formation of such film. Due to the mismatch of these crystals systems and mutual immiscibility of the metallic components, Sb was not incorporated in TiB2/TiC, but formed separate nuclei during the film growth. Thus, the growth of TiB2/TiC was stopped by the Sb nucleus in such LC molten pool, so as to form the nanoscale particles.
Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Switzer, L L; Garcia, F
2005-09-26
Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This workmore » will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bin, E-mail: huangbin@nwpu.edu.cn; Li, Maohua; Chen, Yanxia
The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC{sub f}/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC{sub f}/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC{sub f}/Ti-6Al-4V composites can be described as SiC||TiC||Ti{sub 5}Si{sub 3} + TiC||Ti-6Al-4V and SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces.more » For the SiC{sub f}/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC{sub F}||TiC{sub C}||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti-6Al-4V. Furthermore, in SiC{sub f}/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC{sub f}/Ti-6Al-4 V composites as well as in the SiC{sub f}/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC{sub f}/Ti-6Al-4 V composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.« less
Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration
Li, Meng; Sun, Youhong; Meng, Qingnan; Wu, Haidong; Gao, Ke; Liu, Baochang
2016-01-01
A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC)-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs. PMID:28774124
NASA Astrophysics Data System (ADS)
Bao, Yongchao; Chen, Kezheng
2018-04-01
The novel BiOBr/reduced graphene oxide/protonated g-C3N4 (BiOBr/RGO/pg-C3N4) composites were successfully synthesized by using a facile solvothermal synthesis method. The structure, morphology, optical and electronic properties were explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectrochemical measurement. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of Rhodamine B (Rh B) and tetracycline hydrochloride (TC) aqueous solution under visible light irradiation (λ > 420nm). Compared with BiOBr, protonated g-C3N4 (pg-C3N4), BiOBr/pg-C3N4 and RGO/pg-C3N4, BiOBr/RGO/pg-C3N4 composites exhibited higher photocatalytic activity. The total organic carbon (TOC) removal ratios of Rh B and TC over 10% BiOBr/RGO/pg-C3N4 were 88% and 59%, respectively. The excellent photcatalytic performance was investigated by photoluminescence spectroscopy (PL), the radical quenching and electron spin resonance experiments. A Z-scheme charge transfer mechanism was proposed, in which RGO acted as an electron transfer mediator. It was worth pointing out that the closely contacted two-dimensional interface among the BiOBr, the RGO and pg-C3N4 promoted the separation and transfer of photo-generated charge carriers, and thus enhanced the photocatalytic efficiency.
NASA Technical Reports Server (NTRS)
Mateescu, G. D.; Smith, S. R.
1979-01-01
Research on the high temperature oxidation and Na2SO4 induced hot corrosion of some nickel base superalloys was accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of B-1900 was induced applying a coating of Na2SO4 to peroxidized samples, the heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy was determined, and a marked surface enrichment of Ti was found in each case. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed to occur long before the onset of accelerating weight-gain. Changes in surface composition were observed to coincide with the beginning of accelerating corrosion, the most striking of which was a tenfold decrease in the sulfur to sodium ration and an increase in the Cr(VI) ratio.
Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass
2012-08-01
Molecular-Level Simulations of Shock Generation and Propagation in Soda-Lime Glass M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, C ...transparent structures with thickness approaching several inches; (b) relatively low material and manufacturing costs; and ( c ) compositional modifications... c ) models based on explicit crack representation (Ref 15, 16). Since a M. Grujicic, W.C. Bell, and B. Pandurangan, Department of Mec- hanical
Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan
2017-09-20
The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.
Heat, Moisture and Chemical Resistant Polyimide Compositions and Methods for Making and Using Them
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
2004-01-01
Polyimides having a desired combination of high thermo-oxidative stability, low moisture absorption and excellent chemical and corrosion resistance are prepared by reacting a mixture of compounds including (a) 3,3',4,4'- benzophenonetetracarboxylic dianhydride (BTDA), (b) 3,4'- oxydianiline (3,4'-ODA), and (c) 5-norbornene-2,3- dicarboxylic anhydride (NA) in a high boiling, aprotic solvent to give 5 to 35% by weight of polyamic acid solution. The ratio of (a), (b), and (c) is selected to afford a family of polyimides having different molecular weights and properties. The mixture first forms a polyamic acid precursor. Upon heating at or above 300 C, the polyamic acids form polyimides, which are particularly suitable for use as a high temperature coating, adhesive, thin film, or composite matrix resin.
NASA Astrophysics Data System (ADS)
Dhaneswara, D.; Zulfia, A.; Pramudita, T. P.; Ferdian, D.; Utomo, B. W.
2018-03-01
Addition of Ti-B grain refiner in Al-ADC12/nanoSiC composite results in improvement of tensile strength, hardness, and wear resistance through grain refinement. In this research, composite of Al-ADC12/nano SiC (0.15 %vf) with variations of TiB respectively (0.0), (0.02), (0.04), (0.06), dan (0.08) wt% were produced by stir casting. 10% of Mg were added to promote wettability between reinforce and matrix. It was found the best addition of TiB is 0.04 wt% Ti-B which results 135,9 MPa in tensile strength, 46 HRB in hardness, and 1.47x10-5 mm3/s as wear rate. The increase in mechanical properties of composites mainly because of Al3Ti acts as nucleants which initiates the grain refinement and the existence of MgAl2O4 phase indicates an interphase between nano SiC and ADC12 matrix. However, the increase of Ti-B addition after optimum number gives no significant results. High composition of iron and magnesium addition will form intermetallic phase β-Fe, π-Fe, and Mg2Si.
NASA Astrophysics Data System (ADS)
Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng
2018-03-01
In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.
2016-04-01
The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.
Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining
2015-03-16
Titanium diboride TiC-Titanium carbide C-Carbon SiC - Silicon carbide B4C-Boron carbide 67 W-Tungsten WC-Tungsten carbide ZrB2-20ZrC-ZrB2...ceramics with a nominal carbide content of 20 vol% were prepared. Starting powders were mechanically mixed by ball milling ZrB2 (H.C. Starck; Grade B...0.50 wt%, or ~1.5 vol%. Milling was carried out in acetone for 2 hours using tungsten carbide media. After milling, the powder slurry was dried
Optimization of laser cladding of cold spray coatings with B4C and Ni powders
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Golyshev, A. A.; Malikov, A. G.; Orishich, A. M.; Filippov, A. A.; Ryashin, N. S.
2017-12-01
In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. The conditions of obtaining cermet layers are investigated depending on the parameters of laser cladding and cold spray. It is shown that the laser track structure significantly changes in accordance to the size of ceramic particles ranging 3-75 µm and its concentration. It is shown that the most perspective layers for additive manufacturing could be obtain from cold spray coatings with ceramic concentrations more than 50% by weight treated in the heat-conductivity laser mode.
Making Ceramic Fibers By Chemical Vapor
NASA Technical Reports Server (NTRS)
Revankar, Vithal V. S.; Hlavacek, Vladimir
1994-01-01
Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.
Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.
Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song
2018-04-01
Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.
NASA Astrophysics Data System (ADS)
Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.
2018-03-01
The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.
NASA Astrophysics Data System (ADS)
Simon, S. B.; Grossman, L.; Davis, A. M.; Beckett, J. R.; Chamberlin, L.
1993-07-01
We have recovered a unique refractory spherule (B6) from the Murchison C2 chondrite. Approximately 140 micrometers in diameter, it is concentrically zoned, with an outer rim sequence, from outermost to innermost, of aluminous diopside (10 micrometers thick), anorthite (3 micrometers) and melilite (3 micrometers). Inside the melilite layer is a 7-micrometer-thick, nearly pure (except for a single, diverging-inward spray of hibonite crystals) layer of spinel. Inward from this layer is a 22-micrometer-wide zone of hibonite (~5.5 wt% TiO2) + spinel, in which hibonite laths, 1-4 micrometers across and up to 10 micrometers wide, are predominantly radially oriented and enclosed in spinel. Inward from this zone, presumably at the core of the inclusion, are CaAl4O7, occurring as anhedral grains ~10 micrometers across, and minor perovskite. Some of the hibonite laths protrude into the CaAl4O7. The sequence of mineral assemblages from the spinel shell inward parallels that expected for fractional crystallization of a melt of the composition of B6. Based on this, the inclusion's spherical shape, and its texture (radially oriented hibonite laths, including a diverging-inward spray; laths enclosed in spinel and protruding into CaAl4O7), we conclude that the oxide phases in B6 crystallized from a liquid. The spinel layer indicates that at least some of the spinel was molten; from the bulk composition, calculated liquidus phase relations in the system Al2O3-MgO-CaO [1], and the amount of spinel contained in the layer, we infer a melting temperature >2000 degrees C. This is >500 degrees higher than the maximum temperature at which any condensed major phase is stable at 10-3 atm in a gas of solar composition, but we see no evidence of evaporation. First, the inclusion has a Group II REE pattern, rather than a Group III or an ultrarefractory pattern, which could reflect devolatilization. Second, although evaporation of molten (but not solid) Mg2SiO4 leads to Mg isotopic mass fractionation [2], we found the Mg isotopic composition of spinel and hibonite in B6 to be essentially normal (DELTA 25Mg = 0 +- 2.5 permil). This means that no more than ~15% of the Mg could have evaporated, which, by analogy with experiments with forsterite at 2050 degrees C [2], suggests that the melt was exposed to the solar nebula for a very short time, perhaps as little as two minutes. This could indicate rapid formation of the spinel shell in B6, sealing off the molten interior from the solar nebula. Evaporation of solid spinel could have occurred, but would probably not fractionate Mg isotopes significantly. Evidence of an unusually high temperature history is preserved in the spinel of B6. It averages 1.7 +- 0.4 mol% excess Al2O3 relative to MgAl2O4, unlike the stoichiometric (within analytical error) spinel found in most CAIs. Much larger Al2O3 solubilities than observed in B6 spinel have been produced in synthetic systems at temperatures as low as 1300 degrees C [3]. In our crystallization experiments, excess Al2O3 ranges from 2 mol% in spinel equilibrated with melilite + hibonite + liquid at 1400 degrees C to 30 mol% in spinel equilibrated with liquid at 1499 degrees C. In corundum-bearing runs, excess Al2O3 in spinel increases from 12 mol% at 1349 degrees C to 24 mol% at 1450 degrees C, consistent with [3]. Excess Al2O3 in spinel is directly correlated with aAl2O3/aMgO based on experiments with solids [4]; it should also be correlated with aAl2O3/aMgO of coexisting liquids, and with temperature at constant aAl2O3/aMgO [1]. Spinels in our experiments have large excess Al2O3 contents because coexisting liquids have aAl2O3/aMgO >6 [1]. The bulk composition of B6 and residual liquids produced by crystallization of spinel from this composition have aAl2O3/aMgO ~1 [1], resulting in lower excess Al2O3 in B6 spinel than in our synthetic spinel. In type B inclusions, liquids with which spinel equilibrated also had aAl2O3/aMgO ratios ~1, but because equilibration temperatures were <~1500 degrees C, this spinel has negligible excess Al2O3, consistent with the results of [4]. The larger amounts of excess Al2O3 in B6 spinel indicate that its equilibration temperature was substantially higher than in type Bs (i.e., >~ 1500 degrees C), consistent with the above observations. References: [1] Berman R. G. (1983) Ph.D. thesis, U. British Columbia. [2] Davis A. M. et al. (1990) Nature, 347, 655-658. [3] Viertel H. U. and Seifert F. (1980) N. Jb. Miner. Abh., 140, 89-101. [4] Chamberlin L. et al. (1992) GSA Abs. with Prog., 24, A257.
NASA Astrophysics Data System (ADS)
Xie, Jianfei; Qiu, Yiping
2009-07-01
Nanoclay modified PMR type polyimide composites were prepared from 3D orthogonal woven basalt fiber performs and nanoclay modified polyimide matrix resin, which derived from methylene dianiline (MDA), dimethyl ester of 3,3',4,4'- oxydiphthalic acid (ODPE), monomethyl ester of cis-5-norbornene-endo-2,3-dicarboxylic acid (NE) and nanoclay. The Na+-montmorillonite was organically treated using a 1:1 molar ratio mixture of dodecylamine (C12) and MDA. The rheological properties of neat B-stage PMR polyimide and 2% clay modified B-stage PMR polyimide were investigated. Based on the results obtained from the rheological tests, a two step compression molding process can be established for the composites. In the first step, the 3D fabric preforms were impregnated with polyimide resin in a vacuum oven and heated up for degassing the volatiles and by-products. In the second step, composites were compressed. The internal structure of the composites was observed by a microscope. Incorporation of 2% clay showed an improvement in the Tg and stiffness of the PMR polyimide. The resulting composites exhibited high thermal stability and good mechanical properties.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis.
Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.
Characterization of Nora Virus Structural Proteins via Western Blot Analysis
Ericson, Brad L.; Carlson, Darby J.
2016-01-01
Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753
NASA Astrophysics Data System (ADS)
Ritt, Patrick J.
The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward diffusion of oxygen with an external Al2O3 layer and effectively reduced the activity of Si in the underlying glass. Thus, the Mo-Si-B based coating is established as a viable protective coating for oxidation and corrosion protection for next-generation aerospace and aeronautical materials.
Synthesis and Characterization of MAX Ceramics (MAXCERs)
NASA Astrophysics Data System (ADS)
Nelson, Johnny Carl
This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.
Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi
2018-06-01
Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hao, Qiang; Niu, Xiuxiu; Nie, Changshun; Hao, Simeng; Zou, Wei; Ge, Jiangman; Chen, Daimei; Yao, Wenqing
2016-11-23
SiO 2 , an insulator, hardly has any photocatalytic acitivity due to its intrinsic property, and it is generally used as a hard template to increase the surface area of catalysts. However, in this work, we found that the surface state of the insulator SiO 2 can promote the migration of photogenerated charge carriers, leading to the enhancement of the photooxidation ability of graphitic carbon nitride (g-C 3 N 4 ). A one-pot calcination method was employed to prepare g-C 3 N 4 /SiO 2 composites using melamine and SiO 2 as precursors. The composites present considerably high photocatalytic degradation activities for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light (λ > 420 nm) irradiation, which are about 1.53 and 4.18 times as high as those of bulk g-C 3 N 4 , respectively. The enhancement of the photocatalytic activity is due to the fact that the introduction of the insulator SiO 2 in g-C 3 N 4 /SiO 2 composites can greatly improve the specific surface area of the composites; more importantly, the impurity energy level of SiO 2 can help accelerate the separation and transfer of electron-hole pairs of g-C 3 N 4 . Electron paramagnetic resonance (EPR) spectroscopy and trapping experiments with different radical scavengers show that the main active species of g-C 3 N 4 are superoxide radicals, while holes also play a role in photodegradation. For g-C 3 N 4 /SiO 2 -5, besides superoxide radicals and holes, the effect of hydroxyl radicals was greatly improved. Finally, a possible mechanism for the photogenerated charge carrier migration of the g-C 3 N 4 /SiO 2 photocatalyst was proposed.
Absorption property of C@CIPs composites by the mechanical milling process
NASA Astrophysics Data System (ADS)
Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang
2017-09-01
The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.
NASA Astrophysics Data System (ADS)
Lu, Dingze; Wang, Hongmei; Shen, Qingqing; Kondamareddy, Kiran Kumar; Neena D
2017-07-01
The new multifunctional composite Fe3O4@SiO2@Bi2WO6@g-C3N4 (FSBG) hierarchical microspheres with Bi2WO6/g-C3N4 heterostructure as an outer shell and Fe3O4@SiO2 as a magnetic core have been synthesized and characterized for photocatalytic applications. An efficient and adoptable approach of synthesizing magnetic Bi2WO6/g-C3N4 hierarchical microspheres of grape-like morphology is realized. The as-synthesized structures exhibit highly efficient visible-light absorption and separation efficiency of photo-induced charge. The visible-light-induced photocatalytic activity of g-C3N4, Fe3O4@SiO2@Bi2WO6, and FSBG is evaluated by investigating the photodegradation of Rhodamine B (RhB) and hydrogen (H2) out of water. The comparative study reveals that the FSBG microspheres exhibit an optimum visible-light-induced photocatalytic activity in degrading Rhodamin B (RhB), which is 3.06 and 1.92 times to that of g-C3N4 and Fe3O4@SiO2@Bi2WO6 systems respectively and 3.89 and 2.31 times in the production of hydrogen (H2) out of water, respectively. The FSBG composite microspheres also exhibit good magnetic recoverability. An alternate mechanism for the enhanced visible-light photocatalytic activity is given in the present manuscript.
Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres.
Gong, Jingming; Wang, Xiaoqing; Shao, Xiulan; Yuan, Shuang; Yang, Chenlin; Hu, Xianluo
2012-11-15
Magnetically driven separation technology has received considerable attention in recent decade for its great potential application. In this work, hierarchically structured magnetite-carbonaceous microspheres (Fe(3)O(4)-C MSs) have been synthesized for the adsorption of heavy metal ions from aqueous solution. Each sphere contains numerous unique rattle-type structured magnetic particles, realizing the integration of rattle-type building unit into microspheres. The as-prepared composites with high BET surface area, hierarchical as well as mesoporous structures, exhibit an excellent adsorption capacity for heavy metal ions and a convenient separation procedure with the help of an external magnet. It was found that the maximum adsorption capacity of the composite toward Pb(2+) was ∼126mgg(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Pb(2+) removal was found to follow pseudo-second-order rate equation. The as-prepared composite of Fe(3)O(4)-C MSs as well as Pb(2+)-adsorbed composite were carefully examined by scanning electron microscopy (SEM), Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Pb(2+) removal with the composite of Fe(3)O(4)-C MSs was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Selective laser sintering of cermet mixtures Ti and B4C
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Malikov, A. G.; Orishich, A. M.
2016-10-01
The work is dedicated to the creation of a new heterogeneous ceramic-composite materials based on boron carbide and titanium, using a laser, in order to further layer-growing 3D products from these materials. The paper discussed two methods for obtaining ceramic-composite material: laser sintering of boron carbide powder and a metal-melting the powder mixture. We study the microstructure of the samples at various energy process modes. An attempt was made to justify the applicability of the regime used for the cultivation of layered products.
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.
2011-12-01
The recent inference of a carbon-rich atmosphere, with C/O >= 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O >= 1, and T >~ 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H2O is depleted and CH4 is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of ~100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P ~ 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T <~ 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of ~0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H2O is condensed, the remaining gas can potentially have a C/O ~ 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.
NASA Astrophysics Data System (ADS)
Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar
2016-10-01
In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.
A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology
NASA Astrophysics Data System (ADS)
Russell, J. K.; Giordano, D.; Dingwell, D. B.
2005-12-01
Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all silicate melts converge to a common, but unknown, high-T limit (e.g., A) and that all compositional dependence is accommodated for by B and C. We adopt a linear compositional dependence for B and C: B = σi=1..n [xi βi] C = σi=1..n [xi γi] where xi's are the mole fractions of oxide components (n=8) and βi and γi are adjustable parameters. The model, therefore, comprises 2 · n+1 adjustable parameters which are optimized for against the experimental database including a common value of A and compositional coefficeints for B and C. The new model reproduces the original database to within experimental uncertainty and can predict the viscosity of silicate melts across the full range of conditions found in Nature. References Cited: [1] Friedman et al., 1963. J Geophys Res 68, 6523-6535. [2] Bottinga Y & Weill D 1972. Am J Sci 272, 438- 475. [3] Shaw HR 1972. Am J Sci 272, 438- 475. [4] Persikov ES 1991. Adv Phys Geochem 9, 1-40. [5] Prusevich AA 1988. Geol Geofiz 29, 67-69. [6] Baker DR 1996. Am Min 81, 126-134. [7] Hess KU & Dingwell DB 1996. Am Min 81, 1297- 1300. [8] Zhang, et al. 2003. Am min 88, 1741- 1752. [9] Russell et al. 2002. Eur J Min 14, 417-428. [10] Russell et al. 2003. Am Min 8, 1390- 1394. [11] Russell JK & Giordano D In Press. Geochim Cosmochim Acta. [12] Giordano D & Dingwell DB 2003. Earth Planet. Sci. Lett. 208, 337-349.
NASA Astrophysics Data System (ADS)
Shen, Guozhu; Fang, Xumin; Wu, Hongyan; Wei, Hongyu; Li, Jingfa; Li, Kaipeng; Mei, Buqing; Xu, Yewen
2017-04-01
A facile method has been developed to fabricate magnetic core/shell SiO2/C/Co sub-microspheres via the pyrolysis of SiO2/PANI (polyaniline) and electroless plating method. The electromagnetic parameters of these SiO2/C and SiO2/C/Co composites were measured and the microwave reflection loss properties were evaluated in the frequency range of 2-18 GHz. The results show that the dielectric loss of SiO2/C composite increases with the increase of carbonization temperature and the magnetic loss enhances due to the deposition of cobalt on the SiO2/C sub-microspheres. The reflection loss results exhibit that the microwave absorption properties of the SiO2/C/Co composites are more excellent than those of SiO2/C composites for each thickness. The maximum effective absorption bandwidth (reflection loss ≤ -10 dB) arrives at 5.0 GHz (13.0-18 GHz) for SiO2/C/Co composite with 1.5 mm of thickness and the minimum reflection loss value is -24.0 dB at 5.0 GHz with 4.0 mm of thickness. The microwave loss mechanism of the SiO2/C/Co composites was also discussed in this paper.
The Phase Transformation and Crystal Structure Studies of Strontium Substituted Barium Monoferrite
NASA Astrophysics Data System (ADS)
Mulyawan, A.; Adi, W. A.; Mustofa, S.; Fisli, A.
2017-03-01
Unlike other AFe2O4 ferrite materials, Barium Monoferrite (BaFe2O4) have an orthorhombic structure which is very interesting to further study the crystal structure and phase formation. In this study, Strontium substituted Barium Monoferrite in the form of Ba(1-x)Sr(x)Fe2O4 has successfully been synthesized through solid state reaction method which includes BaCO3, SrCO3, and Fe2O3 as starting materials. Ba(1-x)Sr(x)Fe2O4 was made by varying the dopant composition of Strontium (Sr2+) from x = 0, 0.1, 0.3, and 0.5. Each composition was assisted by ethanol and continued to the milling process for 5 hours then followed by sintering process at 900 °C for 5 hours. The phase transformation was studied by using X-ray diffractometer (XRD) and Rietveld refinement using General Structure Analysis System (GSAS) also 3D crystal visualization using VESTA. Referring to the refinement results, a single phase of BaFe2O4 was formed in x = 0 and 0.1. The composition has orthorhombic structure, space group B b21m, and lattice parameters of a = 19.0229, b = 5.3814 c = 8.4524 Å, α = β = γ = 90° and a = 18.9978, b = 5.3802 c = 8.4385 Å, α = β = γ = 90° respectively. In the composition of x = 0.3 it was found that the phase of BaSrFe4O8 begin to form due to the overload expansion of the Sr2+ occupancy which made the distortion of the initial lattice parameters and finally in the x = 0.5 composition the single phase of BaSrFe4O8 was clearly formed. Energy Dispersive Spectroscopy (EDS) was used to confirm the change of the material structure by measuring the elemental compound composition ratio. The result of EDS spectra clearly exhibited the dominant elements were Barium (Ba), Strontium (Sr), Iron (Fe), and Oxygen (O) with the compound ratio (Atomic percentage and mass percentage) correspond to the BaFe2O4 and BaSrFe4O8 phase.
Surface Modifications with Laser Synthesized Mo Modified Coating
NASA Astrophysics Data System (ADS)
Sun, Lu; Chen, Hao; Liu, Bo
2013-01-01
Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.
Liu, Yun; Fu, Yiwei; Liu, Lin; Li, Wei; Guan, Jianguo; Tong, Guoxiu
2018-05-16
This paper demonstrates a facile and low-cost carbothermal reduction preparation of monodisperse Fe 3 O 4 /C core-shell nanosheets (NSs) for greatly improved microwave absorption. In this protocol, the redox reaction between sheet-like hematite (α-Fe 2 O 3 ) precursors and acetone under inert atmosphere and elevated temperature generates Fe 3 O 4 /C core-shell NSs with the morphology inheriting from α-Fe 2 O 3 . Thus, Fe 3 O 4 /C core-shell NSs of different sizes ( a) and Fe 3 O 4 /C core-shell nanopolyhedrons are obtained by using different precursors. Benefited from the high crystallinity of the Fe 3 O 4 core and the thin carbon layer, the resultant NSs exhibit high specific saturation magnetization larger than 82.51 emu·g -1 . Simultaneously, the coercivity enhances with the increase of a, suggesting a strong shape anisotropy effect. Furthermore, because of the anisotropy structure and the complementary behavior between Fe 3 O 4 and C, the as-obtained Fe 3 O 4 /C core-shell NSs exhibit strong natural magnetic resonance at a high frequency, enhanced interfacial polarization, and improved impedance matching, ensuring the enhancement of the microwave absorption. The 250 nm NSs-paraffin composites exhibit reflection loss (RL) lower than -20 dB (corresponding to 99% absorption) in a large frequency ( f) range of 2.08-16.40 GHz with a minimum RL of -43.95 dB at f = 3.92 GHz when the thickness is tuned from 7.0 to 1.4 mm, indicating that the Fe 3 O 4 /C core-shell NSs are a good candidate to manufacture high-performance microwave absorbers. Moreover, the as-developed carbothermal reduction method could be applied for the fabrication of other composites based on ferrites and carbon.
Stability of the Al/TiB2 interface and doping effects of Mg/Si
NASA Astrophysics Data System (ADS)
Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin
2017-12-01
The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.
Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink
Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng
2016-01-01
Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink. PMID:28773765
NASA Astrophysics Data System (ADS)
Zhang, Xiaojie; Yang, Jipeng; Cai, Tiancong; Zuo, Guoqiang; Tang, Changqing
2018-06-01
Boron carbide (B4C) nanoparticles-decorated anatase titanium dioxide (TiO2) nanosheets photocatalysts were synthesized by a hydrothermal method in the presence of hydrofluoric acid and characterized by field emission scanning electron microscope, high-resolution transmission electron microscope, UV-vis diffuse reflectance spectra, photoluminescence spectra, etc. With metallic Pt nanoparticles as a co-catalyst, the as-synthesized B4C/TiO2 composites were evaluated using photocatalytic CO2 or H2O reduction to solar fuels such as methane and hydrogen. Under either simulated sunlight or visible light irradiation, coupling p-type B4C with n-type anatase TiO2 significantly improved the photocatalytic performance. Both photoluminescence and transient photocurrent measurements indicated that the interfacial coupling effect between B4C and anatase TiO2 could significantly promote photo-excited charges separations. On the basis of measurements and literatures, a possible mechanism of excited charges transfer at the B4C-anatase TiO2 heterojunction interface during irradiation was deduced.
NASA Technical Reports Server (NTRS)
Gusman, Michael I.; Stackpoole, Mairead; Ellerby, Donald T.; Johnson, Sylvia M.; Arnold, Jim (Technical Monitor)
2001-01-01
Previous work on refractory diboride composites has shown these systems to have potential for use in high temperature leading edge applications for reusable reentry vehicles. These composites, based on compositions of HfB2 or ZrB2 with SiC particulate reinforcements, have shown good oxidation resistance in reentry environments. In this work we are investigating the effects of composition and microstructure on properties. Preliminary studies of composite mechanical properties and oxidation behavior will be discussed.
Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report
2018-04-01
Technical Report ARWSB-TR-18025 Hydraulic Testing of Polymer Matrix Composite 102mm Tube Section Technical Report Lucas B...1. REPORT DATE (DD-MM-YYYY) April 2018 2. REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Hydraulic Testing of...Polymer Matrix Composite 102mm Tube Section Technical Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
26. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS ...
26. Photograph of a line drawing. 'PLAN LAYOUT AND CROSS SECTION OF PART I, SECTION 8, BUILDINGS NO. C-1, C-3, C-5, C-6, C-7, C-9, MIXING, MANUFACTURING AREA, PLANT B AS OF 4-24-44.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN
Liu, Hao; Smedskjaer, Morten M; Tao, Haizheng; Jensen, Lars R; Zhao, Xiujian; Yue, Yuanzheng
2016-04-28
It has been reported that the configurational heat capacity (C(p,conf)) first increases and then becomes saturated with increasing B2O3/SiO2 ratio in borate-silicate mixed glasses. Through Raman spectroscopy measurements, we have, in this work, found an implication for the intermediate range order (IRO) structural connection to the composition dependence of the C(p,conf) of borate-silicate mixed glasses. In the silica-rich compositions, the C(p,conf) rapidly increases with increasing B2O3 content. This is attributed to the increase of the content of the B-O-Si network units ([B2Si2O8](2-)) and 6-membered borate rings with 1 or 2 B(4). In the boron-rich compositions, the C(p,conf) is almost constant, independent of the increase in the B2O3/SiO2 ratio. This is likely attributed to the counteraction between the decrease of the fraction of two types of metaborate groups and the increase of the fraction of other borate superstructural units (particularly 6-membered borate rings). The overall results suggest that the glasses containing more types of superstructural units have a larger C(p,conf).
Ceramics reinforced metal base composite coatings produced by CO II laser cladding
NASA Astrophysics Data System (ADS)
Yang, Xichen; Wang, Yu; Yang, Nan
2008-03-01
Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.
Mechanically Activated Combustion Synthesis of MoSi 2-Based Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafirovich, Evgeny
2015-09-30
The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicatemore » surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of SHS compaction (quasi-isostatic pressing after combustion) significantly improves oxidation resistance of the obtained MoSi2-Mo5Si3 composites. The “chemical oven” technique has been successfully employed to fabricate low-porous Mo5SiB2–TiC, Mo5SiB2–TiB2, and Mo–Mo5SiB2–Mo3Si materials. Among them, Mo5SiB2–TiB2 material possesses good mechanical properties and simultaneously exhibits excellent oxidation resistance at temperatures up to 1500 °C.« less
Huang, Junbo; Wang, Shiyong; Zhang, Xiaomin; Li, Gen; Ji, Puzhong; Zhao, Hongbin
2017-04-01
To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β 1 (TGF-β 1 ) osteochondral composite scaffolds were constructed respectively by "3 layers sandwich method". The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasing in vitro , scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β 1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold ( P <0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new cartilage, and new cartilage well integrated with the adjacent cartilage in group D. The results of histological staining revealed that defects were filled with a small amount of fibrous tissue in groups A and B, and a small amount of new cartilage in groups C and D at 3 months after repair; new cartilage of groups C and D was similar to normal cartilage, but defects were filled with a large amount of fibrous tissue in groups A and B at 6 months after repair. The expression of collagen type II in groups C and D was significantly higher than that in groups A and B ( P <0.05), but no significant difference was found between groups C and D ( P >0.05). Loading naringin composite scaffolds have good biocompatibility and effect in repair of rabbit articular osteochondral defects.
Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M
2016-09-06
The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.
Song, Chengjie; Fan, Mingshan; Shi, Weidong; Wang, Wei
2018-05-01
We have successfully synthesized the composites of two-phase g-C 3 N 4 heterojunction photocatalysts by one-step method. And the reduced graphene oxide/two-phase g-C 3 N 4 heterojunction photocatalyst was fabricated via a facile hydrothermal reduction method. The characterization results indicated that the two-phase g-C 3 N 4 was integrated closely, and the common phenomenon of agglomeration for g-C 3 N 4 was significantly reduced. Moreover, the oxidized graphene was reduced successfully in the composites and the graphene was overlaid on the surface or the interlayers of g-C 3 N 4 heterojunction composite uniformly. In addition, we have carried out the photocatalytic activity experiments by H 2 evolution and rhodamine B removal, tetracycline removal under the visible light irradiation. The results revealed that the composite has improved the separation efficiency a lot than the pure photocatalyst. The photocurrent test demonstrated that the recombination of electrons and holes were efficiently inhibited as well as enhanced the photocatalytic activity. The 0.4% rGO loaded samples, 0.4% rGOCN2, own the best performance. Its rate of H 2 evolution was 15 times as high as that of the pure g-C 3 N 4 .
[Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate
NASA Astrophysics Data System (ADS)
Charkin, Dmitri O.; Plokhikh, Igor V.; Zadoya, Anastasiya I.; Kazakov, Sergey M.; Zaloga, Alexander N.; Kozin, Michael S.; Depmeier, Wulf; Siidra, Oleg I.
2018-01-01
Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/ c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/ m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.
Jones, Jeffery I.; Gardner, Michael S.; Schieltz, David M.; Parks, Bryan A.; Toth, Christopher A.; Rees, Jon C.; Andrews, Michael L.; Carter, Kayla; Lehtikoski, Antony K.; McWilliams, Lisa G.; Williamson, Yulanda M.; Bierbaum, Kevin P.; Pirkle, James L.; Barr, John R.
2018-01-01
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. PMID:29634782
Improving hardness and toughness of boride composites based on aluminum magnesium boride
NASA Astrophysics Data System (ADS)
Peters, Justin Steven
The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB14--TiB2 composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB 14--60 vol% TiB2 approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB14 and TiB 2 phases. AlMgB14 is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB2 is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800°C are often required to achieve near full density articles. The AlMgB14--TiB2 composites can achieve 99% density from hotpressing at 1400°C. This is mostly due to the preparation of powders by a high-energy milling technique known as mechanical alloying. The resulting fine powders have high activity, and Fe from wear debris acts as a sintering aid. Mechanical alloying improves the sinterability of the composite material, it has the same effect on pure TiB2. TiB 2 processed by high-energy milling has been found to achieve 99% theoretical density at 1400°C with the addition of ˜1 wt% Fe. Both the AlMgB14--TiB2 composites and pure TiB2 produced from these methods have enhanced mechanical properties due to their fine microstructures. These materials show exceptional promise in the field of wear resistance. This includes cutting tools, erosion resistant coatings, and low-friction sliding contacts to name a few. Under certain wear conditions, the composite material can show performance on par with that of current high-end cBN and WC materials tailored for wear resistance. The composite material also exhibits low reactivity with Ti alloys, a pre-requisite for effective machining of these alloys, a trait that few hard materials possess.
MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaNHEMTs
NASA Astrophysics Data System (ADS)
Cheng, Zhi-Qun; Cai, Yong; Liu, Jie; Zhou, Yu-Gang; Lau Kei, May; Chen, Kevin J.
2007-11-01
A microwave monolithic integrated circuit (MMIC) C-band low noise amplifier (LNA) using 1 μm-gate composite-channel Al0.3Ga0.7N/Al0.05Ga0.95N/GaN high electron mobility transistors (CC-HEMTs) has been designed, fabricated and characterized. The material structure and special channel of CC-HEMT were given and analysed. The MMIC LNA with CC-HEMT showed a noise figure of 2.4 dB, an associated gain of 12.3 dB, an input return loss of -6 dB and an output return loss of -16 dB at 6 GHz. The IIP3 of the LNA is 13 dBm at 6 GHz. The LNA with 1 μm × 100 μm device showed very high-dynamic range with decent gain and noise figure.
NASA Astrophysics Data System (ADS)
Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar
2016-02-01
Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.
NASA Technical Reports Server (NTRS)
Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.;
2010-01-01
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
NASA Astrophysics Data System (ADS)
Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo
2018-06-01
This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.
Code of Federal Regulations, 2012 CFR
2012-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
Code of Federal Regulations, 2013 CFR
2013-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
Code of Federal Regulations, 2011 CFR
2011-01-01
... following conditions: (i) Has been assigned (A) A 4 or 5 CAMEL composite rating by the NCUA in the case of a federal credit union, or (B) An equivalent 4 or 5 CAMEL composite rating by the state supervisor in the case of a federally insured, state-chartered credit union, or (C) A 4 or 5 CAMEL composite rating by...
Araújo, Ana Claudia Marquim F; Araújo, Wilma M C; Marquez, Ursula M Lanfer; Akutsu, Rita; Nakano, Eduardo Y
2017-01-01
Knowing the phenylalanine (Phe) content of foods is essential for managing the diet of patients with phenylketonuria. Data on the Phe content of foods are scarce and sometimes vary between different Food Composition Tables (FCT). Brazil created its own table of the Phe contents of fruits and vegetables based exclusively on the chemical analysis of protein content, considering that proteins contain 3-4% Phe (TCFA/ANVISA). This study compared the protein and Phe contents of vegetables and fruits provided by the TCFA/ANVISA with those listed in international food composition tables. The Phe content of 71 fruits and vegetables listed in TCFA/ANVISA was classified into four subgroups, and the Wilcoxon nonparametric test compared the Phe and mean protein contents provided by the FCTs. All tests considered the bilateral hypothesis, and the level of significance was set at 5%. The Spearman's correlation coefficient measured the statistical dependence between Phe and protein contents. The mean Phe content was <50 mg Phe/100 g for 15 fruits; >50 mg/100 g for 11 type-A vegetables; <50 mg/100 g for 8 type-B vegetables; ≤50 mg/100 g for 7 type-C vegetables. The percentage of Phe in protein varied from 3.13 ± 1.03% to 3.74 ± 2.55% in fruits; 3.33 ± 1.41 to 4.82 ± 1.17 in type-A vegetables; 3.46 ± 1.25% to 4.83 ± 2.46 in type-B vegetables; and 3.14% ± 1.49 to 4.62% ± 2.26 in type-C vegetables. The Phe and protein contents provided by most FCTs were positively correlated, suggesting that it is possible to estimate the Phe content of fruits by multiplying its protein content by 3%. For type-A, -B, and -C vegetables, 4% may be used.
2009-09-17
bone morphogenetic protein ) Bone regeneration Drug delivery In vivo test Polyurethane a b s t r a c t Scaffolds prepared from biodegradable...Toshitaka Yoshii b, c ,2, Andrea E. Hafeman a,b,3, Jeffry S. Nyman b, c ,d,4, Joseph C . Wenke e,5, Scott A. Guelcher a,b,* aDepartment of Chemical and...Houston, TX, USA a r t i c l e i n f o Article history: Received 18 June 2009 Accepted 26 August 2009 Available online 17 September 2009 Keywords: BMP
de la Rosa, José M; Paneque, Marina; Miller, Ana Z; Knicker, Heike
2014-11-15
Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha(-1) of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by (13)C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha(-1) turned out as the most efficient for the crop and soil used in the present incubation experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
Precise masses for the transiting planetary system HD 106315 with HARPS
NASA Astrophysics Data System (ADS)
Barros, S. C. C.; Gosselin, H.; Lillo-Box, J.; Bayliss, D.; Delgado Mena, E.; Brugger, B.; Santerne, A.; Armstrong, D. J.; Adibekyan, V.; Armstrong, J. D.; Barrado, D.; Bento, J.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Cochran, W. D.; Collier Cameron, A.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Ehrenreich, D.; Espinoza, N.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Hébrard, G.; Hojjatpanah, S.; Jackman, J.; Lendl, M.; Ligi, R.; Lovis, C.; Melo, C.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pollacco, D.; Santos, N. C.; Sefako, R.; Shporer, A.; Sousa, S. G.; Triaud, A. H. M. J.; Udry, S.; Vigan, A.; Wyttenbach, A.
2017-12-01
Context. The multi-planetary system HD 106315 was recently found in K2 data. The planets have periods of Pb 9.55 and Pc 21.06 days, and radii of rb = 2.44 ± 0.17 R⊕ and rc = 4.35 ± 0.23 R⊕ . The brightness of the host star (V = 9.0 mag) makes it an excellent target for transmission spectroscopy. However, to interpret transmission spectra it is crucial to measure the planetary masses. Aims: We obtained high precision radial velocities for HD 106315 to determine the mass of the two transiting planets discovered with Kepler K2. Our successful observation strategy was carefully tailored to mitigate the effect of stellar variability. Methods: We modelled the new radial velocity data together with the K2 transit photometry and a new ground-based partial transit of HD 106315c to derive system parameters. Results: We estimate the mass of HD 106315b to be 12.6 ± 3.2 M⊕ and the density to be 4.7 ± 1.7 g cm-3, while for HD 106315c we estimate a mass of 15.2 ± 3.7 M⊕ and a density of 1.01 ± 0.29 g cm-3. Hence, despite planet c having a radius almost twice as large as planet b, their masses are consistent with one another. Conclusions: We conclude that HD 106315c has a thick hydrogen-helium gaseous envelope. A detailed investigation of HD 106315b using a planetary interior model constrains the core mass fraction to be 5-29%, and the water mass fraction to be 10-50%. An alternative, not considered by our model, is that HD 106315b is composed of a large rocky core with a thick H-He envelope. Transmission spectroscopy of these planets will give insight into their atmospheric compositions and also help constrain their core compositions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0168.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani
2018-04-01
Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.
NASA Astrophysics Data System (ADS)
Anne Zulfia, S.; Salshabia, Nadella; Dhaneswara, Donanta; Utomo, Budi Wahyu
2018-05-01
ADC12 reinforced nano SiC has been successfully produced by stir casting process. Nano SiC was added into ADC12 alloy varied from 0.05 to 0.3 vf-% while Al-5Ti-1B and Sr were kept constant at 0.04 and 0.02 wt-% respectively to all composites. Mg was added 10 wt% to improve reinforce's wettability. The addition of Al-5Ti-1B to the alloy was as grain refiner while Sr was added to modify Mg2Si. All composites were characterized both microstructures analysis and mechanical properties include tensile strength, hardness, wear rate, impact strength, and porosity. The highest properties of composites was obtained at 0.3 vf-% nano SiC addition with UTS of 155.4 MPa, hardness of 46.16 HRB, impact strength of 0.22 J/mm2, and wear rate of 1.71 × 10-5 mm3/m. Tensile strength and hardness increased as grain size and porosities decreased. The highest wear resistance was investigated on the composition with the highest hardness. Impact strength decreased due to increasing volume fraction of nano-SiC. The phases present in microsturucture was dominantly Mg2Si which also affected mechanical properties of these composites.
Miranda, Ranulfo Benedito de Paula; Miranda, Walter Gomes; Lazar, Dolores Ribeiro Ricci; Ussui, Valter; Marchi, Juliana; Cesar, Paulo Francisco
2018-02-01
To investigate the effect of titania addition (0, 10 and 30mol%) on the microstructure, relative density, Young's modulus (E), Poisson's ratio (υ), mechanical properties (flexural strength, σ f , and Weibull modulus, m) of a Y-TZP/TiO 2 composite. The effect of the presence of a biomimetic coating on the microstructure and mechanical properties was also evaluated. Y-TZP (3mol% of yttria) and Y-TZP/TiO 2 composite (10 or 30mol% of titania) were synthesized by co-precipitation. The powders were pressed and sintered at 1400°C/2h. The surfaces, with and without biomimetic coating, were characterized by X-ray diffraction analysis and scanning electron microscopy. The relative density was measured by the Archimedes' principle. E and υ were measured by ultrasonic pulse-echo method. For the mechanical properties the specimens (n=30 for each group) were tested in a universal testing machine. Titania addition increased the grain size of the composite and caused a significant decrease in the flexural strength (in MPa, control 815.4 a ; T10 455.7 b and T30 336.0 c ), E (in GPa, control 213.4 a ; T10 155.8 b and T30 134.0 c ) and relative density (control 99.0% a ; T10 94.4% c and T30 96.3% b ) of the Y-TZP/TiO 2 composite. The presence of 30% titania caused substantial increase in m and υ. Biomimetic coating did not affect the mechanical properties of the composite. The Y-TZP/TiO 2 composite coated with a layer of CaP has great potential to be used as implant material. Although addition of titania affected the properties of the composite, the application of a biomimetic coating did not jeopardize its reliability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Douglas, Elliot P.; Langlois, David A.; Benicewicz, Brian C.
1995-01-01
The present invention provides (1) curable bispropargyl-containing monomers represented by the formula: B.sup.1 --A.sup.1.sub.m --R--A.sup.2.sub.n --B.sup.2 wherein R is a radical selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthalene, --C.sub.6 H.sub.4 --CR.sup.2 .dbd.CR.sup.2 --C.sub.6 H.sub.4 -- wherein R.sup.2 is H or CH.sub.3, and the same where said groups contain one or more substituents selected from the group consisting of halo, nitro, lower alkyl, lower alkoxy, fluoroalkyl or fluoroalkoxy, A.sup.1 and A.sup.2 are selected from the group consisting of --C.sub.6 H.sub.4 --C(O)--O-- and --C.sub.6 H.sub.4 --O--C(O)--, m and n are 0 or 1, m+n is 0, 1 or 2, and B.sup.1 and B.sup.2 are --OCH.sub.2 --C.tbd.C--H, (2) thermoset compositions comprised of cured segments derived from monomers represented by the formula: B.sup.1 --A.sup.1.sub.m --R--A.sup.2.sub.n --B.sup.2 as described above, and (3) curable blends of at least two of the monomers.
Corrosion and tribocorrosion behavior of Ti-B4C composite intended for orthopaedic implants.
Toptan, F; Rego, A; Alves, A C; Guedes, A
2016-08-01
Poor wear resistance of titanium is a major concern since relative movements due to the cyclic loads in body environment cause wear between the bone and the implant material leading to detachment of the wear debris and release of metal ions due to the simultaneous action of corrosion and wear, defined as tribocorrosion. In order to increase the tribocorrosion resistance, Grade 2 Ti matrix 24vol% B4C particle reinforced composites were processed by hot pressing. Corrosion behaviour was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization in 9g/L NaCl solution at body temperature. Tribocorrosion tests were performed under open circuit potential, as well as under potentiodynamic polarization using a reciprocating ball-on-plate tribometer. Results suggested that the addition of B4C particles provided lower tendency to corrosion and lower corrosion kinetics under sliding, along with significantly reduced wear loss, mainly due to the load carrying effect given by the reinforcement particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bolotova, L. K.; Kalashnikov, I. E.; Kobeleva, L. I.; Katin, I. E.; Kolmakov, A. G.; Mikheev, R. S.; Kobernik, N. V.; Podymova, N. B.
2018-01-01
Surfacing composite rods based on a B83 babbit alloy reinforced by silicon carbide and boron carbide particles are fabricated by extrusion. The structure and the tribological properties of the rods are studied. Extrusion allowed us to introduce and to uniformly distribute reinforcing fillers and to change the size and the morphology of the intermetallic phases in the matrix alloy. The wear resistance of the rods made of the B83 babbit + 5 wt % SiC composite material is shown to be higher than that of commercial B83 alloy samples by a factor of 1.2. Arc surfacing is used to deposit antifriction coatings, which are made of the surfacing composite rods based on B83 babbit reinforced by boron carbide or silicon carbide particles, onto steel substrates. The deposited layers exhibit good adhesion to the substrates: the melting line is continuous and does not contain discontinuities. The structure and the tribological properties of the deposited coatings are studied. The wear resistance of the composite coatings is higher than that of the B83 alloy-based coating by 30%.
Present state of boron-carbon thermoelectric materials
NASA Technical Reports Server (NTRS)
Elsner, N. B.; Reynolds, G. H.
1983-01-01
Boron-carbon p-type thermoelectric materials show promise for use in advanced thermal-to-electric space power conversion systems. Here, recent data on the thermoelectric properties of boron-carbon materials, such as B9C, B13C2, B15C2, and B4C, are reviewed. In particular, attention is given to the effect of the compositional homogeneity and residual impurity content on the Seeback coefficient, electrical resistivity, and thermal conductivity of these materials. The effect of carbon content for a given level of impurity and degree of homogeneity is also discussed.
Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature
2015-09-21
temperature calibrations, tests procedures and optical microscopy used in this research. 4.1 Mechanical Testing Equipment A Model 810 MTS servo -hydraulic...Composite Materials”. Oxford University Press , New York, NY, 2nd edition, 1994. 4. F.C. Campbell. “Structural Composite Materials” ASM International...M. “Mechanics of Composite Materials”. CRC Press , second Edition, ISBN-10: 156032712x, July 1998. 13. Ruggles-Wrenn, M. B., D. T. Christensen, A. L
Integrated rheology model: Explosive Composition B-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
Integrated rheology model: Explosive Composition B-3
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...
2018-03-20
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B
NASA Astrophysics Data System (ADS)
May, Chadd M.; Tarver, Craig M.
2014-05-01
Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.
Song, Shidong; Xu, Wu; Zheng, Jianming; Luo, Langli; Engelhard, Mark H; Bowden, Mark E; Liu, Bin; Wang, Chong-Min; Zhang, Ji-Guang
2017-03-08
Instability of carbon-based oxygen electrodes and incomplete decomposition of Li 2 CO 3 during charge process are critical barriers for rechargeable Li-O 2 batteries. Here we report the complete decomposition of Li 2 CO 3 in Li-O 2 batteries using the ultrafine iridium-decorated boron carbide (Ir/B 4 C) nanocomposite as a noncarbon based oxygen electrode. The systematic investigation on charging the Li 2 CO 3 preloaded Ir/B 4 C electrode in an ether-based electrolyte demonstrates that the Ir/B 4 C electrode can decompose Li 2 CO 3 with an efficiency close to 100% at a voltage below 4.37 V. In contrast, the bare B 4 C without Ir electrocatalyst can only decompose 4.7% of the preloaded Li 2 CO 3 . Theoretical analysis indicates that the high efficiency decomposition of Li 2 CO 3 can be attributed to the synergistic effects of Ir and B 4 C. Ir has a high affinity for oxygen species, which could lower the energy barrier for electrochemical oxidation of Li 2 CO 3 . B 4 C exhibits much higher chemical and electrochemical stability than carbon-based electrodes and high catalytic activity for Li-O 2 reactions. A Li-O 2 battery using Ir/B 4 C as the oxygen electrode material shows highly enhanced cycling stability than those using the bare B 4 C oxygen electrode. Further development of these stable oxygen-electrodes could accelerate practical applications of Li-O 2 batteries.
Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin
2018-05-10
A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.
Dovgaliuk, Iurii; Jepsen, Lars H; Safin, Damir A; Łodziana, Zbigniew; Dyadkin, Vadim; Jensen, Torben R; Devillers, Michel; Filinchuk, Yaroslav
2015-10-05
The first Al-based amidoborane Na[Al(NH2 BH3 )4 ] was obtained through a mechanochemical treatment of the NaAlH4 -4 AB (AB=NH3 BH3 ) composite releasing 4.5 wt % of pure hydrogen. The same amidoborane was also produced upon heating the composite at 70 °C. The crystal structure of Na[Al(NH2 BH3 )4 ], elucidated from synchrotron X-ray powder diffraction and confirmed by DFT calculations, contains the previously unknown tetrahedral ion [Al(NH2 BH3 )4 ](-) , with every NH2 BH3 (-) ligand coordinated to aluminum through nitrogen atoms. Combination of complex and chemical hydrides in the same compound was possible due to both the lower stability of the AlH bonds compared to the BH ones in borohydride, and due to the strong Lewis acidity of Al(3+) . According to the thermogravimetric analysis-differential scanning calorimetry-mass spectrometry (TGA-DSC-MS) studies, Na[Al(NH2 BH3 )4 ] releases in two steps 9 wt % of pure hydrogen. As a result of this decomposition, which was also supported by volumetric studies, the formation of NaBH4 and amorphous product(s) of the surmised composition AlN4 B3 H(0-3.6) were observed. Furthermore, volumetric experiments have also shown that the final residue can reversibly absorb about 27 % of the released hydrogen at 250 °C and p(H2 )=150 bar. Hydrogen re-absorption does not regenerate neither Na[Al(NH2 BH3 )4 ] nor starting materials, NaAlH4 and AB, but rather occurs within amorphous product(s). Detailed studies of the latter one(s) can open an avenue for a new family of reversible hydrogen storage materials. Finally, the NaAlH4 -4 AB composite might become a starting point towards a new series of aluminum-based tetraamidoboranes with improved hydrogen storage properties such as hydrogen storage density, hydrogen purity, and reversibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pujari, P. K.; Datta, T.; Manohar, S. B.; Prakash, Satya; Sastry, P. V. P. S. S.; Yakhmi, J. V.; Iyer, R. M.
1990-03-01
Doppler broadened annihilation radiation (DBAR) spectral parameters have been reported- for the first time- between 77 K and 300 K, for several Bi-based oxide superconductors, viz. A: single phase (2122) Bi 2CaSr 2Cu 2O x with Tc=85 K (R=0), B: a mixed phase lead doped sample containing both 2122 and 2223 with a nominal composition Bi 1.6Pb 0.4Ca 2Sr 2Cu 3O y, and, C: another 2122+2223 sample with same nominal composition as that of B but synthesised under a different heat-treatment schedule so as to yield a Tc=85 K (R=0). Analyses of these spectra using PAACFIT program yielded two components, of which the intensity of the narrow component, I N, and, the width of the broad component, T B, were seen to be the only temperature dependent parameters. At the onset of superconducting transition both T B and I N were seen to increase to a maximum value and decrease on further cooling. A double peak structure in T B vs temperature profile were observed in sample B and C, similar to one reported by us in Tl-Ca-Ba-Cu-O systems. In addition, presence of a magnetic field (1 KG) yielded no significant change in the DBAR spectral parameters. The results are discussed.
The directional crystallization of W-B-C- d-transition metal alloys
NASA Astrophysics Data System (ADS)
Paderno, Yuriy; Paderno, Varvara; Liashchenko, Alfred; Filipov, Volodymyr; Evdokimova, Alina; Martynenko, Anna
2006-09-01
Crystallization from the melt during arc melting and directional solidification during induction zone melting of pseudo-alloys tungsten carbide (WC)- MeB 2 ( Me—Ti, Zr, Cr) and a number of alloys of the W-B-C system (WB 0.12C 0.74; WB 0.25C 0.75; WB 0.34C 0.32; WB 0.49C 0.76; WB 0.59C 0.76; WB 0.89C 0.75; (WC) 0.9B 0.1) has been studied. It was shown that the alloys WC—80 mass%-ZrB 2—20 mass% and WC—72 mass%-WB—28 mass% are the closest ones to eutectic compositions. Investigation of the microstructure of eutectic alloys in the WC-WB system by thin foil method has revealed that both matrix and reinforcing phases are single crystalline. Hardness tests by indentation of the eutectic structure area ( P=10.3 N) do not result in radial crack formation, which is evidence of the essential plasticity of the obtained composite material. It is established that new ceramic-ceramic eutectic composite materials based on WC with transition metal diborides and with a boride phase of tungsten may be created. Such materials can be successfully applied in contemporary high-temperature techniques.
NASA Astrophysics Data System (ADS)
Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti
2017-07-01
This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.
Miao, Yang; Yang, Zhihua; Liang, Bin; Li, Quan; Chen, Qingqing; Jia, Dechang; Cheng, Yi-Bing; Zhou, Yu
2016-08-09
In the work reported here, SiBCN amorphous powders were first prepared by a mechanical alloying technique, employing cubic silicon, graphite and hexagonal boron nitride powders as raw materials. Zirconia was then introduced via sol-gel methods. The resulting powder composite was then consolidated via SPS sintering. The SPS sintering sample was evaluated using XRD, SEM and TEM. XRD reveals a chemical transformation wherein amorphous BN(C) and ZrO2 form the primary ZrC and ZrB2 phases after SPS processing along with SiC and BN(C). Thereafter ZrC reacts with BN(C) completely to form ZrB2. The reaction starts at the temperature of 1500 °C and is complete at the temperature of 1900 °C. The fracture toughness of the sintered composites reaches 4.9 ± 0.2 MPa m(1/2) due to the presence of the laminated structure of the BN(C) phase.
Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001
NASA Technical Reports Server (NTRS)
Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).
NASA Astrophysics Data System (ADS)
Cheng, Feiyue; Yin, Hui; Xiang, Quanjun
2017-01-01
Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.
Improved Quantitative Analysis of Ion Mobility Spectrometry by Chemometric Multivariate Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraga, Carlos G.; Kerr, Dayle; Atkinson, David A.
2009-09-01
Traditional peak-area calibration and the multivariate calibration methods of principle component regression (PCR) and partial least squares (PLS), including unfolded PLS (U-PLS) and multi-way PLS (N-PLS), were evaluated for the quantification of 2,4,6-trinitrotoluene (TNT) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) in Composition B samples analyzed by temperature step desorption ion mobility spectrometry (TSD-IMS). The true TNT and RDX concentrations of eight Composition B samples were determined by high performance liquid chromatography with UV absorbance detection. Most of the Composition B samples were found to have distinct TNT and RDX concentrations. Applying PCR and PLS on the exact same IMS spectra used for themore » peak-area study improved quantitative accuracy and precision approximately 3 to 5 fold and 2 to 4 fold, respectively. This in turn improved the probability of correctly identifying Composition B samples based upon the estimated RDX and TNT concentrations from 11% with peak area to 44% and 89% with PLS. This improvement increases the potential of obtaining forensic information from IMS analyzers by providing some ability to differentiate or match Composition B samples based on their TNT and RDX concentrations.« less
[Effect of thermal cycling on the composite- composite repair bond strength].
Liu, Chang; Lin, Fei; Yue, Lin
2015-08-01
To evaluate the effect of aging of the composite and the adhesive interface on composite-composite repair bond strength. Methacrylate-based composite resin (Clearfil AP-X, composite A) and silorane-based composite resin (Filtek P90, composite B) and their corresponding adhesive, Clearfil SE Bond (adhesive a) and Filtek P90 System Adhesive (adhesive b), were selected in this study. Twenty-four substrates were prepared from composite A or B separately and divided into three groups, each group had 8 substrates: group one, new composites were adhered to the substrates with the use of adhesive a or b, followed by cutting the blocks into sticks; group two, new composites were adhered to the substrates using adhesive a or b, followed by cutting into sticks and thermal cycling; group three, substrates were thermocycled, then polished and adhered new composites using adhesive a or b, followed by cutting into sticks. Each group had 8 combinations of substrate(A, B)-adhesive(a, b)-repair composite (A, B). Fifteen sticks without flaws in each combination of 3 groups were selected utilizing stereomicroscope. The data were analyzed by independent samples t test. In group two, the microtensile strength(MS) of combinations using adhesive a and composite A or B to repair [A-a-A: (45.0 ± 3.2) MPa, B-a-A: (41.7 ± 3.3) MPa, A-a-B: (28.6 ± 3.9) MPa, B-a-B: (47.7 ± 6.6) MPa], and using adhesive b and composite A to repair [A-b-A: (44.2 ± 4.7) MPa, B-b-A: (38.0 ± 3.2) MPa] decreased significantly compared with corresponding combinations in group 1[A-a-A: (70.7 ± 5.5) MPa, B-a-A: (60.3 ± 5.1) MPa, A-a-B: (44.2 ± 1.6) MPa, B-a-B: (54.1 ± 3.2) MPa, A-b-A: (65.6 ± 7.2) MPa, B-b-A: (59.1 ± 4.1) MPa] (P<0.05). However, there was no significant difference between the MS of combinations using adhesive b and composite B to repair in group one and the MS of combinations in group two (P>0.05). The MS of all combinations in group three decreased significantly (P<0.05). Aging of the composite and the adhesive interface might affect the composite-composite repair bond strength.
Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M
2013-01-01
To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.
Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong
2016-07-01
In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Characteristics of a new meningococcal serogroup B vaccine, bivalent rLP2086 (MenB-FHbp; Trumenba®).
Gandhi, Ashesh; Balmer, Paul; York, Laura J
2016-08-01
Neisseria meningitidis is a common cause of bacterial meningitis, often leading to permanent sequelae or death. N. meningitidis is classified into serogroups based on the composition of the bacterial capsular polysaccharide; the 6 major disease-causing serogroups are designated A, B, C, W, X, and Y. Four of the 6 disease-causing serogroups (A, C, Y, and W) can be effectively prevented with available quadrivalent capsular polysaccharide protein conjugate vaccines; however, capsular polysaccharide conjugate vaccines are not effective against meningococcal serogroup B (MnB). There is no vaccine available for serogroup X. The public health need for an effective serogroup B vaccine is evident, as MnB is the most common cause of meningococcal disease in the United States and is responsible for almost half of all cases in persons aged 17 to 22 years. In fact, serogroup B meningococci were responsible for the recent meningococcal disease outbreaks on college campuses. However, development of a suitable serogroup B vaccine has been challenging, as serogroup B polysaccharide-based vaccines were found to be poorly immunogenic. Vaccine development for MnB focused on identifying potential outer membrane protein targets that elicit broadly protective immune responses across strains from the vast number of proteins that exist on the bacterial surface. Human factor H binding protein (fHBP; also known as LP2086), a conserved surface-exposed bacterial lipoprotein, was identified as a promising vaccine candidate. Two recombinant protein-based serogroup B vaccines that contain fHBP have been successfully developed and licensed in the United States under an accelerated approval process: bivalent rLP2086 (MenB-FHbp; Trumenba®) and 4CMenB (MenB-4 C; Bexsero®). This review will focus on bivalent rLP2086 only, including vaccine components, mechanism of action, and potential coverage across serogroup B strains in the United States.
Composite Flywheel Development for Energy Storage
2005-01-01
Fiber-Composite Flywheel Program: Quarterly Progress Report; UCRL -50033-76-4; Lawrence Livermore National Laboratory: Livermore, CA, 1976. 2...BEACH DAHLGREN VA 22448 1 WATERWAYS EXPERIMENT D SCOTT 3909 HALLS FERRY RD SC C VICKSBURG MS 39180 1 DARPA B WILCOX 3701 N FAIRFAX DR
C/O Ratio as a Dimension for Characterizing Exoplanetary Atmospheres
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku
2012-10-01
Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres, the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H2O and CH4 abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C2H2 become prominent for C/O >= 1, while the CO abundance remains almost unchanged. Furthermore, a C/O >= 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O >= 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.
C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhusudhan, Nikku, E-mail: Nikku.Madhusudhan@yale.edu; Department of Astronomy, Yale University, New Haven, CT 06511
2012-10-10
Until recently, infrared observations of exoplanetary atmospheres have typically been interpreted using models that assumed solar elemental abundances. With the chemical composition fixed, attempts have been made to classify hot Jupiter atmospheres on the basis of stellar irradiation. However, recent observations have revealed deviations from predictions based on such classification schemes, and chemical compositions retrieved from some data sets have also indicated non-solar abundances. The data require a two-dimensional (2D) characterization scheme with dependence on both irradiation and chemistry. In this work, we suggest the carbon-to-oxygen (C/O) ratio as an important second dimension for characterizing exoplanetary atmospheres. In hot-hydrogen-dominated atmospheres,more » the C/O ratio critically influences the relative concentrations of several spectroscopically dominant species. Between a C/O of 0.5 (solar value) and 2, the H{sub 2}O and CH{sub 4} abundances can vary by several orders of magnitude in the observable atmosphere, and new hydrocarbon species such as HCN and C{sub 2}H{sub 2} become prominent for C/O {>=} 1, while the CO abundance remains almost unchanged. Furthermore, a C/O {>=} 1 can preclude a strong thermal inversion due to TiO and VO in a hot Jupiter atmosphere, since TiO and VO are naturally underabundant for C/O {>=} 1. We, therefore, suggest a new 2D classification scheme for hydrogen-dominated exoplanetary atmospheres with irradiation (or temperature) and C/O ratio as the two dimensions. We define four classes in this 2D space (O1, O2, C1, and C2) with distinct chemical, thermal, and spectral properties. Based on the most recent observations, we characterize the thermal structure and C/O ratios of six hot Jupiters (XO-1b, CoRoT-2b, WASP-14b, WASP-19b, WASP-33b, and WASP-12b) in the framework of our proposed 2D classification scheme. While the data for several systems in our sample are consistent with C-rich atmospheres, new observations are required to conclusively constrain their C/O ratios in the day side as well as the terminator regions of their atmospheres. We discuss how observations using existing and forthcoming facilities can constrain C/O ratios in exoplanetary atmospheres.« less
Demircik, Filiz; Klonoff, David; Musholt, Petra B; Ramljak, Sanja; Pfützner, Andreas
2016-10-01
Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300. Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64-74, 147-163, and 313-335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO 2 and specific sample handling requirements, whereas teams B and C did not consider pO 2 . Each sample was tested four times with each device. In a separate experiment, a different group similar to group B performed the experiment before (D1) and after (D2) appropriate sample handling training. Mean absolute deviation from YSI was calculated as a metrix for all groups and devices. Mean absolute relative difference was 4.3% with team A (B: 9.2%, C: 5.2%). Team B had much higher readings and team C produced 100% of "sample composition" errors with high hematocrit levels. In a separate experiment, group D showed a result similar to group B before the training and improved significantly when considering the sample handling requirements (D1: 9.4%, D2: 4.5%, P < 0.05). Laboratory performance testing of EBCA devices should only be performed by trained staff considering specific sample handling requirements. The results suggest that healthcare centers should evaluate EBCA-based devices with capillary blood from patients in accordance with the instructions for use to achieve reliable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jiutian; Cao, Yudong; Fan, Hai
2015-12-15
A color-tunable luminescent material was prepared based on the composition of functionalized graphitic carbon nitride (g-C{sub 3}N{sub 4}) and europium (III). The functionalized g-C{sub 3}N{sub 4} layers not only behave as multifunctional supports including ligand coordinated with europium (III) and a support structure for the formation of the luminescent material, but exhibit excitation wavelength-dependent luminescence, thus the energy transfer between the functionalized g-C{sub 3}N{sub 4} and europium (III) can match very well by controlling the emission wavelength of functionalized g-C{sub 3}N{sub 4}. The as-prepared materials was comprehensively characterized via X-ray photoelectron spectroscopy, Fourier Transform Infrared spectroscopy, X-ray scattering techniques, Ultravioletmore » and Visible spectrophotometer, fluorescence spectrophotometer, thermogravimetric analysis, etc. The luminescent material exhibits multi-color emissions which are consistent with the characteristic emissions of europium (III) and functionalized g-C{sub 3}N{sub 4}, and the photoluminescence quality and density of the europium (III) can be greatly enhanced. The brilliant optical properties of the materials make them suiting for multipurpose applications in practical fields. - Graphical abstract: Schematic illustration of the synthesis and basic composition of the luminescent material. Inset figures were luminescence emission spectra of g-C{sub 3}N{sub 4} (A), europium (III) complex (a) and luminescent material (b) with the same concentration in (B) (K{sub ex}=350 nm) and photographs of (left) H{sub 2}O and (right) the H{sub 2}O dispersion of luminescence emission spectra under 350 nm UV radiation. The energy transfer in the luminescent material matchs very well and it exhibits multi-color emissions simultaneously. The enhanced photoluminescence quality and density of the europium (III) makes them suiting for multipurpose applications in practical fields. - Highlights: • Luminescent material exhibits multi-color emissions when excited by single wavelength. • The energy trsnsfer between functionalized g-C{sub 3}N{sub 4} and europium matches very vell. • Functionalized g-C{sub 3}N{sub 4} exhibits excitation wavelength-depengdent bright blue luminescence. • Functionalized g-C{sub 3}N{sub 4} layer provided as multifunctional supports.« less
Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4
2014-05-23
study of Lamb wave interactions with holes and through thickness defects in thin metal plates . Distribution Code A: Approved for public release...Propagation in Composite Plates with Damages - Years 3-4 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA23861214005 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The objective of the proposed efforts: -Formulated Wavelet Spectral element for a healthy composite plates and used the formulated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Jiang, L.; Bai, Z.
