Sample records for b5 antigen protect

  1. Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis

    DTIC Science & Technology

    2011-09-01

    future predictive modeling toolkits. 1 1. Introduction The use of Bacillus anthracis as a bio - weapon in the United States in 2001 affirmed the need...for improved sensing and detection of biological weapons of mass destruction (WMD). Protective Antigen (PA) protein of Bacillus anthracis is the...Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis by Deborah A. Sarkes, Joshua M. Kogot, Irene Val-Addo

  2. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.

    PubMed

    Stokes, Margaret G M; Titball, Richard W; Neeson, Brendan N; Galen, James E; Walker, Nicola J; Stagg, Anthony J; Jenner, Dominic C; Thwaite, Joanne E; Nataro, James P; Baillie, Leslie W J; Atkins, Helen S

    2007-04-01

    Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores.

  3. rBCG30-Induced Immunity and Cross-Protection against Mycobacterium leprae Challenge Are Enhanced by Boosting with the Mycobacterium tuberculosis 30-Kilodalton Antigen 85B

    PubMed Central

    Gillis, Thomas P.; Tullius, Michael V.

    2014-01-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. PMID:25001602

  4. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    PubMed

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Protective antigens from El Tor vibrios

    PubMed Central

    Watanabe, Yoshikazu; Verwey, W. F.

    1965-01-01

    A biochemically and immunologically homogeneous antigenic fraction having the properties of a lipopolysaccharide has been isolated from the culture supernatant of an El Tor vibrio (Ogawa subtype). This antigen was very specifically protective for mice challenged with Ogawa strains of either El Tor vibrios or Vibrio cholerae. Rabbit antisera prepared against the antigen were passively protective for mice and highly vibriocidal but had little agglutinating activity. However, the antigen was able specifically to absorb agglutinins, as well as mouse-protective and vibriocidal antibody from serum prepared against whole bacterial cells. The specific protective activity of this lipopolysaccharide was much greater than that of vaccines made from whole bacterial cells, and its toxicity in animals was about equivalent to that of whole cells. The relationship of activity to toxicity therefore represented an improvement over the vaccines that were studied. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:5294306

  6. Parainfluenza virus 5-based vaccine vectors expressing vaccinia virus (VACV) antigens provide long-term protection in mice from lethal intranasal VACV challenge.

    PubMed

    Clark, Kimberly M; Johnson, John B; Kock, Nancy D; Mizel, Steven B; Parks, Griffith D

    2011-10-25

    To test the potential for parainfluenza virus 5 (PIV5)-based vectors to provide protection from vaccinia virus (VACV) infection, PIV5 was engineered to express secreted VACV L1R and B5R proteins, two important antigens for neutralization of intracellular mature (IMV) and extracellular enveloped (EEV) virions, respectively. Protection of mice from lethal intranasal VACV challenge required intranasal immunization with PIV5-L1R/B5R in a prime-boost protocol, and correlated with low VACV-induced pathology in the respiratory tract and anti-VACV neutralizing antibody. Mice immunized with PIV5-L1R/B5R showed some disease symptoms following VACV challenge such as loss of weight and hunching, but these symptoms were delayed and less severe than with unimmunized control mice. While immunization with PIV5 expressing B5R alone conferred at least some protection, the most effective immunization included the PIV5 vector expressing L1R alone or in combination with PIV5-B5R. PIV5-L1R/B5R vectors elicited protection from VACV challenge even when CD8+ cells were depleted, but not in the case of mice that were defective in B cell production. Mice were protected from VACV challenge out to at least 1.5 years after immunization with PIV5-L1R/B5R vectors, and showed significant levels of anti-VACV neutralizing antibodies. These results demonstrate the potential for PIV5-based vectors to provide long lasting protection against complex human respiratory pathogens such as VACV, but also highlight the need to understand mechanisms for the generation of strong immune responses against poorly immunogenic viral proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin.

    PubMed Central

    Little, S F; Leppla, S H; Cora, E

    1988-01-01

    Thirty-six monoclonal antibodies to the protective antigen protein of Bacillus anthracis exotoxin have been characterized for affinity, antibody subtype, competitive binding to antigenic regions, and ability to neutralize lethal and edema toxin activities. At least 23 antigenic regions were detected on protective antigen by a blocking, enzyme-linked immunosorbent assay. Two clones, 3B6 and 14B7, competed for a single antigenic region and neutralized the activity of both the lethal toxin in vivo (Fisher 344 rat) and the edema toxin in vitro (CHO cells). These two antibodies blocked the binding of 125I-labeled protective antigen to FRL-103 cells. Our results support the proposal that binding of protective antigen to cell receptors is required for expression of toxicity. Images PMID:3384478

  8. [STUDY OF PROTECTIVE ACTIVITY OF PROTEIN-CONTAINING ANTIGENS OF STREPTOCOCCUS PNEUMONIAE IN A HETEROLOGOUS SYSTEM].

    PubMed

    Vorobiev, D S; Semenova, I B; Volokh, Yu V; Romanenko, E E; Baturo, A P; Mikhailova, N A

    2015-01-01

    Study protective activity of protein-containing antigens of pneumococcus, obtained from serotypes 6B, 10A, 14, 19F, 23F and 36R, against infection with heterologous strains of S. pneumoniae. S. pneumoniae strains of serotypes 3, 6B, 10A, 14, 19F, 23F and 36R, obtained from the collection of pneumococcus strains of Mechnikov RIVS, were used in the study. Protein-containing antigens of S. pneumoniae were isolated by acetone precipitations of supernatant fraction of culture medium. Protective activity of preparations of protein-containing antigens of pneumococcus as studied in experiments of active protection of BALb/c line mice. The data obtained give evidence, that protein-containing antigens of pneumococcus, isolated from serotypes 6B, 10A, 14, 19F and 23F, effectively protect animals from subsequent infection with a heterologous S. pneumoniae strain of serotype 3 No. 11/56. Protection was noted at a level from 80 to 100% (p ≤ 0.05). Similar protective effect was detected in another experiment in a group of mice, immunized with preparations of protein-containing antigens of pneumococcus, obtained from serotypes 6B and 36R, against infection with a heterologous S. pneumoniae strain of serotype 3 No. 11/56. Protection was noted at a level of 90% (p ≤ 0.05). The results of the experiments carried out allow to assume, that the main role in formation of cross-protection in experiments in animals is played by pneumococcus, proteins, that are a part of the studied preparations, and not polysaccharide antigens.

  9. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    PubMed

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  10. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    PubMed Central

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P.; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2018-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection. PMID:29379507

  11. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection.

    PubMed

    Yuan, Xuefeng; Teng, Xindong; Jing, Yukai; Ma, Jilei; Tian, Maopeng; Yu, Qi; Zhou, Lei; Wang, Ruibo; Wang, Weihua; Li, Li; Fan, Xionglin

    2015-12-01

    Tuberculosis (TB) remains one of the most menacing infectious diseases, although attenuated Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccine has been widely used to protect children against primary TB. There are increasing evidences that rapid growing and dormant Mycobacterium tuberculosis (M. tuberculosis) coexist in vivo after infection. However, BCG vaccine only elicits cell-mediated immune responses to secretory antigens expressed by rapid growing pathogen. BCG vaccine is thus unable to thwart the reactivation of latent tuberculosis infection (LTBI), and its protection wanes over age after neonatal immunization. In order to extend its ability for a durable protection, a novel recombinant BCG (rBCG) strain, named rBCG::XB, was constructed by overexpressing immunodominant multistage antigens of Ag85B and HspX, which are expressed by both rapid replicating and dormant M. tuberculosis. Long-term protective effect and immunogenicity of rBCG::XB were compared with the parental BCG in vaccinated C57BL/6 mice. Our results demonstrated that rBCG::XB provided the stronger and long-lasting protection against M. tuberculosis H37Rv intranasal infection than BCG. The rBCG::XB not only elicited the more durable multistage antigen-specific CD4(+)Th1-biased immune responses and specific polyfunctional CD4(+)T cells but also augmented the CD8(+) CTL effects against Ag85B in vivo. In particular, higher levels of CD4(+) TEM and CD8(+) TCM cells, dominated by IL2(+) CD4(+) and CD8(+) TCM cells, were obtained in the spleen of rBCG::XB vaccinated mice. Therefore, our findings indicate that rBCG::XB is a promising candidate to improve the efficacy of BCG.

  12. The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine.

    PubMed

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen; Curtiss, Roy

    2012-10-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.

  13. The Asd+-DadB+ Dual-Plasmid System Offers a Novel Means To Deliver Multiple Protective Antigens by a Recombinant Attenuated Salmonella Vaccine

    PubMed Central

    Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen

    2012-01-01

    We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd+-DadB+ plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd+ and DadB+ plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF+ counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 109 CFU of χ9760 (carrying Asd+-PspA and DadB+-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD50s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD50s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd+-PspA) and χ11026 (DadB+-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines. PMID:22868499

  14. Breaking Hepatitis B Virus Tolerance and Inducing Protective Immunity Based on Mimicking T Cell-Independent Antigen.

    PubMed

    Li, Xiaoyan; Ni, Runzhou

    2016-11-01

    There are over 350 million chronic carriers of hepatitis B virus (HBV) in the world, of whom about a third eventually develop severe HBV-related complications. HBV contributes to liver cirrhosis and hepatocellular carcinoma development. Remarkable progress has been made in selective inhibition of HBV replication by nucleoside analogs. However, how to generate protective antibody of HBsAb in HBV-infected patients after HBV-DNA becomes negative still remains a challenge for scientists. In this study, we show that OmpC-HBsAg 'a' epitope chimeric protein vaccine can break HBV tolerance and induce protective immunity in HBV transgenic mice based on mimicking T cell-independent antigen to bypass T cells from the adaptive immune system. The antibodies induced by the vaccine have the ability to prevent HBV virion infection of human hepatocytes.

  15. Vaccination with M2e-Based Multiple Antigenic Peptides: Characterization of the B Cell Response and Protection Efficacy in Inbred and Outbred Mice

    PubMed Central

    Wolf, Amaya I.; Mozdzanowska, Krystyna; Williams, Katie L.; Singer, David; Richter, Monique; Hoffmann, Ralf; Caton, Andrew J.; Otvos, Laszlo; Erikson, Jan

    2011-01-01

    Background The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains. Methodology/Principal Findings Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs. Conclusion/Significance Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population. PMID

  16. Vaccination with M2e-based multiple antigenic peptides: characterization of the B cell response and protection efficacy in inbred and outbred mice.

    PubMed

    Wolf, Amaya I; Mozdzanowska, Krystyna; Williams, Katie L; Singer, David; Richter, Monique; Hoffmann, Ralf; Caton, Andrew J; Otvos, Laszlo; Erikson, Jan

    2011-01-01

    The extracellular domain of the influenza A virus protein matrix protein 2 (M2e) is remarkably conserved between various human isolates and thus is a viable target antigen for a universal influenza vaccine. With the goal of inducing protection in multiple mouse haplotypes, M2e-based multiple antigenic peptides (M2e-MAP) were synthesized to contain promiscuous T helper determinants from the Plasmodium falciparum circumsporozoite protein, the hepatitis B virus antigen and the influenza virus hemagglutinin. Here, we investigated the nature of the M2e-MAP-induced B cell response in terms of the distribution of antibody (Ab) secreting cells (ASCs) and Ab isotypes, and tested the protective efficacy in various mouse strains. Immunization of BALB/c mice with M2e-MAPs together with potent adjuvants, CpG 1826 oligonucleotides (ODN) and cholera toxin (CT) elicited high M2e-specific serum Ab titers that protected mice against viral challenge. Subcutaneous (s.c.) and intranasal (i.n.) delivery of M2e-MAPs resulted in the induction of IgG in serum and airway secretions, however only i.n. immunization induced anti-M2e IgA ASCs locally in the lungs, correlating with M2-specific IgA in the bronchio-alveolar lavage (BAL). Interestingly, both routes of vaccination resulted in equal protection against viral challenge. Moreover, M2e-MAPs induced cross-reactive and protective responses to diverse M2e peptides and variant influenza viruses. However, in contrast to BALB/c mice, immunization of other inbred and outbred mouse strains did not induce protective Abs. This correlated with a defect in T cell but not B cell responsiveness to the M2e-MAPs. Anti-M2e Abs induced by M2e-MAPs are highly cross-reactive and can mediate protection to variant viruses. Although synthetic MAPs are promising designs for vaccines, future constructs will need to be optimized for use in the genetically heterogeneous human population.

  17. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  18. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders.

    PubMed

    Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.

  19. Yersinia outer proteins (YOPS) E, K and N are antigenic but non-protective compared to V antigen, in a murine model of bubonic plague.

    PubMed

    Leary, S E; Griffin, K F; Galyov, E E; Hewer, J; Williamson, E D; Holmström, A; Forsberg, A; Titball, R W

    1999-03-01

    The pathogenic Yersiniae produce a range of virulence proteins, encoded by a 70 kb plasmid, which are essential for infection, and also form part of a contact-dependent virulence mechanism. One of these proteins, V antigen, has been shown to confer a high level of protection against parenteral infection with Y. pestis in murine models, and is considered to be a protective antigen. In this study, the protective efficacy of V antigen has been compared in the same model with that of other proteins (YopE, YopK and YopN), which are part of the contact-dependent virulence mechanism. Mice immunised with two intraperitoneal doses of V antigen or each of the Yops, administered with either Alhydrogel or interleukin-12, produced high antigen-specific serum IgG titres. As shown in previous studies, V+Alhydrogel was fully protective, and 5/5 mice survived a subcutaneous challenge with 90 or 9x10(3) LD50's of Y. pestis GB. In addition, these preliminary studies also showed that V+IL-12 was partially protective: 4/5 or 3/5 mice survived a challenge with 90 or 9x10(3) LD50's, respectively. In contrast, none of the mice immunised with the Yops survived the challenges, and there was no significant delay in the mean time to death compared to mice receiving a control protein. These results show that using two different vaccine regimens, Yops E, K and N, failed to elicit protective immune responses in a murine model of plague, whereas under the same conditions, V antigen was fully or partially protective. Copyright 1999 Academic Press.

  20. IL-4Rα-Associated Antigen Processing by B Cells Promotes Immunity in Nippostrongylus brasiliensis Infection

    PubMed Central

    Hoving, Jennifer C.; Nieuwenhuizen, Natalie; McSorley, Henry J.; Ndlovu, Hlumani; Bobat, Saeeda; Kimberg, Matti; Kirstein, Frank; Cutler, Anthony J.; DeWals, Benjamin; Cunningham, Adam F.; Brombacher, Frank

    2013-01-01

    In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection. PMID:24204255

  1. Linearized hepatitis B surface antigen and hepatitis B core-related antigen in the natural history of chronic hepatitis B.

    PubMed

    Seto, W-K; Wong, D K-H; Fung, J; Huang, F-Y; Liu, K S-H; Lai, C-L; Yuen, M-F

    2014-11-01

    Changes in two novel HBV serological markers, linearized hepatitis B surface antigen (HQ-HBsAg) and hepatitis B core-related antigen (HBcrAg), in the natural history of chronic hepatitis B (CHB) have not been well characterized. Serum HQ-HBsAg and HBcrAg levels of 404 Asian treatment-naïve CHB patients were analysed in a cross-sectional manner. Patients were categorized into five groups: immune tolerant (IT group, n=52), immune clearance (IC group, n=105), hepatitis B e antigen (HBeAg)-negative hepatitis (ENH group, n=97), HBeAg-negative quiescent group (ENQ group, n=95) and CHB with hepatitis B surface antigen (HBsAg) seroclearance (SC group, n=55). HQ-HBsAg and HBcrAg were measured and correlated with HBV DNA, HBsAg, HBV genotype and clinical parameters. HQ-HBsAg showed good correlation with HBsAg, especially in the ENQ group (r=0.874, p<0.001). Correlation of HQ-HBsAg with HBV DNA was less prominent and weakest in the ENH group (r=0.268, p 0.008). HBcrAg correlated best with HBV DNA in the ENQ group (r=0.537, p<0.001). In the ENQ group, 42.1% of patients had undetectable HBcrAg; this subgroup of patients, when compared with those with detectable HBcrAg, had significantly lower median HBV DNA (3.17/4.48 log IU/mL, p<0.001) and HBsAg (5.05/5.96 log mIU/mL, p<0.001) levels. Forty per cent of the SC group patients had detectable HQ-HBsAg and/or HBcrAg up to 42 months after HBsAg seroclearance. When comparing anti-HBs positivity and median time after HBsAg seroclearance in the SC group with and without detectable HQ-HBsAg/HBcrAg, there was no significant difference (22.7% and 36.4%, respectively, p 0.284, and 76.5 and 93.2 months, respectively, p 0.245). HQ-HBsAg and HBcrAg showed unique patterns of distribution throughout the five disease phases of CHB, including high detectability rates after HBsAg seroclearance, opening up different possibilities for their applicability. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical

  2. Oral immunization with hepatitis B surface antigen expressed in transgenic plants

    PubMed Central

    Kong, Qingxian; Richter, Liz; Yang, Yu Fang; Arntzen, Charles J.; Mason, Hugh S.; Thanavala, Yasmin

    2001-01-01

    Oral immunogenicity of recombinant hepatitis B surface antigen (HBsAg) derived from yeast (purified product) or in transgenic potatoes (uncooked unprocessed sample) was compared. An oral adjuvant, cholera toxin, was used to increase immune responses. Transgenic plant material containing HBsAg was the superior means of both inducing a primary immune response and priming the mice to respond to a subsequent parenteral injection of HBsAg. Electron microscopy of transgenic plant samples revealed evidence that the HBsAg accumulated intracellularly; we conclude that natural bioencapsulation of the antigen may provide protection from degradation in the digestive tract until plant cell degradation occurs near an immune effector site in the gut. The correlate of protection from hepatitis B virus infection is serum antibody titers induced by vaccination; the protective level in humans is 10 milliunits/ml or greater. Mice fed HBsAg-transgenic potatoes produced HBsAg-specific serum antibodies that exceeded the protective level and, on parenteral boosting, generated a strong long-lasting secondary antibody response. We have also shown the effectiveness of oral delivery by using a parenteral prime-oral boost immunization schedule. The demonstrated success of oral immunization for hepatitis B virus with an “edible vaccine” provides a strategy for contributing a means to achieve global immunization for hepatitis B prevention and eradication. PMID:11553782

  3. Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells

    PubMed Central

    Throsby, Mark; van den Brink, Edward; Jongeneelen, Mandy; Poon, Leo L. M.; Alard, Philippe; Cornelissen, Lisette; Bakker, Arjen; Cox, Freek; van Deventer, Els; Guan, Yi; Cinatl, Jindrich; ter Meulen, Jan; Lasters, Ignace; Carsetti, Rita; Peiris, Malik; de Kruif, John; Goudsmit, Jaap

    2008-01-01

    Background The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens. PMID:19079604

  4. Covalent binding of C3b to tetanus toxin: influence on uptake/internalization of antigen by antigen-specific and non-specific B cells.

    PubMed Central

    Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G

    1996-01-01

    Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046

  5. Immunogenicity and Protection Efficacy of Subunit-based Smallpox Vaccines Using Variola Major Antigens

    PubMed Central

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-01-01

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on the VARV antigen sequences to induce immunity against poxvirus infection. PMID:17950773

  6. Immunogenicity and protection efficacy of subunit-based smallpox vaccines using variola major antigens.

    PubMed

    Sakhatskyy, Pavlo; Wang, Shixia; Zhang, Chuanyou; Chou, Te-Hui; Kishko, Michael; Lu, Shan

    2008-02-05

    The viral strain responsible for smallpox infection is variola major (VARV). As a result of the successful eradication of smallpox with the vaccinia virus (VACV), the general population is no longer required to receive a smallpox vaccine, and will have no protection against smallpox. This lack of immunity is a concern due to the potential for use of smallpox as a biological weapon. Considerable progress has been made in the development of subunit-based smallpox vaccines resulting from the identification of VACV protective antigens. It also offers the possibility of using antigens from VARV to formulate the next generation subunit-based smallpox vaccines. Here, we show that codon-optimized DNA vaccines expressing three VARV antigens (A30, B7 and F8) and their recombinant protein counterparts elicited high-titer, cross-reactive, VACV neutralizing antibody responses in mice. Vaccinated mice were protected from intraperitoneal and intranasal challenges with VACV. These results suggest the feasibility of a subunit smallpox vaccine based on VARV antigen sequences to induce immunity against poxvirus infection.

  7. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    PubMed

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite

    PubMed Central

    Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.

    2011-01-01

    Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective

  9. B-cell acquisition of antigen: Sensing the surface.

    PubMed

    Knight, Andrew M

    2015-06-01

    B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

    PubMed

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-04-21

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  11. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    PubMed Central

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  12. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  13. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    PubMed Central

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 108 infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD50) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax. PMID:24307239

  14. Characterization of immune response to Eimeria tenella antigens in a natural immunity model with hosts which differ serologically at the B locus of the major histocompatibility complex.

    PubMed Central

    Brake, D A; Fedor, C H; Werner, B W; Miller, T J; Taylor, R L; Clare, R A

    1997-01-01

    A model to simulate natural immunity to Eimeria tenella was developed in three chicken lines which differ at the B locus of the major histocompatibility complex. Homozygous, 1-day-old chicks of the B19B19, B24B24, or B30B30 genotype were trickle immunized by being orally fed a small infectious dose of E. tenella oocysts for 5 consecutive days. These naturally exposed birds were then challenged at different times between 5 and 24 days after the final dose, and the level of protection was assessed 6 days after challenge, using body weight gain and intestinal lesion scores. The duration of immunity in naturally exposed birds differed among the major histocompatibility complex lines. Trickle immunization of the B19B19 haplotype afforded the longest and strongest level of protection compared to the other two haplotypes tested. In addition, in vitro splenic and peripheral blood lymphocyte proliferative responses in trickle-immunized birds were measured against sporozoite, merozoite, and tissue culture-derived E. tenella parasite antigens isolated from the recently described SB-CEV-1/F7 established cell line. The lymphocytes obtained from B19B19 birds trickle immunized responded in vitro to the E. tenella-infected SB-CEV-1/F7 tissue culture-derived parasite antigen. Furthermore, antigen-specific immune responses appeared earlier in immune, challenged B19B19 birds than in their naive, challenged counterparts. The development of a model simulating natural immunization will serve as a foundation to further characterize both humoral and cell-mediated responses to E. tenella tissue culture-derived parasite antigens and to better understand host protective immune responses to avian coccidiosis. PMID:9119452

  15. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores.

    PubMed

    Chichester, Jessica A; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J; Yusibov, Vidadi

    2013-03-01

    The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.

  16. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  17. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  18. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  19. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  20. 21 CFR 660.40 - Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...

  1. Intradermal delivery of Shigella IpaB and IpaD type III secretion proteins: Kinetics of cell recruitment and antigen uptake, mucosal and systemic immunity, and protection across serotypes

    PubMed Central

    Heine, Shannon J.; Diaz-McNair, Jovita; Andar, Abhay U.; Drachenberg, Cinthia B.; van de Verg, Lillian; Walker, Richard; Picking, Wendy L.; Pasetti, Marcela F.

    2014-01-01

    Shigella is one of the leading pathogens contributing to the vast pediatric diarrheal disease burden in low-income countries. No licensed vaccine is available and the existing candidates are only partially effective and serotype-specific. Shigella type III secretion system proteins IpaB and IpaD, which are conserved across Shigella spp., are candidates for a broadly protective, subunit-based vaccine. Herein, we investigated the immunogenicity and protective efficacy of IpaB and IpaD administered intradermally (i.d.) with a double-mutant of the E. coli heat-labile enterotoxin (dmLT) adjuvant using microneedles. Different dosage levels of IpaB and IpaD with or without dmLT were tested in mice. Vaccine delivery into the dermis, recruitment of neutrophils, macrophages, dendritic cells (DC) and Langerhans cells (LC), and colocalization of vaccine antigens within skin-activated antigen presenting cells (APC) was demonstrated through histology and immunofluorescence microscopy. Ag-loaded neutrophils, macrophages, DC and LC remained in the tissue at least one week. IpaB, IpaD and dmLT-specific serum IgG and IgG secreting cells were produced following i.d. immunization. The protective efficacy was 70% against S. flexneri and 50% against S. sonnei. Similar results were obtained when the vaccine was administered intranasally, with the i.d. route requiring 25-40 times lower doses. Distinctively, IgG was detected in mucosal secretions; sIgA as well as mucosal and systemic IgA antibody secreting cells (ASC) were seemingly absent. Vaccine-induced T cells produced IFN-γ, IL-2, TNF-α, IL-17, IL-4, IL-5 and IL-10. These results demonstrate the potential of i.d. vaccination with IpaB and IpaD to prevent Shigella infection and support further studies in humans. PMID:24453241

  2. Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71.

    PubMed

    Zhang, Fei; Zhao, Qin; Quan, Keji; Zhu, Zhuang; Yang, Yusheng; Wen, Xintian; Chang, Yung-Fu; Huang, Xiaobo; Wu, Rui; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-01-01

    GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.

  3. Studies of the conformational stability of invasion plasmid antigen B from Shigella

    PubMed Central

    Choudhari, Shyamal P; Kramer, Ryan; Barta, Michael L; Greenwood, Jamie C; Geisbrecht, Brian V; Joshi, Sangeeta B; Picking, William D; Middaugh, C Russell; Picking, Wendy L

    2013-01-01

    Shigella spp. are the causative agent of shigellosis, the second leading cause of diarrhea in children of ages 2–5. Despite many years of research, a protective vaccine has been elusive. We recently demonstrated that invasion plasmid antigens B and D (IpaB and IpaD) provide protection against S. flexneri and S. sonnei. These proteins, however, have very different properties which must be recognized and then managed during vaccine formulation. Herein, we employ spectroscopy to assess the stability of IpaB as well as IpgC (invasion protein gene), IpaB's cognate chaperone, and the IpaB/IpgC complex. The resulting data are mathematically summarized into a visual map illustrating the stability of the proteins and their complex as a function of pH and temperature. The IpaB/IpgC complex exhibits thermal stability at higher pH values but, though initially stable, quickly unfolds with increasing temperature when maintained at lower pH. In contrast, IpaB is a much more complex protein exhibiting increased stability at higher pH, but shows initial instability at lower pH values with pH 5 showing a distinct transition. IpgC precipitates at and below pH 5 and is stable above pH 7. Most strikingly, it is clear that complex formation results in stabilization of the two components. This work serves as a basis for the further development of IpaB as a vaccine candidate as well as extends our understanding of the structural stability of the Shigella type III secretion system. PMID:23494968

  4. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    PubMed

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  5. Prevalence of HLA-B27 antigen in patients with juvenile idiopathic arthritis.

    PubMed

    Żuber, Zbigniew; Turowska-Heydel, Dorota; Sobczyk, Małgorzata; Chudek, Jerzy

    2015-01-01

    Human leukocyte antigen B27 (HLA-B27) is considered as a risk factor for development of juvenile idiopathic arthritis (JIA). The aim of this study was to analyse the prevalence of HLA-B27 antigen in JIA categories and its influence on disease onset and response to conventional therapy. The retrospective analysis included 461 unselected children with JIA hospitalized in a single reference rheumatology centre between July 2007 and June 2012. The diagnosis was based on criteria by the International League of Association for Rheumatology. HLA-B27 was determined in 387 of all patients (84%) by hybridization of the amplified, labelled product to immobilize it on the microarray probe. HLA-B27 antigen was found in 104 of 383 affected children (27.2%), 48 of 206 girls (23.3%), and 56 of 177 boys (31.6%) - most frequently in patients with enthesitis-related arthritis (71%), psoriatic arthritis (50%) and unclassified cases (86.7%). The age of JIA onset was slightly (by 1 year) but significantly different in patients with and without HLA-B27 antigen [11 (8.5-14) vs. 10 (5-13.5) years.; p < 0.001]. The use of disease-modifying antirheumatic drugs (DMARDs) and corticosteroids was more frequently clinically ineffective in HLA-B27 positive than negative patients (23.1% vs. 15.2%; p = 0.09). Patients with polyarthritis, systemic, and psoriatic arthritis more frequently received biological therapy. HLA-B27 positive patients with enthesitis-related arthritis received biological therapy more frequently than HLA-B27 negative ones (20.4% vs. 0, respectively; p = 0.09). HLA-B27 antigen is a strong risk factor for the development of enthesitis-related arthritis, and to a lesser extent for psoriatic arthritis and extended course of oligoarthritis. The presence of this antigen does not affect the disease onset but seems to predict resistance to therapy with disease-modifying drugs and corticosteroids.

  6. Prevalence of HLA-B27 antigen in patients with juvenile idiopathic arthritis

    PubMed Central

    Turowska-Heydel, Dorota; Sobczyk, Małgorzata; Chudek, Jerzy

    2015-01-01

    Introduction Human leukocyte antigen B27 (HLA-B27) is considered as a risk factor for development of juvenile idiopathic arthritis (JIA). The aim of this study was to analyse the prevalence of HLA-B27 antigen in JIA categories and its influence on disease onset and response to conventional therapy. Material and methods The retrospective analysis included 461 unselected children with JIA hospitalized in a single reference rheumatology centre between July 2007 and June 2012. The diagnosis was based on criteria by the International League of Association for Rheumatology. HLA-B27 was determined in 387 of all patients (84%) by hybridization of the amplified, labelled product to immobilize it on the microarray probe. Results HLA-B27 antigen was found in 104 of 383 affected children (27.2%), 48 of 206 girls (23.3%), and 56 of 177 boys (31.6%) – most frequently in patients with enthesitis-related arthritis (71%), psoriatic arthritis (50%) and unclassified cases (86.7%). The age of JIA onset was slightly (by 1 year) but significantly different in patients with and without HLA-B27 antigen [11 (8.5–14) vs. 10 (5–13.5) years.; p < 0.001]. The use of disease-modifying antirheumatic drugs (DMARDs) and corticosteroids was more frequently clinically ineffective in HLA-B27 positive than negative patients (23.1% vs. 15.2%; p = 0.09). Patients with polyarthritis, systemic, and psoriatic arthritis more frequently received biological therapy. HLA-B27 positive patients with enthesitis-related arthritis received biological therapy more frequently than HLA-B27 negative ones (20.4% vs. 0, respectively; p = 0.09). Conclusions HLA-B27 antigen is a strong risk factor for the development of enthesitis-related arthritis, and to a lesser extent for psoriatic arthritis and extended course of oligoarthritis. The presence of this antigen does not affect the disease onset but seems to predict resistance to therapy with disease-modifying drugs and corticosteroids. PMID:27407238

  7. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  8. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  9. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  10. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  11. 21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...

  12. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Jacobs, Jana L; Cease, Kemp B

    2013-03-01

    We previously showed that a multiple antigenic peptide (MAP) vaccine displaying amino acids (aa) 304 to 319 from the 2β2-2β3 loop of protective antigen was capable of protecting rabbits from an aerosolized spore challenge with Bacillus anthracis Ames strain. Antibodies to this sequence, referred to as the loop-neutralizing determinant (LND), are highly potent at neutralizing lethal toxin yet are virtually absent in rabbit and human protective antigen (PA) antiserum. While the MAP vaccine was protective against anthrax, it contains a single heterologous helper T cell epitope which may be suboptimal for stimulating an outbred human population. We therefore engineered a recombinant vaccine (Rec-LND) containing two tandemly repeated copies of the LND fused to maltose binding protein, with enhanced immunogenicity resulting from the p38/P4 helper T cell epitope from Schistosoma mansoni. Rec-LND was found to be highly immunogenic in four major histocompatibility complex (MHC)-diverse strains of mice. All (7/7) rabbits immunized with Rec-LND developed high-titer antibody, 6 out of 7 developed neutralizing antibody, and all rabbits were protected from an aerosolized spore challenge of 193 50% lethal doses (LD(50)) of the B. anthracis Ames strain. Survivor serum from Rec-LND-immunized rabbits revealed significantly increased neutralization titers and specific activity compared to prechallenge levels yet lacked PA or lethal factor (LF) antigenemia. Control rabbits immunized with PA, which were also completely protected, appeared sterilely immune, exhibiting significant declines in neutralization titer and specific activity compared to prechallenge levels. We conclude that Rec-LND may represent a prototype anthrax vaccine for use alone or potentially combined with PA-containing vaccines.

  13. Protection against rat vaginal candidiasis by adoptive transfer of vaginal B lymphocytes.

    PubMed

    De Bernardis, Flavia; Santoni, Giorgio; Boccanera, Maria; Lucciarini, Roberta; Arancia, Silvia; Sandini, Silvia; Amantini, Consuelo; Cassone, Antonio

    2010-06-01

    Vulvovaginal candidiasis is a mucosal infection affecting many women, but the immune mechanisms operating against Candida albicans at the mucosal level remain unknown. A rat model was employed to further characterize the contribution of B and T cells to anti-Candida vaginal protection. Particularly, the protective role of vaginal B cells was studied by means of adoptive transfer of vaginal CD3(-) CD5(+) IgM(+) cells from Candida-immunized rats to naïve animals. This passive transfer of B cells resulted into a number of vaginal C. albicans CFU approximately 50% lower than their controls. Sorted CD3(-) CD5(+) IgM(+) vaginal B lymphocytes from Candida-infected rats proliferated in response to stimulation with an immunodominant mannoprotein (MP) antigen of the fungus. Importantly, anti-MP antibodies and antibody-secreting B cells were detected in the supernatant and cell cultures, respectively, of vaginal B lymphocytes from infected rats incubated in vitro with vaginal T cells and stimulated with MP. No such specific antibodies were found when using vaginal B cells from uninfected rats. Furthermore, inflammatory and anti-inflammatory cytokines, such as interleukin-2 (IL-2), IL-6 and IL-10, were found in the supernatant of vaginal B cells from infected rats. These data are evidence of a partial anti-Candida protective role of CD3(-) CD5(+) IgM(+) vaginal B lymphocytes in our experimental model.

  14. HD-03/ES: A Herbal Medicine Inhibits Hepatitis B Surface Antigen Secretion in Transfected Human Hepatocarcinoma PLC/PRF/5 Cells.

    PubMed

    Varma, Sandeep R; Sundaram, R; Gopumadhavan, S; Vidyashankar, Satyakumar; Patki, Pralhad S

    2013-01-01

    HD-03/ES is a herbal formulation used for the treatment of hepatitis B. However, the molecular mechanism involved in the antihepatitis B (HBV) activity of this drug has not been studied using in vitro models. The effect of HD-03/ES on hepatitis B surface antigen (HBsAg) secretion and its gene expression was studied in transfected human hepatocarcinoma PLC/PRF/5 cells. The anti-HBV activity was tested based on the inhibition of HBsAg secretion into the culture media, as detected by HBsAg-specific antibody-mediated enzyme assay (ELISA) at concentrations ranging from 125 to 1000  μ g/mL. The effect of HD-03/ES on HBsAg gene expression was analyzed using semiquantitative multiplex RT-PCR by employing specific primers. The results showed that HD-03/ES suppressed HBsAg production with an IC50 of 380  μ g/mL in PLC/PRF/5 cells for a period of 24 h. HD-03/ES downregulated HBsAg gene expression in PLC/PRF/5 cells. In conclusion, HD-03/ES exhibits strong anti-HBV properties by inhibiting the secretion of hepatitis B surface antigen in PLC/PRF/5 cells, and this action is targeted at the transcription level. Thus, HD-03/ES could be beneficial in the treatment of acute and chronic hepatitis B infections.

  15. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    PubMed Central

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  16. Studies by immune electron microscopy of hepatitis B surface antigen in PLC/PRF/5 cells.

    PubMed

    Shibayama, T; Watanabe, T; Kojima, H; Yoshikawa, A; Watanabe, S; Kamimura, T; Suzuki, S; Ichida, F

    1984-01-01

    Electron microscopic studies of the morphology of hepatitis B surface antigen (HBsAg) produced by PLC/PRF/5 cells in vitro were carried out. Aggregates of 20-nm spherical particles in 3-day culture supernatants were observed by immune electron microscopy (IEM). Aggregates of tubular structures were found with IEM in the extracts of the cells. Tubular structures 18 to 22 nm in diameter were seen by electron microscopy (EM) in the cisternae of the endoplasmic reticulum in 2-3% of the cells. The tubular structures in the cytoplasm and extracts of PLC/PRF/5 cells resembled those observed in the hepatocytes of human carriers of hepatitis B virus (HBV). Intracellular localization of HBsAg in PLC/PRF/5 cells by direct peroxidase-conjugated antibody staining was observed on the tubular structures and the cisternal wall, which contained these structures. Rotation technique analysis indicated that the tubular structures were composed of 11 or 12 subunits.

  17. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    PubMed

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  18. Recognition of Antigen-Specific B Cell Receptors From Chronic Lymphocytic Leukemia Patients By Synthetic Antigen Surrogates

    PubMed Central

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas

    2014-01-01

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe discovery of non-peptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used for discovery of other classes of antigen surrogates. PMID:25467125

  19. Recognition of antigen-specific B-cell receptors from chronic lymphocytic leukemia patients by synthetic antigen surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2014-12-18

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Protective Effect of Immunization of Rats with Holotoxin or B Subunit of Escherichia coli Heat-Labile Enterotoxin

    PubMed Central

    Klipstein, Frederick A.; Engert, Richard F.

    1981-01-01

    The relative immunogenicities of three forms of the Escherichia coli heatlabile enterotoxin (LT), the holotoxin, its B subunit, and the polymyxin-release form (PM LT) were compared by immunizing rats with various dosages of each given exclusively by the parenteral (IP/IP) or peroral (PO/PO) routes or by a combination of the two (IP/PO). The degree of protection was evaluated by challenge in ligated ileal loops, and the serum antitoxin response was determined by an enzyme-linked immunosorbent assay with homologous antigens. When given by the PO/PO route, each LT antigen provided only weak protection against the toxin and virtually none against viable LT-producing strains; serum antitoxin titers were not significantly increased. When the toxins were given after a parental primary immunization by either the IP/IP or the IP/PO routes, each LT antigen provided a dose-related increase in serum antitoxin titers and in the degree of protection against the toxin as well as against viable strains which produce LT alone (LT+/ST−) or in combination with the heat-stable toxin (LT+/ST+). The degree of protection against viable bacteria, particularly the LT+/ST+ strain, was stronger in animals which received booster immunizations by the PO route. When expressed on the basis of molar equivalents, holotoxin provided significant protection (a protection index of >5 against toxin challenge and >50% reduced secretion with bacterial challenge) with 4 to 15 times fewer moles than PM LT and up to 50 times fewer moles than the B subunit. These observations indicate that, on the basis of molar equivalents, the holotoxin (which contains one A plus five or six B subunits) is a more potent immunogen than either PM LT (which contains one A and probably one B subunit) or the B subunit. PMID:7011990

  1. Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy.

    PubMed

    Wennhold, Kerstin; Thelen, Martin; Schlößer, Hans Anton; Haustein, Natalie; Reuter, Sabrina; Garcia-Marquez, Maria; Lechner, Axel; Kobold, Sebastian; Rataj, Felicitas; Utermöhlen, Olaf; Chakupurakal, Geothy; Theurich, Sebastian; Hallek, Michael; Abken, Hinrich; Shimabukuro-Vornhagen, Alexander; von Bergwelt-Baildon, Michael

    2017-09-01

    Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.

    PubMed

    Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh

    2017-06-01

    Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.

  3. Protective Immunity Against a Lethal Respiratory Yersinia pestis Challenge Induced by V Antigen or the F1 Capsular Antigen Incorporated into Adenovirus Capsid

    PubMed Central

    Boyer, Julie L.; Sofer-Podesta, Carolina; Ang, John; Hackett, Neil R.; Chiuchiolo, Maria J.; Senina, Svetlana; Perlin, David

    2010-01-01

    Abstract The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1–, E3– serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime–boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust

  4. Prime-boost bacillus Calmette-Guérin vaccination with lentivirus-vectored and DNA-based vaccines expressing antigens Ag85B and Rv3425 improves protective efficacy against Mycobacterium tuberculosis in mice.

    PubMed

    Xu, Ying; Yang, Enzhuo; Wang, Jianguang; Li, Rui; Li, Guanghua; Liu, Guoyuan; Song, Na; Huang, Qi; Kong, Cong; Wang, Honghai

    2014-10-01

    To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette-Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG-primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA-, protein- and lentiviral vector-based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime-boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8(+) cytotoxic T lymphocyte responses, compared with DNA- and protein-based vaccines. However, lentivirus-vectored and DNA-based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB. © 2014 John Wiley & Sons Ltd.

  5. Immunological correlates for protection against intranasal challenge of Bacillus anthracis spores conferred by a protective antigen-based vaccine in rabbits.

    PubMed

    Weiss, Shay; Kobiler, David; Levy, Haim; Marcus, Hadar; Pass, Avi; Rothschild, Nili; Altboum, Zeev

    2006-01-01

    Correlates between immunological parameters and protection against Bacillus anthracis infection in animals vaccinated with protective antigen (PA)-based vaccines could provide surrogate markers to evaluate the putative protective efficiency of immunization in humans. In previous studies we demonstrated that neutralizing antibody levels serve as correlates for protection in guinea pigs (S. Reuveny et al., Infect. Immun. 69:2888-2893, 2001; H. Marcus et al., Infect. Immun. 72:3471-3477, 2004). In this study we evaluated similar correlates for protection by active and passive immunization of New Zealand White rabbits. Full immunization and partial immunization were achieved by single and multiple injections of standard and diluted doses of a PA-based vaccine. Passive immunization was carried out by injection of immune sera from rabbits vaccinated with PA-based vaccine prior to challenge with B. anthracis spores. Immunized rabbits were challenged by intranasal spore instillation with one of two virulent strains (strains Vollum and ATCC 6605). The immune competence was estimated by measuring the level of total anti-PA antibodies, the neutralizing antibody titers, and the conferred protective immunity. The results indicate that total anti-PA antibody titers greater than 1 x 10(5) conferred protection, whereas lower titers (between 10(4) and 10(5)) provided partial protection but failed to predict protection. Neutralizing antibody titers between 500 and 800 provided partial protection, while titers higher than 1,000 conferred protection. In conclusion, this study emphasizes that regardless of the immunization regimen or the time of challenge, neutralizing antibody titers are better predictors of protection than total anti-PA titers.

  6. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen.

    PubMed

    Verma, Anita; Ngundi, Miriam M; Price, Gregory A; Takeda, Kazuyo; Yu, James; Burns, Drusilla L

    2018-02-27

    Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA), the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses. IMPORTANCE Neutralizing antibodies provide protection against a number of toxin-mediated bacterial diseases by inhibiting toxin action. Therefore, many bacterial vaccines are designed to induce a toxin neutralizing antibody response. We have used protective antigen (PA), the binding component of anthrax toxin, as a model antigen to investigate immune mechanisms important for the induction of robust toxin neutralizing antibody responses. We found that the pathway used by antigen-presenting cells to capture PA dictates the robustness of the

  7. Immunochemical characterization of the O antigens of two Proteus strains, O8-related antigen of Proteus mirabilis 12 B-r and O2-related antigen of Proteus genomospecies 5/6 12 B-k, infecting a hospitalized patient in Poland.

    PubMed

    Drzewiecka, Dominika; Shashkov, Alexander S; Arbatsky, Nikolay P; Knirel, Yuriy A

    2016-05-01

    A hospitalized 73-year-old woman was infected with a Proteus mirabilis strain, 12 B-r, isolated from the place of injection of a blood catheter. Another strain, 12 B-k, recognized as Proteus genomospecies 5 or 6, was isolated from the patient's faeces, which was an example of a nosocomial infection rather than an auto-infection. Serological investigation using ELISA and Western blotting showed that strain 12 B-k from faeces belonged to the Proteus O2 serogroup. Strain 12 B-r from the wound displayed cross-reactions with several Proteus O serogroups due to common epitopes on the core or O-specific parts of the lipopolysaccharide. Studies of the isolated 12 B-r O-specific polysaccharide by NMR spectroscopy revealed its close structural similarity to that of Proteus O8. The only difference in 12 B-r was the presence of an additional GlcNAc-linked phosphoethanolamine residue, which creates a putative epitope responsible for the cross-reactivity with Pt. mirabilis O16. The new O-antigen form could appear as a result of adaptation of the bacterium to a changing environment. On the basis of the data obtained, we suggest division of the O8 serogroup into two subgroups: O8a for strains of various Proteus species that have been previously classified into the O8 serogroup, and O8a,b for Pt. mirabilis 12 B-r, where 'a' is a common epitope and 'b' is a phosphoethanolamine-associated epitope. These findings further confirm serological and structural heterogeneity of O antigens of Proteus strains isolated lately from patients in Poland.

  8. alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity.

    PubMed

    Kim, Yeon-Jeong; Ko, Hyun-Jeong; Kim, Yun-Sun; Kim, Dong-Hyeon; Kang, Seock; Kim, Jong-Mook; Chung, Yeonseok; Kang, Chang-Yuil

    2008-06-15

    Most of the current tumor vaccines successfully elicit strong protection against tumor but offer little therapeutic effect against existing tumors, highlighting the need for a more effective vaccine strategy. Vaccination with tumor antigen-presenting cells can induce antitumor immune responses. We have previously shown that NKT-licensed B cells prime cytotoxic T lymphocytes (CTLs) with epitope peptide and generate prophylactic/therapeutic antitumor effects. To extend our B cell vaccine approach to the whole antigen, and to overcome the MHC restriction, we used a nonreplicating adenovirus to transduce B cells with antigenic gene. Primary B cells transduced with an adenovirus-encoding truncated Her-2/neu (AdHM) efficiently expressed Her-2/neu. Compared with the moderate antitumor activity induced by vaccination with adenovirus-transduced B cells (B/AdHM), vaccination with alpha-galactosylceramide-loaded B/AdHM (B/AdHM/alpha GalCer) induced significantly stronger antitumor immunity, especially in the tumor-bearing mice. The depletion study showed that CD4(+), CD8(+) and NK cells were all necessary for the therapeutic immunity. Confirming the results of the depletion study, B/AdHM/alpha GalCer vaccination induced cytotoxic NK cell responses but B/AdHM did not. Vaccination with B/AdHM/alpha GalCer generated Her-2/neu-specific antibodies more efficiently than B/AdHM immunization. More importantly, B/AdHM/alpha GalCer could prime Her-2/neu-specific cytotoxic T cells more efficiently and durably than B/AdHM. CD4(+) cells appeared to be necessary for the induction of antibody and CTL responses. Our results demonstrate that, with the help of NKT cells, antigen-transduced B cells efficiently induce innate immunity as well as a wide range of adaptive immunity against the tumor, suggesting that they could be used to develop a novel cellular vaccine. (c) 2008 Wiley-Liss, Inc.

  9. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method

    PubMed Central

    Tabassum, Shahina; Al-Mahtab, Mamun; Nessa, Afzalun; Jahan, Munira; Shamim Kabir, Chowdhury Mohammad; Kamal, Mohammad; Cesar Aguilar, Julio

    2015-01-01

    Background Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP). Materials and methods The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue. Results All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels. Conclusion Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB. How to cite this article Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10. PMID:29201677

  10. Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity.

    PubMed Central

    Johnson, P R; Olmsted, R A; Prince, G A; Murphy, B R; Alling, D W; Walsh, E E; Collins, P L

    1987-01-01

    The degree of antigenic relatedness between human respiratory syncytial virus (RSV) subgroups A and B was estimated from antibody responses induced in cotton rats by respiratory tract infection with RSV. Glycoprotein-specific enzyme-linked immunosorbent assays of antibody responses induced by RSV infection demonstrated that the F glycoproteins of subgroups A and B were antigenically closely related (relatedness, R approximately 50%), whereas the G glycoproteins were only distantly related (R approximately 5%). Intermediate levels of antigenic relatedness (R approximately 25%) were seen in neutralizing antibodies from cotton rats infected with RSV of the two subgroups. Immunity against the F glycoprotein of subgroup A, induced by vaccinia-A2-F, conferred a high level of protection which was of comparable magnitude against challenge by RSV of either subgroup. In comparison, immunity against the G glycoprotein of subgroup A, induced by vaccinia-A2-G, conferred less complete, but significant, protection. Importantly, in vaccinia-A2-G-immunized animals, suppression of homologous challenge virus replication was significantly greater (13-fold) than that observed for the heterologous virus. PMID:3305988

  11. Antibodies to Plasmodium falciparum antigens predict a higher risk of malaria but protection from symptoms once parasitemic.

    PubMed

    Greenhouse, Bryan; Ho, Benjamin; Hubbard, Alan; Njama-Meya, Denise; Narum, David L; Lanar, David E; Dutta, Sheetij; Rosenthal, Philip J; Dorsey, Grant; John, Chandy C

    2011-07-01

    Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses.

  12. Increased long-term immunity to Bacillus anthracis protective antigen in mice immunized with a CIA06B-adjuvanted anthrax vaccine.

    PubMed

    Wui, Seo Ri; Han, Ji Eun; Kim, Yeon Hee; Rhie, Gi-eun; Lee, Na Gyong

    2013-04-01

    Anthrax is an acute infectious disease caused by Bacillus anthracis. We previously reported that the adjuvant CIA06B, which consists of TLR4 agonist CIA05 and aluminum hydroxide (alum), enhanced the immune response to anthrax protective antigen (PA) in mice. This study was carried out to determine whether CIA06B can enhance long-term immune responses to PA in mice. BALB/c mice were immunized intramuscularly three times at 2-week intervals with recombinant PA alone or PA combined with alum or CIA06B. At 8 and 24 weeks post-immunization, the immunological responses including serum anti-PA IgG antibody titer, toxin-neutralizing antibody titer, splenic cytokine secretion and the frequency of PA-specific memory B cells were assessed. Compared with mice injected with PA alone or PA plus alum, mice injected with PA plus CIA06B had higher titers of serum anti-PA IgG antibodies, and higher frequencies of PA-specific memory B cells and interferon-γ secreting cells. Furthermore, anti-PA antibodies induced by CIA06B were more effective in neutralizing anthrax toxin. These results demonstrated that CIA06B is capable of providing long-term immunity when used as an adjuvant in a PA-based anthrax vaccine.

  13. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell

  14. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses

    PubMed Central

    Du, Luping; Yu, Zhengyu; Pang, Fengjiao; Xu, Xiangwei; Mao, Aihua; Yuan, Wanzhe; He, Kongwang; Li, Bin

    2018-01-01

    Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system. PMID:29423381

  15. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates.

    PubMed

    Simon, J K; Wahid, R; Maciel, M; Picking, W L; Kotloff, K L; Levine, M M; Sztein, M B

    2009-01-22

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific B(M) cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/10(6) expanded cells following vaccination (p=0.008). A strong correlation was found between post-vaccination anti-LPS B(M) cell counts and peak serum anti-LPS IgG titers (rs=0.95, p=0.0003). Increases in B(M) specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits B(M) cells to LPS and IpaB, suggesting that B(M) responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis.

  16. Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection.

    PubMed

    Reed, Matthew D; Wilder, Julie A; Mega, William M; Hutt, Julie A; Kuehl, Philip J; Valderas, Michelle W; Chew, Lawrence L; Liang, Bertrand C; Squires, Charles H

    2015-01-01

    Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D) and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel), elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.

  17. Antigen specific suppression of humoral immunity by anergic Ars/A1 B cells1

    PubMed Central

    Aviszus, Katja; MacLeod, Megan K.L.; Kirchenbaum, Greg A.; Detanico, Thiago O.; Heiser, Ryan A.; St. Clair, James B.; Guo, Wenzhong; Wysocki, Lawrence J.

    2012-01-01

    Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. Yet they persist for days and constitute ~5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive antigen receptor that binds, in addition to a self-antigen, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ~4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended upon their expression of MHC II but not upon secretion of IL-10 or IgM. This antigen-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-antigens. PMID:23008448

  18. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  19. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen.

    PubMed

    Rollenske, Tim; Szijarto, Valeria; Lukasiewicz, Jolanta; Guachalla, Luis M; Stojkovic, Katarina; Hartl, Katharina; Stulik, Lukas; Kocher, Simone; Lasitschka, Felix; Al-Saeedi, Mohammed; Schröder-Braunstein, Jutta; von Frankenberg, Moritz; Gaebelein, Gereon; Hoffmann, Peter; Klein, Sabrina; Heeg, Klaus; Nagy, Eszter; Nagy, Gabor; Wardemann, Hedda

    2018-06-01

    Humoral immune responses to microbial polysaccharide surface antigens can prevent bacterial infection but are typically strain specific and fail to mediate broad protection against different serotypes. Here we describe a panel of affinity-matured monoclonal human antibodies from peripheral blood immunoglobulin M-positive (IgM + ) and IgA + memory B cells and clonally related intestinal plasmablasts, directed against the lipopolysaccharide (LPS) O-antigen of Klebsiella pneumoniae, an opportunistic pathogen and major cause of antibiotic-resistant nosocomial infections. The antibodies showed distinct patterns of in vivo cross-specificity and protection against different clinically relevant K. pneumoniae serotypes. However, cross-specificity was not limited to K. pneumoniae, as K. pneumoniae-specific antibodies recognized diverse intestinal microbes and neutralized not only K. pneumoniae LPS but also non-K. pneumoniae LPS. Our data suggest that the recognition of minimal glycan epitopes abundantly expressed on microbial surfaces might serve as an efficient humoral immunological mechanism to control invading pathogens and the large diversity of the human microbiota with a limited set of cross-specific antibodies.

  20. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  1. Overview of expression of hepatitis B surface antigen in transgenic plants.

    PubMed

    Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Wei, Ya-hui

    2010-10-28

    Hepatitis B virus (HBV), a pathogen for chronic liver infection, afflicts more than 350 million people world-wide. The effective way to control the virus is to take HBV vaccine. Hepatitis B surface antigen (HBsAg) is an effective protective antigen suitable for vaccine development. At present, "edible" vaccine based on transgenic plants is one of the most promising directions in novel types of vaccines. HBsAg production from transgenic plants has been carried out, and the transgenic plant expression systems have developed from model plants (such as tobacco, potato and tomato) to other various plant platforms. Crude or purified extracts of transformed plants have been found to conduct immunological responses and clinical trials for hepatitis B, which gave the researches of plant-based HBsAg production a big boost. The aim of this review was to summarize the recent data about plant-based HBsAg development including molecular biology of HBsAg gene, selection of expression vector, the expression of HBsAg gene in plants, as well as corresponding immunological responses in animal models or human. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Endogenous antigen tunes the responsiveness of naive B cells but not T cells

    PubMed Central

    Zikherman, Julie; Parameswaran, Ramya; Weiss, Arthur

    2012-01-01

    In humans up to 75% of newly generated B cells and about 30% of mature B cells exhibit some degree of autoreactivity1. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model BCR transgenic systems have highlighted the critical role played by functional unresponsiveness or ‘anergy’2,3. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B cell tolerance4,5. However, it remains unclear whether the mature diverse B cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which B cell antigen receptor (BCR) signaling rapidly and robustly induces GFP expression under the control of the Nur77 regulatory region, antigen-dependent and – independent BCR signaling events in vivo during B cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure in turn tunes the responsiveness of BCR signaling in B cells at least partly by down-modulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or ‘anergy’ exists in the mature B cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease. PMID:22902503

  3. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen.

    PubMed

    Simons, Brenna C; Spradling, Philip R; Bruden, Dana J T; Zanis, Carolyn; Case, Samantha; Choromanski, Tammy L; Apodaca, Minjun; Brogdon, Hazel D; Dwyer, Gaelen; Snowball, Mary; Negus, Susan; Bruce, Michael G; Morishima, Chihiro; Knall, Cindy; McMahon, Brian J

    2016-07-15

    Long-lasting protection resulting from hepatitis B vaccine, despite loss of antibody against hepatitis B virus (HBV) surface antigen (anti-HBs), is undetermined. We recruited persons from a cohort vaccinated with plasma-derived hepatitis B vaccine in 1981 who have been followed periodically since. We performed serological testing for anti-HBs and microRNA-155 and assessed HBV-specific T-cell responses by enzyme-linked immunospot and cytometric bead array. Study subgroups were defined 32 years after vaccination as having an anti-HBs level of either ≥10 mIU/mL (group 1; n = 13) or <10 mIU/mL (group 2; n = 31). All 44 participants, regardless of anti-HBs level, tested positive for tumor necrosis factor α, interleukin 10, or interleukin 6 production by HBV surface antigen-specific T cells. The frequency of natural killer T cells correlated with the level of anti-HBs (P = .008). The proportion of participants who demonstrated T-cell responses to HBV core antigen varied among the cytokines measured, suggesting some natural exposure to HBV in the study group. No participant had evidence of breakthrough HBV infection. Evidence of long-lasting cellular immunity, regardless of anti-HBs level, suggests that protection afforded by primary immunization with plasma-derived hepatitis B vaccine during childhood and adulthood lasts at least 32 years. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Production and characterization of a recombinant chimeric antigen consisting botulinum neurotoxin serotypes A, B and E binding subdomains.

    PubMed

    Ebrahimi, Firouz; Rasaee, Mohammad Javad; Mousavi, Seyed Latif; Babaeipour, Valiollah

    2010-02-01

    Botulinum neurotoxins (BoNTs) are potent toxicant proteins composed of a heavy chain (100 kDa) and a light chain (50 kDa) of seven (A-G) serotypes that is responsible for botulism syndrome. In this study, polypeptides from C-terminal heavy chain of BoNTs serotypes A, B and E to the length of 54, 45 and 48 amino acid respectively were selected, linked together using a hydrophobic linker and expressed in E. coli. The expression efficiency of the chimeric protein was found to be 51%. The chimeric protein was produced in the form of inclusion body (IB) both at two studied temperatures, 30 degrees C and 37 degrees C. This IB was extracted by ultracentrifugation and followed for chimeric protein solubilization and purification using of ultrafiltration and preparative electrophoresis. The purified chimeric protein was characterized using blotting and ELISA. To evaluate the protection ability of this chimeric antigen against their active toxins, it was injected to mice and the antibody titer as well as the extent of protectivity were determined. Mice given three injections (10 microg/mice) of the antigen were protected against an intra-peritoneal administration of 10 LD(50 )of serotypes A and E, but 100 LD(50) of serotype B. We conclude that a significant correlation exists between the antigenic characteristics and protection capability of the chimeric protein prepared in this study.

  5. Major neutralizing sites on vaccinia virus glycoprotein B5 are exposed differently on variola virus ortholog B6.

    PubMed

    Aldaz-Carroll, Lydia; Xiao, Yuhong; Whitbeck, J Charles; de Leon, Manuel Ponce; Lou, Huan; Kim, Mikyung; Yu, Jessica; Reinherz, Ellis L; Isaacs, Stuart N; Eisenberg, Roselyn J; Cohen, Gary H

    2007-08-01

    Immunization against smallpox (variola virus) with Dryvax, a live vaccinia virus (VV), was effective, but now safety is a major concern. To overcome this issue, subunit vaccines composed of VV envelope proteins from both forms of infectious virions, including the extracellular enveloped virion (EV) protein B5, are being developed. However, since B5 has 23 amino acid differences compared with its B6 variola virus homologue, B6 might be a better choice for such a strategy. Therefore, we compared the properties of both proteins using a panel of monoclonal antibodies (MAbs) to B5 that we had previously characterized and grouped according to structural and functional properties. The B6 gene was obtained from the Centers for Disease Control and Prevention, and the ectodomain was cloned and expressed in baculovirus as previously done with B5, allowing us to compare the antigenic properties of the proteins. Polyclonal antibodies to B5 or B6 cross-reacted with the heterologous protein, and 16 of 26 anti-B5 MAbs cross-reacted with B6. Importantly, 10 anti-B5 MAbs did not cross-react with B6. Of these, three have important anti-VV biologic properties, including their ability to neutralize EV infectivity and block comet formation. Here, we found that one of these three MAbs protected mice from a lethal VV challenge by passive immunization. Thus, epitopes that are present on B5 but not on B6 would generate an antibody response that would not recognize B6. Assuming that B6 contains similar variola virus-specific epitopes, our data suggest that a subunit vaccine using the variola virus homologues might exhibit improved protective efficacy against smallpox.

  6. Screening of Peptide Libraries Against Protective Antigen of Bacillus Anthracis in a Disposable Microfluidic Cartridge

    DTIC Science & Technology

    2011-11-28

    New Reprint Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge W911NF-09-D-0001...against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Report Title ABSTRACT See attached. Screening of Peptide...Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Joshua M. Kogot1, Yanting Zhang2, Stephen J. Moore3

  7. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  8. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  9. Antigen Specific Responses and ANA production in B6.Sle1b mice: A role for SAP

    PubMed Central

    Jennings, Paula; Chan, Alice; Schwartzberg, Pamela; Wakeland, Edward K.; Yuan, Dorothy

    2010-01-01

    B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen was also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self antigens provide further insight for the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations. PMID:18845419

  10. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model

    PubMed Central

    Cervantes-Villagrana, Alberto R.; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2018-01-01

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0–89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. PMID:23196205

  11. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    PubMed

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Antibodies to Plasmodium falciparum Antigens Predict a Higher Risk of Malaria But Protection From Symptoms Once Parasitemic

    PubMed Central

    Hubbard, Alan; Njama-Meya, Denise; Narum, David L.; Lanar, David E.; Dutta, Sheetij; Rosenthal, Philip J.; Dorsey, Grant; John, Chandy C.

    2011-01-01

    (See the article by Bejon et al, on pages 9–18, and Bousema et al, on pages 1–3.) Background. Associations between antibody responses to Plasmodium falciparum antigens and protection against symptomatic malaria have been difficult to ascertain, in part because antibodies are potential markers of both exposure to P. falciparum and protection against disease. Methods. We measured IgG responses to P. falciparum circumsporozoite protein, liver-stage antigen 1, apical-membrane antigen 1 (AMA-1), and merozoite surface proteins (MSP) 1 and 3, in children in Kampala, Uganda, and measured incidence of malaria before and after antibody measurement. Results. Stronger responses to all 5 antigens were associated with an increased risk of clinical malaria (P < .01) because of confounding with prior exposure to P. falciparum. However, with use of another assessment, risk of clinical malaria once parasitemic, stronger responses to AMA-1, MSP-1, and MSP-3 were associated with protection (odds ratios, 0.34, 0.36, and 0.31, respectively, per 10-fold increase; P < .01). Analyses assessing antibodies in combination suggested that any protective effect of antibodies was overestimated by associations between individual responses and protection. Conclusions. Using the risk of symptomatic malaria once parasitemic as an outcome may improve detection of associations between immune responses and protection from disease. Immunoepidemiology studies designed to detect mechanisms of immune protection should integrate prior exposure into the analysis and evaluate multiple immune responses. PMID:21628654

  13. Association of human leukocyte antigen polymorphism with outcomes of hepatitis B virus infection.

    PubMed

    Ramezani, Amitis; Hasanjani Roshan, Mohammad Reza; Kalantar, Ebrahim; Eslamifar, Ali; Banifazl, Mohammad; Taeb, Jaleh; Aghakhani, Arezoo; Gachkar, Latif; Velayati, Ali Akbar

    2008-11-01

    Host genetic and environmental factors are viewed as a common basis of the different outcomes of hepatitis B virus (HBV) infection. Human leukocyte antigen (HLA) plays an important role in immunological reaction to HBV infection. In this study, we aimed to determine the association between HBV infection and HLA-A, B, and DRB1 alleles in northern Iran. HLA-A, B, and DRB1 alleles in 33 patients with chronic hepatitis B (CHB) and 31 healthy carriers as the persistent group, and 30 subjects who had spontaneously recovered from HBV infection were analyzed by using the polymerase chain reaction (PCR)-sequence-specific primer (PCR-SSP) technique. The frequency of the HLA-A*33 allele was higher in the persistent group than in the recovered group (10.16% vs 0%, P < 0.008); the frequency of the DRB1*13 allele was lower in the persistent group than in the recovered group (3.13% vs 11.67%, P < 0.03). The frequency of the B*52 allele was higher in CHB patients than healthy carriers (7.58% vs 0%, P < 0.05). The logistic regression model showed that the presence of the HLA-DRB1*13 allele was the significant factor associated with protection against the persistency of HBV. There were significant differences between the HBV recovered group, CHB patients, and healthy carriers regarding age, hepatitis B e antigen, and anti-hepatitis B e positivity. HLA-A*33 was closely related with susceptibility to persisting hepatitis B infection, and HLA-DRB1*13 was closely related with protection against persisting hepatitis B in an Iranian population. These findings emphasized that the host HLA polymorphism is an important factor in determining the outcome of HBV infection.

  14. [Comparative studies of serological typing and HLA-A, B antigen genotyping with PCR using sequence-specific primers].

    PubMed

    Wu, Da-lin; Ling, Han-xin; Tang, Hao

    2004-11-01

    To evaluate the accuracy of PCR with sequence-specific primers (PCR-SSP) for HLA-I genotyping and analyze the causes of the errors occurring in the genotyping. DNA samples and were obtained from 34 clinical patients, and serological typing with monoclonal antibody (mAb) and HLA-A and, B antigen genotyping with PCR-SSP were performed. HLA-A and, B alleles were successfully typed in 34 clinical samples by mAb and PCR-SSP. No false positive or false negative results were found, and the erroneous and missed diagnosis rates were obviously higher in serological detection, being 23.5% for HLA-A and 26.5% for HLA-B. Error or confusion was more likely to occur in the antigens of A2 and A68, A32 and A33, B5, B60 and B61. DNA typing for HLA-I class (A, B antigens) by PCR-SSP has high resolution, high specificity, and good reproducibility, which is more suitable for clinical application than serological typing. PCR-SSP may accurately detect the alleles that are easily missed or mistaken in serological typing.

  15. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  16. Major Neutralizing Sites on Vaccinia Virus Glycoprotein B5 Are Exposed Differently on Variola Virus Ortholog B6▿

    PubMed Central

    Aldaz-Carroll, Lydia; Xiao, Yuhong; Whitbeck, J. Charles; de Leon, Manuel Ponce; Lou, Huan; Kim, Mikyung; Yu, Jessica; Reinherz, Ellis L.; Isaacs, Stuart N.; Eisenberg, Roselyn J.; Cohen, Gary H.

    2007-01-01

    Immunization against smallpox (variola virus) with Dryvax, a live vaccinia virus (VV), was effective, but now safety is a major concern. To overcome this issue, subunit vaccines composed of VV envelope proteins from both forms of infectious virions, including the extracellular enveloped virion (EV) protein B5, are being developed. However, since B5 has 23 amino acid differences compared with its B6 variola virus homologue, B6 might be a better choice for such a strategy. Therefore, we compared the properties of both proteins using a panel of monoclonal antibodies (MAbs) to B5 that we had previously characterized and grouped according to structural and functional properties. The B6 gene was obtained from the Centers for Disease Control and Prevention, and the ectodomain was cloned and expressed in baculovirus as previously done with B5, allowing us to compare the antigenic properties of the proteins. Polyclonal antibodies to B5 or B6 cross-reacted with the heterologous protein, and 16 of 26 anti-B5 MAbs cross-reacted with B6. Importantly, 10 anti-B5 MAbs did not cross-react with B6. Of these, three have important anti-VV biologic properties, including their ability to neutralize EV infectivity and block comet formation. Here, we found that one of these three MAbs protected mice from a lethal VV challenge by passive immunization. Thus, epitopes that are present on B5 but not on B6 would generate an antibody response that would not recognize B6. Assuming that B6 contains similar variola virus-specific epitopes, our data suggest that a subunit vaccine using the variola virus homologues might exhibit improved protective efficacy against smallpox. PMID:17522205

  17. Characterization of antigenic determinants in ApxIIA exotoxin capable of inducing protective immunity to Actinobacillus pleuropneumoniae challenge.

    PubMed

    Seo, Ki-Weon; Kim, Dong-Heon; Kim, Ah Hyun; Yoo, Han-Sang; Lee, Kyung-Yeol; Jang, Yong-Suk

    2011-01-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.

  18. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity.

    PubMed

    Kawa, Diane E; Stephens, Richard S

    2002-05-15

    The outer membrane protein PorB is a conserved chlamydial protein that functions as a porin and is capable of eliciting neutralizing Abs. A topological antigenic map was developed using overlapping synthetic peptides representing the Chlamydia trachomatis PorB sequence and polyclonal immune sera. To identify which antigenic determinants were surface accessible, monospecific antisera were raised to the PorB peptides and were used in dot-blot and ELISA-based absorption studies with viable chlamydial elementary bodies (EBs). The ability of the surface-accessible antigenic determinants to direct neutralizing Ab responses was investigated using standardized in vitro neutralization assays. Four major antigenic clusters corresponding to Phe(34)-Leu(59) (B1-2 and B1-3), Asp(112) -Glu(145) (B2-3 and B2-4), Gly(179)-Ala(225) (B3-2 to B3-4), and Val(261)-Asn(305) (B4-4 to B5-2) were identified. Collectively, the EB absorption and dot-blot assays established that the immunoreactive PorB Ags were exposed on the surface of chlamydial EBs. Peptide-specific antisera raised to the surface-accessible Ags neutralized chlamydial infectivity and demonstrated cross-reactivity to synthetic peptides representing analogous C. pneumoniae PorB sequences. Furthermore, neutralization of chlamydial infectivity by C. trachomatis PorB antisera was inhibited by synthetic peptides representing the surface-exposed PorB antigenic determinants. These findings demonstrate that PorB Ags may be useful for development of chlamydial vaccines.

  19. Antigen-specific B memory cell responses to lipopolysaccharide (LPS) and invasion plasmid antigen (Ipa) B elicited in volunteers vaccinated with live-attenuated Shigella flexneri 2a vaccine candidates

    PubMed Central

    Simon, J.K.; Wahid, R.; Maciel, M.; Picking, W.L.; Kotloff, K.L.; Levine, M.M.; Sztein, M.B.

    2013-01-01

    We evaluated B memory responses in healthy adult volunteers who received one oral dose of live-attenuated Shigella flexneri 2a vaccine. LPS-specific BM cells increased from a median of 0 at baseline to 20 spot forming cells (SFC)/106 expanded cells following vaccination (p = 0.008). A strong correlation was found between post-vaccination anti-LPS BM cell counts and peak serum anti-LPS IgG titers (rs = 0.95, p = 0.0003). Increases in BM specific for IpaB approaching significance were also observed. In sum, oral vaccination with live-attenuated S. flexneri 2a elicits BM cells to LPS and IpaB, suggesting that BM responses to Shigella antigens should be further studied as a suitable surrogate of protection in shigellosis. PMID:19022324

  20. Expression of the Bacillus anthracis protective antigen gene by baculovirus and vaccinia virus recombinants.

    PubMed Central

    Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M

    1990-01-01

    The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271

  1. Hepatitis B antigen and viral hepatitis type B in India*

    PubMed Central

    John, T. Jacob; Carman, Robert H.; Hill, Peter G.

    1974-01-01

    Surveys were conducted to determine the occurrence of overt hepatitis manifested by jaundice in groups of hospital patients who had survived their initial illness. Of those who had been given blood that had not been screened for the presence of hepatitis B antigen (HB Ag) 9.4% reported that they had had jaundice during the 6 months following transfusion. During a similar period jaundice was reported by only 1.1% of those who had received blood found to be negative for HB Ag by the cross-over electrophoresis test. This difference is highly significant. Jaundice was reported by 25.5% of recipients of HB Ag-positive blood. Of a control population of hospitalized but non-transfused patients 2.2% reported jaundice within 6 months of hospitalization. The risk of overt hepatitis from HB Ag in transfused blood is high in southern India and is similar to that in temperate countries where the occurrence of antigen carriers, and presumably of immune status, are lower than in the tropics. PMID:4549611

  2. Co-stimulatory function in primary germinal center responses: CD40 and B7 are required on distinct antigen-presenting cells.

    PubMed

    Watanabe, Masashi; Fujihara, Chiharu; Radtke, Andrea J; Chiang, Y Jeffrey; Bhatia, Sumeena; Germain, Ronald N; Hodes, Richard J

    2017-09-04

    T cell-dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses. Our findings support a substantially revised model for co-stimulatory function in the primary GC response, with crucial and distinct contributions of B7- and CD40-dependent pathways expressed by different APC populations and with important implications for understanding how to optimize vaccine responses or limit autoimmunity. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  3. Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen

    PubMed Central

    Yau, Irene W.; Cato, Matthew H.; Jellusova, Julia; Hurtado de Mendoza, Tatiana; Brink, Robert; Rickert, Robert C.

    2013-01-01

    In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and antigen-driven selection during the germinal center response. However, selection of self-reactive B cells by antigen on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs, and monitor the fate of developing self-reactive B cells. Here, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of antigen experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevent the emergence of naïve B cells capable of responding to sequestered self-antigens. PMID:23817432

  4. A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome

    PubMed Central

    Moriel, Danilo G.; Tan, Lendl; Goh, Kelvin G. K.; Ipe, Deepak S.; Lo, Alvin W.; Peters, Kate M.

    2016-01-01

    ABSTRACT Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCE E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics

  5. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    PubMed

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  6. Natural antibody response to Plasmodium falciparum merozoite antigens MSP5, MSP9 and EBA175 is associated to clinical protection in the Brazilian Amazon

    PubMed Central

    2013-01-01

    Background Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. Methods Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients’ plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. Results 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2DF=1 = 9.26/p = 0.0047) and MSP5 (X2DF=1 = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2DF=1 = 6.41/p = 0.0206, Fisher’s exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney’s U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95

  7. Hepatitis B virus DNA-positive, hepatitis B surface antigen-negative blood donations intercepted by anti-hepatitis B core antigen testing: the Canadian Blood Services experience.

    PubMed

    O'Brien, Sheila F; Fearon, Margaret A; Yi, Qi-Long; Fan, Wenli; Scalia, Vito; Muntz, Irene R; Vamvakas, Eleftherios C

    2007-10-01

    The benefit of introducing anti-hepatitis B core antigen (HBc) screening for intercepting potentially infectious donations missed by hepatitis B surface antigen (HBsAg) screening in Canada was studied. Anti-HBc testing of all donations was implemented in April 2005, along with antibody to hepatitis B surface antigen (anti-HBs) and hepatitis B virus (HBV) DNA supplemental testing of anti-HBc repeat-reactive, HBsAg-negative donations. The proportion of potentially infectious donations intercepted by anti-HBc over the initial 18 months of testing was calculated based on three assumptions relating infectivity of HBV DNA-positive units to anti-HBs levels. Lookback was conducted for all DNA-positive donations. Of 493,344 donors, 5,585 (1.13%) were repeat-reactive for the presence of anti-HBc, with 29 (0.52%) being HBV DNA-positive and HBsAg-negative. The proportion of potentially infectious donations intercepted by anti-HBc screening was 1 in 17,800 if all HBV DNA-positive donations were infectious, 1 in 26,900 if infectivity was limited to donations with an anti-HBs level of not more than 100 mIU per mL, and 1 in 69,300 if only donations with undetectable anti-HBs were infectious. For 279 components in the lookback study, no traced recipients were HBsAg-positive and 7 recipients were anti-HBc-reactive in association with 4 donors, 3 of whom had an anti-HBs level of more than 100 mIU per mL and 1 of whom had a level of 61 mIU per mL. Implementation of anti-HBc screening reduced the risk of transfusing potentially infectious units by at least as much as had been expected based on the literature. The lookback did not provide proof of transfusion transmission of HBV from HBV DNA-positive, anti-HBc-reactive, HBsAg-negative donors but it did not establish lack of transmission either.

  8. O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection

    PubMed Central

    Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Fang, Sunan; McDonald, Melissa A.; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V.; Plikaytis, Bonnie B.; Posey, James E.; Amara, Rama Rao

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis. PMID:24130497

  9. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  10. Affinity of antigen encounter and other early B-cell signals determine B-cell fate

    PubMed Central

    Benson, Micah J; Erickson, Loren D; Gleeson, Michael W; Noelle, Randolph J

    2010-01-01

    Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway. PMID:17433651

  11. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    PubMed Central

    Haddad, Diana; Bilcikova, Erika; Witney, Adam A.; Carlton, Jane M.; White, Charles E.; Blair, Peter L.; Chattopadhyay, Rana; Russell, Joshua; Abot, Esteban; Charoenvit, Yupin; Aguiar, Joao C.; Carucci, Daniel J.; Weiss, Walter R.

    2004-01-01

    We describe a novel approach for identifying target antigens for preerythrocytic malaria vaccines. Our strategy is to rapidly test hundreds of DNA vaccines encoding exons from the Plasmodium yoelii yoelii genomic sequence. In this antigen identification method, we measure reduction in parasite burden in the liver after sporozoite challenge in mice. Orthologs of protective P. y. yoelii genes can then be identified in the genomic databases of Plasmodium falciparum and Plasmodium vivax and investigated as candidate antigens for a human vaccine. A pilot study to develop the antigen identification method approach used 192 P. y. yoelii exons from genes expressed during the sporozoite stage of the life cycle. A total of 182 (94%) exons were successfully cloned into a DNA immunization vector with the Gateway cloning technology. To assess immunization strategies, mice were vaccinated with 19 of the new DNA plasmids in addition to the well-characterized protective plasmid encoding P. y. yoelii circumsporozoite protein. Single plasmid immunization by gene gun identified a novel vaccine target antigen which decreased liver parasite burden by 95% and which has orthologs in P. vivax and P. knowlesi but not P. falciparum. Intramuscular injection of DNA plasmids produced a different pattern of protective responses from those seen with gene gun immunization. Intramuscular immunization with plasmid pools could reduce liver parasite burden in mice despite the fact that none of the plasmids was protective when given individually. We conclude that high-throughput cloning of exons into DNA vaccines and their screening is feasible and can rapidly identify new malaria vaccine candidate antigens. PMID:14977966

  12. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen

    PubMed Central

    Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.

    2012-01-01

    B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255

  13. Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals

    PubMed Central

    HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday

    2012-01-01

    In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466

  14. Partial purification and characterization of protection-inducing antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isoelectric focusing.

    PubMed

    Despommier, D D

    1981-01-01

    The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed

  15. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.

    PubMed

    Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B

    2017-06-14

    CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Thermostable cross-protective subunit vaccine against Brucella species.

    PubMed

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Human Parvovirus B19 Induced Apoptotic Bodies Contain Altered Self-Antigens that are Phagocytosed by Antigen Presenting Cells

    PubMed Central

    Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona

    2013-01-01

    Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709

  18. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen

    PubMed Central

    Simons, Brenna C.; Spradling, Philip R.; Bruden, Dana J. T.; Zanis, Carolyn; Case, Samantha; Choromanski, Tammy L.; Apodaca, Minjun; Brogdon, Hazel D.; Dwyer, Gaelen; Snowball, Mary; Negus, Susan; Bruce, Michael G.; Morishima, Chihiro; Knall, Cindy; McMahon, Brian J.

    2016-01-01

    Background. Long-lasting protection resulting from hepatitis B vaccine, despite loss of antibody against hepatitis B virus (HBV) surface antigen (anti-HBs), is undetermined. Methods. We recruited persons from a cohort vaccinated with plasma-derived hepatitis B vaccine in 1981 who have been followed periodically since. We performed serological testing for anti-HBs and microRNA-155 and assessed HBV-specific T-cell responses by enzyme-linked immunospot and cytometric bead array. Study subgroups were defined 32 years after vaccination as having an anti-HBs level of either ≥10 mIU/mL (group 1; n = 13) or <10 mIU/mL (group 2; n = 31). Results. All 44 participants, regardless of anti-HBs level, tested positive for tumor necrosis factor α, interleukin 10, or interleukin 6 production by HBV surface antigen–specific T cells. The frequency of natural killer T cells correlated with the level of anti-HBs (P = .008). The proportion of participants who demonstrated T-cell responses to HBV core antigen varied among the cytokines measured, suggesting some natural exposure to HBV in the study group. No participant had evidence of breakthrough HBV infection. Conclusions. Evidence of long-lasting cellular immunity, regardless of anti-HBs level, suggests that protection afforded by primary immunization with plasma-derived hepatitis B vaccine during childhood and adulthood lasts at least 32 years. PMID:27056956

  19. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.

    PubMed Central

    Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G

    1997-01-01

    Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608

  20. Mycobacterium tuberculosis multistage antigens confer comprehensive protection against pre- and post-exposure infections by driving Th1-type T cell immunity

    PubMed Central

    Fan, Xionglin; Yu, Qi; Jing, Yukai; Wang, Weihua; Li, Li; Zhou, Zijie

    2016-01-01

    There is an urgent need for a vaccine against tuberculosis (TB) that is more effective than the current sole licensed option. However, target antigens of Mycobacterium tuberculosis with the vaccine potential remain elusive. Five immunodominant antigens with characteristic expressions at the stages of primary infection (Ag85A), the regulation of nutrition and metabolism when transferring from rapid growth to latency (PhoY2 and Rv3407), latency (Rv2626c), and reactivation (RpfB) were selected to construct the fusion polyprotein WH121, which has better immunogenicity and protection than each multistage antigen. DMT adjuvanted WH121 vaccinated C57BL/6 mice could confer persistent and significant protection against the respiratory challenge with 80 CFU of virulent M. tuberculosis H37Rv at 9 and 18 weeks after immunization, as the BCG vaccine did. Moreover, WH121/DMT could boost the BCG primed mice against post-exposure infection, and more significantly inhibit the growth of M. tuberculosis in the spleen than BCG repeat vaccination. The protection elicited by WH121/DMT is attributed to the WH121-specific Th1-type biased immune responses, characterized by increased antigen-specific IgG2a/IgG1 ratio and high levels of IFN-γ secreted by the splenocytes of vaccinated mice. In particular, high levels of IFN-γ+ TEM cells in the spleen are an effective biomarker for the vaccine-induced early protection, and the persistent protection mainly depends on the increasing IL-2+IFN-γ+CD4+ and CD8+ T cells, especially IL-2+ TCM cells. These findings demonstrate that multistage-specific antigens might be promising targets for the next generation TB vaccine, and a combination of these antigens such as WH121/DMT is required for further preclinical evaluation. PMID:27566581

  1. Cell-mediated immune response and Th/Th cytokine profile of B-T constructs of F1 and V antigen of Yersinia pestis.

    PubMed

    Gupta, G; Khan, A A; Rao, D N

    2010-03-01

    Yersinia pestis, a Gram-negative bacterium, is the etiological agent of pneumonic and bubonic plague and still active in various regions of the world. Because plague is highly infectious and can readily spread by aerosolization, it poses a bioterrorism threat. The effective induction of mucosal as well as systemic immunity is an important attribute of an improved vaccine for plague. An alternative approach described here is the use of protective epitopes derived from immunodominant antigens (F1 and V) of Yersinia pestis. As T-cell immunity is also a major contributor of protection, microencapsulated B-T constructs of F1 and V antigen were used to immunize outbred and inbred mice through intranasal route, and lympho-proliferative response and cytokine profile of both Th(1) and Th(2) arms were measured in spleen, lamina propria and Peyer's patches. Three B-T constructs of F1 antigen and seven of V antigen showed significantly high T-cell response in terms of inducing systemic as well as mucosal response when compared to constituent peptides. These ten conjugates showed Th(1) cytokine profile whereas rest of the conjugates showed mixed Th(1)/Th(2) response. Four conjugates of V antigen showed high level of IL-10 production. In present study, microencapsulated B-T constructs after intranasal immunization generated systemic as well as mucosal immune response in all three sites, which offers an alternative approach for plague vaccine.

  2. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation.

    PubMed

    Courtney, Adam H; Puffer, Erik B; Pontrello, Jason K; Yang, Zhi-Qiang; Kiessling, Laura L

    2009-02-24

    CD22 is an inhibitory coreceptor on the surface of B cells that attenuates B cell antigen receptor (BCR) signaling and, therefore, B cell activation. Elucidating the molecular mechanisms underlying the inhibitory activity of CD22 is complicated by the ubiquity of CD22 ligands. Although antigens can display CD22 ligands, the receptor is known to bind to sialylated glycoproteins on the cell surface. The propinquity of CD22 and cell-surface glycoprotein ligands has led to the conclusion that the inhibitory properties of the receptor are due to cis interactions. Here, we examine the functional consequences of trans interactions by employing sialylated multivalent antigens that can engage both CD22 and the BCR. Exposure of B cells to sialylated antigens results in the inhibition of key steps in BCR signaling. These results reveal that antigens bearing CD22 ligands are powerful suppressors of B cell activation. The ability of sialylated antigens to inhibit BCR signaling through trans CD22 interactions reveals a previously unrecognized role for the Siglec-family of receptors as modulators of immune signaling.

  3. HLA class I antigen and HLA-A, -B, and -C haplotype frequencies in Uruguayans.

    PubMed

    Alvarez, Ines; Bengochea, Milka; Toledo, Roberto; Carretto, Elena; Hidalgo, Pedro C

    2006-08-01

    HLA class I antigens were determined for 959 unrelated Uruguayans. The predominant HLA alleles were A2, Cw4, and B35, and the most frequently observed two-loci haplotypes were A2-B44 and B35-Cw4. The most frequent three-loci HLA haplotype was A2-Cw5-B44. We compared the Uruguayan sample with similar data from other populations.

  4. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  5. Advax-Adjuvanted Recombinant Protective Antigen Provides Protection against Inhalational Anthrax That Is Further Enhanced by Addition of Murabutide Adjuvant

    PubMed Central

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita

    2014-01-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy. PMID:24554695

  6. Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant.

    PubMed

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita; Merkel, Tod J

    2014-04-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.

  7. Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of dengue 2 virus.

    PubMed

    Amexis, Georgios; Young, Neal S

    2006-09-15

    For the production of dengue-vaccine candidates, empty capsids, or virus-like particles (VLPs), of parvovirus B19 that carry dengue 2-specific epitopes were employed as antigen carriers. Two epitopes (comprising amino acids 352-368 and 386-397) of domain BIII of the envelope glycoprotein were chosen to produce recombinant B19 VLPs for immunization of BALB/c mice. Serum samples from immunized mice revealed that recombinant B19 VLPs elicited strong humoral immune responses. In summary, this B19 VLP-vaccine platform produced high (> or =2.0 x 10(5)) anti-dengue 2 titers and robust (< or =1 120) 50%-plaque-reduction neutralization test (PRNT(50)) titers, which effectively neutralized live dengue 2 virus in PRNT(50) assays.

  8. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  9. Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid.

    PubMed

    Riner, Diana K; Ndombi, Eric M; Carter, Jennifer M; Omondi, Amos; Kittur, Nupur; Kavere, Emmy; Korir, Harrison K; Flaherty, Briana; Karanja, Diana; Colley, Daniel G

    2016-12-01

    Schistosomiasis is a disease of major public health importance in sub-Saharan Africa. Immunoregulation begins early in schistosome infection and is characterized by hyporesponsiveness to parasite and bystander antigens, suggesting that a schistosome infection at the time of immunization could negatively impact the induction of protective vaccine responses. This study examined whether having a Schistosoma mansoni infection at the time of immunization with hepatitis B and tetanus toxoid (TT) vaccines impacts an individual's ability to achieve and maintain protective antibody levels against hepatitis B surface antigen or TT. Adults were recruited from Kisumu Polytechnic College in Western Kenya. At enrollment, participants were screened for schistosomiasis and soil transmitted helminths (STHs) and assigned to groups based on helminth status. The vaccines were then administered and helminth infections treated a week after the first hepatitis B boost. Over an 8 month period, 3 blood specimens were obtained for the evaluation of humoral and cytokine responses to the vaccine antigens and for immunophenotyping. 146 individuals were available for final analysis and 26% were S. mansoni positive (Sm+). Schistosomiasis did not impede the generation of initial minimum protective antibody levels to either hepatitis B or TT vaccines. However, median hepatitis B surface antibody levels were significantly lower in the Sm+ group after the first boost and remained lower, but not significantly lower, following praziquantel (PZQ) treatment and final boost. In addition, 8 months following TT boost and 7 months following PZQ treatment, Sm+ individuals were more likely to have anti-TT antibody levels fall below levels considered optimal for long term protection. IL-5 levels in response to in vitro TT stimulation of whole blood were significantly higher in the Sm+ group at the 8 month time period as well. Individuals with schistosomiasis at the start the immunizations were capable of

  10. Schistosoma mansoni Infection Can Jeopardize the Duration of Protective Levels of Antibody Responses to Immunizations against Hepatitis B and Tetanus Toxoid

    PubMed Central

    Riner, Diana K.; Ndombi, Eric M.; Carter, Jennifer M.; Omondi, Amos; Kittur, Nupur; Kavere, Emmy; Korir, Harrison K.; Flaherty, Briana; Karanja, Diana; Colley, Daniel G.

    2016-01-01

    Background Schistosomiasis is a disease of major public health importance in sub-Saharan Africa. Immunoregulation begins early in schistosome infection and is characterized by hyporesponsiveness to parasite and bystander antigens, suggesting that a schistosome infection at the time of immunization could negatively impact the induction of protective vaccine responses. This study examined whether having a Schistosoma mansoni infection at the time of immunization with hepatitis B and tetanus toxoid (TT) vaccines impacts an individual’s ability to achieve and maintain protective antibody levels against hepatitis B surface antigen or TT. Methods Adults were recruited from Kisumu Polytechnic College in Western Kenya. At enrollment, participants were screened for schistosomiasis and soil transmitted helminths (STHs) and assigned to groups based on helminth status. The vaccines were then administered and helminth infections treated a week after the first hepatitis B boost. Over an 8 month period, 3 blood specimens were obtained for the evaluation of humoral and cytokine responses to the vaccine antigens and for immunophenotyping. Results 146 individuals were available for final analysis and 26% were S. mansoni positive (Sm+). Schistosomiasis did not impede the generation of initial minimum protective antibody levels to either hepatitis B or TT vaccines. However, median hepatitis B surface antibody levels were significantly lower in the Sm+ group after the first boost and remained lower, but not significantly lower, following praziquantel (PZQ) treatment and final boost. In addition, 8 months following TT boost and 7 months following PZQ treatment, Sm+ individuals were more likely to have anti-TT antibody levels fall below levels considered optimal for long term protection. IL-5 levels in response to in vitro TT stimulation of whole blood were significantly higher in the Sm+ group at the 8 month time period as well. Conclusions Individuals with schistosomiasis at the

  11. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation

    PubMed Central

    Wang, Jing; Tang, Shan; Wan, Zhengpeng; Gao, Yiren; Cao, Yiyun; Yi, Junyang; Si, Yanyan; Zhang, Haowen; Liu, Lei; Liu, Wanli

    2016-01-01

    Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens. PMID:26764382

  12. HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity.

    PubMed

    Sorrentino, Rosa; Böckmann, Rainer A; Fiorillo, Maria Teresa

    2014-01-01

    The HLA-B27 is historically studied as a susceptibility factor in spondyloarthropathies and, primarily, in ankylosing spondylitis (AS). Over the recent years however, it has been rediscovered as protective factor against some severe viral infections. This is due to the high capacity of virus-specific, HLA-B27-restricted CD8+ T cells for both intrinsic (i.e. polyfunctionality, high avidity, low sensitivity to Treg cell-mediated suppression) and extrinsic (i.e. rapid and efficient antigen processing and presentation) factors. It is tempting to speculate that these two aspects are not independent and that the association of B27 molecules to autoimmunity is the downside of this superior functional efficacy which, in given genetic backgrounds and environmental conditions, can support a chronic inflammation leading to spondyloarthropathies. Still, the pathogenic role of HLA-B27 molecules in AS is elusive. Here, we focus on the biology of HLA-B27 from the genetics to the biochemistry and to the structural/dynamical properties of B27:peptide complexes as obtained from atomistic molecular dynamics simulation. Overall, the results point at the antigen presentation as the key event in the disease pathogenesis. In particular, an extensive comparison of HLA-B*2705 and B*2709 molecules, that differ in a single amino acid (Asp116 to His116) and are differentially associated with AS, indicates that position 116 is crucial for shaping the entire peptide-presenting groove. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Immunological Properties of Hepatitis B Core Antigen Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Francis, Michael J.; Hastings, Gillian Z.; Brown, Alan L.; Grace, Ken G.; Rowlands, David J.; Brown, Fred; Clarke, Berwyn E.

    1990-04-01

    The immunogenicity of a 19 amino acid peptide from foot-and-mouth disease virus has previously been shown to approach that of the inactivated virus from which it was derived after multimeric particulate presentation as an N-terminal fusion with hepatitis B core antigen. In this report we demonstrate that rhinovirus peptide-hepatitis B core antigen fusion proteins are 10-fold more immunogenic than peptide coupled to keyhole limpet hemocyanin and 100-fold more immunogenic than uncoupled peptide with an added helper T-cell epitope. The fusion proteins can be readily administered without adjuvant or with adjuvants acceptable for human and veterinary application and can elicit a response after nasal or oral dosing. The fusion proteins can also act as T-cell-independent antigens. These properties provide further support for their suitability as presentation systems for "foreign" epitopes in the development of vaccines.

  14. Purification and Protective Efficacy of Monomeric and Modified Yersina pestis Capsular F1-V Antigen Fusion Proteins for Vaccination Against Plague

    DTIC Science & Technology

    2006-12-31

    Yersinia pestis capsular F1-V antigen fusion proteins for vaccination against plague Jeremy L. Goodin a,1, David F. Nellis b,1, Bradford S. Powell a, Vinay...USA Received 4 October 2006, and in revised form 19 December 2006 Available online 31 December 2006Abstract The F1-V vaccine antigen, protective...After a two-dose vaccination with 2 · 20 lg of F1-V, respec- tively, 100%, 80%, 80%, and 70% of injected mice survived a subcutaneous lethal plague

  15. Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma.

    PubMed Central

    Starzynska, T.; Marsh, P. J.; Schofield, P. F.; Roberts, S. A.; Myers, K. A.; Stern, P. L.

    1994-01-01

    The 5T4 oncofetal antigen is a 72 kDa glycoprotein defined by a monoclonal antibody raised against human placental trophoblast and is expressed in many different carcinomas but detected only at low levels in some normal epithelia. Immunohistochemical analysis of the patterns of expression in colorectal carcinomas has indicated a significant association between the presence of the antigen in tumour cells and metastatic spread. The 5T4 antigen phenotype of 72 colorectal cancers has been compared with the clinical outcome of the patients in order to assess its relationship with prognosis. Forty per cent of tumours were 5T4 positive; the remainder were either unlabelled or exhibited stroma-associated labelling only. There was a significant correlation between 5T4 expression in the malignant cells and unfavourable course of disease (P < 0.001). The 5 year survival with 5T4-positive tumours was 22% compared with 75% for patients with 5T4-negative tumours; median survival was 24 versus > 90 months respectively. Stratified analysis showed that 5T4 antigen tumour positivity was acting independently of each of stage, site of tumour, age or sex. There were significant differences in survival for patients with Dukes' B and C stage carcinomas (P = 0.001 and P = 0.034). The results suggest that in colorectal cancer immunohistochemical assessment of 5T4 expression may be useful in identifying patients at high risk for tumour recurrence and for whom additional treatment strategies might be most appropriate. Images Figure 1 PMID:8180020

  16. Novel Antigen Identification Method for Discovery of Protective Malaria Antigens by Rapid Testing of DNA Vaccines Encoding Exons from the Parasite Genome

    DTIC Science & Technology

    2004-03-01

    EAA21673 1,443 — — Xeroderma pigmentosum G N&I region, helix-hairpin-helix class P.f., P.k., P.b., P.v. PY02286 EAA21722 696 — — Hypothetical protein...ND PY01828 Gene gun 0.1 2,560 640 Pos IM 0.1 Neg Neg ND CSP Gene gun 0.1 2,560 Neg Neg IM 2.7* 2,560 Neg ND a Parasite burden in liver is in...negative; Pos , positive; ND, not done. c Sera tested at a single dilution (1:80). VOL. 72, 2004 DISCOVERY OF PROTECTIVE MALARIA PARASITE ANTIGENS 1599

  17. Protection against murine intestinal amoebiasis induced by oral immunization with the 29 kDa antigen of Entamoeba histolytica and cholera toxin.

    PubMed

    Carrero, J C; Contreras-Rojas, A; Sánchez-Hernández, B; Petrosyan, P; Bobes, R J; Ortiz-Ortiz, L; Laclette, J P

    2010-11-01

    Entamoeba histolytica antigens recognized by salivary IgA from infected patients include the 29 kDa antigen (Eh29), an alkyl hydroperoxide reductase. Here, we investigate the potential of recombinant Eh29 and an Eh29-cholera toxin subunit B (CTxB) fusion protein to confer protection against intestinal amoebiasis after oral immunization. The purified Eh29-CTxB fusion retained the critical ability to bind ganglioside GM(1), as determined by ELISA. Oral immunization of C3H/HeJ mice with Eh29 administered in combination with a subclinical dose of whole cholera toxin, but not as an Eh29-CTxB fusion, induced elevated levels of intestinal IgA and serum IgG anti-Eh29 antibodies that inhibited trophozoites adherence to MDCK cell monolayers. The 80% of immunized mice seen to develop IgA and IgG immune responses showed no evidence of infection in tissue sections harvested following intracecal challenge with virulent E. histolytica trophozoites. These results suggest that Eh29 is capable of inducing protective anti-amoebic immune responses in mice following oral immunization and could be used in the development of oral vaccines against amoebiasis. (c) 2010 Elsevier Inc. All rights reserved.

  18. Tuning B cell responses to antigens by cell polarity and membrane trafficking.

    PubMed

    Del Valle Batalla, Felipe; Lennon-Dumenil, Ana-María; Yuseff, María-Isabel

    2018-06-20

    The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Anergic self-reactive B cells present self antigen and respond normally to CD40-dependent T-cell signals but are defective in antigen-receptor-mediated functions.

    PubMed Central

    Eris, J M; Basten, A; Brink, R; Doherty, K; Kehry, M R; Hodgkin, P D

    1994-01-01

    B-cell tolerance to soluble protein self antigens such as hen egg lysozyme (HEL) is mediated by clonal anergy. Anergic B cells fail to mount antibody responses even in the presence of carrier-primed T cells, suggesting an inability to activate or respond to T helper cells. To investigate the nature of this defect, B cells from tolerant HEL/anti-HEL double-transgenic mice were incubated with a membrane preparation from activated T-cell clones expressing the CD40 ligand. These membranes, together with interleukin 4 and 5 deliver the downstream antigen-independent CD40-dependent B-cell-activating signals required for productive T-B collaboration. Anergic B cells responded to this stimulus by proliferating and secreting antibody at levels comparable to or better than control B cells. Furthermore, anergic B cells presented HEL acquired in vivo and could present the unrelated antigen, conalbumin, targeted for processing via surface IgD. In contrast, the low immunoglobulin receptor levels on anergic B cells were associated with reduced de novo presentation of HEL and a failure to upregulate costimulatory ligands for CD28. These defects in immunoglobulin-receptor-mediated functions could be overcome in vivo, suggesting a number of mechanisms for induction of autoantibody responses. Images PMID:7514304

  20. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax.