Interactions of the two common atmospheric bases, ammonia (NH{sub 3}) and methylamine MA (CH{sub 3}NH{sub 2}), which are considered to be important stabilizers of binary clusters in the Earth’s atmosphere, with H{sub 2}SO{sub 4}, the key atmospheric precursor, and 14 common atmospheric organic acids (COA) (formic (CH{sub 2}O{sub 2}), acetic (C{sub 2}H{sub 4}O{sub 2}), oxalic (C{sub 2}H{sub 2}O{sub 4}), malonic (C{sub 3}H{sub 4}O{sub 4}), succinic (C{sub 4}H{sub 6}O{sub 4}), glutaric acid (C{sub 5}H{sub 8}O{sub 4}), adipic (C{sub 6}H{sub 10}O{sub 4}), benzoic (C{sub 6}H{sub 5}COOH), phenylacetic (C{sub 6}H{sub 5}CH{sub 2}COOH), pyruvic (C{sub 3}H{sub 4}O{sub 3}), maleic acid (C{sub 4}H{sub 4}O{sub 4}),more » malic (C{sub 4}H{sub 6}O{sub 5}), tartaric (C{sub 4}H{sub 6}O{sub 6}) and pinonic acid (C{sub 10}H{sub 16}O{sub 3})) have been studied using the composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA) (H{sub 2}SO{sub 4}), (COA)(B1) and (COA)(B2) dimers and (COA) (H{sub 2}SO{sub 4}) (B1) and (COA) (H{sub 2}SO{sub 4}) (B1) trimers, where B1 and B2 represent methylamine (CH{sub 3}NH{sub 2}) and ammonia (NH{sub 3}), respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H{sub 2}SO{sub 4} have been analyzed. It has been shown that in many cases the interactions of H{sub 2}SO{sub 4} with COA, ammonia and methylamine lead to the formation of heteromolecular dimers and trimers, which are certainly more stable than (H{sub 2}SO{sub 4}){sub 2} and (H{sub 2}SO{sub 4}){sub 3}. It has also been found that free energies of (COA) (H{sub 2}SO{sub 4})+ CH{sub 3}NH{sub 2}⇔(COA) (H{sub 2}SO{sub 4})(CH{sub 3}NH{sub 2}) reactions exceed 10-15 kcal mol{sup −1}. This is a clear indication that mixed trimers composed of COA, H{sub 2}SO{sub 4} and methylamine are very stable and can thus serve as possible nucleation sites. The present study leads us to conclude that the interactions of COA coexisting with H{sub 2}SO{sub 4} and common atmospheric bases in the Earth’s atmosphere may be an important factor affecting the stability of nucleating sulfuric acid clusters and that the impacts of COA on atmospheric nucleation should be studied in further details.« less
1989-02-01
Reference 20. (8) PN H dCHCHCHH 2T NO2 + H20 PNA (9) PNA - 2C H2CH 2 CH2 NNO + other products PNSA (10) BDD . 02 NNH(CH2 )4 NHNO 2 + 2H2 0 BONA (11) BDNA ...ONNH(CH2 )4 NHNO + other products BONSA 2H+ (12) BDNA --> ý4-CH2CH2 -N=N=0+] 2 + 2H2 0 (a) (13) (a) --- 4 [(CH2 )4 ]++ + 2N2 0 (b) (14) (b) --- H2 C
NASA Astrophysics Data System (ADS)
Boettinger, W. J.; Newbury, D. E.; Wang, K.; Bendersky, L. A.; Chiu, C.; Kattner, U. R.; Young, K.; Chao, B.
2010-08-01
The solidification microstructures of three nine-element Zr-Ni-based AB2 type C14/C15 Laves hydrogen storage alloys are determined. The selected compositions represent a class of alloys being examined for usage as an MH electrode in nickel metal-hydride batteries that often have their best properties in the cast state. Solidification is accomplished by dendritic growth of hexagonal C14 Laves phase, peritectic solidification of cubic C15 Laves phase, and formation of cubic B2 phase in the interdendritic regions. The B2 phase decomposes in the solid state into a complex multivariate platelike structure containing Zr-Ni-rich intermetallics. The observed sequence C14/C15 upon solidification agrees with predictions using effective compositions and thermodynamic assessments of the ternary systems, Ni-Cr-Zr and Cr-Ti-Zr. Experimentally, the closeness of the compositions of the C14 and C15 phases required the use of compositional mapping with an energy dispersive detector capable of processing a very high X-ray flux to locate regions in the microstructure for quantitative composition measurement and transmission electron microscope examination.
THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Switzer, L L; Garcia, F
2006-06-20
Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the levelmore » of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.« less
Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement
NASA Astrophysics Data System (ADS)
Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel
2018-05-01
The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements with graining composition B and C and trachybasalt aggregate.
NASA Astrophysics Data System (ADS)
Kaku, Sai Mahesh Yadav; Khanra, Asit Kumar; Davidson, M. J.
2018-04-01
Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al-ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450-575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al-ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.
76 FR 52054 - Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
.... Column (9B), transportation in 172.204(c)(3), commerce of certain 173.27(b)(2), hazardous materials by..., Stainless Steel lined composite pressure vessels per DOT- CFFC specification. (modes 1, 2, 3, 4, 5) 15413-N...
Crossover from attractive to repulsive Casimir forces and vice versa.
Schmidt, Felix M; Diehl, H W
2008-09-05
Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.
Zhang, Xueli; Gong, Xuedong
2014-08-04
Nitrogen-rich heterocyclic bases and oxygen-rich acids react to produce energetic salts with potential application in the field of composite explosives and propellants. In this study, 12 salts formed by the reaction of the bases 4-amino-1,2,4-trizole (A), 1-amino-1,2,4-trizole (B), and 5-aminotetrazole (C), upon reaction with the acids HNO3 (I), HN(NO2 )2 (II), HClO4 (III), and HC(NO2 )3 (IV), are studied using DFT calculations at the B97-D/6-311++G** level of theory. For the reactions with the same base, those of HClO4 are the most exothermic and spontaneous, and the most negative Δr Gm in the formation reaction also corresponds to the highest decomposition temperature of the resulting salt. The ability of anions and cations to form hydrogen bonds decreases in the order NO3 (-) >N(NO2 )2 (-) >ClO4 (-) >C(NO2 )3 (-) , and C(+) >B(+) >A(+) . In particular, those different cation abilities are mainly due to their different conformations and charge distributions. For the salts with the same anion, the larger total hydrogen-bond energy (EH,tot ) leads to a higher melting point. The order of cations and anions on charge transfer (q), second-order perturbation energy (E2 ), and binding energy (Eb ) are the same to that of EH,tot , so larger q leads to larger E2 , Eb , and EH,tot . All salts have similar frontier orbitals distributions, and their HOMO and LUMO are derived from the anion and the cation, respectively. The molecular orbital shapes are kept as the ions form a salt. To produce energetic salts, 5-aminotetrazole and HClO4 are the preferred base and acid, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nano-composite stainless steel
Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.
2015-07-14
A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ektarawong, A., E-mail: anekt@ifm.liu.se; Hultman, L.; Birch, J.
The elastic properties of alloys between boron suboxide (B{sub 6}O) and boron carbide (B{sub 13}C{sub 2}), denoted by (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}, as well as boron carbide with variable carbon content, ranging from B{sub 13}C{sub 2} to B{sub 4}C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic propertiesmore » calculations demonstrate that configurational disorder in B{sub 13}C{sub 2}, where a part of the C atoms in the CBC chains substitute for B atoms in the B{sub 12} icosahedra, drastically increase the Young’s and shear modulus, as compared to an atomically ordered state, B{sub 12}(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B{sub 4}C to B{sub 13}C{sub 2}. The elastic moduli of the (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B{sub 6}O-rich as well as ordered or disordered B{sub 13}C{sub 2}-rich domains in the material prepared through equilibrium routes is predicted.« less
B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentine, P.G.; Trester, P.W.; Winter, J.
1994-05-01
Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less
Multielement mapping of alpha-SiC by scanning Auger microscopy
NASA Technical Reports Server (NTRS)
Browning, Ray; Smialek, James L.; Jacobson, Nathan S.
1987-01-01
Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.
Energy release properties of amorphous boron and boron-based propellant primary combustion products
NASA Astrophysics Data System (ADS)
Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu
2015-07-01
The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.
Scheers, Johan; Pitawala, Jagath; Thebault, Frederic; Kim, Jae-Kwang; Ahn, Jou-Hyeon; Matic, Aleksandar; Johansson, Patrik; Jacobsson, Per
2011-09-07
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles. This journal is © the Owner Societies 2011
Aspects of the "Design Space" in high pressure liquid chromatography method development.
Molnár, I; Rieger, H-J; Monks, K E
2010-05-07
The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Haryono, M. B.; Sulardjaka, Nugroho, Sri
2016-04-01
The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.
NASA Technical Reports Server (NTRS)
Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.
1992-01-01
The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.
NASA Astrophysics Data System (ADS)
Xie, Linfang; Ni, Jie; Tang, Bo; He, Guangyu; Chen, Haiqun
2018-03-01
A surface charge modified g-C3N4 was successfully prepared by protonation of nitric acid. Combination of the protonated g-C3N4 (pCN) and graphene oxide (GO) layers created a 2D/2D-type composite (pCN/GO) under the synergistic effect of sonication-exfoliation and self-assembly. The obtained 2D nanostructure of pCN/GO was explored by electron microscopy analysis. The photocatalytic degradation of rhodamine B (RhB) and ciprofloxacin (CIP) showed a distinctly high efficiency of pCN/GO-5% with excellent stability, which is superior not only to that of g-C3N4, pCN and g-C3N4/GO-5% nanocomposites we prepared, but also to what was reported previously. The optimized combination of GO and pCN afforded the pCN/GO composite intimate interfacial contact within the heterojunction, which promoted the separation of photogenerated electron-hole pairs as evidenced by zeta potential, photoluminescence and photocurrent measurements. A visible-light photocatalytic degradation mechanism associated with pCN/GO nanocomposites was also proposed.
NASA Technical Reports Server (NTRS)
Chellman, D. J.; Gurganus, T. B.; Walker, J. A.
1992-01-01
The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.
NASA Astrophysics Data System (ADS)
Zhang, Wencong; Zhang, Lingjia; Feng, Yangju; Cui, Guorong; Chen, Wenzhen
2018-04-01
Plates of 2.5 vol. % TiB whisker-reinforced Ti6Al4V titanium matrix composites (TiBw/Ti64) with network structure were successfully fabricated by hot-hydrostatic extrusion with steel cup at 1100 °C. The dimensions of plates were about 150mm in length, 27mm in width and 2mm in thickness. After extrusion, the original equiaxed-network structure formed by TiB whiskers still existed, but was compressed in cross-section and stretched in longitudinal section and then the TiB whiskers were directional distribution along the extrusion direction. Furthermore, the mechanical properties results showed that the strength, hardness and ductility of the plates were significantly improved compared to as-sintered composites.
Spina, Denis Roberto Falcão; Grossi, João Ricardo Almeida; Cunali, Rafael Schlögel; Baratto Filho, Flares; da Cunha, Leonardo Fernandes; Gonzaga, Carla Castiglia; Correr, Gisele Maria
2015-01-01
The aim of this study was to evaluate the discoloration effects of water, cola-based soft drink, coffee, and wine on resin composites used in restorative dentistry and the possibility of removing the stain with chair side manual polishing. The A2 shade of three materials was tested. Disc specimens were prepared. A spectrophotometer was used to measure the baseline CIE-Lab color parameters of each material (n=10) 24 hours after sample preparation. Samples were then immersed in a cola-based soft drink, coffee, or wine for 1 hour every day, for 30 days. For the remaining hours, the specimens were stored in distilled water. In the control group, the specimens were immersed in water for the whole period. The color differences (ΔE) were calculated after 7 and 30 days of storage, and after polishing with coarse Sof-Lex discs, and analyzed by two-way ANOVA with repeated measures and Tukey's HSD test (α=0.05). Luna presented higher ΔE values (3.41)a followed by Durafill (2.82)b and Herculite (2.24)c. For the drink solutions, ΔE values were higher for wine (4.40)a followed by coffee (2.59)b and for cola-based soft drink (2.23)c and water (2.13)c which were statistically similar. For time, ΔE values were higher for 30 days (3.97)a and then for 7 days (2.48)b and after polishing (2.04)c. The results indicate that color stability is material dependent. The types of drinks that patients consume also influence the color stability of restorative materials. PMID:27347551
1990-11-21
buckled coatings is obtained: G - H(ao-6 c )(do 0/dc-do c/dc)%-( o -0C) 2 (dz/dc)](l-a)h/2c (4) where % is c 2b 2(l+v)+c4 (-v)]/ E (c 2-b 2). To determine...pressure on the fiber, o , that results from a cooling differential of AT Is (9): I 20 q. = [ E 2 .(% - a5 ,) + Er(a - atr)]*AT (9) where a% is the...calculated by rule-of-mixtures, these fracture energies can be expressed in terms of critical stress intensity factors: Go + AGb ( o +AKb) 2 / E (3
NASA Astrophysics Data System (ADS)
Feng, Jinpeng; Wang, Youlan
2016-12-01
An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.
Pérez, María M; Ghinea, Razvan; Ugarte-Alván, Laura I; Pulgar, Rosa; Paravina, Rade D
2010-01-01
The purpose of this study was to determine the optical properties, color and translucency, of the new silorane-based resin composite and to compare it to universal dimethacrylate-based composites. Six dimethacrylate-based resin composites and one silorane-based resin composite (all A2 shade) were studied. Color of non-polymerized and polymerized composites was measured against white and black backgrounds using a spectroradiometer. Changes in color (ΔE*(ab)), translucency (ΔTP) and color coordinates (ΔL*, Δa* and Δb*) were calculated for each resin composite. Results were evaluated using a one-way ANOVA, a Tukey's test and a t-test. The polymerization-dependent ΔE*(ab) ranged from 4.7 to 9.1, with the smallest difference for the silorane-based resin composite. The color changes of silorane-based composite were due to the changes of coordinates Δa* and Δb*. However, for the dimethacrylate-based composites, the color changes mainly originated by ΔL*and Δb*. The silorane composite exhibited the smallest TP values. Tukey's test confirmed significant statistical differences (p<0.05) between mean TP values of Filtek Silorane and each brand of dimethacrylate-based composites before and after polymerization. The new silorane-based restorative system showed different optical properties compared to clinically successful dimethacrylate composites. The silorane composite exhibited better polymerization-dependent chromatic stability, and a lower translucency compared to other tested products. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng
2017-01-01
TiC–Ti–Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti3Al, Ti2AlC, and Ti3AlC2 phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti2AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m1/2, respectively. PMID:29027949
Fei, Yanhan; Ai, Taotao; Niu, Qunfei; Li, Wenhu; Yuan, Xinqiang; Jing, Ran; Dong, Hongfeng
2017-10-13
TiC-Ti-Al mixed powders and TC4 titanium alloy foils were overlapped layer-by-layer in the graphite die. The TC4-based laminated composite sheets reinforced by Ti aluminide and carbide were successfully fabricated via spark plasma sintering (SPS) at 1100 °C with a well-bonded interface. The composite layers were mainly composed of TiAl, Ti₃Al, Ti₂AlC, and Ti₃AlC₂ phases. The carbides particles distributed in the matrix played an important role in the deflection of cracks and the passivation of microcracks. TC4 titanium alloy layers had an obvious effect on the stress distribution during the loading process, and provided an energy dissipation mechanism, which could improve the mechanical properties of the laminated composite sheets obviously. When the theoretical amount of Ti₂AlC was 20 wt %, the flexural strength and fracture toughness of the laminated composite sheets reached the maximum value in the arrester direction, which were 1428.79 MPa and 64.08 MPa·m 1/2 , respectively.
Li, Na; Hu, Changwen; Cao, Minhua
2013-05-28
CoNi alloy nanoparticles anchored on a spherical carbon monolith (CoNi-C) were prepared by a solvothermal route and subsequent heat treatment without any templates. Their permittivity and permeability behaviors were studied in the frequency range of 2-18 GHz. The CoNi-C composites showed the best microwave absorbing performances compared to those of Co-C and Ni-C. The maximum reflection loss of the CoNi-C nanocomposites can reach -50.2 dB at 7.7 GHz with samples of 4 mm in thickness, better than that of the Ni-C composites, while the Co-C composites showed almost no absorption at all. The absorption mechanism of the three absorbents was also discussed.
Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post.
Beltrão, Maria Cecilia Gomes; Spohr, Ana Maria; Oshima, Hugo Mitsuo Silva; Mota, Eduardo Gonçalves; Burnett, Luiz Henrique
2009-02-01
To assess the effect of a horizontally transfixed fiber glass post placed between buccal and palatal surfaces, on the fracture strength of endodontically treated molar teeth with MOD cavities, either restored with resin-based composite, or not. 75 sound maxillary human third molars were extracted, embedded in acrylic resin blocks and randomly assigned to five groups (n=15). Group A (sound teeth), (control) and Groups B, C, D and E, which were subjected to the following procedures after endodontic treatment: GB--(MOD+Endo), GC--(MOD+Endo+Post), GD--MOD and composite restoration (MOD+Endo+CR), GE--(MOD+Endo+Post+CR). The specimens were stored in distilled water at 37 degrees C for 24 hours. Later, a compressive force was applied by means of a universal testing machine at 1 mm/minute speed, parallel to the long axis of the teeth until fracture occurred. The means of the results (N) followed by the same letter represent no statistical difference by ANOVA and Tukey (P<0.05): GA = 4289.8 (+/- 1128.9)a, GB = 549.6 (+/- 120.7)b, GC = 1474.8 (+/- 338.1)c, GD = 1224.7 (+/- 236.0)c, GE = 2645.4 (+/- 675.1)d. In the analysis of qualitative variables, there was a tendency to cusp fracture in all groups except for Group C. The fiber glass post transfixed horizontally in a MOD cavity significantly increased the fracture resistance of the teeth restored with resin composite.
Chen, Hsiu-Cheng; Lin, Shu-Wei; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa
2015-03-25
In this study, we employed polyethylenimine-doped sol-gel-processed zinc oxide composites (ZnO:PEI) as efficient electron transport layers (ETL) for facilitating electron extraction in inverted polymer solar cells. Using ultraviolet photoelectron spectroscopy, synchrotron grazing-incidence small-angle X-ray scattering and transmission electron microscopy, we observed that ZnO:PEI composite films' energy bands could be tuned considerably by varying the content of PEI up to 7 wt %-the conduction band ranged from 4.32 to 4.0 eV-and the structural order of ZnO in the ZnO:PEI thin films would be enhanced to align perpendicular to the ITO electrode, particularly at 7 wt % PEI, facilitating electron transport vertically. We then prepared two types of bulk heterojunction systems-based on poly(3-hexylthiophene) (P3HT):phenyl-C61-butryric acid methyl ester (PC61BM) and benzo[1,2-b:4,5-b́]dithiophene-thiophene-2,1,3-benzooxadiazole (PBDTTBO):phenyl-C71-butryric acid methyl ester (PC71BM)-that incorporated the ZnO:PEI composite layers. When using a composite of ZnO:PEI (93:7, w/w) as the ETL, the power conversion efficiency (PCE) of the P3HT:PC61BM (1:1, w/w) device improved to 4.6% from a value of 3.7% for the corresponding device that incorporated pristine ZnO as the ETL-a relative increase of 24%. For the PBDTTBO:PC71BM (1:2, w/w) device featuring the same amount of PEI blended in the ETL, the PCE improved to 8.7% from a value of 7.3% for the corresponding device that featured pure ZnO as its ETL-a relative increase of 20%. Accordingly, ZnO:PEI composites can be effective ETLs within organic photovoltaics.
Neish, G A; Green, B R
1977-12-14
Saprolegnia diclina DNA has been fractionated using preparative AgNO3/Cs2SO4 and CsCl density gradients. In addition to the previously identified major satellite DNA, there are two minor DNA components banding at 1.682 and 1.701 g - cm(-3) in CsCl. Purified major satellite DNA bands at 1.707 g - cm(-3) giving a base composition of 48% G + C in good agreement with 47% G + C calculated from its Tm value. The nuclear DNA base composition is 58% G + C by both methods. The base composition of the major satellite DNA suggests that it may represent ribosomal DNA cistrons.
High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.
2004-01-01
As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices. Composite panels with system B were heat treated at Glenn, and the pores that remained open were filled by silicon melt infiltration (MI). Panels with system A and the other SiC/SiC systems were not heat treated, and remaining open pores in these systems were filled with SiC slurry and silicon MI.
Thermal response of a 4D carbon/carbon composite with volume ablation: a numerical simulation study
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2018-02-01
As carbon/carbon composites usually work at high temperature environments, material ablation inevitably occurs, which further affects the system stability and safety. In this paper, the thermal response of a thermoprotective four-directional carbon/carbon (4D C/C) composite is studied herein using a numerical model focusing on volume ablation. The model is based on energy- and mass-conservation principles as well as on the thermal decomposition equation of solid materials. The thermophysical properties of the C/C composite during the ablation process are calculated, and the thermal response during ablation, including temperature distribution, density, decomposition rate, char layer thickness, and mass loss, are quantitatively predicted. The present numerical study provides a fundamental understanding of the ablative mechanisms of a 4D C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, Leslie; Deck, Katherine; Lissauer, Jack J.; Carter, Joshua A.
2015-01-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large-scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with an Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, L.; Deck, K.; Lissauer, J. J.; Carter, J.
2014-12-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b's mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
Schäfer, D.; Eisenmenger-Sittner, C.; Chirtoc, Mihai; Kijamnajsuk, P.; Kornfeind, N.; Hutter, H.; Neubauer, E.; Kitzmantel, M.
2011-01-01
The manipulation of mechanical and thermal interfaces is essential for the design of modern composites. Amongst these are copper carbon composites which can exhibit excellent heat conductivities if the Cu/C interface is affected by a suitable interlayer to minimize the Thermal Contact Resistance (TCR) and to maximize the adhesion strength between Cu and C. In this paper we report on the effect of boron based interlayers on wetting, mechanical adhesion and on the TCR of Cu coatings deposited on glassy carbon substrates by magnetron sputtering. The interlayers were 5 nm thick and consisted of pure B and B with additions of the carbide forming metals Mo, Ti and Cr in the range of 5 at.% relative to B. The interlayers were deposited by RF magnetron sputtering from either a pure B target or from a composite target. The interlayer composition was checked by Auger Electron Spectroscopy and found to be homogenous within the whole film. The system C-substrate/interlayer/Cu coating was characterized in as deposited samples and samples heat treated for 30 min at 800 °C under High Vacuum (HV), which mimics typical hot pressing parameters during composite formation. Material transport during heat treatment was investigated by Secondary Ion Mass Spectroscopy (SIMS). The de-wetting and hole formation in the Cu coating upon heat treatment were studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The adhesion of the Cu coating was evaluated by mechanical pull-off testing. The TCR was assessed by infrared photothermal radiometry (PTR). A correlation between the adhesion strength and the value of the TCR which was measured by PTR was determined for as deposited as well as for heat treated samples. PMID:22241938
Code of Federal Regulations, 2014 CFR
2014-07-01
... delegated to act for the Administrator. Confidential business information means trade secrets or confidential commercial or financial information under FIFRA section 10(b) or 5 U.S.C. 552(b)(3) or (4). Other... approved in conjunction with registration, including labeling, use classification, composition, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... delegated to act for the Administrator. Confidential business information means trade secrets or confidential commercial or financial information under FIFRA section 10(b) or 5 U.S.C. 552(b)(3) or (4). Other... approved in conjunction with registration, including labeling, use classification, composition, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... delegated to act for the Administrator. Confidential business information means trade secrets or confidential commercial or financial information under FIFRA section 10(b) or 5 U.S.C. 552(b)(3) or (4). Other... approved in conjunction with registration, including labeling, use classification, composition, and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... delegated to act for the Administrator. Confidential business information means trade secrets or confidential commercial or financial information under FIFRA section 10(b) or 5 U.S.C. 552(b)(3) or (4). Other... approved in conjunction with registration, including labeling, use classification, composition, and...
Ng, Kim Hoong; Cheng, Yoke Wang; Khan, Maksudur R; Cheng, Chin Kui
2016-12-15
This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UV-activated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, viz. O 2 flowrate (A), ZnO loading (B) and initial concentration of POME (C) were evaluated for the significance analysis using a 2 3 full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (A), 15.96% (B) and 13.85% (C), respectively, to the POME degradation. In addition, the interactions between the factors AB, AC and BC also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Babenko, A. A.; Istomin, S. A.; Zhuchkov, V. I.; Sychev, A. V.; Ryabov, V. V.; Upolovnikova, A. G.
2017-05-01
The simplex lattice method of planning experiments is used to study the viscosities of CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition-viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8-1.2 Pa s in the temperature range 1500-1600°C, are indicated in the diagrams.
2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics
Liu, Zhuang; Lin, Han; Zhao, Menglong; Dai, Chen; Zhang, Shengjian; Peng, Weijun; Chen, Yu
2018-01-01
Background: The emergence of two-dimensional MXenes has spurred their versatile applications in broad fields, but the exploring of novel MXene-based family members and their potential applications in theranostic nanomedicine (concurrent diagnostic imaging and therapy) have been rarely explored. In this work, we report the construction of a novel superparamagnetic MXene-based theranostic nanoplatform for efficient breast-cancer theranostics, which was based on intriguing tantalum carbide (Ta4C3) MXene and its further rational surface-superparamagnetic iron-oxide functionalization (Ta4C3-IONP-SPs composite MXenes) for efficient breast-cancer theranostic. Methods: The fabrication of ultrathin Ta4C3 nanosheets was based on an exfoliation strategy and superparamagnetic iron oxide nanoparticles were in-situ grown onto the surface of Ta4C3 MXene according to the redox reaction of MXene. Ta4C3-IONP MXenes were modified with soybean phospholipid (SP) to guarantee high stability in physiological conditions. The photothermal therapy, contrast-enhanced CT, T2-weighted magnetic resonance imaging and the high biocompatibility of these composite nanosheets have also been evaluated in vitro at cellular level and in vivo on mice breast tumor allograft tumor model. Results: The Ta component of Ta4C3-IONP-SPs exhibits high performance for contrast-enhanced CT imaging because of its high atomic number and high X-ray attenuation coefficient, and the integrated superparamagnetic IONPs act as excellent contrast agents for T2-weighted magnetic resonance imaging. Especially, these Ta4C3-IONP-SPs composite nanosheets with high photothermal-conversion efficiency (η: 32.5%) has achieved complete tumor eradication without reoccurrence, verifying their highly efficient breast-tumor photo-ablation performance. Conclusion: This work not only significantly broadens the biomedical applications of MXene-based nanoplatforms (Ta4C3 MXene) by exploring their novel family members and further functionalization strategies (magnetic functionalization in this work), but also provides a novel and efficient theranostic nanoplatform for efficient breast-cancer theranostics. PMID:29556347
2017-03-01
RESPONSIBLE PERSON John J La Scala a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified 19b. TELEPHONE NUMBER (Include area...25 and 45 ° C ...........................................................................................102 Fig. 80 Standard viscosity test run with...anhydride. The reaction was run at 80 ° C for 4 h. The flask was cooled down to room temperature and left to stand to precipitate an undissolved
Enhanced hydrogen sorption kinetics of Mg 50Ni-LiBH 4 composite by CeCl 3 addition
NASA Astrophysics Data System (ADS)
Gennari, F. C.; Puszkiel, J. A.
Mg 50Ni-LiBH 4 and Mg 50Ni-LiBH 4-CeCl 3 composites have been prepared by short times of ball milling under argon atmosphere. Combination of HP-DSC and volumetric techniques show that Mg 50Ni-LiBH 4-CeCl 3 composite not only uptakes hydrogen faster than Mg 50Ni-LiBH 4, but also releases hydrogen at a lower temperature (225 °C). The presence of CeCl 3 has a catalytic role, but it does not modify the thermodynamic properties of the composite which corresponds to MgH 2. Experimental studies on the hydriding/dehydriding mechanisms demonstrate that LiBH 4 and Ni lead to the formation of MgNi 3B 2 in both composites. In addition, XRD/DSC analysis and thermodynamic calculations demonstrate that the addition of CeCl 3 accounts for the enhancement of the hydrogen absorption/desorption kinetics through the interaction with LiBH 4. The in situ formation and subsequent decomposition of Ce(BH 4) 3 provides a uniform distribution of nanosize CeB 4 compound, which plays an important role in improving the kinetic properties of MgH 2.
NASA Technical Reports Server (NTRS)
1991-01-01
The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.
1989-10-15
discussed in the context of the above results. [Key words: sintering, densification, zirconia , powder fz irication, grain growth] Member, American...Ceram. Soc. 71 (4) 225-35 (1988). 3. M.A.C.G. van de Graaf, A.J. Burggraaf, ’Wet-Chemical Preparation of Zirconia Powders : Their Microstructure and...40h Zr0-1OY23 30- 1 Oh Zr2IY231WC 2 (A) 1.’DENSIFICATION OF ZIRCONIA POWDER l0 W 0.7-~tr~ TIME bRYST (B CONTAN CEli RSAETL10 w S0.45-- 0.4- 1060 110
Hybrid Finite Element Analysis of Free Edge Effect in Symmetric Composite Laminates
1983-06-01
SJ3 (i,j = 1,2,4,5,6) (A.1.7)i Sij - S3 3 For symmetric angle ply case 814 : B24 = B34 = B54 : 0 (A.1.8)I B16 B 2 6 =B 3 6 =B 6 =0 In matrix form, eq...A.1.6) can be written as c = B a + co (A.l.9) 36 wi th c Xx c yy yz (A.1.10) zx c xy B 1 . B16 B = 5 x 5 matrix (A . I) B61 B6 6 axx yy (A..12...3.38) u rc+l 6 Ca+l *wU +l E: Aku rk (Ck)k=l where u 2 Pk = B 1 u ( uku) + B2 u - Bl6 Uuk u+xku(Bl5u k uB14 U) uB u qu= B u u + B22 - B26 + ku (B25U
Fabrication, structure, and properties of Fe3O4@C encapsulated with YVO4:Eu3+ composites
NASA Astrophysics Data System (ADS)
Shi, Jianhui; Tong, Lizhu; Liu, Deming; Yang, Hua
2012-03-01
The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol-gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core-shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core-shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.
NASA Astrophysics Data System (ADS)
He, Hongcai; Jiang, Zhuolin; He, Zhaoling; Liu, Tao; Li, Enzhu; Li, Bao-Wen
2018-01-01
An excellent ternary composite photocatalyst consisting of silver orthophosphate (Ag3PO4), attapulgite (ATP), and TiO2 was synthesized, in which heterojunction was formed between dissimilar semiconductors to promote the separation of photo-generated charges. The ATP/TiO2/Ag3PO4 composite was characterized by SEM, XRD, and UV-vis diffuse reflectance spectroscopy. The co-deposition of Ag3PO4 and TiO2 nanoparticles onto the surface of ATP forms a lath-particle structure. Compared with composite photocatalysts consisting of two phases, ATP/TiO2/Ag3PO4 ternary composite exhibits greatly improved photocatalytic activity for degradation of rhodamine B under simulated solar irradiation. Such ternary composite not only improves the stability of Ag3PO4, but also lowers the cost by reducing application amount of Ag3PO4, which provides guidance for the design of Ag3PO4- and Ag-based composites for photocatalytic applications.
Yuan, Jia; Hapis, Stefania; Breitzke, Hergen; Xu, Yeping; Fasel, Claudia; Kleebe, Hans-Joachim; Buntkowsky, Gerd; Riedel, Ralf; Ionescu, Emanuel
2014-10-06
Amorphous SiHfBCN ceramics were prepared from a commercial polysilazane (HTT 1800, AZ-EM), which was modified upon reactions with Hf(NEt2)4 and BH3·SMe2, and subsequently cross-linked and pyrolyzed. The prepared materials were investigated with respect to their chemical and phase composition, by means of spectroscopy techniques (Fourier transform infrared (FTIR), Raman, magic-angle spinning nuclear magnetic resonance (MAS NMR)), as well as X-ray diffraction (XRD) and transmission electron microscopy (TEM). Annealing experiments of the SiHfBCN samples in an inert gas atmosphere (Ar, N2) at temperatures in the range of 1300-1700 °C showed the conversion of the amorphous materials into nanostructured UHTC-NCs. Depending on the annealing atmosphere, HfC/HfB2/SiC (annealing in argon) and HfN/Si3N4/SiBCN (annealing in nitrogen) nanocomposites were obtained. The results emphasize that the conversion of the single-phase SiHfBCN into UHTC-NCs is thermodynamically controlled, thus allowing for a knowledge-based preparative path toward nanostructured ultrahigh-temperature stable materials with adjusted compositions.
Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng
2014-01-01
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Zaplatynsky, I.; Barrett, C. A.