    PubMed

    Gorantala, Jyotsna; Grover, Sonam; Goel, Divya; Rahi, Amit; Jayadev Magani, Sri Krishna; Chandra, Subhash; Bhatnagar, Rakesh

    2011-06-15

    The currently available anthrax vaccines are limited by being incompletely characterized, potentially reactogenic and have an expanded dosage schedule. Plant based vaccines offer safe alternative for vaccine production. In the present study, we expressed domain IV of Bacillus anthracis protective antigen gene [PA(dIV)] in planta (by nuclear agrobacterium and chloroplast transformation) and E. coli [rPA(dIV)]. The presence of transgene and the expression of PA(dIV) in planta was confirmed by molecular analysis. Expression levels up to 5.3% of total soluble protein (TSP) were obtained with AT rich (71.8% AT content) PA(dIV) gene in transplastomic plants while 0.8% of TSP was obtained in nuclear transformants. Further, we investigated the protective response of plant and E. coli derived PA(dIV) in mice by intraperitoneal (i.p.) and oral immunizations with or without adjuvant. Antibody titers of >10(4) were induced upon i.p. and oral immunizations with plant derived PA(dIV) and oral immunization with E. coli derived PA(dIV). Intraperitoneal injections with adjuvanted E. coli derived PA(dIV), generated highest antibody titers of >10(5). All the immunized groups demonstrated predominant IgG1 titers over IgG2a indicating a polarized Th2 type response. We also evaluated the mucosal antibody response in orally immunized groups. When fecal extracts were analyzed, low sIgA titer was demonstrated in adjuvanted plant and E. coli derived PA(dIV) groups. Further, PA(dIV) antisera enhanced B. anthracis spore uptake by macrophages in vitro and also demonstrated an anti-germinating effect suggesting a potent role at mucosal surfaces. The antibodies from various groups were efficient in neutralizing the lethal toxin in vitro. When mice were challenged with B. anthracis, mice immunized with adjuvanted plant PA(dIV) imparted 60% and 40% protection while E. coli derived PA(dIV) conferred 100% and 80% protection upon i.p. and oral immunizations. Thus, our study is the first attempt in

  1. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections

    PubMed Central

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2015-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185

  2. Combination of Two Candidate Subunit Vaccine Antigens Elicits Protective Immunity to Ricin and Anthrax Toxin in Mice

    PubMed Central

    Vance, David J.; Rong, Yinghui; Brey, Robert N.; Mantis, Nicholas J.

    2014-01-01

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. PMID:25475957

  3. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    PubMed

    Abraham, David; Hess, Jessica A; Mejia, Rojelio; Nolan, Thomas J; Lok, James B; Lustigman, Sara; Nutman, Thomas B

    2011-10-19

    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Performance evaluation of new automated hepatitis B viral markers in the clinical laboratory: two quantitative hepatitis B surface antigen assays and an HBV core-related antigen assay.

    PubMed

    Park, Yongjung; Hong, Duck Jin; Shin, Saeam; Cho, Yonggeun; Kim, Hyon-Suk

    2012-05-01

    We evaluated quantitative hepatitis B surface antigen (qHBsAg) assays and a hepatitis B virus (HBV) core-related antigen (HBcrAg) assay. A total of 529 serum samples from patients with hepatitis B were tested. HBsAg levels were determined by using the Elecsys (Roche Diagnostics, Indianapolis, IN) and Architect (Abbott Laboratories, Abbott Park, IL) qHBsAg assays. HBcrAg was measured by using Lumipulse HBcrAg assay (Fujirebio, Tokyo, Japan). Serum aminotransferases and HBV DNA were respectively quantified by using the Hitachi 7600 analyzer (Hitachi High-Technologies, Tokyo, Japan) and the Cobas AmpliPrep/Cobas TaqMan test (Roche). Precision of the qHBsAg and HBcrAg assays was assessed, and linearity of the qHBsAg assays was verified. All assays showed good precision performance with coefficients of variation between 4.5% and 5.3% except for some levels. Both qHBsAg assays showed linearity from 0.1 to 12,000.0 IU/mL and correlated well (r = 0.9934). HBsAg levels correlated with HBV DNA (r = 0.3373) and with HBcrAg (r = 0.5164), and HBcrAg also correlated with HBV DNA (r = 0.5198; P < .0001). This observation could provide impetus for further research to elucidate the clinical usefulness of the qHBsAg and HBcrAg assays.

  5. Determination of O:4 antigen-antibody affinity level in O:5 antigen positive and negative variants of Salmonella enterica serovar Typhimurium.

    PubMed

    Nakai, Yuka; Ito, Akihisa; Ogawa, Yohsuke; Aribam, Swarmistha Devi; Elsheimer-Matulova, Marta; Shiraiwa, Kazumasa; Kisaka, Stevens M B; Hikono, Hirokazu; Nishikawa, Sayaka; Akiba, Masato; Kawahara, Kazuyoshi; Shimoji, Yoshihiro; Eguchi, Masahiro

    2017-04-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) has two serological variants: one that expresses the O:5 antigen (1,4,5,12:i:1,2) and one that lacks O:5 antigen (1,4,12:i:1,2). For serotyping, S. Typhimurium is agglutinated by diagnostic O:4 antigen serum. This study was carried out to compare the antigen-antibody affinity of O:4 antigen in S. Typhimurium χ3306 O:5-positive and S. Typhimurium χ3306 O:5-negative strains. The affinity of O:4 antigen with O:4 antigen serum was found to be stronger in the O:5-negative strains compared to O:5-positive strains. Next, we investigated the antigen-antibody affinity of O:4 antigen with O:4 antigen serum in field strains of S. Typhimurium, which showed the same tendency in affinity as seen with S. Typhimurium χ3306 O:5-positive and negative strains. This study suggests that the presence or absence of O:5 antigen causes differences in O:4 agglutination reactions with different field strains of S. Typhimurium. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Affinity Maturation of an Anti-V Antigen IgG Expressed In Situ Via Adenovirus Gene Delivery Confers Enhanced Protection Against Yersinia pestis Challenge

    PubMed Central

    Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George

    2013-01-01

    Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (P<0.04, AdαV versus AdαV.H8). These results indicate that affinity maturation of a neutralizing antibody delivered by genetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511

  7. Comparing Assay Performance of ELISA and Chemiluminescence Immunoassay in Detecting Antibodies to Hepatitis B Surface Antigen

    PubMed Central

    Sagar, Siddharth; Vishwanath, Shashidhar; Banerjee, Barnini; Eshwara, Vandana Kalwaje; Chawla, Kiran

    2016-01-01

    Introduction Antibodies to Hepatitis B surface Antigen (Anti-HBs) levels are measured as markers for immune response to vaccination and in decision making for post-exposure prophylaxis against Hepatitis-B. Several immunoassay formats are used to measure Anti-HBs, thus carrying the possibility of variation in measured levels between different assays. This study compares the performance of Chemiluminescence Immunoassay (CLIA) against Enzyme-linked Immunosorbent Assay (ELISA) in measuring Anti-HBs titer by looking into concordance between the two test reports. Aim To compare the agreement between ELISA and CLIA in measurement of Anti–HBs antibody titers. Materials and Methods This prospective comparative study conducted at Kasturba Medical College, Manipal measured consecutive serum samples (69) sent for anti-HBs levels during May-June 2016 using both CLIA (Abbott Architect) and ELISA (Bio-Rad). Anti-HBs values of ≤10mIU/ml was considered as non-protective and >10mIU/ml as protective. The agreement between the tests in classifying the antibody titers as non-protective or protective was computed using Kappa coefficient, and the difference in individual titer values between the tests compared using Bland-Altman plot on SPSS (v.15). Results Out of the 69 samples analysed, 18 samples (26.1%) were of health-care personnel and remaining of patients. Agreement between ELISA and CLIA in identifying the antibody titers as protective and non-protective were 96.5% and 90.9% respectively, resulting in an agreement of 0.84. The coefficient-of-variation of ELISA and CLIA were 74.5% and 113.1%, respectively. Three value based discordant results were noted; two samples deemed protective by ELISA were reported as non-protective by CLIA. One non-protective titer by ELISA was reported as protective by CLIA. Conclusion Analytical agreement is good between the two immunoassays. However there are some discrepancies in quantitative measurement. This may have been due the variation in

  8. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana.

    PubMed

    Rigano, M M; Alvarez, M L; Pinkhasov, J; Jin, Y; Sala, F; Arntzen, C J; Walmsley, A M

    2004-02-01

    Transgenic plants are potentially safe and inexpensive vehicles to produce and mucosally deliver protective antigens. However, the application of this technology is limited by the poor response of the immune system to non-particulate, subunit vaccines. Co-delivery of therapeutic proteins with carrier proteins could increase the effectiveness of the antigen. This paper reports the ability of transgenic Arabidopsis thaliana plants to produce a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin and a 6 kDa tuberculosis antigen, the early secretory antigenic target ESAT-6. Both components of the fusion protein were detected using GM1-ganglioside-dependent enzyme-linked immunosorbant assay. This suggested the fusion protein retained both its native antigenicity and the ability to form pentamers.

  9. Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Zimmerman, Shawn M; Dyke, Jeremy S; Jelesijevic, Tomislav P; Michel, Frank; Lafontaine, Eric R; Hogan, Robert J

    2017-08-01

    Burkholderia mallei , a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo , elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei , including antigen discovery. Copyright © 2017 American Society for Microbiology.

  10. Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei

    PubMed Central

    Zimmerman, Shawn M.; Dyke, Jeremy S.; Jelesijevic, Tomislav P.; Michel, Frank; Lafontaine, Eric R.

    2017-01-01

    ABSTRACT Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei. Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo. Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery. PMID:28507073

  11. First evaluation of the serum level of anti-hepatitis B surface antigen after vaccination in Libya.

    PubMed

    Madour, A; Alkout, A; Vanin, S

    2013-12-01

    The hepatitis B virus (HBV) vaccination schedule in Libya follows international recommendations (1st dose at birth, 2nd after 1 month and 3rd after 6 months). This research aimed to evaluate the long-term protection of the HBV immunization programme in Tripoli and to determine the best age to administer booster doses. Serum levels of hepatitis B surface antigen were determined in 277 randomly selected children aged 1-12 years. The response to HBV vaccine in 1-3-year-olds was 93.2%, but this declined with age and at 7-9 years after initial vaccination only 53.1% of children had protective titres (> or = 10 mIU/mL). No significant differences between males and females in antibody persistence or response to vaccine were observed. We recommend continuing the HBV vaccination programme and that a booster dose be given to 6-year-old children to ensure maximum protection during the period of school entry and beyond.

  12. Evaluation of Aggregated Ag85B Antigen for Its Biophysical Properties, Immunogenicity, and Vaccination Potential in a Murine Model of Tuberculosis Infection

    PubMed Central

    Ahmad, Faraz; Zubair, Swaleha; Gupta, Pushpa; Gupta, Umesh Datta; Patel, Rakesh; Owais, Mohammad

    2017-01-01

    Protein aggregates have been reported to act as a reservoir that can release biologically active, native form of precursor protein. Keeping this fact into consideration, it is tempting to exploit protein aggregate-based antigen delivery system as a functional vaccine to expand desirable immunological response in the host. Herein, we explored the capacity of aggregated Ag85B of Mycobacterium tuberculosis (Mtb) to act as a prophylactic vaccine system that releases the precursor antigen in slow and sustained manner. Being particulate system with exposed hydrophobic residues, aggregated Ag85B is likely to be avidly taken up by both phagocytosis as well as fusion with plasma membrane of antigen presenting cells, leading to its direct delivery to their cytosol. Its unique ability to access cytosol of target cells is further evident from the fact that immunization with aggregated Ag85B led to the induction of Th1-dominant immune response along with upregulated expression of qualitatively superior polyfunctional T cells in the mice. Antibodies generated following immunization with aggregated antigen recognized both native and monomeric Ag85B released from protein aggregate. The implicated immunization strategy offers protection at par to that of established BCG vaccine with desirable central and effector memory responses against subsequent Mtb aerosol challenge. The study highlights the potential of aggregated Ag85B as promising antigen delivery system and paves the way to design better prophylactic regimes against various intracellular pathogens including Mtb. PMID:29230211

  13. Thermostable Cross-Protective Subunit Vaccine against Brucella Species

    PubMed Central

    Barabé, Nicole D.; Grigat, Michelle L.; Lee, William E.; Poirier, Robert T.; Jager, Scott J.; Berger, Bradley J.

    2014-01-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 105 CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. PMID:25320267

  14. Antibody Titer Has Positive Predictive Value for Vaccine Protection against Challenge with Natural Antigenic-Drift Variants of H5N1 High-Pathogenicity Avian Influenza Viruses from Indonesia

    PubMed Central

    Suarez, David L.; Spackman, Erica; Jadhao, Samadhan; Dauphin, Gwenaelle; Kim-Torchetti, Mia; McGrane, James; Weaver, John; Daniels, Peter; Wong, Frank; Selleck, Paul; Wiyono, Agus; Indriani, Risa; Yupiana, Yuni; Sawitri Siregar, Elly; Prajitno, Teguh; Smith, Derek; Fouchier, Ron

    2015-01-01

    ABSTRACT Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using

  15. Combination of two candidate subunit vaccine antigens elicits protective immunity to ricin and anthrax toxin in mice.

    PubMed

    Vance, David J; Rong, Yinghui; Brey, Robert N; Mantis, Nicholas J

    2015-01-09

    In an effort to develop combination vaccines for biodefense, we evaluated a ricin subunit antigen, RiVax, given in conjunction with an anthrax protective antigen, DNI. The combination led to high endpoint titer antibody response, neutralizing antibodies, and protective immunity against ricin and anthrax lethal toxin. This is a natural combination vaccine, since both antigens are recombinant subunit proteins that would be given to the same target population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences

    PubMed Central

    Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz

    2012-01-01

    Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950

  17. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    PubMed

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  18. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements

    PubMed Central

    1981-01-01

    A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778

  19. Controlled Release of Antigens for One Dose Immunization

    DTIC Science & Technology

    1983-01-01

    microencapsulation of antigen coated alum or by microencapsulating clusters of smaller (᝺ microns) microcapsules . Microcapsules under 10 microns in... microencapsulation were studied to determine what criteria must be satisfied to provide a protective immune response to hepatitis B surface antigen... microencapsulated in poly (DL-lactide-co- glycolide) in a form that was too large to be phagocytized and had an antigen release profile similar to that achieved with

  20. B cell activation. III. B cell plasma membrane depolarization and hyper- Ia antigen expression induced by receptor immunoglobulin cross-linking are coupled

    PubMed Central

    1983-01-01

    We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207

  1. Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics.

    PubMed

    Schiener, M; Eberlein, B; Moreno-Aguilar, C; Pietsch, G; Serrano, P; McIntyre, M; Schwarze, L; Russkamp, D; Biedermann, T; Spillner, E; Darsow, U; Ollert, M; Schmidt-Weber, C B; Blank, S

    2017-01-01

    Hymenoptera stings can cause severe anaphylaxis in untreated venom-allergic patients. A correct diagnosis regarding the relevant species for immunotherapy is often hampered by clinically irrelevant cross-reactivity. In vespid venom allergy, cross-reactivity between venoms of different species can be a diagnostic challenge. To address immunological IgE cross-reactivity on molecular level, seven recombinant antigens 5 of the most important Vespoidea groups were assessed by different diagnostic setups. The antigens 5 of yellow jackets, hornets, European and American paper wasps, fire ants, white-faced hornets, and Polybia wasps were recombinantly produced in insect cells, immunologically and structurally characterized, and their sIgE reactivity assessed by ImmunoCAP, ELISA, cross-inhibition, and basophil activation test (BAT) in patients with yellow jacket or Polistes venom allergy of two European geographical areas. All recombinant allergens were correctly folded and structural models and patient reactivity profiles suggested the presence of conserved and unique B-cell epitopes. All antigens 5 showed extensive cross-reactivity in sIgE analyses, inhibition assays, and BAT. This cross-reactivity was more pronounced in ImmunoCAP measurements with venom extracts than in sIgE analyses with recombinant antigens 5. Dose-response curves with the allergens in BAT allowed a differentiated individual dissection of relevant sensitization. Due to extensive cross-reactivity in various diagnostic settings, antigens 5 are inappropriate markers for differential sIgE diagnostics in vespid venom allergy. However, the newly available antigens 5 from further vespid species and the combination of recombinant allergen-based sIgE measurements with BAT represents a practicable way to diagnose clinically relevant sensitization in vespid venom allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Generation and characterization of high affinity humanized fab against hepatitis B surface antigen.

    PubMed

    Tiwari, Ashutosh; Dutta, Durgashree; Khanna, Navin; Acharya, Subrat K; Sinha, Subrata

    2009-09-01

    5S is a mouse monoclonal IgG1 that binds to the 'a' epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (K(D) = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.

  3. Smallpox subunit vaccine produced in planta confers protection in mice

    PubMed Central

    Golovkin, Maxim; Spitsin, Sergei; Andrianov, Vyacheslav; Smirnov, Yuriy; Xiao, Yuhong; Pogrebnyak, Natalia; Markley, Karen; Brodzik, Robert; Gleba, Yuri; Isaacs, Stuart N.; Koprowski, Hilary

    2007-01-01

    We report here the in planta production of the recombinant vaccinia virus B5 antigenic domain (pB5), an attractive component of a subunit vaccine against smallpox. The antigenic domain was expressed by using efficient transient and constitutive plant expression systems and tested by various immunization routes in two animal models. Whereas oral administration in mice or the minipig with collard-derived insoluble pB5 did not generate an anti-B5 immune response, intranasal administration of soluble pB5 led to a rise of B5-specific immunoglobulins, and parenteral immunization led to a strong anti-B5 immune response in both mice and the minipig. Mice immunized i.m. with pB5 generated an antibody response that reduced virus spread in vitro and conferred protection from challenge with a lethal dose of vaccinia virus. These results indicate the feasibility of producing safe and inexpensive subunit vaccines by using plant production systems. PMID:17428917

  4. The biological and practical significance of antigenic variability in protective T cell responses against Theileria parva.

    PubMed

    Morrison, W I

    2007-08-19

    The evolution of antigenically distinct pathogen strains that fail to cross-protect is well documented for pathogens controlled primarily by humoral immune responses. Unlike antibodies, which recognise native proteins, protective T cells can potentially recognise epitopes in a variety of proteins that are not necessarily displayed on the pathogen surface. Moreover, individual hosts of different MHC genotypes generally respond to different sets of epitopes. It is therefore less easy to envisage how strain restricted immunity can arise for pathogens controlled by T cell responses, particularly in antigenically complex parasites. Nevertheless, strain restricted immunity is clearly a feature of a number of parasitic infections, where immunity is known to be mediated by T cell responses. One such parasite is Theileria parva which induces potent CD8 T cell responses that play an important role in immunity. CD8 T cells specific for parasitized lymphoblasts exhibit strain specificity, which appears to correlate with the ability of parasite strains to cross-protect. Studies using recently identified T. parva antigens recognised by CD8 T cells have shown that the strain restricted nature of immunity is a consequence of the CD8 T cell response in individual animals being focused on a limited number of dominant polymorphic antigenic determinants. Responses in animals of different MHC genotypes are often directed to different parasite antigens, indicating that, at the host population level, a larger number of parasite proteins can serve as targets for the protective T cell response. Nevertheless, the finding that parasite strains show overlapping antigenic profiles, probably as a consequence of sexual recombination, suggests that induction of responses to an extended but limited set of antigens in individual animals may overcome the strain restricted nature of immunity.

  5. Enzyme-linked immunosorbent assay using a recombinant baculovirus-expressed Bacillus anthracis protective antigen (PA): measurement of human anti-PA antibodies.

    PubMed Central

    Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T

    1994-01-01

    We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927

  6. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    PubMed

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  7. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus

    PubMed Central

    Klaenhammer, Todd R.

    2016-01-01

    ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is

  8. Induction of the c-myc protooncogene following antigen binding to hapten-specific B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, E.C.; Fetherston, J.; Zimmer, S.

    1986-03-01

    Considerable controversy has centered on the role that the surface immunoglobulin (sIg) receptor for antigen plays during the induction of B cell activation. Stimulation by anti-Ig reagents has been shown to activate G/sub 0/ B cells to enter the cell cycle. The binding of thymus-dependent antigens to hapten-specific B cell populations apparently does not result in the movement of the antigen-binding cells (ABC) into the G/sub 1/ stage of the cell cycle. However, the authors have recently demonstrated that antigen binding to such hapten-specific B cells does result in the initiation of the membrane phosphatidylinositol cycle. In the present experiments,more » hapten-specific B cells (80-90% ABC, 99% in G/sub 0/) were incubated with either the correct hapten-carrier conjugate, with the carrier protein, or only media for 2 hours at 37/sup 0/C. At that time, total cellular RNA was isolated and subsequently analyzed by either dot blots or Northern gel techniques. The blots were probed with a (/sup 32/P)-c-myc SstI-Xhol fragment. The results indicate that hapten carrier stimulation of the hapten-specific B cells induces enhanced transcription of the c-myc gene. These observations lend further support to the premise that antigen binding to the sIg receptor results in the transduction to the cell of important signals and implicates the active participation of sIg during the process of antigen-mediated B cell activation.« less

  9. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells

    PubMed Central

    Koncz, Gabor; Hueber, Anne-Odile

    2012-01-01

    Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins. PMID:22848207

  10. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague.

    PubMed

    Garmory, Helen S; Griffin, Kate F; Brown, Katherine A; Titball, Richard W

    2003-06-20

    Bubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague. In this study, an aroA attenuated strain of Salmonella enterica serovar Typhimurium (SL3261) has been used to deliver the Y. pestis V antigen as a candidate oral plague vaccine. SL3261 was transformed with the expression plasmid pTrc-LcrV, containing the lcrV gene encoding V antigen. Immunoblot analysis showed V antigen expression in SL3261 in vitro and intragastric immunisation of mice with the recombinant Salmonella resulted in the induction of V antigen-specific serum antibody responses and afforded protection against Y. pestis challenge. However, the antibody responses induced by the recombinant Salmonella did not correlate with the protection afforded, indicating that immune responses other than antibody may play a role in the protection afforded against plague by this candidate vaccine.

  11. Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs) | NCI Technology Transfer Center | TTC

    Cancer.gov

    Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

  12. Protection against anthrax and plague by a combined vaccine in mice and rabbits.

    PubMed

    Ren, Jun; Dong, Dayong; Zhang, Jinlong; Zhang, Jun; Liu, Shuling; Li, Bing; Fu, Ling; Xu, Junjie; Yu, Changming; Hou, Lihua; Li, Jianmin; Chen, Wei

    2009-12-09

    The protective antigen (PA) of Bacillus anthracis and the Fraction 1 Capsular Antigen (F1 antigen), V antigen of Yersinia pestis have been demonstrated to be potential immunogens and candidate vaccine sub-units against anthrax and plague respectively. In this study, the authors have investigated the antibody responses and the protective efficacy when the antigens were administered separately or in combination intramuscularly formulation adsorbed to an aluminum hydroxide adjuvant. Results show that immunized rF1 + rV and rPA antigen together was as effective as separately for induction of serological antibody response, and these titers were maintained for over 1 year in mice. An isotype analysis of the serum indicates that the co-administration of these antigens did not influence the antigen-specific IgG1/IgG2a ratio which was consistent with a Th2 bias. Furthermore, the combined vaccine comprising the protein antigens rF1 + rV + rPA has been demonstrated to protect mice from subcutaneous challenge with 10(7) colony-forming units (CFU) virulent Y. pestis strain, and to fully protect rabbit against subcutaneous challenge with 1.2x10(5) colony-forming units (CFU) virulent B. anthracis spores. These data show that the protective efficacy was unaffected when the antigens were administered in combination.

  13. New Method To Generate Enzymatically Deficient Clostridium difficile Toxin B as an Antigen for Immunization

    PubMed Central

    Genth, Harald; Selzer, Jörg; Busch, Christian; Dumbach, Jürgen; Hofmann, Fred; Aktories, Klaus; Just, Ingo

    2000-01-01

    The family of the large clostridial cytotoxins, encompassing Clostridium difficile toxins A and B as well as the lethal and hemorrhagic toxins from Clostridium sordellii, monoglucosylate the Rho GTPases by transferring a glucose moiety from the cosubstrate UDP-glucose. Here we present a new detoxification procedure to block the enzyme activity by treatment with the reactive UDP-2′,3′-dialdehyde to result in alkylation of toxin A and B. Alkylation is likely to occur in the catalytic domain, because the native cosubstrate UDP-glucose completely protected the toxins from inactivation and the alkylated toxin competes with the native toxin at the cell receptor. Alkylated toxins are good antigens resulting in antibodies recognizing only the C-terminally located receptor binding domain, whereas formaldehyde treatment resulted in antibodies recognizing both the receptor binding domain and the catalytic domain, indicating that the catalytic domain is concealed under native conditions. Antibodies against the native catalytic domain (amino acids 1 through 546) and those holotoxin antibodies recognizing the catalytic domain inhibited enzyme activity. However, only antibodies against the receptor binding domain protected intact cells from the cytotoxic activity of toxin B, whereas antibodies against the catalytic domain were protective only when inside the cell. PMID:10678912

  14. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells

    PubMed Central

    Veninga, Henrike; van der Vlugt, Luciën E. P. M.; Voskamp, Astrid; Boon, Louis; Westerhof, Lotte B.; Smits, Hermelijn H.

    2017-01-01

    Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1. PMID:28753651

  15. [Comparative study of the antigens of Streptococcus group A. Rport I. Comparative characteristics of the immunologic activity of partially purified M-protien and the cytoplasmic protective antigen].

    PubMed

    Evseev, V A; Avdeeva, Zh I; Kondrashov, G I

    1975-12-01

    Experiments were conducted on mice. A study was made of the protective properties of the cytoplasmic fraction of streptococcus, group A, Type 1 and of an antigen isolated from it by sedimentation with ammonium sulfate, in comparison with M-protein partially purified by the method of Lancefield and Perlman. Cytoplasmic antigen was not inferior by immunogenicity in comparison with M-protein. In difference from the latter, it was thermolabile and sensitive to the action of hydrochloric acid. The protective antigen was revealed in the cytoplasm not only of the virulent, but also of avirulent strains of streptococcus devoid of M-protein.

  16. Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus.

    PubMed

    Li, J; Kasper, D L; Ausubel, F M; Rosner, B; Michel, J L

    1997-11-25

    The alpha C protein of group B Streptococcus (GBS) is a major surface-associated antigen. Although its role in the biology and virulence of GBS has not been defined, it is opsonic and capable of eliciting protective immunity. The alpha C protein is widely distributed among clinical isolates and is a potential protein carrier and antigen in conjugate vaccines to prevent GBS infections. The structural gene for the alpha C protein, bca, has been cloned and sequenced. The protein encoded by bca is related to a class of surface-associated proteins of gram-positive cocci involved in virulence and immunity. To investigate the potential roles of the alpha C protein, bca null mutants were generated in which the bca gene was replaced with a kanamycin resistance cassette via homologous recombination using a novel shuttle/suicide vector. Studies of lethality in neonatal mice showed that the virulence of the bca null mutants was attenuated 5- to 7-fold when compared with the isogenic wild-type strain A909. Significant differences in mortality occurred in the first 24 h, suggesting that the role of the alpha antigen is important in the initial stages of the infection. In contrast to A909, bca mutants were no longer killed by polymorphonuclear leukocytes in the presence of alpha-specific antibodies in an in vitro opsonophagocytic assay. In contrast to previous studies, alpha antigen expression does not appear to play a role in resistance to opsonophagocytosis in the absence of alpha-specific antibodies. In addition, antibodies to the alpha C protein did not passively protect neonatal mice from lethal challenge with bca mutants, suggesting that these epitopes are uniquely present within the alpha antigen as expressed from the bca gene. Therefore, the alpha C protein is important in the pathogenesis of GBS infection and is a target for protective immunity in the development of GBS vaccines.

  17. Biotin avidin amplified magnetic immunoassay for hepatitis B surface antigen detection using GoldMag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, An; Geng, Tingting; Fu, Qiang; Chen, Chao; Cui, Yali

    2007-04-01

    Using GoldMag (Fe3O4/Au) nanoparticles as a carrier, a biotin-avidin amplified ELISA was developed to detect hepatitis B surface antigen (HBsAg). A specific antibody was labeled with biotin and then used to detect the antigen with an antibody coated on GoldMag nanoparticles by a sandwich ELISA assay. The results showed that 5 mol of biotin were surface bound per mole of antibody. The biotin-avidin amplified ELISA assay has a higher sensitivity than that of the direct ELISA assay. There is 5-fold difference between HBsAg positive and negative serum even at dilution of 1:10000, and the relative standard deviation of the parallel positive serum at dilution of 1:4000 is 5.98% (n=11).

  18. Peripheral B cells latently infected with Epstein–Barr virus display molecular hallmarks of classical antigen-selected memory B cells

    PubMed Central

    Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.

    2005-01-01

    Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748

  19. Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires

    PubMed Central

    Faderl, Martin; Klein, Fabian; Wirz, Oliver F.; Heiler, Stefan; Albertí-Servera, Llucia; Engdahl, Corinne; Andersson, Jan; Rolink, Antonius

    2018-01-01

    The escape of anti-self B cells from tolerance mechanisms like clonal deletion, receptor editing, and anergy results in the production of autoantibodies, which is a hallmark of many autoimmune disorders. In this study, we demonstrate that both germline sequences and somatic mutations contribute to autospecificity of B cell clones. For this issue, we investigated the development of antinuclear autoantibodies (ANAs) and their repertoire in two different mouse models. First, in aging mice that were shown to gain several autoimmune features over time including ANAs. Second, in mice undergoing a chronic graft-versus-host disease (GVHD), thereby developing systemic lupus erythematosus-like symptoms. Detailed repertoire analysis revealed that somatic hypermutations (SHM) were present in all Vh and practically all Vl regions of ANAs generated in these two models. The ANA B cell repertoire in aging mice was restricted, dominated by clonally related Vh1-26/Vk4-74 antibodies. In the collection of GVHD-derived ANAs, the repertoire was less restricted, but the usage of the Vh1-26/Vk4-74 combination was still apparent. Germline conversion showed that the SHM in the 4-74 light chain are deterministic for autoreactivity. Detailed analysis revealed that antinuclear reactivity of these antibodies could be induced by a single amino acid substitution in the CDR1 of the Vk4-74. In both aging B6 and young GVHD mice, conversion of the somatic mutations in the Vh and Vl regions of non Vh1-26/Vk4-74 using antibodies showed that B cells with a germline-encoded V gene could also contribute to the ANA-reactive B cell repertoire. These findings indicate that two distinct pathways generate ANA-producing B cells in both model systems. In one pathway, they are generated by Vh1-26/Vk4-74 expressing B cells in the course of immune responses to an antigen that is neither a nuclear antigen nor any other self-antigen. In the other pathway, ANA-producing B cells are derived from progenitors in the bone

  20. Characterisation of the Native Lipid Moiety of Echinococcus granulosus Antigen B

    PubMed Central

    Obal, Gonzalo; Ramos, Ana Lía; Silva, Valeria; Lima, Analía; Batthyany, Carlos; Bessio, María Inés; Ferreira, Fernando; Salinas, Gustavo; Ferreira, Ana María

    2012-01-01

    Antigen B (EgAgB) is the most abundant and immunogenic antigen produced by the larval stage (metacestode) of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs) present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5). In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40–50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters) and polar (mainly phosphatidylcholine) lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9) are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding both lipid

  1. Hepatitis B surface antigen and polymerized albumin binding activity in sheep serum.

    PubMed Central

    Franklin, S G; Millman, I; Blumberg, B S

    1984-01-01

    Sera from sheep and other domestic animals contain a substance that gives a strongly positive test for antibody to hepatitis B virus surface antigen by the accepted radioimmunoassay procedure. We have purified this substance from sheep serum to near homogeneity by ion-exchange, affinity, and molecular exclusion chromatography and have identified it to be an IgM. We present evidence that this sheep IgM is an antibody to polymerized sheep albumin. This antibody may arise due to infection by hepatitis B virus, hepatitis B virus-like viruses, or other pathological agents and may react with hepatitis B virus surface antigen by combining with polymerized albumin bound to the hepatitis B virus receptor for this polymer. Images PMID:6582511

  2. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies

    PubMed Central

    Ramirez, Karina; Ditamo, Yanina; Galen, James E.; Baillie, Les W. J.; Pasetti, Marcela F.

    2010-01-01

    The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-γ-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin-neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life. PMID:20619377

  3. 45 CFR 5b.3 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Policy. 5b.3 Section 5b.3 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.3 Policy. It is the policy of the Department to protect the privacy of individuals to the fullest extent possible...

  4. Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells

    PubMed Central

    Parra, David; Rieger, Aja M.; Li, Jun; Zhang, Yong-An; Randall, Louise M.; Hunter, Christopher A.; Barreda, Daniel R.; Sunyer, J. Oriol

    2012-01-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4+ T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4+ T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages. PMID:22058420

  5. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells.

    PubMed

    Parra, David; Rieger, Aja M; Li, Jun; Zhang, Yong-An; Randall, Louise M; Hunter, Christopher A; Barreda, Daniel R; Sunyer, J Oriol

    2012-04-01

    Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4(+) T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4(+) T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages.

  6. [Eimeria tenella and Eimeria acervulina: an antigenic stimulation in vitro of cells from immune chickens induced by adoptive transfer of protection against avian coccidiosis].

    PubMed

    Rhalem, A; Sahibi, H; Kazanji, M; Laurent, F; Berrag, B; Péry, P

    1993-01-01

    The transfer of 5 x 10(7) or 10(8) spleen cells from E tenella-infected chickens to virgin animals after 12-20-h in vitro stimulation with whole sporozoite homogenates confers significant protection to recipients. The oocyst contents of ceca on d 7 post-infection with 20,000 E tenella oocysts were (1.33 +/- 1.10) x 10(6) in chickens which received 5 x 10(7) immune cells after 20-h in vitro stimulation and (4.64 +/- 2.85) x 10(6) in chickens receiving 5 x 10(7) stimulated cells from normal chickens (85% protection). Adoptive transfer by spleen cells revealed an asymmetric cross-protection between E tenella and E acervulina. Spleen cells from E tenella immune chickens protected only against a subsequent infection with the same parasite, while spleen cells from E acervulina immune chickens protected against infection with E acervulina (78%) but also against infection with E tenella (68% protection). The common antigen permits better stimulation, but common surface sporozoite antigens purified from E tenella sporozoites via anti-E acervulina biliary antibodies are capable of stimulating both types of cells without, however, changing their properties.

  7. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate

    PubMed Central

    Noviski, Mark; Mueller, James L; Satterthwaite, Anne; Garrett-Sinha, Lee Ann; Brombacher, Frank

    2018-01-01

    Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn−/− B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells. PMID:29521626

  8. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype

    PubMed Central

    Folle, Ana Maite; Kitano, Eduardo S.; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K.; Rosenzvit, Mara; Batthyány, Carlos

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  9. Characterisation of Antigen B Protein Species Present in the Hydatid Cyst Fluid of Echinococcus canadensis G7 Genotype.

    PubMed

    Folle, Ana Maite; Kitano, Eduardo S; Lima, Analía; Gil, Magdalena; Cucher, Marcela; Mourglia-Ettlin, Gustavo; Iwai, Leo K; Rosenzvit, Mara; Batthyány, Carlos; Ferreira, Ana María

    2017-01-01

    The larva of cestodes belonging to the Echinococcus granulosus sensu lato (s.l.) complex causes cystic echinococcosis (CE). It is a globally distributed zoonosis with significant economic and public health impact. The most immunogenic and specific Echinococcus-genus antigen for human CE diagnosis is antigen B (AgB), an abundant lipoprotein of the hydatid cyst fluid (HF). The AgB protein moiety (apolipoprotein) is encoded by five genes (AgB1-AgB5), which generate mature 8 kDa proteins (AgB8/1-AgB8/5). These genes seem to be differentially expressed among Echinococcus species. Since AgB immunogenicity lies on its protein moiety, differences in AgB expression within E. granulosus s.l. complex might have diagnostic and epidemiological relevance for discriminating the contribution of distinct species to human CE. Interestingly, AgB2 was proposed as a pseudogene in E. canadensis, which is the second most common cause of human CE, but proteomic studies for verifying it have not been performed yet. Herein, we analysed the protein and lipid composition of AgB obtained from fertile HF of swine origin (E. canadensis G7 genotype). AgB apolipoproteins were identified and quantified using mass spectrometry tools. Results showed that AgB8/1 was the major protein component, representing 71% of total AgB apolipoproteins, followed by AgB8/4 (15.5%), AgB8/3 (13.2%) and AgB8/5 (0.3%). AgB8/2 was not detected. As a methodological control, a parallel analysis detected all AgB apolipoproteins in bovine fertile HF (G1/3/5 genotypes). Overall, E. canadensis AgB comprised mostly AgB8/1 together with a heterogeneous mixture of lipids, and AgB8/2 was not detected despite using high sensitivity proteomic techniques. This endorses genomic data supporting that AgB2 behaves as a pseudogene in G7 genotype. Since recombinant AgB8/2 has been found to be diagnostically valuable for human CE, our findings indicate that its use as antigen in immunoassays could contribute to false negative results in

  10. Protective effects of murine monoclonal antibodies in experimental septicemia: E. coli antibodies protect against different serotypes of E. coli.

    PubMed

    Salles, M F; Mandine, E; Zalisz, R; Guenounou, M; Smets, P

    1989-04-01

    Murine monoclonal antibodies that bind outer membrane antigens of the J5 mutant of Escherichia coli O111:B4 were derived from spleen cells of BALB/c mice immunized with killed whole cells and boosted with lipopolysaccharide (LPS) and LPS-associated proteins. Seven hybridomas were selected for their reactivity against the J5 LPS; they cross-reacted with O111, O55, O127, and O128 E. coli LPS. One (B7B3) also reacted with the Serratia marcescens LPS and Klebsiella pneumoniae lipid A. A protective effect was obtained with D6B4 antibody in a lethal endotoxemia model induced by LPS from O111, O127, and O128 E. coli serotypes in D-galactosamine-sensitized mice. D6B4 and D6B3 antibodies protected mice infected with E. coli O111:B4, when administered before infection. The D6B4 antibody was also protective when administered after infection. The antibodies D6B3 and D4B5 were protective in heterologous infection induced by E. coli O2:K1.

  11. Capsule null locus meningococci: typing of antigens used in an investigational multicomponent meningococcus serogroup B vaccine.

    PubMed

    Claus, Heike; Jördens, Markus S; Kriz, Pavla; Musilek, Martin; Jarva, Hanna; Pawlik, Marie-Christin; Meri, Seppo; Vogel, Ulrich

    2012-01-05

    The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. 34 CFR 5b.3 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Policy. 5b.3 Section 5b.3 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.3 Policy. It is the policy of the Department to protect the privacy of individuals to the fullest extent possible while nonetheless permitting the...

  13. Effects of hydroformylation treatment on the storage time and blood group antigen expressions of reagent red blood cells.

    PubMed

    Yu, Yang; Sun, Xiaolin; Guan, Xiaozhen; Zhang, Xiaojuan; Ma, Chunya; Chen, Linfeng; Wang, Deqing

    2014-06-01

    To evaluate the effects of hydroformylation treatment on the storage time and blood group antigen expressions of reagent red blood cells (RBCs). RBCs from healthy donors were treated by using various final concentrations of paraformaldehyde (0.01%, 0.02%, 0.05%, 0.1%, 0.2%, 0.5% and 1.0%) and glutaraldehyde (0.01%, 0.025%, 0.05%, 0.1%, 0.2%, 0.5% and 1.0%), and one aliquot was used as control (untreated with aldehydes). Supernatant free hemoglobin (FHb) levels in all groups stored at 4 °C were detected every week, and the optimal procedure was selected. Expression of blood group antigens on RBCs treated by the optimal procedure was determined, and the total scores of blood group antigens were calculated. 0.2%, 0.5% and 1.0% Glutaraldehyde groups were ruled out directly due to serious crosslinking and aggregation of RBCs. As the extension of time, FHb levels in other 11 groups gradually increased (p<0.01 or p<0.05). FHb level in 0.025% glutaraldehyde group was significantly lower than that in other groups after 13 weeks (p<0.01), and the antigen strength of Fy(b), Jk(b), and Le(b) decreased slightly compared with those before treatment and storage (p<0.05), and there was no significant change for antigen strength of A, B, D, C, E, c, e, M, N, S, s, k, P1, Fy(a), Jk(a), and Le(a) (p>0.05). 0.025% Glutaraldehyde treatment can provide optimal protection for the membrane of RBCs and keep hemolysis at a low level after 13 weeks storage, and the majority of blood group antigen systems are not significantly affected, and the slight decline of Fy(b), Jk(b), and Le(b) antigen strength was acceptable for classical serological tests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Immunogenicity of transgenic plant-derived hepatitis B surface antigen.

    PubMed Central

    Thanavala, Y; Yang, Y F; Lyons, P; Mason, H S; Arntzen, C

    1995-01-01

    The focus of the Children's Vaccine Initiative is to encourage the discovery of technology that will make vaccines more readily available to developing countries. Our strategy has been to genetically engineer plants so that they can be used as inexpensive alternatives to fermentation systems for production of subunit antigens. In this paper we report on the immunological response elicited in vivo by using recombinant hepatitis B surface antigen (rHBsAg) purified from transgenic tobacco leaves. The anti-hepatitis B response to the tobacco-derived rHBsAg was qualitatively similar to that obtained by immunizing mice with yeast-derived rHBsAg (commercial vaccine). Additionally, T cells obtained from mice primed with the tobacco-derived rHBsAg could be stimulated in vitro by the tobacco-derived rHBsAg, yeast-derived rHBsAg, and by a synthetic peptide that represents part of the a determinant located in the S region (139-147) of HBsAg. Further support for the integrity of the T-cell epitope of the tobacco-derived rHBsAg was obtained by testing the ability of the primed T cells to proliferate in vitro after stimulation with a monoclonal anti-idiotype and an anti-idiotype-derived peptide, both of which mimic the group-specific a determinant of HBsAg. In total, we have conclusively demonstrated that both B- and T-cell epitopes of HBsAg are preserved when the antigen is expressed in a transgenic plant. PMID:7724566

  15. Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens.

    PubMed

    Blake, Damer P; Hesketh, Patricia; Archer, Andrew; Carroll, Fionnadh; Smith, Adrian L; Shirley, Martin W

    2004-11-01

    The genomes of protozoan parasites encode thousands of gene products and identification of the subset that stimulates a protective immune response is a daunting task. Most screens for vaccine candidates identify molecules by capacity to induce immune responses rather than protection. This paper describes the core findings of a strategy developed with the coccidial parasite Eimeria maxima to rationally identify loci within its genome that encode immunoprotective antigens. Our strategy uses a novel combination of parasite genetics, DNA fingerprinting, drug-resistance and strain-specific immunity and centres on two strains of E. maxima that each induce a lethal strain-specific protective immune response in the host and show a differential response to anti-Eimeria chemotherapy. Through classical mating studies with these strains we have demonstrated that loci encoding molecules stimulating strain-specific protective immunity or resistance to the anti-coccidial drug robenidine segregate independently. Furthermore, passage of populations of recombinant parasites in the face of killing in the immune host was accompanied by the elimination of some polymorphic DNA markers defining the parent strain used to immunise the host. Consideration of the numbers of parasites recombinant for the two traits implicates very few antigen-encoding loci. Our data provide a potential strategy to identify putative antigen-encoding loci in other parasites.

  16. Preliminary characterization of Thy-1.1 and Ag-B antigens from rat tissues solubilized in detergents

    PubMed Central

    Letarte-Muirhead, Michelle; Acton, Ronald T.; Williams, Alan F.

    1974-01-01

    1. A radioactive binding assay for Thy-1.1 alloantigen which functions in the presence of detergents was established by using glutaraldehyde-fixed thymocytes as target cells. Thy-1.1 activity in detergent extracts was then assayed by measuring inhibition of the binding assay. 2. Solubilization of Thy-1.1 from whole thymocytes, and their membranes by a large number of non-ionic detergents and deoxycholate was studied. In the same extracts Ag-B(4) histocompatibility antigenic activities were measured. With the exception of Nonidet P-40, the detergents did not affect the antigenicity of Thy-1.1, but only Lubrol-PX and deoxycholate gave effective solubilization as measured by activity remaining in the supernatant after centrifugation at 200000g for 40min. With Ag-B(4) antigen, Triton X-100, Triton X-67 and Nonidet P-40 gave effective solubilization as well as Lubrol-PX and deoxycholate. Solubilization of Thy-1.1 activity from leukaemia cells and a brain homogenate was also studied, but none of the non-ionic detergents gave satisfactory results with these tissues. 3. Extracts from thymocyte membranes were further examined by gel filtration and sucrose gradient centrifugation. The Thy-1.1 activity behaved as a single component in deoxycholate with a density similar to that of a globular protein, but in Lubrol-PX the antigen was contained in a low-density complex. In Lubrol-PX extracts Ag-B(4) was also found in aggregates not observed in deoxycholate. 4. The s20,w values for Thy-1.1 and Ag-B(4) antigens in deoxycholate were 2.4 and 4.4, and v̄ values were 0.70 and 0.75 respectively. The Stokes radius observed for Thy-1.1 was 3.1nm and for Ag-B(4) 5.3nm. By using these values the molecular weights for the antigen–detergent complexes were calculated to be 28000 for Thy-1.1 and 100000 for Ag-B(4). PMID:4219284

  17. Efficacy of antigen dosage on the hepatitis B vaccine response in infants born to hepatitis B-uninfected and hepatitis B-infected mothers.

    PubMed

    Kang, Guodong; Ma, Fubao; Chen, Haiping; Yang, Yunkai; Guo, Shaohong; Wang, Zhiguo; Liang, Xiaofeng; Li, Li; Cui, Fuqiang; Zhang, Longhua

    2015-08-07

    To compare the safety and immunogenicity of two dosages of recombinant hepatitis B (HB) vaccine administered to infants born to HB-uninfected and HB-infected mothers. A phase III, controlled, single-blinded clinical trial was conducted with 506 healthy newborns. The newborns were assigned to three groups based on maternal levels of HB surface antigen (HBsAg) and HB e antigen (HBeAg): Group A, HBsAg negative; Group B, HBsAg positive and HBeAg negative; and Group C, HBsAg positive and HBeAg positive. Three doses of 10 or 5 μg recombinant HB vaccine were randomly administered by 1:1 within 24 h after birth, at 1 month and at 6 months. Safety data and pre- and postvaccination blood samples were collected. A total of 326, 93, and 87 subjects were included in Groups A, B, and C, respectively. Both dosages of HB vaccine were well tolerated by all subjects. The most common injection-site adverse reactions (ARs) and systemic ARs were pain and fever. After 1 month of the third dose, the Group A infants who received the 10 μg HB vaccine achieved a higher geometric mean concentration (GMC) of HB surface antibody (anti-HBs) than those who received the 5 μg dosage. Maternal anti-HBs serostatus did not influence HB vaccine immunogenicity at either dosage. In contrast, there was no significant difference in the anti-HBs seroconversion rate, GMCs, or estimated vaccine efficacy (EVE) against perinatal transmission between Groups B and C, regardless of dosage. However, the seroconversion rate and EVE of the 5 μg HB vaccine was lower in Group C than in Group B. Both dosages of the HB vaccine were well tolerated and elicited a good immune response in infants of Group A, regardless of the maternal anti-HBs serostatus. EVE did not significantly differ between Groups B and C. Clinicaltrials.gov identifier: NCT02152709. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates

    PubMed Central

    Kirtley, Michelle L.; Klages, Curtis; Erova, Tatiana E.; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C.; Baze, Wallace B.; Sivasubramani, Satheesh K.; Lawrence, William S.; Patrikeev, Igor; Peel, Jennifer E.; Andersson, Jourdan A.; Kozlova, Elena V.; Tiner, Bethany L.; Peterson, Johnny W.; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L.

    2016-01-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis. We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. PMID:27170642

  19. Immunological evaluation of colonic delivered Hepatitis B surface antigen loaded TLR-4 agonist modified solid fat nanoparticles.

    PubMed

    Sahu, Kantrol Kumar; Pandey, Ravi Shankar

    2016-10-01

    Hepatitis B is one of the leading liver diseases and remains a major global health problem. Currently available vaccines provide protection but often results in weaker/minimal mucosal immunity. Thus the present study is devoted to the development and in-vivo exploration of the colonically delivered biomimetic nanoparticles which capably enhance humoral as well as cellular immune response. In present work, Hepatitis B surface antigen (HBsAg) entrapped nanoparticles containing Monophosphoryl lipid A (MPLA) (HB+L-NP) were prepared by solvent evaporation method and characterized for particle size (~210nm), shape, zeta potential (-24mV±0.68), entrapment efficiency (58.45±1.68%), in-vitro release and antigen integrity. Dose escalation study was done to confirm prophylactic immune response following defined doses of prepared nanoparticulate formulations with or without MPLA. Intramuscular administered alum based marketed HBsAg (Genevac B) was used as standard (10μg) and were able to induce significant systemic (IgG) but remarkably low mucosal immune (IgA) response. Notably, HB+L-NP (0.5ml-10μg) induced strong systemic and robust mucosal immunity (510 and 470 mIU/ml respectively, p<0.001) from which mucosal was more significant due to the involvement of Common Mucosal Immune System (CMIS). Likewise, significant cellular immune response was elicited by HB+L-NP through T-cell activation (mixed Th1 and Th2) as confirmed by significantly increased cytokines level (IL-2 and Interferon-γ) in spleen homogenates. This study supports that delivery of HBsAg to the colon may open new vista in designing oral vaccines later being one of most accepted route for potential vaccines in future. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa

    2006-09-30

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen wasmore » also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems.« less

  1. Variable protection against experimental broiler necrotic enteritis after immunization with the C-terminal fragment of Clostridium perfringens alpha-toxin and a non-toxic NetB variant.

    PubMed

    Fernandes da Costa, Sérgio P; Mot, Dorien; Geeraerts, Sofie; Bokori-Brown, Monika; Van Immerseel, Filip; Titball, Richard W

    2016-06-01

    Necrotic enteritis toxin B (NetB) is a pore-forming toxin produced by Clostridium perfringens and has been shown to play a key role in avian necrotic enteritis, a disease causing significant costs to the poultry production industry worldwide. The aim of this work was to determine whether immunization with a non-toxic variant of NetB (NetB W262A) and the C-terminal fragment of C. perfringens alpha-toxin (CPA247-370) would provide protection against experimental necrotic enteritis. Immunized birds with either antigen or a combination of antigens developed serum antibody levels against NetB and CPA. When CPA247-370 and NetB W262A were used in combination as immunogens, an increased protection was observed after oral challenge by individual dosing, but not after in-feed-challenge.

  2. Cytotoxic T lymphocyte recognition of HLA-A/B antigens introduced into EL4 cells by cell-liposome fusion.

    PubMed

    Engelhard, V H; Powers, G A; Moore, L C; Holterman, M J; Correa-Freire, M C

    1984-01-01

    HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.

  3. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  4. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine.

    PubMed

    Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh

    2014-04-20

    In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Immunity against mouse thymus-leukemia antigen (TL) protects against development of lymphomas induced by a chemical carcinogen, N-butyl-N-nitrosourea.

    PubMed

    Tsujimura, Kunio; Obata, Yuichi; Matsudaira, Yasue; Ozeki, Satoshi; Taguchi, Osamu; Nishida, Keiko; Okanami, Yuko; Akatsuka, Yoshiki; Kuzushima, Kiyotaka; Takahashi, Toshitada

    2004-11-01

    Mouse thymus-leukemia antigens (TL) are aberrantly expressed on T lymphomas in C57BL/6 (B6) and C3H/He (C3H) mice, while they are not expressed on normal T lymphocytes in these strains. When N-butyl-N-nitrosourea (NBU), a chemical carcinogen, was administered orally to B6 and C3H strains, lymphoma development was slower than in T3(b)-TL gene-transduced counterpart strains expressing TL ubiquitously as self-antigens, suggesting that anti-TL immunity may play a protective role. In addition, the development of lymphomas was slightly slower in C3H than in B6, which seems to be in accordance with the results of skin graft experiments indicating that both cellular and humoral immunities against TL were stronger in C3H than B6 mice. The interesting finding that B lymphomas derived from a T3(b)-TL transgenic strain (C3H background) expressing a very high level of TL were rejected in C3H, but not in H-2K(b) transgenic mice (C3H background), raises the possibility that TL-specific effector T cell populations are eliminated and/or energized to a certain extent by interacting with H-2K(b) molecules.

  6. Identification and characterization of B cell precursors in rat lymphoid tissues. I. Adoptive transfer assays for precursors of TI-1, TI-2, and TD antigen-reactive B cells.

    PubMed

    Whalen, B J; Goldschneider, I

    1993-10-01

    Quantitative adoptive transfer assays were developed to detect the precursors of TI-1, TI-2, and TD antigen-reactive B cells in rat lymphoid tissues. Studies on the immune responses in normal and athymic nude rats validate the use of TNP-lipopolysaccharide as a TI-1 antigen, TNP-Ficoll as a TI-2 antigen, and SRBC as a TD antigen in rats. The precursors to these immunologically competent B cells are detected, following transfer into irradiated histocompatible recipients, by their ability to generate expanded populations of antigen-reactive B cells capable of mounting antibody responses (splenic IgM plaque-forming cells) to these antigens. Maximal numbers of antigen-reactive B cells emerge in antigenically naive rats after an interval of 7-12 days following transfer of donor lymphoid cells and decline rapidly thereafter. The delayed responses in adoptive recipients reconstituted with spleen cells are proportional to the numbers of spleen cells transferred and are shown to be primarily donor derived using histocompatible Ig kappa chain alloantigen disparate rat strain combinations. The precursors of TI-1, TI-2, and TD antigen-reactive B cells are present in both donor spleen and bone marrow. However, precursor cells to TI-1 and TD antigens are largely absent from donor lymph node cells, whereas precursors to the TI-2 antigen are as prevalent in donor lymph node as in donor spleen. These results support the hypothesis that newly formed virginal B cells represent transient populations of precursor cells that undergo further proliferation and differentiation in the spleen before acquiring immunological competence. The results also suggest that the precursors of TI-2 antigen-reactive B cells differ developmentally from those of TI-1 and TD antigen-reactive B cells, and that the antigen-reactive progeny of these precursors require additional stimulation in order to join the pool of long-lived peripheral B cells.

  7. Immune responses of B. malayi thioredoxin (TRX) and venom allergen homologue (VAH) chimeric multiple antigen for lymphatic filariasis.

    PubMed

    Anugraha, Gandhirajan; Jeyaprita, Parasurama Jawaharlal; Madhumathi, Jayaprakasam; Sheeba, Tamilvanan; Kaliraj, Perumal

    2013-12-01

    Although multiple vaccine strategy for lymphatic filariasis has provided tremendous hope, the choice of antigens used in combination has determined its success in the previous studies. Multiple antigens comprising key vaccine candidates from different life cycle stages would provide a promising strategy if the antigenic combination is chosen by careful screening. In order to analyze one such combination, we have used a chimeric construct carrying the well studied B. malayi antigens thioredoxin (BmTRX) and venom allergen homologue (BmVAH) as a fusion protein (TV) and evaluated its immune responses in mice model. The efficacy of fusion protein vaccine was explored in comparison with the single antigen vaccines and their cocktail. In mice, TV induced significantly high antibody titer of 1,28,000 compared to cocktail vaccine TRX+VAH (50,000) and single antigen vaccine TRX (16,000) or VAH (50,000). Furthermore, TV elicited higher level of cellular proliferative response together with elevated levels of IFN-γ, IL-4 and IL-5 indicating a Th1/Th2 balanced response. The isotype antibody profile showed significantly high level of IgG1 and IgG2b confirming the balanced response elicited by TV. Immunization with TV antigen induced high levels of both humoral and cellular immune responses compared to either cocktail or antigen given alone. The result suggests that TV is highly immunogenic in mice and hence the combination needs to be evaluated for its prophylactic potential.

  8. Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine.

    PubMed

    Chabot, Donald J; Ribot, Wilson J; Joyce, Joseph; Cook, James; Hepler, Robert; Nahas, Debbie; Chua, Jennifer; Friedlander, Arthur M

    2016-07-25

    The efficacy of currently licensed anthrax vaccines is largely attributable to a single Bacillus anthracis immunogen, protective antigen. To broaden protection against possible strains resistant to protective antigen-based vaccines, we previously developed a vaccine in which the anthrax polyglutamic acid capsule was covalently conjugated to the outer membrane protein complex of Neisseria meningitidis serotype B and demonstrated that two doses of 2.5μg of this vaccine conferred partial protection of rhesus macaques against inhalational anthrax . Here, we demonstrate complete protection of rhesus macaques against inhalational anthrax with a higher 50μg dose of the same capsule conjugate vaccine. These results indicate that B. anthracis capsule is a highly effective vaccine component that should be considered for incorporation in future generation anthrax vaccines. Published by Elsevier Ltd.

  9. [Expression, purification and protective antigen analysis of cell wall protein MRP of Streptococcus suis type 2].

    PubMed

    Wang, Ping-ping; Pian, Ya-ya; Yuan, Yuan; Zheng, Yu-ling; Jiang, Yong-qiang; Xiong, Zheng-ying

    2012-02-01

    To amplify the mrp gene of Streptococcus suis type 2 05ZYH33, express it in E.coli BL21 in order to acquire high purity recombinant protein MRP, then evaluate the protective antigen of recombinant protein MRP. Using PCR technology to obtain the product of mrp gene of 05ZYH33, and then cloned it into the expression vector pET28a(+). The recombinant protein was purified by affinity chromatography, later immunized New Zealand rabbit to gain anti-serum, then test the anti-serum titer by ELISA. The opsonophagocytic killing test demonstrated the abilities of protective antigen of MRP. The truncated of MRP recombinant protein in E.coli BL21 expressed by inclusion bodies, and purified it in high purity. After immunoprotection, the survival condition of CD-1 was significantly elevated. The survival rate of wild-type strain 05ZYH33 in blood was apparently decreased after anti-serum opsonophagocyticed, but the mutant delta; MRP showed no differences. MRP represent an important protective antigen activity.

  10. Use of a Molecular Decoy to Segregate Transport from Antigenicity in the FrpB Iron Transporter from Neisseria meningitidis

    PubMed Central

    Saleem, Muhammad; Prince, Stephen M.; Rigby, Stephen E. J.; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C. J.; Feavers, Ian M.; Derrick, Jeremy P.

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance. PMID:23457610

  11. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis.

    PubMed

    Saleem, Muhammad; Prince, Stephen M; Rigby, Stephen E J; Imran, Muhammad; Patel, Hema; Chan, Hannah; Sanders, Holly; Maiden, Martin C J; Feavers, Ian M; Derrick, Jeremy P

    2013-01-01

    FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe(3+) with high affinity. EPR spectra of the bound Fe(3+) ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe(3+) binding was reduced or abolished on mutation of the Fe(3+)-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe(3+). The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a 'molecular decoy' to distract immune surveillance.

  12. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever.

    PubMed

    Burmakina, G; Malogolovkin, A; Tulman, E R; Zsak, L; Delhon, G; Diel, D G; Shobogorov, N M; Morgunov, Yu P; Morgunov, S Yu; Kutish, G F; Kolbasov, D; Rock, D L

    2016-07-01

    African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of ASFV strain diversity and the viral antigens conferring type-specific protective immunity in pigs. Available data from vaccination/challenge experiments in pigs indicate that ASF protective immunity may be haemadsorption inhibition (HAI) serotype-specific. Recently, we have shown that two ASFV proteins, CD2v (EP402R) and C-type lectin (EP153R), are necessary and sufficient for mediating HAI serological specificity (Malogolovkin et al., 2015).. Here, using ASFV inter-serotypic chimeric viruses and vaccination/challenge experiments in pigs, we demonstrate that serotype-specific CD2v and/or C-type lectin proteins are important for protection against homologous ASFV infection. Thus, these viral proteins represent significant protective antigens for ASFV that should be targeted in future vaccine design and development. Additionally, these data support the concept of HAI serotype-specific protective immunity.

  13. [HLA A, B, C and DR antigens in a urban population from Santiago of Chile].

    PubMed

    Rodríguez, L; Scagliotti, P; Quiroga, T

    1993-05-01

    HLA antigens vary in different ethnical groups and in Chile there are no reports on the frequency of these antigens in a normal representative population. The few existing studies are of indigenous populations and control groups, without including HLA-DR antigens. Therefore, the aim of this study was to study the frequency of HLA A, B and C antigens in 349 individuals and HLA-DR in 257, using the microlymphocytotoxicity method, and compared the results with those on normal caucasian populations (Europe and USA). Significant differences were found for 7 antigens of group A, 10 of group B, 4 of group C and 6 of group DR. The observed difference allow us to conclude that the population from Santiago has a distinct HLA antigen distribution. This fact must be bore in mind future studies in genetics, paternity or autoimmune diseases.

  14. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation.

    PubMed

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin; Wang, Lei

    2017-11-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy.

  15. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation

    PubMed Central

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin

    2017-01-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy. PMID:29155896

  16. Multiepitope fusion antigen induces broadly protective antibodies that prevent adherence of Escherichia coli strains expressing colonization factor antigen I (CFA/I), CFA/II, and CFA/IV.

    PubMed

    Ruan, Xiaosai; Knudsen, David E; Wollenberg, Katie M; Sack, David A; Zhang, Weiping

    2014-02-01

    Diarrhea is the second leading cause of death in children younger than 5 years and continues to be a major threat to global health. Enterotoxigenic Escherichia coli (ETEC) strains are the most common bacteria causing diarrhea in developing countries. ETEC strains are able to attach to host small intestinal epithelial cells by using bacterial colonization factor antigen (CFA) adhesins. This attachment helps to initiate the diarrheal disease. Vaccines that induce antiadhesin immunity to block adherence of ETEC strains that express immunologically heterogeneous CFA adhesins are expected to protect against ETEC diarrhea. In this study, we created a CFA multiepitope fusion antigen (MEFA) carrying representative epitopes of CFA/I, CFA/II (CS1, CS2, and CS3), and CFA/IV (CS4, CS5, and CS6), examined its immunogenicity in mice, and assessed the potential of this MEFA as an antiadhesin vaccine against ETEC. Mice intraperitoneally immunized with this CFA MEFA exhibited no adverse effects and developed immune responses to CFA/I, CFA/II, and CFA/IV adhesins. Moreover, after incubation with serum of the immunized mice, ETEC or E. coli strains expressing CFA/I, CFA/II, or CFA/IV adhesins were significantly inhibited in adherence to Caco-2 cells. Our results indicated this CFA MEFA elicited antibodies that not only cross-reacted to CFA/I, CFA/II and CFA/IV adhesins but also broadly inhibited adherence of E. coli strains expressing these seven adhesins and suggested that this CFA MEFA could be a candidate to induce broad-spectrum antiadhesin protection against ETEC diarrhea. Additionally, this antigen construction approach (creating an MEFA) may be generally used in vaccine development against heterogenic pathogens.

  17. A Recombinant Raccoon Poxvirus Vaccine Expressing both Yersinia pestis F1 and Truncated V Antigens Protects Animals against Lethal Plague

    PubMed Central

    Rocke, Tonie E.; Kingstad-Bakke, Brock; Berlier, Willy; Osorio, Jorge E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307—a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas. PMID:26344891

  18. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    USGS Publications Warehouse

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  19. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA).

    PubMed

    Firouzmand, Hengameh; Badiee, Ali; Khamesipour, Ali; Heravi Shargh, Vahid; Alavizadeh, Seyedeh Hoda; Abbasi, Azam; Jaafari, Mahmoud Reza

    2013-12-01

    A suitable adjuvant and delivery system are needed to develop an effective vaccine against leishmaniasis. To induce a Th1 type of response and protection in BALB/c mice against Leishmania major infection, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) nanoliposomes bearing an intrinsic adjuvanticity, were used as an antigen delivery system and immunoadjuvant for soluble Leishmania antigens (SLA). DOTAP liposomes containing different concentrations of SLA were prepared by using lipid film method followed by sonication. The prepared vesicles showed a diameter of about 100nm, a positive zeta potential and approximately 70% encapsulation efficiency of SLA. BALB/c mice were immunized subcutaneously (SC), three times in a 3-week interval with different concentrations of liposomal SLA (12.5, 25, and 50μg of SLA/50μl/mice), free SLA and as well as free liposome. The group of mice received 50μg of SLA in DOTAP-nanoliposomes showed a significantly (p<0.001) smaller footpad swelling and the lowest spleen and footpad parasite burden after the challenge. This group also showed the highest IFN-γ production compared to the other groups, lower IL-4 level and higher IgG2a antibody titer. Taken together, the results indicated that simple DOTAP nanoliposome containing 1μg/μl SLA are appropriate delivery systems to induce a Th1 type of immune response and protection against L. major infection in BALB/c mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Hepatitis B virus core antigen: synthesis in Escherichia coli and application in diagnosis.

    PubMed Central

    Stahl, S; MacKay, P; Magazin, M; Bruce, S A; Murray, K

    1982-01-01

    Fragments of hepatitis B virus DNA cloned in plasmid pBR322 carrying the gene for the viral core antigen have been placed under the control of the lac promoter of Escherichia coli. Several of the new recombinants direct higher levels of synthesis of the antigen, but the degree of enhancement varies with the different structures of the plasmids and hence the mRNAs produced. The antigen in crude bacterial lysates is a satisfactory diagnostic reagent for antibodies to the core antigen in serum samples. Images PMID:7041126

  1. Immunogenicity of DNA Vaccine against H5N1 Containing Extended Kappa B Site: In Vivo Study in Mice and Chickens

    PubMed Central

    Redkiewicz, Patrycja; Stachyra, Anna; Sawicka, Róz∙a; Bocian, Katarzyna; Góra-Sochacka, Anna; Kosson, Piotr; Sirko, Agnieszka

    2017-01-01

    Influenza is one of the most important illnesses in the modern world, causing great public health losses each year due to the lack of medication and broadly protective, long-lasting vaccines. The development of highly immunogenic and safe vaccines is currently one of the major problems encountered in efficient influenza prevention. DNA vaccines represent a novel and powerful alternative to the conventional vaccine approaches. To improve the efficacy of the DNA vaccine against influenza H5N1, we inserted three repeated kappa BB) motifs, separated by a 5-bp nucleotide spacer, upstream of the cytomegalovirus promoter and downstream of the SV40 late polyadenylation signal. The κB motif is a specific DNA element (10pb-long) recognized by one of the most important transcription factors NFκB. NFκB is present in almost all animal cell types and upon cell stimulation under a variety of pathogenic conditions. NFκB is released from IκB and translocates to the nucleus and binds to κB sites, thereby leading to enhanced transcription and expression of downstream genes. We tested the variants of DNA vaccine with κB sites flanking the antigen expression cassette and without such sites in two animal models: chickens (broilers and layers) and mice (BALB/c). In chickens, the variant with κB sites stimulated stronger humoral response against the target antigen. In mice, the differences in humoral response were less apparent. Instead, it was possible to spot several gene expression differences in the spleens isolated from mice immunized with both variants. The results of our study indicate that modification of the sequence outside of the sequence encoding the antigen might enhance the immune response to the target but understanding the mechanisms responsible for this process requires further analysis. PMID:28883819

  2. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    PubMed

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Freeze-thaw stress of Alhydrogel ® alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen.

    PubMed

    Clapp, Tanya; Munks, Michael W; Trivedi, Ruchit; Kompella, Uday B; Braun, LaToya Jones

    2014-06-24

    Preventing losses in vaccine potency due to accidental freezing has recently become a topic of interest for improving vaccines. All vaccines with aluminum-containing adjuvants are susceptible to such potency losses. Recent studies have described excipients that protect the antigen from freeze-induced inactivation, prevent adjuvant agglomeration and retain potency. Although these strategies have demonstrated success, they do not provide a mechanistic understanding of freeze-thaw (FT) induced potency losses. In the current study, we investigated how adjuvant frozen in the absence of antigen affects vaccine immunogenicity and whether preventing damage to the freeze-sensitive recombinant hepatitis B surface antigen (rHBsAg) was sufficient for maintaining vaccine potency. The final vaccine formulation or Alhydrogel(®) alone was subjected to three FT-cycles. The vaccines were characterized for antigen adsorption, rHBsAg tertiary structure, particle size and charge, adjuvant elemental content and in-vivo potency. Particle agglomeration of either vaccine particles or adjuvant was observed following FT-stress. In vivo studies demonstrated no statistical differences in IgG responses between vaccines with FT-stressed adjuvant and no adjuvant. Adsorption of rHBsAg was achieved; regardless of adjuvant treatment, suggesting that the similar responses were not due to soluble antigen in the frozen adjuvant-containing formulations. All vaccines with adjuvant, including the non-frozen controls, yielded similar, blue-shifted fluorescence emission spectra. Immune response differences could not be traced to differences in the tertiary structure of the antigen in the formulations. Zeta potential measurements and elemental content analyses suggest that FT-stress resulted in a significant chemical alteration of the adjuvant surface. This data provides evidence that protecting a freeze-labile antigen from subzero exposure is insufficient to maintain vaccine potency. Future studies should

  4. The role of complement receptor positive and complement receptor negative B cells in the primary and secondary immune response to thymus independent type 2 and thymus dependent antigens.

    PubMed

    Lindsten, T; Yaffe, L J; Thompson, C B; Guelde, G; Berning, A; Scher, I; Kenny, J J

    1985-05-01

    Both complement receptor positive (CR+) and complement receptor negative (CR-) B cells have been shown to be involved in the primary immune response to PC-Hy (phosphocholine conjugated hemocyanin), a thymus dependent (TD) antigen which preferentially induces antibody secretion in Lyb-5+ B cells during a primary adoptive transfer assay. CR+ and CR- B cells also responded in a primary adoptive transfer assay to TNP-Ficoll, a thymus independent type 2 (TI-2) antigen which activates only Lyb-5+ B cells. When the secondary immune response to PC-Hy and TNP-Ficoll were analyzed, it was found that most of the immune memory to both antigens was present in the CR- B cell subset. The CR- B cell subset also dominated the secondary immune response to PC-Hy in immune defective (CBA/N X DBA/2N)F1 male mice. These data indicate that CR- B cells dominate the memory response in both the Lyb-5+ and Lyb-5- B cell subsets of normal and xid immune defective mice and suggest that Lyb-5+ and Lyb-5- B cells can be subdivided into CR+ and CR- subsets.

  5. Anti-human neutrophil antigen-1a, -1b, and -2 antibodies in neonates and children with immune neutropenias analyzed by extracted granulocyte antigen immunofluorescence assay.

    PubMed

    Onodera, Rie; Kurita, Emi; Taniguchi, Kikuyo; Karakawa, Shuhei; Okada, Satoshi; Kihara, Hirotaka; Fujii, Teruhisa; Kobayashi, Masao

    2017-11-01

    Anti-human neutrophil antigen (HNA) antibodies have been implicated in the development of neonatal alloimmune neutropenia (NAN) and autoimmune neutropenia (AIN). There are many conventional assay methods that detect anti-HNA antibodies. However, a method to measure multiple samples and detect several anti-HNA antibodies simultaneously is needed. We developed a new method, the extracted granulocyte antigen immunofluorescence assay (EGIFA), to analyze anti-HNA-1a, -1b, and -2 antibodies in sera. The results obtained by EGIFA were evaluated in comparison with those from several standard assay methods. Anti-HNA antibodies in serum samples from nine familial cases with suspected NAN (n = 19) and children with suspected AIN (n = 88) were also measured by EGIFA. The evaluation of nine serum samples with anti-HNA antibodies suggested that EGIFA demonstrated equivalent specificity and superior sensitivity to monoclonal antibody-specific immobilization of granulocyte antigens and had comparable sensitivity to the granulocyte indirect immunofluorescence test. EGIFA successfully detected anti-HNA-1a or -1b antibodies in seven of nine familial cases with suspected NAN. EGIFA detected anti-HNA antibodies in 40.9% of children with suspected AIN. Among them, isolated anti-HNA-1a or -1b antibody was detected in 4.5 or 12.5% of children, respectively, and anti-HNA-2 antibody was identified in 3.4% of children. The 30.8% (16 of 52) of children negative for anti-HNA antibody by EGIFA were positive for anti-HLA antibody. EGIFA facilitated the measurement of anti-HNA-1a, -1b, and/or -2 antibodies in sera. The prompt measurement of anti-HNA antibodies will improve the diagnosis and clinical management of patients with suspected NAN or AIN. © 2017 AABB.

  6. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Core Research for Evolutional Science and Technology

    2006-02-03

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM{sup lo}IgD{sup hi} B-cells but not in AICD susceptible immature IgM{sup hi}IgD{sup lo} B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23{sup hi} B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack ofmore » G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.« less

  7. The immunogenicity of Echinococcus granulosus antigen 5 is determined by its post-translational modifications.

    PubMed

    Lorenzo, C; Last, J A; González-Sapienza, G G

    2005-11-01

    Since its early introduction as a marker for the immunodiagnosis of hydatid disease, antigen 5 (Ag5) has been regarded as one of the more relevant antigens of Echinococcus granulosus, and it is still widely used in different confirmation techniques. In this work we prepared 2 recombinant forms of the antigen, namely, rAg5 (corresponding to the unprocessed polypeptide chain of the antigen) and rAg5-38s (corresponding to its 38 kDa subunit). Their antigenicities were compared to that of the native antigen using a human serum collection. There was a major drop in the reactivity of the sera, particularly against rAg5-38s, which was confirmed by analysis of the cross-reactivity of 2 panels of monoclonal antibodies specific for rAg5-38s and the native antigen. Using the chemically deglycosylated native antigen, we demonstrated that the reduced antigenicity of the recombinants is due to the loss of the sugar determinants, and not to their misfolding. Inhibition experiments using phosphorylcholine confirmed that this moiety also contributes to the reactivity of the antigen, but to a much lesser extent. The presence of immunodominant highly cross-reactive glycan moieties in the Ag5 molecule may involve a parasite evasion mechanism.

  8. Antigen-Presenting Intratumoral B Cells Affect CD4+ TIL Phenotypes in Non-Small Cell Lung Cancer Patients.

    PubMed

    Bruno, Tullia C; Ebner, Peggy J; Moore, Brandon L; Squalls, Olivia G; Waugh, Katherine A; Eruslanov, Evgeniy B; Singhal, Sunil; Mitchell, John D; Franklin, Wilbur A; Merrick, Daniel T; McCarter, Martin D; Palmer, Brent E; Kern, Jeffrey A; Slansky, Jill E

    2017-10-01

    Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4 + TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4 + TILs and alter the CD4 + TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4 + TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4 + TIL population, activated TIL-Bs (CD19 + CD20 + CD69 + CD27 + CD21 + ) were associated with an effector T-cell response (IFNγ + CD4 + TILs). Alternatively, exhausted TIL-Bs (CD19 + CD20 + CD69 + CD27 - CD21 - ) were associated with a regulatory T-cell phenotype (FoxP3 + CD4 + TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4 + TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  10. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    PubMed

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.

  11. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    PubMed Central

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  12. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia.

    PubMed

    Ohkawara, Ayako; Okamatsu, Masatoshi; Ozawa, Makoto; Chu, Duc-Huy; Nguyen, Lam Thanh; Hiono, Takahiro; Matsuno, Keita; Kida, Hiroshi; Sakoda, Yoshihiro

    2017-05-01

    H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1-7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  13. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection

    PubMed Central

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-01-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response. PMID:23787486

  14. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection.

    PubMed

    Merkel, Tod J; Perera, Pin-Yu; Lee, Gloria M; Verma, Anita; Hiroi, Toyoko; Yokote, Hiroyuki; Waldmann, Thomas A; Perera, Liyanage P

    2013-09-01

    An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response.

  15. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    PubMed

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

  16. Induction of anti-HBs in HB vaccine nonresponders in vivo by hepatitis B surface antigen-pulsed blood dendritic cells.

    PubMed

    Fazle Akbar, Sk Md; Furukawa, Shinya; Yoshida, Osamu; Hiasa, Yoichi; Horiike, Norio; Onji, Morikazu

    2007-07-01

    Antigen-pulsed dendritic cells (DCs) are now used for treatment of patients with cancers, however, the efficacy of these DCs has never been evaluated for prophylactic purposes. The aim of this study was (1) to prepare hepatitis B surface antigen (HBsAg)-pulsed human blood DCs, (2) to assess immunogenicity of HBsAg-pulsed DCs in vitro and (3) to evaluate the efficacy of HBsAg-pulsed DCs in hepatitis B (HB) vaccine nonresponders. Human peripheral blood DCs were cultured with HBsAg to prepare HBsAg-pulsed DCs. The expression of immunogenic epitopes of HBsAg on HBsAg-pulsed DCs was assessed in vitro. Finally, HBsAg-pulsed DCs were administered, intradermally to six HB vaccine nonresponders and the levels of antibody to HBsAg (anti-HBs) in the sera were assessed. HB vaccine nonresponders did not exhibit features of immediate, early or delayed adverse reactions due to administration of HBsAg-pulsed DCs. Anti-HBs were detected in the sera of all HB vaccine nonresponders within 28 days after administration of HBsAg-pulsed DCs. This study opens a new field of application of antigen-pulsed DCs for prophylactic purposes when adequate levels of protective antibody cannot be induced by traditional vaccination approaches.

  17. Leaf-Encapsulated Vaccines: Agroinfiltration and Transient Expression of the Antigen Staphylococcal Endotoxin B in Radish Leaves

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Ulrich, Robert G.; Simmons, Christopher W.; VanderGheynst, Jean S.; Gallo, Richard L.

    2018-01-01

    Transgene introgression is a major concern associated with transgenic plant-based vaccines. Agroinfiltration can be used to selectively transform nonreproductive organs and avoid introgression. Here, we introduce a new vaccine modality in which Staphylococcal enterotoxin B (SEB) genes are agroinfiltrated into radishes (Raphanw sativus L.), resulting in transient expression and accumulation of SEB in planta. This approach can simultaneously express multiple antigens in a single leaf. Furthermore, the potential of high-throughput vaccine production was demonstrated by simultaneously agroinfiltrating multiple radish leaves using a multichannel pipette. The expression of SEB was detectable in two leaf cell types (epidermal and guard cells) in agroinfiltrated leaves. ICR mice intranasally immunized with homogenized leaves agroinfiltrated with SEB elicited detectable antibody to SEB and displayed protection against SEB-induced interferon-gamma (IFN-γ) production. The concept of encapsulating antigens in leaves rather than purifying them for immunization may facilitate rapid vaccine production during an epidemic disease. PMID:29577048

  18. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling.

    PubMed

    Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan

    2018-06-12

    There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. HLA typing associated with hepatitis B E antigen seroconversion in children with chronic hepatitis B virus infection: a long-term prospective sibling cohort study in Taiwan.

    PubMed

    Wu, Jia-Feng; Chen, Chen-Hsin; Hsieh, Rhong-Phong; Shih, Hsiang-Hung; Chen, Yi-Hau; Li, Chi-Rong; Chiang, Chih-Yao; Shau, Wen-Yi; Ni, Yen-Hsuan; Chen, Huey-Ling; Hsu, Hong-Yuan; Chang, Mei-Hwei

    2006-05-01

    To conduct a prospective cohort study to clarify the relationship between human leukocyte antigen (HLA) polymorphisms and the seroconversion of hepatitis B e antigen (HBeAg). In the prospective cohort study, 81 HBeAg-positive children with chronic hepatitis B virus (HBV) infection from 40 unrelated families were recruited and followed-up regularly for a mean period of 17.70 +/- 3.23 years. The association between HLA antigen and the age at HBeAg seroconversion was analyzed using Cox regression model with shared frailties under left truncation and right censorship. HLA-B61 and HLA-DQB1*0503 antigens predicted a higher HBeAg seroconversion rate (relative incidence = 6.17 and 3.22, P = .024 and .017, respectively). Within-family frailty in our sibling cohort study demonstrated a negligible or a low degree of within-family correlation with spontaneous HBeAg seroconversion in each HLA antigen. HLA class I antigen B61 and class II antigen DQB1*0503 are associated with earlier HBeAg seroconversion in Taiwanese children with chronic HBV infection.

  20. 17 CFR 240.15b5-1 - Extension of registration for purposes of the Securities Investor Protection Act of 1970 after...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... purposes of the Securities Investor Protection Act of 1970 after cancellation or revocation. 240.15b5-1... purposes of the Securities Investor Protection Act of 1970 after cancellation or revocation. Commission... member within the meaning of Section 3(a)(2) of the Securities Investor Protection Act of 1970 for...

  1. Detection of hepatitis B surface antigen in pregnant women attending a public hospital for delivery: implication for vaccination strategy in Bangladesh.

    PubMed

    Rumi, M A; Begum, K; Hassan, M S; Hasan, S M; Azam, M G; Hasan, K N; Shirin, M; Khan, A K

    1998-08-01

    Routine antenatal hepatitis B surface antigen (HBsAg) screening and immunization of risk babies is very effective in preventing perinatal transmission of hepatitis B virus (HBV). We studied 1,800 parturients attending a public hospital to assess the rationale for such vaccination in Bangladesh. In one in every 29 deliveries (63 of 1,800 or 3.5%), the mother was found to be HBsAg positive. All were asymptomatic and many (41 of 63 or 65%) without risk factors would remain undetected if HBsAg screening were performed on selected groups. Most of the HBsAg-positive mothers (54 of 63 or 85.7%) were found to be chronic carriers and 30.2% (19 of 63) were also hepatitis B e antigen (HBeAg) positive, indicating high infectivity. Although 23 cord blood were positive for HBsAg or HBeAg, none were positive for IgM antibody to hepatitis B core antigen (IgM anti-HBc), suggesting transplacental transmission of the antigens rather than intrauterine infection. These findings are discussed in relation to the cost-effectiveness of routine prenatal screening and immunization of risk babies compared with universal infant immunization.

  2. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E

    2017-11-01

    From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.

  3. Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308.

    PubMed

    Dabral, Neha; Martha-Moreno-Lafont; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2014-01-01

    Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4(+) and CD8(+) T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 10(9), 10(10) and 10(11) CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 10(11) CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.

  4. Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA.

    PubMed

    van Rensburg, Ilana C; Wagman, Chandre; Stanley, Kim; Beltran, Caroline; Ronacher, Katharina; Walzl, Gerhard; Loxton, Andre G

    2017-01-10

    Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment).We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.

  5. Nonclassical T Cells and Their Antigens in Tuberculosis

    PubMed Central

    De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia

    2014-01-01

    T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739

  6. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments.

    PubMed

    Tai, Dar-Fu; Jhang, Ming-Hong; Chen, Guan-Yu; Wang, Sue-Chen; Lu, Kuo-Hao; Lee, Yu-Der; Liu, Hsin-Tzu

    2010-03-15

    A molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template. With the use of a basic monomer, the binding-effect was further enhanced increasing the affinity to nanomolar levels. The affinities of the peptide to their corresponding molecularly induced polymers (MIPs) were more closely related to the molecular weight of the analyte than to the number of residues. All epitope-cavities differentiated their epitope region on the protective antigen PA(83) as well as the corresponding furin cleavage fragments PA(63) and PA(20). The QCM chip differential response to the protective antigen fragment was observed in the picomolar range, thus demonstrating a method to manipulate protein on the surface with defined orientation.

  7. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice

    PubMed Central

    Heine, Shannon J.; Franco-Mahecha, Olga L.; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C.; van Roosmalen, Maarten L.; Leenhouts, Kees; Picking, Wendy L.; Pasetti, Marcela F.

    2015-01-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of non-living, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis. PMID:25776843

  8. 15-HETE "modulates" expression of C3b receptor (CR1) antigen on peripheral blood B-lymphocytes.

    PubMed

    Cook, J; Delebassée, S; Aldigier, J C; Gualde, N; Kazatchkine, M

    1986-08-01

    We have studied the effect of the lipoxygenase metabolite, 15-HETE, on the expression of the human C3b receptor (CR1) by a B-lymphocyte enriched population of human peripheral blood leukocytes. The number of CR1 antigenic sites expressed by B-lymphocytes isolated from HLA typed donors was determined by equilibrium binding studies using an 125 I-labelled mouse monoclonal anti CR1 antibody before and after 16 hrs incubation in RPMI alone or containing 10(-6)M, 10(-7)M or 10(-8)M final concentration of 15-HETE. In B44- subjects CR1 expression on B cells increased 63% after incubation in RPMI alone. This increase was inhibited in the presence of 10(-6)M and 10(-7)M 15-HETE (23% and 30% increase respectively). In contrast, B44+ individuals showed a smaller increase in CR1 numbers when incubated in RPMI alone. In the presence of 15-HETE CR1 antigenic sites continued to increase. When B44+ subjects were classified as A29+ or A29-, donors that were A29+ B44+ accounted for the augmentation observed while A29- B44+ individuals did not differ from individuals that were A29- B44-.

  9. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen.

    PubMed

    Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas

    2016-02-17

    In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.

  10. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    PubMed

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    PubMed

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (p<0.05). The capacity of HBcAg to modulate both HBsAg- and HBcAg-specific immunity in HBV TM, and activation of endogenous DC in HBV TM without inducing liver damage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth.

    PubMed

    Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy

    2016-01-01

    Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluating the protective efficacy of antigen combinations against Photobacterium damselae ssp. piscicida infections in cobia, Rachycentron canadum L.

    PubMed

    Ho, L-P; Chang, C-J; Liu, H-C; Yang, H-L; Lin, J H-Y

    2014-01-01

    Cobia, Rachycentron canadum L., is a very important aquatic fish that faces the risk of infection with the bacterial pathogen Photobacterium damselae ssp. piscicida, and there are few protective approaches available that use multiple antigens. In the present study, potent bivalent antigens from P. damselae ssp. piscicida showed more efficient protection than did single antigens used in isolation. In preparations of three antigens that included recombinant heat shock protein 60 (rHSP60), recombinant α-enolase (rENOLASE) and recombinant glyceraldehyde-3-phosphate dehydrogenase (rGAPDH), we analysed the doses that elicited the best immune responses and found that this occurred at a total of 30 μg of antigen per fish. Subsequently, vaccination of fish with rHSP60, rENOLASE and rGAPDH achieved 46.9, 52 and 25% relative per cent survival (RPS), respectively. In addition, bivalent subunit vaccines--combination I (rHSP60 + rENOLASE), combination II (rENOLASE + rGAPDH) and combination III (rHSP60 + rGAPDH)--were administered and the RPS in these groups (65.6, 64.0 and 48.4%, respectively), was higher than that achieved with single-antigen administration. Finally, in combination IV, the trivalent vaccine rHSP60 + rENOLASE + rGAPDH, the RPS was 1.6%. Taken together, our results suggest that combinations of two antigens may achieve a better efficiency than monovalent or trivalent antigens, and this may provide new insights into pathogen prevention strategies. © 2013 John Wiley & Sons Ltd.

  14. Original antigenic sin responses to influenza viruses.

    PubMed

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  15. Protection against Escherichia coli K1 infection in newborn rats by antibody to K1 capsular polysaccharide antigen.

    PubMed

    Bortolussi, R; Ferrier, P

    1980-04-01

    The protective value of antibody to the K1 capsular polysaccharide antigen of Escherichia coli was investigated in a newborn rat model of E. coli K1 infection. Pregnant rats were immunized intravenously with E. coli, and the agglutinating titer to meningococcal group B polysaccharide, which is identical to K1 polysaccharide, was measured in the serum of rats and their offspring. Convalescent serum from rat mothers showed an increased antibody titer in animals injected twice but not once with E. coli K1. Although no agglutinating antibody was detected in the serum of rat pups, animals suckled by mothers having a meningococcal group B agglutinating titer of 1:8 or greater had reduced infection and mortality rates after intraperitoneal injection with E. coli K1 compared with animals suckled by mothers having a low titer of agglutinating antibody (P less than 0.05). In addition, greater protection could be conferred on rat sucklings by oral supplementation with a horse serum rich in antibody to meningococcal group B polysaccharide, suggesting that antibody was abosorbed from the gastrointestinal tract and by itself could be protective. These studies demonstrated that antibody to the capsular polysaccharide of E. coli K1 altered the severity of E. coli K1 infection. Final clearance of bacteria from the blood appeared to await the maturation of other host defense systems in the newborn rat.

  16. B Cell Antigen Receptor Signaling and Internalization Are Mutually Exclusive Events

    PubMed Central

    Hou, Ping; Araujo, Elizabeth; Zhao, Tong; Zhang, Miao; Massenburg, Don; Veselits, Margaret; Doyle, Colleen; Dinner, Aaron R; Clark, Marcus R

    2006-01-01

    Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands. PMID:16719564

  17. First finding of genetic and antigenic diversity in 1b-BVDV isolates from Argentina.

    PubMed

    Pecora, A; Malacari, D A; Ridpath, J F; Perez Aguirreburualde, M S; Combessies, G; Odeón, A C; Romera, S A; Golemba, M D; Wigdorovitz, A

    2014-02-01

    Infection with Bovine Viral Diarrhea Viruses (BVDV) in cattle results in a wide range of clinical manifestations, ranging from mild respiratory disease to fetal death and mucosal disease, depending on the virulence of the virus and the immune and reproductive status of the host. In this study 30 Argentinean BVDV isolates were characterized by phylogenetic analysis. The isolates were genotyped based on comparison of the 5' untranslated region (5' UTR) and the E2 gene. In both phylogenetic trees, 76% of the viruses were assigned to BVDV 1b, whereas BVDV 1a, 2a and 2b were also found. Eight of the BVDV 1b isolates were further characterized by cross-neutralization tests using guinea pig antisera and sera from bovines vaccinated with two different commercial vaccines. The results demonstrated the presence of a marked antigenic diversity among Argentinean BVDV isolates and suggest the need to incorporate BVDV 1b isolates in diagnostic strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A genetically adjuvanted influenza B virus vector increases immunogenicity and protective efficacy in mice.

    PubMed

    Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej

    2015-10-01

    The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.

  19. Towards preserving the immunogenicity of protein antigens carried by nanoparticles while avoiding the cold chain.

    PubMed

    Sloat, Brian R; Sandoval, Michael A; Cui, Zhengrong

    2010-06-30

    Nanoparticles are an attractive vaccine carrier with potent adjuvant activity. Data from our previous studies showed that immunization of mice with lecithin/glyceryl monostearate-based nanoparticles with protein antigens conjugated onto their surface induced a strong, quick, and long-lasting antigen-specific immune response. In the present study, we evaluated the feasibility of preserving the immunogenicity of protein antigens carried by nanoparticles without refrigeration using these antigen-conjugated nanoparticles as a model. The nanoparticles were lyophilized, and the immunogenicity of the antigens was evaluated in a mouse model using bovine serum albumin or the Bacillus anthracis protective antigen protein as model antigens. With proper excipients, the nanoparticles can be lyophilized while maintaining the immunogenicity of the antigens. Moreover, the immunogenicity of the model antigen conjugated onto the nanoparticles was undamaged after a relatively extended period of storage at room temperature or under accelerated conditions (37 degrees C) when the nanoparticles were lyophilized with 5% mannitol plus 1% polyvinylpyrrolidone. To our knowledge, the present study represents an early attempt to preserve the immunogenicity of the protein antigens carried by nanoparticles without refrigeration. 2010 Elsevier B.V. All rights reserved.

  20. Evaluation of immunogenicity and protective efficacy of orally delivered Shigella type III secretion system proteins IpaB and IpaD

    PubMed Central

    Heine, Shannon J.; Diaz-McNair, Jovita; Martinez-Becerra, Francisco J.; Choudhari, Shyamal P.; Clements, John D.; Picking, Wendy L.; Pasetti, Marcela F.

    2013-01-01

    Shigella spp. are food- and water-borne pathogens that cause shigellosis, a severe diarrheal and dysenteric disease that is associated with a high morbidity and mortality in resource-poor countries. No licensed vaccine is available to prevent shigellosis. We have recently demonstrated that Shigella invasion plasmid antigens (Ipas), IpaB and IpaD, which are components of the bacterial type III secretion system (TTSS), can prevent infection in a mouse model of intranasal immunization and lethal pulmonary challenge. Because they are conserved across Shigella spp. and highly immunogenic, these proteins are excellent candidates for a cross-protective vaccine. Ideally, such a vaccine could be administered to humans orally to induce mucosal and systemic immunity. In this study, we investigated the immunogenicity and protective efficacy of Shigella IpaB and IpaD administered orally with a double mutant of the Escherichia coli heat labile toxin (dmLT) as a mucosal adjuvant. We characterized the immune responses induced by oral vs. intranasal immunization and the protective efficacy using a mouse pulmonary infection model. Serum IgG and fecal IgA against IpaB were induced after oral immunization. These responses, however, were lower than those obtained after intranasal immunization despite a 100-fold dosage increase. The level of protection induced by oral immunization with IpaB and IpaD was 40%, while intranasal immunization resulted in 90% protective efficacy. IpaB- and IpaD-specific IgA antibody-secreting cells in the lungs and spleen and T-cell-derived IL-2, IL-5, IL-17 and IL-10 were associated with protection. These results demonstrate the immunogenicity of orally administered IpaB and IpaD and support further studies in humans. PMID:23644075

  1. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    PubMed Central

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-01-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens. Images Fig. 1 a and b. Fig. 2 a and b. Fig. 3 a and b. Fig. 4 a and b. Fig. 5 a and b. Fig. 6 a and b. Fig. 7 a and b. Fig. 8 a and b. PMID:6804070

  2. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza

    PubMed Central

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne

    2017-01-01

    ABSTRACT Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  3. Meningococcal vaccine development--from glycoconjugates against MenACWY to proteins against MenB--potential for broad protection against meningococcal disease.

    PubMed

    Dull, Peter M; McIntosh, E David

    2012-05-30

    Novartis Vaccines has a long-standing research and development interest in the prevention of invasive meningococcal disease. From the initial licensure of the monovalent meningococcal C glycoconjugate vaccine, Menjugate(®), in response to the emergence of a virulent serogroup C ST-11 strain in the United Kingdom to the more recent development and licensure of a quadrivalent meningococcal ACWY glycoconjugate vaccine, Menveo(®), Novartis has a continuing commitment to the development of more effective tools for the control of meningococcal disease. Menveo is now licensed for use in adolescents and adults in over 50 countries and results from phase III studies have shown the vaccine to be well-tolerated and highly immunogenic in infants with vaccination beginning from 2 months of age. The 'holy grail' of meningococcal disease control is a broadly protective vaccine against serogroup B (MenB), preferably a vaccine that protects all age groups including infants. As the serogroup B capsule is poorly immunogenic, efforts over the past 40 years have focused on identifying conserved proteins expressed on the bacterial surface that elicit bactericidal antibodies. Novartis has approached this problem utilizing genomic tools to identify proteins meeting these criteria in a process now known as 'reverse vaccinology'[1]. This process has resulted in a novel multicomponent MenB vaccine (4CMenB) that consists of four major immunogenic components (three subcapsular MenB protein antigens plus outer membrane vesicles (OMVs) which themselves provide multiple subcapsular antigens, the immunodominant one being PorA). These all induce bactericidal antibodies against the antigens that are important in determining the survival, function, and virulence of the meningococci. Phase II studies of 4CMenB have been completed and have demonstrated that the vaccine is highly immunogenic against reference meningococcal strains selected to support licensure. Post-vaccination sera from clinical

  4. Targeting of plant-derived vaccine antigens to immunoresponsive mucosal sites.

    PubMed

    Rigano, M Manuela; Sala, Francesco; Arntzen, Charles J; Walmsley, Amanda M

    2003-01-30

    Most pathogenic microorganisms enter their host via the mucosal surfaces lining the digestive, respiratory and urino-reproductive tracts of the body. The most efficient means of protecting these surfaces is through mucosal immunization. Transgenic plants are safe and inexpensive vehicles to produce and mucosally deliver protective antigens. However, the application of this technology is limited by the poor response of the immune system to non-particulate, subunit vaccines. Co-delivery of therapeutic proteins with targeting proteins, such as the B subunit of the Escherichia coli heat labile enterotoxin (LTB), could increase the effectiveness of such antigens.

  5. Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria.

    PubMed

    King, Christopher L; Adams, John H; Xianli, Jia; Grimberg, Brian T; McHenry, Amy M; Greenberg, Lior J; Siddiqui, Asim; Howes, Rosalind E; da Silva-Nunes, Monica; Ferreira, Marcelo U; Zimmerman, Peter A

    2011-12-13

    Plasmodium vivax (Pv) is a major cause of human malaria and is increasing in public health importance compared with falciparum malaria. Pv is unique among human malarias in that invasion of erythrocytes is almost solely dependent on the red cell's surface receptor, known as the Duffy blood-group antigen (Fy). Fy is an important minor blood-group antigen that has two immunologically distinct alleles, referred to as Fy(a) or Fy(b), resulting from a single-point mutation. This mutation occurs within the binding domain of the parasite's red cell invasion ligand. Whether this polymorphism affects susceptibility to clinical vivax malaria is unknown. Here we show that Fy(a), compared with Fy(b), significantly diminishes binding of Pv Duffy binding protein (PvDBP) at the erythrocyte surface, and is associated with a reduced risk of clinical Pv in humans. Erythrocytes expressing Fy(a) had 41-50% lower binding compared with Fy(b) cells and showed an increased ability of naturally occurring or artificially induced antibodies to block binding of PvDBP to their surface. Individuals with the Fy(a+b-) phenotype demonstrated a 30-80% reduced risk of clinical vivax, but not falciparum malaria in a prospective cohort study in the Brazilian Amazon. The Fy(a+b-) phenotype, predominant in Southeast Asian and many American populations, would confer a selective advantage against vivax malaria. Our results also suggest that efficacy of a PvDBP-based vaccine may differ among populations with different Fy phenotypes.