1986-01-01
The influence of varying the content of Co, Cr, Mo, Ta, and Al in a series of cast Ni-based gamma/gamma'superalloys on the behavior of aluminide coatings was studied in burner rig cyclic oxidation tests at 1100 C. The alloys had nominally fixed levels of Ti, W, Cb, Zr, C, and B. The alloy compositions were based on a full 2(sup 5)-fractional statistical design supplemented by 10 star point alloys and a center point alloy. This full central composite design of 43 alloys plus two additional alloys with extreme Al levels allowed a complete second degree estimating equation to be derived from the 5-compositional variables. The weight change/time data for the coated samples fitted well to the paralinear oxidation model and enabled a modified oxidation attack parameter, K'(sub a) to be derived to rank the alloys and log K' (sub a ) to be used as the dependent variable in the estimating equation to determine the oxidation resistance of the coating as a function of the underlying alloy content. The most protective aluminide coatings are associated with the highest possible base ally contents of CR and Al and at a 4 percent Ta level. The Mo and Co effects interact but at fixed levels of 0, 5, or 10% Co. A 4% Mo level is optimum.
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.
2011-01-01
RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.
2011-01-01
RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.
The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin films
NASA Astrophysics Data System (ADS)
Rudisch, Katharina; Davydova, Alexandra; Platzer-Björkman, Charlotte; Scragg, Jonathan
2018-04-01
Cu-Zn disorder in Cu2ZnSnS4 (CZTS) may be responsible for the large open circuit voltage deficit in CZTS based solar cells. In this study, it was investigated how composition-dependent defect complexes influence the order-disorder transition. A combinatorial CZTS thin film sample was produced with a cation composition gradient across the sample area. The graded sample was exposed to various temperature treatments and the degree of order was analyzed with resonant Raman spectroscopy for various compositions ranging from E- and A-type to B-, F-, and C-type CZTS. We observe that the composition has no influence on the critical temperature of the order-disorder transition, but strongly affects the activation energy. Reduced activation energy is achieved with compositions with Cu/Sn > 2 or Cu/Sn < 1.8 suggesting an acceleration of the cation ordering in the presence of vacancies or interstitials. This is rationalized with reference to the effect of point defects on exchange mechanisms. The implications for reducing disorder in CZTS thin films are discussed in light of the new findings.
Sharafeddin, Farahnaz; Salehi, Raha; Feizi, Negar
2016-09-01
Composite bond to dentin is crucial in many clinical conditions particularly in deep cavities without enamel margins due to insufficient penetration of adhesive into demineralized dentin. The aim of this study was to assess the shear bond strength (SBS) of a methacrylate-based and a silorane-based composite resin to surface and deep dentin after pretreatment with dimethyl sulfoxide (DMSO). Eighty extracted human premolars were randomly divided into two groups of flat occlusal dentin with different cuts as A: surface group (sections just below the dentinoenamel junction (DEJ) and B: deep group (2 mm below DEJ). Each group was randomly assigned to 4 subgroups and their samples were restored with Adper Single bond (ASB) and Filtek Z350 or Silorane system Adhesive (SA) and Filtek P90 composite resins, using a 3×3mm cylindrical plastic mold. following these steps , the subgroups were assigned as SubgroupA 1 : surface dentin+ Silorane System Primer (SSP)+ Silorane System Bonding (SSB)+ P90; Subgroup A 2 : surface dentin+ 37% etchant (E37%) + Adper Single Bond (ASB)+ Z350; Subgroup A 3 : surface dentin+ DMSO+ SSP+ SSB+ P90; Subgroup A 4 : surface dentin+ E37%+ DMSO+ ASB+ Z350; Subgroup B 1 : deep dentin+ SSP+ SSB+ P90; Subgroup B 2 : deep dentin+ E37%+ ASB+ Z350; Subgroup B 3 : deep dentin+ DMSO+ SSP+ SSB+ P90; Subgroup B 4 :dentin +E37% +DMSO +ASB +Z350. The specimens were thermocycled at 5± 2/55± 2°C for 1000 cycles and then tested for SBS. Using DMSO as dentin conditioner increased SBS of ASB to deep dentin (p< 0.001) and SBS of SA to surface dentin (p= 0.003) but had no effect on SBS of SA to deep dentin (p= 1.00). The ability of DMSO to increase SBS of ASB to deep dentin provides a basis for improving bonding of this composite resin in deep cavities.
NASA Astrophysics Data System (ADS)
Niu, Xuming; Sun, Zhigang; Song, Yingdong
2017-11-01
In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.
Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.
2017-03-01
In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shidong; Xu, Wu; Zheng, Jianming
Incomplete decomposition of Li2CO3 during charge process is a critical barrier for rechargeable Li-O2 batteries. Here we report complete decomposition of Li2CO3 in Li-O2 batteries using ultrafine iridium-decorated boron carbide (Ir/B4C) nanocomposite as oxygen electrode. The systematic investigation on charging the Li2CO3 preloaded Ir/B4C electrode in an ether-based electrolyte demonstrates that Ir/B4C electrode can decompose Li2CO3 with an efficiency close to 100% at below 4.37 V. In contrast, the bare B4C without Ir electrocatalyst can only decompose 4.7% of preloaded Li2CO3. The reaction mechanism of Li2CO3 decomposition in the presence of Ir/B4C electrocatalyst has been further investigated. A Li-O2 batterymore » using Ir/B4C as oxygen electrode material shows highly enhanced cycling stability than that using bare B4C oxygen electrode. These results clearly demonstrate that Ir/B4C is an effecitive oxygen electrode amterial to completely decompose Li2CO3 at relatively low charge voltages and is of significant importance in improving the cycle performanc of aprotic Li-O2 batteries.« less
Cao, Jianliang; Qin, Cong; Wang, Yan; Zhang, Bo; Gong, Yuxiao; Zhang, Huoli; Sun, Guang; Bala, Hari; Zhang, Zhanying
2017-01-01
The SnO2/g-C3N4 composites were synthesized via a facile calcination method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), thermal gravity and differential thermal analysis (TG-DTA), and N2-sorption. The analysis results indicated that the as-synthesized samples possess the two dimensional structure. Additionally, the SnO2 nanoparticles were highly dispersed on the surface of the g-C3N4nanosheets. The gas-sensing performance of the as-synthesized composites for different gases was tested. Moreover, the composite with 7 wt % g-C3N4 content (SnO2/g-C3N4-7) SnO2/g-C3N4-7 exhibits an admirable gas-sensing property to ethanol, which possesses a higher response and better selectivity than that of the pure SnO2-based sensor. The high surface area of the SnO2/g-C3N4 composite and the good electronic characteristics of the two dimensional graphitic carbon nitride are in favor of the elevated gas-sensing property. PMID:28468245
Kawashima, Yui; Cheng, Wen; Mifune, Jun; Orita, Izumi; Nakamura, Satoshi
2012-01-01
A genome survey of polyhydroxyalkanoate (PHA)-producing Ralstonia eutropha H16 detected the presence of 16 orthologs of R-specific enoyl coenzyme A (enoyl-CoA) hydratase, among which three proteins shared high homologies with the enzyme specific to enoyl-CoAs of medium chain length encoded by phaJ4 from Pseudomonas aeruginosa (phaJ4Pa). The recombinant forms of the three proteins, termed PhaJ4aRe to PhaJ4cRe, actually showed enoyl-CoA hydratase activity with R specificity, and the catalytic efficiencies were elevated as the substrate chain length increased from C4 to C8. PhaJ4aRe and PhaJ4bRe showed >10-fold-higher catalytic efficiency than PhaJ4cRe. The functions of the new PhaJ4 proteins were investigated using previously engineered R. eutropha strains as host strains; these strains are capable of synthesizing poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from soybean oil. Deletion of phaJ4aRe from the chromosome resulted in significant decrease of 3HHx composition in the accumulated copolyester, whereas no change was observed with deletion of phaJ4bRe or phaJ4cRe, indicating that only PhaJ4aRe was one of the major enzymes supplying the (R)-3HHx-CoA monomer through β-oxidation. Introduction of phaJ4aRe or phaJ4bRe into the R. eutropha strains using a broad-host-range vector enhanced the 3HHx composition of the copolyesters, but the introduction of phaJ4cRe did not. The two genes were then inserted into the pha operon on chromosome 1 of the engineered R. eutropha by homologous recombination. These modifications enabled the biosynthesis of P(3HB-co-3HHx) composed of a larger 3HHx fraction without a negative impact on cell growth and PHA production on soybean oil, especially when phaJ4aRe or phaJ4bRe was tandemly introduced with phaJAc from Aeromonas caviae. PMID:22081565
Design and Analysis of Composite Roadwheels for LVTP7 and M113A1
1984-08-01
mid radius of the wheel. As this laminate turns the corner into the rim it becomes mixed with layers in the hoop direction until, at the outer...Owens Corning Fiberglas, Advanced Composites, Marketing Section, Fiberglas Tower, Toledo, OH 43659 1 ATTN: Larry Dickson Goodyear Aerospace...4 3 -« 4*4 3*4 4 kfc . 4 4 kk-4k0« O • 4 I 4 •£ *i >. 4 3 i’H)*ssK£Hire •>k fi««*004-40 k M 4 0 • ft-H 4 C -4 b 4 44
Tribological properties of the babbit B83-based composite materials fabricated by powder metallurgy
NASA Astrophysics Data System (ADS)
Kalashnikov, I. E.; Bolotova, L. K.; Bykov, P. A.; Kobeleva, L. I.; Katin, I. V.; Mikheev, R. S.; Kobernik, N. V.
2016-07-01
Technological processes are developed to fabricate composite materials based on B83 babbit using hot pressing of a mixture of powders in the presence of a liquid phase. As a result, the structure of the matrix B83 alloy is dispersed, the morphology of intermetallic phases is changed, and reinforcing micro- and nanosized fillers are introduced and uniformly distributed in the matrix. The tribological properties of the synthesized materials are studied. The friction of the B83 babbit + 0.5 wt % MSR + 3 wt % SiC (MSR is modified schungite rock) composite material at high loads is characterized by an increase in the stability coefficient, and the wear resistance of the material increases by a factor of 1.8 as compared to the as-cast alloy at comparable friction coefficients.
Hong, Yongsuk; Brown, Derick G
2006-07-01
Potentiometric titration has been conducted to systematically examine the acid-base properties of the cell surfaces of Escherichia coli K-12 and Bacillus brevis as a function of growth phase, nitrogen source (ammonium or nitrate), and carbon to nitrogen (C:N) ratio of the growth substrate. The two bacterial species revealed four distinct proton binding sites, with pK(a) values in the range of 3.08-4.05 (pK(1)), 4.62-5.57 (pK(2)), 6.47-7.30 (pK(3)), and 9.68-10.89 (pK(4)) corresponding to phosphoric/carboxylic, carboxylic, phosphoric, and hydroxyl/amine groups, respectively. Two general observations in the data are that for B. brevis the first site concentration (N(1)), corresponding to phosphoric/carboxylic groups (pK(1)), varied as a function of nitrogen source, while for E. coli the fourth site concentration (N(4)), corresponding to hydroxyl/amine groups (pK(4)), varied as a function of C:N ratio. Correspondingly, it was found that N(1) was the highest of the four site concentrations for B. brevis and N(4) was the highest for E. coli. The concentrations of the remaining sites showed little variation. Finally, comparison between the titration data and a number of cell surface compositional studies in the literature indicates one distinct difference between the two bacteria is that pK(4) of the Gram-negative E. coli can be attributed to hydroxyl groups while that of the Gram-positive B. brevis can be attributed to amine groups.
Lindsay, R M; Stevenson, K J
1976-01-01
1. An anionic and a cationic chymotrypsin (EC 3.4.21.1) were isolated from the pancreas glands of the moose (Alces alces) and elk (Cervus elaphus). The A and B chymotrypsins from each species were purified to homogeneity by (NH4)2SO4 fractionation, affinity chromatography on 4-phenylbutylamine-Sepharose and ion-exchange chromatography on DEAE- and CM-cellulose. 2. The molecular weight and pH optimum of each chymotrypsin were similar to those of the corresponding ox A and B chymotrypsins. 3. The substrate specificities of the chymotrypsins were investigated by digestion of glucagon and the oxidized B chain of insulin. The primary specificity of each chymotrypsin for aromatic amino acid residues was further established by determining the Km and kcat for the hydrolysis of a number of synthetic amino acid ester substrates. 4. The amino acid composition and total number of residues of moose and elk chymotrypsin A were similar to those of ox chymotrypsin A. An even greater similarity was observed among the B chymotrypsins of the three species. 5. The A chymotrypsins of moose and elk were fragmented to their constituent 'A', 'B' and 'C' polypeptide chains by succinylation (3-carboxypropionylation), reduction and alkylation of the native enzymes. In each case, the two major chains ('B' and 'C') were separated and isolated. By comparison of the amino acid compositions of moose, elk and oxy 'B' and 'C' chains, a greater difference was observed among the three A chymotrypsins than was suggested by the amino acid compositions of the native enzymes alone. 6. Peptides were isolated from the disulphide bridge and active-site regions of the A and B chymotrypsins of moose and elk by diagonal peptide-'mapping' techniques. From the amino acid compositions of the isolated peptides (assuming maximum homology) and from a comparison of diagonal peptide 'maps', there was established a high degree of primary-structure identity among the mooae, elk and ox chymotrypsins. Tentative sequences were deduced for the peptides isolated by diagonal peptide 'mapping'. 7. Details of the isolation procedures of the moose and elk chymotrypsins A and B and the amino acid analyses of some peptides obtained by diagonal peptide 'mapping' have been deposited as Supplementary Publication SUP 50064 (27 pages) at the British Library Lending Division, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1976) 153, 5. Images PLATE 1 PMID:949318
Thermal properties and cycling performance of Ca(BH4)2/MgH2 composite for energy storage
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ping; Tan, Qiwei; Zhang, Zongliang; Wan, Qi; Liu, Zhiwei; Subramanian, Arunprabaharan; Qu, Xuanhui
2018-05-01
Here we report the thermal properties and cycling performance of Ca(BH4)2/MgH2. The reaction enthalpy is 48 kJ mol-1 H2 and equilibrium pressure at 350 °C is 0.4981 MPa. We add NbF5 into Ca(BH4)2/MgH2to figure out the degradation mechanism because of its catalytic ability. Ca(BH4)2/MgH2 follows the dehydrogenation path to form CaH2, CaB6 and Mg. The degradation of Ca(BH4)2/MgH2 composite during cycling is due to the particle aggregation and the reduction of CaB6 product. NbF5 can promote the forming of CaB6 and prevent microstructural coarsening in Ca(BH4)2/MgH2 during cycling, which leads to better reversibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Biyu; Zhang, Shengsen; Yang, Siyuan
2014-08-15
The prepared g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited the enhanced photocatalytic activity under visible-light irradiation due to the stronger ability in separation of electron–hole pairs, which was proven by the transient photocurrent measurement. - Highlights: • The coupled Cu{sub 2}O with g-C{sub 3}N{sub 4} of narrow-band-gap semiconductor has been designed. • g-C{sub 3}N{sub 4}/Cu{sub 2}O is prepared via an alcohol-aqueous based on chemical precipitation method. • g-C{sub 3}N{sub 4}/Cu{sub 2}O exhibits the enhanced photocatalytic activity under visible-light. • The enhanced photocatalytic activity is proven by the transient photocurrent test. • A mechanism for the visible-light-driven photocatalysis of g-C{sub 3}N{sub 4}/Cu{submore » 2}O is revealed. - Abstract: To overcome the drawback of low photocatalytic efficiency brought by electron–hole pairs recombination and narrow photo-response range, a novel g-C{sub 3}N{sub 4}/Cu{sub 2}O composite photocatalyst was designed and prepared successfully. Compared with bare Cu{sub 2}O and g-C{sub 3}N{sub 4}, the g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited significantly enhanced photocatalytic activity for acid orange-II (AO-II) degradation under visible light irradiation. Based on energy band positions, the mechanism of enhanced visible-light photocatalytic activity was proposed.« less
Akhani, Hossein; Ghasemkhani, Maraym; Chuong, Simon D X; Edwards, Gerald E
2008-01-01
Blepharis (Acanthaceae) is an Afroasiatic genus comprising 129 species which occur in arid and semi-arid habitats. This is the only genus in the family which is reported to have some C(4) species. Blepharis ciliaris (L.) B. L. Burtt. is a semi-desert species with distribution in Iran, Oman, and Pakistan. Its form of photosynthesis was investigated by studying different organs. C(4)-type carbon isotope composition, the presence of atriplicoid type Kranz anatomy, and compartmentation of starch all indicate performance of C(4) photosynthesis in cotyledons, leaves, and the lamina part of bracts. A continuous layer of distinctive bundle sheath cells (Kranz cells) encircle the vascular bundles in cotyledons and the lateral vascular bundles in leaves. In older leaves, there is extensive development of ground tissue in the midrib and the Kranz tissue becomes interrupted on the abaxial side, and then becomes completely absent in the mature leaf base. Cotyledons have 5-6 layers, and leaves 2-3 layers, of spongy chlorenchyma beneath the veins near the adaxial side of the leaf, indicating bifacial organization of chlorenchyma. As the plant matures, bracts and spines develop and contribute to carbon assimilation through an unusual arrangement of Kranz anatomy which depends on morphology and exposure to light. Stems do not contribute to carbon assimilation, as they lack chlorenchyma tissue and Kranz anatomy. Analysis of C(4) acid decarboxylases by western blot indicates B. ciliaris is an NAD-malic enzyme type C(4) species, which is consistent with the Kranz cells having chloroplasts with well-developed grana and abundant mitochondria.
Akinci, Buket; Yeldan, Ipek; Satman, Ilhan; Dirican, Ahmet; Ozdincler, Arzu Razak
2018-06-01
To compare the effects of Internet-based exercise on glycaemic control, blood lipids, body composition, physical activity level, functional capacity, and quality of life with supervised group exercise in patients with type 2 diabetes. Single-blind, randomized controlled study. A Faculty of Health Sciences. A total of 65 patients with type 2 diabetes (47 women, 18 men). Group A ( n = 22), control group - physical activity counselling once with a brochure. Group B ( n = 22), supervised group-based exercise, three days per week for eight weeks. Group C ( n = 21), Internet-based exercise following the same programme via a website. Primary outcomes - glycosylated haemoglobin, fasting blood glucose, high-density and low-density lipoprotein, triglyceride, and cholesterol. Secondary outcomes - waist and hip circumferences, body mass index, number of steps, six-minute walking test, and Euro-Quality of Life-5 Dimension. After treatment, glycaemic control (mean change for Group B; Group C; -0.80%, -0.91%, P = 0.003), waist circumference (-4.23 cm, 5.64 cm, P = 0.006), and quality of life (0.26, 0.15, P = 0.013) significantly improved in both training groups compared with the control group. Fasting blood glucose (-46.86 mg/dL, P = 0.009) and hip circumference (-2.7 cm, P = 0.011) were significantly decreased in Group B and total cholesterol (-16.4 mg/dL, P = 0.028), six-minute walking distance (30.5 m, P = 0.01), and number of steps (1258.05, P = 0.023) significantly improved in Group C compared with control group. Group B and Group C changed with equal magnitude. In type 2 diabetes, supervised group-based and Internet-based exercise can improve equally glycaemic control, waist circumference, and quality of life, and both are better than simply counselling.
von Fischer, J.C.; Tieszen, L.L.; Schimel, D.S.
2008-01-01
We analyzed the ??13 C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root ??13 C increased about 1??? between the A and B horizon, suggesting that C 4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya
1995-07-01
The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthil, R.A.; Theerthagiri, J.; Madhavan, J., E-mail: jagan.madhavan@gmail.com
This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymermore » blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs. - Graphical abstract: In this study, the g-C{sub 3}N{sub 4} was synthesized from low cost urea and it was used as a precursor to synthesize of g-C{sub 3}N{sub 4}/TiO{sub 2} composite. The pure and 2-APY incorporated PVDF-HFP/PEO electrolytes were fabricated by solution casting method. A remarkably enhanced PCE of 4.73% was observed for 2-APY incorporated PVDF-HFP/PEO electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} composite photoanode based DSSC. - Highlights: • 2-APY added PVDF-HFP/PEO electrolyte was prepared by solution casting method. • The g-C{sub 3}N{sub 4}/TiO{sub 2} composites were synthesized by wet-impregnation method. • DSSC with g-C{sub 3}N{sub 4}/TiO{sub 2} and 2-APY added electrolyte showed the efficiency of 4.73 %. • The g-C{sub 3}N{sub 4} and 2-APY can be a useful dopant to enhance the performance of DSSCs.« less
Tian, Na; Huang, Hongwei; He, Ying; Guo, Yuxi; Zhang, Tierui; Zhang, Yihe
2015-03-07
We disclose the fabrication of a mediator-free direct Z-scheme photocatalyst system BiVO4/g-C3N4 using a mixed-calcination method based on the more reliable interfacial interaction. The facet coupling occurred between the g-C3N4 (002) and BiVO4 (121), and it was revealed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The crystal structure and optical properties of the as-prepared samples have also been characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra (DRS) in details. The photocatalytic experiments indicated that the BiVO4/g-C3N4 composite photocatalysts display a significantly enhanced photocatalytic activity pertaining to RhB degradation and photocurrent generation (PC) compared to the pristine BiVO4 and g-C3N4. This remarkably improved photocatalytic performance should be attributed to the fabrication of a direct Z-scheme system of BiVO4/g-C3N4, which can result in a more efficient separation of photoinduced charge carriers than band-band transfer, thus endowing it with the much more powerful oxidation and reduction capability, as confirmed by the photoluminescence (PL) spectra and electrochemical impedance spectra (EIS). The Z-scheme mechanism of BiVO4/g-C3N4 heterostructure was verified by a series of combined techniques, including the active species trapping experiments, NBT transformation and terephthalic acid photoluminescence probing technique (TA-PL) over BiVO4/g-C3N4 composites and the pristine samples. The present work not only furthered the understanding of mediator-free Z-scheme photocatalysis, but also shed new light on the design of heterostructural photocatalysts with high-performance.
NASA Astrophysics Data System (ADS)
Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng
2015-01-01
Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.
Corrosion of Titanium Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covino, B.S., Jr.; Alman, D.E.
2002-09-22
The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increasedmore » with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.« less
RTM370 Polyimide Braided Composites: Characterization and Impact Testing
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.
2013-01-01
RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.
NASA Astrophysics Data System (ADS)
Crabtree, Stephen M.; Waters, Laura E.
2017-04-01
To evaluate if intermediate magmas erupting from Volcán Sanganguey (Mexico) and the surrounding volcanic field are formed by mixing of basalts and rhyolites or if they initially exist as intermediate liquids, a detailed petrological study is presented for eight andesite and dacite magmas. Six of the samples erupted from the central edifice (four andesites and two dacites) are crystal-rich (≤ 50 vol%), whereas the remaining two samples (one andesite and one dacite) erupted from monogenetic vents in the peripheral volcanic field and are crystal poor (≤ 5 vol%). Despite the variation in crystallinity, all samples are multiply saturated in five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± clinopyroxene ± hornblende). In all samples, plagioclase spans a 30-40 mol% An range in composition and orthopyroxene spans a range in Mg# of 5-10. Pre-eruptive temperatures and oxygen fugacites (relative to the NNO buffer) range from 853 (± 24) to 1085 (± 16) °C and - 0.1 (± 0.1) to 0.9 (± 0.1) Δ NNO, on the basis of Fe-Ti two oxide thermometry. Application of the plagioclase-liquid hygrometer to the samples reveals maximum H2O contents that range from 1.7-6.2 wt%. Comparison with phase equilibrium experiments demonstrates that all plagioclase and orthopyroxene compositions in the crystal-poor samples could have grown from their respective whole rock compositions. Comparison of crystal rich samples with phase equilibrium experiments reveals the presence of sodic xenocrysts which reflect resorption textures and an estimated excess plagioclase crystal cargo of > 6 vol%. The excess plagioclase crystal cargo is not distinguishable from phenocrystic plagioclase based on composition or texture, suggesting that they were also grown in intermediate melts, and are therefore described as antecrystic. No calcic plagioclase xenocrysts (> An79) typical of hydrous arc basalts are observed, thus it is likely that the excess plagioclase in the crystal-rich samples were originally formed in intermediate magmas. For the crystal-poor samples, we propose that the mechanism producing the complex phenocryst assemblages is degassing (± cooling), as it may shift equilibrium plagioclase compositions, kinetically inhibit crystal-growth, and increase melt viscosity, leading to complex textures. Notably, the hypothesis of degassing (± cooling) induced crystallization requires that the intermediate melts initially exist as liquids, prior to crystallization, supporting the hypothesis that intermediate melts are generated in the deep crust and arrive in the upper crust as liquids. For the crystal-rich samples, degassing (± cooling) may also be the mechanism generating a portion of the compositional and textural variation in the mineral assemblages and some incorporation of antecrysts or xenocrysts must occur as evidenced by an excess plagioclase crystal cargo; however, we find no definitive evidence supporting the incorporation of crystals initially grown in basalts or rhyolites. Given the similarities in phase assemblage, mineral compositions, mineral textures, and intensive variables between the crystal-poor and -rich samples, we conclude that the melts arriving into the upper crust beneath Volcán Sanganguey and the surrounding peripheral volcanic field are intermediate in composition and are initially formed (as liquids) in the deep crust. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-103. Appendix Fig. B.2.3. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-117. Appendix Fig. B.2.4. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-109. Appendix Fig. B.2.5. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-132. Appendix Fig. B.2.6. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-115. Appendix Fig. B.2.7. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-106. Appendix Fig. B.2.8. Plots of plagioclase composition (%An) vs. distance across each grain, XAL-129. Appendix Fig. B.3.2. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-103. Appendix Fig. B.3.3. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-117 Appendix Fig. B.3.4. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-109. Appendix Fig. B.3.5. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-132. Appendix Fig. B.3.6. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-115. Appendix Fig. B.3.7. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-106. Appendix Fig. B.3.8. Plots of pyroxene composition (Mg#) vs. distance across each grain, XAL-129. Appendix Fig. B.4.2. BSE images of plagioclase grains, with traversal path indicated, XAL-103. Appendix Fig. B.4.3. BSE images of plagioclase grains, with traversal path indicated, XAL-117. Appendix Fig. B.4.4. BSE images of plagioclase grains, with traversal path indicated, XAL-109. Appendix Fig. B.4.5. BSE images of plagioclase grains, with traversal path indicated, XAL-132. Appendix Fig. B.4.6. BSE images of plagioclase grains, with traversal path indicated, XAL-115. Appendix Fig. B.4.7. BSE images of plagioclase grains, with traversal path indicated, XAL-106. Appendix Fig. B.4.8. BSE images of plagioclase grains, with traversal path indicated, XAL-129. Appendix Fig. B.5.2. BSE images of pyroxene grains, with traversal path indicated, XAL-103. Appendix Fig. B.5.3. BSE images of pyroxene grains, with traversal path indicated, XAL-117. Appendix Fig. B.5.4. BSE images of pyroxene grains, with traversal path indicated, XAL-109. Appendix Fig. B.5.5. BSE images of pyroxene grains, with traversal path indicated, XAL-132. Appendix Fig. B.5.6. BSE images of pyroxene grains, with traversal path indicated, XAL-115. Appendix Fig. B.5.7. BSE images of pyroxene grains, with traversal path indicated, XAL-106. Appendix Fig. B.5.8. BSE images of pyroxene grains, with traversal path indicated, XAL-129.
NASA Astrophysics Data System (ADS)
Chen, Suqing; Liang, Huading; Shen, Mao; Jin, Yanxian
2018-04-01
In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g-1 surface area and a high-saturation magnetization of 31.5 emu g-1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C-Au@void@TiO2-Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C-Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C-Au@void@TiO2-Pd hierarchical microcomposites can be completely separated and reused for four times.
Nucleation and Growth of Tetrataenite (FeNi) in Meteorites
NASA Astrophysics Data System (ADS)
Goldstein, J. I.; Williams, D. B.; Zhang, J.
1992-07-01
The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite should also be given by the alpha/alpha + gamma" and gamma"/alpha + gamma" boundaries of the Fe-Ni phase diagram (Figure 1). However, the Ni content of kamacite and tetrataenite in black plessite, which forms below 400 degrees C, is ~10 wt% in kamacite and ~57 to 60 wt% in tetrataenite, much higher than the values given by the equilibrium phase diagram (3). It has been observed experimentally (4) that the Ni composition of the gamma phase formed by martensite decomposition below 400 degrees C lies along a metastable extension of the high temperature gamma/alpha + gamma phase boundary, Figure 2. Therefore, the FeNi phase formed by alpha(sub)2 decomposition below 400 degrees C has a non-equilibrium Ni content, >50 to 56 wt%. The growth or thickening of the FeNi phase occurs by some combination of interface and diffusion control (3). References: (1) Clarke R. S. and Scott E. R. D. (1980) Amer. Mineral. 65, 624-630. (2) Reuter K. B., Williams D. B., and Goldstein J. I. (1989) Met. Trans. 20A, 719-725. (3) Zhang J., Williams D. B. and Goldstein J. I. (1992) Submitted to Geochim. Cosmochim. Acta. (4) Zhang J., Williams L). B. and Goldstein J. I. (1992) Submitted to Met. Trans. Figure 1, which in the hard copy appears here, is an Fe-Ni phase diagram (2). Figure 2, which in the hard copy appears here, shows measured FeNi composition from heat-treated alloys (4).
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
2014-12-01
Chemical Composition (Weight Pct) of Program Materials Material Co Cr Al Ti Mo W Nb Ta V C B Zr Ni IN 100* 18.5 12.4 5.0 4.3 3.2 0.8 0.07 0.02 0.06...often used to obtain a coarser, more creep- resistant microstructure. A number of these efforts have concerned those forging parameters that give rise...AGG but still obtain a relatively coarse, more-creep-crack-growth- resistant microstruc- ture during SSHT.[20] Recent work[21] has confirmed such an
Magnesium Based Composite via Friction Stir Processing
2013-04-01
study. FSP was carried out with a stepped spiral conical tool with a featureless shoulder and a pin length of 6.5 mm, which was made of H13 tool ...of a high strength rotating tool to locally heat the work piece and produce intense plastic deformation. The interplay between temperature and strain... steel . A set of holes with a depth of about 6 mm were drilled into the plate in the pattern shown in Fig.1 (a) and the B4C powder was then filled into
Soha, Sahel; Mortazavian, Amir M; Piravi-Vanak, Zahra; Mohammadifar, Mohammad A; Sahafar, Hamed; Nanvazadeh, Sara
2015-01-01
In this research a comparison has been made between the fatty acid and sterol compositions of Iranian pure butter and three samples of adulterated butter. These samples were formulated using edible vegetable fats/oils with similar milk fat structures including palm olein, palm kernel and coconut oil to determine the authenticity of milk fat. The amount of vegetable fats/oils used in the formulation of the adulterated butter was 10%. The adulterated samples were formulated so that their fatty acid profiles were comforted with acceptable levels of pure butter as specified by the Iranian national standard. Based on the type of the vegetable oil/fat, fatty acids such as C4:0, C12:0 and C18:2 were used as indicators for the adulterated formulations. According to the standard method of ISO, the analysis was performed using gas chromatography. The cholesterol contents were 99.71% in pure butter (B1), and 97.61%, 98.48% and 97.98% of the total sterols in the samples adulterated with palm olein, palm kernel and coconut oil (B2, B3 and B4), respectively. Contents of the main phytosterol profiles such as β-sitosterol, stigmasterol and campesterol were also determined. The β-sitosterol content, as an indicator of phytosterols, was 0% in pure butter, and 1.81%, 1.67% and 2.16%, of the total sterols in the adulterated samples (B2, B3 and B4), respectively. Our findings indicate that fatty acid profiles are not an efficient indicator for butter authentication. Despite the increase in phytosterols and the reduction in cholesterol and with regard to the conformity of the sterol profiles of the edible fats/oils used in the formulations with Codex standards, lower cholesterol and higher phytosterols contents should have been observed. It can therefore be concluded that sterol measurement is insufficient to verify the authenticity of the milk fat in butter. It can therefore be concluded that sterol measurement is insufficient in verifying the authenticity of milk fat.
Bie, B. X.; Huang, J. Y.; Su, B.; ...
2016-03-30
Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B 4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces aremore » nucleation sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par« less
Soil microbiological composition and its evolution along with forest succession in West Siberia
NASA Astrophysics Data System (ADS)
Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil
2015-04-01
Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.
Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.
2010-01-01
A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.
Alloy with metallic glass and quasi-crystalline properties
Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.
2004-02-17
An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.
Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation
NASA Astrophysics Data System (ADS)
Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin
2018-05-01
Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.
1989-01-01
The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.
Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.
Kim, Nahyeon; Park, Hyejeong; Yoon, Naeun; Lee, Jung Kyoo
2018-04-24
For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm 3 /g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g -1 and 640-1000 mAh cm -3 at 100 mA g -1 ), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.
VEST: An Aspect-Based Composition Tool for Real-Time Systems
2003-01-01
VEST: An Aspect-Based Composition Tool for Real - Time Systems * John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu Zhendong Yu Marty Humphrey...Composition Tool for Real - Time Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...it is obvious that designers of embedded real - time systems face many difficult problems. By working through various product scenarios with avionics
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
Estrogenicity of resin-based composites and sealants used in dentistry.