  6. Improved detection of acute parvovirus B19 infection by immunoglobulin M EIA in combination with a novel antigen EIA.

    PubMed

    Corcoran, A; Kerr, S; Elliott, G; Koppelman, M; Doyle, S

    2007-10-01

    Although parvovirus B19 is a significant blood product contaminant, few methods other than polymerase chain reaction (PCR) have been developed to detect the presence of the virus. A B19 antigen enzyme immunoassay (EIA) has been developed and the sensitivity of detection is ascertained using dilutions of the B19 capsid protein VP2 and 10-fold dilutions of B19 viraemic serum. Once the assay cut-off was established, a panel of viraemic donations (n = 70) was screened by the antigen EIA. The B19 immunoglobulin M (IgM) and IgG status of these specimens was also determined. During screening of blood donor units by quantitative PCR, 70 individuals were identified with levels of B19 DNA greater than 10(6) IU/ml at the time of blood donation. The sensitivity of the B19 antigen EIA was estimated to be equivalent to between 10(8) and 10(9) IU/ml B19 DNA or 1-10 pg/ml of recombinant capsid protein. B19 detection was significantly enhanced when viraemic specimens were pretreated with a low pH proprietary reagent. Unlike other virus-detection assays, detection of the B19 antigen was not affected by the presence of B19 IgM or IgG antibodies. In addition, the assay was capable of detecting all three genotypes of human erythrovirus. Combined specimen analysis by the B19 antigen assay and a B19 IgM assay facilitated the detection of 91% of acute B19 infections in the test population. In combination with B19 IgM detection, application of the B19 antigen EIA is a flexible and efficient method of detecting recent B19 infection and can be used as an alternative to PCR.

  7. Characterization of monoclonal antibodies against hepatitis C virus nonstructural protein 3: different antigenic determinants from human B cells.

    PubMed

    Ou-Yang, P; Chiang, B L; Hwang, L H; Chen, Y G; Yang, P M; Chi, W K; Chen, P J; Chen, D S

    1999-04-01

    The nonstructural (NS3) region protein of hepatitis C virus (HCV) possesses major B-cell epitopes that induce antibodies after infection. To elucidate further the characteristics of these B cells and their role in the immune regulation of HCV infection, T9 (portion of NS3 region, amino acids [a.a.] 1188-1493)-specific monoclonal antibodies were derived and mapped for B-cell antigenic determinants with recombinant proteins. A total of 10 T9-specific hybridomas were generated and tested for B-cell antigenic determinants. To analyze the B-cell antigenic determinants, eight recombinant proteins including NS3-e (a.a. 1175-1334), NS3-a' (a.a. 1175-1250), NS3-a (a.a. 1251-1334), NS3-b (a.a. 1323-1412), NS3-c (a.a. 1407-1499), NS3-a/b (a.a. 1251-1412), NS3-bc (a.a. 1323-1499), and NS3-abc (a.a. 1251-1499) encoded by NS3-region internal clones were expressed and tested for immunoblotting. The data suggested IgG hybridomas recognized NS3-a, NS3-a', or NS3-b protein by immunoblotting. By contrast, the NS3-e protein bears the major antigenic determinant recognized by human sera. Half of the hybridomas were found to react with protein NS3-a', which is not a major B-cell antigenic determinant in humans. These data suggested that conformational epitopes in vivo may be important for B-cell recognition.

  8. Molecular analysis of antigen-independent adhesion forces between T and B lymphocytes.

    PubMed Central

    Amblard, F; Auffray, C; Sekaly, R; Fischer, A

    1994-01-01

    The low-affinity interactions underlying antigen recognition by T-cell receptors (TCRs) are thought to involve antigen-independent adhesion mechanisms. Using a hydrodynamic approach, we found that antigen-independent adhesion occurred between human B cells and resting T cells in a transient and temperature-dependent fashion. The mean cell-cell adhesion force was 0.32 x 10(-9) N and was generated by similar contributions (0.16 x 10(-9) N) of the LFA-1- and CD2-dependent adhesion pathways. After T-cell stimulation with a phorbol ester, the force contributed by LFA-1 was drastically increased, while that of CD2 was unaffected. We propose that weak receptor-mediated adhesion initiates antigen-independent intercellular contacts required for antigen recognition by the TCR and is upregulated following TCR engagement. The method used permits adhesion forces between living cells to be resolved at the molecular level and should prove valuable for the rapid assessment of interaction forces between various types of cells and cell-sized particles. Images PMID:7909604

  9. Caffeine Eye Drops Protect Against UV-B Cataract

    PubMed Central

    Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per

    2013-01-01

    The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096

  10. Failure to protect calves against Taenia saginata using antigens prepared from in vitro cultivation of the larval stage.

    PubMed

    Mitchell, G B; Armour, J

    1980-11-01

    Calves were vaccinated intramuscularly against the tapeworm Taenia saginata using excretory/secretory (ES) antigens from short and long term periods of in vitro cultivation of the larval stage of the parasite, four weeks before challenge with 5000 T saginata onchospheres. Neither immunisation regime employed afforded significant protection against challenge. It was considered that this may have been due to a reduction in concentration of, or detrimental effects to, potential immunogens during vaccine production. Elucidation of the nature of the protective ES antigens necessary for standardization of the technique has yet to be achieved in helminths.

  11. Selection of tumor antigens as targets for immune attack using immunohistochemistry: protein antigens.

    PubMed

    Zhang, S; Zhang, H S; Cordon-Cardo, C; Ragupathi, G; Livingston, P O

    1998-11-01

    The relative expression of mucin antigens MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC7 and glycoprotein antigens KSA, carcinoembryonic antigen, prostate-specific membrane antigen (PSMA), HER-2/neu, and human chorionic gonadotropin-beta on different cancers and normal tissues is difficult to determine from available reports. We have compared the distribution of these antigens by immunohistology on a broad range of malignant and normal tissues. MUC1 expression was most intense in cancers of breast, lung, ovarian, and endometrial origin; MUC2 was most intense in cancers of colon and prostate origin; and MUC5AC was most intense in cancers of breast and gastric origin. MUC4 was intensely expressed in 50% of cancers of colon and pancreas origin, and MUC3, MUC5B, and MUC7 were expressed in a variety of epithelial cancers, but not so intensely. KSA was intensely and uniformly expressed on all epithelial cancers; carcinoembryonic antigen was expressed in most cancers of breast, lung, colon, pancreas, and gastric origin; and PSMA was expressed only in cancers of prostate origin. Human chorionic gonadotropin-beta was expressed on the majority of sarcomas and cancers of breast, lung, and pancreas origin, although intense staining was not seen. Staining on normal tissues was restricted to one or many normal epithelial tissues ranging from MUC3, MUC4, and PSMA, which were expressed only on epithelia of pancreas, stomach, and prostate origin, respectively, to MUC1 and KSA, which were expressed on most normal epithelia. Expression was restricted to the secretory borders of these epithelia while stroma and other normal tissues were completely negative. These results plus the results of the two previous papers (S. Zhang et al, Int. J. Cancer, 73: 42-49, 1997; S. Zhang et al., Int. J. Cancer, 73: 50-56, 1997) in this series provide the basis for selection of multiple cell surface antigens as targets for antibody-mediated attack against these cancers.

  12. Studies on B-cell memory. III. T-dependent aspect of B memory generation in mice immunized with T-independent type-2(TI-2) antigen.

    PubMed

    Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S

    1984-09-01

    The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.

  13. A UV-B-specific signaling component orchestrates plant UV protection

    PubMed Central

    Brown, Bobby A.; Cloix, Catherine; Jiang, Guang Huai; Kaiserli, Eirini; Herzyk, Pawel; Kliebenstein, Daniel J.; Jenkins, Gareth I.

    2005-01-01

    UV-B radiation in sunlight has diverse effects on humans, animals, plants, and microorganisms. UV-B can cause damage to molecules and cells, and consequently organisms need to protect against and repair UV damage to survive in sunlight. In plants, low nondamaging levels of UV-B stimulate transcription of genes involved in UV-protective responses. However, remarkably little is known about the underlying mechanisms of UV-B perception and signal transduction. Here we report that Arabidopsis UV RESISTANCE LOCUS 8 (UVR8) is a UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. Moreover, we show that UVR8 regulates expression of the transcription factor HY5 specifically when the plant is exposed to UV-B. We demonstrate that HY5 is a key effector of the UVR8 pathway, and that it is required for survival under UV-B radiation. UVR8 has sequence similarity to the eukaryotic guanine nucleotide exchange factor RCC1, but we found that it has little exchange activity. However, UVR8, like RCC1, is located principally in the nucleus and associates with chromatin via histones. Chromatin immunoprecipitation showed that UVR8 associates with chromatin in the HY5 promoter region, providing a mechanistic basis for its involvement in regulating transcription. We conclude that UVR8 defines a UV-B-specific signaling pathway in plants that orchestrates the protective gene expression responses to UV-B required for plant survival in sunlight. PMID:16330762

  14. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity.

    PubMed

    Nedrud, John G; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.

  15. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    PubMed

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cross-Reactivity between Schistosoma mansoni Antigens and the Latex Allergen Hev b 7: Putative Implication of Cross-Reactive Carbohydrate Determinants (CCDs)

    PubMed Central

    Doenhoff, Michael J.; El-Faham, Marwa; Liddell, Susan; Fuller, Heidi R.; Stanley, Ronald G.; Schramm, Gabriele; Igetei, Joseph E.

    2016-01-01

    IgG antibodies produced by rabbits immunized against S. mansoni antigens cross-reacted with aqueous soluble constituents of a variety of allergens. The antibody cross-reactivity was largely sensitive to degradation by treatment of the target antigens with sodium meta-periodate, suggesting the cross-reactivity was due to carbohydrate determinants that were common to both the schistosome and the allergens (CCDs). The reaction between the rabbit antibodies and a 43 kDa molecule in a rubber latex extract was analysed further: tandem mass spectrometry identified the latex molecule as allergen Hev b 7. Rabbit anti-schistosome IgG antibodies purified by acid-elution from solid-phase latex Hev b 7 reacted with the S. mansoni egg antigens IPSE/alpha-1 and kappa-5 and cercarial antigens SPO-1 and a fatty acid-binding protein. Moreover, purified anti-S. mansoni egg, latex cross-reactive antibodies reacted with antigenic constituents of some fruits, a result of potential relevance to the latex-fruit syndrome of allergic reactions. We propose that IgG anti-schistosome antibodies that cross-react with allergens may be able to block IgE-induced allergic reactions and thus provide a possible explanation for the hygiene hypothesis. PMID:27467385

  17. EBOV Protection Is Supported by T Cell-Dependent Humoral Responses But Is Not Requisite for Survival

    DTIC Science & Technology

    2016-06-03

    EBOV protection is supported by T cell- dependent humoral responses but is not requisite for survival. 1 Christopher L. Cooper, Karen A. Martins...platforms of a requisite role for antibody-5 dependent protection and extensive efforts in development of antibody therapy against lethal EBOV 6... dependent 12 mechanisms. We show that Hiltonol both augmented and sustained eVLP-mediated GC B cell formation 13 and increased antigen-specific B cell

  18. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.

    PubMed

    Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga

    2017-10-01

    This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.

  19. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Production of immunologically active surface antigens of hepatitis B virus by Escherichia coli.

    PubMed Central

    MacKay, P; Pasek, M; Magazin, M; Kovacic, R T; Allet, B; Stahl, S; Gilbert, W; Schaller, H; Bruce, S A; Murray, K

    1981-01-01

    Several plasmids have been constructed which direct the synthesis of hepatitis B virus surface antigens in Escherichia coli either as the native polypeptide or fused to other plasmid encoded polypeptides. When injected into rabbits, extracts from bacteria carrying some of these plasmids induced the synthesis of antibodies to the antigens even though the extracts did not give satisfactory positive results in radioimmunoassay for them. Either the NH2-terminal segment or the COOH-terminal segment of the surface antigens alone was sufficient to elicit the immune response, but antibodies against the two segments showed different specificities. The results emphasize the value of an in vivo assay for the presence of antigens in crude cell extracts and illustrate the feasibility of this type of screening with laboratory animals. PMID:6170067

  1. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  2. Felix Hoppe-Seyler Lecture 1997. Protective antibody responses against viruses.

    PubMed

    Zinkernagel, R M

    1997-08-01

    Neutralizing antibody responses against the acute cytopathic vesicular stomatitis virus (VSV) have been studied in mice to evaluate their general characteristics including specificity, self-/non-self discrimination and memory. IgM responses are generated very early, by day 3 to 4, in a T helper cell-independent fashion and without VSV having polyclonal activating capacities. The order of the glycoprotein tips on the virus envelope (multiple, 8-10 nm distance, paracrystalline) exhibiting the neutralizing determinants are key to this prompt response. These paracrystalline identical multimeric antigens are characteristic of infectious agents and are always reacted against by B cells. Self-antigens that are accessible to B cells in the intact host are either monomeric in serum or mobile multimers on cell surfaces; these configurations need contact dependent or contact independent T help, respectively. Because T help is tolerant against self-antigens, no anti-self B cell responses are usually induced against monomeric self-antigens. If collagen or DNA (rigid multimeric self-antigens) become accessible, however, they may become targets of auto-antibody responses. The antibody repertoire against VSV is partially contained in the germline and partially is generated by somatic mutation; they seem not to undergo affinity-maturation. In any case protection against lethal infection is dependent upon strictly T helper cell dependent IgG generated by day 6 to 7 and reaches a protective level of about 1-10 micrograms/ml. Interesting affinity/avidity and onrate above a minimal threshold are of no apparent advantage for protection in vivo. Maintenance of these antibody levels by antigen depots, and not the presence of memory B cells alone, is key to providing protective immunological memory. Collectively these data suggest that studying biologically important protective antibody responses may modify some of the parameters that have been defined by studying hapten specific antibody

  3. Protective Human Leucocyte Antigen Haplotype, HLA-DRB1*01-B*14, against Chronic Chagas Disease in Bolivia

    PubMed Central

    del Puerto, Florencia; Nishizawa, Juan Eiki; Kikuchi, Mihoko; Roca, Yelin; Avilas, Cinthia; Gianella, Alberto; Lora, Javier; Velarde, Freddy Udalrico Gutierrez; Miura, Sachio; Komiya, Norihiro; Maemura, Koji; Hirayama, Kenji

    2012-01-01

    Background Chagas disease, caused by the flagellate parasite Trypanosoma cruzi affects 8–10 million people in Latin America. The mechanisms that underlie the development of complications of chronic Chagas disease, characterized primarily by pathology of the heart and digestive system, are not currently understood. To identify possible host genetic factors that may influence the clinical course of Chagas disease, Human Leucocyte Antigen (HLA) regional gene polymorphism was analyzed in patients presenting with differing clinical symptoms. Methodology Two hundred and twenty nine chronic Chagas disease patients in Santa Cruz, Bolivia, were examined by serological tests, electrocardiogram (ECG), and Barium enema colon X-ray. 31.4% of the examinees showed ECG alterations, 15.7% megacolon and 58.1% showed neither of them. A further 62 seropositive megacolon patients who had undergone colonectomy due to acute abdomen were recruited. We analyzed their HLA genetic polymorphisms (HLA-A, HLA-B, MICA, MICB, DRB1 and TNF-alpha promoter region) mainly through Sequence based and LABType SSO typing test using LUMINEX Technology. Principal Findings The frequencies of HLA-DRB1*01 and HLA-B*14:02 were significantly lower in patients suffering from megacolon as well as in those with ECG alteration and/or megacolon compared with a group of patients with indeterminate symptoms. The DRB1*0102, B*1402 and MICA*011 alleles were in strong Linkage Disequilibrium (LD), and the HLA-DRB1*01-B*14-MICA*011haplotype was associated with resistance against chronic Chagas disease. Conclusions This is the first report of HLA haplotype association with resistance to chronic Chagas disease. PMID:22448298

  4. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    PubMed Central

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  5. Association of human leukocyte A, B, and DR antigens in Colombian patients with diagnosis of spondyloarthritis.

    PubMed

    Santos, Ana M; Peña, Paola; Avila, Mabel; Briceño, Ignacio; Jaramillo, Carlos; Vargas-Alarcon, Gilberto; Rueda, Juan C; Saldarriaga, Eugenia-Lucia; Angarita, Jose-Ignacio; Martinez-Rodriguez, Nancy; Londono, John

    2017-04-01

    There is substantial evidence that non-B27 major histocompatibility complex (MHC) genes are associated with spondyloarthritis (SpA). Studies in Mexican and Tunisian populations demonstrated the association of SpA and human leukocyte antigen (HLA) B15. The purpose of this study was to evaluate the association of HLA-A, B, and DR antigens in a group of Colombian patients with a diagnosis of SpA. A total of 189 patients and 100 healthy subjects were included in the present study. All subjects underwent a complete characterization of HLA alleles A, B, and DR. Of the 189 studied patients, 35 were reactive arthritis (ReA), 87 were ankylosing spondylitis (AS), and 67 undifferentiated SpA (uSpA). According to the Assessment of Spondyloarthritis International Society (ASAS) criteria, 167 were axial SpA (axSpA) and 171 were peripheral SpA (pSpA). 63.8% were men, with a mean age of 35.9 ± 12.7 years. 40.7% (77/189) of patients were HLA-B27 positive of which 52.9% had AS and 42.5% axSpA. 23.2% (44/189) of patients were HLA-B15 positive: 23.8% were uSpA, 12.57% were axSpA, and 11.7% were pSpA. In addition, HLA-DRB1*01 was associated with AS (58.6%) and axSpA (42.5%). Also, HLA-DRB1*04 was present in 62 patients with AS (71.2%) and in 26 with axSpA (15.5%). In this population, we found a strong association between the presence of HLA-B27 and the diagnosis of axSpA and AS, but the HLA-B15 is also significantly associated with all subtypes of the disease, predominantly with pSpA. Additionally, HLA-DR1 and DR4 were associated in a cohort of patients with SpA from Colombia.

  6. Characterization and storage of malaria antigens: Localization and chemical characterization of Plasmodium knowlesi schizont antigens

    PubMed Central

    Deans, J. A.; Cohen, S.

    1979-01-01

    The identification of malarial antigens that induce protective immunity could provide a rational basis for developing an effective antimalarial vaccine as well as specific serodiagnostic tests indicative of clinical immune status. Since protective immunity is probably induced by stage-dependent rather than stage-independent antigens, the antigenic composition of different stages of Plasmodium knowlesi has been compared, and a limited chemical characterization undertaken. This information should provide some insight into the types of preparative procedure appropriate for the purification of functionally important malarial antigens. PMID:120777

  7. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  8. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells

    PubMed Central

    1993-01-01

    To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208

  9. Development of Protective Immunity in New Zealand White Rabbits Challenged with Bacillus anthracis Spores and Treated with Antibiotics and Obiltoxaximab, a Monoclonal Antibody against Protective Antigen.

    PubMed

    Henning, Lisa N; Carpenter, Sarah; Stark, Gregory V; Serbina, Natalya V

    2018-02-01

    The recommended management of inhalational anthrax, a high-priority bioterrorist threat, includes antibiotics and antitoxins. Obiltoxaximab, a chimeric monoclonal antibody against anthrax protective antigen (PA), is licensed under the U.S. Food and Drug Administration's (FDA's) Animal Rule for the treatment of inhalational anthrax. Because of spore latency, disease reemergence after treatment cessation is a concern, and there is a need to understand the development of endogenous protective immune responses following antitoxin-containing anthrax treatment regimens. Here, acquired protective immunity was examined in New Zealand White (NZW) rabbits challenged with a targeted lethal dose of Bacillus anthracis spores and treated with antibiotics, obiltoxaximab, or a combination of both. Survivors of the primary challenge were rechallenged 9 months later and monitored for survival. Survival rates after primary and rechallenge for controls and animals treated with obiltoxaximab, levofloxacin, or a combination of both were 0, 65, 100, and 95%, and 0, 100, 95, and 89%, respectively. All surviving immune animals had circulating antibodies to PA and serum toxin-neutralizing titers prior to rechallenge. Following rechallenge, systemic bacteremia and toxemia were not detected in most animals, and the levels of circulating anti-PA IgG titers increased starting at 5 days postrechallenge. We conclude that treatment with obiltoxaximab, alone or combined with antibiotics, significantly improves the survival of rabbits that received a lethal inhalation B. anthracis spore challenge dose and does not interfere with the development of immunity. Survivors of primary challenge are protected against reexposure, have rare incidents of systemic bacteremia and toxemia, and have evidence of an anamnestic response. Copyright © 2018 Henning et al.

  10. Subcomponent Vaccine Based on CTA1-DD Adjuvant with Incorporated UreB Class II Peptides Stimulates Protective Helicobacter pylori Immunity

    PubMed Central

    Nedrud, John G.; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y.

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform. PMID:24391754

  11. 45 CFR 5b.3 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.3 Policy. It is the policy of the Department to protect the privacy of individuals to the fullest extent possible... public is entitled to have under the Freedom of Information Act, 5 U.S.C. 552, and part 5 of this title. ...

  12. 45 CFR 5b.3 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Department of Health and Human Services GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.3 Policy. It is the policy of the Department to protect the privacy of individuals to the fullest extent possible... public is entitled to have under the Freedom of Information Act, 5 U.S.C. 552, and part 5 of this title. ...

  13. 45 CFR 5b.3 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.3 Policy. It is the policy of the Department to protect the privacy of individuals to the fullest extent possible... public is entitled to have under the Freedom of Information Act, 5 U.S.C. 552, and part 5 of this title. ...

  14. Differential Expression of CD5 on B Lymphocytes in Cattle Infected with Mycobacterium avium subsp. paratuberculosis

    USDA-ARS?s Scientific Manuscript database

    CD5 is a cell surface molecule involved in antigen recognition and is present on all T lymphocytes and a subset of B lymphocytes. The purpose of this study was to examine CD5+ expression on peripheral blood B cells from healthy, noninfected cattle and cattle with subclinical and clinical paratubercu...

  15. Prophylactic efficacy of high-molecular-weight antigenic fractions of a recent clinical isolate of Leishmania donovani against visceral leishmaniasis.

    PubMed

    Tripathi, P; Gupta, S K; Sinha, S; Sundar, S; Dube, A; Naik, S

    2008-11-01

    T-cell mediated immune responses are key determinants to the natural course of infection caused by intracellular parasites such as Leishmania. Thus, T-cell activating proteins of these microbes continue to generate active interest particularly in view of their possible role in the design and development of newer and more effective vaccines. We have recently reported the presence of T-cell immunostimulatory antigens with the high-molecular-weight (MW) fractions (134-64.2 kDa) of whole Leishmania donovani antigen (strain 2001), which stimulated variable amounts of IFN-gamma, IL-12 and IL-10 in exposed immune individuals. The present study was undertaken to further evaluate these high-MW antigenic fractions (MW range >100-60 kDa) for potential protective efficacy. The high-MW region of the parasite was resolved into five antigenic fractions (Prep A-E) using continuous elution gel electrophoresis. Prior to in vivo protection studies in hamsters, these fractions were used to evaluate in vitro cellular responses in eight Leishmania-exposed individuals and treated cured hamsters. The protective efficacy of prep (A + B), C, D and E in combination with BCG was evaluated in inbred hamsters using standard immunization protocol. Proliferative responses were seen in all eight of eight exposed individuals to prep D [median stimulation index (SI): 5.2 (range 3.9-7.1)] and E [median SI: 5.6 (range 4.4-8.2)], five of eight individuals to prep B and prep C and three of eight to prep A [median SI: 0.2 (range 0.1-7.2)]. The median proliferative responses to prep D and prep E were significantly higher than to fraction prep A; (P < 0.05) but not to prep B and prep C. However, prep A-E induced equivalent levels of IFN-gamma, IL-10 and IL-12 cytokines. Fractions D and E also exhibited marked parasite inhibition in spleen (52.5% and 73.7%) and liver (65% and 80.2%) as compared with prep (A + B) (23% in spleen and 24% in liver) and prep C (38% in spleen and 24% in liver). Prep D and prep E

  16. Effects of SSM (specific substance maruyama) on HBe antigen-positive chronic hepatitis B -clinical efficacy and modulation of cytokines.

    PubMed

    Satomura, K; Yin, M; Sekiyama, T; Fujisaki, S; Aramaki, T; Okumura, H; Ohmoto, Y

    2000-08-01

    Twenty-three patients with HBe antigen-positive chronic hepatitis B were treated with capitalite first letters Maruyama (SSM). HBe antigen turned negative in 15 patients. The levels of various cytokines in pre- and post-treatment frozen serum samples from six patients whose HBe antigen turned negative and from five whose HBe antigen did not were examined. Reduction of serum interleukin (IL) -10 level to below 20 pg/ml was observed after SSM treatment in four of the six patients whose HBe antigen turned negative. SSM was found to stimulate the production of interferon (IFN) -gamma in peripheral blood cells from two healthy volunteers. This stimulatory effect was confirmed in 12 out of 24 healthy volunteers. SSM augmented the production of IFN-gamma in eight out of 10 patients with chronic hepatitis B and nine of 10 with hepatitis C. These results demonstrate for the first time that SSM stimulates the production of IFN-gamma in human peripheral blood cells and also suggest that treatment of HBe antigen-positive chronic hepatitis B patients with SSM leads to the clearance of HBe antigen and normalization of serum aspartate aminotransferase levels through inhibition of IL-10 and stimulation of IFN-gamma.

  17. Antibody to hepatitis B core antigen levels in the natural history of chronic hepatitis B: a prospective observational study.

    PubMed

    Jia, Wei; Song, Liu-Wei; Fang, Yu-Qing; Wu, Xiao-Feng; Liu, Dan-Yang; Xu, Chun; Wang, Xiao-Mei; Wang, Wen; Lv, Dong-Xia; Li, Jun; Deng, Yong-Qiong; Wang, Yan; Huo, Na; Yu, Min; Xi, Hong-Li; Liu, Dan; Zhou, Yi-Xing; Wang, Gui-Qiang; Xia, Ning-Shao; Zhang, Ming-Xiang

    2014-12-01

    Previous studies have revealed antibody to hepatitis B core antigen (anti-HBc) levels as a predictor of treatment response in hepatitis B early antigen (HBeAg)-positive chronic hepatitis B (CHB) patients in both interferon and nucleos(t)ide analog therapy cohorts. However, there is no information about anti-HBc levels in the natural history of CHB. This study aimed to define anti-HBc levels of different phases in the natural history of CHB. Two hundred eleven treatment-naive CHB patients were included in the study. They were classified into 4 phases: immune tolerance (IT) phase (n = 39), immune clearance (IC) phase (n = 48), low or no-replicative (LR) phase (n = 55), and HBeAg-negative hepatitis (ENH, n = 69). Fifty patients who were HBsAg negative and anti-HBc positive were also recruited as past HBV infection (PBI) control group. Anti-HBc levels were measured by a newly developed double-sandwich immunoassay. Correlation of anti-HBc levels with alanine aminotransferase (ALT) and other HBV-related markers within each phase was performed. Serum anti-HBc levels were statistically significant between patients in different phases of CHB (P < 0.001). The median anti-HBc levels were: IT (3.17 log 10 IU/mL), IC (4.39 log 10 IU/mL), LR (3.29 log 10 IU/mL), ENH (4.12 log 10 IU/mL), and PBI (0.61 log 10 IU/mL). There existed a strong correlation in IC (r = 0.489, P < 0.001), a poor correlation in ENH (r = 0.275, P = 0.042), and no correlation in patients with ALT reached 5 times upper limit of normal (r = 0.120, P = 0.616). Anti-HBc levels show significant differences during the natural course of CHB. These results may provide some potentially useful insights into hepatitis B pathogenesis and immune activation against hepatitis B virus.

  18. Lipopolysaccharide Antigens of Pseudomonas aeruginosa and Design of Novel Vaccines.

    DTIC Science & Technology

    1987-09-01

    Pseudomonas aeruginosa, OA 1-C LChemical structure, Fisher immunotypes, M; ig0-Chain polysaccharide , and Synthetic antigens 19. ABSTRACT (Conu on rftvm if...have been characterized in our laboratories. Partial structures for the remaining two types have been elucidated. The O-chain polysaccharides of the... polysaccharide antigens for native structure, and (5) binding-site xa[lJ11:, of the antibodies using the synthetic antigens. b% B.. Sirmificance: General

  19. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs.

    PubMed

    De Vleeschauwer, Annebel R; Baras, Benoît; Kyriakis, Constantinos S; Jacob, Valérie; Planty, Camille; Giannini, Sandra L; Mossman, Sally; Van Reeth, Kristien

    2012-08-10

    We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A recombinant iron transport protein from Bordetella pertussis confers protection against Bordetella parapertussis.

    PubMed

    Alvarez Hayes, Jimena; Oviedo, Juan Marcos; Valdez, Hugo; Laborde, Juan Martín; Maschi, Fabricio; Ayala, Miguel; Shah, Rohan; Fernandez Lahore, Marcelo; Rodriguez, Maria Eugenia

    2017-10-01

    Whooping cough, which is caused by Bordetella pertussis and B. parapertussis, is a reemerging disease. New protective antigens are needed to improve the efficacy of current vaccines against both species. Using proteomic tools, it was here found that B. parapertussis expresses a homolog of AfuA, a previously reported new vaccine candidate against B. pertussis. It was found that this homolog, named AfuA Bpp , is expressed during B. parapertussis infection, exposed on the surface of the bacteria and recognized by specific antibodies induced by the recombinant AfuA cloned from B. pertussis (rAfuA). Importantly, the presence of the O-antigen, a molecule that has been found to shield surface antigens on B. parapertussis, showed no influence on antibody recognition of AfuA Bpp on the bacterial surface. The present study further showed that antibodies induced by immunization with the recombinant protein were able to opsonize B. parapertussis and promote bacterial uptake by neutrophils. Finally, it was shown that this antigen confers protection against B. parapertussis infection in a mouse model. Altogether, these results indicate that AfuA is a good vaccine candidate for acellular vaccines protective against both causative agents of whooping cough. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  1. 32 CFR 806b.34 - Protecting records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Protecting records. 806b.34 Section 806b.34... PROGRAM Protecting and Disposing of Records § 806b.34 Protecting records. Maintaining information privacy... contact with information in identifiable form. Protect information according to its sensitivity level...

  2. 32 CFR 806b.34 - Protecting records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Protecting records. 806b.34 Section 806b.34... PROGRAM Protecting and Disposing of Records § 806b.34 Protecting records. Maintaining information privacy... contact with information in identifiable form. Protect information according to its sensitivity level...

  3. 32 CFR 806b.34 - Protecting records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Protecting records. 806b.34 Section 806b.34... PROGRAM Protecting and Disposing of Records § 806b.34 Protecting records. Maintaining information privacy... contact with information in identifiable form. Protect information according to its sensitivity level...

  4. 32 CFR 806b.34 - Protecting records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Protecting records. 806b.34 Section 806b.34... PROGRAM Protecting and Disposing of Records § 806b.34 Protecting records. Maintaining information privacy... contact with information in identifiable form. Protect information according to its sensitivity level...

  5. 32 CFR 806b.34 - Protecting records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Protecting records. 806b.34 Section 806b.34... PROGRAM Protecting and Disposing of Records § 806b.34 Protecting records. Maintaining information privacy... contact with information in identifiable form. Protect information according to its sensitivity level...

  6. Prevalence of Hepatitis B surface antigen among biomedical students of African descent in Usmanu Danfodiyo University, Sokoto, Nigeria.

    PubMed

    Okwesili, A N; Onuigwe, F U; Ibrahim, K; Buhari, H; Ibrahim, A; Jafaru, H; Erhabor, O; Onuigwe, F U; Isaac, Z; Ahmed, M H; Mainasara, M Y; Adias, T C; Yeldu, M H; Uko, E K; Udoma, F

    2015-12-23

    Hepatitis B (HB) is a serious global public health problem that put health professionals particularly at risk. The aim of this study was to investigate the prevalence of Hepatitis B surface antigen (HBsAg) among Biomedical Students of African descent attending Usmanu Danfodiyo University Sokoto in North-Western Nigeria. The Onsite HBsAg (CTK Biotech, USA) was used to detect the presence of hepatitis B surface antigen. We tested 186 consecutively-recruited students consisting of 147 males and 39 females aged 18-35 years (mean age 26 ± 2.0 years). Of the 186 students tested, 25 (13.4%) were positive for HBsAg. The prevalence of HBsAg was significantly higher among students in the 21-25 years age group. Hepatitis B vaccination uptake among students was 7%. Majority of subjects were single 173(93.1%) compared to married 13 (6.9%). Ethnic distribution of the subjects indicated that 104(55.9%) were Hausa compared to Yoruba 32 (17.2%), other ethnic groups 21(11.3%), Fulani 20(10.8%) and Igbo 9(4.8%). This study indicates a high prevalence of hepatitis B virus infection among Biomedical students in Sokoto, North Western, Nigeria. Finding from this study is enough justification for the implementation of a policy to routinely test students entering into the biomedical professions for Hepatitis B virus infection. There is the need to provide hepatitis B vaccination universally to all those who are found negative prior to commencement of their biomedical training. There is also need to educate students entering biomedical professions and healthcare workers on the modes of transmission and prevention, importance of being compliant with protective vaccination as well as the need to observe universal precaution and infection control guidelines during their training and future professional practice.

  7. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China.

    PubMed

    Ge, Feifei; Li, Xin; Ju, Houbin; Yang, Dequan; Liu, Jian; Qi, Xinyong; Wang, Jian; Yang, Xianchao; Qiu, Yafeng; Liu, Peihong; Zhou, Jinping

    2016-06-01

    H9N2 influenza viruses have been circulating in China since 1994, but a systematic investigation of H9N2 in Shanghai has not previously been undertaken. Here, using 14 viruses we isolated from poultry and pigs in Shanghai during 2002 and 2006-2014, together with the commercial vaccine A/chicken/Shanghai/F/1998 (Ck/SH/F/98), we analyzed the evolution of H9N2 influenza viruses in Shanghai and showed that all 14 isolates originated from Ck/SH/F/98 antigenically. We evaluated the immune protection efficiency of the vaccine. Our findings demonstrate that H9N2 viruses in Shanghai have undergone extensive reassortment. Various genotypes emerged in 2002, 2006 and 2007, while during 2009-2014 only one genotype was found. Four antigenic groups, A-D, could be identified among the 14 isolates and a variety of antigenically distinct H9N2-virus-derived avian influenza viruses (AIVs) circulated simultaneously in Shanghai during this period. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group A and B viruses, but not those of the more recent groups C and D. Genetic analysis showed that compared to the vaccine strain, representative viruses of antigenic groups C and D possess greater numbers of amino acid substitutions in the hemagglutinin (HA) protein than viruses in antigenic groups A and B. Many of these substitutions are located in antigenic sites. Our results indicate that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection.

  8. A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP142 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge.

    PubMed

    Obaldia, Nicanor; Stockelman, Michael G; Otero, William; Cockrill, Jennifer A; Ganeshan, Harini; Abot, Esteban N; Zhang, Jianfeng; Limbach, Keith; Charoenvit, Yupin; Doolan, Denise L; Tang, De-Chu C; Richie, Thomas L

    2017-04-01

    Malaria is caused by parasites of the genus Plasmodium , which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum , it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP1 42 ) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP1 42 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP1 42 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development. Copyright © 2017 American Society for Microbiology.

  9. Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help.

    PubMed

    Compeer, Ewoud B; Janssen, Willemijn; van Royen-Kerkhof, Annet; van Gijn, Marielle; van Montfrans, Joris M; Boes, Marianne

    2015-05-10

    Common Variable Immunodeficiency (CVID) is the most prevalent primary antibody deficiency, and characterized by defective generation of high-affinity antibodies. Patients have therefore increased risk to recurrent infections of the respiratory and intestinal tract. Development of high-affinity antigen-specific antibodies involves two key actions of B-cell receptors (BCR): transmembrane signaling through BCR-complexes to induce B-cell differentiation and proliferation, and BCR-mediated antigen internalization for class-II MHC-mediated presentation to acquire antigen-specific CD4(+) T-cell help.We identified a variant (L3P) in the B-lymphoid tyrosine kinase (BLK) gene of 2 related CVID-patients, which was absent in healthy relatives. BLK belongs to the Src-kinases family and involved in BCR-signaling. Here, we sought to clarify BLK function in healthy human B-cells and its association to CVID.BLK expression was comparable in patient and healthy B-cells. Functional analysis of L3P-BLK showed reduced BCR crosslinking-induced Syk phosphorylation and proliferation, in both primary B-cells and B-LCLs. B-cells expressing L3P-BLK showed accelerated destruction of BCR-internalized antigen and reduced ability to elicit CD40L-expression on antigen-specific CD4(+) T-cells.In conclusion, we found a novel BLK gene variant in CVID-patients that causes suppressed B-cell proliferation and reduced ability of B-cells to elicit antigen-specific CD4(+) T-cell responses. Both these mechanisms may contribute to hypogammaglobulinemia in CVID-patients.

  10. Assessment of the repeatability and border-plate effects of the B158/B60 enzyme-linked-immunosorbent assay for the detection of circulating antigens (Ag-ELISA) of Taenia saginata.

    PubMed

    Jansen, Famke; Dorny, Pierre; Berkvens, Dirk; Van Hul, Anke; Van den Broeck, Nick; Makay, Caroline; Praet, Nicolas; Gabriël, Sarah

    2016-08-30

    The monoclonal antibody-based circulating antigen detecting ELISA (B158/B60 Ag-ELISA) has been used elaborately in several studies for the diagnosis of human, bovine and porcine cysticercosis. Interpretation of test results requires a good knowledge of the test characteristics, including the repeatability and the effect of the borders of the ELISA plates. Repeatability was tested for 4 antigen-negative and 5 antigen-positive reference bovine serum samples by calculating the Percentage Coefficient of Variation (%CV) within and between plates, within and between runs, overall, for two batches of monoclonal antibodies and by 2 laboratory technicians. All CV values obtained were below 20% (except one: 24.45%), which indicates a good repeatability and a negligible technician error. The value of 24.45% for indicating the variability between batches of monoclonal antibodies for one positive sample is still acceptable for repeatability measures. Border effects were determined by calculating the %CV values between the inner and outer wells of one plate for 2 positive serum samples. Variability is a little more present in the outer wells but this effect is very small and no significant border effect was found. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An overview on the identification of MAIT cell antigens.

    PubMed

    Kjer-Nielsen, Lars; Corbett, Alexandra J; Chen, Zhenjun; Liu, Ligong; Mak, Jeffrey Y W; Godfrey, Dale I; Rossjohn, Jamie; Fairlie, David P; McCluskey, James; Eckle, Sidonia B G

    2018-04-14

    Mucosal Associated Invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and chemistry, we discovered MAIT cell ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin (6-FP) generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αβ T cell receptors, and here we recount this discovery. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge.

    PubMed

    Devera, T Scott; Prusator, Dawn K; Joshi, Sunil K; Ballard, Jimmy D; Lang, Mark L

    2015-06-25

    Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  13. Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants.

    PubMed

    Lou, Xiao-Ming; Yao, Quan-Hong; Zhang, Zhen; Peng, Ri-He; Xiong, Ai-Sheng; Wang, Hua-Kun

    2007-04-01

    The original hepatitis B virus (HBV) large surface antigen gene was synthesized. In order to optimize the expression of this gene in tomato plants, the tobacco pathogenesis-related protein S signal peptide was fused to the 5' end of the modified gene and the sequence encoding amino acids S, E, K, D, E, and L was placed at the 3' end. The gene encoding the modified HBV large surface antigen under the control of a fruit-specific promoter was constructed and expressed in transgenic tomato plants. The expression of the antigen from transgenic plants was confirmed by PCR and reverse transcriptase PCR. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed that the maximal level of HBsAg was about 0.02% of the soluble protein in transgenic tomato fruit. The amount of HBsAg in mature fruits was found to be 65- to 171-fold larger than in small or medium fruits and leaf tissues. Examination of transgenic plant samples by transmission electron microscopy proved that HBsAg had been expressed and had accumulated. The HBsAg protein was capable of assembling into capsomers and virus-like particles. To our knowledge, this is the first time the HBV large surface antigen has been expressed in plants. This work suggests the possibility of producing a new alternative vaccine for human HBV.

  14. PD-1 suppresses development of humoral responses that protect against Tn-bearing tumors

    PubMed Central

    Haro, Marcela A.; Littrell, Chad A.; Yin, Zhaojun; Huang, Xuefei; Haas, Karen M.

    2017-01-01

    Tn is a carbohydrate antigen uniquely exposed on tumor mucins and thus, an ideal target for immunotherapy. However, it has been difficult to elicit protective antibody responses against Tn antigen and other tumor associated carbohydrate antigens. Our study demonstrates this can be attributed to PD-1 immuno-inhibition. Our data show a major role for PD-1 in suppressing mucin- and Tn-specific B-cell activation, expansion, and antibody production important for protection against Tn-bearing tumor cells. These Tn/mucin-specific B cells belong to the innate-like B-1b cell subset typically responsible for T cell–independent antibody responses. Interestingly, PD-1–mediated regulation is B cell–intrinsic and CD4+ cells play a key role in supporting Tn/mucin-specific B cell antibody production in the context of PD-1 deficiency. Mucin-reactive antibodies produced in the absence of PD-1 inhibition largely belong to the IgM subclass and elicit potent antitumor effects via a complement-dependent mechanism. The identification of this role for PD-1 in regulating B cell–dependent antitumor immunity to Tn antigen highlights an opportunity to develop new therapeutic strategies targeting tumor associated carbohydrate antigens. PMID:27856425

  15. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  16. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. HLA-B27 antigen frequency among suspected Spondyloarthropathy patients attaining a tertiary level hospital of Bangladesh.

    PubMed

    Nessa, A; Tabassum, S; Sultana, S

    2014-12-01

    Human leukocyte antigen B27 (HLA-B27), a class I molecules of the major histocompatibility complex has a strong disease association with different types of spondarthropathies (SpA). The strength of this disease association varies markedly among racial and ethnic populations. The present study aimed to identify the HLA-B27 antigen frequencies among suspected SpA patients as well as healthy Bangladeshi individuals. The frequency of HLA-B27 was determined in 1500 patients and 1000 healthy subjects attending the Bangabandhu Sheikh Mujib Medical University (BSMMU). HLA-B 27 typing was done by microlymphocytotoxicity test using commercial kit. A total of 738 (49.2%) suspected SpA patients and 107 (10.7%) healthy subjects tested positive for HLA-B27 antigen with higher frequency among younger age groups (54.9%, 52.4% and 56.2% in 0-14 years, 15-24 years and 25-34 years of age respectively). The male female positivity was almost same (11.4% and 9.6%) among control group, but in patient group it was 53.0% and 41.2% respectively. The findings of this hospital based study showed a high frequency of HLA-B27 among suspected SpA patients with male preponderance which is comparable with neighboring countries.

  18. Polymorphisms of human leukocyte antigen B*27 on clinical phenotype of spondyloarthritis in Chinese.

    PubMed

    Ma, Hai-Jun; Yin, Qing-Feng; Liu, Yun; Wu, Yin; Zhu, Tie-Chui; Guo, Ming-Hao

    2018-02-01

    In recent years, an ever-increasing number of alleles of human leukocyte antigen B*27 (HLA-B*27) have been identified. This study aimed to establish an updated method for HLA-B*27 subtyping, and to investigate the impact of HLA-B*27 polymorphisms on the clinical phenotype of spondyloarthritis (SpA). Overall, 184 SpA patients were recruited for analyzing diversity of HLA-B*27 via an updated high-resolution polymerase chain reaction amplification with sequence specific primers (PCR-SSP). The prevalence of HLA-B*27 was 94.0%, and four subtypes were identified including HLA-B*2704 (77.5%), B*2705 (20.2%), B*2707 (1.7%), and B*2724 (0.6%). There was an obvious male predominance (P=.05) and markedly elevated C-reaction protein (CRP) in B*27 positive SpA (P<.01). In multivariate linear regression analysis, the elevated CRP was positively associated with HLA-B*27 positivity (regression coefficient B=46.1, P=.0003), grade of sacroiliitis (B=47.5, P=.0032), and male gender (B=20.4, P=.0041). Notably, a male predilection was also found in B*2705 positive SpA while B*2707 was associated with older age, higher positive family history, and higher prevalence of extra-articular features (all P<.05). In this study, an updated PCR-SSP technique to identify increasing alleles of HLA-B*27 was developed and their different effects on clinical manifestations of SpA were demonstrated. Genotyping of HLA-B*27 would shed light on our understanding of the pathogenesis of SpA. © 2017 Wiley Periodicals, Inc.

  19. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice.

    PubMed

    Weber, Christopher; Büchner, Sarah M; Schnierle, Barbara S

    2015-04-01

    The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.

  20. Synergistic protection of mice against plague with monoclonal antibodies specific for the F1 and V antigens of Yersinia pestis.

    PubMed

    Hill, Jim; Copse, Catherine; Leary, Sophie; Stagg, Anthony J; Williamson, E Diane; Titball, Richard W

    2003-04-01

    Monoclonal antibodies specific for Yersinia pestis V antigen and F1 antigen, administered singly or in combination, protected mice in models of bubonic and pneumonic plague. Antibodies showed synergy when administered prophylactically and as a therapy 48 h postinfection. Monoclonal antibodies therefore have potential as a treatment for plague.

  1. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system

    PubMed Central

    Santi, Luca; Giritch, Anatoli; Roy, Chad J.; Marillonnet, Sylvestre; Klimyuk, Victor; Gleba, Yuri; Webb, Robert; Arntzen, Charles J.; Mason, Hugh S.

    2006-01-01

    Plague is still an endemic disease in different regions of the world. Increasing reports of incidence, the discovery of antibiotic resistance strains, and concern about a potential use of the causative bacteria Yersinia pestis as an agent of biological warfare have highlighted the need for a safe, efficacious, and rapidly producible vaccine. The use of F1 and V antigens and the derived protein fusion F1-V has shown great potential as a protective vaccine in animal studies. Plants have been extensively studied for the production of pharmaceutical proteins as an inexpensive and scalable alternative to common expression systems. In the current study the recombinant plague antigens F1, V, and fusion protein F1-V were produced by transient expression in Nicotiana benthamiana by using a deconstructed tobacco mosaic virus-based system that allowed very rapid and extremely high levels of expression. All of the plant-derived purified antigens, administered s.c. to guinea pigs, generated systemic immune responses and provided protection against an aerosol challenge of virulent Y. pestis. PMID:16410352

  2. Major antigenic determinants of F and ColB2 pili.

    PubMed Central

    Finlay, B B; Frost, L S; Paranchych, W; Parker, J M; Hodges, R S

    1985-01-01

    F-like conjugative pili are expressed by plasmids with closely related transfer systems. They are tubular filaments that are composed of repeating pilin subunits arranged in a helical array. Both F and ColB2 pilin have nearly identical protein sequences, and both contain an acetylated amino-terminal alanine residue. However, they differ by a few amino acid residues at their amino termini. Rabbit antisera raised against purified F and ColB2 pili are immunologically cross-reactive by only 25%, as measured by a competition enzyme-linked immunosorbent assay (ELISA). A tryptic peptide corresponding to the first 15 amino acid residues of ColB2 pilin was isolated and found to remove nearly 80% of ColB2 pilus-directed rabbit antibodies. The corresponding tryptic peptide from F pilin, which reacted with anti-F pilus antibodies to remove 80%, was less than 20% reactive with anti-ColB2 pilus antiserum. Cleavage of these peptides with cyanogen bromide (at a methionine residue approximately in the middle of the peptide) did not affect the antigenicity of these peptides. Synthetic N alpha-acetylated peptides corresponding to the first eight amino acids of F pilin (Ac-Ala-Gly-Ser-Ser-Gly-Gln-Asp-Leu-COOH) and the first six amino acids of ColB2 pilin (Ac-Ala-Gln-Gly-Gln-Asp-Leu-COOH) were prepared and tested by competition ELISA with homologous and heterologous anti-pilus antisera. The F peptide F(1-8) inhibited the interaction of F pili and anti-F pilus antiserum to 80%, while the ColB2 peptide ColB2(1-6) inhibited anti-ColB2 pilus antiserum reacting with ColB2 pili by greater than 60%. The two peptides F(1-8) and ColB2(1-6) were inactive by competition ELISAs with heterologous antisera. These results suggest that the major antigenic determinant of both F and ColB2 pili is at the amino terminus of the pilin subunit and that 80% of antibodies raised against these pili are specific for this region of the pilin molecule. PMID:2409073

  3. The HLA Dictionary 2001: a summary of HLA-A, -B, -C, -DRB1/3/4/5 and -DQB1 alleles and their association with serologically defined HLA-A, -B, -C, -DR and -DQ antigens.

    PubMed

    Schreuder, G M; Hurley, C K; Marsh, S G; Lau, M; Maiers, M; Kollman, C; Noreen, H J

    2001-12-01

    This report presents the serological equivalents of 123 HLA-A, 272 HLA-B and 155 HLA-DRB1 alleles. The equivalents cover over 64% of the presently identified HLA-A, -B and -DRB1 alleles. The dictionary is an update of the one published in 1999 (<1>Schreuder et al., 1999, Tissue Antigens, 54, 409) and also includes equivalents for HLA-C, DRB3, DRB4, DRB5 and DQB1 alleles. The data summarize information obtained by the WHO Nomenclature Committee for Factors of the HLA System, the International Cell Exchange (UCLA), the National Marrow Donor Program (NMDP) and individual laboratories. In addition, a listing is provided of alleles that are expressed as antigens with serological reaction patterns that differ from the well-established HLA specificities. The equivalents provided will be useful in guiding searches for unrelated hematopoietic stem cell donors in which patients and/or potential donors are typed by either serology or DNA-based methods. These equivalents will also serve typing and matching procedures for organ transplant programmes where HLA typings from donors and from recipients on waiting lists represent mixtures of serological and molecular typings. The tables with HLA equivalents and a questionnaire for submission of serological reaction patterns for poorly identified allelic products will also be available on the WMDA web page: www.worldmarrow.org

  4. The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)

    PubMed Central

    Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael

    2016-01-01

    Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887

  5. Serodiagnostic potential of immuno-PCR using a cocktail of mycobacterial antigen 85B, ESAT-6 and cord factor in tuberculosis patients.

    PubMed

    Singh, Netrapal; Sreenivas, Vishnubhatla; Sheoran, Abhishek; Sharma, Suman; Gupta, Krishna B; Khuller, Gopal K; Mehta, Promod K

    2016-01-01

    A novel indirect immuno-polymerase chain reaction (I-PCR) assay was developed for the detection of circulating anti-Ag85B (antigen 85B, Rv1886c), anti-ESAT-6 (early secretory antigenic target-6, Rv3875) and anti-cord factor (trehalose 6,6'-dimycolate) antibodies from the sera samples of pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) patients and the results were compared with an analogous enzyme-linked immunosorbent assay (ELISA). We covalently attached the amino-modified reporter DNA to the dithiothreitol (DTT)-reduced anti-human IgG antibody through a chemical linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate (SMCC). The detection of cocktail of anti-Ag85B, anti-ESAT-6 and anti-cord factor antibodies was found to be superior to the detection of individual antibodies. The sensitivities of 89.5% and 77.5% with I-PCR and 70.8% and 65% with ELISA were observed in smear-positive and smear-negative PTB cases, respectively with high specificity (90.9%). On the other hand, a sensitivity of 77.5% with I-PCR and 65% with ELISA was observed in EBTB cases. The detection of cocktail of antibodies by I-PCR is likely to improve the utility of existing algorithms for TB diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis.

    PubMed

    Chang-hong, Shi; Xiao-wu, Wang; Hai, Zhang; Ting-fen, Zhang; Li-Mei, Wang; Zhi-kai, Xu

    2008-04-01

    Genetic immunity is a new promising approach for the development of novel tuberculosis vaccines. In this study, it is shown that DNA vaccines expressing the fusion protein of antigen 85B (Ag85B) and early secreted antigenic target 6-kDa antigen (ESAT6) can induce high levels of specific IgG2a antibody subtype in the mice. With the prolongation of postimmunization time, the levels of IgG2a antibody decrease gradually. Although a high-level specific IgG2a antibody subtype is also elicited by classical BCG, the ratio of antibody subtypes IgG2a to IgG1 changes 4 weeks after immunization, and IgG1 is gradually shifted to the main antibody subtype. DNA vaccines also elicit cellular immunity as shown by specific spleen lymphocytes proliferation to Ag85B or ESAT6 protein and the production of high levels of IFN-gamma and IL-2, which is similar to that elicited by BCG. Vaccination of mice with DNA vaccines expressing the fusion protein Ag85B-ESAT6 results in a significant level of protection against the subsequent high-dose challenge with virulent Mycobacterium tuberculosis (MTB) H37Rv. Dramatic reduction in the number of MTB colony-forming units in the spleens and lungs is observed. Pathological examination showed that recombinant plasmid and BCG groups have only minor damage and organizational structures that are kept relatively complete, while in the control group, spleens and lungs are damaged seriously. Therefore, although the reducing degree of mycobacterial loads in the organ of mice immunized with recombinant plasmid is not more than that of BCG, through the analysis of pathological changes, we may conclude that the protective effect provided by DNA vaccine expressing the Ag85B-ESAT6 fusion protein is equivalent to that afforded by the classical BCG.

  7. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  8. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design

    PubMed Central

    Kong, Leopold; Sattentau, Quentin J

    2012-01-01

    Neutralizing antibodies can protect from infection by immunodeficiency viruses. However, the induction by active vaccination of antibodies that can potently neutralize a broad range of circulating virus strains is a goal not yet achieved, despite more than 2 decades of research. Here we review progress made in the field, from early empirical studies to today’s rational structure-based vaccine antigen design. We discuss the existence of broadly neutralizing antibodies, their implications for epitope discovery and recent progress made in antigen design. Finally, we consider the relationship between antigenicity and immunogenicity for B cell recognition and antibody production, a major hurdle for rational vaccine design to overcome. PMID:23227445

  9. Discovering naturally processed antigenic determinants that confer protective T cell immunity

    PubMed Central

    Gilchuk, Pavlo; Spencer, Charles T.; Conant, Stephanie B.; Hill, Timothy; Gray, Jennifer J.; Niu, Xinnan; Zheng, Mu; Erickson, John J.; Boyd, Kelli L.; McAfee, K. Jill; Oseroff, Carla; Hadrup, Sine R.; Bennink, Jack R.; Hildebrand, William; Edwards, Kathryn M.; Crowe, James E.; Williams, John V.; Buus, Søren; Sette, Alessandro; Schumacher, Ton N.M.; Link, Andrew J.; Joyce, Sebastian

    2013-01-01

    CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection — information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I–transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences. PMID:23543059

  10. Discovering naturally processed antigenic determinants that confer protective T cell immunity.

    PubMed

    Gilchuk, Pavlo; Spencer, Charles T; Conant, Stephanie B; Hill, Timothy; Gray, Jennifer J; Niu, Xinnan; Zheng, Mu; Erickson, John J; Boyd, Kelli L; McAfee, K Jill; Oseroff, Carla; Hadrup, Sine R; Bennink, Jack R; Hildebrand, William; Edwards, Kathryn M; Crowe, James E; Williams, John V; Buus, Søren; Sette, Alessandro; Schumacher, Ton N M; Link, Andrew J; Joyce, Sebastian

    2013-05-01

    CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.

  11. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    NASA Astrophysics Data System (ADS)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  12. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever

    USDA-ARS?s Scientific Manuscript database

    African swine fever (ASF) is an emerging disease threat for the swine industry worldwide. No ASF vaccine is available and progress is hindered by lack of knowledge concerning the extent of African swine fever virus (ASFV) strain diversity and the viral antigens conferring type specific protective im...

  13. Hepatitis B: 50 years after the discovery of Australia antigen.

    PubMed

    Lok, A Suk-Fong

    2016-01-01

    It is an honour to be invited to recount the progress in our understanding and management of hepatitis B 50 years after the discovery of Australia antigen (Au Ag). During this half century, we have gone from identifying the causative agent--hepatitis B virus (HBV), understanding its biology and the disease it causes, to having vaccines that can prevent HBV infection and antiviral therapy that can suppress HBV replication and prevent progression of HBV-related liver disease. As a result of the progress, prevalence of HBV infection and morbidity and mortality from chronic HBV infection has declined. © 2015 John Wiley & Sons Ltd.

  14. CDC guidance for evaluating health-care personnel for hepatitis B virus protection and for administering postexposure management.

    PubMed

    Schillie, Sarah; Murphy, Trudy V; Sawyer, Mark; Ly, Kathleen; Hughes, Elizabeth; Jiles, Ruth; de Perio, Marie A; Reilly, Meredith; Byrd, Kathy; Ward, John W

    2013-12-20

    This report contains CDC guidance that augments the 2011 recommendations of the Advisory Committee on Immunization Practices (ACIP) for evaluating hepatitis B protection among health-care personnel (HCP) and administering post-exposure prophylaxis. Explicit guidance is provided for persons working, training, or volunteering in health-care settings who have documented hepatitis B (HepB) vaccination years before hire or matriculation (e.g., when HepB vaccination was received as part of routine infant [recommended since 1991] or catch-up adolescent [recommended since 1995] vaccination). In the United States, 2,890 cases of acute hepatitis B were reported to CDC in 2011, and an estimated 18,800 new cases of hepatitis B occurred after accounting for underreporting of cases and asymptomatic infection. Although the rate of acute hepatitis B virus (HBV) infections have declined approximately 89% during 1990-2011, from 8.5 to 0.9 cases per 100,000 population in the United States, the risk for occupationally acquired HBV among HCP persists, largely from exposures to patients with chronic HBV infection. ACIP recommends HepB vaccination for unvaccinated or incompletely vaccinated HCP with reasonably anticipated risk for blood or body fluid exposure. ACIP also recommends that vaccinated HCP receive postvaccination serologic testing (antibody to hepatitis B surface antigen [anti-HBs]) 1-2 months after the final dose of vaccine is administered (CDC. Immunization of health-care personnel: recommendations of the Advisory Committee on Immunization Practices [ACIP]. MMWR 2011;60 [No. RR-7]). Increasing numbers of HCP have received routine HepB vaccination either as infants (recommended since 1991) or as catch-up vaccination (recommended since 1995) in adolescence. HepB vaccination results in protective anti-HBs responses among approximately 95% of healthy-term infants. Certain institutions test vaccinated HCP by measuring anti-HBs upon hire or matriculation, even when anti

  15. Evaluation of the protective efficacy of Ornithodoros moubata midgut membrane antigens selected using omics and in silico prediction algorithms.

    PubMed

    Obolo-Mvoulouga, Prosper; Oleaga, Ana; Manzano-Román, Raúl; Pérez-Sánchez, Ricardo

    2018-04-30

    The African argasid tick Ornithodoros moubata transmits two important pathogens, the African swine fever virus and the spirochete Borrelia duttoni, the cause of human relapsing fever. To date, only conventional control measures such as widespread application of acaricides, strict control measures, and animal movement restrictions have been implemented to confine these diseases. Vaccines against tick infestations have the potential to be among the most efficacious interventions for the management of these diseases. Plasma membrane-associated proteins upregulated in tick midgut cells in response to blood feeding and digestion are thought to play vital functions in tick physiology and in the transmission of tick-borne pathogens. In addition, their antigenic extracellular regions are easily accessible to antibodies synthesised by immunised hosts, which makes them interesting targets for tick vaccine design. The mialomes (midgut transcriptomes and proteomes) of unfed O. moubata females and of engorged females at 48 h post-feeding have recently been obtained, providing a wealth of predicted midgut protein sequences. In the current study, these mialomes were screened using in silico tools to select predicted antigenic transmembrane proteins that were upregulated after feeding (516 proteins). The functionally annotatable proteins from this list (396 proteins) were then manually inspected following additional criteria in order to select a finite and easy-manageable number of candidate antigens for tick vaccine design. The extracellular antigenic regions of five of these candidates were obtained either as truncated recombinant proteins or as KLH-conjugated synthetic peptides, formulated in Freund's adjuvant, and individually administered to rabbits to assess their immunogenicity and protective potential against infestations by O. moubata and the Iberian species Ornithodoros erraticus. All candidates were highly immunogenic, but provided low protection against the O

  16. Structure of a protective epitope of group B Streptococcus type III capsular polysaccharide.

    PubMed

    Carboni, Filippo; Adamo, Roberto; Fabbrini, Monica; De Ricco, Riccardo; Cattaneo, Vittorio; Brogioni, Barbara; Veggi, Daniele; Pinto, Vittoria; Passalacqua, Irene; Oldrini, Davide; Rappuoli, Rino; Malito, Enrico; Margarit, Immaculada Y Ros; Berti, Francesco

    2017-05-09

    Despite substantial progress in the prevention of group B Streptococcus (GBS) disease with the introduction of intrapartum antibiotic prophylaxis, this pathogen remains a leading cause of neonatal infection. Capsular polysaccharide conjugate vaccines have been tested in phase I/II clinical studies, showing promise for further development. Mapping of epitopes recognized by protective antibodies is crucial for understanding the mechanism of action of vaccines and for enabling antigen design. In this study, we report the structure of the epitope recognized by a monoclonal antibody with opsonophagocytic activity and representative of the protective response against type III GBS polysaccharide. The structure and the atomic-level interactions were determined by saturation transfer difference (STD)-NMR and X-ray crystallography using oligosaccharides obtained by synthetic and depolymerization procedures. The GBS PSIII epitope is made by six sugars. Four of them derive from two adjacent repeating units of the PSIII backbone and two of them from the branched galactose-sialic acid disaccharide contained in this sequence. The sialic acid residue establishes direct binding interactions with the functional antibody. The crystal structure provides insight into the molecular basis of antibody-carbohydrate interactions and confirms that the conformational epitope is not required for antigen recognition. Understanding the structural basis of immune recognition of capsular polysaccharide epitopes can aid in the design of novel glycoconjugate vaccines.

  17. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Cease, Kemp B

    2010-09-15

    The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.

  18. CXCR6 is a marker for protective antigen-specific cells in the lungs after intranasal immunization against Mycobacterium tuberculosis.

    PubMed

    Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L

    2011-08-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.

  19. CXCR6 Is a Marker for Protective Antigen-Specific Cells in the Lungs after Intranasal Immunization against Mycobacterium tuberculosis▿

    PubMed Central

    Lee, Lian Ni; Ronan, Edward O.; de Lara, Catherine; Franken, Kees L. M. C.; Ottenhoff, Tom H. M.; Tchilian, Elma Z.; Beverley, Peter C. L.

    2011-01-01

    Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT61–20 peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment. PMID:21628524

  20. Quantitative analysis of antigen for the induction of tolerance in carcinoembryonic antigen transgenic mice.

    PubMed Central

    Hasegawa, T; Isobe, K; Nakashima, I; Shimokata, K

    1992-01-01

    In order to analyse the amounts of antigen in the thymus for the induction of tolerance, several carcinoembryonic antigen (CEA) transgenic lines were established which expressed human CEA antigen with different amounts. The chimeric KSN nude mice transplanted with the thymus of the B601 line (in which CEA mRNA and CEA protein could be detected in various tissues) to kidney capsule showed tolerance to human CEA. On the other hand, the chimeric KSN nude mice transplanted with the thymus of the B602 or BC60 line (in which neither CEA mRNA nor CEA protein could be detected by Northern blot analysis and flow cytometry analysis) or normal C57BL/6 (B6) did not develop the tolerance to human CEA. However, the chimeric KSN nude mice transplanted simultaneously with thymus of the B6 and spleen of the B601 line became tolerant to human CEA antigen. In the case of systemic immunization with cells which had CEA antigen, the B601 line was tolerant to human CEA. Surprisingly, the B602 and BC60 lines were also tolerant to CEA molecule. These results indicate that not only the antigen present in the thymus but also the antigen which flows from the peripheral organs to the thymus may be necessary for the induction of CEA tolerance. Images Figure 1 PMID:1493931

  1. Hepatitis B surface antigen levels during natural history of chronic hepatitis B: a Chinese perspective study.

    PubMed

    Zeng, Lin-Yan; Lian, Jiang-Shan; Chen, Jian-Yang; Jia, Hong-Yu; Zhang, Yi-Min; Xiang, Dai-Rong; Yu, Liang; Hu, Jian-Hua; Lu, Ying-Feng; Zheng, Lin; Li, Lan-Juan; Yang, Yi-Da

    2014-07-21

    To determine the baseline hepatitis B surface antigen (HBsAg) levels during the different phases of chronic hepatitis B (CHB) patients in China. Six hundred and twenty-three hepatitis B virus or un-infected patients not receiving antiviral therapy were analyzed in a cross-sectional study. The CHB patients were classified into five phases: immune-tolerant (IT, n = 108), immune-clearance (IC, n = 161), hepatitis B e antigen negative hepatitis (ENH, n = 149), low-replicative (LR, n = 135), and liver cirrhosis (LC, n = 70). HBsAg was quantified (Abbott ARCHITECT assay) and correlated with hepatitis B virus (HBV) DNA, and serum alanine aminotransferase/aspartate aminotransferase (ALT/AST) in each phase of CHB was also determined. Median HBsAg titers were different in each phase of CHB (P < 0.001): IT (4.85 log10 IU/mL), IC (4.36 log10 IU/mL), ENH (2.95 log10 IU/mL), LR (3.18 log10 IU/mL) and LC (2.69 log10 IU/mL). HBsAg titers were highest in the IT phase and lowest in the LC phase. Serum HBsAg titers showed a strong correlation with HBV viral load in the IC phase (r = 0.683, P < 0.001). No correlation between serum HBsAg level and ALT/AST was observed. The mean baseline HBsAg levels differ significantly during the five phases of CHB, providing evidence on the natural history of HBV infection. HBsAg quantification may predict the effects of immune-modulator or oral nucleos(t)ide analogue therapy.

  2. Diagnostic Accuracy of Antigen 5-Based ELISAs for Human Cystic Echinococcosis

    PubMed Central

    Pagnozzi, Daniela; Addis, Maria Filippa; Biosa, Grazia; Roggio, Anna Maria; Tedde, Vittorio; Mariconti, Mara; Tamarozzi, Francesca; Meroni, Valeria; Masu, Gabriella; Masala, Giovanna; Brunetti, Enrico; Uzzau, Sergio

    2016-01-01

    Background Clinical diagnosis and follow up of cystic echinococcosis (CE) are based on imaging complemented by serology. Several immunodiagnostic tests are commercially available, but the development of new tools is still needed to overcome the lack of standardization of the target antigen, generally consisting of a crude extract of Echinococcus granulosus hydatid cyst fluid. In a previous work, we described a chromatographic method for the preparation of a highly enriched Antigen 5 fraction from hydatid cyst fluid. The high reactivity of patient sera against this preparation prompted us to evaluate further this antigen for the serodiagnosis of CE on a larger cohort of samples. Methodology/Principal Findings A total of 327 sera from CE patients with heterogeneous conditions for cyst stage, cyst number, organ localization, drug therapy, and surgical intervention, together with 253 sera from healthy controls, were first analyzed by an ELISA based on the Ag5 preparation in two different experimental setups and, in parallel, by a commercial ELISA routinely used in clinical laboratories for CE serodiagnosis. The Ag5 ELISAs revealed different sensitivity (88.3% vs 95.3%) without significant differences in specificity (94.1% vs 92.5%), for the two setups, respectively. Moreover, possible relationships between the Ag5 ELISA absorbance results and clinical variables were investigated. Chi squared test, bivariate logistic regression and multiple regression analyses highlighted differences in the serology reactivity according to pharmacological treatment, cyst activity, and cyst number. Conclusions/Significance The two Ag5 ELISAs revealed different performances depending on the setup. The good diagnostic sensitivity and the high reliability of the Ag5 preparation method make this antigen a promising candidate for the serodiagnosis of CE. Further studies will be needed to evaluate the ability of our test to provide useful information on specific CE clinical traits. PMID

  3. [Vaccination of rhesus monkeys with recombinant antigen fragments and protection from hepatitis E virus infection].

    PubMed

    Ma, Yan-bing; Xie, Tian-hong; Zhang, Guang-ming; Li, Chun-hong; Dai, Xie-Jie; Dai, Chang-bai; Sun, Mao-sheng; Lu, Jian; Bi, Sheng-li

    2002-12-01

    To observe anti-HEV IgG response to vaccination of recombinant antigen fragments and evaluate its protection from Hepatitis E Virus infection in rhesus monkeys (Macaca mulatta). Twelve monkeys were divided into three groups and immunized respectively with three different recombinant antigens: namely Ag1 (carboxyl terminal 431 amino acids of ORF2), Ag2 (128aa fragment at the carboxyl terminal of ORF2), and Ag3 (full length ORF3 ligated with two ORF2 fragments encoded by 6743-7126nt and 6287-6404nt). The monkeys were challenged intravenously with fecal suspension from experimentally infected rhesus monkeys, and the other three monkeys served as the placebo group for challenge with HEV. The dynamic changes of the levels of ALT and anti-HEV IgG were examined. Pathological changes of liver tissue were observed by light microscope. Excretion of virus was detected by RT-nPCR. Hepatic histopathology of two monkeys in the placebo group was consistent with acute viral hepatitis, and ALT was elevated 3-4 weeks after inoculated with virus, up to 10-20 times higher than normal level. The liver tissue of monkeys immunized with antigen kept normal, ALT in several monkeys elevated mildly, and anti-HEV IgG conversation occurred at 1-2 weeks after vaccination, with the titer reaching 1:12,800. The virus RNA could be detected by RT-nPCR from days 7 to 50 in monkeys of control group, and from days 7 to 21 in vaccinated monkeys after challenged with virus. The recombinant antigens could induce the production of anti-HEV IgG, which protected rhesus monkeys from acute Hepatitis symptoms related to HEV infection.

  4. Antigenic and functional properties of the human red blood cell urea transporter hUT-B1.

    PubMed

    Lucien, Nicole; Sidoux-Walter, Frédéric; Roudier, Nathalie; Ripoche, Pierre; Huet, Martine; Trinh-Trang-Tan, Marie-Marcelle; Cartron, Jean-Pierre; Bailly, Pascal

    2002-09-13

    The Kidd (JK) blood group locus encodes the urea transporter hUT-B1, which is expressed on human red blood cells and other tissues. The common JK*A/JK*B blood group polymorphism is caused by a single nucleotide transition G838A changing Asp-280 to Asn-280 on the polypeptide, and transfection of erythroleukemic K562 cells with hUT-B1 cDNAs carrying either the G838 or the A838 nucleotide substitutions resulted in the isolation of stable clones that expressed the Jk(a) or Jk(b) antigens, respectively, thus providing the first direct demonstration that the hUT-B1 gene encodes the Kidd blood group antigens. In addition, immunochemical analysis of red blood cells demonstrated that hUT-B1 also exhibits ABO determinants attached to the single N-linked sugar chain at Asn-211. Moreover, immunoadsorption studies, using inside-out and right-side-out red cell membrane vesicles as competing antigen, demonstrated that the C- and N-terminal ends of hUT-B1 are oriented intracellularly. Mutagenesis and functional studies by expression in Xenopus oocytes revealed that both cysteines Cys-25 and Cys-30 (but not alone) are essential for plasma membrane addressing. Conversely, the transport function was not affected by the JK*A/JK*B polymorphism, C-terminal deletion (residues 360-389), or mutation of the extracellular N-glycosylation consensus site and remains poorly para-chloromercuribenzene sulfonate (pCMBS)-sensitive. However, transport studies by stopped flow light scattering using Jk-K562 transfectants demonstrated that the hUT-B1-mediated urea transport is pCMBS-sensitive in an erythroid context, as reported previously for the transporter of human red blood cells. Mutagenesis analysis also indicated that Cys-151 and Cys-236, at least alone, are not involved in pCMBS inhibition. Altogether, these antigenic, topologic, and functional properties might have implications into the physiology of hUT-B1 and other members of the urea transporter family.

  5. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery.

    PubMed

    Farhadian, Asma; Dounighi, Naser Mohammadpour; Avadi, Mohammadreza

    2015-01-01

    Oral vaccination is the preferred route of immunization. However, the degradative condition of the gastrointestinal tract and the higher molecular size of peptides pose major challenges in developing an effective oral vaccination system. One of the most excellent methods used in the development of oral vaccine delivery system relies on the entrapment of the antigen in polymeric nanoparticles. In this work, trimethyl chitosan (TMC) nanoparticles were fabricated using ionic gelation teqnique by interaction hydroxypropyl methylcellulose phthalate (HPMCP), a pH-sensitive polymer, with TMC and the utility of the particles in the oral delivery of hepatitis B surface antigen (HBsAg) was evaluated employing solutions that simulated gastric and intestinal conditions. The particle size, morphology, zeta potential, loading capacity, loading efficiency, in vitro release behavior, structure, and morphology of nanoparticles were evaluated, and the activity of the loaded antigen was assessed. Size of the optimized TMC/HPMCP nanoparticles and that of the antigen-loaded nanoparticles were 85 nm and 158 nm, respectively. Optimum loading capacity (76.75%) and loading efficiency (86.29%) were achieved at 300 µg/mL concentration of the antigen. SEM images revealed a spherical shape as well as a smooth and near-homogenous surface of nanoparticles. Results of the in vitro release studies showed that formulation with HPMCP improved the acid stability of the TMC nanoparticles as well as their capability to preserve the loaded HBsAg from gastric destruction. The antigen showed good activity both before and after loading. The results suggest that TMC/HPMCP nanoparticles could be used in the oral delivery of HBsAg vaccine.

  6. [Prostate specific antigen and NF-kB in prostatic disease: relation with malignancy].

    PubMed

    Cansino, J R; Vera, R; Rodríguez de Bethencourt, F; Bouraoui, Y; Rodríguez, G; Prieto, A; de la Peña, J; Paniagua, R; Royuela, M

    2011-01-01

    NF-kB (p50/p65) is a transcription factor involved in TNF-α-induced cell death resistance by promoting several antiapoptotic genes. We intend to relate the expression of NF-kB (p50 and p65) with serum levels of prostate-specific antigen (PSA), both in normal males and in those with pathologic conditions of the prostate. this study was carried out in 5 normal, 24 benign prostatic hyperplastic (BPH) and 19 patients with prostate cancer (PC). Immunohistochemical and Western blot analyses were performed on tissue and serum PSA was assayed by PSA DPC Immulite assays (Diagnostics Products Corporation, Los Angeles, CA). in controls, p65 NF-kB was not found and p50 was scantly detected in 60% normal samples in the cytoplasm of epithelial cells. Both p50 and p65 were expressed in 62.5% of the samples with BPH and in 63.2% of those with PC. Both increased its frequency of expression with higher PSA serum levels. Activation of NF-kB revealed by its nuclear translocation in prostate cancer could be related to cancer progression and elevated seric PSA levels. A better understanding of the biologic mechanism by which circulating PSA levels increase and its relation with NF-kB expression is needed. Possibly, NF-kB blockage could be used as a therapeutic target to counteract proliferation in prostate cancer. Copyright © 2010 AEU. Published by Elsevier Espana. All rights reserved.

  7. Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized With a Meningococcal Serogroup B Vaccine

    PubMed Central

    Granoff, Dan M.; Costa, Isabella; Konar, Monica; Giuntini, Serena; Van Rompay, Koen K. A.; Beernink, Peter T.

    2015-01-01

    Background. The meningococcal vaccine antigen, factor H (FH)–binding protein (FHbp), binds human complement FH. In human FH transgenic mice, binding decreased protective antibody responses. Methods. To investigate the effect of primate FH binding, we immunized rhesus macaques with a 4-component serogroup B vaccine (4CMenB). Serum FH in 6 animals bound strongly to FHbp (FHbp-FHhigh) and, in 6 animals, bound weakly to FHbp (FHbp-FHlow). Results. There were no significant differences between the respective serum bactericidal responses of the 2 groups against meningococcal strains susceptible to antibody to the NadA or PorA vaccine antigens. In contrast, anti-FHbp bactericidal titers were 2-fold lower in FHbp-FHhigh macaques against a strain with an exact FHbp match to the vaccine (P = .08) and were ≥4-fold lower against 4 mutants with other FHbp sequence variants (P ≤ .005, compared with FHbp-FHlow macaques). Unexpectedly, postimmunization sera from all 12 macaques enhanced FH binding to meningococci. In contrast, serum anti-FHbp antibodies elicited by 4CMenB in mice whose mouse FH did not bind to the vaccine antigen inhibited FH binding. Conclusions. Binding of FH to FHbp decreases protective anti-FHbp antibody responses of macaques to 4CMenB. Even low levels of FH binding skew the antibody repertoire to FHbp epitopes outside of the FH-binding site, which enhance FH binding. PMID:25676468

  8. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen.

    PubMed

    Huang, Rongrong; Xi, Zhijiang; Deng, Yan; He, Nongyue

    2016-08-08

    This research is aimed at selecting specific aptamer of hepatitis B e antigen by SELEX and its applications. Hepatitis B e antigen (HBeAg) seroconversion is used as an indicator of virological response when treating patients suffering from chronic hepatitis B. HBeAg also indicates a high viremia and high infectivity in untreated patients. With HBeAg modified magnetic beads as targets, three groups of aptamers are successfully selected. These are the first reported DNA aptamers that can specifically bind to HBeAg. Based on the property that the conformation changes upon binding to its target, aptamer has emerged as ideal candidate in a variety of sensing applications. In this study, we present a simple strategy for aptamer-based fluorescence biosensors for the quantitative detection of HBeAg, in which a fluorescence labeled HBeAg aptamer serves as the molecular recognition element and a short DNA molecule that is complementary to the aptamer serves as the competitor. The LOD for HBeAg is 609 ng/mL. Later, the fluorescence system is deployed in HBeAg positive and negative blood serum (p < 0.05). The total detection assay could be completed in 2 min. These newly isolated aptamers could assist the diagnosis of chronic hepatitis B.

  9. Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen

    PubMed Central

    Huang, Rongrong; Xi, Zhijiang; Deng, Yan; He, Nongyue

    2016-01-01

    This research is aimed at selecting specific aptamer of hepatitis B e antigen by SELEX and its applications. Hepatitis B e antigen (HBeAg) seroconversion is used as an indicator of virological response when treating patients suffering from chronic hepatitis B. HBeAg also indicates a high viremia and high infectivity in untreated patients. With HBeAg modified magnetic beads as targets, three groups of aptamers are successfully selected. These are the first reported DNA aptamers that can specifically bind to HBeAg. Based on the property that the conformation changes upon binding to its target, aptamer has emerged as ideal candidate in a variety of sensing applications. In this study, we present a simple strategy for aptamer-based fluorescence biosensors for the quantitative detection of HBeAg, in which a fluorescence labeled HBeAg aptamer serves as the molecular recognition element and a short DNA molecule that is complementary to the aptamer serves as the competitor. The LOD for HBeAg is 609 ng/mL. Later, the fluorescence system is deployed in HBeAg positive and negative blood serum (p < 0.05). The total detection assay could be completed in 2 min. These newly isolated aptamers could assist the diagnosis of chronic hepatitis B. PMID:27499342

  10. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nanoparticles decorated with viral antigens are more immunogenic at low surface density.

    PubMed

    Brewer, Matthew G; DiPiazza, Anthony; Acklin, Joshua; Feng, Changyong; Sant, Andrea J; Dewhurst, Stephen

    2017-02-01

    There is an urgent need to develop protective vaccines for high priority viral pathogens. One approach known to enhance immune responses to viral proteins is to display them on a nanoparticle (NP) scaffold. However, little is known about the effect of protein density on the B cell response to antigens displayed on NPs. To address this question HIV-1 Envelope (Env) and influenza hemagglutinin (HA) were displayed on a polystyrene-based NP scaffold at various densities - corresponding to mean antigen distances that span the range encountered on naturally occurring virions. Our studies revealed that NPs displaying lower densities of Env or HA more efficiently stimulated antigen-specific B cells in vitro, as measured by calcium flux, than did NPs displaying higher antigen densities. Similarly, NPs displaying a low density of Env or HA also elicited higher titers of antigen-specific serum IgG in immunized BALB/c mice (including elevated titers of hemagglutination-inhibiting antibodies), as well as an increased frequency of antigen-specific antibody secreting cells in the lymph node, spleen and bone marrow. Importantly, our studies showed that the enhanced B cell response elicited by the lower density NPs is likely secondary to more efficient development of follicular helper CD4 T cells and germinal center B cells. These findings demonstrate that the density of antigen on a NP scaffold is a critical determinant of the humoral immune response elicited, and that high density display does not always result in an optimal response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Expression of hepatitis B surface antigen in transgenic plants.

    PubMed Central

    Mason, H S; Lam, D M; Arntzen, C J

    1992-01-01

    Tobacco plants were genetically transformed with the gene encoding hepatitis B surface antigen (HBsAg) linked to a nominally constitutive promoter. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed the presence of HBsAg in extracts of transformed leaves at levels that correlated with mRNA abundance. This suggests that there were no major inherent limitations of transcription or translation of this foreign gene in plants. Recombinant HBsAg was purified from transgenic plants by immunoaffinity chromatography and examined by electron microscopy. Spherical particles with an average diameter of 22 nm were observed in negatively stained preparations. Sedimentation of transgenic plant extracts in sucrose and cesium chloride density gradients showed that the recombinant HBsAg and human serum-derived HBsAg had similar physical properties. Because the HBsAg produced in transgenic plants is antigenically and physically similar to the HBsAg particles derived from human serum and recombinant yeast, which are used as vaccines, we conclude that transgenic plants hold promise as low-cost vaccine production systems. Images PMID:1465391

  13. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    PubMed Central

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  14. HLA-A, B and C and HLA-DR antigens in intrinsic and allergic asthma.

    PubMed

    Morris, M J; Faux, J A; Ting, A; Morris, P J; Lane, D J

    1980-03-01

    Some 103 patients with asthma and 100 healthy volunteers have been typed for HLA-A, B and C and HLA-DR antigens. The 103 patients consisted of thirty-three with intrinsic asthma, thirty-four with extrinsic asthma, and thirty-six known to have precipitins to Aspergillus fumigatus. No increase in frequency of any of the A, B, C, or DR antigens was found to be significant after correction for the number of comparisons was made. However certain trends comparable to findings in other immunopathic disorders were noted. For example B12 was increased in the allergic asthmatics (46 vs 29% controls) and it is suggested that B12 is associated with the ability to produce the IgE antibodies. A3/B7/DRw2 (which are in linkage disequilibrium) all show a decreased frequency in intrinsic asthma (24, 12 and 9% vs 32, 26 and 24% respectively in controls). Finally B8 and DRw3, which showed a moderate increase in frequency in all three groups of asthmatics, were found in five of seven patients with low atopy but persisting antibodies to A. fumigatus. Further detailed studies of these asthmatic subgroups is warranted.

  15. Live Attenuated Salmonella Vaccines Displaying Regulated Delayed Lysis and Delayed Antigen Synthesis To Confer Protection against Mycobacterium tuberculosis

    PubMed Central

    Juárez-Rodríguez, María Dolores; Yang, Jiseon; Kader, Rebin; Alamuri, Praveen; Curtiss, Roy

    2012-01-01

    Live recombinant attenuated Salmonella vaccine (RASV) strains have great potential to induce protective immunity against Mycobacterium tuberculosis by delivering M. tuberculosis antigens. Recently, we reported that, in orally immunized mice, RASV strains delivering the M. tuberculosis early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10) antigens via the Salmonella type III secretion system (SopE amino-terminal region residues 1 to 80 with two copies of ESAT-6 and one copy of CFP-10 [SopENt80-E2C]) afforded protection against aerosol challenge with M. tuberculosis. Here, we constructed and evaluated an improved Salmonella vaccine against M. tuberculosis. We constructed translational fusions for the synthesis of two copies of ESAT-6 plus CFP-10 fused to the OmpC signal sequence (OmpCSS-E2C) and amino acids 44 to 338 of antigen 85A (Ag85A294) flanked by the signal sequence (SS) and C-terminal peptide (CT) of β-lactamase (BlaSS-Ag85A294-BlaCT) to enable delivery via the Salmonella type II secretion system. The genes expressing these proteins were cloned as an operon transcribed from Ptrc into isogenic Asd+/MurA+ pYA3681 lysis vector derivatives with different replication origins (pBR, p15A, pSC101), resulting in pYA4890, pYA4891, and pYA4892 for SopENt80-E2C/Ag85A294 synthesis and pYA4893 and pYA4894 for OmpCSS-E2C/Ag85A294 synthesis. Mice orally immunized with the RASV χ11021 strain engineered to display regulated delayed lysis and regulated delayed antigen synthesis in vivo and harboring pYA4891, pYA4893, or pYA4894 elicited significantly greater humoral and cellular immune responses, and the RASV χ11021 strain afforded a greater degree of protection against M. tuberculosis aerosol challenge in mice than RASVs harboring any other Asd+/MurA+ lysis plasmid and immunization with M. bovis BCG, demonstrating that RASV strains displaying regulated delayed lysis with delayed antigen synthesis resulted in highly immunogenic

  16. Optimization of intracerebral tumour protection by active-specific immunization against murine melanoma B16/G3.12.

    PubMed

    Staib, L; Harel, W; Mitchell, M S

    2001-08-01

    Development of brain metastases despite extracerebral response to systemic immunotherapy is a common problem in melanoma patients. We have previously described a murine melanoma vaccine of interferon-gamma (IFNgamma)-treated, irradiated syngeneic B16/G3.12 and allogeneic (Cloudman) melanoma cells, plus the adjuvant DETOX, that is protective against subcutaneous (93%) or intracerebral (69%) syngeneic challenge. This study aimed to optimize this vaccine. Groups of nine or 10 mice were immunized five times in 5 weeks with: (i) complete vaccine +/- IFNgamma (VAC+, VAC-); (ii) syngeneic 2 x 106 G3.12 cells plus DETOX (Syn+D), (iii) 2 x 106 allogeneic Cloudman cells plus DETOX (Allo+D); (iv) VAC+ without DETOX (no DETOX); (v) DETOX alone (DETOX); or (vi) phosphate buffered saline (PBS). Mice were challenged subcutaneously with 104 viable G3.12 (or Cloudman cells) and after 35 days intracerebrally with 104 G3.12 cells. Expression of H-2 antigens (measured using fluorescence-activated cell sorting), splenocyte cytotoxicity (measured using 51Cr release) and median overall survival (OAS) were analysed using the log-rank test. VAC+, VAC- and G3.12 mice were equally protected from subcutaneous (s.c.) and intracerebral (i.c.) melanoma challenge (OAS 65 days for s.c., 30 days for i.c.). Protection was less (P < 0.05) in DETOX mice (48 days for s.c.), PBS mice (47 days for s.c., 21 days for i.c.) or no DETOX mice (51 days for s.c.). Allo+D mice showed s.c. (59 days) but not i.c. protection (20 days). IFNgamma incubation did not increase the effect in either the challenge cells or the vaccine cells (P > 0.05). Specific cytotoxicity was seen with G3.12 targets in VAC+ (27%) but not PBS (2%; P < 0.05) mice with equal NK (YAC-1) lysis (10% versus 7%; P< 0.05). Optimal protection against s.c./i.c. experimental murine melanoma was yielded by irradiated syngeneic cells plus DETOX. DETOX alone was not active. Upregulation of H-2 antigens with IFNgamma under these conditions does not

  17. Functional heterogeneity of memory B lymphocytes: in vivo analysis of TD-primed B cells responsive to secondary stimulation with TD and TI antigens.

    PubMed

    Rennick, D M; Morrow, P R; Benjamini, E

    1983-08-01

    The functional heterogeneity of memory B cells induced by a single determinant, consisting of a decapeptide representing amino acid residues 103-112 of tobacco mosaic virus protein (TMVP), was analyzed. Decapeptide specific antibodies were elicited in mice adoptively transferred with TMVP-immune spleen cells when challenged with TMVP, decapeptide conjugated to succinylated human gamma-globulin (SHGG), or decapeptide conjugated to Brucella abortus (BA). Whereas secondary stimulation by either TMVP or decapeptide-SHGG was dependent on appropriately primed T cells, stimulation by decapeptide-BA was independent of conventional T cell help. Furthermore, memory B cells responsive to TMVP (TD), decapeptide-SHGG (TD), or decapeptide-BA (TI. 1 prototype) were shown to consist of overlapping populations because adoptive recipients of TMVP-primed cells challenged simultaneously with TD and TI decapeptide antigens did not result in a higher antibody response than that elicited by one of the TD antigens injected alone. However, decapeptide-BA consistently induced a smaller antidecapeptide response than either TMVP or decapeptide-SHGG. This suggested that only a fraction of the memory B cell population which was activated by the original priming antigen (thymus-dependent) was also responsive to secondary in vivo stimulation by the priming hapten conjugated to Brucella abortus. Detailed analyses of the antibodies induced in the recipients of TMVP-immune spleen cells after secondary challenge with either TMVP, decapeptide-SHGG, or decapeptide-BA failed to distinguish between the responsive memory B cells; the antidecapeptide antibodies induced by all three immunogens shared the same fine specificities and immunoglobulin isotype composition. These data are viewed as further evidence that subsets of TD-primed B cells, which may display differential sensitivity to cross-stimulation with TD and TI forms of the antigen, represent distinct stages of memory B cell maturation within a

  18. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens

    PubMed Central

    Cywes-Bentley, Colette; Skurnik, David; Zaidi, Tanweer; Roux, Damien; DeOliveira, Rosane B.; Garrett, Wendy S.; Lu, Xi; O’Malley, Jennifer; Kinzel, Kathryn; Zaidi, Tauqeer; Rey, Astrid; Perrin, Christophe; Fichorova, Raina N.; Kayatani, Alexander K. K.; Maira-Litràn, Tomas; Gening, Marina L.; Tsvetkov, Yury E.; Nifantiev, Nikolay E.; Bakaletz, Lauren O.; Pelton, Stephen I.; Golenbock, Douglas T.; Pier, Gerald B.

    2013-01-01

    Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)–linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology. PMID:23716675

  19. Histological and ultrastructural localization of antigen B in the metacestode of Taenia solium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laclette, J.P.; Merchant, M.T.; Willms, K.

    1987-02-01

    The morphological localization of antigen B (AgB) in the tissues of the Taenia solium metacestode was studied by immunological and biochemical methods. Indirect immunofluorescence carried out on vibratome sections showed that AgB is widely distributed throughout the tissue. A more intense fluorescence was observed in the tegumentary cytons of the bladder wall and in the lumen of the spiral canal of the invaginated scolex. Ultrastructural analysis of larvae washed in PBS after dissection from meat and then incubated with rabbit antibodies against AgB, followed by peroxidase-labeled goat anti-rabbit IgG, did not exhibit electron-dense material on the external surface. Larvae fixedmore » in glutaraldehyde immediately after dissection and exposed to the immunoperoxidase reagents did exhibit electron-dense material on microtriches, indicating that AgB is only loosely bound to the external surface. Crude extracts of surface-radioiodinated cysticerci analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) contained no labeled proteins with the molecular weight of AgB. Autoradiography of the immunoelectrophoretograms in which the crude extract was confronted with antibodies to AgB demonstrated that this antigen was not labeled, and therefore is not exposed on the tegumentary surface. The results suggest that AgB is synthesized by the tegumentary cytons of the parasite and secreted through the tegumental membrane into the host tissues and the lumen of the spiral canal.« less

  20. Higher efficacy of pegylated interferon-α2b add-on therapy in hepatitis B envelope antigen-positive chronic hepatitis B patients on tenofovir monotherapy.

    PubMed

    Jindal, Ankur; Vyas, Ashish Kumar; Kumar, Devesh; Kumar, Guresh; Sharma, Manoj Kumar; Sarin, Shiv Kumar

    2018-05-01

    Monotherapy with pegylated interferon-α (Peg-IFNα) or the nucleos(t)ide analogs (NA) currently approved for treating chronic hepatitis B (CHB) has limited efficacy. Studies on the combination of Peg-IFNα/NA have shown conflicting results. We investigated whether sequentially adding on Peg-IFNα to tenofovir enhances serological response rates. Treatment-naïve, hepatitis B envelope antigen (HBeAg)-positive CHB patients with moderately elevated alanine aminotransferase (ALT; 48-200 IU/mL) were started on tenofovir (300 mg/day) and enrolled at week 12 in a 1:1 ratio to either receive Peg-IFNα2b add-on (1.5 μg/kg/week) from week 12 to 36 (n = 53) or continue tenofovir monotherapy (n = 53). Both treatment arms received tenofovir consolidation therapy until week 72. The primary end-point was HBeAg loss at week 72. At week 72, the rate of HBeAg loss was higher in the Peg-IFNα2b add-on group (35.8%) compared to the tenofovir monotherapy group (17%) (P = 0.028; odds ratio, 2.73, 95% confidence interval, 1.09-6.79), and considerably higher in patients with a baseline hepatitis B virus (HBV)-DNA level >6 log IU/mL (32.6% vs 11.4%; P = 0.021). Rates of HBV-DNA loss (77.4% vs 71.7%; P = 0.51), ALT normalization (62.3% vs 52.8%; P = 0.32), and sustained virologic response (20.8% vs 11.3%; P = 0.18) at week 72 were comparable between the two groups. Significantly more patients in the add-on group had >3 log HBV-DNA reduction at week 36 (92.5% vs 66%; P = 0.001). Four patients treated with Peg-IFNα2b add-on achieved hepatitis B surface antigen (HBsAg) loss compared with one patient receiving tenofovir monotherapy. Decline of HBV-DNA of >2 log at week 4 led to higher HBeAg loss at week 72, independent of treatment arm. No patient had treatment-related adverse effects requiring treatment discontinuation. Twenty-four weeks of Peg-IFNα2b as an add-on sequential regimen to tenofovir is safe and resulted in greater loss of HBeAg and HBs

  1. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  2. Effect of a 5-lipoxygenase inhibitor and leukotriene antagonist (PF 5901) on antigen-induced airway responses in neonatally immunized rabbits.

    PubMed Central

    Herd, C. M.; Donigi-Gale, D.; Shoupe, T. S.; Burroughs, D. A.; Yeadon, M.; Page, C. P.

    1994-01-01

    1. The effect of a single intratracheal dose (10 mg) of PF 5901 (2-[3(1-hydroxyhexyl) phenoxymethyl] quinoline hydrochloride, a specific inhibitor of the 5-lipoxygenase pathway of arachidonic acid metabolism and a leukotriene D4 antagonist) on airway changes induced in response to Alternaria tenuis aerosol challenge was assessed in adult rabbits neonatally immunized. Leukotriene generation was determined in vivo by measuring leukotriene B4 (LTB4) levels in bronchoalveolar lavage (BAL) fluid and ex vivo by measuring calcium ionophore-stimulated production of LTB4 in whole blood. 2. While PF 5901 (10 mg) had no significant effect on the acute bronchoconstriction induced by antigen, this dose was sufficient to inhibit significantly the increase in airway responsiveness to inhaled histamine 24 h following antigen challenge (P < 0.05). 3. Total leucocyte infiltration into the airways induced by antigen, as assessed by bronchoalveolar lavage, was significantly inhibited by pretreatment with PF 5901 (10 mg). However, the pulmonary infiltration of neutrophils and eosinophils induced by antigen was unaltered by prior treatment with PF 5901 (10 mg). 4. PF 5901 (10 mg) had no effect on ex vivo LTB4 synthesis in whole blood. However, the antigen-induced increase in LTB4 levels in BAL 24 h following challenge was significantly inhibited (P < 0.05). 5. We suggest from the results of the present study that the antigen-induced airway hyperresponsiveness to inhaled histamine in immunized rabbits is mediated, at least in part, by products of the 5-lipoxygenase metabolic pathway, and is not dependent on the extent of eosinophil or neutrophil influx into the airway lumen. PMID:8032653

  3. Functional antigen binding by the defective B cells of CBA/N mice.

    PubMed

    Snippe, H; Merchant, B; Lizzio, E F; Inman, J K

    1982-01-01

    CBA/N mice have an X-linked B cell defect which prevents them from responding to nonmitogenic thymic independent (TI-2) antigens such as dinitrophenylated DNP-Ficoll (1,2). The F1 male progeny of CBA/N female mice express the same defect. Spleen cell suspensions from such defective mice (CBA/N X C3H/HeN F1 males) could not respond to DNP-Ficoll following in vitro immunization and subsequent transfer into irradiated, syngeneic, F1 male recipients as expected. In contrast, normal CBA/N X C3H/HeN F1 female spleen cells could respond and effect a "rescue"; they mounted strong plaque-forming cell responses 7 days after in vitro exposure to DNP-Ficoll and subsequent transfer into irradiated F1 male recipients. Defective F1 male spleen cells, however, could bind significant quantities of 125I-DNP-Ficoll after in vitro exposure. Extensive washing of these spleen cells could not reverse this binding. Such DNP-Ficoll-exposed and washed F1 male spleen cells could, after transfer, aid normal untreated F1 female cells in their rescue function. The defective F1 male spleen cells could convey immunogenic quantities of DNP-Ficoll to the "rescuing" F1 female cells. Mitomycin treatment of F1 male cells did not interfere with their conveyor function. Goat anti-mouse mu serum impeded the passive antigen conveyor function of defective F1 male cells as did prior exposure to high concentrations of free DNP hapten. Our data support the view that the B cell defect of CBA/N X C3H/HeN F1 male mice does not relate to antigen binding, but rather to an inability to be effectively triggered by certain cell-bound polymeric antigens.

  4. Reduced Serum IgG Responses to Pneumococcal Antigens in Otitis-Prone Children May Be Due to Poor Memory B-Cell Generation

    PubMed Central

    Sharma, Sharad K.; Casey, Janet R.

    2012-01-01

    A low level of serum antibody to antigens expressed by Streptococcus pneumoniae has been proposed to explain the susceptibility of children to recurrent episodes of acute otitis media (hereafter, “otitis-prone children”). By use of enzyme-linked immunospot assays, the percentages of memory B cells to pneumococcal protein antigens PhtD, LytB, PcpA, PhtE, and Ply were compared between otitis-prone and non–otitis-prone children at the time of acute otitis media or nasopharyngeal colonization with S. pneumoniae. We found significantly lower percentages of memory B cells to 3 pneumococcal protein antigens (PhtD, PhtE, and Ply) and reduced antigen-specific immunoglobulin G concentrations in otitis-prone children, compared with non–otitis-prone children. PMID:22383675

  5. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    PubMed Central

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  6. Construction of a hepatitis B virus neutralizing chimeric monoclonal antibody recognizing escape mutants of the viral surface antigen (HBsAg).