Olea, N; Pulgar, R; Pérez, P; Olea-Serrano, F; Rivas, A; Novillo-Fertrell, A; Pedraza, V; Soto, A M; Sonnenschein, C
1996-01-01
We tested some resin-based composites used in dentistry for their estrogenic activity. A sealant based on bisphenol-A diglycidylether methacrylate (bis-GMA) increased cell yields, progesterone receptor expression, and pS2 secretion in human estrogen-target, serum-sensitive MCF7 breast cancer cells. Estrogenicity was due to bisphenol-A and bisphenol-A dimethacrylate, monomers found in the base paste of the dental sealant and identified by mass spectrometry. Samples of saliva from 18 subjects treated with 50 mg of a bis-GMA-based sealant applied on their molars were collected 1 hr before and after treatment. Bisphenol-A (range 90-931 micrograms) was identified only in saliva collected during a 1-hr period after treatment. The use of bis-GMA-based resins in dentistry, and particularly the use of sealants in children, appears to contribute to human exposure to xenoestrogens. Images Figure 1. A Figure 1. B Figure 2. Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. A Figure 5. B Figure 6. A Figure 6. B Figure 7. A Figure 7. B Figure 8. Figure 9. Figure 10. PMID:8919768
Yu, Hao; Zhang, Chang-Yuan; Wang, Yi-Ning; Cheng, Hui
2018-03-01
The purpose of this study was to evaluate the influence of study protocols on the effects of bleaching on the surface roughness, substance loss, flexural strength (FS), flexural modulus (FM), Weibull parameters, and color of 7 restorative materials. The test materials included 4 composite resins, 1 glass-ionomer cement, 1 dental ceramic, and 1 polyacid-modified composite. The specimens were randomly divided into 4 groups (n = 20) according to different study protocols: a bleaching group at 25°C (group 25B), a bleaching group at 37°C (group 37B), a control group at 25°C (group 25C), and a control group at 37°C (group 37C). The specimens in the bleaching group were treated with 40% hydrogen peroxide for 80 min at the respective environmental temperatures. The surface roughness, substance loss, FS, FM, and color of the specimens were measured before and after treatment. FS data were also subjected to Weibull analysis, which was used to estimate of the Weibull modulus (m) and the characteristic strength (σ 0 ). Surface roughness increased and significant color changes were observed for all tested specimens after bleaching treatment, except for the ceramic. After bleaching at 37°C, the polyacid-modified composite showed significantly reduced FS, FM, m, and σ 0 values in comparison to the control specimens stored at 37°C in whole saliva. Significant differences were also found between the 37B and 25B polyacid-modified composite groups in terms of surface roughness, FS, m, σ 0 , and color changes. Varying effects of bleaching on the physical properties of dental restorative materials were observed, and the influences of the study protocols on bleaching effects were found to be material-dependent. The influence of study protocols on the effects of bleaching on the surface roughness, flexural properties, and color of dental restorative materials are material-dependent and should be considered when evaluating the effects of bleaching on dental restorative materials. © 2017 Wiley Periodicals, Inc.
Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode
NASA Astrophysics Data System (ADS)
Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip
2018-04-01
Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.
Evidence for a Dayside Thermal Inversion and High Metallicity for the Hot Jupiter WASP-18b
NASA Astrophysics Data System (ADS)
Sheppard, Kyle B.; Mandell, Avi M.; Tamburo, Patrick; Gandhi, Siddharth; Pinhas, Arazi; Madhusudhan, Nikku; Deming, Drake
2017-12-01
We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b ({T}{eq}=2411 {{K}}, M=10.3 {M}J) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4 μm. However, we infer emission at 4.5 μm and absorption at 1.6 μm that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity ({{C}}/{{H}}={283}-138+395× solar). The derived composition and T/P profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at > 2σ . Future observations are necessary to confirm the unusual planetary properties implied by these results.
Effect of Carbon Nanotubes Upon Emissions From Cutting and Sanding Carbon Fiber-Epoxy Composites
Heitbrink, William A.; Lo, Li-Ming
2015-01-01
Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20% to 80% compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9×108 and 2.8×106 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC. PMID:26478716
NASA Astrophysics Data System (ADS)
Takaijudin, H.; Ghani, A. A.; Zakaria, N. A.; Tze, L. L.
2016-07-01
Compost based materials arv e widely used in filter media for improving soil capability and plant growth. The aim of this paper is to evaluate different types of compost materials used in engineered soil media through soil column investigation. Three (3) column, namely C1 (control), C2 and C3 had different types compost (10%) which were, commercial compost namely PEATGRO, Compost A and Compost B were prepared with 60% medium sand and 30% of topsoil. The diluted stormwater runoff was flushed to the columns and it was run for six (6) hour experiment. The influent and effluent samples were collected and tested for Water Quality Index (WQI) parameters. The results deduced that C3 with Elaeis Guineensis leaves compost (Compost B) achieved 90.45 (Class II) better than control condition which accomplished 84 (Class II) based on WQI Classification. C3 with Compost A (African Mahogany Leaves Compost) obtained only 59.39 (Class III). C3 with the composition of Compost B effectively removed most pollutants, including Chemical Oxygen Demand (COD, Ammoniacal Nitrogen (NH3-N), were reduced by 89±4% and 96.6±0.9%, respectively. The result concluded that Elaeis Guineensis leaves compost is recommended to be used as part of engineered soil media due to its capabilities in eliminating stormwater pollutants.
NASA Astrophysics Data System (ADS)
Huang, Wenyuan; Liu, Ning; Zhang, Xiaodong; Wu, Minghong; Tang, Liang
2017-12-01
In this study, hybrid nanocomposites based on Fe-based MOF and graphitic carbon nitride (g-C3N4) were developed by a facile solvothermal method. The as-prepared materials were characterized by XRD, FESEM, TEM, XPS and PL analysis. It was showed that the introduction of a certain amount of g-C3N4 on the surface of MIL-53(Fe) would improve the separation and migration rate of photo-induced charges, consequently resulting in the boost of photocatalytic efficiency. Compared with g-C3N4 and MIL-53(Fe), the CMFe composites displayed more excellent visible light-resposive photocatalytic activity for the reduction of Cr(VI). The optimal doping content of g-C3N4 in g-C3N4/MIL-53(Fe) composite was determined to be 3.0 wt%, and it showed about 2.1 and 2.0 times as high photocatalytic efficiency for the reduction of Cr(VI) as that of pure g-C3N4 and MIL-53(Fe), respectively. Meanwhile, the composite exhibited good reusability and stability in the process of cyclic experiments. A possible photocatalytic reaction mechanism was also investigated in detail by the related electrochemical analysis.
NASA Astrophysics Data System (ADS)
Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.
2010-06-01
Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.
Zhang, Xinying; Wu, Yan; Xiao, Gao; Tang, Zhenping; Wang, Meiyin; Liu, Fuchang; Zhu, Xuefeng
2017-01-01
Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25) and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria. PMID:28273118
Parameter Optimization Of Natural Hydroxyapatite/SS316l Via Metal Injection Molding (MIM)
NASA Astrophysics Data System (ADS)
Mustafa, N.; Ibrahim1, M. H. I.; Amin, A. M.; Asmawi, R.
2017-01-01
Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.
NASA Astrophysics Data System (ADS)
Shieh, J.; Wu, K. C.; Chen, C. S.
2007-04-01
The polarization switching characteristics of lead-free a(Bi 1/2Na 1/2)TiO 3-bBaTiO 3-c(Bi 1/2K 1/2)TiO 3 (abbreviated as BNBK 100a/100b/100c) ferroelectric ceramics are investigated. This is achieved through examining their polarization and strain hystereses inside and outside the morphotropic phase boundary (MPB). The total induced electrostrain (ɛ 33,total) and apparent piezoelectric charge coefficient (d 33) first increase dramatically and then decrease gradually as the BNBK composition moves from the tetragonal phase to the MPB and then to the rhombohedral phase. The measured polarization hystereses indicate that the BNBK compositions situated near the rhombohedral side of the MPB typically possess higher coercive field (E c) and remanent polarization (P r), while the compositions situated near the tetragonal side of the MPB possess higher apparent permittivity. Adverse effects on the ferroelectric properties are observed when BNBK is doped with donor dopants such as La and Nb. On the contrary, intricate hysteresis behaviors are observed when acceptor dopant Mn is introduced into BNBK. Under an alternating electric field of +/-5.0 MVm -1, BNBK 85.4/2.6/12, a composition well within the MPB, exhibits an ɛ 33,total of ~0.14%, an apparent d 33 of 295 pCN -1, an E c of 2.5 MVm -1 and a Pr of 22.5 μCcm -2. These notable ferroelectric property values suggest a candidate material for lead-free actuator applications. The present study provides a systematic set of hysteresis measurements which can be used to characterize the switching behaviors of BNBK-based lead-free ferroelectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karantzalis, A.E., E-mail: akarantz@cc.uoi.gr; Lekatou, A.; Tsirka, K.
2012-07-15
Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) materialmore » detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.« less
Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity
NASA Astrophysics Data System (ADS)
Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.
2016-12-01
We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.
Sharmin, Nusrat; Hasan, Muhammad S; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty
2016-06-01
In this study, Polylactic acid (PLA)/phosphate glass fibres (PGF) composites were prepared by compression moulding. Fibres produced from phosphate based glasses P2O5-CaO-MgO-Na2O (P45B0), P2O5-CaO-MgO-Na2O-B2O3 (P45B5), P2O5-CaO-MgO-Na2O-Fe2O3 (P45Fe3) and P2O5-CaO-MgO-Na2O-B2O3-Fe2O3 (P45B5Fe3) were used to reinforce the bioresorbable polymer PLA. Fibre mechanical properties and degradation rate were investigated, along with the mechanical properties, degradation and cytocompatibility of the composites. Retention of the mechanical properties of the composites was evaluated during degradation in PBS at 37°C for four weeks. The fibre volume fraction in the composite varied from 19 to 23%. The flexural strength values (ranging from 131 to 184MPa) and modulus values (ranging from 9.95 to 12.29GPa) obtained for the composites matched those of cortical bone. The highest flexural strength (184MPa) and modulus (12.29GPa) were observed for the P45B5Fe3 composite. After 28 days of immersion in PBS at 37°C, ~35% of the strength profile was maintained for P45B0 and P45B5 composites, while for P45Fe3 and P45B5Fe3 composites ~40% of the initial strength was maintained. However, the overall wet mass change of P45Fe3 and P45B5Fe3 remained significantly lower than that of the P45B0 and P45B5 composites. The pH profile also revealed that the P45B0 and P45B5 composites degraded quicker, correlating well with the degradation profile. From SEM analysis, it could be seen that after 28 days of degradation, the fibres in the fractured surface of P45B5Fe3 composites remain fairly intact as compared to the other formulations. The in vitro cell culture studies using MG63 cell lines revealed both P45Fe3 and P45B5Fe3 composites maintained and showed higher cell viability as compared to the P45B0 and P45B5 composites. This was attributed to the slower degradation rate of the fibres in P45Fe3 and P45B5Fe3 composites as compared with the fibres in P45B0 and P45B5 composites. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compositional Constraints on the Best Characterized Rocky Exoplanet, Kepler-36 b
NASA Astrophysics Data System (ADS)
Rogers, Leslie Anne; Deck, Katherine; Lissauer, Jack; Carter, Joshua
2015-08-01
Kepler-36 is an extreme planetary system, consisting of two transiting sub-Neptune-size planets that revolve around a sub-giant star with orbital periods of 13.84 and 16.24 days. Mutual gravitational interactions between the two planets perturb the planets' transit times, allowing the planets' masses to be measured. Despite the similarity of their masses and orbital radii, the planets show a stark contrast in their mean densities; the inner planet (Kepler-36 b) is more than eight times as dense as its outer companion planet (Kepler-36 c). We perform a photo-dynamical analysis of the Kepler-36 system based on more than three years of Kepler photometry. With N-body integrations of initial conditions sampled from the photo-dynamical fits, we further refine the properties of the system by ruling out solutions that show large scale instability within 5 Giga-days. Ultimately, we measure the planets' masses within 4.2% precision, and the planets' radii with 1.8% precision. Kepler-36 b is currently the rocky exoplanet with the most precisely measured mass and radius. Kepler-36 b’s mass and radius are consistent with a Earth-like composition, and an iron-enhanced Mercury-like composition is ruled out.
1993-04-01
re - expressed as, v .= hCSw (C3) Combining Eqns. (C2) and C3) yields, Se = - ’. S (C4...of vi( s ) or v ’( s ). Substituting eq. (B10) into eq. (25), one finds the finite element method expression for functional Ud [ v ] which is U, d [] = v , K...Measurements 1- D 2- D S ,_DL 4 Constitutive W Constitutive Laws Laws Matrix Cracking Labor Models Models Stress Redistribution Numerical Calculations
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, G.C.
1989-01-24
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al{sub 2}O{sub 3}, mullite, or B{sub 4}C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1,600 to 1,950 C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness which represents as much as a two-fold increase over that of the matrix material.
Qin, Cong; Zhang, Bo; Sun, Guang; Zhang, Zhanying
2017-01-01
Flower-like SnO2/g-C3N4 nanocomposites were synthesized via a facile hydrothermal method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized samples were characterized by using the X-ray powder diffraction (XRD), electron microscopy (FESEM and TEM), and Fourier transform infrared spectrometer (FT-IR) techniques. SnO2 displays the unique 3D flower-like microstructure assembled with many uniform nanorods with the lengths and diameters of about 400–600 nm and 50–100 nm, respectively. For the SnO2/g-C3N4 composites, SnO2 flower-like nanorods were coupled by a lamellar structure 2D g-C3N4. Gas sensing performance test results indicated that the response of the sensor based on 7 wt. % 2D g-C3N4-decorated SnO2 composite to 500 ppm ethanol vapor was 150 at 340 °C, which was 3.5 times higher than that of the pure flower-like SnO2 nanorods-based sensor. The gas sensing mechanism of the g-C3N4nanosheets-decorated SnO2 flower-like nanorods was discussed in relation to the heterojunction structure between g-C3N4 and SnO2. PMID:28937649
1993-10-30
AMXRO-IP-Library. Summary Thiourea condensed with 1,4-diformnyl-2,3,5,6-tetrahydroxypiperazine 14 in the presence of 3 hydrochloric acid to give 2,6...b:4’,5"-e]pyrazine 20 to 2- oxo-2,3-dihydro-1,3-dinitro-lH-imidazo[4,5-b]pyrazine 21 was brought about by hydrochloric acid . Treatment with lithium...reaction with tert-butyl amine, and converted to 4,8-dihydro-4,8-dinitro- 1H,5H-diimidazo[4,5-b:4’,5’-e]pyrazine-2,6-disulfonic acid 17 by nitric acid
Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites
NASA Astrophysics Data System (ADS)
Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.
2016-10-01
The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.
Shrestha, Bishnu Kumar; Ahmad, Rafiq; Shrestha, Sita; Park, Chan Hee; Kim, Cheol Sang
2017-08-15
Herein, we demonstrate the exfoliation of bulk graphitic carbon nitrides (g-C 3 N 4 ) into ultra-thin (~3.4nm) two-dimensional (2D) nanosheets and their functionalization with proton (g-C 3 N 4 H + ). The layered semiconductor g-C 3 N 4 H + nanosheets were doped with cylindrical spongy shaped polypyrrole (CSPPy-g-C 3 N 4 H + ) using chemical polymerization method. The as-prepared nanohybrid composite was utilized to fabricate cholesterol biosensors after immobilization of cholesterol oxidase (ChOx) at physiological pH. Large specific surface area and positive charge nature of CSPPy-g-C 3 N 4 H + composite has tendency to generate strong electrostatic attraction with negatively charged ChOx, and as a result they formed stable bionanohybrid composite with high enzyme loading. A detailed electrochemical characterization of as-fabricated biosensor electrode (ChOx-CSPPy-g-C 3 N 4 H + /GCE) exhibited high-sensitivity (645.7 µAmM -1 cm -2 ) in wide-linear range of 0.02-5.0mM, low detection limit (8.0μM), fast response time (~3s), long-term stability, and good selectivity during cholesterol detection. To the best of our knowledge, this novel nanocomposite was utilized for the first time for cholesterol biosensor fabrication that resulted in high sensing performance. Hence, this approach opens a new prospective to utilize CSPPy-g-C 3 N 4 H + composite as cost-effective, biocompatible, eco-friendly, and superior electrocatalytic as well as electroconductive having great application potentials that could pave the ways to explore many other new sensors fabrication and biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
RNA Aptamer-Based Functional Ligands of the Neurotrophin Receptor, TrkB
Huang, Yang Zhong; Hernandez, Frank J.; Gu, Bin; Stockdale, Katie R.; Nanapaneni, Kishore; Scheetz, Todd E.; Behlke, Mark A.; Peek, Andrew S.; Bair, Thomas; Giangrande, Paloma H.
2012-01-01
Many cell surface signaling receptors, such as the neurotrophin receptor, TrkB, have emerged as potential therapeutic targets for diverse diseases. Reduced activation of TrkB in particular is thought to contribute to neurodegenerative diseases. Unfortunately, development of therapeutic reagents that selectively activate particular cell surface receptors such as TrkB has proven challenging. Like many cell surface signaling receptors, TrkB is internalized upon activation; in this proof-of-concept study, we exploited this fact to isolate a pool of nuclease-stabilized RNA aptamers enriched for TrkB agonists. One of the selected aptamers, C4-3, was characterized with recombinant protein-binding assays, cell-based signaling and functional assays, and, in vivo in a seizure model in mice. C4-3 binds the extracellular domain of TrkB with high affinity (KD ∼2 nM) and exhibits potent TrkB partial agonistic activity and neuroprotective effects in cultured cortical neurons. In mice, C4-3 activates TrkB upon infusion into the hippocampus; systemic administration of C4-3 potentiates kainic acid-induced seizure development. We conclude that C4-3 is a potentially useful therapeutic agent for neurodegenerative diseases in which reduced TrkB activation has been implicated. We anticipate that the cell-based aptamer selection approach used here will be broadly applicable to the identification of aptamer-based agonists for a variety of cell-surface signaling receptors. PMID:22752556
Investigation of the fracture mechanics of boride composites
NASA Technical Reports Server (NTRS)
Clougherty, E. V.; Pober, R. L.; Kaufman, L.
1972-01-01
Significant results were obtained in fabrication studies of the role of metallic additives of Zr, Ti, Ni, Fe and Cr on the densification of ZrB2. All elemental additions lower the processing temperatures required to effect full densification of ZrB2. Each addition effects enhanced densification by a clearly distinguishable and different mechanism and the resulting fabricated materials are different. A significant improvement in strength and fracture toughness was obtained for the ZrB2/Ti composition. Mechanical characterization studies for the ZrB2/SiC/C composites and the new ZrB2/Metal materials produced data relevant to the effect of impacting load on measured impact energies, a specimen configuration for which controlled fracture could occur in a suitably hard testing apparatus, and fracture strength data. Controlled fracture--indicative of measurable fracture toughness--was obtained for the ZrB2-SiC-C composite, and a ZrB2/Ti composite fabricated from ZrB2 with an addition of 30 weight per cent Ti. The increased strength and toughness of the ZrB2/Ti composite is consistent with the presence of a significantly large amount of a fine grained acicular phase formed by reaction of Ti with ZrB2 during processing.
Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei
2017-01-01
Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h−1 g−1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy. PMID:28165021
NASA Astrophysics Data System (ADS)
Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.
2015-09-01
Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method).
1986-08-01
respectively ...... ......................... . 61 3.4 Fatigue specimen design curves for 90, 45, and 15 degree orientations in (a), (b), and (c... 61 0.n.500’~~~ .’ 0 * IN lo .00. is 7I=. 2000. Figure 2.12 Strain history from gages along a line 90 degrees to the loading. Notice the high...remover (# SKD -NF/ZC-7B). A developer (# SKD -NF/ZP-9B) was then sprayed on to draw the remaining dye out of the crack, leaving behind a bright red mark where
Ma, Wanwan; Row, Kyung Ho
2018-07-20
A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.
Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao
2017-11-15
The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
1978-01-01
14. "C" Scans of a Composite Plate after Fabrication, a Plate with End Tabs, and a Machined Specimen tIyj - - . I. NArc-7 6228-30 f 4... COMPOSITE MATERIALS 0I Prepared for: Approved by: Naval Air Development Center Warminster, PA 18974 January 1978 B. Walter Rosen, President ILUE BELL...Imperfections in Composite Structures. . . . . . . . . . . . . 41 2 Static Test Data for [(04/+452/7452/04)sIs AS/3501 Laminates With and Without
Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite
NASA Astrophysics Data System (ADS)
Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min
2016-11-01
In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.
NASA Astrophysics Data System (ADS)
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-01
SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang
2018-07-27
SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.
Grosnaja ABCs: Magnesium isotope compositions
NASA Technical Reports Server (NTRS)
Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.
1993-01-01
Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
NASA Astrophysics Data System (ADS)
Sarwanto, Y.; Adi, W. A.
2017-05-01
Modification of pseudobrookite Fe2-xMnxTiO5 with solid state reaction method using a mechanical milling has been synthesized. Raw materials used to prepare these samples were Fe2O3, MnCO3, and TiO2. Fe2O3 and TiO2 powders (ratio of 1:1) were mixed with MnCO3 powder at various composition of x = 0; 0.1; 0.2; 0.3; 0.4; 0.5; and 1, which each composition was added with 50 ml ethanol and then milled for 5 hours through high energy milling, after that sintered at 1000 °C for 5 hours by using box furnace. The phases of Fe2-xMnxTiO5 were measured by using X-ray diffraction (XRD) and then identified by using Match program. The crystal structure was analyzed by using the program of General Structure Analysis System (GSAS). Quality fitting of Rwp and χ2 (chi-squared) are relatively good because based on the curve of normalized error distribution looks just left background and its normal probability plot shows the value of comparable between observation and expectation. The refinement analyses of X-ray diffraction patterns showed that the samples formed single phase for x ≤ 0.3. However, the samples of x > 0.3 were multi-phases. The single phase of sample had composition of pseudobrookite Fe2TiO5 with orthorhombic structure, space group of C m c m (63), the lattice parameters of a = 3.7390 Å, b = 9.7790 Å, and c = 9.9780 Å, α = β = γ = 90°, V = 364.83 Å3, and ρ = 4.360 g.cm-3. Meanwhile, the other phase analysis for the composition of x > 0.3 is bixbyite (FeMnO3). The bixbyite has a cubic structure, under the space group of I a - 3 (206), the lattice parameters of a = b = c = 9.40 Å, α = β = γ = 90°, V = 830.58 Å3, and ρ = 5.078 g.cm-3.
NASA Astrophysics Data System (ADS)
Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta
2018-05-01
The present study reports the role of nano-graphite particles in determining wear and friction behavior of Al-TiB2-nano-Gr hybrid composites. Ultrasonic cavitation assisted stir casting method has been used for fabrication of composites. Al-Si5Cu3 alloy is used as base alloy along with micro sized TiB2 hard ceramic particles (2.5 and 5.5 wt%) as reinforcement and nano-Gr particles (2 and 4 wt%) as solid lubricant additives. SEM micrographs, EDAX spectrum and optical images are considered to observe uniform dispersion of reinforcing phases. Micro-hardness is evaluated using Vicker’s microhardness tester. Hardness is seen to increase with incorporation of TiB2 while the same decreases with incorporation of graphite. Wear and friction of composites are tested for varying load (10 to 40 N) and sliding speed (0.2 to 0.4 m s‑1) using a pin-on-disk tribometer. Worn surfaces are characterized using SEM and EDAX analysis. Wear resistance of composites increases with incorporation of reinforcing phases together. Nano-Gr particles are easily sheared out from the sub-surface and provide a layer over the tribo-surface of composite that enhances friction and wear behavior. Wear mechanism in composites is predominantly adhesion while abrasion and ploughing is prominent in base alloy.
Alloy and method of producing the same
Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo
2005-07-19
In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.
Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan
2014-01-15
A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Diantoro, M.; Muniroh, Z.; Zaini, B.; Mustikasari, A. A.; Nasikhudin; Hidayat, A.; Taufiq, A.; Sunaryono; Mufti, N.
2017-05-01
The use of silica in various fields is significantly increasing. One common application is silica based functional glass which has naturally show specific dielectric, optical, and magnetic properties. Many studies have been performing to explore the influence of dopant, composition, and other processing parameters as well as employing various characterization. In the previous work, we report the use of silica from silica sands. To reduce the melting temperature, we used silica sol-gel beside the utilization of some oxides such as B2O3, Na2CO3, and Bi3O3. We also used NiO as dopant explore the glass properties. We have prepared a series of sample with the composition of 50SiO2-25B2O3-(6.5-x) Bi3O3-18.5 Na2CO3-xNiO (x = 0, 1, 2, 3 and 4 wt%). After weighting process, the composition was blended, then heated to 450 °C for 120 minutes and then raised at 950 °C for 60 minutes in the crucible. Then samples of glass separated from the crucible and in the characterization of the structure using the DTA, XRD, SEM-EDAX and FTIR and measuring dielectric constant using a capacitance meter. The increase of NiO dopant resulted in increasing the dielectric constant of glass. On the other hand, the dielectric constant gradually decreases with the increase of light intensity. One can be noted that the applied intensity give rise to the step-like decrease of the dielectric constant. Whereas, the increasing magnetic field indicate the increase of dielectric constant.
NASA Astrophysics Data System (ADS)
Karton, Amir; Martin, Jan M. L.
2012-10-01
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3 kcal mol-1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal mol-1. Isomers involving highly-strained fused rings or long cumulenic chains provide a 'torture test' for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1 kcal mol-1.
NASA Astrophysics Data System (ADS)
Cvetković, Vladica; Erić, Suzana; Radivojević, Maša; Šarić, Kristina
2012-11-01
The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3 = 6-13 wt.%, TiO2 = 1.5-4.5 wt.%, and Na2O = 0.4-0.8 wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30 % of melt starting from the average host lava composition. Type-C has Mg# = 72-89, Al2O3 = 4.5-9.5 wt.%, TiO2 = 1-2.5 wt.%, Na2O = 0.35-1 wt.% and Cr2O3 = 0.1-1.5 wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2-20 wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T ~ 1250 °C, p ~ 1.5 GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3-0.8 GPa and 1200-1050 °C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3 GPa; ~950 °C).
NASA Astrophysics Data System (ADS)
Negi, N. S.; Kumar, Rakesh; Sharma, Hakikat; Shah, J.; Kotnala, R. K.
2018-06-01
High performance lead-free multiferroic composites with strong magnetoelectric coupling effect are desired to replace lead-based ceramics in multifunctional device applications due to increasing environmental issues. We report crystal structure, ferroelectric, magnetic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 (BCTZ-CFO) lead-free composites with x = 0.1, 0.3, 0.5, 0.7 and 0.9 synthesized by chemical solution method. BCTZ power was synthesized by sol-gel method while CFO was prepared by metallo-organic decomposition (MOD) method. The XRD results confirm successful formation of the BCTZ-CFO composites without presence of any impurity phase. At room temperature, the BCTZ-CFO composites show multiferroic behavior characterized by ferroelectric and ferromagnetic hysteresis curves. The composite having 10 wt% of CFO exhibited maximum polarization, remnant polarization and coercive field of Ps ∼ 5.1 μC/cm2, Pr ∼ 1.4 μC/cm2 and Ec ∼ 11.6 kV/cm respectively. The BCTZ-CFO composite with 90 wt% of CFO incorporation exhibits improved ferromagnetic properties with Ms ∼ 32 emu/g, Mr ∼ 11.7 emu/g and Hc ∼ 504 Oe. Mӧssbauer spectra analysis show two sets of six-line hyperfine patterns for BCTZ-CFO composites, indicating the presence of Fe3+ ions in both A and B sites. Increasing BCTZ content was found to decrease the hyperfine field strength at both sites and is consistent with the decreasing magnetic moment observed for the samples. The maximum dielectric constant value ε‧ ∼ 678 is obtained at 1 MHz for composite with 10 wt% of CFO phase. The results indicate that the BCTZ-CFO composites are potential lead-free room temperature multiferroic systems.
Hypovalency--a kinetic-energy density description of a 4c-2e bond.
Jacobsen, Heiko
2009-06-07
A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.
Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide
NASA Astrophysics Data System (ADS)
Akinlabi, E. T.; Erinosho, M. F.
2017-11-01
Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.
Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Jacobson, Nathan S.
1995-01-01
Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.
Fine Structure Study of the Plasma Coatings B4C-Ni-P
NASA Astrophysics Data System (ADS)
Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.
2017-12-01
The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
NASA Astrophysics Data System (ADS)
Lv, Y. H.; Li, J.; Tao, Y. F.; Hu, L. F.
2017-04-01
TiNi/Ti2Ni matrix composite coatings were produced on Ti6Al4V surfaces by laser cladding the mixed powders of Ni-based alloy and different contents of TaC (0, 5, 10, 15, 20, 30 and 40 wt.%). Microstructures of the coatings were investigated. High-temperature wear tests of the substrate and the coatings were carried out at 600 °C in air for 30 min. High-temperature oxidation tests of the substrate and the coatings were performed at 1000 °C in air for 50 h. Wear and oxidation mechanisms were revealed in detail. The results showed that TiNi/Ti2Ni as the matrix and TiC/TiB2/TiB as the reinforcements are the main phases of the coatings. The friction coefficients of the substrate and the coatings with different contents of TaC were 0.431 (the substrate), 0.554 (0 wt.%), 0.486 (5 wt.%), 0.457 (10 wt.%), 0.458 (15 wt.%), 0.507 (20 wt.%), 0.462 (30 wt.%) and 0.488 (40 wt.%). The wear rates of the coatings were decreased by almost 83%-98% than that of the substrate and presented a decreasing tendency with increasing TaC content. The wear mechanism of the substrate was a combination of serious oxidation, micro-cutting and brittle debonding. For the coatings, oxidation and slight scratching were predominant during wear, accompanied by slight brittle debonding in partial zones. With the increase in content of TaC, the oxidation film better shielded the coatings from destruction due to the effective friction-reducing role of Ta2O5. The oxidation rates of the substrate and the coatings with different contents of TaC at 1000 °C were 12.170 (the substrate), 5.886 (0 wt.%), 4.937 (5 wt.%), 4.517 (10 wt.%), 4.394 (15 wt.%), 3.951 (20 wt.%), 4.239 (30 wt.%) and 3.530 (40 wt.%) mg2 cm-4 h-1, respectively. The oxidation film formed outside the coating without adding TaC was composed of TiO2, NiO, Cr2O3, Al2O3 and SiO2. When TaC was added, Ta2O5 and TaC were also detected, which effectively improved the oxidation resistance of the coatings. The addition of TaC contributed to the improvement in high-temperature wear and oxidation resistance.
Thermodynamic properties of hematite — ilmenite — geikielite solid solutions
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.
1990-11-01
A solution model is developed for rhombohedral oxide solid solutions having compositions within the ternary system ilmenite [(Fe{2+/ s }Ti{4+/1- s }) A (Fe{2+/1- s }Ti{4+/s}) B O3]-geikielite [(Mg{2+/ t }Ti{4+/1- t }) A (Mg{2+/1- t }Ti{4+/ t }) B O3]-hematite [(Fe3+) A (Fe3+) B O3]. The model incorporates an expression for the configurational entropy of solution, which accounts for varying degrees of structural long-range order (0≤s, t≤1) and utilizes simple regular solution theory to characterize the excess Gibbs free energy of mixing within the five-dimensional composition-ordering space. The 13 model parameters are calibrated from available data on: (1) the degree of long-range order and the composition-temperature dependence of theRbar 3c - Rbar 3 transition along the ilmenite-hematite binary join; (2) the compositions of coexisting olivine and rhombohedral oxide solid solutions close to the Mg-Fe2+ join; (3) the shape of the miscibility gap along the ilmenite-hematite join; (4) the compositions of coexisting spinel and rhombohedral oxide solid solutions along the Fe2+-Fe3+ join. In the course of calibration, estimates are obtained for the reference state enthalpy of formation of ulvöspinel and stoichiometric hematite (-1488.5 and -822.0 kJ/mol at 298 K and 1 bar, respectively). The model involves no excess entropies of mixing nor does it incorporate ternary interaction parameters. The formulation fits the available data and represents an internally consistent energetic model when used in conjuction with the standard state thermodynamic data set of Berman (1988) and the solution theory for orthopyroxenes, olivines and Fe-Mg titanomagnetite-aluminate-chromate spinels developed by Sack and Ghiorso (1989, 1990a, b). Calculated activity-composition relations for the end-members of the series, demonstrate the substantial degree of nonideality associated with interactions between the ordered and disordered structures and the dominant influence of the miscibility gap across much of the ternary system. The predicted shape of the miscibility gap, and the orientation of tie-lines relating the compositions of coexisting phases, display the effects of coupling between the excess enthalpy of solution and the degree of long-range order. One limb of the miscibility gap follows the composititiontemperature surface corresponding to the ternaryRbar 3 - Rbar 3c second-order transition.
Oxidation of Ultra-High Temperature Ceramics in Water Vapor
NASA Technical Reports Server (NTRS)
Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.
2003-01-01
Ultra high temperature ceramics (UHTCs) including HfB2 + SiC (20% by volume), ZrB2 + SiC (20% by volume) and ZrB2 + SiC (14% by volume) + C (30% by volume) have historically been evaluated as reusable thermal protection systems for hypersonic vehicles. This study investigates UHTCs for use as potential combustion and aeropropulsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline comparison. Weight change measurements, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results will be compared with tests ran in static air at temperatures of 1327, 1627, and 1927 C. Oxidation comparisons will also be made to the study by Tripp. A small number of high pressure burner rig (HPBR) results at 1100 and 1300 C will also be discussed. Specific weight changes at all three temperatures along with the SIC results are shown. SiC weight change is negligible at such short duration times. HB2 + SiC (HS) performed the best out of all the tested UHTCS for all exposure temperatures. ZrB2 + Sic (ZS) results indicate a slightly lower oxidation rate than that of ZrBl + SiC + C (ZCS) at 1200 and 1400 C, but a clear distinction can not be made based on the limited number of tested samples. Scanning electron micrographs of the cross-sections of all the UHTCs were evaluated. A representative area for HS is presented at 1400 C for 26 hours which was the composition with the least amount of oxidation. A continuous SiO2 scale is present in the outer most edge of the surface. An image of ZCS is presented at 1400 C for 10 hours, which shows the most degradation of all the compositions studied. Here, the oxide surface is a mixture of ZrSiO4, ZrO2 and SO2.