    PubMed

    Golsaz-Shirazi, Forough; Amiri, Mohammad Mehdi; Farid, Samira; Bahadori, Motahareh; Bohne, Felix; Altstetter, Sebastian; Wolff, Lisa; Kazemi, Tohid; Khoshnoodi, Jalal; Hojjat-Farsangi, Mohammad; Chudy, Michael; Jeddi-Tehrani, Mahmood; Protzer, Ulrike; Shokri, Fazel

    2017-08-01

    Hepatitis B virus (HBV) infection is a global burden on the health-care system and is considered as the tenth leading cause of death in the world. Over 248 million patients are currently suffering from chronic HBV infection worldwide and annual mortality rate of this infection is 686000. The "a" determinant is a hydrophilic region present in all antigenic subtypes of hepatitis B surface antigen (HBsAg), and antibodies against this region can neutralize the virus and are protective against all subtypes. We have recently generated a murine anti-HBs monoclonal antibody (4G4), which can neutralize HBV infection in HepaRG cells and recognize most of the escape mutant forms of HBsAg. Here, we describe the production and characterization of the chimeric human-murine antibody 4G4 (c-4G4). Variable region genes of heavy and light chains of the m-4G4 were cloned and fused to constant regions of human kappa and IgG1 by splice overlap extension (SOE) PCR. The chimeric antibody was expressed in Chinese Hamster Ovary (CHO)-K1 cells and purified from culture supernatant. Competition ELISA proved that both antibodies bind the same epitope within HBsAg. Antigen-binding studies using ELISA and Western blot showed that c-4G4 has retained the affinity and specificity of the parental murine antibody, and displayed a similar pattern of reactivity to 13 escape mutant forms of HBsAg. Both, the parental and c-4G4 showed a comparably high HBV neutralization capacity in cell culture even at the lowest concentration (0.6μg/ml). Due to the ability of c-4G4 to recognize most of the sub-genotypes and escape mutants of HBsAg, this antibody either alone or in combination with other anti-HBs antibodies could be considered as a potent alternative for Hepatitis B immune globulin (HBIG) as an HBV infection prophylactic or for passive immunotherapy against HBV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Supplemented vaccination with tandem repeat M2e virus-like particles enhances protection against homologous and heterologous HPAI H5 viruses in chickens.

    PubMed

    Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Jung, Suk Chan; Kim, Min-Chul; Lee, Yu-Na; Kang, Sang-Moo; Lee, Youn-Jeong

    2016-01-27

    Highly pathogenic avian influenza (HPAI) H5 viruses derived from A/Goose/Guangdong/1/96 have been continuously circulating globally, severely affecting the public health and poultry industries. The matrix 2 protein ectodomain (M2e) is considered a promising candidate for a universal cross-protective influenza vaccine that provides more effective control over HPAI H5 viruses harboring variant hemagglutinin (HA)-antigens. Here, we evaluated the protective efficacy of a tandem repeat construct of heterologous M2e presented on virus-like particles (M2e5x VLPs) either alone or as a supplement against HPAI H5 viruses in a chicken model. Chickens immunized with M2e5x VLPs alone induced M2e-specific antibodies but were not protected against HPAI H5. The homo- and cross-protective efficacy of M2e5x VLP-supplemented vaccination of chickens was also examined. Importantly, supplementation with M2e5x VLPs induced significantly higher levels of antibodies specific for M2e and different viruses as well as provided improved protection against homologous and heterologous HPAI H5 viruses. Considering the limited efficacy of inactivated vaccines, supplement vaccination with M2e5x VLPs may be an effective measure for preventing outbreaks of HPAI viruses that have the ability to constantly change their antigenic properties in poultry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dendritic Cell Targeting of Bacillus anthracis Protective Antigen Expressed by Lactobacillus acidophilus Protects Mice from Lethal Challenge

    DTIC Science & Technology

    2008-10-28

    highly immunogenic, which may prevent their use in vaccine regimens requiring multiple doses (4). Probiotics are defined as ‘‘live microorganisms that...Sterne lethal challenge (Fig. 3 B and C). Thus, results from these studies further highlight the efficacy of employing probiotic lactic acid bacteria in...delivery via probiotic lactic acid bacteria is in their ability to induce antigen-specific IgA responses in feces, saliva, bronchoalveolar, mesenteric

  9. Structural Relationships Between Minor and Major Proteins of Hepatitis B Surface Antigen

    PubMed Central

    Stibbe, Werner; Gerlich, Wolfram H.

    1983-01-01

    The minor glycoproteins from hepatitis B surface antigen, GP33 and GP36, contain at their carboxy-terminal part the sequence of the major protein P24. They have 55 additional amino acids at the amino-terminal part which are coded by the pre-S region of the viral DNA. Images PMID:6842680

  10. The interplay between HLA-B27 and ERAP1/ERAP2 aminopeptidases: from anti-viral protection to spondyloarthritis.

    PubMed

    Vitulano, C; Tedeschi, V; Paladini, F; Sorrentino, R; Fiorillo, M T

    2017-12-01

    The human leukocyte antigen class I gene HLA-B27 is the strongest risk factor for ankylosing spondylitis (AS), a chronic inflammatory arthritic disorder. More recently, the Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 genes have been identified by genome wide association studies (GWAS) as additional susceptibility factors. In the ER, these aminopeptidases trim the peptides to a length suitable to fit into the groove of the major histocompatibility complex (MHC) class I molecules. It is noteworthy that an epistatic interaction between HLA-B27 and ERAP1, but not between HLA-B27 and ERAP2, has been highlighted. However, these observations suggest a paramount centrality for the HLA-B27 peptide repertoire that determines the natural B27 immunological function, i.e. the T cell antigen presentation and, as a by-product, elicits HLA-B27 aberrant behaviours: (i) the misfolding leading to ER stress responses and autophagy and (ii) the surface expression of homodimers acting as ligands for innate immune receptors. In this context, it has been observed that the HLA-B27 carriers, besides being prone to autoimmunity, display a far better surveillance to some viral infections. This review focuses on the ambivalent role of HLA-B27 in autoimmunity and viral protection correlating its functions to the quantitative and qualitative effects of ERAP1 and ERAP2 polymorphisms on their enzymatic activity. © 2017 British Society for Immunology.

  11. [A new human leukocyte antigen class I allele, HLA- B*52:11].

    PubMed

    Li, Xiao-feng; Zhang, Xu; Zhang, Kun-lian; Chen, Yang; Liu, Xian-zhi; Li, Jian-ping

    2011-12-01

    To identify and confirm a novel HLA allele. A new human leukocyte antigen class I allele was found during routine HLA genotyping by polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP) and sequencing-based typing (SBT). The novel HLA-B*52 allele was identical to B*52:01:01 with an exception of one base substitution at position 583 of exon 3 where a C was changed to T resulting in codon 195 changed from CAC(H) to TAC(Y). A new HLA class I allele, B*52:11, is identified, and is named officially by the WHO Nomenclature Committee.

  12. Adjuvant guided polarization of the immune humoral response against a protective multicomponent antigenic protein (Q) from Leishmania infantum. A CpG + Q mix protects Balb/c mice from infection.

    PubMed

    Parody, N; Soto, M; Requena, J M; Alonso, C

    2004-01-01

    It has been shown that vaccination with three doses of the Leishmania infantum poly-protein Q containing five genetically fused antigenic determinants from the Lip2a, Lip2b, H2A and P0 proteins, mixed with BCG induces clearance of parasites in 9 out of 10 Leishmania infantum-infected Beagle dogs, in addition to clinical protection. In the present paper we analysed the immunogenic potential of the poly-protein Q and the specificity and polarization of the response against the antigenic determinants of Q when mixed with various adjuvants. The data showed that the Q protein had high intrinsic immunogenic potential and that it was able to induce a long-lasting IgG response. The IgM immunogenic potential of the poly-protein was mainly due to the LiP2a and LiP2b determinants, whereas the IgG immunogenic potential was mainly due to the LiP2a component. It was observed that the protein itself elicited a mixed IgG2a/IgG1 response and that the determinants of Q were endowed with different IgG2a/IgG1 potential. It was also observed that the adjuvants did not influence the intensity or specificity of the IgM response but that they modulated the intensity, the specificity and the polarization of the IgG response against the determinants of Q. CpG-ODN motifs or double-stranded DNA plasmids containing CpG motifs when mixed with Q induced a predominant IgG2a response mainly observed at early stages post-immunization. The data showed that a CpG + Q mix induced significant protection against L. infantum infection in Balb/c mice.

  13. An AC-5 cathepsin B-like protease purified from Haemonchus contortus excretory secretory products shows protective antigen potential for lambs

    PubMed Central

    De Vries, Erik; Bakker, Nicole; Krijgsveld, Jeroen; Knox, Dave P.; Heck, Albert J.R.; Yatsuda, Ana Patricia

    2009-01-01

    The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses. PMID:19401141

  14. Targeting Antigens to Dec-205 on Dendritic Cells Induces Immune Protection in Experimental Colitis in Mice

    PubMed Central

    Wadwa, Munisch; Klopfleisch, Robert; Buer, Jan; Westendorf, Astrid M.

    2016-01-01

    The endocytotic c-type lectin receptor DEC-205 is highly expressed on immature dendritic cells. In previous studies, it was shown that antigen-targeting to DEC-205 is a useful tool for the induction of antigen-specific Foxp3+ regulatory T cells and thereby can prevent inflammatory processes. However, whether this approach is sufficient to mediate tolerance in mucosal tissues like the gut is unknown. In this study, we established a new mouse model in which the adoptive transfer of naive hemagglutinin (HA)-specific CD4+Foxp3– T cells into VILLIN-HA transgenic mice leads to severe colitis. To analyze if antigen-targeting to DEC-205 could protect against inflammation of the gut, VILLIN-HA transgenic mice were injected with an antibody–antigen complex consisting of the immunogenic HA110–120 peptide coupled to an α-DEC-205 antibody (DEC-HA) before adoptive T cell transfer. DEC-HA-treated mice showed significantly less signs of intestinal inflammation as was demonstrated by reduced loss of body weight and histopathology in the gut. Strikingly, abrogated intestinal inflammation was mediated via the conversion of naive HA-specific CD4+Foxp3– T cells into HA-specific CD4+Foxp3+ regulatory T cells. In this study, we provide evidence that antigen-targeting to DEC-205 can be utilized for the induction of tolerance in mucosal organs that are confronted with large numbers of exogenous antigens. PMID:27141310

  15. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling

    PubMed Central

    Sciammas, Roger; Li, Ying; Warmflash, Aryeh; Song, Yiqiang; Dinner, Aaron R; Singh, Harinder

    2011-01-01

    The B-lymphocyte lineage is a leading system for analyzing gene regulatory networks (GRNs) that orchestrate distinct cell fate transitions. Upon antigen recognition, B cells can diversify their immunoglobulin (Ig) repertoire via somatic hypermutation (SHM) and/or class switch DNA recombination (CSR) before differentiating into antibody-secreting plasma cells. We construct a mathematical model for a GRN underlying this developmental dynamic. The intensity of signaling through the Ig receptor is shown to control the bimodal expression of a pivotal transcription factor, IRF-4, which dictates B cell fate outcomes. Computational modeling coupled with experimental analysis supports a model of ‘kinetic control', in which B cell developmental trajectories pass through an obligate transient state of variable duration that promotes diversification of the antibody repertoire by SHM/CSR in direct response to antigens. More generally, this network motif could be used to translate a morphogen gradient into developmental inductive events of varying time, thereby enabling the specification of distinct cell fates. PMID:21613984

  16. HLA-A and -B phenotypes associated with tuberculosis in population from north-eastern Romania.

    PubMed

    Vasilca, Venera; Oana, Raluca; Munteanu, Dorina; Zugun, F; Constantinescu, Daniela; Carasevici, E

    2004-01-01

    HLA antigens are involved in inducing either susceptibility or resistance to different diseases. Many studies reported various associations between HLA antigens and tuberculosis, depending on race, ethnic group and geographic area. Our purpose was to identify HLA class I antigens inducing susceptibility to tuberculosis in population from North-Eastern Romania. The study group consisted of 50 tuberculosis patients and the control group included 90 healthy people. HLA-A and HLA-B antigens were determined using the CDC-NIH (complement-dependent-cytotoxicity-National Institute of Health) assay. A comparison was made between the frequency of HLA antigens expression in the two studied groups. HLA-B18 and HLA-A29(19) were expressed more frequently in tuberculosis patients. The difference was statistically significant only for HLA-B18 antigen. HLA-B7 and -B61(40) antigens were expressed with statistically significant higher frequency in controls compared to tuberculosis patients. The frequency of other HLA-A and HLA-B antigens was either comparable in the two groups or without statistical significance. CONCLUSIONS We found a positive association between HLA-B18 antigen and tuberculosis, while HLA-B7 and HLA-B61(40) antigens seem to protect against the disease.

  17. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    PubMed

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  18. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs

    PubMed Central

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-01-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates. PMID:27223609

  19. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs.

    PubMed

    Petitdidier, Elodie; Pagniez, Julie; Papierok, Gérard; Vincendeau, Philippe; Lemesre, Jean-Loup; Bras-Gonçalves, Rachel

    2016-05-01

    Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES) antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA), from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA) or its carboxy terminal part LaPSA-12S (Cter-rPSA), combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  20. Molecular cloning and characterization of rat sperm surface antigen 2B1, a glycoprotein implicated in sperm-zona binding.

    PubMed

    Hou, S T; Ma, A; Jones, R; Hall, L

    1996-10-01

    The rat sperm surface antigen, 2B1, that has been proposed to play a key role in sperm adhesion to the zona pellucida, has been cloned and its entire cDNA sequenced. Northern blot analysis indicates that 2B1 is encoded by a 2.2-kb RNA transcript that is abundantly expressed in the testis. The deduced protein sequence contains 512 amino-acid residues with a strong candidate signal sequence and C-terminal transmembrane domain. Data base searches reveal a high degree of sequence similarity to guinea pig, rabbit, monkey, and human PH20 sperm surface antigens, and a lower degree of similarity to honey bee and whiteface hornet venom hyaluronidases. Rat 2B1 antigen also possesses hyaluronidase activity, suggesting that it is a bifunctional protein with putative roles in the dispersion of cumulus oophorus cells as well as zona adhesion. However, while it would appear that 2B1 is the rat homologue of the guinea pig PH20 antigen, they differ in a number of important biochemical respects (including their mode of attachment to the sperm membrane and distribution between soluble and membrane-bound fractions), as well as in their localization on the sperm membrane. Expression of regions of the 2B1 protein in recombinant bacterial cells has allowed a preliminary mapping of the 2B1 epitope, and has provided more definitive information on the endoproteolytic processing of 2B1 during epididymal transit.

  1. A scalable method for O-antigen purification applied to various Salmonella serovars

    PubMed Central

    Micoli, F.; Rondini, S.; Gavini, M.; Pisoni, I.; Lanzilao, L.; Colucci, A.M.; Giannelli, C.; Pippi, F.; Sollai, L.; Pinto, V.; Berti, F.; MacLennan, C.A.; Martin, L.B.; Saul, A.

    2014-01-01

    The surface lipopolysaccharide of gram-negative bacteria is both a virulence factor and a B cell antigen. Antibodies against O-antigen of lipopolysaccharide may confer protection against infection, and O-antigen conjugates have been designed against multiple pathogens. Here, we describe a simplified methodology for extraction and purification of the O-antigen core portion of Salmonella lipopolysaccharide, suitable for large-scale production. Lipopolysaccharide extraction and delipidation are performed by acetic acid hydrolysis of whole bacterial culture and can take place directly in a bioreactor, without previous isolation and inactivation of bacteria. Further O-antigen core purification consists of rapid filtration and precipitation steps, without using enzymes or hazardous chemicals. The process was successfully applied to various Salmonella enterica serovars (Paratyphi A, Typhimurium, and Enteritidis), obtaining good yields of high-quality material, suitable for conjugate vaccine preparations. PMID:23142430

  2. Role of Metalloproteases in Vaccinia Virus Epitope Processing for Transporter Associated with Antigen Processing (TAP)-independent Human Leukocyte Antigen (HLA)-B7 Class I Antigen Presentation*

    PubMed Central

    Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel

    2012-01-01

    The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786

  3. A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens.

    PubMed

    Oliveira Cavalcanti, Marcia; Vaughn, Eric; Capua, Ilaria; Cattoli, Giovanni; Terregino, Calogero; Harder, Timm; Grund, Christian; Vega, Carlos; Robles, Francisco; Franco, Julio; Darji, Ayub; Arafa, Abdel-Satar; Mundt, Egbert

    2017-04-01

    The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.

  4. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  5. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-10-25

    We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D  = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.

  6. Fermentation, Purification, and Characterization of Protective Antigen from a Recombinant, Avirulent Strain of Bacillus anthracis

    PubMed Central

    Farchaus, J. W.; Ribot, W. J.; Jendrek, S.; Little, S. F.

    1998-01-01

    Bacillus anthracis, the etiologic agent for anthrax, produces two bipartite, AB-type exotoxins, edema toxin and lethal toxin. The B subunit of both exotoxins is an Mr 83,000 protein termed protective antigen (PA). The human anthrax vaccine currently licensed for use in the United States consists primarily of this protein adsorbed onto aluminum oxyhydroxide. This report describes the production of PA from a recombinant, asporogenic, nontoxigenic, and nonencapsulated host strain of B. anthracis and the subsequent purification and characterization of the protein product. Fermentation in a high-tryptone, high-yeast-extract medium under nonlimiting aeration produced 20 to 30 mg of secreted PA per liter. Secreted protease activity under these fermentation conditions was low and was inhibited more than 95% by the addition of EDTA. A purity of 88 to 93% was achieved for PA by diafiltration and anion-exchange chromatography, while greater than 95% final purity was achieved with an additional hydrophobic interaction chromatography step. The purity of the PA product was characterized by reversed-phase high-pressure liquid chromatography, sodium dodecyl sulfate (SDS)-capillary electrophoresis, capillary isoelectric focusing, native gel electrophoresis, and SDS-polyacrylamide gel electrophoresis. The biological activity of the PA, when combined with excess lethal factor in the macrophage cell lysis assay, was comparable to previously reported values. PMID:9501438

  7. CD5-expressing B-cell lymphomas/leukemias: relatively high frequency of CD5+ B-cell lymphomas with an overall poor prognosis in Nagasaki Japan.

    PubMed

    Kamihira, S; Hirakata, Y; Atogami, S; Sohda, H; Tsuruda, K; Yamada, Y; Tomonaga, M

    1996-06-01

    To characterize CD5+ B-cell neoplasms in Japan, where chronic lymphocytic leukemia (CLL) is rare and of different subtypes in comparison with Western countries, we collected 58 cases of CD5+ B-cell lymphomas/leukemias and analyzed their clinicopathologic features. According to the French-American-British (FAB) and standard histologic classification, the cases corresponded to small lymphocytic lymphoma (SLL, group I; n = 22, consisting of CLL, n = 10, CLL/PL, n = 3, and CLLmixed, n = 7); intermediate differentiated lymphoma/mantle cell lymphoma (IDL/MCL, group II, n = 18); and others with CD5-positive lymphomas (group III, n = 18). The CD5+ B-cell lymphomas showed morphologic and prognostic variability among the three groups. The clinical and immunophenotypic features were remarkably consistent in leukemic disease being seen in 73% of all cases, splenomegaly in 63%, and intense CD19, CD20, surface membrane immunogobulin M (SmIgM) or SmIgM and SmIgD, light-chain expression, and no CD10 expression. The median survival time of groups I, II, and III was 7.8, 3.3, and 0.8 years, respectively. These findings suggest that CD5 antigens may serve as valid markers for the prognosis and clinical features of B-cell lymphomas and that CD5+ B-cell lymphomas with an overall poor prognosis occurs at a relatively high frequency in Japan. This also suggests that a combination of immunophenotypic and morphologic features is of value for characterizing CD5+ B-cell neoplasms.

  8. Broadly Protective Shigella Vaccine Based on Type III Secretion Apparatus Proteins

    PubMed Central

    Martinez-Becerra, Francisco J.; Kissmann, Julian M.; Diaz-McNair, Jovita; Choudhari, Shyamal P.; Quick, Amy M.; Mellado-Sanchez, Gabriela; Clements, John D.

    2012-01-01

    Shigella spp. are food- and waterborne pathogens that cause severe diarrheal and dysenteric disease associated with high morbidity and mortality. Individuals most often affected are children under 5 years of age in the developing world. The existence of multiple Shigella serotypes and the heterogenic distribution of pathogenic strains, as well as emerging antibiotic resistance, require the development of a broadly protective vaccine. All Shigella spp. utilize a type III secretion system (TTSS) to initiate infection. The type III secretion apparatus (TTSA) is the molecular needle and syringe that form the energized conduit between the bacterial cytoplasm and the host cell to transport effector proteins that manipulate cellular processes to benefit the pathogen. IpaB and IpaD form a tip complex atop the TTSA needle and are required for pathogenesis. Because they are common to all virulent Shigella spp., they are ideal candidate antigens for a subunit-based, broad-spectrum vaccine. We examined the immunogenicity and protective efficacy of IpaB and IpaD, alone or combined, coadministered with a double mutant heat-labile toxin (dmLT) from Escherichia coli, used as a mucosal adjuvant, in a mouse model of intranasal immunization and pulmonary challenge. Robust systemic and mucosal antibody- and T cell-mediated immunities were induced against both proteins, particularly IpaB. Mice immunized in the presence of dmLT with IpaB alone or IpaB combined with IpaD were fully protected against lethal pulmonary infection with Shigella flexneri and Shigella sonnei. We provide the first demonstration that the Shigella TTSAs IpaB and IpaD are promising antigens for the development of a cross-protective Shigella vaccine. PMID:22202122

  9. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge

    PubMed Central

    Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.

    2017-01-01

    ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  10. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    PubMed

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  11. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis.

    PubMed

    Golomidova, Alla K; Kulikov, Eugene E; Prokhorov, Nikolai S; Guerrero-Ferreira, Ricardo С; Knirel, Yuriy A; Kostryukova, Elena S; Tarasyan, Karina K; Letarov, Andrey V

    2016-01-21

    The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host's O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.

  12. Toxoplasma gondii Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective Immune Response against T. gondii Infection

    PubMed Central

    Aline, Fleur; Bout, Daniel; Amigorena, Sébastian; Roingeard, Philippe; Dimier-Poisson, Isabelle

    2004-01-01

    It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens. PMID:15213158

  13. Factor H-binding protein, a unique meningococcal vaccine antigen.

    PubMed

    Pizza, Mariagrazia; Donnelly, John; Rappuoli, Rino

    2008-12-30

    GNA1870, also named factor H-binding protein (fHbp) or rLP-2086, is a genome-derived antigen and one of the components of a rationally designed vaccine against Neisseria meningitidis serogroup B, which has entered phase III clinical trials. It has been classified into three main non-cross-protective variant groups. GNA1870 has also been termed fHbp because of its ability to bind factor H, a key regulatory component of the alternative complement pathway. fHbp is important for survival in human blood, human sera, and in presence of antimicrobial peptides, independently of its expression level. All these properties make fHbp a unique vaccine antigen.

  14. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    PubMed Central

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U

  15. Human leukocyte antigen B27 and B51 double-positive Behçet uveitis.

    PubMed

    Ahn, Jae Kyoun; Park, Yeoung Geol

    2007-10-01

    To describe the clinical characteristics of human leukocyte antigen (HLA) B27 and B51 double-positive Behçet uveitis and to determine whether the coexistence of HLA-B27 can affect Behçet uveitis. We retrospectively reviewed the medical records of patients with Behçet uveitis and patients with HLA-B27-associated non-Behçet uveitis who underwent HLA-B27 and HLA-B51 typing and were followed up for more than 3 years. We divided the patients into 3 groups according to HLA-B27/B51 status and compared the clinical outcomes. Main outcome measures were demographic features, uveitis characteristics, complications, treatments, and visual prognosis. Fourteen patients with HLA-B27(+)B51(+) Behçet uveitis, 43 patients with HLA-B27(-)B51(+) Behçet uveitis, and 41 patients with HLA-B27(+)B51(-) non-Behçet uveitis were identified. HLA-B27(+)B51(+) Behçet uveitis showed the demographic features similar to HLA-B27(-) counterparts. However, HLA-B27(+)B51(+) Behçet uveitis showed less involvement of posterior segments, a less chronic course, fewer complications in posterior segments, and less use of systemic medication or surgical intervention for inflammatory control, similar to HLA-B27(+)B51(-) non-Behçet uveitis. The long-term vision prognosis of HLA-B27(+)B51(+) Behçet uveitis was more favorable than that of HLA-B27(-)B51(+) Behçet uveitis. Our results indicate that HLA-B27(+)B51(+) Behçet uveitis is a benign subgroup of Behçet uveitis. The positivity of HLA-B27 may be a good prognostic factor in Behçet uveitis.

  16. Heterosubtypic anti-avian H5N1 influenza antibodies in intravenous immunoglobulins from globally separate populations protect against H5N1 infection in cell culture

    PubMed Central

    Sullivan, John S; Selleck, Paul W; Downton, Teena; Boehm, Ingrid; Axell, Anna-Maree; Ayob, Yasmin; Kapitza, Natalie M; Dyer, Wayne; Fitzgerald, Anna; Walsh, Bradley; Lynch, Garry W

    2009-01-01

    With antigenically novel epidemic and pandemic influenza strains persistently on the horizon it is of fundamental importance that we understand whether heterosubtypic antibodies gained from exposures to circulating human influenzas exist and can protect against emerging novel strains. Our studies of IVIG obtained from an infection-naive population (Australian) enabled us to reveal heterosubtypic influenza antibodies that cross react with H5N1. We now expand those findings for an Australian donor population to include IVIG formulations from a variety of northern hemisphere populations. Examination of IVIGs from European and South East-Asian (Malaysian) blood donor populations further reveal heterosubtypic antibodies to H5N1 in humans from different global regions. Importantly these protect against highly pathogenic avian H5N1 infection in vitro, albeit at low titres of inhibition. Although there were qualitative and quantitative differences in binding and protection between globally different formulations, the heterosubtypic antibody activities for the respective IVIGs were in general quite similar. Of particular note because of the relative geographic proximity to the epicentre of H5N1 and the majority of human infections, was the similarity in the antibody binding responses between IVIGs from the Malayan peninsula, Europe and Australia. These findings highlight the value of employing IVIGs for the study of herd immunity, and particularly heterosubtypic antibody responses to viral antigens such as those conserved between circulating human influenzas and emerging influenza strains such as H5N1. They also open a window into a somewhat ill defined arena of antibody immunity, namely heterosubtypic immunity. PMID:20076794

  17. Characterization of SeseC_01411 as a surface protective antigen of Streptococcus equi ssp. zooepidemicus.

    PubMed

    Xie, Honglin; Wei, Zigong; Ma, Chunquan; Li, Shun; Liu, Xiaohong; Fu, Qiang

    2018-06-01

    Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is a commensal bacterium related to opportunistic infections of many species, including humans, dogs, cats, and pigs. SeseC_01411 has been proven to be immunogenic. However, its protective efficacy remained to be evaluated. In the present study, the purified recombinant SeseC_01411 could elicit a strong humoral antibody response and protect against lethal challenge with virulent SEZ in mice. Our finding confirmed that SeseC_01411 distributes on the surface of SEZ. In addition, the hyperimmune sera against SeseC_01411 could efficiently kill the bacteria in the phagocytosis test. The present study identified the immunogenic protein, SeseC_01411, as a novel surface protective antigen of SEZ. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Targeted Deletion of the Gene Encoding the La Autoantigen (Sjögren's Syndrome Antigen B) in B Cells or the Frontal Brain Causes Extensive Tissue Loss

    PubMed Central

    Gaidamakov, Sergei; Maximova, Olga A.; Chon, Hyongi; Blewett, Nathan H.; Wang, Hongsheng; Crawford, Amanda K.; Day, Amanda; Tulchin, Natalie; Crouch, Robert J.; Morse, Herbert C.; Blitzer, Robert D.

    2014-01-01

    La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types. PMID:24190965

  19. Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Qi, Junpeng; Peng, Haiyong; Morimoto, Jumpei; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    PubMed Central

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  1. Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes.

    PubMed

    Adam, Philip R; Dickenson, Nicholas E; Greenwood, Jamie C; Picking, Wendy L; Picking, William D

    2014-11-01

    Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. © 2014 Wiley Periodicals, Inc.

  2. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen

    PubMed Central

    Lynch, Heather E.; Stewart, Shelley M.; Kepler, Thomas B.; Sempowski, Gregory D.; Alam, S. Munir

    2014-01-01

    Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development. PMID:24316020

  3. A Lactococcus lactis BFE920 feed vaccine expressing a fusion protein composed of the OmpA and FlgD antigens from Edwardsiella tarda was significantly better at protecting olive flounder (Paralichthys olivaceus) from edwardsiellosis than single antigen vaccines.

    PubMed

    Beck, Bo Ram; Lee, Soon Ho; Kim, Daniel; Park, Ji Hye; Lee, Hyun Kyung; Kwon, San-Sung; Lee, Kwan Hee; Lee, Jae Il; Song, Seong Kyu

    2017-09-01

    Edwardsiellosis is a major fish disease that causes a significant economic damage in the aquaculture industry. Here, we assessed vaccine efficacy after feeding oral vaccines to olive flounder (Paralichthys olivaceus), either L. lactis BFE920 expressing Edwardsiella tarda outer membrane protein A (OmpA), flagellar hook protein D (FlgD), or a fusion antigen of the two. Feed vaccination was done twice with a one-week interval. Fish were fed regular feed adsorbed with the vaccines. Feed vaccination was given over the course of one week to maximize the interaction between the feed vaccines and the fish intestine. Flounder fed the vaccine containing the fusion antigen had significantly elevated levels T cell genes (CD4-1, CD4-2, and CD8α), type 1 helper T cell (Th1) subset indicator genes (T-bet and IFN-γ), and antigen-specific antibodies compared to the groups fed the single antigen-expressing vaccines. Furthermore, the superiority of the fusion vaccine was also observed in survival rates when fish were challenged with E. tarda: OmpA-FlgD-expressing vaccine (82.5% survival); FlgD-vaccine (55.0%); OmpA-vaccine (50%); WT L. lactis BFE920 (37.5%); Ctrl (10%). In addition, vaccine-fed fish exhibited increased weight gain (∼20%) and a decreased feed conversion ratio (∼20%) during the four week vaccination period. Flounder fed the FlgD-expressing vaccine, either the single or the fusion form, had significantly increased expression of TLR5M, IL-1β, and IL-12p40, suggesting that the FlgD may be a ligand of olive flounder TLR5M receptor or closely related to the TLR5M pathway. In conclusion, the present study demonstrated that olive flounder fed L. lactis BFE920 expressing a fusion antigen composed of E. tarda OmpA and FlgD showed a strong protective effect against edwardsiellosis indicating this may be developed as an E. tarda feed vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antigen-specific IgA B memory cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates

    PubMed Central

    Simon, J. K.; Maciel, M.; Weld, E.D.; Wahid, R.; Pasetti, M.F.; Picking, W.L.; Kotloff, K. L.; Levine, M. M.; Sztein, M. B.

    2011-01-01

    We studied the induction of antigen-specific IgA memory B cells (BM) in volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107, 108 or 109 CFU of S. flexneri 2a with deletions in guaBA (CVD 1204) or in guaBA, set and sen (CVD 1208). Antigen-specific serum and stool antibody responses to LPS and Ipa B were measured on days 0, 7, 14, 28 and 42. IgA BM cells specific to LPS, Ipa B and total IgA were assessed on days 0 and 28. We show the induction of significant LPS-specific IgA BM cells in anti-LPS IgA seroresponders. Positive correlations were found between anti-LPS IgA BM cells and anti-LPS IgA in serum and stool; IgA BM cell responses to IpaB were also observed. These BM cell responses are likely play an important role in modulating the magnitude and longevity of the humoral response. PMID:21388888

  5. Safety of currently licensed hepatitis B surface antigen vaccines in the United States, Vaccine Adverse Event Reporting System (VAERS), 2005-2015.

    PubMed

    Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V

    2018-01-25

    Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons <2 years of age; 2588 (13%) in persons 2-18 years and 5867 (29%) in persons >18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged <1 month, were nervous system disorders (15) among children aged 1-23 months; infections and infestation (8) among persons age 2-18 years blood and lymphatic systemic disorders; and general disorders and administration site conditions among persons age >18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education

  6. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity.

    PubMed Central

    Turnbull, P C; Broster, M G; Carman, J A; Manchee, R J; Melling, J

    1986-01-01

    A competitive inhibition enzyme-linked immunosorbent assay (ELISA) was developed to detect antibodies in serum to the protective antigen (PA) and lethal factor (LF) components of anthrax toxin. Current human vaccination schedules with an acellular vaccine induce predictable and lasting antibody titers to PA and, when present in the vaccine, to LF. Live spore vaccine administered to guinea pigs in a single dose conferred significantly better protection than the human vaccines (P less than 0.001), although they elicited significantly lower (P less than 0.0005) anti-PA and anti-LF titers at time of challenge with virulent Bacillus anthracis. Substantial anti-PA and anti-LF titers may not, therefore, indicate solid protective immunity against anthrax infection. The ELISA system was also shown to be capable of detecting anti-PA and anti-LF antibodies in the sera of individuals with histories of clinical anthrax. The advantage of ELISA over the Ouchterlony gel diffusion test and indirect microhemagglutination assay are demonstrated. There was a highly significant degree of correlation between ELISA and the indirect microhemagglutination assay (P less than 0.0005); but ELISA was markedly superior in terms of reproducibility, reliability, specificity, and simplicity in performance and stability of the bound antigen. PMID:3084381

  7. Human experimental challenge with enterotoxigenic Escherichia coli elicits immune responses to canonical and novel antigens relevant to vaccine development.

    PubMed

    Chakraborty, Subhra; Randall, Arlo; Vickers, Tim J; Molina, Doug; Harro, Clayton D; DeNearing, Barbara; Brubaker, Jessica; Sack, David A; Bourgeois, A Louis; Felgner, Philip L; Liang, Xiaowu; Mani, Sachin; Wenzel, Heather; Townsend, R Reid; Gilmore, Petra E; Darsley, Michael J; Rasko, David A; Fleckenstein, James M

    2018-05-24

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. ETEC vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Antibody lymphocyte supernatants (ALS) and sera from 20 naïve human volunteers challenged with ETEC strain H10407 and from 10 volunteers re-challenged 4-6 weeks later with the same strain (9 of whom were completely protected on re-challenge) were tested against ETEC proteome microarrays containing 957 antigens. ETEC challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E. coli antigens including YghJ, flagellin (FliC), and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Collectively, studies reported here suggest that immune responses following ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.

  8. A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection.

    PubMed

    Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra

    2006-03-06

    Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.

  9. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  10. [Search for protective antigens in Ixodes persulcatus (ixodidae) salivary gland extracts].

    PubMed

    Shtannikov, A V; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Perovskaia, O N; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N

    2010-01-01

    RT-PCR evaluation of the activity of eight Ixodes persulcatus salivary gland genes shows clear distinctions in their expression depending of the stage of tick feeding. Out of them, only Salp 10 and Salp 15 proteins may be regarded as candidates for protective antigens to develop anti-tick and anti-Borrelia vaccines. Firstly they play an important role in feeding a tick and modifying a host's immune response. Secondly, the increasing expression of the salp 10 and salp 10 genes begins at early tick feeding stages. Thirdly, the activity of these genes increases with the beginning of feeding by tens and hundreds times and keeps at this level until the third tick feeding stage is over.

  11. Protective Effect of Human Leukocyte Antigen (HLA) Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women.

    PubMed

    James, Lisa M; Christova, Peka; Lewis, Scott M; Engdahl, Brian E; Georgopoulos, Angeliki; Georgopoulos, Apostolos P

    2018-03-01

    Reduction of brain volume (brain atrophy) during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA) allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017). Seventy-one cognitively healthy women (32-69years old) underwent a structural Magnetic Resonance Imaging (sMRI) scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N=60) or carried the DRB1*13:02 allele (N=11). We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume) was the dependent variable and age was the independent variable. In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain aging (Wendt et al., 2008). Of course, other factors covarying with the

  12. N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen.

    PubMed Central

    Sugimoto, Y; Toyoshima, S

    1979-01-01

    N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt (CAE), exhibited a strong inactivating effect on hepatitis B surface antigen. Concentrations of CAE required for 50 and 100% inactivation of the antigen were 0.01 to 0.025% and 0.025 to 0.05% respectively. CAE completely inactivated hepatitis B surface antigen at the lowest concentration compared with various compounds including about 500 amino acid derivatives, sodium hypochlorite, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, and some detergents. Furthermore, CAE inactivated vaccinia virus, herpes simplex virus, and influenza virus, whereas poliovirus was not inactivated at all. The results suggest that the inactivating effects of CAE are related to interaction with lipid-containing viral envelopes. PMID:228595

  13. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    PubMed Central

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  14. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Recruitment of bone marrow CD11b+Gr-1+ cells by polymeric nanoparticles for antigen cross-presentation

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Wun; Luo, Wen-Hui

    2017-03-01

    The objective of this study was to investigate the function of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on the activation of antigen-specific CD8+ T cell responses via the CD11b+Gr-1+ myeloid subpopulations in murine bone marrow (BM). PLGA NPs containing ovalbumin (OVA) were fabricated by the double-emulsion method. The CD11b+Gr-1lowLy-6Chigh and CD11b+Gr-1highLy-6Clow subsets from mice bone marrow were sorted and treated with the PLGA/OVA NPs, followed by co-culture with the carboxyfluorescein succinimidyl ester (CFSE)-labelled OT-I CD8+ cells. Co-culture of OT-I CD8+ T cells with PLGA/OVA NPs-primed CD11b+Gr-1+ subsets upregulated the expression of IL-2, TNF-α, INF-γ, granzyme B, and perforin, resulting in proliferation of CD8+ T cells and differentiation into effector cytotoxic T lymphocytes (CTLs). In vivo proliferation of CFSE-labelled OT-I CD8+ cells in response to OVA was also obtained in the animals immunized with PLGA/OVA NPs. The results presented in this study demonstrate the ability of polymeric NPs to recruit two CD11b+Gr-1+ myeloid subsets for effective presentation of exogenous antigen to OT-I CD8+ T cells in the context of major histocompatibility complex (MHC) class I, leading to an induction of antigen-specific cell proliferation and differentiation into effector cells.

  16. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay

    NASA Astrophysics Data System (ADS)

    Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang

    2013-03-01

    A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.

  17. T Cell Responses Induced by Adenoviral Vectored Vaccines Can Be Adjuvanted by Fusion of Antigen to the Oligomerization Domain of C4b-Binding Protein

    PubMed Central

    Forbes, Emily K.; de Cassan, Simone C.; Llewellyn, David; Biswas, Sumi; Goodman, Anna L.; Cottingham, Matthew G.; Long, Carole A.; Pleass, Richard J.; Hill, Adrian V. S.; Hill, Fergal; Draper, Simon J.

    2012-01-01

    Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell “molecular adjuvant” when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4+ and CD8+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP142) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation. PMID:22984589

  18. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs.

    PubMed

    Li, Yu-An; Ji, Zhenying; Wang, Xiaobo; Wang, Shifeng; Shi, Huoying

    2017-12-21

    Streptococcus suis is one of the major pathogens that cause economic losses in the swine industry worldwide. However, current bacterins only provide limited prophylactic protection in the field. An ideal vaccine against S. suis should protect pigs against the clinical diseases caused by multiple serotypes, or at least protect against the dominant serotype in a given geographic region. A new recombinant Salmonella enterica serotype Choleraesuis vaccine vector, rSC0011, that is based on the regulated delayed attenuation system and regulated delayed antigen synthesis system, was developed recently. In this study, an improved recombinant attenuated Salmonella Choleraesuis vector, rSC0016, was developed by incorporating a sopB mutation to ensure adequate safety and maximal immunogenicity. In the spleens of mice, rSC0016 colonized less than rSC0011. rSC0016 and rSC0011 colonized similarly in Peyer's patches of mice. The recombinant vaccine rSC0016(pS-SaoA) induced stronger cellular, humoral, and mucosal immune responses in mice and swine against SaoA, a conserved surface protein that is present in many S. suis serotypes, than did rSC0011(pS-SaoA) without sopB or rSC0018(pS-SaoA), which is an avirulent, chemically attenuated vaccine strain. rSC0016(pS-SaoA) provided 100% protection against S. suis serotype 2 in mice and pigs, and full cross-protection against SS7 in pigs. This new vaccine vector provides a foundation for the development of a universal vaccine against multiple serotypes of S. suis in pigs.

  19. B cell function in the immune response to helminths

    PubMed Central

    Harris, Nicola

    2010-01-01

    Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556

  20. Cellular immune responses in patients with hepatitis B surface antigen seroclearance induced by antiviral therapy

    PubMed Central

    2011-01-01

    Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg) seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg) and envelope (rHBsAg) proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS) assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P < 0.001) and S peptide pool (P = 0.001) respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033) and CD8+ (P = 0.040) T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects. PMID:21320337

  1. EFFECT OF PROFLAVINE ON THE SYNTHESIS OF ADENOVIRUS, TYPE 5, AND ASSOCIATED SOLUBLE ANTIGENS

    PubMed Central

    Wilcox, Wesley C.; Ginsberg, Harold S.

    1962-01-01

    Wilcox, Wesley C. (University of Pennsylvania, Philadelphia) and Harold S. Ginsberg. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble antigens. J. Bacteriol. 84:526–533. 1962.—The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine, an acridine dye. In comparison, the processes leading to the production of soluble complement-fixing antigens and toxin were less sensitive to the action of this chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis of soluble antigens began prior to the first appearance of newly synthesized virus. This observation is compatible with the hypothesis that the soluble antigens may represent virus subunits or precursor materials. In addition, these data indicate that it is possible to interrupt the latter stages of the virus synthetic process by addition of proflavine late in the eclipse period. PMID:14000661

  2. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  3. [HL-A antigen distribution in duodenal ulcer patients].

    PubMed

    Ilieva, P; Minev, M; Etŭrska, M

    1980-01-01

    The incidence of HLA-antigens was studied in 405 patients with clinically, roentgenologically and gastroscopically confirmed ulcer of duodenum and in 1085 controls, healthy subjects. Increased incidence of both antigens from locus B was established among the patients: HLA-B17 and HLA-BW21. A reduction of HLA-A3 incidence was found from the antigens of locus A. In the determination of incidence of HLA antigenes, depending on blood grouping ABO both of patients and healthy subjects, it was established that antigen HLA-A3 is less frequent in the patients with blood group B, whereas antigen HLA-B12 is found more often among the patients with blood group A.

  4. Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.

    PubMed

    Galassie, Allison C; Goll, Johannes B; Samir, Parimal; Jensen, Travis L; Hoek, Kristen L; Howard, Leigh M; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Hill, Heather; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2017-06-01

    Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oral delivery of microparticles containing plasmid DNA encoding hepatitis-B surface antigen.

    PubMed

    Bhowmik, Tuhin; D'Souza, Bernadette; Uddin, Mohammad N; D'Souza, Martin J

    2012-05-01

    The role of albumin-based chitosan microparticles on enhancing immune response of plasmid DNA (pDNA) to hepatitis-B surface antigen (HBsAg) vaccine after oral administration was investigated in mice. The pDNA encoding HBsAg was entrapped in albumin microparticles using a one-step spray drying technique optimized in our laboratory. The encapsulated particles were also characterized in vitro for their shape, size, encapsulation efficiency, content, and stability. Albumin microparticles could protect the DNA from nuclease degradation as confirmed in our agarose gel study. Further immune modulating effect was studied in our formulation by measuring IgG antibodies in serum as well as IgA antibodies in fecal extracts. The mice were immunized with a prime dose of 100 μg of pDNA in microparticle formulations with and without interleukins biweekly until week 7 followed by a booster dose of equivalent strength on week 33 to compare the response with the subcutaneous group. The oral immunization with the pDNA to HBsAg microparticles gave significantly higher titer level of both sIgA and IgG at week 9 and 34, respectively, in oral vaccine with interleukins group when compared with the subcutaneous group. Thus, we observed an augmentation of both humoral and cellular immune responses for prolonged periods after immunization.

  6. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  7. Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens

    DTIC Science & Technology

    2005-07-01

    AD Award Number: W81XWH-04-1-0668 TITLE: Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens PRINCIPAL INVESTIGATOR: Richard T...AND SUBTITLE 5a. CONTRACT NUMBER Can Reproductive Hormones Modulate Host Immunity to Breast Cancer Antigens 5b. GRANT NUMBER W81XWH-04-!1-0668 5c...neu-N mice can be readily applied to clinical trial development. The goal of the present work is to test the hypothesis that reproductive hormones can

  8. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.

    PubMed

    Nilo, Alberto; Morelli, Laura; Passalacqua, Irene; Brogioni, Barbara; Allan, Martin; Carboni, Filippo; Pezzicoli, Alfredo; Zerbini, Francesca; Maione, Domenico; Fabbrini, Monica; Romano, Maria Rosaria; Hu, Qi-Ying; Margarit, Immaculada; Berti, Francesco; Adamo, Roberto

    2015-07-17

    Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design

  9. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  10. Studies on the protective efficacy of freeze thawed promastigote antigen of Leishmania donovani along with various adjuvants against visceral leishmaniasis infection in mice.

    PubMed

    Thakur, Ankita; Kaur, Harpreet; Kaur, Sukhbir

    2015-09-01

    Visceral leishmaniasis (VL) caused by Leishmania donovani persists as a major public health issue in tropical and subtropical areas of the world. Current treatment of this disease relies on use of drugs. It is doubtful that chemotherapy can alone eradicate the disease, so there is a need for an effective vaccine. Killed antigen candidates remain a good prospect considering their ease of formulation, stability, low cost and safety. To enhance the efficacy of killed vaccines suitable adjuvant and delivery system are needed. Therefore, the current study was conducted to determine the protective efficacy of freeze-thawed L. donovani antigen in combination with different adjuvants against experimental infection of VL. For this, BALB/c mice were immunized thrice at an interval of two weeks. Challenge infection was given two weeks after last immunization. Mice were sacrificed after last immunization and on different post challenge/infection days. Immunized mice showed significant reduction in parasite burden, enhanced DTH responses with increased levels of Th1 cytokines and lower levels of Th2 cytokines, thus indicating the development of a protective Th1 response. Maximum protection was achieved with liposome encapsulated freeze thawed promastigote (FTP) antigen of L. donovani and it was followed by group immunized with FTP+MPL-A, FTP+saponin, FTP+alum and FTP antigen (alone). The present study highlights greater efficacy of freeze thawed promastigote antigen as a potential vaccine candidate along with effective adjuvant formulations against experimental VL infection. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Vaccination of sheep against haemonchosis with H11, a gut membrane-derived protective antigen from the adult parasite: prevention of the periparturient rise and colostral transfer of protective immunity.

    PubMed

    Andrews, S J; Hole, N J; Munn, E A; Rolph, T P

    1995-07-01

    Pregnant ewes were immunised with a fraction highly enriched in the membrane glycoprotein antigen H11, isolated from the intestinal brush border of adult Haemonchus contortus. Immunity induced by immunisation was able to abolish almost completely (98-99%) the worm egg output from pregnant ewes challenged with ca. 10,000 infective larvae of H. contortus during the last trimester. Furthermore, lambs born and reared on vaccinated ewes had substantial antibody levels to H11 derived from maternal transfer. This antibody conferred moderate protection against a bolus challenge of ca. 3000 infective larvae of H. contortus in 5-week-old lambs.

  12. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, W.J.; Hellqvist, L.; Basten, A.

    1985-12-01

    Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bandsmore » of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.« less

  13. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  14. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  15. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  16. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  17. Reversible synthesis of colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances induction of cross-immune responses and provides protection against heterologous Salmonella challenge.

    PubMed

    Li, Pei; Liu, Qing; Huang, Chun; Zhao, Xinxin; Roland, Kenneth L; Kong, Qingke

    2017-05-15

    Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A and B antigen levels acquired by group O donor-derived erythrocytes following ABO-non-identical transfusion or minor ABO-incompatible haematopoietic stem cell transplantation.

    PubMed

    Hult, A K; Dykes, J H; Storry, J R; Olsson, M L

    2017-06-01

    ABO-incompatible haematopoietic stem cell transplantation (HSCT) presents a challenge to blood component transfusion. The aim of this study was to investigate the weak blood group A or B antigen expression by donor-derived group O red blood cells (RBC) observed following transfusion or minor ABO-incompatible HSCT. In addition, in vitro experiments were performed to elucidate possible mechanisms underlying this phenomenon. A sensitive flow cytometry assay for the semi-quantification of RBC A/B antigen levels was used to assess patient samples and evaluate in vitro experiments. Analysis of blood samples from patients, originally typed as A, B and AB but recently transplanted or transfused with cells from group O donors, revealed the A antigen expression on donor-derived RBC, ranging from very low levels in non-secretor individuals to almost subgroup A x -like profiles in group A secretors. The B antigen expression was less readily detectable. In vitro experiments, in which group O donor RBC were incubated with (i) group A/B secretor/non-secretor donor plasma or (ii) group A/B donor RBC in the absence of plasma, supported the proposed adsorption of A/B antigen-bearing glycolipids from secretor plasma but also indicated a secretor-independent mechanism for A/B antigen acquisition as well as direct cell-to-cell transfer of ABO antigens. The in vivo conversion of donor-derived blood group O RBC to ABO subgroup-like RBC after transfusion or minor ABO-incompatible HSCT raises the question of appropriate component selection. Based on these data, AB plasma should be transfused following ABO-incompatible HSCT. © 2017 British Blood Transfusion Society.

  19. Identification of a major 50-kDa molecular weight human B-cell growth factor with Tac antigen-inducing activity on B cells.