NASA Astrophysics Data System (ADS)
Cui, Xingkai; Tian, Lin; Xian, Xiaozhai; Tang, Hua; Yang, Xiaofei
2018-02-01
Solar-driven water splitting over semiconductor-based photocatalysts provides direct conversion of solar energy to chemical energy, in which electron-hole separation and charge transport are critical for enhancing the photocatalytic activity of semiconducting materials. Moreover, the search for active photocatalysts that efficiently oxidize water remains a challenging task. Here, we demonstrate that a series of Ag3PO4/Ag/graphene/graphitic carbon nitride (g-C3N4) heterostructured materials can drive photocatalytic water oxidation efficiently under LED illumination. The water oxidation behavior of as-prepared composite photocatalysts in relation to the added amount of g-C3N4 and the roles of electron mediators was investigated in detail. Based on the illuminated Z-scheme photocatalytic mechanism, the photogenerated electrons and holes can be separated effectively and the electron-hole recombination of bulk material is suppressed. The reduced metallic Ag nanoparticles were found to function as the center for the accumulation of electrons from Ag3PO4 and holes from g-C3N4. By exploiting the proper addition of g-C3N4 into the composite, photocatalytic oxygen evolution performance over the heterostructured materials could be suitably tuned, which resulted in highly efficient water oxidation.
Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.
Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin
2017-04-26
Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.
Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu
2017-09-06
Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.
Chen, Tao; Wang, Haojun
2017-01-01
Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening. PMID:28878190
NASA Astrophysics Data System (ADS)
Liang, Zhiyu; Wen, Qingjuan; Wang, Xiu; Zhang, Fuwei; Yu, Yan
2016-11-01
Graphite-like carbon nitride (g-C3N4) displays strong potential applications in visible-light photocatalytic for water treatment, but its applications are greatly restricted by high recombination probability of photo-generated electron-hole pairs, as well as a weak reduction ability toward the heavy metals. In this work, we reported the synthesis of nZVI-g-C3N4 nano-hybrid with highly efficiency toward the photodegradation of RhB and Cr(VI) under the visible light irradiation. The nZVI nanoparticles can well be immobilized and dispersed on the surface of g-C3N4 nanosheets by a facile borohydride-reduction method. As-synthesized nZVI-g-C3N4 has an improved photocatalytic activity much better than that of the pure g-C3N4, wherein over 92.9% of Cr(VI) and 99.9% of RhB can be removed by using nZVI-g-C3N4. The nZVI particles not only contributes to the reduction and immobilization of Cr(VI), but also accelerates the photocatalytic degradation efficiency of RhB due to a lower recombination rate of photoexcited holes and electrons. Moreover, nZVI-g-C3N4 preserves superior photodegradation efficiency after five experimental cycles. It can be attributed that nZVI-g-C3N4 photocatalyst is chemically stable, and part of nZVI can be recovered by g-C3N4. We believe that, the composite of nZVI-g-C3N4 reported here could provide guidance for the design of efficient and reusable materials to remove both the organic compounds and heavy metal ions from waste waters.
Assessment of post-contamination treatments affecting different bonding stages to dentin
Elkassas, Dina; Arafa, Abla
2016-01-01
Objectives: To assess the effect of cleansing treatments following saliva and blood contamination at different bonding stages to dentin. Materials and Methods: Labial surfaces of 168 permanent maxillary central incisors were ground flat exposing superficial dentin. Specimens were divided into: uncontaminated control (A), contamination after etching (B), contamination after adhesive application (C), contamination after adhesive polymerization (D). Groups were further subdivided according to cleansing treatments into: rinsing (B1, C1, D1), re-etching (B2, D3), sodium hypochlorite application (B3), ethyl alcohol application (C2), acetone application (C3), rinsing and rebonding (D2), re-etching and rebonding (D4). Composite microcylinders were bonded to treated substrates and shear loaded micro-shear bond strength (μSBS) until failure and treated surfaces were examined with scanning electron microscope. Debonded surfaces were classified as adhesive, cohesive or mixed failure. The data were analyzed using one-way ANOVA and Tukey's post hoc test. Results: The μSBS values were ranked as follow; Group B: A > B3 > B2 > B1 > B, Group C: A > C3 > C2 > C1 > C, Group D: A > D4 > D1 = D2 ≥ D3. Debonded surfaces showed adhesive failure in Group B while cohesive failure in Groups C and D. Conclusions: Cleansing treatments differ according to bonding step; re-etching then rebonding suggested if etched substrate or polymerized adhesive were contaminated while acetone application decontaminated affected unpolymerized adhesive. PMID:27403048
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-09-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-01-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir
2018-01-01
A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, George C.
1993-01-01
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.
Silicon carbide whisker reinforced composites and method for making same
Wei, G.C.
1984-02-09
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties, especially increased fracture toughness. In the formation of these ceramic composites, the single-crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al/sub 2/O/sub 3/, mullite, or B/sub 4/C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600 to 1950/sup 0/C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m/sup 1/2/ which represents as much as a two-fold increase over that of the matrix material.
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, George C.
1985-01-01
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, George C.
1993-11-16
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.075 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MPa.m.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, George C.
1989-01-24
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al.sub.2 O.sub.3, mullite, or B.sub.4 C. The mixtures which contain a homogeneous disperson of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1600.degree. to 1950.degree. C. with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness of up to about 9 MP.am.sup.1/2 which represents as much as a two-fold increase over that of the matrix material.
NASA Astrophysics Data System (ADS)
Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok
2010-03-01
Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.
NASA Astrophysics Data System (ADS)
Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan
2017-07-01
Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.
2015-09-01
Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.
Curtis, J.B.; Vaughn, L.S.; Torn, M.S.; Conrad, M.S.; Chafe, O.; Bill, M.
2015-12-31
In August-October 2012 and June-October 2013, co-located measurements were made of surface CH4 and CO2 flux, soil pore space concentrations and stable isotope compositions of CH4 and CO2, and subsurface temperature and soil moisture. Measurements were made in intensive study site 1 areas A, B, and C, and from the site 0 and AB transects, from high-centered, flat-centered, and low-centered polygons, from the center, edge, and trough of each polygon.
Evaluation of RTM370 Polyimide Composites by Resin Film Infusion (RFI)
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Yip, Thomas A.; Kollmansberger, Ronald B.; Tsotsis, Thomas K.
2014-01-01
RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass-transition temperature (Tg) of 370 C. RTM370 resin has been successfully infused into fiberglass-stitched T650-35 carbon-fabric preforms (ranged from 3- to 6-mm thick) by resin film infusion (RFI). The resulting composite panels were inspected by ultrasonic C-scan and by photomicrographs before and after post-curing as a quality control. Mechanical tests such as unnotched compression (UNC), open-hole compression (OHC), and short-beam shear strength (SBS) at ambient and elevated temperatures were performed before and after isothermal aging at 288 C for 1000 h to assess high-temperature performance. Thermal cycling of RTM370 stitched composites was also conducted from -54 C to 288 C for up to 1600 cycles to evaluate the microcrack resistance of RTM370 polyimide composites fabricated by RFI.
Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity
NASA Astrophysics Data System (ADS)
Huang, Ru-Long; Huang, Wei-Qing; Li, Dong-Feng; Ma, Li-Li; Pan, Anlian; Hu, Wangyu; Fan, Xiaoxing; Huang, Gui-Fang
2018-04-01
Hierarchical carbon/g-C3N4 composites consisting of nanosheets are synthesized by a direct thermal diffusion and exfoliation approach with glucose acting as the intercalator and carbon source. This facile protocol not only renders nanosheets with a large surface area, but also carbon intercalation into the interlayer of g-C3N4. Therefore, the synthesized carbon/g-C3N4 composites exhibit superior photocatalytic performance for degrading representative methylene blue (MB) under visible light irradiatuon. Carbon/g-C3N4 composites with an optimal glucose mass ratio of 0.25% show the apparent reaction rate constant of 0.253 h-1, which is 9 times higher than that over bluk g-C3N4. The superior photocatalytic performance of carbon/g-C3N4 hierarchical architectures can be attributed to the synergic effects of large reactive sites, effective visible light adsorption and faster charge transfer owing to the superior electron transfer ability of carbon as verified by the PL and photoelectrochemical measurements. The main reactive species responsible for the photocatalytic degradation are photoinduced holes and ·OH radicals under visible light irradiation. This work provides a facile way to fabricate effecient g-C3N4-based photocatalysts for the potential application in dealing with environmental and energy shortage issues using solar energy.
NASA Technical Reports Server (NTRS)
Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.
2006-01-01
Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.
The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyoung Hun; Shim, Kwang Bo
2003-01-15
The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less
NASA Astrophysics Data System (ADS)
Wellons, Matthew S.
The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their respective fields.
Crystal growth in zinc borosilicate glasses
NASA Astrophysics Data System (ADS)
Kullberg, Ana T. G.; Lopes, Andreia A. S.; Veiga, João P. B.; Monteiro, Regina C. C.
2017-01-01
Glass samples with a molar composition (64+x)ZnO-(16-x)B2O3-20SiO2, where x=0 or 1, were successfully synthesized using a melt-quenching technique. Based on differential thermal analysis data, the produced glass samples were submitted to controlled heat-treatments at selected temperatures (610, 615 and 620 °C) during various times ranging from 8 to 30 h. The crystallization of willemite (Zn2SiO4) within the glass matrix was confirmed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Under specific heat-treatment conditions, transparent nanocomposite glass-ceramics were obtained, as confirmed by UV-vis spectroscopy. The influence of temperature, holding time and glass composition on crystal growth was investigated. The mean crystallite size was determined by image analysis on SEM micrographs. The results indicated an increase on the crystallite size and density with time and temperature. The change of crystallite size with time for the heat-treatments at 615 and 620 °C depended on the glass composition. Under fixed heat-treatment conditions, the crystallite density was comparatively higher for the glass composition with higher ZnO content.
Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites.
Li, Yang; Feng, Xionghan; Lu, Zhexue; Yin, Hui; Liu, Fan; Xiang, Quanjun
2018-03-01
As a new carbon-based material, carbon dots (C-dots) have got widely preference because of its excellent electronic transfer capability. In this work, a novel ternary layered C-dots/g-C 3 N 4 /TiO 2 nanosheets (CGT) composite photocatalysts were prepared by impregnation precipitation methods. The optimal ternary CGT composite samples revealed high photocatalytic hydrogen evolution rate in triethanolamine aqueous solutions, which exceeded the rate of the optimal g-C 3 N 4 /TiO 2 composite sample by a factor of 5 times. The improved photocatalytic activity is owed to the positive effects of C-dots and layered heterojunction structure of TiO 2 nanosheets and g-C 3 N 4 sheets. C-dots in the CGT composites can serve as electron reservoirs to capture the photo-induced electrons. The well-defined layered heterojunction structure of CGT provides the intimate contact and the strong interaction of anatase TiO 2 nanosheets and g-C 3 N 4 sheets via face-to-face orientation, which restrains the recombination of photogenerated charge carriers, and thus enhances the photocatalytic H 2 -production activity. Electron paramagnetic resonance and transient photocurrent response proved the strong interaction and improved interfacial charge transfer of TiO 2 nanosheets and g-C 3 N 4 sheets, respectively. The mechanism of improving the photocatalytic H 2 -evolution activity was further confirmed by time-resolved fluorescence, electron paramagnetic resonance, transient photocurrent response and electrochemical impedance spectroscopy. Copyright © 2017 Elsevier Inc. All rights reserved.
Cai, Yu-Chun; Chen, Shao-Hong; Tian, Li-Guang; Chu, Yan-Hong; Lu, Yan; Chen, Mu-Xin; Ai, Lin; Zhou, Yang; Chen, Jia-Xu
2014-02-01
To establish A1E3 and B1C4 monoclonal antibody-based ELISA for detecting circulating antigen of Schistosoma japonicum and explore its application value in the field. The characteristics of A1E3 and B1C4 monoclonal antibodies were analyzed by SDS-PAGE and Western blotting. The SEA-based ELISA was used to evaluate the titers of A1E3 and B1C4. The orthogonal test was used to determine the best concentration of coating antibody B1C4 and optimal working concentration of A1E3-HRP. Under the optimal conditions, the serum samples of 20 acute schistosomiasis cases, 46 chronic schistosomiasis cases, and 20 control sera were tested to evaluate its detection sensitivity and specificity. Seventy-two antibody positive serum samples from Jiangling County of Hubei Province were detected and compared to a commercially available ELISA kit, to evaluate the detection effects of this method. The results of SDS-PAGE demonstrated that the purified A1E3 and B1C4 contained a clear heavy chain with molecular weight of 88,000 and 52,000 respectively and had the same light chain with molecular weight of 20,000; while Western blotting demonstrated that A1E3 and B1C4 could be recognized by SEA and serum samples of acute schistosomiasis cases. The SEA-based ELISA demonstrated the titers of B1C4 and A1E3 were 1:10(5) and 1:30,000, respectively. The serum samples from all the acute cases and 86.9% of the chronic cases showed a positive reaction. All of the control sera from healthy persons gave a negative response. The positive rates of the double monoclonal antibody ELISA and commercial ELISA for detecting the circulating antigen were 45.8% and 43.1% respectively, and there was no significant difference between the results of the two methods. A1E3 and B1C4 monoclonal antibody-based ELISA is established successfully. It exhibits a high sensitivity and specificity in detecting circulating antigen of Schistosoma japonicum.
Zhan, Xin-Xing; Zhang, Xin; Dai, Si-Min; Li, Shu-Hui; Lu, Xu-Zhai; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2016-12-23
Despite being widely used as electron acceptor in polymer solar cells, commercially available PC 71 BM (phenyl-C 71 -butyric acid methyl ester) usually has a "random" composition of mixed regioisomers or stereoisomers. Here PC 71 BM has been isolated into three typical isomers, α-, β 1 - and β 2 -PC 71 BM, to establish the isomer-dependent photovoltaic performance on changing the ternary composition of α-, β 1 - and β 2 -PC 71 BM. Mixing the isomers in a ratio of α/β 1 /β 2 =8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC 71 BM as photoactive layer (PTB7=poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl
Condition Based Maintenance Technology Impacts Study for the Military Land Environment
2014-08-01
3a, 2g 3b,3m,3j,3e,3d,3f,3a,3c,3i 3c,3d,3h,3n 3d,3h 3e,3k,3i 3f,3h UNCLASSIFIED DSTO-RR-0404 UNCLASSIFIED 158 3g ,3c 3h,4b 3i,3m,3j,CBM...3e -> 3k 3i Egress of 2: 3n -> 3h 4b Egress of 2: 3k -> 3j 5c Egress of 2: 4d -> 3g 3c Egress of 1: 3a -> 2g Egress of 1: 1b -> 2g Egress...Ingress+Egress of 8: 2d 3b 3g 4d 4f -> 3c -> 3d 3h 3n Ingress+Egress of 7: 1b 2e 3a -> 2g -> 3b 2e 2c 2f Ingress+Egress of 7: 2a 2d 6b 6c -> 2b -> 3a
Xiao, Gang; Xu, Shengnan; Li, Peifeng; Su, Haijia
2018-08-03
Heterostructured photocatalysts based on g-C 3 N 4 and TiO 2 represent a promising kind of photocatalyst in environmental fields, but the synthesis methods are always complex and not green. In the present paper, a facile and green one-step calcination procedure at lower temperature (450 °C) with the assistance of water is developed to synthesize a visible-light-active TiO 2 @g-C 3 N 4 heterostructured photocatalyst, which shows higher visible-light-driven activity (k = 0.014 min -1 ) than pure g-C 3 N 4 (k = 0.0036 min -1 ) and TiO 2 (k = 0.0067 min -1 ) for methyl orange degradation. Excellent performance (over 90% conversion) was also observed for the removal of rhodamine B, phenol, and Cr(VI) under visible light. The heterostructured photocatalyst showed favorable reusability, preserving 86% of its activity after five successive cycles. A mechanism study demonstrates that the enhanced photocatalytic activity results from the efficient separation of the photo-generated charge carriers through the intimate interface between the two semiconductors based on their appropriate band structures and light-induced mechanism. The heterostructured photocatalyst will certainly find wide applications in the treatment of various toxic pollutants in wastewater using abundant solar energy. Furthermore, this facile and green procedure and the proposed synergistic mechanism will provide guidelines in designing other g-C 3 N 4 based organic-inorganic composite photocatalysts for various applications.
The ASVAB (Armed Services Vocational Aptitude Battery) Score Scales. 1980 and World War II
1986-07-01
TABLE B-3 ASVAB 14 (A, B, & C) MECHANICAL & CRAFTS (MC) COMPOSITE PERCENTILE NORMS BY SEX AND GRADE Females Grade Males Total Standard Grade...COMPOSITE PERCENTILE NORMS BY SEX AND GRADE Females Grade Males Total Standard Grade Grade Standard Score 11th 12th nth 12th nth 12th Score 24 24...Standard Scores. B-8 TABLE B-3 ASVAB 14 (A. B,&C) ELECTRONIC & ELECTRICAL (EE) COMPOSITE PERCENTILE NORMS BY SEX AND GRADE Females Grade Males
Switching Characteristics of a 4H-SiC Based Bipolar Junction Transistor to 200 C
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Static curves and resistive load switching characteristics of a 600 V, 4 A rated, SiC-based NPN bipolar power transistor (BJT) were observed at selected temperatures from room to 200 C. All testing was done in a pulse mode at low duty cycle (approx.0.1 percent). Turn-on was driven by an adjustable base current pulse and turn-off was accelerated by a negative base voltage pulse of 7 V. These base drive signals were implemented by 850 V, gated power pulsers, having rise-times of roughly 10 ns, or less. Base charge sweep-out with a 7 V negative pulse did not produce the large reverse base current pulse seen in a comparably rated Si-based BJT. This may be due to a very low charge storage time. The decay of the collector current was more linear than its exponential-like rise. Switching observations were done at base drive currents (I(sub B)) up to 400 mA and collector currents (I(sub C)) up to 4 A, using a 100 Omega non-inductive load. At I(sub B) = 400 mA and I(sub C) = 4 A, turn-on times typically varied from 80 to 94 ns, over temperatures from 23 to 200 C. As expected, lowering the base drive greatly extended the turn-on time. Similarly, decreasing the load current to I(sub C) = 1 A with I(sub B) = 400 mA produced turn-on times as short as 34 ns. Over the 23 to 200 C range, with I(sub B) = 400 mA and I(sub C) = 4 A, turn-off times were in the range of 72 to 84 ns with the 7 V sweep-out.
Method of Making Fine Lithium Iron Phosphate/Carbon-Based Powders with an Olivine Type Structure
NASA Technical Reports Server (NTRS)
Singhal, Amit (Inventor); Dhamne, Abhijeet (Inventor); Skandan, Ganesh (Inventor)
2008-01-01
Processes for producing fine LiFePO.sub.4/C and nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders, where 1.ltoreq.x.ltoreq.0.1 and M is a metal cation. Electrodes made of either nanostructured LiFe.sub.xM.sub.1-xPO.sub.4 powders or nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders exhibit excellent electrochemical properties. That will provide high power density, low cost and environmentally friendly rechargeable Li-ion batteries.
Study of helium embrittlement in boron doped EUROFER97 steels
NASA Astrophysics Data System (ADS)
Gaganidze, E.; Petersen, C.; Aktaa, J.
2009-04-01
To simulate helium effects in Reduced Activation Ferritic/Martensitic steels, experimental heats ADS2, ADS3 and ADS4 with the basic composition of EUROFER97 (9%Cr-WVTa) were doped with different contents of natural boron and separated 10B-isotope (0.008-0.112 wt.%) and irradiated in High Flux Reactor (HFR) Petten up to 16.3 dpa at 250-450 °C and in Bor-60 fast reactor in Dimitrovgrad up to 31.8 dpa at 332-338 °C. The embrittlement and hardening are investigated by instrumented Charpy-V tests with subsize specimens. Complete burn-up of 10B isotope under neutron irradiation in HFR Petten led to generation of 84, 432 and 5580 appm He and partial boron-to-helium transformation in Bor-60 led to generation of 9, 46, 880 appm He in ADS2, ADS3 and ADS4 heats, respectively. At low irradiation temperatures Tirr ⩽ 340 °C the boron doped steels show progressive embrittlement with increasing helium amount. Irradiation induced DBTT shift of EUROFER97 based heat doped with 1120 wppm separated 10B isotope could not be quantified due to large embrittlement found in the investigated temperature range. At Tirr ⩽ 340 °C helium induced extra embrittlement is attributed to material hardening induced by helium bubbles and described in terms of phenomenological model.
The complete mitochondrial genome of Acanthosaura lepidogaster (Squamata: Agamidae).
Yu, Xiu-Li; Du, Yu; Yao, Yun-Tao; Lin, Chi-Xian; Lin, Long-Hui
2017-03-01
In this paper, we report the complete mitochondrial genome of Acanthosaura lepidogaster (Squamata, Agamidae), which is a circular molecule of 16 899 bp in size and consists of 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a control region. The overall base composition is as follows: T (22.8%), C (30.5%), A (32.3%), and G (14.4%). We constructed a phylogeny that included for 10 species of Leiolepidinae lizards and one outgroup Leiocephalus personatus constructed in BEAST, based on 15 mitochondrial genes (12S, 16S, ND1, ND2, COI, COII, ATP8, ATP6, COIII, ND3, ND4L, ND4, ND5, ND6, and cytochrome b). The topology of the phylogenetic tree is broadly similar to that mentioned by Pyron et al.
Molecular modeling of polymer composite-analyte interactions in electronic nose sensors
NASA Technical Reports Server (NTRS)
Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.
2003-01-01
We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.
Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage.
Li, Yang; Li, Ping; Qu, Xuanhui
2017-01-31
The LiBH 4 /CaH 2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH 4 /CaH 2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH 4 /CaH 2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH 4 /CaH 2 composite is almost 60 kJ/mol H 2 and equilibrium pressure is 0.482 MPa at 450 °C. The thermal storage density of LiBH 4 /CaH 2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB 6 . The existence of TiCl 3 and NbF 5 can effectively enhance the cycling perfomance of LiBH 4 /CaH 2 composite, with 6-7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH 4 /CaH 2 composite a potential thermal storage material.
NASA Astrophysics Data System (ADS)
Balani, Kantesh
Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (˜210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.
Compositional dependence of elastic moduli for transition-metal oxide spinels
NASA Astrophysics Data System (ADS)
Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.
2012-12-01
Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.
On the Stability of c-BN-Reinforcing Particles in Ceramic Matrix Materials
Wolfrum, Anne-Kathrin; Michaelis, Alexander; Herrmann, Mathias
2018-01-01
Cubic boron nitride (c-BN) composites produced at high pressures and temperatures are widely used as cutting tool materials. The advent of new, effective pressure-assisted densification methods, such as spark plasma sintering (SPS), has stimulated attempts to produce these composites at low pressures. Under low-pressure conditions, however, transformation of c-BN to the soft hexagonal BN (h-BN) phase can occur, with a strong deterioration in hardness and wear. In the present work, the influence of secondary phases (B2O3, Si3N4, and oxide glasses) on the transformation of c-BN was studied in the temperature range between 1100 °C and 1575 °C. The different heat treated c-BN particles and c-BN composites were analyzed by SEM, X-ray diffraction, and Raman spectroscopy. The transformation mechanism was found to be kinetically controlled solution–diffusion–precipitation. Given a sufficiently low liquid phase viscosity, the transformation could be observed at temperatures as low as 1200 °C for the c-BN–glass composites. In contrast, no transformation was found at temperatures up to 1575 °C when no liquid oxide phase is present in the composite. The results were compared with previous studies concerning the c-BN stability and the c-BN phase diagram. PMID:29414847
Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro
2016-09-01
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation.
Ouyang, Kai; Dai, Ke; Chen, Hao; Huang, Qiaoyun; Gao, Chunhui; Cai, Peng
2017-02-01
Interest has grown in developing safe and high-performance photocatalysts based on metal-free materials for disinfection of bacterial pathogens under visible light irradiation. In this paper, the C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids were synthesized by a hydrothermal method, and characterized by X-ray diffraction (XRD), UV-vis diffuse reflection spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high revolution transmission electron microscope (HRTEM). The performance of photocatalytic disinfection was investigated by the inactivation of Escherichia coli O157:H7. Both C 60 /C 3 N 4 and C 70 /C 3 N 4 hybrids showed similar crystalline structure and morphology with C 3 N 4 ; however, the two composites exhibited stronger bacterial inactivation than C 3 N 4 . In particular, C 70 /C 3 N 4 showed the highest bactericidal efficiency and was detrimental to all E. coli O157:H7 in 4h irradiation. Compared to C 3 N 4 , the enhancement of photocatalytic activity of composites could be attributed to the effective transfer of the photoinduced electrons under visible light irradiation. Owing to the excellent performance of fullerenes (C 60 , C 70 )/C 3 N 4 composites, a visible light response and environmental friendly photocatalysts for disinfection were achieved. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Krishna Golla, Sai; Prasanthi, P.
2016-11-01
A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.
NASA Technical Reports Server (NTRS)
Newman, John W.; Santos, Fernando; Saulsbury, Regor; Koshti, Ajay; Russell, Rick; Regez, Brad
2006-01-01
1. 21 Composite Over-wrapped Pressure Vessels (COPV) consisting of Kevlar Space Shuttle Fleet Leaders and Graphite COPV were inspected at NASA WSTF, NM from Sept. 12 through Sept 16. 2. The inspection technique was Pressurization Shearography, tests designed to image composite material damage, degradation or design flaws leading to stress concentrations in the axial or hoop strain load path. 3. The defect types detected consisted of the following: a) Intentional impact damage with known energy. b) Un-intentional impact damage. c) Manufacturing defects. 4. COPV design features leading to strain concentrations detected include: a) Strain concentrations at bosses due to fiber closure pattern. b) Strain concentrations in body of COPV due to fiber wrap pattern. c) Strain concentrations at equator due to liner weld/fiber lay-up.
NASA Astrophysics Data System (ADS)
Kobayashi, Hitomi; Kawakita, Hideyo; Mumma, Michael J.; Bonev, Boncho P.; Watanabe, Jun-ichi; Fuse, Tetsuharu
2007-10-01
We report the chemical composition of organic molecules in fragment B of comet 73P/Schwassmann-Wachmann 3 (SW3). Comet SW3 is a Jupiter-family comet that split into three fragments during its 1995 apparition and later into additional components. It was expected that fresh ices from deep within the presplit nucleus were exposed on the surface of each fragment. We observed SW3 with the Subaru telescope in 2006 early May when component B was disintegrating rapidly. If this exposed fresh ices from deeper layers of the original nucleus, mixing ratios obtained from our observations may reflect the pristine nature of the comet. Based on our results, comet SW3-B was depleted in C2H6 and C2H 2 with respect to most comets from the Oort Cloud reservoir, suggesting its formation region might have differed from that of the dominant Oort Cloud comets. Furthermore, the chemical composition of SW3-B was similar to that of SW3-C, suggesting that the presplit nucleus was almost homogeneous in volatile composition. The combined results demonstrate that depleted-organics comets from a common formation zone entered both reservoirs, of Jupiter-family comets and and Oort Cloud comets, but likely in different fractions. This Letter is based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. This work was financially supported by the Ministry of Education, Science, and Culture, Grant-in-Aid for Young Scientists 19740107 (H. K.).
Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.
Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim
2016-01-01
The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p < 0.001) and the groups cooled to 4 °C exhibited the lowest MSBS (p < 0.001). The CSE showed higher MSBS than the other adhesives (p < 0.001). This study concludes that preheating of composite resins may be an alternative way to increase the MSBS of composites on dentin. © Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joiner, K.A.; Schmetz, M.A.; Sanders, M.E.
The authors studied the molecular composition of the complement C5b-9 complex required for optimal killing of Escherichia coli strain J5. J5 cells were incubated in 3.3%, 6.6%, or 10.0% C8-deficient serum previously absorbed to remove specific antibody and lysozyme. This resulted in the stable deposition after washing of 310, 560, and 890 C5b67 molecules per colony-forming unit, respectively, as determined by binding of /sup 125/I-labeled C7. Organisms were then incubated with excess C8 and various amounts of /sup 131/I-labeled C9. Plots of the logarithm (base 10) of E. coli J5 cells killed (log kill) vs. C9 input were sigmoidal, confirmingmore » the multihit nature of the lethal process. When C9 was supplied in excess, 3300, 5700, and 9600 molecules of C9 were bound per organism for cells bearing 310, 560, and 890 C5b-8 complexes, respectively, leading to C9-to-C7 ratios of 11.0:1, 10.8:1, and 11.4:1 and to log kill values of 1.3, 2.1, and 3.9. However, at low inputs of C9 that lead to C9-to-C7 ratios of less than 3.3:1, no killing occurred, and this was independent of the number of C5b-9 complexes bound. Formation of multimeric C9 at C9-to-C7 ratios permissive for killing was confirmed by electron microscopy and by binding of /sup 125/I-labeled antibody with specificity for multimeric but not monomeric C9. These experiments are the first to demonstrate a biological function for C9 polymerization and suggest that multimeric C9 is necessary for optimal killing of E. coli J5 cells by C5b-9.« less
SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.
Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H
2012-02-01
In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Reed, Lunde R; Shaw, Wendy J
2010-03-27
The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5 to 25 mol%) and B 2O 3 (20 to 0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al+B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23° to 90°C).more » Analysis by 27Al and 29Si MAS-NMR suggests Al (~98% [4]Al) and Si atoms (~100% [4]Si) occupy a tetrahedral coordination whereas, B atoms occupy both tetrahedral ([4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. But despite the changes in the B/Al ratio and B coordination, the 29Si spectra maintain a chemical shift between -88 to -84 ppm for each glass. Unlike the 29Si spectra, the 27Al resonances shift to more positive values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Raman spectroscopy was use to augment the results collected from MAS-NMR and demonstrated that NeB4 (glass sample with the highest B content) was glass-glass phase separated (e.g., heterogeneous glass). Results from SPFT experiments suggest a forward rate of reaction and pH power law coefficients,η, that are independent of B/Al under these neutral to alkaline test conditions for all homogeneous glasses. The temperature dependence shows an order of magnitude increase in the dissolution rate with a 67°C increase in temperature and suggests dissolution is controlled by a surface-mediated reaction, evident by the activation energy, E a, being between 44±8 and 48±7 kJ/mol. Forward dissolution rates, based on Na and Si release, for homogeneous glasses are independent of the B/Al ratio, whereas dissolution rates based on Al and B release are not. Dissolution rates based on B release increase with an increase in the fraction of [3]B(ring). Finally in accord with previous studies, the data discussed in this manuscript suggest rupture of the Al-O and Si-O bond as the rate-limiting step controlling the dissolution of these glasses.« less
NASA Astrophysics Data System (ADS)
Mujtaba, Jawayria; Sun, Hongyu; Zhao, Yanyan; Xiang, Guolei; Xu, Shengming; Zhu, Jing
2017-09-01
Lithium ion batteries (LIBs) are critical constituents of modern day vehicular and telecommunication technologies. Transition metal oxides and their composites have been extensively studied as potential electrode materials for LIBs. However, inefficient lithiation, poor electrical conductivity, and drastic volume change during cycling result in low reversible capacity and rapid capacity fading, and thus hinder the practical applications of those electrodes. In this work, we report a facile synthesis of a novel hierarchical composites, which consist of ultrafine Co3O4 nanoparticles uniformly dispersed on TiO2(B) nanosheets with atomic thickness (Co3O4 NPs@TiO2(B) NSs). When tested as anode material for LIBs, the Co3O4 NPs@TiO2(B) NSs sample with optimized composition shows a reversible capacity of ∼677.3 mAhg-1 after 80 cycles at a current density of 100 mAg-1. A capacity of 386.2 mAhg-1 is still achieved at 1000 mAg-1. The synergistic effect of ultrafine Co3O4 nanoparticles and atomic-thickness TiO2(B) nanosheets is responsible for the enhanced electrochemical performance.
NASA Astrophysics Data System (ADS)
Tian, Lin; Xian, Xiaozhai; Cui, Xingkai; Tang, Hua; Yang, Xiaofei
2018-02-01
Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified g-C3N4 to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 μm. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications.
Bulk amorphous steels based on Fe alloys
Lu, ZhaoPing; Liu, Chain T.
2006-05-30
A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.
Qi, Yanli; Liu, Hui; Yu, Jiayin; Chen, Xiulai
2017-01-01
ABSTRACT Candida glabrata is a promising producer of organic acids. To elucidate the physiological function of the Mediator tail subunit Med15B in the response to low-pH stress, we constructed a deletion strain, C. glabrata med15BΔ, and an overexpression strain, C. glabrata HTUΔ/CgMED15B. Deletion of MED15B caused biomass production, glucose consumption rate, and cell viability to decrease by 28.3%, 31.7%, and 26.5%, respectively, compared with those of the parent (HTUΔ) strain at pH 2.0. Expression of lipid metabolism-related genes was significantly downregulated in the med15BΔ strain, whereas key genes of ergosterol biosynthesis showed abnormal upregulation. This caused the proportion of C18:1 fatty acids, the ratio of unsaturated to saturated fatty acids (UFA/SFA), and the total phospholipid content to decrease by 11.6%, 27.4%, and 37.6%, respectively. Cells failed to synthesize fecosterol and ergosterol, leading to the accumulation and a 60.3-fold increase in the concentration of zymosterol. Additionally, cells showed reductions of 69.2%, 11.6%, and 21.8% in membrane integrity, fluidity, and H+-ATPase activity, respectively. In contrast, overexpression of Med15B increased the C18:1 levels, total phospholipids, ergosterol content, and UFA/SFA by 18.6%, 143.5%, 94.5%, and 18.7%, respectively. Membrane integrity, fluidity, and H+-ATPase activity also increased by 30.2%, 6.9%, and 51.8%, respectively. Furthermore, in the absence of pH buffering, dry weight of cells and pyruvate concentrations were 29.3% and 61.2% higher, respectively, than those of the parent strain. These results indicated that in C. glabrata, Med15B regulates tolerance toward low pH via transcriptional regulation of acid stress response genes and alteration in lipid composition. IMPORTANCE This study explored the role of the Mediator tail subunit Med15B in the metabolism of Candida glabrata under acidic conditions. Overexpression of MED15B enhanced yeast tolerance to low pH and improved biomass production, cell viability, and pyruvate yield. Membrane lipid composition data indicated that Med15B might play a critical role in membrane integrity, fluidity, and H+-ATPase activity homeostasis at low pH. Thus, controlling membrane composition may serve to increase C. glabrata productivity at low pH. PMID:28710262
Devi, Bandhana; Venkateswarulu, Mangili; Kushwaha, Himmat Singh; Halder, Aditi; Koner, Rik Rani
2018-05-02
Low cost, non-noble metal catalysts with a good oxygen reduction reaction (ORR) activity comparable to that of platinum and also having good energy storage properties are highly desirable but challenging. Several challenges are associated with the development of such materials. Herein, we demonstrate a new polycarboxyl-functionalised Fe III -based gel material, synthesised following a solvothermal method and the development of its composite (Fe 3 O 4 /Fe/C) by annealing at optimised temperature. The developed composite displayed excellent electrocatalytic activity for the oxygen reduction reaction with an onset potential of 0.87 V (vs. RHE) and a current density value of -5 mA cm -2 , which are comparable with commercial 20 wt % Pt/C. In addition, as one of the most desirable properties, the composite exhibits a better methanol tolerance and greater durability than Pt/C. The same material was explored as an energy storage material for supercapacitors, which showed a specific capacitance of 245 F g -1 at a current density of 1 A g -1 . It is expected that this Fe 3 O 4 /Fe/C composite with a disordered graphitised carbon matrix will pave a horizon for developing energy conversion and energy storage devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Syntheses of super-hard boron-rich solids in the B-C-N-O system
NASA Astrophysics Data System (ADS)
Hubert, Herve Pierre
Alpha-rhombohedral (alpha-rh.) B-rich materials belonging to the B-C-N-O system were prepared using high-pressure, high-temperature techniques. The samples were synthesized using a multianvil device and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and parallel electron energy-loss spectroscopy (PEELS). In the B-O system, the formation of BsbxO materials produced from mixtures of B and Bsb2Osb3 between 1 to 10 GPa and 1000 to 1800sp°C was investigated. Graphitic and diamond-like Bsb2O, reported in previous studies, were not detected. The refractory boron suboxide, nominally Bsb6O, which has the alpha-rh. B structure, is the dominant suboxide in the P and T range of our investigation. High-pressure techniques were used successfully to synthesize boron suboxide of improved purity and crystallinity, and less oxygen-deficient (i.e., closer to the nominal Bsb6O composition) in comparison to room-pressure syntheses. Quantitative analyses indicate compositions of Bsb6Osb{0.95} and Bsb6Osb{0.77} for high-pressure and room-pressure samples, respectively. The first preparation, between 4 to 5.5 GPa, of Bsb6O in which the preferred form of the material is as macroscopic near-perfect regular icosahedra (to 30 mum in diameter) is reported. The Bsb6O icosahedra are similar to the multiply-twinned particles observed in some cubic materials. However, a major difference is that Bsb6O has a rhombohedral structure that closely fits the geometrical requirements for obtaining icosahedral twins. The Bsb6O grains are neither 3D-periodic nor quasicrystalline. Their formation can be described as a Mackay packing of icosahedral Bsb{12} units and provides an alternative to crystal formation by propagation of translational symmetry. Icosahedral twins ranging from 20 nm to 30 mum in diameter, as well as micron-sized euhedral crystals (to 40 mum) were prepared. The structural similarity of compounds with the alpha-rh. B structure is thought to lead to solid solution. In the B-C-O system, intermediate phases were prepared showing evidence of solid solution between Bsb4C and Bsb6O. Boron carbide crystals containing a significant amount of O, typically Bsb6Csb{1.1}Osb{0.33} and Bsb6Csb{1.28}Osb{0.31}, were grown to 20 mum in diameter from mixtures in which B and C were reacted with excess Bsb2Osb3 at 7.5 GPa and 1700sp°C. Cyclic five-fold twins or twins that approximate Bsb6O icosahedra were observed, but the cell dimensions of the B-C-O materials preclude the formation of icosahedral twins. Nanorods with composition near Bsb6C with minor O were grown in a Bsb2Osb3 melt. The mechanism controlling the growth of the nanorods is similar to the solution-liquid-solid (SLS) process. The first conclusive bulk synthesis of a new boron nitride, Bsb6Nsb1-x, was obtained by reacting B and hexagonal BN at 7.5 GPa and 1700sp°C. XRD and PEELS substantiate that this material has a structure related to that of alpha-rh. B and chemical analysis of this compound showed an average composition of Bsb6Nsb{0.92}.
Low-Temperature Reactivities of Ultra-High Temperature Ceramics (Hf-X System)
2005-12-01
as interacting fillers with the preceramic polymer formulations. In situ formation of the SiC phase was also evaluated as a practical approach in...led to a renewal of activities to fabricate MB2/ SiC composites as the materials of choice, because of their high thermal and oxidation resistance...HfB2/ SiC composite microstructures (and also HfC, ZrB2, and ZrC composites ) under pressureless conditions. These can be employed in reactive and
Development of an extra-high strength powder metallurgy nickel-base superalloy
NASA Technical Reports Server (NTRS)
Kent, W. B.
1977-01-01
A program was conducted to optimize the composition of NASA IIb-11, an alloy originally developed as a wrought material, for thermal stability and to determine the feasibility for producing the alloy using powder metallurgy techniques. Seven compositions were melted and atomized, hot isostatically pressed, cross rolled to disks and heat treated. Tensile and stress rupture properties from room temperature to 870 C (1600 F) were determined in addition to thermal stability characteristics. Processing variables included hot isostatic pressing parameters and handling, cross rolling procedures and heat treatment cycles. NASA IIb-11E displayed the best combination of overall properties for service as a 760 C (1400 F) disk material. Its composition is 0.06 C, 8.5 Cr, 9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V, 0.7 Hf, 0.01 B, 0.05 Zr and balance Ni. While the alloy exhibits the highest 760 C (1400 F) rupture strength reported for any powder metallurgy disk alloy to date, additional studies to further evaluate the effects of heat treatment may be required. The alloy is not susceptible to topologically close-packed phase formation during thermal exposure at 870 C (1600 F) for 1,500 hours, but its mechanical property levels are lowered due to grain boundary carbide formation.
Tin-silver-bismuth solders for electronics assembly
Vianco, P.T.; Rejent, J.A.
1995-08-08
A lead-free solder alloy is disclosed for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Peizhi; Song, Limin; Zhang, Shujuan, E-mail: songlmnk@sohu.com
2014-03-01
Graphical abstract: g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The results show that g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} possesses a much higher activity for the decomposition of RhB than that of the pure Ag{sub 3}PO{sub 4} particles. The most mechanism is that g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst can efficiently separate the photogenerated electron–hole pairs, enhancing the photocatalytic activity of g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} composites. - Highlights: • g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction showed much higher activity than that of Ag{sub 3}PO{sub 4}. • The high activitymore » could be attributed to g-C{sub 3}N{sub 4} for modifying Ag{sub 3}PO{sub 4}. • More ·OH radicals may be significant reason to improve Ag{sub 3}PO{sub 4} activity. - Abstract: g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst with visible-light response was prepared by a facile coprecipitation method. The photocatalysts were characterized by X-ray powder diffraction, transmission electron microscopy, UV–vis absorption spectroscopy and Fourier transform infrared spectroscopy. The photocatalytic activities of the obtained samples were tested by using Rhodamine B (RhB) as the degradation target under visible light irradiation. g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} decomposed RhB more effectively than the pure Ag{sub 3}PO{sub 4} particles did, and 2 wt.% g-C{sub 3}N{sub 4} had the highest activity. Furthermore, 2 wt.% g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} degraded high-concentration RhB more potently than unmodified Ag{sub 3}PO{sub 4} did, probably because g-C{sub 3}N{sub 4}/Ag{sub 3}PO{sub 4} heterojunction photocatalyst enhanced the photocatalytic activity by efficiently separating the photogenerated electron–hole pairs.« less
Purification and Properties of Acid Stable Xylanases from Aspergillus kawachii.
Ito, K; Ogasawara, H; Sugimoto, T; Ishikawa, T
1992-01-01
Five extracellular endo-xylanases were recognized in the culture broth of shochu koji mold (Aspergillus kawachii, IFO 4308), and three major xylanases (XylA, XylB, and XylC) were purified and characterized. The molecular masses of XylA, XylB, and XylC were 35,000, 26,000, and 29,000, and isoelectric points were pH 6.7, 4.4, and 3.5, respectively. Amino acid compositions and other properties were studied and these three xylanases were found to be greatly different in their properties. These three xylanases, XylA, XylB, and XylC, were stable between pH 3-10, 3-10, and 1-9 and the optimum pHs were 5.5, 4.5, and 2.0, respectively. Consequently, these xylanases were acid stable xylanases, especially XylC was an acidophilic xylanase (acid xylanase). These xylanases produced various xylooligosaccharides including xylose from xylan and the main product was xylobiose in all xylanases. The production of acid xylanase (XylC) was enhanced with a low initial pH of the medium.
Bellucci, G; Chiappe, C; Cordoni, A; Marioni, F
1994-01-01
The rabbit liver microsomal biotransformation of alpha-methylstyrene (1a), 2-methyl-1-hexene (1b), 2,4,4-trimethyl-1-pentene (1c), and 1,3,3-trimethyl-1-butene (1d) has been investigated with the aim at establishing the enantioface selection of the cytochrome P-450-promoted epoxidation of the double bond and the enantioselectivity of microsomal epoxide hydrolase(mEH)-catalyzed hydrolysis of the resulting epoxides. GLC on a Chiraldex G-TA (ASTEC) column was used to determine the enantiomeric composition of the products. The epoxides 2 first produced in incubations carried out in the presence of an NADPH regenerating system were not detected, being rapidly hydrolyzed by mEH to diols 3. The enantiomeric composition of the latter showed that no enantioface selection occurred in the epoxidation of 1c and 1d, and a very low (8%) ee of the (R)-epoxide was formed from 1b. Incubation of racemic epoxides 2b-d with the microsomal fraction showed that the mEH-catalyzed hydrolysis of 2c and 2d was practically nonenantioselective, while that of 2b exhibited a selectivity E = 4.9 favoring the hydrolysis of the (S)-enantiomer. A comparison of these results with those previously obtained for linear and branched chain alkyl monosubstituted oxiranes shows that the introduction of the second alkyl substituent suppresses the selectivity of the mEH reaction of the latter and reverses that of the former substrates.
Wear resistance of Ti/TiB composites produced by spark plasma sintering
NASA Astrophysics Data System (ADS)
Ozerov, M.; Stepanov, N.; Zherebtsov, S.
2017-12-01
The tribological characteristics of Ti/TiB composites were studied in as-sintered condition and after isothermal multiaxial forging. A mixture of commercially pure Ti and TiB2 powders was used to produce Ti/TiB composites with 8.5 and 17 vol % of TiB via in-situ Ti+TiB2→Ti+TiB reactions during spark plasma sintering at 1000°C. During isothermal multiaxial forging (MAF), the material was exposed to successive compressions along three orthogonal directions at a temperature of 700°C and strain rate of 10-3 s-1 to cumulative strains e = 5.2. The microstructure of the as-sintered composites consisted of TiB whiskers nonuniformly distributed within the Ti matrix. In the forged composites, intensive shortening of TiB whiskers occurred. The hardness of the composites increased greatly compared to that of commercially pure Ti; the hardness also increased with increasing the TiB fraction. The hardness in the forged composites decreased by ˜20% for both composite states. Tribological tests using a standard ball-on-disk geometry showed that the friction coefficient of the Ti/TiB composites increased in comparison with Ti. Increasing the TiB fraction in the composites increased the friction coefficient and decreased the wear factor. It was shown that the tribological characteristics after isothermal multiaxial forging were changed but slightly.
Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)
NASA Technical Reports Server (NTRS)
Pratt, J. Richard (Inventor); Saintclair, Terry L. (Inventor)
1989-01-01
A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC).
The Evolution of Hydrocarbon Compounds in Saturn's Stratosphere During the 2010 Northern Storm
NASA Astrophysics Data System (ADS)
Hesman, B. E.; Bjoraker, G. L.; Achterberg, R. K.; Sada, P. V.; Jennings, D. E.; Lunsford, A. W.; Sinclair, J.; Romani, P. N.; Boyle, R.; Fletcher, L. N.; Irwin, P.
2013-12-01
The massive eruption at 40N (planetographic latitude) in December 2010 has produced significant and long-lived changes in temperature and species abundances in Saturn's northern hemisphere (Hesman et al. 2012a, Fletcher et al. 2012). The northern storm region has been observed on many occasions between January 2011 and June of 2012 by Cassini's Composite Infrared Spectrometer (CIRS). In this time period, temperatures in regions referred to as 'beacons' (warm regions in the stratosphere at certain longitudes in the storm latitude) became significantly warmer than pre-storm values of 140K. In this period hydrocarbon emission greatly increased; however, this increased emission could not be attributed due to the temperature changes alone for many of these species (Hesman et al. 2012b, Bjoraker et al 2012). The unique nature of the stratospheric beacons also resulted in the detection of ethylene (C2H4) using CIRS. These beacon regions have also led to the identification of rare hydrocarbon species such as C4H2 and C3H4 in the stratosphere. These species are all expected from photochemical processes in the stratosphere, however high temperatures, unusual chemistry, or dynamics are enhancing these species. The exact cause of these enhancements is still under investigation. Ground-based observations were performed using the high-resolution spectrometer Celeste in May 2011 to confirm the CIRS detection of C2H4 and to study its spectral signatures at higher spectral resolution. In order to follow the evolution of its emission further observations were performed in July 2011 and March 2012. These observations are being used in conjunction with the CIRS observations to investigate the source of the approximately 100-fold increase of ethylene in the stratospheric beacon. The time evolution of hydrocarbon emission from C2H2, C2H4, C2H6, C3H4, and C4H2 in Saturn's Northern Storm beacon regions will be discussed. References: Bjoraker, G., B.E. Hesman, R.K. Achterberg, P.N. Romani. 2012, 'The Evolution of Hydrocarbons in Saturn's Northern Storm Region,' AAS DPS Conference, Vol. 44, #403.05. Fletcher, L.N. et al. 2012, 'The Origin and Evolution of Saturn's 2011-2012 Stratospheric Vortex,' Icarus, 221, 560-586. Hesman, B.E. et al. 2012a, 'Elusive Ethylene Detected in Saturn's Northern Storm Region,' The Astrophysical Journal, 760, 24-30. Hesman, B.E. et al. 2012b, 'Ethylene Emission in the Aftermath of Saturn's 2010 Northern Storm,' AAS DPS Conference, Vol. 44, #403.06.
NASA Astrophysics Data System (ADS)
Cao, Shao-Wen; Yuan, Yu-Peng; Barber, James; Loo, Say Chye Joachim; Xue, Can
2014-11-01
We report an economic photocatalytic H2 generation system consisting of earth-abundant elements only by coupling graphitic carbon nitride (g-C3N4) with Ni(dmgH)2 sub-microwires that serve as effective co-catalysts for H2 evolution. This composite photocatalyst exhibits efficient hydrogen evolution under visible-light irradiation in the presence of triethanolamine as electron donor. The optimal coupling of 3.5 wt% Ni(dmgH)2 to g-C3N4 (5 mg composite) allows for a steady H2 generation rate of 1.18 μmol/h with excellent stability. This study demonstrates that the combination of polymeric g-C3N4 semiconductor and small proportion of transition-metal-based co-catalyst could serve as a stable, earth-abundant and low-cost system for solar-to-hydrogen conversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyushin, G. D., E-mail: ilyushin@ns.crys.ras.ru
The basic concepts that are used to describe crystallization as a phenomenon of the hierarchical (cluster) self-organization of a chemical system are considered. The templation of theoretically possible nan-ocluster precursors composed of M octahedra and T tetrahedra by atoms of (A) alkaline and (B) alkaline earth metals is considered for the first time. A relationship between the A/B,M,T composition of templated nanocluster precursors with the composition of A/B,M silicates is established. The model that is developed is used to search for nanocluster precursors in framework MT structures of A/B,Zr silicates. Computer methods (TOPOS 4.0 program package) were used to performmore » complete 3D reconstruction of the self-assembly of all (four) structural types of A/B,Zr silicates (A = Na, K; B = Ca, Sr) with frameworks of the MT{sub 2}O{sub 7} type: nan-ocluster precursor S{sub 3}{sup 0}-primary chain S{sub 3}{sup 1}-microlayer S{sub 3}{sup 2}-microframework S{sub 3}{sup 3}. The invariant type of mono-cyclic nanocluster precursor M{sub 2}T{sub 4} (with the point symmetries 1-bar and 2), stabilized by one or two template cations (A and B), is determined. Bifurcations of the paths of evolution at the S{sub 3}{sup 1} level (structural branching point) are established for the self-assembly of the following frameworks: MT-1 in CaZrSi{sub 2}O{sub 7} (gittinsite, C2), MT-2 in SrZrSi{sub 2}O{sub 7} (P2{sub 1}/c); MT-3 in Na{sub 2}ZrSi{sub 2}O{sub 7} (parakeldyshite,), K{sub 2}ZrSi{sub 2}O{sub 7} (khibinskite, P2{sub 1}/b), and K{sub 2}ZrGe{sub 2}O{sub 7} (C2/c); and MT-4 in Na{sub 2}ZrSi{sub 2}O{sub 7} (H{sub 2}O)(C2/c), Na{sub 3}ScSi{sub 2}O{sub 7} (Pbnm), and K{sub 3}ScSi{sub 2}O{sub 7} (P6{sub 3}/mmc).« less
SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste
NASA Astrophysics Data System (ADS)
Chanadee, Tawat
2017-11-01
Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.
Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis.
Wang, Yin-Zhu; Zhao, Wei; Dai, Pan-Pan; Lu, Hai-Jie; Xu, Jing-Juan; Pan, Jing; Chen, Hong-Yuan
2016-12-15
Herein, a spatial-resolved electrochemiluminescene (ECL) ratiometry based on a closed biopolar electrode (BPE) is reported for the highly sensitive detection of prostate specific antigen (PSA). Au@g-C3N4 NCs as one ECL emitter were firstly coated on the cathode of BPE, while the anode of the BPE served for calibration via another ECL substance, Ru(bpy)3(2+). The electroneutrality across the BPE makes the reactions on each pole of BPE electrically coupled. Thus one electrochemical sensing reaction at one pole of BPE could be quantified at both ends. A composite, Pt-PAMAM-DNAzyme was assembled on the surface of cathode via DNA hybridization between probe DNA and PSA aptamer. It acted as an ECL quencher of g-C3N4 via resonance energy transfer (RET) and catalyzing the reduction of O2, the co-reactant of g-C3N4. Meanwhile, it could promote the ECL of Ru(bpy)3(2+) at anode, since the catalytic reduction of O2 at the cathode increased the faradiac current flowing through the BPE. Based on this signal composite, an ECL "off-on" phenomenon was observed at the cathode, after Pt-PAMAM-DNAzyme was "peeled off" by PSA. Conversely, at the anode, an "on-off" ECL changing was obtained. Therefore, a sensitive ratiometry for PSA detection was achieved with a linear range from 0.10 to 200ng/mL. Since the two ECL emitters were physically separated, the ratiometric system was relatively simple and neither optical filters nor spectrometer were required. The strategy combining the ECL ratiometry and BPE broadens the applications of BPE-ECL and shows good perspective in clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.
Factors affecting marginal integrity of class II bulk-fill composite resin restorations
Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda
2017-01-01
Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05), post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001). The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051
Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V
2017-08-23
Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.
Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites
NASA Astrophysics Data System (ADS)
Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng
2018-04-01
Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.
Processing and characterization of boron carbide-hafnium diboride ceramics
NASA Astrophysics Data System (ADS)
Brown-Shaklee, Harlan James
Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.
Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Quatinetz, M.
1975-01-01
An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.
NASA Astrophysics Data System (ADS)
Gholampoor, Mahdi; Movassagh-Alanagh, Farid; Salimkhani, Hamed
2017-02-01
Recently, electromagnetic interference (EMI) shielding materials have absorbed a lot of attention due to a growing need for application in the area of electronic and wireless devices. In this study, a carbon-based EMI shielding composite was fabricated by electrophoretic deposition of Fe3O4 nano-particles on carbon fibers (CFs) as a 3D structure incorporated with an epoxy resin. Co-precipitation method was employed to synthesize Fe3O4 nano-particles. This as-synthesized Fe3O4 nano-powder was then successfully deposited on CFs using a modified multi-step electrophoretic deposition (EPD) method. The results of structural studies showed that the Fe3O4 nano-particles (25 nm) were successfully and uniformly deposited on CFs. The measured magnetic properties of as-synthesized Fe3O4 nano-powder and nano-Fe3O4/CFs composite showed that the saturation magnetization of bare Fe3O4 was decreased from Ms = 72.3 emu/g to Ms = 33.1 emu/g for nano-Fe3O4/CFs composite and also corecivity of Fe3O4 was increased from Hc = 4.9 Oe to Hc = 168 Oe for composite. The results of microwave absorption tests revealed that the reflection loss (RL) of an epoxy-based nano-Fe3O4/CFs composite are significantly influenced by layer thickness. The maximum RL value of -10.21 dB at 10.12 GHz with an effective absorption bandwidth about 2 GHz was obtained for the sample with the thickness of 2 mm. It also exhibited an EMI shielding performance of -23 dB for whole the frequency range of 8.2-12.4 GHz.
NASA Astrophysics Data System (ADS)
Bhargava, V. S.; Singh, Gajendar; Sharma, Manu
2018-05-01
A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.
NASA Astrophysics Data System (ADS)
Wu, Haitang; Chen, Mingwei; Wei, Xi; Ge, Min; Zhang, Weigang
2010-12-01
Boron nitride thin films were deposited on silicon carbide fibers by chemical vapor deposition at atmospheric pressure from the single source precursor B-trichloroborazine (Cl 3B 3N 3H 3, TCB). The film growth and structure, as a function of deposition temperature, hydrogen gas flow rate, and deposition time, were discussed. The deposition rate reaches a maximum at 1000 °C, then decreases with the increasing of temperature, and the apparent activation energy of the reaction is 127 kJ/mol. Above 1000 °C, gas-phase nucleation determines the deposition process. The deposited BN films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of BN interphase on the mechanical properties of the unidirectional SiC fiber-reinforced SiC matrix (SiC/SiC) composites was also investigated. The results show that the flexural strength of SiC/SiC composites with and without coating is 276 MPa and 70 MPa, respectively, which indicates that BN interphase coating deposited from B-trichloroborazine precursor can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.
de Azevedo Cubas, Gloria Beatriz; Camacho, Guilherme Brião; Demarco, Flávio Fernando; Pereira-Cenci, Tatiana
2011-01-01
Objectives: The aim of this study was to assess the influence of various ceramic thicknesses and luting agents on color variation in five ceramic systems. Methods: Fifteen disc-shaped ceramic specimens (11 mm diameter; shade A3) were fabricated with each of the six veneering ceramics tested, with 1, 1.5, or 2 mm thickness (n=5). Resin composite discs (Z-250, shade C4) were used as bases to simulate a chromatic background. The cementation of the veneers was carried out with an opaque resin-based cement (Enforce, shade C4), a resin-based cement (Enforce, shade A3), or without cement (C4, control group). Color differences (ΔE*) were determined using a colorimeter. Three-way ANOVA was used to analyze the data, followed by a Tukey post-hoc test (α=.05). Results: The L*a*b* values of the ceramic systems were affected by both the luting agent and the ceramic thickness (P<.05). In general, there was no difference between the control group and the group using the resin-based cement. The use of an opaque luting agent resulted in an increase of the color coordinates a*, b*, L*, producing differences in ΔE* values for all ceramics tested, regardless of the thickness (P<.05). For the 2-mm thick veneers, higher values in the color parameters were obtained for all ceramics and were independent of the luting agent used. Conclusions: The association of 2-mm thickness with opaque cement presented the strongest masking ability of a dark colored background when compared to a non- opaque luting agent and the other thicknesses tested. PMID:21769264
Studies on the application of temperature-responsive ion exchange polymers with whey proteins.
Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W
2016-03-18
Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Mengchen; Cai, Qi; Liu, Yongchang; Ma, Zongqing; Wang, Zumin; Huang, Yuan; Li, Huijun
2017-09-01
Ti2AlNb-based alloys synthesized at 1223 K (950 °C) by spark plasma sintering were aged at 973 K, 1023 K, 1073 K, and 1123 K (700 °C, 750 °C, 800 °C, and 850 °C), respectively. Phase composition, microstructure, and microhardness of the aged alloys were investigated in this study. Equiaxed O grains and Widmanstätten B2/ β + O laths were formed in the aged alloys, and the microhardness was improved in contrast with the spark plasma-sintered alloy without aging. The microhardness relies largely on the O-phase content, as well as the length and width of the O laths. In particular, complete Widmanstätten B2/ β + O laths, with locally finely dispersed β precipitates, were obtained in the alloy aged at 1073 K (800 °C), and the alloy exhibited the best microhardness performance. Such fine structure is due to the temperature-dependent transformations Oequiaxed→Oprimary + B2/ β primary, Oprimary→Osecondary + B2/ β secondary, and B2/ β primary→O.
Cook, Suellen S; Whittock, Lucy; Wright, Simon W; Hallegraeff, Gustaaf M
2011-06-01
The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11-0.24 μm, type A; 0.06-0.12 μm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19'-hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was <1. The Hex:fucoxanthin (fuc) ratio for type B/C was 11 times greater than that for type A, and the proportion of fuc in type A was 6 times higher than that in type B/C. The fuc derivative 4-keto-19'-hexanoyloxyfucoxanthin (4-keto-hex) was present in type A but undetected in B/C. DNA sequencing of tufA distinguished morphotypes A, B/C (indistinguishable from B), and R, while little variation was observed within morphotypes. Thirty single nucleotide polymorphisms were identified in the 710 bp tufA sequence, of which 10 alleles were unique to B/C and B morphotypes, seven alleles were unique to type A, and six alleles were unique to type R. We propose that the morphologically, physiologically, and genetically distinct Southern Ocean type B/C sensu Young et al. (2003) be classified as E. huxleyi var. aurorae var. nov. S. S. Cook et Hallegr. © 2011 Phycological Society of America.
An on-line database for human milk composition in China.
Yin, Shi-An; Yang, Zhen-Yu
2016-12-01
Understanding human milk composition is critical for setting nutrient recommended intakes (RNIs) for both infants and lactating women. However, nationwide human milk composition remains unavailable in China. Through cross-sectional study, human milk samples from 11 provinces in China were collected and their compositions were analyzed. Nutritional and health status of the lactating women and their infants were evaluated through questionnaire, physical examination and biochemical indicators. A total of 6,481 breast milk samples including colostrum (1,859), transitional milk (1,235) and mature milk (3,387) were collected. Contents of protein, fat, lactose, total solid and energy of more than 4,500 samples were analyzed using a human milk analyzer. About 2,000 samples were randomly selected for 24 mineral analyses. Free B-vitamins including thiamin, riboflavin, pyridoxal, pyridomine, pyridoxamine, nicotinamide, nicotinic acid, flavin adenine dinucleotide (FAD), biotin and pantothenic acid were analyzed in 1,800 samples. Amino acids (~800) and proteins (alpha-lactoalbumin, beta-casein, and lactoferrin) were analyzed. In addition, serum retinol and carotenoids, 25(OH)D, vitamin B-12, folic acid, ferritin and biochemical indicators (n=1,200 to 2,000) were analysed in the lactating women who provided the breast milk. Ongoing work: Fatty acids (C4-C24), fatsoluble vitamins and carotenoids, are on-going analysis. A regional breast milk compositional database is at an advanced stage of development in China with the intention that it be available on-line.
A novel Triclosan Methacrylate-based composite reduces the virulence of Streptococcus mutans biofilm
2018-01-01
The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an interesting approach to circumvent the effects of bacteria on the dental and material surfaces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer, which was developed and incorporated into an experimental resin composite, on Streptococcus mutans (S. mutans) biofilms, focusing on the analyses of vicR, gtfD, gtfC, covR, and gbpB gene expression, cell viability and biofilm characteristics. The contact time between TM-composite and S. mutans down-regulated the gbpB and covR and up-regulated the gtfC gene expression, reduced cell viability and significantly decreased parameters of the structure and characteristics of S. mutans biofilm virulence. The presence of Triclosan Methacrylate monomer causes harmful effects at molecular and cellular levels in S. mutans, implying a reduction in the virulence of those microorganisms. PMID:29608622
NASA Astrophysics Data System (ADS)
Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname
2018-06-01
Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.
2012-03-28
metabolic activity (Hatheway, 1988) and genetic composition (Collins, 1998; Hill et al., 2007). Group I includes type A strains and proteolytic...environment with temperatures ranging from 4ºC to 40°C, a pH range from 4.6 to 7.0, and water activity greater than 0.94 (aW is intensity with which water...al., 1998b) indicate that it is similar to BoNT/A in terms of the toxicity and duration of activity . A 2004 study evaluated the electrophysical
NASA Astrophysics Data System (ADS)
Shi, J. M.; Zhang, L. X.; Chang, Q.; Sun, Z.; Feng, J. C.; Ma, N.
2018-06-01
In order to improve the ZrC-SiC ceramic and TC4 brazed joint property, graded double-layered SiC particles (SiCp)-reinforced TC4-based composite structure (named as GLS for convenience) was designed to relieve the residual stress in the joint. The GLS was successfully fabricated on TC4 substrate by double-layered laser deposition technology before the brazing process. The investigation of the GLS shows that the volume fraction of SiCp in the two composite layers was graded (20 and 39 vol pct, respectively). Ti5Si3 and TiC phases formed in the GLS due to the reaction of SiCp and TC4. The laser power-II (the laser power for the second deposition layer) affected the microstructure of the GLS significantly. Increasing the laser power-II would promote the reaction between the SiCp and TC4. But the high laser power-II made the layer I remelt completely and the two layers became homogeneous rather than graded structure. In the ZrC-SiC and TC4 brazed joint, the CTE (coefficient of thermal expansion) was graded from the TC4 to the ZrC-SiC due to the GLS, and the strength of the joint with the GLS (91 MPa) was higher than that without the GLS (43 MPa).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Anh; Qin, Yan; Bareno, Javier
2015-10-30
The effect of composition on the voltage fade phenomenon was probed using combinatorial synthesis methods. In compositions that have the general formula, (Li 2MnO 3) a(LiNiO 2) b(LiMnO 2) c(LiCoO 2) d, where 0 ≤ a≤0.83, 0.15 ≤ b ≤ 0.42, 0 ≤ c ≤ 0.85, and 0 ≤ d ≤ 0.30 (a + b + c + d = 1), the dependence of features in the x-ray diffraction pattern and of voltage fade on composition were identified and mapped. The observed values of voltage fade indicated that it displayed some sensitivity to composition, but that the sensitivity was notmore » large. The values of voltage fade were found to be amenable to statistical modeling. The model indicated that it may be possible to lower the value of voltage fade below 0.01% by adjusting the composition of the system; however, the composition is not expected to have the layered–layered structure.« less
Mirzaie, Abbas; Musabeygi, Tahereh; Afzalinia, Ahmad
2017-09-01
In this work, a novel magnetic responsive composite was fabricated by encapsulation of Fe 3 O 4 nanoparticles into an amino-functionalized MOF (TMU-17-NH 2 ) under ultrasound irradiation. The prepared materials were characterized by several techniques such as elemental analyses, PXRD, FT-IR, N 2 adsorption, TGA and ICP. This composite has been applied to the adsorptive removal of nitrogen-contain compounds in model liquid fuel. The prepared composite demonstrates very good performance for the removal of NCCs. The maximum adsorption capacity of IND and QUI over prepared composite calculated 375.93 and 310.18mg·g -1 at 25°C, respectively. The composite material is magnetically separable and reusable for several times. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Kan, Yide; Liu, Wenjin
In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.
NASA Technical Reports Server (NTRS)
Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.
1994-01-01
A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed "UNK," is Ca3Ti(AlTi)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystals oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic LINK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti (7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAls, although glass, which is typically associated with synthetic UN& is not observed in meteoritic occurrences. A low Ti end-member of UNK ("Si-UNK") with a composition new that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.
NASA Technical Reports Server (NTRS)
Paque, Julie M.; Beckett, John R.; Barber, David J.; Stolper, Edward M.
1994-01-01
A new titanium-bearing calcium aluminosilicate mineral has been identified in coarse-grained calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites. The formula for this phase, which we have temporarily termed 'UNK,' is Ca3Ti(Al,Ti)2(Si,Al)3O14, and it is present in at least 8 of the 20 coarse-grained CAIs from the Allende CV3 chondrite examined as part of this project. The phase occurs in Types A and B1 inclusions as small tabular crystal oriented along two mutually perpendicular planes in melilite. UNK crystallizes from melts in dynamic crystallization experiments conducted in air from four bulk compositions modeled after Types A, B1, B2 and C inclusions. Cooling rates resulting in crystallization of UNK ranged from 0.5 to 200 C/h from maximum (initial) temperatures of 1375 to 1580 C. Only below 1190 C does UNK itself begin to crystallize. To first order, the presence or absence of UNK from individual experiments can be understood in terms of the compositions of residual melts and nucleation probabilities. Compositions of synthetic and meteoritic UNK are very similar in terms of major oxides, differing only in the small amounts of trivalent Ti(7-13% of total Ti) in meteoritic samples. UNK crystallized from the Type A analog is similar texturally to that found in CAIs, although glass, which is typically associated with synthetic UNK, is not observed in the meteoritic occurrences. A low Ti end-member of UNK ('Si-UNK') with a composition near that of Ca3Al2Si4O14 was produced in a few samples from the Type B1 analog. This phase has not been found in the meteoritic inclusions.
NASA Astrophysics Data System (ADS)
Das, Debashish; Ghosh, Subhradip
2017-02-01
Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in \\text{Co}{{≤ft(\\text{C}{{\\text{r}}1-x}\\text{M}{{\\text{n}}x}\\right)}2}{{\\text{O}}4} system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides A{{≤ft({{B}1-x}{{C}x}\\right)}2}{{\\text{O}}4} in presence of cation disorder.
Toward a better determination of dairy powders surface composition through XPS matrices development.
Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C
2015-01-01
The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, M; Li, Z; Qi, JF
In this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.9FePO4, which along with higher C-rate tests show this material to have the highest capacity and power performance reported for amorphous FePO4 electrodes to date.
Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo
2015-06-01
This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.
2016-05-01
Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.
Humada, M J; Sañudo, C; Serrano, E
2014-02-01
The effects of production system (SE: pasture based vs. IN: concentrate based) and slaughter age (12 vs. 14 months) on chemical composition, vitamin E and myoglobin contents, lipid oxidation at 0, 3 and 6 days of display, colour and cooking losses at 2 and 7 days postmortem from thirty-three Tudanca calves were studied. SE animals showed lower IMF and greater vitamin E contents (1.2 vs. 2.9% and 4.1 vs. 1.8 μg/g, respectively). Thiobarbituric acid reactive substances (TBARS) increased (p ≤ 0.001) with display time and was greater in the IN system. After 6 days display, IN animals presented twofold TBARS values (1.4 vs. 0.8 mg malonaldehyde/kg meat). At 7 days postmortem, SE groups presented greater (p ≤ 0.05) L* and lower (p ≤ 0.05) b* and H° than IN groups. Myoglobin increased with age (3.4 to 3.9 mg/g meat), but differences (p ≤ 0.05) on a* and C* values were observed only between 12 and 14 months at 2 days postmortem. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Meng; Wang, Yachun; Yao, Jinlei
MnB{sub 4} was newly synthesized to crystallize in a monoclinic P2{sub 1}/c structure, different from previous experimental and theoretical reports. Here, based on first-principles calculations, we perform a comparative study of geometric and energetic features, mechanical behaviors, electronic property and chemical bonding of the experimentally identified monoclinic MnB{sub 4}, as well as orthorhombic CrB{sub 4} and FeB{sub 4}. The results demonstrate that the presence of distorted rhomboidal-B{sub 4} units and one-dimensional Mn chains in the monoclinic MnB{sub 4} breaks the structural symmetry and lowers the total energy in comparison to the orthorhombic phase. The opening of band gap in MnB{submore » 4} is induced by Peierls-paired Mn atoms, differing from the metallic behaviors of recently studied tetraborides. Specifically, the preservations of covalent bonding in distorted boron-rhomboids in MnB{sub 4} explain the relatively higher incompressibility and hardness. - Graphical abstract: P2{sub 1}/c-type structure for MnB{sub 4} characterizes rhomboid-B{sub 4} units and alternately short and long Mn–Mn chains. - Highlights: • The novel P2{sub 1}/c-type MnB{sub 4} compound is studied by first-principles calculations. • P2{sub 1}/c-type MnB{sub 4} has lower total energy and relatively higher stability. • An energy gap opening is found for P2{sub 1}/c-type MnB{sub 4} induced by Mn atom pairs. • P2{sub 1}/c-type MnB{sub 4} exhibits excellent mechanical properties. • The mechanical properties of TcB{sub 4} and ReB{sub 4} in P2{sub 1}/c structure are also studied.« less
Duarte-Salles, Talita; Mendez, Michelle A; Meltzer, Helle Margrete; Alexander, Jan; Haugen, Margaretha
2013-10-01
Maternal exposure to polycyclic aromatic hydrocarbons (PAH) during pregnancy has been associated with reduced fetal growth. However, the role of diet, the main source of PAH exposure among non-smokers, remains uncertain. To assess associations between maternal exposure to dietary intake of the genotoxic PAH benzo(a)pyrene [B(a)P] during pregnancy and birth weight, exploring potential effect modification by dietary intakes of vitamins C, E and A, hypothesized to influence PAH metabolism. This study included 50,651 women in the Norwegian Mother and Child Cohort Study (MoBa). Dietary B(a)P and nutrient intakes were estimated based on total consumption obtained from a food frequency questionnaire (FFQ) and estimated based on food composition data. Data on infant birth weight were obtained from the Medical Birth Registry of Norway (MBRN). Multivariate regression was used to assess associations between dietary B(a)P and birth weight, evaluating potential interactions with candidate nutrients. The multivariate-adjusted coefficient (95%CI) for birth weight associated with maternal energy-adjusted B(a)P intake was -20.5g (-31.1, -10.0) in women in the third compared with the first tertile of B(a)P intake. Results were similar after excluding smokers. Significant interactions were found between elevated intakes of vitamin C (>85mg/day) and dietary B(a)P during pregnancy for birth weight (P<0.05), but no interactions were found with other vitamins. The multivariate-adjusted coefficients (95%CI) for birth weight in women in the third compared with the first tertile of B(a)P intake were -44.4g (-76.5, -12.3) in the group with low vitamin C intakes vs. -17.6g (-29.0, -6.1) in the high vitamin C intake group. The results suggest that higher prenatal exposure to dietary B(a)P may reduce birth weight. Lowering maternal intake of B(a)P and increasing dietary vitamin C intake during pregnancy may help to reduce any adverse effects of B(a)P on birth weight. © 2013.
Yield Stress Model for Molten Composition B-3
NASA Astrophysics Data System (ADS)
Davis, Stephen; Zerkle, David
2017-06-01
Composition B-3 (Comp B-3) is a melt-castable explosive composed of 60/40 wt% RDX/TNT (hexahydro-1,3,5-trinitro-1,3,5-triazine/2,4,6-trinitrotoluene). During casting operations thermal conditions are controlled which along with the low melting point of TNT and the insensitivity of the mixture to external stimuli leading to safe use. Outside these standard operating conditions a more rigorous model of Comp B-3 rheological properties is necessary to model thermal transport as Comp B-3 evolves from quiescent solid through vaporization/decomposition upon heating. One particular rheological phenomena of interest is Bingham plasticity, where a material behaves as a quiescent solid unless a sufficient load is applied, resulting in fluid flow. In this study falling ball viscometer data is used to model the change in Bingham plastic yield stresses as a function of RDX particle volume fraction; a function of temperature. Results show the yield stress of Comp B-3 (τy) follows the expression τy = B
NASA Astrophysics Data System (ADS)
Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr
2018-04-01
MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Jan; Rogal, Łukasz; Fima, Przemyslaw; Ozga, Piotr
2018-05-01
MgLiAl base composites strengthened with graphene platelets were prepared by semisolid processing of ball-milled alloy chips with 2% of graphene platelets. Composites strengthened with graphene platelets show higher hardness and yield stress than the cast alloys, i.e., 160 MPa as compared to 90 MPa for as-cast alloy MgLi9Al1.5. Mechanical properties for MgLiAl-based composites were similar or higher than for composites based on conventional AZ91 or WE43 alloys. The strengthening however was not only due to the presence of graphene, but also phases resulting from the reaction between carbon and lithium, i.e., Li2C2 carbide. Graphene platelets were located at globules boundaries resulting from semisolid processing for all investigated composites. Graphene platelets were in agglomerates forming continuous layers at grain boundaries in the composite based on the alloy MgLi4.5Al1.5. The shape of agglomerates was more complex and wavy in the composite based on MgLi9Al1.5 alloy most probably due to lithium-graphene reaction. Electron diffraction from the two-phase region α + β in MgLi9Al1.5 indicated that [001]α and [110]β directions are rotated about 4° from the ideal relationship [001] hex || [110] bcc phases. It showed higher lattice rotation than in earlier studies what is most probably caused by lattice slip and rotation during semisolid pressing causing substantial deformation particularly within the β phase. Raman spectroscopy studies confirmed the presence of graphene platelets within agglomerates and in addition the presence mainly of Li2C2 carbides in composites based on MgLi4.5Al1.5 and Mg9Li1.5Al alloys. From the character of Raman spectra refinement of graphene platelets was found in comparison with their initial size. The graphene areas without carbides contain graphene nanoplatelets with lateral dimension close to initial graphene sample. Electron diffraction allowed to confirm the presence of Li2C2 carbide at the surface of agglomerates found from Raman spectroscopy results.
Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions
Smith, Ross Wilbert; Hem, John David
1972-01-01
Aqueous aluminum solutions containing 4?10 -5 mole/liter aluminum and a constant total ionic strength of 10 -2, but with varying ratios of hydroxide to aluminum (OH:Al), were prepared. Progress of these solutions toward equilibrium conditions over aging periods of as much as 2 years was studied by determining the composition and pH of the solutions at various time intervals. The solutions, after mixing, were supersaturated with respect to both crystalline and amorphous forms of aluminum oxides and aluminum hydroxides. The compositions of the solutions were determined by use of a timed colorimetric analytical procedure which allowed the estimation of three separate forms of aluminum that have been designated Al a, Al b, and Al c. Form Al a appeared to be composed of monomeric species such as Al(H20)6+3, Al(OH)(H20)5+2, Al(OH)2(H20)4 +I and Al(OH)4-. Form Al b was polynuclear material containing perhaps 20-400 aluminum atoms per structure. It appeared to be a metastable material. Form Al c was composed of relatively large, microcrystalline, clearly solid AI(OH)3 particles. For each OH :Al ratio, the concentration of Al a remained constant with aging time, Al b decreased, and Al c increased. It appeared that Al b particles were increasing in size and ultimately were converted to Al c particles. After a few weeks' aging, Al c particles had the structure of gibbsite. In all solutions, equilibrium was only very slowly achieved, and the time required depended on the OH:Al ratio and how rapidly the solution was initially prepared (mixing time). Lower ratios caused a slower approach to equilibrium; sometimes equilibrium was not achieved even after several years' aging. The more slowly base was initially added (to obtain the proper OH:Al ratio), the more slowly was equilibrium approached. Ultimate equilibrium values of dissolved aluminum concentration and pH were consistent with known thermodynamic data on monomeric aluminum species. From data determined during the aging study and by considering Al b material to consist of extremely small solid gibbsite particles, it was possible to estimate the Gibbs free energy of the (001) crystal face (?F, the gibbsite 'face') and the. Gibbs free energy of the (110) and (100) crystal faces (?E, the gibbsite 'edge') of gibbsite in equilibrium with its saturated solution. These values were: ?F=1404 ? 24 ergs/cm 2, and ?E = 483 ?-84 ergs/cm 2.
High temperature compounds for turbine vanes. [of SiC, Si3N4, and Si composites
NASA Technical Reports Server (NTRS)
Rhodes, W. H.; Cannon, R. M., Jr.
1974-01-01
Fabrication and microstructure control studies were conducted on SiC, Si3N and composites based on Si3N. Charpy mode impact testing to 2400 F established that Si3N4/Mo composites have excellent potential. Attempts to fabricate composites of Si3N4 with superalloys, both by hot pressing and infiltration were largely unsuccessful in comparison to using Mo, Re, and Ta which are less reactive. Modest improvements in impact strength were realized for monolithic Si3N4; however, SiC strengths increased by a factor of six and now equal values achieved for Si3N4. Correlations of impact strength with material properties are discussed. Reduced MgO densification aid additions to Si3N4 were found to decrease densification kinetics, increase final porosity, decrease room temperature bend strength, increase high temperature bend strength, and decrease bend stress rupture properties. The decrease in bend strength at high temperature for fine grain size SiC suggested that a slightly larger grain size material with a nearly constant strength-temperature relation may prove desirable in the creep and stress rupture mode.
Development of a Portfolio Management Approach with Case Study of the NASA Airspace Systems Program
NASA Technical Reports Server (NTRS)
Neitzke, Kurt W.; Hartman, Christopher L.
2012-01-01
A portfolio management approach was developed for the National Aeronautics and Space Administration s (NASA s) Airspace Systems Program (ASP). The purpose was to help inform ASP leadership regarding future investment decisions related to its existing portfolio of advanced technology concepts and capabilities (C/Cs) currently under development and to potentially identify new opportunities. The portfolio management approach is general in form and is extensible to other advanced technology development programs. It focuses on individual C/Cs and consists of three parts: 1) concept of operations (con-ops) development, 2) safety impact assessment, and 3) benefit-cost-risk (B-C-R) assessment. The first two parts are recommendations to ASP leaders and will be discussed only briefly, while the B-C-R part relates to the development of an assessment capability and will be discussed in greater detail. The B-C-R assessment capability enables estimation of the relative value of each C/C as compared with all other C/Cs in the ASP portfolio. Value is expressed in terms of a composite weighted utility function (WUF) rating, based on estimated benefits, costs, and risks. Benefit utility is estimated relative to achieving key NAS performance objectives, which are outlined in the ASP Strategic Plan.1 Risk utility focuses on C/C development and implementation risk, while cost utility focuses on the development and implementation portions of overall C/C life-cycle costs. Initial composite ratings of the ASP C/Cs were successfully generated; however, the limited availability of B-C-R information, which is used as inputs to the WUF model, reduced the meaningfulness of these initial investment ratings. Development of this approach, however, defined specific information-generation requirements for ASP C/C developers that will increase the meaningfulness of future B-C-R ratings.
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.
Nanoscale liposomal formulation of a SYK P-site inhibitor against B-precursor leukemia
Qazi, Sanjive; Cely, Ingrid; Sahin, Kazim; Shahidzadeh, Anoush; Ozercan, Ibrahim; Yin, Qian; Gaynon, Paul; Termuhlen, Amanda; Cheng, Jianjun
2013-01-01
We report preclinical proof of principle for effective treatment of B-precursor acute lymphoblastic leukemia (ALL) by targeting the spleen tyrosine kinase (SYK)–dependent antiapoptotic blast cell survival machinery with a unique nanoscale pharmaceutical composition. This nanoscale liposomal formulation (NLF) contains the pentapeptide mimic 1,4-Bis (9-O dihydroquinidinyl) phthalazine/hydroquinidine 1,4-phathalazinediyl diether (C61) as the first and only selective inhibitor of the substrate binding P-site of SYK. The C61 NLF exhibited a very favorable pharmacokinetic and safety profile in mice, induced apoptosis in primary B-precursor ALL blast cells taken directly from patients as well as in vivo clonogenic ALL xenograft cells, destroyed the in vivo clonogenic fraction of ALL blast cells, and, at nontoxic dose levels, exhibited potent in vivo antileukemic activity against patient-derived ALL cells in xenograft models of aggressive B-precursor ALL. Our findings establish SYK as an attractive molecular target for therapy of B-precursor ALL. Further development of the C61 NLF may provide the foundation for therapeutic innovation against therapy-refractory B-precursor ALL. PMID:23568490
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1991-01-01
The dynamic fatigue behavior of 30 vol percent silicon nitride whisker-reinforced composite and monolithic silicon nitrides were determined as a function of temperature from 1100 to 1300 C in ambient air. The fatigue susceptibility parameter, n, decreased from 88.1 to 20.1 for the composite material, and from 50.8 to 40.4 for the monolithic, with increasing temperature from 1100 to 1300 C. A transition in the dynamic fatigue curve occurred for the composite material at a low stressing rate of 2 MPa/min at 1300 C, resulting in a very low value of n equals 5.8. Fractographic analysis showed that glassy phases in the slow crack growth region were more pronounced in the composite compared to the monolithic material, implying that SiC whisker addition promotes the formation of glass rich phases at the grain boundaries, thereby enhancing fatigue. These results indicate that SiC whisker addition to Si3 N4 matrix substantially deteriorates fatigue resistance inherent to the matrix base material for this selected material system.
Li, Ping; Jiang, Zhou; Wang, Yanhong; Deng, Ye; Van Nostrand, Joy D; Yuan, Tong; Liu, Han; Wei, Dazhun; Zhou, Jizhong
2017-10-15
Microbial functional potential in high arsenic (As) groundwater ecosystems remains largely unknown. In this study, the microbial community functional composition of nineteen groundwater samples was investigated using a functional gene array (GeoChip 5.0). Samples were divided into low and high As groups based on the clustering analysis of geochemical parameters and microbial functional structures. The results showed that As related genes (arsC, arrA), sulfate related genes (dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, SO 4 2- , NH 4 + or CH 4 concentrations, respectively. Canonical correspondence analysis (CCA) results indicated that some geochemical parameters including As, total organic content, SO 4 2- , NH 4 + , oxidation-reduction potential (ORP) and pH were important factors shaping the functional microbial community structures. Alkaline and reducing conditions with relatively low SO 4 2- , ORP, and high NH 4 + , as well as SO 4 2- and Fe reduction and ammonification involved in microbially-mediated geochemical processes could be associated with As enrichment in groundwater. This study provides an overall picture of functional microbial communities in high As groundwater aquifers, and also provides insights into the critical role of microorganisms in As biogeochemical cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang
2014-03-01
A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei
2018-04-01
A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (< -10 dB) are achieved, surpassing most recently reported CNT- and graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, Dan J; Corum, James; Klett, Lynn B
2006-04-01
This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design datamore » and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.« less
NASA Astrophysics Data System (ADS)
Gaballa, Osama Gaballa Bahig
Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering temperature, and hot-pressing pressure. Also, WC additions to Ta4HfC5 were found to improve densification and increase microhardness. The ability to process these materials at relatively low temperature would save energy and reduce cost. Boron-based hard materials are used in numerous applications such as industrial machining, armor plating, and wear-resistant coatings. It was often thought that in addition to strong bonding, super-hard materials must also possess simple crystallographic unit cells with high symmetry and a minimum number of crystal defects (e.g., diamond and cubic boron nitride (cBN)). However, one ternary boride, AlMgB14, deviates from this paradigm; AlMgB 14 has a large, orthorhombic unit cell (oI64) with multiple icosahedral boron units. TiB2 has been shown to be an effective reinforcing phase in AlMgB 14, raising hardness, wear resistance, and corrosion resistance. Thus, it was thought that adding other, similar phases (i.e., ZrB2 and HfB2) to AlMgB14 could lead to useful improvements in properties vis-à-vis pure AlMgB14. Group IV metal diborides (XB2, where X = Ti, Zr, or Hf) are hard, ultra-high temperature ceramics. These compounds have a primitive hexagonal crystal structure (hP3) with planes of graphite-like boride rings above and below planes of metal atoms. Unlike graphite, there is strong bonding between the planes, resulting in high hardness. For this study two-phase composites of 60 vol. % metal diborides with 40 vol. % AlMgB14 were produced and characterized.
Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays: Results from AMS-01
NASA Astrophysics Data System (ADS)
Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2010-11-01
Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon-1. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.
Nanocellular foam with solid flame retardant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less
Magnetic and structural properties of rapidly quenched Nd-Fe-Co-Ge-B alloys
NASA Astrophysics Data System (ADS)
Beitollahi, A.; Gholamipour, R.; Marghusian, V. K.; Andreev, S. V.; Bogatkin, A. N.; Duragin, S. S.; Kozlov, A. N.; Kudrevatykh, N. V.; Bogdanov, S. G.; Pirogov, A. N.
2006-12-01
We have studied the structure and magnetic properties of some rapidly quenched and subsequently annealed alloys prepared by centrifugal method with a composition (in wt %) Nd(29.5), Co(6), B(1.1), Ge (x), Fe(balance) with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 (wt %) for Ge. Based on X-ray diffraction (XRD), elastic neutron diffraction, and small-angle neutron scattering (SANS), the formation of partially crystallized main hard magnetic 2:14:1 (Φ) phase in the amorphous matrix was detected for all as-spun samples. The size of the clusters formed for the sample with 1 wt % Ge determined based on SANS profiles was about 10 nm. It was shown that the addition of Ge shifts the maximum crystallization peak of the main 2:14:1 phase to higher temperatures. The variation of the magnitudes of different magnetic parameters such as i H c and M s versus Ge concentration for as-spun samples can be possibly related to the different rate of crystallization of the 2:14:1 phase formed. Further, for the samples doped with 0.8 and 1.0 wt % Ge and annealed at 760°C for 5 min the formation of some extra phases such as Nd5Ge3, NdFe2, NdB4, as well as α-Fe was detected by XRD. The magnetic measurements carried out using a vibrating-sample magnetometer (VSM) for these samples also supported the XRD data obtained. While the highest values of coercivity i H c = 772 kA/m were obtained for the annealed samples without Ge, the highest value of σr = 69 emu/g was also obtained for the samples substituted with 0.8 wt % Ge without an appreciable reduction in i H c.
Color change of composite resins subjected to accelerated artificial aging.
Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido
2013-01-01
The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α <0.05). After statistical analysis, the color difference among composite resins with the same shades was analyzed. All composite resins showed unacceptable color changes after AAA (ΔE > 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P < 0.05) and in shade B2 for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.01). After this process, a statistically significant difference was observed only for shade B2 between microhybrid composite resins (P < 0.01) and for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.05). Regarding the color difference within a same composite resin group, before aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.
Ge, Yaoqi; Zhong, Yuejiao; Ji, Guozhong; Lu, Qianling; Dai, Xinyu; Guo, Zhirui; Zhang, Peng; Peng, Gang; Zhang, Kangzhen; Li, Yuntao
2018-01-01
To study the characterization of Fe3O4@Au-C225 composite targeted MNPs. Fe3O4@Au-C225 was prepared by the absorption method. The immunosorbent assay was used to evaluate its absorption efficiency at C225 Fc. ZETA SIZER3000 laser particle size analyzer, ultraviolet photometer and its characteristics were analyzed by VSM. the targeting effect of Fe3O4@Au-C225 composite targeted MNPs on U251 cells in vitro were detected by 7.0 Tesla Micro-MR; and subcutaneous transplanted human glioma in nude mice were performed the targeting effect in vivo after tail vein injection of Fe3O4@Au-C225 composite targeted MNPs by MRI. The self-prepared Fe3O4@Au composite MNPs can adsorb C225 with high efficiency of adsorption so that Fe3O4@Au-C225 composite targeted MNPs were prepared successfully. Fe3O4@Au-C225 composite targeted MNPs favorably targeted human glioma cell line U251 in vitro; Fe3O4@Au-C225 composite targeted MNPs have good targeting ability to xenografted glioma on nude mice in vivo, and can be traced by MRI. The Fe3O4@Au-C225 composite targeted MNPs have the potential to be used as a tracer for glioma in vivo.
Phase Composition, Crystallite Size and Physical Properties of B2O3-added Forsterite Nano-ceramics
NASA Astrophysics Data System (ADS)
Pratapa, S.; Chairunnisa, A.; Nurbaiti, U.; Handoko, W. D.
2018-05-01
This study was aimed to know the effect of B2O3 addition on the phase composition, crystallite size and dielectric properties of forsterite (Mg2SiO4) nano-ceramics. It utilized a purified silica sand from Tanah Laut, South Kalimantan as the source of (amorphous) silica and a magnesium oxide (MgO) powder. They were thoroughly mixed and milled prior to calcination. The addition of 1, 2, 3, and 4 wt% B2O3 to the calcined powder was done before uniaxial pressing and then sintering at 950 °C for 4 h. The phase composition and forsterite crystallite size, the microstructure and the dielectric constant of the sintered samples were characterized using X-ray diffractometer (XRD), Scanning Electron Microscope (SEM) and Vector Network Analyzer (VNA), respectively. Results showed that all samples contained forsterite, periclase (MgO) and proto enstatite (MgSiO3) with different weight fractions and forsterite crystallite size. In general, the weight fraction and crystallite size of forsterite increased with increasing B2O3 addition. The weight fraction and crystallite size of forsterite in the 4%-added sample reached 99% wt and 164 nm. Furthermore, the SEM images showed that the average grain size became slightly larger and the ceramics also became slightly denser as more B2O3 was added. The results are in accordance with density measurements using the Archimedes method which showed that the 4% ceramic exhibited 1.845 g/cm3 apparent density, while the 1% ceramic 1.681 g/cm3. We also found that the higher the density, the higher the average dielectric constant, i.e. it was 4.6 for the 1%-added sample and 6.4 for the 4%-added sample.
NASA Astrophysics Data System (ADS)
Dehariya, Harsha; Kumar, R.; Polu, A. R.
2012-05-01
The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.
2010-01-01
An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498
Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.
Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed
2012-11-01
This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter was significantly high and proper treatment will be necessary before discharging the lysimeter leachate into the water bodies. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Le-tao; Bai, Pei-kang; Wang, Jian-hong; Liu, Bin; Li, Yu-xin
2018-01-01
The experimental infrared (IR) spectrum of composite wax powder was investigated. The frequency shifts of the C=C anti-symmetrical stretching mode were observed and the experimental cooperativity effect involving Na+...π interaction was suggested. In order to further reveal the nature of cooperativity effect, the interaction energies in Mn+...coronene...CH4 (Mn+ = Li+, Na+, K+, Be2+, Mg2+ or Ca2+) as the model systems of composite wax powder were calculated by using the B3LYP, M06-2X and MP2 methods with 6-311++G** basis set. The results show that the Mn+...π interactions were strengthened upon the formation of ternary complexes. Although the changes of absolute values of the interactions between CH4 and coronene were not obvious, the relative values were considerably significant upon the formation of ternary complexes. The cooperativity effect was perhaps the reason for the formation of notable advantage of composite wax powder upon the introduction of surfactant with cation into wax powder. Reduced density gradient and atoms-in-molecules analysis confirm the cooperativity effect in Mn+...coronene...CH4, and reveal the nature of the formation of the predominant advantage of composite wax powder.
Friction and wear of carbon-graphite materials for high-energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.
Song, Xiaojie; Cui, Hongzhi; Han, Ye; Ding, Lei; Song, Qiang
2018-05-16
In this work, Ti 2 Al(C, N) solid solution with lamellar structure-enhanced TiAl matrix composites was synthesized by vacuum arc melting, using bulk g-C 3 N 4 , Ti, and Al powders as raw materials. The phases, microstructures, interfaces, and mechanical properties were investigated. MAX phase of Ti 2 Al(C, N) solid solution with lamellar structure was formed. During the melting process, first, C 3 N 4 reacted with Ti to form Ti(C, N) by Ti + C 3 N 4 → Ti(C, N). Then Ti 2 Al(C, N) was formed by a peritectic reaction of TiAl(l) + Ti(C, N)(s) → Ti 2 Al(C, N). C 3 N 4 is the single reactant that provides C and N simultaneously to final product of Ti 2 Al(C, N). The interfaces of TiAl//Ti 2 Al(C, N) and Ti 2 Al(C, N)//Ti(C, N) display perfect orientation relationships with low misfit values. The microhardness, compressive strength, and strain of best-performing TiAl-10 mol % Ti 2 Al(C, N) composite were improved by 45%, 55.7%, and 50% compared with the TiAl alloy, respectively. Uniformly distributed Ti 2 Al(C, N) and unreacted Ti(C, N) particles contributed to the grain refinement and reinforcement of the TiAl matrix. Laminated tearing, particle pull-out, and the crack-arresting of Ti 2 Al(C, N) are crucial for the improvement in compressive strength and plasticity of the composites.
Bayios, I A; Bergeles, N K; Apostolidis, N G; Noutsos, K S; Koskolou, M D
2006-06-01
The aims of the present study were: a) to determine the anthropometric profile, body composition and somatotype of elite Greek female basketball (B), volleyball (V) and handball (H) players, b) to compare the mean scores among sports and c) to detect possible differences in relation to competition level. A total of 518 female athletes, all members of the Greek first National League (A1 and A2 division) in B, V and H sport teams participated in the present study. Twelve anthropometric measures required for the calculation of body composition indexes and somatotype components were obtained according to the established literature. V athletes were the tallest (P<0.001) among the three groups of athletes, had the lowest values of body fat (P<0.001) and their somatotype was characterized as balanced endomorph (3.4-2.7-2.9). B athletes were taller (P<0.01) and leaner (P<0.001) than H players, with a somatotype characterized as mesomorph-endomorph (3.7-3.2-2.4). H athletes were the shortest of all (P<0.01), had the highest percentage of body fat (P<0.001) and their somatotype was mesomorph-endomorph (4.2-4.7-1.8). In comparison with their A2 counterparts the A1 division players were taller (P<0.001) and heavier (P<0.01), but at the same time leaner (P<0.001), and exhibited higher homogeneity in somatotype characteristics (P<0.05). Anthropometric, body composition and somatotype variables of Greek female elite teamball players varied among sports; selection criteria, hours of training and sport-specific physiological demands during the game could explain the observed differences. More data are certainly needed to define the anthropometric profile of B, V and H female athletes internationally.
Maskey, Rajendra P; Li, Fuchao; Qin, Song; Fiebig, Heinz H; Laatsch, Hartmut
2003-07-01
In our screening of marine actinomycetes for bioactive principles, three novel antibiotics designated as chandrananimycin A (3c), B (3d) and C (4) were isolated from the culture broth of a marine Actinomadura sp. isolate M045. The structures of the new antibiotics were determined by detailed interpretation of mass, 1D and 2D NMR spectra.
Structural characterization of multimetallic nanoparticles
NASA Astrophysics Data System (ADS)
Mukundan, Vineetha
Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300°C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600°C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealed in helium due to reduction of the surface oxides that promotes coalescence and sintering. The nanoscale composition and structure of alloy catalysts affect heterogeneous catalysis. We also studied Pd:Cu nanoparticle mixtures of different compositions. In Pd:Cu of composition ratio 1:1, ordered B2 phase is formed during annealing at 450C. During the ramped annealing from 450°C to 750°C, the B2 phase transforms into two different alloys, one alloy rich in copper and the other rich in Pd. This structural evolution is different from that of Pd-Cu system in bulk. In the 3:1 composition, the B2 phase dominates in the isothermal anneal at 450C but a disordered alloy fcc phase is also formed. On annealing to 750°C, the disordered fcc phase grows at the expense of the B2 phase. These findings have important applications for the thermal activation of Pd-Cu nanocatalysts for EOR reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerimova, T. G., E-mail: taira-kerimova@mail.ru; Abdullaev, N. A.; Mamedova, I. A.
The Raman spectra of CdGa{sub 2}S{sub 4x}Se{sub 4(1-x)} alloys (x = 0.1, 0.2, Horizontal-Ellipsis 0.9) are studied. Both the singlemode and double-mode behavior of optical phonons are observed in CdGa{sub 2}S{sub 4x}Se{sub 4(1-x)} alloys. The observed optical mode at 138 cm{sup -1} is independent of the composition. It seems likely that this mode is the 'breathing mode' and is caused by atomic motion in the anion sublattice relative to vacancies. It is shown that the high-frequency modes of symmetry B{sub 1}(LO, TO) and B{sub 2}(LO, TO) are caused by the in-phase motion of atoms in the anion sublattice along themore » tetragonal axis c relative to trivalent Ga atoms. The doubly degenerate symmetry modes E{sub 1}(LO, TO) and E{sub 2}(LO, TO) are caused by the in-phase motion of atoms in the anion sublattice relative to trivalent Ga atoms of the cation sublattice in the xy plane (dipole 2Ga-4C), where C is S, Se. The optical symmetry modes B{sub 3}(LO, TO) and B{sub 4}(LO, TO) are associated with the motion of atoms in the anion sublattice relative to Cd atoms along the tetragonal axis c. The doubly degenerate modes E{sub 3}(LO, TO) and E{sub 4}(LO, TO) are associated with the motion of atoms in the anion sublattice relative to Cd atoms (dipole Cd-4C). The low-frequency modes B{sub 5}(LO, TO) and E{sub 5}(LO, TO) are the analogs of acoustic phonons at the edge of the Brillouin zone of sphalerite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L; Wardell, J F
The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501)more » have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.« less
Lerch, Thomas Z; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André
2011-10-01
Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [(13)C]2,4-D, [(13)C]glucose, or mixtures of both substrates alternatively labeled with (13)C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the (13)C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.
The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).
Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian
2016-01-01
The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.
Lin, Xianghong; Johnson, William L.
1998-01-01
At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.
Lin, X.; Johnson, W.L.
1998-04-07
At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.
2014-08-01
and in (b) a standard animal model of prostate cancer. In the preliminary in-vitro study , imaging resolution, contrast to tissue ratio, and lesion...detectability will be assessed relative to a Siemens EV- 8C4 transrectal ultrasound probe. In the in-vivo study , molecular imaging and microvascular...lesions will be imaged at several axial depths using our prototype array and the Siemens EV-8C4 clinical TRUS probe. A blinded reader study will be