    PubMed

    Kawano, M; Matsushima, K; Oppenheim, J J

    1987-08-01

    A bioassay was developed using human small B cells adherent to anti-human IgM (anti-mu)-coated wells. These B cells were stimulated to proliferate by culture supernatants of concanavalin A (Con A)-activated human peripheral blood lymphocytes (Con A Sup) even in the presence of high concentrations of anti-mu coated on assay wells. Human B-cell growth factor (BCGF) activities were partially purified from Con A Sup. Preparative chromatography (Sephacryl S-200 and isoelectrofocusing) yielded a major peak of BCGF activity for B cells adherent to anti-mu-coated wells with a molecular weight of 50,000 (50 kDa) and a pI 7.6. The 50-kDa BCGF was further purified by sequential chromatography using DEAE-Sephacel, CM-Sepharose, Sephacryl S-200, CM-high performance liquid chromatography (HPLC), and hydroxyapatite (HA)-HPLC. The HA-HPLC-purified 50-kDa BCGF was free of interleukin-1 (IL-1), interleukin-2 (IL-2), and interferon activities, but could support growth of BCL1 cells, similar to BCGF-II. Neither IL-1 nor interferon-gamma had any growth-stimulating effect in our B-cell proliferation assay with or without BCGF in Iscove's synthetic assay medium. BCGF-induced proliferation of B cells adherent to anti-mu-coated wells could be markedly augmented by the simultaneous or sequential addition of recombinant human IL-2 (rIL-2). When cultured for 3 days with 50-kDa BCGF, about 40% of B cells adherent to anti-mu-coated wells expressed Tac antigen, and monoclonal anti-Tac antibody inhibited rIL-2 enhancement of proliferation of 50-kDa BCGF-preactivated B cells. In addition, 50-kDa BCGF could induce Tac antigen on an Epstein-Barr virus-transformed B-cell line (ORSON) in the presence of a suboptimal dose of phorbol myristate acetate (PMA) and also on a natural killer-like cell line (YT cells). We have therefore identified a major 50-kDa BCGF activity with Tac antigen-inducing activity that also has a synergistic effect with IL-2 on normal B-cell proliferation.

  20. [Uveitis in spondyloarthritis patients and its association with HLA-B27 histocompatibility antigen: prospective study].

    PubMed

    Razumova, I Yu; Godzenko, A A; Vorob'eva, O K; Guseva, I A

    2016-01-01

    to perform a prospective study of clinical presentation and course of uveitis in spondyloarthritis (SpA) patients as well as its association with the HLA-B27 histocompatibility antigen. The study included 219 patients with uveitis, all tested for HLA-B27 antigen and various infections (viral, bacterial, and parasitic) as well as examined for locomotive system involvement. The presence of the HLA-B27 antigen was determined in 142 (64.8%) out of 219 patients, of them 87 were diagnosed with an entity of the SpA group. The remaining 77 (35.2%) patients appeared to be HLA-B27-negative, but 13 were still diagnosed with an entity of the SpA group. There were 10 (4.6%) patients with 2 or more diseases from the SpA group («clinical decussation»). When comparing the two groups of HLA-B27-positive and negative patients having both SpA and uveitis, no statistically significant difference was found as to the age of onset, site, frequency of attacks, and uni- or bilateral involvement (p>0.05). We also performed a comparison of HLA-B27-positive and negative patients with no account to their SpA status and revealed a higher complication rate in those that were «negative» (p<0.0001), which can be explained by the fact that HLA-B27-negative patients often have autoimmune or infectious uveitis of different origin notable for long attacks and short remissions. Assessing the site and course of uveitis as well as HLA-B27 testing of uveitis patients has proved important for etiological diagnosis. Diseases of the SpA group have been shown to be 6.7 times more common in HLA-B27-positive patients as compared to HLA-B27-negative ones. Clinical presentation of uveitis in the presence of SpA in both HLA-B27-positive and negative patients resembles that of idiopathic uveitis - an independent HLA-B27-associated syndrome (р>0.05). Cases of «decussation» between entities of the SpA group are usually more severe in terms of clinical presentation and course of uveitis and are associated with

  1. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis

    PubMed Central

    Golomidova, Alla K.; Kulikov, Eugene E.; Prokhorov, Nikolai S.; Guerrero-Ferreira, Ricardo С.; Knirel, Yuriy A.; Kostryukova, Elena S.; Tarasyan, Karina K.; Letarov, Andrey V.

    2016-01-01

    The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages. PMID:26805872

  2. Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa

    PubMed Central

    Sutherland, Jayne S.; Lalor, Maeve K.; Black, Gillian F.; Ambrose, Lyn R.; Loxton, Andre G.; Chegou, Novel N.; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Mayanja-Kizza, Harriet; Gomez, Marie P.; Donkor, Simon; Franken, Kees; Hanekom, Willem; Klein, Michel R.; Parida, Shreemanta K.; Boom, W. Henry; Thiel, Bonnie A.; Crampin, Amelia C.; Ota, Martin; Walzl, Gerhard; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Kaufmann, Stefan H. E.

    2013-01-01

    Background Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. Methods We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. Results There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST- and TST+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST+ contacts (LTBI) compared to TB and TST- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Conclusions Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may

  3. Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    PubMed

    Sutherland, Jayne S; Lalor, Maeve K; Black, Gillian F; Ambrose, Lyn R; Loxton, Andre G; Chegou, Novel N; Kassa, Desta; Mihret, Adane; Howe, Rawleigh; Mayanja-Kizza, Harriet; Gomez, Marie P; Donkor, Simon; Franken, Kees; Hanekom, Willem; Klein, Michel R; Parida, Shreemanta K; Boom, W Henry; Thiel, Bonnie A; Crampin, Amelia C; Ota, Martin; Walzl, Gerhard; Ottenhoff, Tom H M; Dockrell, Hazel M; Kaufmann, Stefan H E

    2013-01-01

    Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy

  4. Identification and characterization of a novel protective antigen, Enolase of Streptococcus suis serotype 2.

    PubMed

    Zhang, Anding; Chen, Bo; Mu, Xiaofeng; Li, Ran; Zheng, Pei; Zhao, Yaxin; Chen, Huanchun; Jin, Meilin

    2009-02-25

    Streptococcus suis serotype 2 (SS2) is a porcine and human pathogen with adhesive and invasive properties. The absence of suitable vaccine or virulent marker can be the bottleneck to control SS2 infection. In the present study, a novel immunogenic Enolase identified in the previous study was inducibly overexpressed in Escherichia coli, and the purified recombinant protein could elicit a significant humoral antibody response and confer efficient immunity against challenge with lethal dose of SS2 or SS7 infection in mouse model. The roles Enolase plays in pathogenicity of SS2 were also explored as reasons for which Enolase could be a protective antigen. The Enolase was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the indirect immunofluorescent assay and the inhibition assay. These suggested that Enolase could play important roles in pathogenicity and may serve as a novel vaccine candidate against SS2 infection.

  5. A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen

    NASA Astrophysics Data System (ADS)

    Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.

    2015-10-01

    Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor

  6. Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients

    PubMed Central

    Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario

    2013-01-01

    Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned

  7. Memory T cells maintain protracted protection against malaria.

    PubMed

    Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander

    2014-10-01

    Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.

  8. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route.

    PubMed

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid

    2012-01-01

    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  9. Effect of delayed anthrax vaccine dose on Bacillus anthracis protective antigen IgG response and lethal toxin neutralization activity.

    PubMed

    Pittman, Phillip R; Fisher, Diana; Quinn, Xiaofei; Schmader, Trevor; Barrera-Oro, Julio G

    2013-10-17

    We describe the Bacillus anthracis protective antigen IgG antibody response and the B. anthracis lethal toxin neutralization activity to a delayed dose of anthrax vaccine adsorbed (AVA, BioThrax(®)) using validated assays. 373 individuals received 1, 2, or 3 priming doses, 18-24 months afterward, they received a delayed dose of AVA. Overall, 23.6% of subjects showed detectable anti-PA IgG before the boost, compared to 99.2% (P<0.0001) 28 days after the boost. Geometric mean anti-PA IgG concentration (GMC) was 1.66 μg/mL before and 887.82 μg/mL after the boost (P<0.0001). The proportion of individuals with four-fold increase in GMC following the boost ranged from 93.8% to 100%. Robust anti-PA IgG levels and B. anthracis lethal toxin neutralization activity are induced when an AVA dose is delayed as long as two years. These data support continuing with the vaccination schedule when a dose is delayed as long as two years rather than restarting the series. Published by Elsevier Ltd.

  10. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    PubMed

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  11. Translation and assembly of HLA-DR antigens in Xenopus oocytes injected with mRNA from a human B-cell line.

    PubMed Central

    Long, E O; Gross, N; Wake, C T; Mach, J P; Carrel, S; Accolla, R; Mach, B

    1982-01-01

    HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6821356

  12. Control of SIV infection and subsequent induction of pandemic H1N1 immunity in rhesus macaques using an Ad5 [E1-, E2b-] vector platform.

    PubMed

    Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R

    2012-11-26

    Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (P<0.02; log-rank Mantel-Cox test). There was no correlation of protective MHC contributing to infection control. The RM without detectable circulating SIV, now hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A Three-Dose Intramuscular Injection Schedule of Anthrax Vaccine Adsorbed Generates Sustained Humoral and Cellular Immune Responses to Protective Antigen and Provides Long-Term Protection against Inhalation Anthrax in Rhesus Macaques

    PubMed Central

    Sabourin, Carol L.; Niemuth, Nancy A.; Li, Han; Semenova, Vera A.; Rudge, Thomas L.; Mayfield, Heather J.; Schiffer, Jarad; Mittler, Robert S.; Ibegbu, Chris C.; Wrammert, Jens; Ahmed, Rafi; Brys, April M.; Hunt, Robert E.; Levesque, Denyse; Estep, James E.; Barnewall, Roy E.; Robinson, David M.; Plikaytis, Brian D.; Marano, Nina

    2012-01-01

    A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r2 = 0.89 for log10-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4+ cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses. PMID:22933399

  14. A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques.

    PubMed

    Quinn, Conrad P; Sabourin, Carol L; Niemuth, Nancy A; Li, Han; Semenova, Vera A; Rudge, Thomas L; Mayfield, Heather J; Schiffer, Jarad; Mittler, Robert S; Ibegbu, Chris C; Wrammert, Jens; Ahmed, Rafi; Brys, April M; Hunt, Robert E; Levesque, Denyse; Estep, James E; Barnewall, Roy E; Robinson, David M; Plikaytis, Brian D; Marano, Nina

    2012-11-01

    A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r(2) = 0.89 for log(10)-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4(+) cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.

  15. Differential tissue-specific function of the Adora2b in cardio-protection

    PubMed Central

    Seo, Seong-wook; Koeppen, Michael; Bonney, Stephanie; Gobel, Merit; Thayer, Molly; Harter, Patrick N.; Ravid, Katya; Eltzschig, Holger K.; Mittelbronn, Michel; Walker, Lori; Eckle, Tobias

    2015-01-01

    The adenosine A2b-receptor (Adora2b) has been implicated in cardio-protection from myocardial ischemia. As such the Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia reperfusion (IR) injury of the heart. While the Adora2b is present on various cells types, the tissue specific role of the Adora2b in cardio-protection is still unknown. To study the tissue specific role of Adora2b signaling on inflammatory cells, endothelia or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre+, VE-Cadherin-Cre+ or Myosin-Cre+ transgenic mice, respectively. Mice were exposed to 60 minutes of myocardial ischemia with or without IP (4×5min) followed by 120 minutes of reperfusion. Cardio-protection by IP was abolished in Adora2bf/f-VE-Cadherin-Cre+ or Adora2bf/f-Myosin-Cre+, indicating that Adora2bs signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardio-protection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2bf/f-Lyz2-Cre+ mice only. Cytokine profiling of IR injury in Adora2bf/f-Lyz2-Cre+ mice pointed towards PMNs. Analysis of PMNs from Adora2bf/f-Lyz2-Cre+ confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Ador2b−/− PMNs revealed a critical role of the Adorab2 on PMNs in cardio-protection from IR-injury. Adora2b signaling mediates different types of cardio-protection in a tissue specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia. PMID:26136425

  16. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    PubMed Central

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  17. Inhibitory effects of thymus-independent type 2 antigens on MHC class II-restricted antigen presentation: comparative analysis of carbohydrate structures and the antigen presenting cell.

    PubMed

    González-Fernández, M; Carrasco-Marín, E; Alvarez-Domínguez, C; Outschoorn, I M; Leyva-Cobián, F

    1997-02-25

    The role of thymus-independent type 2 (TI-2) antigens (polysaccharides) on the MHC-II-restricted processing of protein antigens was studied in vitro. In general, antigen presentation is inhibited when both peritoneal and splenic macrophages (M phi) as well as Küpffer cells (KC) are preincubated with acidic polysaccharides or branched dextrans. However, the inhibitory effect of neutral polysaccharides was minimal when KC were used as antigen presenting cells (APC). Morphological evaluation of the uptake of fluoresceinated polysaccharides clearly correlates with this selective and differential interference. Polysaccharides do not block MHC-I-restricted antigen presentation. Some chemical characteristics shared by different saccharides seem to be specially related to their potential inhibitory abilities: (i) those where two anomeric carbon atoms of two interlinked sugars and (ii) those containing several sulfate groups per disaccharide repeating unit. No polysaccharide being inhibitory in M phi abrogated antigen processing in other APC: lipopolysaccharide-activated B cells, B lymphoma cells, or dendritic cells (DC). Using radiolabeled polysaccharides it was observed that DC and B cells incorporated less radioactivity as a function of time than M phi. Morphological evaluation of these different APC incubated for extended periods of time with inhibitory concentrations of polysaccharides revealed intense cytoplasmic vacuolization in M phi but not in B cells or DC. The large majority of M phi lysosomes containing polysaccharides fail to fuse with incoming endocytic vesicles and delivery of fluid-phase tracers was reduced, suggesting that indigestible carbohydrates reduced the fusion of these loaded lysosomes with endosomes containing recently internalized tracers. It is suggested that the main causes of this antigen presentation blockade are (i) the chemical characteristics of certain carbohydrates and whether the specific enzymatic machinery for their intracellular

  18. Antitoxic Cholera Immunity in Mice: Influence of Antigen Deposition on Antitoxin-Containing Cells and Protective Immunity in Different Parts of the Intestine

    PubMed Central

    Lange, Stefan; Nygren, Håkan; Svennerholm, Ann-Mari; Holmgren, Jan

    1980-01-01

    The importance of the mode of antigen presentation (intravenous, oral, or enteral restricted to the lower ileum) in the development of a local immune response and immunological memory for such a response in different parts of the intestine was studied in mice. Cholera toxin was used as antigen and the immune response was assayed by determining both the number of specific antitoxin-containing cells in the lamina propria and protection against experimental cholera. The results showed that all of these routes of antigen presentation could induce significant memory along the entire small intestine. In contrast, the actual production of antitoxin-containing cells or protective immune response elicited by booster immunization was restricted to those parts of the intestine that were directly exposed to antigen; i.e., lower ileum boosting resulted in immunity in the distal ileum but not in the proximal jejunum, whereas oral or intravenous boosting gave a response in both jejunum and ileum. Protection correlated closely with the number of antitoxin-containing cells in the lamina propria (correlation coefficient, 0.88); ≥4,000 antitoxin-containing cells per mm3 conferred solid immunity to cholera toxin-induced diarrhea. The total number of immunoglobulin-containing cells in intestines was not significantly influenced by the specific immunizations. There were four times as many of these cells in the upper jejunum (167,000 cells per mm3) as in the lower ileum, but the proportions of immunoglobulin A-containing cells (80 to 85%), immunoglobulin M-containing cells (14 to 20%), and immunoglobulin G-containing cells (0.4 to 0.9%) were similar in various parts of the intestine. The results indicate a differential dependence on local tissue antigen for the intestinal antibody-secreting cells and their memory cell precursors. PMID:7189747

  19. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    PubMed

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  20. Serum decoy receptor 3 is a useful predictor for the active status of chronic hepatitis B in hepatitis B e antigen-negative patients.

    PubMed

    Hou, Yanqiang; Xu, Ping; Lou, Xiaoli; Liang, Dongyu; Zhang, Mei; Zhang, Zhenhuan; Zhang, Lurong

    2013-08-01

    Hepatitis B virus (HBV) infection is a global public health problem, because patients with chronic hepatitis B (CHB) may progress to liver cirrhosis and eventually evolve into hepatocellular carcinoma. Decoy receptor 3 (DcR3) is a soluble receptor of the tumor necrosis factor receptor superfamily, and has been implicated in anti-apoptotic and anti-inflammatory pathways. In this study, we explored the clinical value of serum DcR3 in predicting the active status of CHB in hepatitis B e antigen-negative patients (active HBeAg (-) CHB), which was determined with ELISA. The serum level of DcR3 in active HBeAg (-) CHB patients (1.92 ± 0.68 ng/ml) was higher than that in healthy controls (0.80 ± 0.25 ng/ml, p < 0.0001) and that in inactive status of HBeAg (-) CHB (inactive hepatitis B surface antigen carrier, HBsAg-IaC) patients (0.95 ± 0.26 ng/ml, p < 0.0001). DcR3 level was correlated with HBV DNA level (r = 0.819, p < 0.0001) and alanine transaminase level (ALT, r = 0.704, p < 0.0001) in active HBeAg (-) CHB patients. The area under the Receiver Operating Characteristics curve of DcR3 for detecting the active status of HBeAg (-) CHB patients was 0.914 (95% confidence interval, 0.851-0.977). The optimal cut-off value for DcR3 to predict active HBeAg (-) CHB was 1.22 ng/ml, which had a sensitivity of 87.5% and a specificity of 84.4%. These results suggest that serum DcR3 level may be useful for detecting HBeAg (-) CHB in the active stage, which requires medical treatment.

  1. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  2. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7.

    PubMed

    Martorelli, Luisina; Garbaccio, Sergio; Vilte, Daniel A; Albanese, Adriana A; Mejías, María P; Palermo, Marina S; Mercado, Elsa C; Ibarra, Cristina E; Cataldi, Angel A

    2017-01-01

    Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.

  3. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7

    PubMed Central

    Martorelli, Luisina; Garbaccio, Sergio; Vilte, Daniel A.; Albanese, Adriana A.; Mejías, María P.; Palermo, Marina S.; Mercado, Elsa C.; Ibarra, Cristina E.; Cataldi, Angel A.

    2017-01-01

    Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo. PMID:28046078

  4. Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation.

    PubMed

    Cerqueira, Sofia A; Tan, Min; Li, Shijun; Juillard, Franceline; McVey, Colin E; Kaye, Kenneth M; Simas, J Pedro

    2016-09-01

    Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on

  5. A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT).

    PubMed

    Chikwamba, Rachel; Cunnick, Joan; Hathaway, Diane; McMurray, Jennifer; Mason, Hugh; Wang, Kan

    2002-10-01

    We have produced a functional heat labile enterotoxin (LT-) B subunit of Escherichia coli in maize. LT-B is a multimeric protein that presents an ideal model for an edible vaccine, displaying stability in the gut and inducing mucosal and systemic immune responses. Transgenic maize was engineered to synthesize the LT-B polypeptides, which assembled into oligomeric structures with affinity for G(M1) gangliosides. We orally immunized BALB/c mice by feeding transgenic maize meal expressing LT-B or non-transgenic maize meal spiked with bacterial LT-B. Both treatments stimulated elevated IgA and IgG antibodies against LT-B and the closely related cholera toxin B subunit (CT-B) in serum, and elevated IgA in fecal pellets. The transgenic maize induced a higher anti-LT-B and anti-CT-B mucosal and serum IgA response compared to the equivalent amount of bacterial LT-B spiked into maize. Following challenge by oral administration of the diarrhea inducing toxins LT and CT, transgenic maize-fed mice displayed reduced fluid accumulation in the gut compared to non-immunized mice. Moreover, the gut to carcass ratio of immunized mice was not significantly different from the PBS (non-toxin) challenged control group. We concluded that maize-synthesized LT-B had features of the native bacterial LT-B such as molecular weight, G(M1) binding ability, and induction of serum and mucosal immunity. We have demonstrated that maize, a major food and feed ingredient, can be efficiently transformed to produce, accumulate, and store a fully assembled and functional candidate vaccine antigen.

  6. Incidental Detection of Type B2 Thymoma on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT Imaging.

    PubMed

    Krishnaraju, Venkata Subramanian; Basher, Rajender Kumar; Singh, Harmandeep; Singh, Shrawan Kumar; Bal, Amanjit; Mittal, Bhagwant Rai

    2018-05-01

    Ga-labeled prostate-specific membrane antigen is a novel radiotracer for imaging of prostate cancer. We report a hormonally treated patient with prostate carcinoma, presenting with lower urinary tract symptoms and rising prostate-specific antigen levels, who underwent Ga-labeled prostate-specific membrane antigen PET/CT for suspected recurrence. No tracer avid lesion was noted in the prostate gland and locoregional area. However, intense tracer avid heterogeneously enhancing soft tissue lesion with cystic areas and coarse calcifications was seen in the anterior mediastinum. PET/CT-guided biopsy from the mediastenal lesion revealed type B2 thymoma.

  7. Suppression of antigen-specific antibody responses in mice ...

    EPA Pesticide Factsheets

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARa)-dependent and if suppression is associated with specific targeting of T- or B-cells, three separate experiments were conducted: (1) female PPARa constitutive knockout (PPARa KO; B6.129S4-Ppar(tm1Gonz)N12) and wild-type controls (WT; C57BL/6-Tac) exposed to 0, 7.5, or 30 mg PFOA/kg for 15 days were immunized on Day 11 with a T-cell-dependent antigen and sera then collected for measures of antigen-specific lgM titers (TDAR) 5 days later; (2) female C57BL/6N WT mice exposed to 0, 0.94, 1.88, 3.75, or 7.5mg PFOA/kg for 15 days were immunized with a T-cell-independent antigen on Day 11 and sera were then collected foranalyses of antigen-specific lgM titers (TIAR) 7 days later; and (3) splenic lymphocyte phenotypes were assessed in unimmunized female C57BL/6N WT mice exposed to 0, 3.75, or 7.5 mg PFOA/kg for 10 days to investigate effects of PFOA in the absence of specific immunization. Separate groups of mice were immunized with a T-cell-dependent antigen after 11 days of exposure and splenic lymphocyte sub-populations were assessed after 13 or 15 days of exposure to assess numbers of stimulated cells. The results indicated that exposure to ≥1.88mg PFOA/kg suppressed the TIAR; exposure to 30 mg PFOA/k

  8. A Bivalent Typhoid Live Vector Vaccine Expressing both Chromosome- and Plasmid-Encoded Yersinia pestis Antigens Fully Protects against Murine Lethal Pulmonary Plague Infection

    PubMed Central

    Wang, Jin Yuan; Carrasco, Jose A.; Lloyd, Scott A.; Mellado-Sanchez, Gabriela; Diaz-McNair, Jovita; Franco, Olga; Buskirk, Amanda D.; Nataro, James P.; Pasetti, Marcela F.

    2014-01-01

    Live attenuated bacteria hold great promise as multivalent mucosal vaccines against a variety of pathogens. A major challenge of this approach has been the successful delivery of sufficient amounts of vaccine antigens to adequately prime the immune system without overattenuating the live vaccine. Here we used a live attenuated Salmonella enterica serovar Typhi strain to create a bivalent mucosal plague vaccine that produces both the protective F1 capsular antigen of Yersinia pestis and the LcrV protein required for secretion of virulence effector proteins. To reduce the metabolic burden associated with the coexpression of F1 and LcrV within the live vector, we balanced expression of both antigens by combining plasmid-based expression of F1 with chromosomal expression of LcrV from three independent loci. The immunogenicity and protective efficacy of this novel vaccine were assessed in mice by using a heterologous prime-boost immunization strategy and compared to those of a conventional strain in which F1 and LcrV were expressed from a single low-copy-number plasmid. The serum antibody responses to lipopolysaccharide (LPS) induced by the optimized bivalent vaccine were indistinguishable from those elicited by the parent strain, suggesting an adequate immunogenic capacity maintained through preservation of bacterial fitness; in contrast, LPS titers were 10-fold lower in mice immunized with the conventional vaccine strain. Importantly, mice receiving the optimized bivalent vaccine were fully protected against lethal pulmonary challenge. These results demonstrate the feasibility of distributing foreign antigen expression across both chromosomal and plasmid locations within a single vaccine organism for induction of protective immunity. PMID:25332120

  9. The diversity of the secondary Salmonella typhimurium-specific B cell repertoire.

    PubMed

    Metcalf, E S; Gaffney, M; Duran, L W

    1987-05-15

    This report describes the first analysis of the expressed B cell repertoire specific for a bacterium. In this study, responses to an acetone-killed and dried preparation of Salmonella typhimurium strain TML (AKD-TML) are described. The results show that AKD-TML can stimulate splenic B cells from primed CBA/Ca mice over a wide dose range. The average frequency of secondary TML-specific B cells is 16.4 per 10(5) splenic B cells. This frequency is similar to that observed for another complex, natural antigen, the hemagglutinin of influenza virus. The majority of all secondary TML-specific B cells (greater than 70%) secrete immunoglobulin M, but most of these clones also secrete other isotypes of which immunoglobulins G2 and A are the most prevalent. Analysis of the specificity of secondary TML-specific B cells showed that the vast majority of these B cells were specific for the lipopolysaccharide (LPS) molecule. Moreover, fine specificity analysis demonstrated that approximately two-thirds of these anti-LPS-specific B cell clones are directed against the core polysaccharides or lipid A regions of the LPS molecule, while only about one-third are directed toward the O antigen region. Since anti-S. typhimurium serum antibodies are directed primarily against the O antigens, these studies suggest that the serum levels of antibodies to a given epitope on a bacterial antigen may not be a true reflection of the expressed B cell repertoire when analyzed at the single B cell level. These studies also suggest that the role of antibodies to lipid A molecules in the development of protective immunity to S. typhimurium be reevaluated.

  10. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yulan; Purohit, Sharad; Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b inmore » diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.« less

  11. Hepatitis B core-related antigen (HBcrAg) levels in the natural history of hepatitis B virus infection in a large European cohort predominantly infected with genotypes A and D.

    PubMed

    Maasoumy, B; Wiegand, S B; Jaroszewicz, J; Bremer, B; Lehmann, P; Deterding, K; Taranta, A; Manns, M P; Wedemeyer, H; Glebe, D; Cornberg, M

    2015-06-01

    Hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. HBcrAg combines the antigenic reactivity resulting from denatured hepatitis B e antigen (HBeAg), HBV core antigen and an artificial core-related protein (p22cr). In Asian patients, high levels of HBcrAg have been suggested to be an independent risk factor for hepatocellular carcinoma, while low levels could guide safe cessation of treatment with nucleos(t)ide analogues. We here studied HBcrAg levels in different phases of HBV infection in a large European cohort predominantly infected with genotypes A and D: HBeAg-positive immune tolerance (n = 30), HBeAg-positive immune clearance (IC) (n = 60), HBeAg-negative hepatitis (ENH) (n = 50), HBeAg-negative inactive/quiescent carrier phase (c) (n = 109) and acute hepatitis B (n = 8). Median HBcrAg levels were high in the immune tolerance and immune clearance phases (8.41 and 8.11 log U/mL, respectively), lower in ENH subjects (4.82 log U/mL) but only 2.00 log U/mL in ENQ subjects. Correlation between HBcrAg and HBV DNA varied among the different phases of HBV infection, while HBcrAg moderately correlated with hepatitis B surface antigen in all phases. ENQ patients had HBcrAg levels <3 log U/mL in 79%, in contrast to only 12% in the ENH group. HBcrAg levels vary significantly during the different phases of HBV infection. HBcrAg may serve as valuable marker for virus replication and reflect the transcriptional activity of intrahepatic cccDNA. In HBeAg-negative patients, HBcrAg may help to distinguish between inactive carriers (ENQ) and those with active disease (ENH). Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Seroconversion to filarial antigens in Australian defence force personnel in Timor-Leste.

    PubMed

    Frances, Stephen P; Baade, Lisa M; Kubofcik, Joseph; Nutman, Thomas B; Melrose, Wayne D; McCarthy, James S; Nissen, Michael D

    2008-04-01

    To investigate whether Australian soldiers were exposed to filarial parasites that cause lymphatic filariasis during a 6-month deployment to Timor-Leste, antifilarial antibody levels were measured in 907 soldiers using an enzyme linked immunosorbent assay (ELISA). Initial testing using Dirofilaria immitis antigen demonstrated that 49 of 907 (5.4%) soldiers developed antifilarial antibodies of the IgG1 subclass after deployment, whereas 1 of 944 (0.1%) seroconverted to the IgG4 subclass. When a sub sample of 88 D. immitis-reactive sera was subject to testing with an antifilarial antibody test using Brugia malayi antigen, 46 had elevated IgG antibodies, whereas 5 had elevated antibodies of the IgG4 subclass. A total of 24 soldiers seroconverted to B. malayi, as measured by parasite-specific IgG, whereas 1 seroconverted to IgG4. The relatively low number of seroconversions indicates a low but measurable risk of exposure to human filarial parasites among Australian soldiers deployed to Timor-Leste. However, to reduce the risk of exposure to these parasites, soldiers deploying to endemic areas should practice strict adherence to personal protective measures against mosquito bites.

  13. Muc5b is required for airway defence

    NASA Astrophysics Data System (ADS)

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Bowden, M. Gabriela; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; de La Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; Davis, C. William; Terrell, Kristy A.; Grubb, Barbara R.; O'Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b-/- mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  14. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

    PubMed

    Rajao, Daniela S; Anderson, Tavis K; Kitikoon, Pravina; Stratton, Jered; Lewis, Nicola S; Vincent, Amy L

    2018-05-01

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission. Published by Elsevier Inc.

  15. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity

    PubMed Central

    Rookhuizen, Derek C.; Joannas, Leonel; Carpier, Jean-Marie; Yatim, Nader; Albert, Matthew L.

    2017-01-01

    CD8+ T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called “cross-presentation.” Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum–phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8+ T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti–PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8+ T cell responses to dead cells and to induce effective antitumor immune responses during anti–PD-1 treatment in mice. PMID:28663435

  16. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  17. Novel Protective Antigens Expressed by Trypanosoma cruzi Amastigotes Provide Immunity to Mice Highly Susceptible to Chagas' Disease▿

    PubMed Central

    Silveira, Eduardo L. V.; Claser, Carla; Haolla, Filipe A. B.; Zanella, Luiz G.; Rodrigues, Mauricio M.

    2008-01-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease. PMID:18579696

  18. Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease.

    PubMed

    Silveira, Eduardo L V; Claser, Carla; Haolla, Filipe A B; Zanella, Luiz G; Rodrigues, Mauricio M

    2008-08-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.

  19. Micro-evolution of the hepatitis B virus genome in hepatitis B e-antigen-positive carriers: comparison of genotypes B and C at various immune stages.

    PubMed

    Liu, Chun-Jen; Chen, Ting-Chih; Chen, Pei-Jer; Wang, Hurng-Yi; Tseng, Tai-Chung; Cheng, Huei-Ru; Liu, Chen-Hua; Chen, Ding-Shinn; Kao, Jia-Horng

    2015-01-01

    Patients with hepatitis B virus (HBV) genotype B infection experience hepatitis B e-antigen (HBeAg) seroconversion at an earlier stage than do patients with genotype C infection. Therefore, this study investigated whether the differential phenotypes are related to HBV genomic evolution. Thirty-three HBeAg-positive patients with a mean follow-up of 3.1 years were enrolled: 16 at the immune tolerance stage (group I) and 17 at the immune clearance stage (group II). The evolution rates of paired viral genomes at enrollment and at the final follow-up in the full-length genome (μf), nonoverlapping regions (synonymous [μs] and nonsynonymous [μa]), and overlapping regions (μ) were calculated. The evolution rates were then compared according to serum alanine aminotransferase (ALT) levels and HBV genotype. The overall μf evolution rate was lower in group I than in group II (1.4 × 10(-5)  ± 3.3 × 10(-5) vs 1.2 × 10(-3)  ± 1.2 × 10(-3) nucleotide substitution/site/year, P < 0.001). We observed similar results for the μs, μa, and μ evolution rates. All evolution parameters were comparable between genotypes B and C. We determined a positive correlation between μa/y and the area under the average ALT time curve in genotype B (R(2)  = 0.6935, P < 0.0001), but not in genotype C (R(2)  = 0.1606, P = 0.124). The evolution rate of the HBV genome is higher at the immune clearance stage than at the immune tolerance stage. Host immune selection might play a role in triggering evolution of genotype B. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  20. Serum HBV core-related antigen is a good predictor for spontaneous HBeAg seroconversion in chronic hepatitis B patients.

    PubMed

    Song, Guangjun; Yang, Ruifeng; Rao, Huiying; Feng, Bo; Ma, Hui; Jin, Qian; Wei, Lai

    2017-03-01

    Early prediction of spontaneous hepatitis B virus e antigen (HBeAg) seroconversion is pivotal in the prevention of unnecessary drug prescription, corresponding financial burden, and adverse reactions. One hundred and thirteen chronic hepatitis B patients with HBeAg-positive in the immune active phase were followed up for about 1.5 years. Patients were classified into two groups: spontaneous HBeAg seroconversion group (group A, n = 18) and non-spontaneous HBeAg seroconversion group. Among the non-spontaneous HBeAg seroconversion group, 35 patients were selected as controls (group B, n = 35). At week 12, there was a significant difference in hepatitis B core-related antigen (HBcrAg) levels between the two groups (group A 4.32 ± 1.05 log 10  kU/ml, and group B 5.16 ± 0.53 log 10  kU/ml, P = 0.004), and this significance magnified at week 28. Only two variables, HBcrAg level and the reduction in the HBcrAg levels (ΔHBcrAg) at week 28 were enrolled, with the odds ratio of 4.19 and 0.21, respectively. The optimal cutoffs of HBcrAg levels and the ΔHBcrAg at week 28 were 4.90 and 2.00 log 10  kU/ml, respectively. The positive predictive value and negative predictive value of HBcrAg levels at week 28 were 73.9% and 96.7%, respectively. The positive predictive value and negative predictive value of the ΔHBcrAg at week 28 were 76.2% and 93.8%, respectively. The measurement of HBcrAg is useful for monitoring the natural course of chronic hepatitis B virus infection. The dynamics of HBcrAg levels could accurately predict the spontaneous HBeAg seroconversion. J. Med. Virol. 89:463-468, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Preparation and testing of a Haemophilus influenzae Type b/Hepatitis B surface antigen conjugate vaccine.

    PubMed

    An, So Jung; Woo, Joo Sung; Chae, Myung Hwa; Kothari, Sudeep; Carbis, Rodney

    2015-03-24

    The majority of conjugate vaccines focus on inducing an antibody response to the polysaccharide antigen and the carrier protein is present primarily to induce a T-cell dependent response. In this study conjugates consisting of poly(ribosylribitolphosphate) (PRP) purified from Haemophilus influenzae Type b bound to Hepatitis B virus surface antigen (HBsAg) virus like particles were prepared with the aim of inducing an antibody response to not only the PRP but also the HBsAg. A conjugate consisting of PRP bound to HBsAg via an adipic acid dihydrazide (ADH) spacer induced strong IgG antibodies to both the PRP and HBsAg. When conjugation was performed without the ADH spacer the induction of an anti-PRP response was equivalent to that seen by conjugate with the ADH spacer, however, a negligible anti-HBsAg response was induced. For comparison, PRP was conjugated to diphtheria toxoid (DT) and Vi polysaccharide purified from Salmonella Typhi conjugated to HBsAg both using an ADH spacer. The PRPAH-DT conjugate induced strong anti-PRP and anti-DT responses, the Vi-AHHBsAg conjugate induced a good anti-HBsAg response but not as strong as that induced by the PRPAH-HBsAg conjugate. This study demonstrated that in mice it was possible to induce robust antibody responses to both polysaccharide and carrier protein provided the conjugate has certain physico-chemical properties. A PRPAH-HBsAg conjugate with the capacity to induce anti-PRP and anti-HBsAg responses could be incorporated into a multivalent pediatric vaccine and simplify formulation of such a vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic

    PubMed Central

    Gabitzsch, Elizabeth S.; Tsang, Kwong Yok; Palena, Claudia; David, Justin M.; Fantini, Massimo; Kwilas, Anna; Rice, Adrian E.; Latchman, Yvette; Hodge, James W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Balint, Joseph P.

    2015-01-01

    Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. PMID:26374823

  3. Adding pegylated interferon to entecavir for hepatitis B e antigen-positive chronic hepatitis B: A multicenter randomized trial (ARES study).

    PubMed

    Brouwer, Willem Pieter; Xie, Qing; Sonneveld, Milan J; Zhang, Ningping; Zhang, Qin; Tabak, Fehmi; Streinu-Cercel, Adrian; Wang, Ji-Yao; Idilman, Ramazan; Reesink, Hendrik W; Diculescu, Mircea; Simon, Krzysztof; Voiculescu, Mihai; Akdogan, Meral; Mazur, Wlodzimierz; Reijnders, Jurrien G P; Verhey, Elke; Hansen, Bettina E; Janssen, Harry L A

    2015-05-01

    Entecavir (ETV) is a potent inhibitor of hepatitis B viral replication, but long-term therapy may be required. We investigated whether adding on pegylated interferon (Peg-IFN) to ETV therapy enhances serological response rates. In this global investigator-initiated, open-label, multicenter, randomized trial, hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients with compensated liver disease started on ETV monotherapy (0.5 mg/day) and were randomized in a 1:1 ratio to either Peg-IFN add-on therapy (180 µg/week) from week 24 to 48 (n = 85) or to continue ETV monotherapy (n = 90). Response was defined as HBeAg loss with HBV DNA <200 IU/mL at week 48. Responders discontinued ETV at week 72. All patients were followed until week 96. Response was achieved in 16 of 85 (19%) patients allocated to the add-on arm versus 9 of 90 (10%) in the monotherapy arm (P = 0.095). Adjusted for HBV DNA levels before randomized therapy, Peg-IFN add-on was significantly associated with response (odds ratio: 4.8; 95% confidence interval: 1.6-14.0; P = 0.004). Eleven (13%) of the add-on-treated patients achieved disease remission after ETV cessation versus 2 of 90 (2%) of those treated with monotherapy (P = 0.007), which was 79% (11 of 14) versus 25% (2 of 8) of those who discontinued ETV (P = 0.014). At week 96, 22 (26%) patients assigned add-on versus 12 (13%) assigned monotherapy achieved HBeAg seroconversion (P = 0.036). Peg-IFN add-on led to significantly more decline in hepatitis B surface antigen, HBeAg, and HBV DNA (all P < 0.001). Combination therapy was well tolerated. Although the primary endpoint was not reached, 24 weeks of Peg-IFN add-on therapy led to a higher proportion of HBeAg response, compared to ETV monotherapy. Add-on therapy resulted in more viral decline and appeared to prevent relapse after stopping ETV. Hence, Peg-IFN add-on therapy may facilitate the discontinuation of nucleos(t)ide analogs. © 2014 by the

  4. [Immunobiologic characteristics of a recombinant Listeria monocytogenes expressing Mycobacterium tuberculosis antigens].

    PubMed

    Yin, Yuelan; Zhao, Dan; Kang, Meiqin; Tan, Weijun; Lian, Kai; Hu, Maozhi; Chen, Xiang; Pan, Zhiming; Jiao, Xin'an

    2013-12-04

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis complex. Hence, novel vaccines against TB are urgently needed and important to the public health. Immunobiologic characteristics of a recombinant attenuated Listeria monocytogenes strain LMdeltahly: :Ag85b-esat-6 was evaluated. LMdeltahly: :Ag85b-esat-6 had lost the hemolytic activity. It was completely cleared from the livers and spleens of mice 5 days after inoculation via intravenous route. Furthermore, the LD50 of the recombinant strain increased by 4 Logs comparing to that of the parent strain. Histopathology reveals no obvious pathological changes following administration of the recombinant strain to mice, indicating its safety. In addition, the potential protective immune response was evaluated on C57BL/6 mice via intravenous immunization route. The results indicate that the antigen delivered by the recombination LM could induce Th1 type immune response and elicit strong cytotoxic lymphocyte effect against Ag85B-ESAT-6. Thus, LMdeltahly::Ag85b-esat-6 had high safety to mice, and could be used as a novel vaccines candidate for preventing tuberculosis.

  5. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

    PubMed Central

    Porter, David L.; Levine, Bruce L.; Kalos, Michael; Bagg, Adam; June, Carl H.

    2012-01-01

    SUMMARY We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×105 cells per kilogram of body weight) of autologous chimeric antigen receptor–modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect. PMID:21830940

  6. CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection

    PubMed Central

    Sayes, Fadel; Pawlik, Alexandre; Frigui, Wafa; Gröschel, Matthias I.; Crommelynck, Samuel; Fayolle, Catherine; Cia, Felipe; Bancroft, Gregory J.; Bottai, Daria; Leclerc, Claude; Brosch, Roland; Majlessi, Laleh

    2016-01-01

    Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. PMID:27467705

  7. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bade-Döding, Christina; Theodossis, Alex; Gras, Stephanie

    2011-09-28

    Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to amore » natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal p{Omega} anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide

  8. Comparison of Xpert Flu rapid nucleic acid testing with rapid antigen testing for the diagnosis of influenza A and B.

    PubMed

    DiMaio, Michael A; Sahoo, Malaya K; Waggoner, Jesse; Pinsky, Benjamin A

    2012-12-01

    Influenza infections are associated with thousands of hospital admissions and deaths each year. Rapid detection of influenza is important for prompt initiation of antiviral therapy and appropriate patient triage. In this study the Cepheid Xpert Flu assay was compared with two rapid antigen tests, BinaxNOW Influenza A & B and BD Directigen EZ Flu A+B, as well as direct fluorescent antibody testing for the rapid detection of influenza A and B. Using real-time, hydrolysis probe-based, reverse transcriptase PCR as the reference method, influenza A sensitivity was 97.3% for Xpert Flu, 95.9% for direct fluorescent antibody testing, 62.2% for BinaxNOW, and 71.6% for BD Directigen. Influenza B sensitivity was 100% for Xpert Flu and direct fluorescent antibody testing, 54.5% for BinaxNOW, and 48.5% for BD Directigen. Specificity for influenza A was 100% for Xpert Flu, BinaxNOW, and BD Directigen, and 99.2% for direct fluorescent antibody testing. All methods demonstrated 100% specificity for influenza B. These findings support the use of the Xpert Flu assay in settings requiring urgent diagnosis of influenza A and B. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help

    PubMed Central

    Steinberg, Shannon M.; Zhang, Peisheng; Turk, Mary Jo

    2011-01-01

    Background We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. Methodology and Principal Findings To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. Conclusions and Significance This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer. PMID:22046294

  10. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine.

    PubMed

    Lokhandwala, Shehnaz; Waghela, Suryakant D; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L; Hassan, Wisam S; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy.

  11. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine

    PubMed Central

    Waghela, Suryakant D.; Bray, Jocelyn; Sangewar, Neha; Charendoff, Chloe; Martin, Cameron L.; Hassan, Wisam S.; Koynarski, Tsvetoslav; Gabbert, Lindsay; Burrage, Thomas G.; Brake, David; Neilan, John; Mwangi, Waithaka

    2017-01-01

    African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R. Immunization of commercial swine with a cocktail of the recombinant adenoviruses formulated in adjuvant primed strong ASFV antigen-specific IgG responses that underwent rapid recall upon boost. Notably, most vaccinees mounted robust IgG responses against all the antigens in the cocktail. Most importantly and relevant to vaccine development, the induced antibodies recognized viral proteins from Georgia 2007/1 ASFV-infected cells by IFA and by western blot analysis. The recombinant adenovirus cocktail also induced ASFV-specific IFN-γ-secreting cells that were recalled upon boosting. Evaluation of local and systemic effects of the recombinant adenovirus cocktail post-priming and post-boosting in the immunized animals showed that the immunogen was well tolerated and no serious negative effects were observed. Taken together, these outcomes showed that the adenovirus-vectored novel ASFV antigen cocktail was capable of safely inducing strong antibody and IFN-γ+ cell responses in commercial swine. The data will be used for selection of antigens for inclusion in a multi-antigen prototype vaccine to be evaluated for protective efficacy. PMID:28481911

  12. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  13. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    PubMed

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  14. Performance of ELISA antigens prepared from 8 isolates of porcine reproductive and respiratory syndrome virus with homologous and heterologous antisera.

    PubMed Central

    Cho, H J; Entz, S C; Magar, R; Joo, H S

    1997-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) ELISA antigens of high quality were produced using 8 different isolates of PRRSV: the European Lelystad virus (LV), the U.S. MN-1b, 89-46448, 93-44927, and 93-24025B, and the Canadian LHVA-93-3, PA-8 and GH-6 virus isolates. The performance of each of these 8 antigens and a commercial PRRSV antibody test kit (Idexx's HerdChek) were measured against antisera raised in 5 groups of 6 piglets inoculated with either LV, MN-1b, 89-46448, 93-44927, or 93-24025B. Among the 8 isolates, the 89-46448 isolate produced the broadest spectrum of antigen and resulted in earlier detection of antibodies to various North American PRRSV isolates, followed by MN-1b as the 2nd best ELISA antigen for the detection of North American PRRSV antibodies. The GH-6 and PA-8 viral antigens exhibited restricted detection of PRRSV antibodies. The LV and 89-46448 combined antigens produced the best performance for the detection of antibodies against both European and North American antigenic types of PRRSV. Using 173 panel samples collected at 11 to 60 d after intranasal inoculation with 1 of the 5 PRRSV isolates, the sensitivities of the indirect ELISA used were 73.4%, 98.3%, 90.8%, 98.3%, 83.2%, 93.1%, 77.1%, 64.2%, 98.8% and 95.9% for LV, MN-1b, LHVA-93-3, 89-46448, 93-44927, 93-24025B, PA-8, GH-6 antigens, 89-46448-LV combined antigens and Idexx's PRRSV antibody test kit, respectively. All 8 antigens gave negative results with preinfection porcine sera (n = 30); high background or nonspecific reactions were not observed with the antigens. PMID:9342455

  15. A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

    PubMed Central

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L.; Fitts, Eric C.; Andersson, Jourdan A.; Lawrence, William S.; Leppla, Stephen H.; Chopra, Ashok K.; Rao, Venigalla B.

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats. PMID:28694806

  16. A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis.

    PubMed

    Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen; Moayeri, Mahtab; Kirtley, Michelle L; Fitts, Eric C; Andersson, Jourdan A; Lawrence, William S; Leppla, Stephen H; Chopra, Ashok K; Rao, Venigalla B

    2017-01-01

    Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis , the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis , in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel ® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis , demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis . This bivalent anthrax-plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.

  17. The Bordetella pertussis Type III Secretion System Tip Complex Protein Bsp22 Is Not a Protective Antigen and Fails To Elicit Serum Antibody Responses during Infection of Humans and Mice

    PubMed Central

    Villarino Romero, Rodrigo; Bibova, Ilona; Cerny, Ondrej; Vecerek, Branislav; Wald, Tomas; Benada, Oldrich; Zavadilova, Jana; Sebo, Peter

    2013-01-01

    The type III secretion system (T3SS) of pathogenic bordetellae employs a self-associating tip complex protein Bsp22. This protein is immunogenic during infections by Bordetella bronchiseptica and could be used as a protective antigen to immunize mice against B. bronchiseptica challenge. Since low-passage clinical isolates of the human pathogen Bordetella pertussis produce a highly homologous Bsp22 protein (97% homology), we examined its vaccine and diagnostic potential. No Bsp22-specific antibodies were, however, detected in serum samples from 36 patients with clinically and serologically confirmed whooping cough disease (pertussis syndrome). Moreover, although the induction of Bsp22 secretion by the laboratory-adapted 18323 strain in the course of mice lung infection was observed, the B. pertussis 18323-infected mice did not mount any detectable serum antibody response against Bsp22. Furthermore, immunization with recombinant Bsp22 protein yielded induction of high Bsp22-specific serum antibody titers but did not protect mice against an intranasal challenge with B. pertussis 18323. Unlike for B. bronchiseptica, hence, the Bsp22 protein is nonimmunogenic, and/or the serum antibody response to it is suppressed, during B. pertussis infections of humans and mice. PMID:23690400

  18. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. Zooepidemicus.

    PubMed

    Liang, Huihuang; Tang, Bin; Zhao, Pengpeng; Deng, Mingyong; Yan, Lili; Zhai, Pan; Wei, Zigong

    2018-02-01

    Streptococcus equi ssp. zooepidemicus (SEZ) is an important pathogen of swine streptococcal diseases and can infect a wide range of animals as well as human beings. The absence of effective vaccine confounds the control of SEZ infection. Sec_205, a novel protein identified in the previous study, was inducibly over-expressed in Escherichia coli in the present study. The purified recombinant protein could elicit a significant humoral antibody response and provide efficient protection against lethal challenge of SEZ C55138 in mouse model. The protection against SEZ infection was mediated by specific antibodies to Sec_205 to some extent and was identified by the passive protection assay. The Sec_205 was an in vivo-induced antigen confirmed by the real-time PCR and could adhere to the Hep-2 cells by the inhibition assay. These suggest that Sec_205 may play a vital role in pathogenicity and serve as a new vaccine candidate against SEZ infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Koch, Guus; Stegeman, Arjan; Claassen, Ivo; Wayan Wisaksana, I; Bouma, Annemarie

    2017-10-01

    Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Proteomic Profiling of Serological Responses to Aspergillus fumigatus Antigens in Patients with Invasive Aspergillosis.

    PubMed

    Teutschbein, Janka; Simon, Svenja; Lother, Jasmin; Springer, Jan; Hortschansky, Peter; Morton, C Oliver; Löffler, Jürgen; Einsele, Hermann; Conneally, Eibhlin; Rogers, Thomas R; Guthke, Reinhard; Brakhage, Axel A; Kniemeyer, Olaf

    2016-05-06

    Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA.