Sample records for ba cu fe

  1. Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-04-01

    Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.

  2. Magnetic texturing due to the partial ordering of Fe+3 and Cu+2 in NdBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Pissas, M.

    2017-06-01

    The crystal and magnetic structure of the oxygen deficient double perovskite NdBaCuFeO5 was studied, using neutron powder diffraction data. The structure was refined from neutron powder diffraction data using the space groups P 4 / mmm and P 4 mm . For 2K ⩽ T ⩽TN2 = 260K three families of magnetic Bragg peaks exist. These peaks can be indexed with commensurate propagation vectors k1 =[1/2 1/2 1/2], k2 =[1/2 1/2 0] and the incommensurate k3 =[1/2 1/2 0.4]. Above TN2 only magnetic Bragg peaks originated from k1 and k2 propagation, were observed. The incommensurate magnetic structure can be attributed to a circular inclined spiral ordering as in YBaCuFeO5 compound.

  3. Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics

    NASA Astrophysics Data System (ADS)

    Murtaza, Tahir; Ali, Javid; Khan, M. S.

    2018-07-01

    The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.

  4. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe 2 As 2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; ...

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  5. Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek

    2012-06-25

    We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba)Cu

  6. Lateral electric-field control of giant magnetoresistance in Co/Cu/Fe/BaTiO{sub 3} multiferroic heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savitha Pillai, S.; Kojima, H.; Itoh, M.

    2015-08-17

    We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO{sub 3} single crystal. While the observed change is marginal in the tetragonal phase of BaTiO{sub 3}, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO{sub 3}. The contrasting results for the different phases of BaTiO{sub 3} are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.

  7. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    NASA Astrophysics Data System (ADS)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  8. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    NASA Astrophysics Data System (ADS)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  9. Effect of 3d doping on the electronic structure of BaFe2As2.

    PubMed

    McLeod, J A; Buling, A; Green, R J; Boyko, T D; Skorikov, N A; Kurmaev, E Z; Neumann, M; Finkelstein, L D; Ni, N; Thaler, A; Bud'ko, S L; Canfield, P C; Moewes, A

    2012-05-30

    The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu.

  10. Structural and magnetic properties of Nd0.67Ba0.33MnO3 manganites with partial replacement of Fe and Cu at Mn-site

    NASA Astrophysics Data System (ADS)

    Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-06-01

    We have investigated the structural and magnetic properties of Nd0.67Ba0.33MnO3 manganite and partial replacement of Mn with Fe and Cu compounds followed by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and vibrating sample magnetometer (VSM). The Rietveld refinement of XRD indicates orthorhombic crystal structure with I-mma space group for all the compounds and thus obtained lattice parameters confirm the presence of co-operative Jahn-Teller effect. XRD and XAS spectra results suggests the existence of Fe3+ in Fe-substituted compound where as a mixed state of Cu2+ and Cu3+ ions in the Cu-substituted compound. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease upon the substitution of Fe and Cu atoms because of the suppression of double exchange interaction. The theoretically obtained and experimentally determined values of effective PM moment and saturation magnetic moment confirms the presence of inhomogeneous magnetic states containing FM and antiferromagnetic clusters in all the studied compounds.

  11. High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age

    NASA Astrophysics Data System (ADS)

    Nissen, P. E.

    2016-09-01

    Aims: A previous study of correlations between element abundances and ages of solar twin stars in the solar neighborhood is extended to include Sc, Mn, Cu, and Ba to obtain new information on the nucleosynthetic history of these elements. Methods: HARPS spectra with S/N ≳ 600 are used to derive very precise (σ ~ 0.01 dex) differential abundances of Sc, Mn, Cu, and Ba for 21 solar twins and the Sun. The analysis is based on MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the log g - Teff diagram between isochrones based on the Aarhus Stellar Evolution Code. Results: For stars younger than 6 Gyr, [Sc/Fe], [Mn/Fe], [Cu/Fe], and [Ba/Fe] are tightly correlated with stellar age, which is also the case for the other elements previously studied; linear relations between [X/Fe] and age have χ^2red ˜ 1, and for most stars the residuals do not depend on elemental condensation temperature. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements Na, Al, Sc, and Cu. Conclusions: While stars in the solar neighborhood younger than ~ 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars seem to have originated from regions enriched by supernovae with different neutron excesses. Correlations between abundance ratios and stellar age suggest that: (I) Sc is made in Type II supernovae along with the α-capture elements; (II) the Type II to Ia yield ratio is about the same for Mn and Fe; (III) Cu is mainly made by the weak s-process in massive stars; (iv) the Ba/Y yield ratio for asymptotic giant branch stars increases with decreasing stellar mass; (v) [Y/Mg] and [Y/Al] can be used as chemical clocks when determining ages of solar metallicity stars. Based on data products from observations made

  12. High field nuclear magnetic resonance in transition metal substituted BaFe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garitezi, T. M., E-mail: thalesmg@ifi.unicamp.br; Lesseux, G. G.; Rosa, P. F. S.

    2014-05-07

    We report high field {sup 75}As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe{sub 2}As{sub 2} single crystals displaying same structural/magnetic transition T{sub 0}≃128  K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency ν{sub Q}≃2.57(1)  MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe{sub 2}As{sub 2} compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe–As tetrahedra, must be the most probable tuning parameter to determine T{submore » 0} in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T{sub 0} suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe{sub 2}As{sub 2} [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].« less

  13. ESR and nonresonant microwave absorption of ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu

    1990-12-01

    ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.

  14. Ba3CuOs2O9 and Ba3ZnOs2O9, a comparative study

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Jansen, Martin

    2018-02-01

    Polycrystalline samples of Ba3CuOs2O9 and Ba3ZnOs2O9 were synthesized by solid-state reactions. Ba3CuOs2O9 crystallizes in Cmcm, while Ba3ZnOs2O9 adopts the hexagonal space group P63/mmc. Both the crystal structures consist of face-sharing Os-centered octahedra forming dimer-like Os2O9 units, which are interconnected by corner-sharing CuO6, or ZnO6 octahedra, respectively. In Ba3CuOs2O9, the CuO6 octahedra show a characteristic Jahn-Teller distortion. Both, Ba3CuOs2O9 and Ba3ZnOs2O9, are electrically insulating. Magnetic and specific heat measurements confirm that Ba3CuOs2O9 is antiferromagnetically ordered below 47 K. Analysis of the magnetic data indicated that its magnetic properties are dominated by Cu2+ ions. The magnetic susceptibility of Ba3ZnOs2O9 is weakly temperature-dependent with a broad maximum ≈ 280 K, indicating the presence of strong exchange interactions within the Os2O9 dimer. The residual magnetic susceptibility at low temperatures also suggests the presence of appreciable exchange coupling between the dimers.

  15. Role of magnetism in superconductivity of BaFe 2As 2: Study of 5d Au-doped crystals

    DOE PAGES

    Li, Li; Cao, Huibo; McGuire, Michael A.; ...

    2015-09-09

    We investigate properties of BaFe 2As 2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe 1-xAu x)2As 2.

  16. Method of forming superconducting Tl-Ba-Ca-Cu-O films

    DOEpatents

    Wessels, Bruce W.; Marks, Tobin J.; Richeson, Darrin S.; Tonge, Lauren M.; Zhang, Jiming

    1993-01-01

    A method of forming a superconducting Tl-Ba-Ca-Cu-O film is disclosed, which comprises depositing a Ba-Ca-Cu-O film on a substrate by MOCVD, annealing the deposited film and heat-treating the annealed film in a closed circular vessel with TlBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x and cooling to form said superconducting film of TlO.sub.m Ba.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2, wherein m=1,2 and n=1,2,3.

  17. Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air).

    PubMed

    Ren, Yi; Yuan, Yue; Lai, Bo; Zhou, Yuexi; Wang, Juling

    2016-01-25

    To decompose or transform the toxic and refractory reverse osmosis (RO) concentrate and improve the biodegradability, 1stFe/Cu/air-Fenton-2ndFe/Cu/air were developed to treat RO concentrate obtained from an amino acid production plant in northern China. First, their operating conditions were optimized thoroughly. Furthermore, 5 control experiments were setup to confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and synergistic reaction between Fe/Cu/air and Fenton. The results suggest that the developed method could obtain high COD removal (65.1%) and BOD5/COD ratio (0.26) due to the synergistic reaction between Fe/Cu/air and Fenton. Under the optimal conditions, the influent and effluent of 1stFe/Cu/air-Fenton-2ndFe/Cu/air and 5 control experiments were analyzed by using UV, FTIR, EEM and LC, which confirm the superiority of 1stFe/Cu/air-Fenton-2ndFe/Cu/air. Therefore, the developed method in this study is a promising process for treatment of RO concentrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Superconductivity in the Sn-Ba-Sr-Y-Cu-O system

    NASA Technical Reports Server (NTRS)

    Aleksandrov, K. S.; Khrustalev, B. P.; Krivomazov, S. N.; Petrov, M. I.; Vasilyev, A. D.; Zwegintsev, S. A.

    1991-01-01

    After the discovery of high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides were synthesized. Here, researchers report the results of the search for superconductivity in the compounds based on tin which has a lone electron pair like Bi, Tl, and Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3O(sub x), Sn1Ba1Ca1Cu3O(sub x), Sn1Ba1Mg1Cu3O(sub x), Sn1Sr1Ca1Cu3O(sub x), Sn1Sr1Mg1Cu3O(sub x), and Sn1Ca1Mg1Cu3O(sub x). The initial components were oxides and carbonates of the appropriate elements. A standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3O(sub x) showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3O(sub x) was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperature undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3O(sub x) ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase, two-valent cations Ba and Sr were partially substituted by univalent (K) and three-valent ones (Y).

  19. ``Loose spins'' in Fe/Cu/Fe(001) structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; Celinski, Z.; Liao, L. X.; From, M.; Cochran, J. F.

    1994-05-01

    Slonczewski recently proposed a model for the exchange coupling between ferromagnetic layers separated by a nonferromagnetic spacer based on the concept of ``loose spins.'' ``Loose spins'' contribute to the total exchange energy. We have studied the role of ``loose spins'' in bcc Fe/Cu/Fe(001) structures. bcc Fe/Cu/Fe(001) trilayers deposited at room temperature were investigated extensively in our previous studies. In our ``loose spin'' studies, the Fe was added inside the Cu interlayer. Several structures were atomically engineered in order to test the behavior of ``loose spins:'' One additional atomic layer of an (Fe+Cu) alloy were located in appropriate positions in a Cu spacer. The bilinear and biquadratic exchange coupling in the above structures was quantitatively studied with FMR in the temperature range 77-370 K and with MOKE at RT.

  20. Structural, dielectric and magnetic studies of (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Ni0.7Co0.1Cu0.2Fe2O4 + (1-x) BaTiO3 (x=10%, 20% and 30%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive component Ni0.7Co0.1Cu0.2Fe2O4 (NCCF). The presences of constituent phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for NCCF ferrite phase and tetragonal perovskite structure for BT and, both spinel and pervoskite structures for synthesized ME composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency and composition dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at room temperature using Hioki LCR Hi-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The hysteresis behavior was studied to understand the magnetic ordering in the synthesized composites using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  1. Reaction of cyanide with cytochrome ba3 from Thermus thermophilus: spectroscopic characterization of the Fe(II)a3-CN.Cu(II)B-CN complex suggests four 14N atoms are coordinated to CuB.

    PubMed Central

    Surerus, K K; Oertling, W A; Fan, C; Gurbiel, R J; Einarsdóttir, O; Antholine, W E; Dyer, R B; Hoffman, B M; Woodruff, W H; Fee, J A

    1992-01-01

    Cytochrome ba3 from Thermus thermophilus reacts slowly with excess HCN at pH 7.4 to create a form of the enzyme in which CuA, cytochrome b, and CuB remain oxidized, while cytochrome a3 is reduced by one electron, presumably with the formation of cyanogen. We have examined this form of the enzyme by UV-visible, resonance Raman, EPR, and electron nuclear double resonance spectroscopies in conjunction with permutations of 13C- and 15N-labeled cyanide. The results support a model in which one CN- binds through the carbon atom to ferrous a3, supporting a low-spin (S = 0) configuration on the Fe; bridging by this cyanide to the CuB is weak or absent. Four 14N atoms, presumably donated by histidine residues of the protein, provide a strong equatorial ligand field about CuB; a second CN- is coordinated through the carbon atom to CuB in an axial position. PMID:1314380

  2. London penetration depth measurements in Ba (Fe 1-xT x) 2As 2(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Ryan T.

    2011-01-01

    The London penetration depth has been measured in various doping levels of single crystals of Ba(Fe 1-xT x) 2As 2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a power law temperature dependence of the form Δλ ab(T) = CT n, indicating the existence of low-temperature, normal state quasiparticles all the way down to the lowest measured temperature, which was typically 500 mK. Several different doping concentrations from the Ba(Fe 1-xT x) 2As 2 (T=Co,Ni) systems have been measured and the doping dependence of the power law exponent, n, is compared tomore » results from measurements of thermal conductivity and specific heat. In addition, a novel method has been developed to allow for the measurement of the zero temperature value of the in-plane penetration depth, λ ab(0), by using TDR frequency shifts. By using this technique, the doping dependence of λ ab(0) has been measured in the Ba(Fe 1-xCo x) 2As 2 series, which has allowed also for the construction of the doping-dependent superfluid phase stiffness, ρ s(T) = [λ(0)/λ(T)] 2. By studying the effects of disorder on these superconductors using heavy ion irradiation, it has been determined that the observed power law temperature dependence likely arises from pair-breaking impurity scattering contributions, which is consistent with the proposed s±-wave symmetry of the superconducting gap in the dirty scattering limit. This hypothesis is supported by the measurement of an exponential temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative of a nodeless superconducting gap.« less

  3. Synthesis and Characterization of Polyol-Assisted Nano Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 by a Wet Hydroxyl Route

    NASA Astrophysics Data System (ADS)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.; Velumani, S.; Chandramohan, M.; Manivel Raja, M.

    2017-08-01

    Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 has been synthesized by a wet hydroxyl chemical route in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol has been used as the medium which serves as the solvent as well as a complexing agent. The synthesized particles are annealed at temperatures of 350°C, 700°C, and 1050°C. Thermogravimetric (TG) analysis confirms that at 240°C, ethylene glycol has evaporated completely, and a stable phase is formed above 670°C. Fourier transform infrared (FT-IR) spectroscopy of mixed Cu0.2Ni0.2Sn0.2Ba0.4 ferrite nanoparticles like as synthesized and annealed at 1050°C are recorded between 400 cm-1 and 4000 cm-1. FT-IR appraises the structural formation of Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 between the as-synthesized sample and the sample annealed at 1050°C. Structural characterizations of all the samples are carried out by x-ray diffraction (XRD) technique. XRD reveals that the particle size increases with the increase in annealing temperatures. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirms that the particles are flaky and spherical with the crystallite size in the range of 11-27 nm. The decrement of dielectric properties, like dielectric constant and dielectric loss, with the increment of frequency as seen in all the samples is an usual dielectric behavior of spinel ferrites. The lack of net magnetization is noticed immediately when the applied magnetic field is removed which prompts superparamagnetic behavior, as seen in all the samples.

  4. Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rishibrind Kumar; Sharma, Dipika

    2018-01-01

    Nanostructured powders of pristine Fe3O4, BaTiO3, and Fe-BaTiO3 were synthesized using hydrothermal method and BaTiO3/Fe3O4 and Fe-BaTiO3/Fe3O4 composite sample were also prepared by mixing the appropriate amount of pristine powders. All samples were characterized using x-ray diffraction, SEM and UV-vis spectrometry. Photoelectrochemical properties were investigated in a three-electrode cell system. Maximum photocurrent density of 2.1 mA cm-2 at 0.95 V/SCE was observed for Fe-BaTiO3/Fe3O4 composite sample. Increased photocurrent density offered by composite may be attributed to improved conductivity and better separation of the photogenerated charge carriers at interface.

  5. Raman study of the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ

    NASA Astrophysics Data System (ADS)

    Chang, H.; He, Z. H.; Meng, R. L.; Xue, Y. Y.; Chu, C. W.

    1995-02-01

    We studied the thermal stability of HgBa 2CaCu 2O 6+δ and HgBa 2Ca 2Cu 3O 8+δ at varying laser irradiation power. Each compound has two Raman bands around 570 and 590 cm -1 which are assigned to the vibrations of the interstitial oxygen in HgO δ layers and the apical oxygen in BaO layers, respectively. The 590 cm -1 band shifts position slightly with irradiation, and both the intensity and position of the 570 cm -1 band vary significantly with the laser power. The occupation factor of the interstitial oxygen is sensitive to the annealing temperature. At higher temperatures (550-600°C), both compounds decompose into various (Ba,Cu)-oxides such as Ba 1- xCa xCuO 2.

  6. Innovative methodology for the synthesis of Ba-M hexaferrite BaFe{sub 12}O{sub 19} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.A., E-mail: moala@47hotmail.com; Helmy, N.; El-Dek, S.I.

    2013-09-01

    Graphical abstract: Transmission electron microscope images for the BaFe12O19. - Highlights: • BaFe{sub 12}O{sub 19}nanoparticles were prepared in single-phase from organometallic precursors. • BaFe{sub 12}O{sub 19} possesses small size 65 nm, H{sub C} = 3695 Oe and M{sub s} = 58 emu/g. • This method of preparation could be extended in the synthesis of other metal oxide nanoparticles. - Abstract: In this piece of work, high quality and homogeneity, barium hexaferrite (BaM) BaFe{sub 12}O{sub 19} nanoparticles were prepared from organometallic precursors for the 1st time. This method is based on the formation of supramolecular crystal structure of Ba[Fe(H{sub 3}NCH{sub 2}CH{submore » 2}NH{sub 3})]Cl{sub 7}·8H{sub 2}O. The crystal structure, morphology and magnetic properties of BaFe{sub 12}O{sub 19} at two different annealing temperatures namely 1000 °C and 1200 °C were investigated using X-ray diffraction, transmission electron microscope TEM and vibrating sample magnetometry (VSM). The results show that monophasic nanoparticles of hexaferrites were obtained. Nanoparticles of crystallite size 40–50 nm distinguished by narrow distribution and excellent homogeneity were obtained with superior magnetic properties which suggested single-domain particles of Ba-M hexaferrite.« less

  7. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural, dielectric and ferroelectric studies of (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 magnetoelectric nano-composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Muneeswaran, M.; Giridharan, N. V.; Sankarappa, T.

    2016-05-01

    The Particulate nano-composites of ferrite and ferroelectric phases having the general formula (x) Mg0.25Cu0.25Zn0.5Fe2O4 + (1-x) BaTiO3 (x=15%, 30% and 45%) were synthesized by sintering mixtures of highly ferroelectric BaTiO3 (BT) and highly magneto-strictive magnetic component Mg0.25Cu0.25Zn0.5Fe2O4(MCZF). The presence of constituent phases of ferrite, ferroelectric and their composites were probed and confirmed by X-ray diffraction (XRD) studies. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The variation of dielectric constant and dissipation factor as a function of frequency from 100 Hz to 1 MHz at room temperature were carried out using a Hioki LCR Hi-Tester. The dielectric constant and dielectric loss were found to decrease rapidly in the low frequency region and became almost constant in the high frequency region. The electrical conductivity deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in these composites is in conformity with small polaron hopping model. The ferroelectric properties of synthesized magneto-electric nano-composites were measured using P-E loop tracer.

  9. Thin films sputtered from Ba{sub 2}NdFeNb{sub 4}O{sub 15} multiferroic targets on BaFe{sub 12}O{sub 19} coated substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodeux, Romain; Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac; Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr

    2016-09-15

    Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similarmore » to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.« less

  10. Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review

    NASA Astrophysics Data System (ADS)

    Sharma, Virender K.; Machala, Libor

    2016-12-01

    This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.

  11. Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2

    NASA Astrophysics Data System (ADS)

    Filsinger, Kai A.; Schnelle, Walter; Adler, Peter; Fecher, Gerhard H.; Reehuis, Manfred; Hoser, Andreas; Hoffmann, Jens-Uwe; Werner, Peter; Greenblatt, Martha; Felser, Claudia

    2017-05-01

    Recent theoretical studies suggest that superconductivity may be found in doped chromium pnictides with crystal structures similar to their iron counterparts. Here, we report a comprehensive study on the magnetic arsenides BaCr2As2 and BaCrFeAs2 (space group I 4 /m m m ), which are possible mother compounds with d4 and d5 electron configurations, respectively. DFT-based calculations of the electronic structure evidence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction, we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G -type structure at TN=580 K with μCr=1.9 μB . Anomalies in the lattice parameters point to magnetostructural coupling effects. In BaCrFeAs2, the Cr and Fe atoms randomly occupy the transition-metal site and G -type order is found below 265 K with μCr /Fe=1.1 μB . 57Fe Mössbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations leading to μFe˜0 . The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat. Electrical transport in BaCrFeAs2 is dominated by the atomic disorder and the partial magnetic disorder of Fe. Our results indicate that Néel-type order is unfavorable for Fe moments and thus it is destabilized with increasing Fe content.

  12. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  13. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe 2 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jianjun; Lei, Hechang; Petrovic, Cedomir

    High pressure resistance, susceptibility, and Fe K β x-ray emission spectroscopy measurements were performed on Fe-ladder compound BaFe 2 Se 3 . Pressure-induced superconductivity was observed which is similar to the previously reported superconductivity in the BaFe 2 S 3 samples. The slope of local magnetic moment versus pressure shows an anomaly across the insulator-metal transition pressure in the BaFe 2 Se 3 samples. The local magnetic moment is continuously decreasing with increasing pressure, and the superconductivity appears only when the local magnetic moment value is comparable to the one in the iron-pnictide superconductors. Our results indicate that the compressedmore » BaFe 2 C h 3 ( C h = S , Se) is a new family of iron-based superconductors. Despite the crystal structures completely different from the known iron-based superconducting materials, the magnetism in this Fe-ladder material plays a critical role in superconductivity. This behavior is similar to the other members of iron-based superconducting materials.« less

  14. Aspects of forming metal-clad melt-processed Y-Ba-Cu-O tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, G.; Oberly, C.E.; Ho, J.

    1991-03-01

    This paper reports on melt-processing of Y-Ba-Cu-O superconductor in a usable form for magnet winding which requires the development of a cladding with demanding properties. Numerous recent efforts in cold forming Bi-based superconductor tapes have been successful because a silver tube can be used to constrain the ceramic material, which is sintered at much lower temperature than the Y-Ba-Cu-O. Typical high temperature metals which can be used to encase Y-Ba-Cu-O during sintering do not permit ready diffusion of oxygen as silver does. Recently, the full or partial recovery of superconductivity has been achieved in transition-metal- doped Y-Ba-Cu-O due to themore » partial-melt processing.« less

  15. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  16. Enhanced and broadband microwave absorption of flake-shaped Fe and FeNi composite with Ba ferrites

    NASA Astrophysics Data System (ADS)

    Li, Wangchang; Lv, Junjun; Zhou, Xiang; Zheng, Jingwu; Ying, Yao; Qiao, Liang; Yu, Jing; Che, Shenglei

    2017-03-01

    In order to achieve a broad bandwidth absorber at high frequency, the composites of M-type ferrite BaCo1.0Ti1.0Fe10O19 (BaM) with flaked carbonyl iron powders (CIP) and flaked Fe50Ni50 were prepared to optimize the surface impedance in broadband frequency, respectively. The diameter of the flaked carbonyl iron powders (CIP) and Fe50Ni50 is in the range of 5-10 μm and 10-20 μm and the thickness of the CIP and Fe50Ni50 is close to 200 nm and 400 nm, respectively. The complex permeability and permittivity show that the addition of BaM obviously reduces the values of real part of permittivity and imaginary part of the permeability which can enhance the matched-wave-impedance. The absorption bands less than -10 dB of CIP-BaM and FeNi-BaM absorber approach to 5.5 GHz (5.7-11.2 GHz) and 7 GHz (11-18 GHz) at 1.5 mm. However, the bands of CIP and FeNi are only 1.9 GHz (4.7-6.6 GHz) and 2.1 GHz (4.0-6.1 GHz). Hence, the electromagnetic match property is greatly improved by BaM ferrites, and this composite shows a broaden absorption band.

  17. Synthesis and Characterization of BaFeO3, (Ba,Bi)FeO3, and Related Epitaxial Thin Films and Nanostructures

    DTIC Science & Technology

    2009-01-01

    measured magnetizations of Ba-doped bulk BiFeO3 samples65, 68 The coercivity, or resistance of the sample to 72 demagnetization , is about 6000 Oe on...methods for sample analysis are briefly discussed. Investigation of BaFeO3 and its structural and magnetic properties, which differ from that of the bulk ...at the atomic level. The interfaces comprised of a magnetic and ferroelectric material layered on one another has great advantage over bulk

  18. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution.

    PubMed

    Ji, Qingqing; Li, Jun; Xiong, Zhaokun; Lai, Bo

    2017-04-01

    In this study, batch experiments were conducted to examine the enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution. The key operating parameters (i.e., theoretical Cu mass loadings (TML Cu ), mFe/Cu dosage, PS dose, initial pH and temperature) were optimized by the batch experiments, respectively. The experimental data were followed well the pseudo-first-order kinetic model. Result reveals that refractory PNP (500 mg L -1 ) was effectively degraded by mFe/Cu-PS system with removal of 98.4% and k obs of 1.91 min -1 after only 3 min treatment under the optimal operating conditions. Moreover, compared with control experiments (i.e., mFe/Cu, microscale Fe 0 with PS (mFe 0 -PS), and PS alone), mFe/Cu-PS system exerted better performance for PNP removal due to the strong synergistic effect between PS and mFe/Cu. According to the analysis results of degradation kinetics of PNP, COD (chemical oxygen demand) removal, UV-vis absorption spectra and the intermediates formed, the results reveal that the PNP removal by mFe/Cu-PS system was mainly attributed to reduction accompanied slight oxidation. And based on the analysis of surface characteristics of mFe/Cu particles, it is further demonstrated that PS could enhance the reactivity of mFe/Cu through rapid corrosion of iron surface and decrease of surface passivation of mFe/Cu surface when the low molar ratio of PS to mFe/Cu (i.e., 1:43) was used in this study. These results also illustrates mFe/Cu-PS can be as a high efficient pretreatment technology for the removal of toxic refractory PNP from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High Pressure Properties of a Ba-Cu-Zn-P Clathrate-I

    DOE PAGES

    Dolyniuk, Juli -Anna; Kovnir, Kirill

    2016-08-12

    Here, the high pressure properties of the novel tetrel-free clathrate, Ba 8Cu 13.1Zn 3.3P 29.6, were investigated using synchrotron powder X-ray diffraction. The pressure was applied using a diamond anvil cell. No structural transitions or decomposition were detected in the studied pressure range of 0.1–7 GPa. The calculated bulk modulus for Ba 8Cu 13.1Zn 3.3P 29.6 using a third-order Birch-Murnaghan equation of state is 65(6) GPa at 300 K. This bulk modulus is comparable to the bulk moduli of Ge- and Sn-based clathrates, like A 8Ga 16Ge 30 (A = Sr, Ba) and Sn 19.3Cu 4.7P 22I 8, but lowermore » than those for the transition metal-containing silicon-based clathrates, Ba 8 T xSi46–x, T = Ni, Cu; 3 ≤ x ≤ 5.« less

  20. Synthesis of Y1Ba2Cu3O(sub x) superconducting powders by intermediate phase reaction

    NASA Technical Reports Server (NTRS)

    Moore, C.; Fernandez, J. F.; Recio, P.; Duran, P.

    1990-01-01

    One of the more striking problems for the synthesis of the Y1Ba2Cu3Ox compound is the high-temperature decomposition of the BaCO3. This compound is present as raw material or as an intermediate compound in chemical processes such as amorphous citrate, coprecipitation oxalate, sol-gel process, acetate pyrolisis, etc. This fact makes difficult the total formation reaction of the Y1Ba2Cu3Ox phase and leads to the presence of undesirable phases such as the BaCuO2 phase, the 'green phase', Y2BaCuO5 and others. Here, a new procedure to overcome this difficulty is studied. The barium cation is previously combined with yttrium and/or copper to form intermediate compounds which can react between them to give Y1Ba2Cu3Ox. BaY2O4 and BaCu2O3 react according to the equation BaY2O4+3BaCu2O3 yields 2Y1Ba2Cu3Ox. BaY2O4 is a stable compound of the Y2O3-BaO system; BaCu2O3 is an intimate mixture of BaCuO2 and uncombined CuO. The reaction kinetics of these phases have been established between 860 and 920 C. The phase evolution has been determined. The crystal structure of the Y1Ba2Cu3Ox obtained powder was studied. According to the results obtained from the kinetics study the Y1Ba2Cu3Ox the synthesis was performed at temperatures of 910 to 920 C for short treatment times (1 to 2 hours). Pure Y1Ba2Cu3Ox was prepared, which develops orthorombic type I structure despite of the cooling cycle. Superconducting transition took place at 91 K. The sintering behavior and the superconducting properties of sintered samples were studied. Density, microstructure and electrical conductivity were measured. Sintering densities higher than 95 percent D(sub th) were attained at temperatures below 940 C. Relatively fine grained microstructure was observed, and little or no-liquid phase was detected.

  1. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Rachniyom, W.; Boonin, K.; Kaewkhao, J.

    In this research, glass productions from rice husk ash (RHA) and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g) due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration) in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm) and Fe2+ (1050 nm) ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction.

  2. Superconductivity achieved at over liquid nitrogen temperature by (mixed rare earths)-Ba-Cu oxides

    NASA Astrophysics Data System (ADS)

    Kishio, Kohji; Kuwahara, Kazuyuki; Kitazawa, Koichi; Fueki, Kazuo; Nakamura, Osamu

    1987-05-01

    Superconducting oxides were fabricated by reaction of powders of BaCO3, CuO and mixed rare earth (RE) carbonates at compositions expressed as (RE)1Ba2Cu3O(9-y). Two types of incompletely separated raw materials of mixed rare earths, namely, heavy rare earths (HRE) and medium rare earths (MRE), were examined. The zero-resistivity critical temperatures were observed at 92.5 K for the (HRE)-Ba-Cu-O and 85.0 K for the (MRE)-Ba-Cu-O systems, respectively, both of which were well above the boiling point of liquid nitrogen.

  3. Is BaCr 2 As 2 symmetrical to BaFe 2 As 2 with respect to half 3 d shell filling?

    DOE PAGES

    Richard, P.; van Roekeghem, A.; Lv, B. Q.; ...

    2017-05-25

    We have performed an angle-resolved photoemission spectroscopy study of BaCr 2As 2, which has the same crystal structure as BaFe2As2, a parent compound BaFe 2As 2 of Fe-based superconductors. We determine the Fermi surface of this material and its band dispersion down to 5 eV below the Fermi level. Very moderate band renormalization (1.35) is observed for only two bands. We attribute this small renormalization to enhanced direct exchange as compared to Fe in BaFe 2As 2, and to a larger contribution of the eg orbitals in the composition of the bands forming the Fermi surface.

  4. Yttrium enrichment and improved magnetic properties in partially melted Y-Ba-Cu-O materials

    NASA Technical Reports Server (NTRS)

    Alterescu, Sidney; Hojaji, Hamid; Barkatt, Aaron; Michael, Karen A.; Hu, Shouxiang

    1990-01-01

    The yttrium-rich compositions in the Y-Ba-Cu-O system were mapped out in a systematic manner to quantify their magnetic properties and to correlate them with the microstructure and phase composition as determined by scanning electron microscopy and X-ray diffraction analysis. It is found that the microstructure of Y-Ba-Cu-O compositions is a sensitive function of both their composition and processing conditions. Measurements of magnetic susceptibility and maximum (low-field) and remanent magnetization for the system Y:Ba:Cu = x:2:3 show highest values for x = 2. The corresponding structures involve numerous small crystals of Y2BaCuO5 (211) embedded in highly ordered assemblages of continous YBa2Cu3O(7-y) (123) layers.

  5. Structural changes that occur upon photolysis of the Fe(II)a3 - CO complex in the cytochrome ba3-oxidase of Thermus thermophilus: A combined X-ray crystallographic and infrared spectral study demonstrates CO binding to CuB

    PubMed Central

    Liu, Bin; Zhang, Yang; Sage, J. Timothy; Soltis, S. Michael; Doukov, Tzanko; Chen, Ying; Stout, C. David; Fee, James A.

    2012-01-01

    The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8 – 3.2 Å resolution, reveal a Fe-C distance of ~2.0 Å, a Cu-O distance of 2.4 Å and a Fe-C-O angle of ~126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3-CO and appearance of CuB-CO having a Cu-C distance of ~1.9 Å and an O-Fe distance of ~2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm−1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm−1. Analysis of the “light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm−1, 1977 cm−1, 1981 cm−1, and 1985 cm−1, previously assigned to the Fea3-CO complex, and a significantly broader CO stretching band centered at ~2050 cm−1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm−1 and one from traces of CO at 2133 cm−1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3-CO in cytochrome c oxidases leads to significant

  6. Effect of the Cu/Ba ratio for the YBCO deposition onto IBAD template by the MOCVD method

    NASA Astrophysics Data System (ADS)

    Choi, J. K.; Kim, H. J.; Jun, B. H.; Kim, C. J.

    2005-10-01

    YBa2Cu3O7-x (YBCO) thin films were fabricated by the metal organic chemical vapor deposition (MOCVD) using a single liquid source. The copper/barium (Cu/Ba) ratio was varied from 1.26 to 1.38 to optimize the deposition condition. The IBAD template (CeO2/YSZ/stainless steel) was used as a substrate. The growth features of the YBCO films were not significantly influenced by the Cu/Ba ratio, while the superconducting transition temperature (Tc) and critical current (Ic) depended on the Cu/Ba ratio. When Cu/Ba ratio was between 1.26 and 1.29, Tc was as low as 80 K, while as Cu/Ba ratio increased to 1.38, it increased to above 85 K. The highest Tc (89.0 K) and Ic (46.3 A/cm-width) were achieved at the Cu/Ba ratio of 1.38 (Y:Ba:Cu = 1:2.1:2.9). It indicates that the optimum Cu/Ba ratio which differs from stoichiometric balance exists for the formation of the superconducting phase with a high Tc and Ic in MOCVD method.

  7. Minor-Cu doped soft magnetic Fe-based FeCoBCSiCu amorphous alloys with high saturation magnetization

    NASA Astrophysics Data System (ADS)

    Li, Yanhui; Wang, Zhenmin; Zhang, Wei

    2018-05-01

    The effects of Cu alloying on the amorphous-forming ability (AFA) and magnetic properties of the P-free Fe81Co5B11C2Si1 amorphous alloy were investigated. Addition of ≤ 1.0 at.% Cu enhances the AFA of the base alloy without significant deterioration of the soft magnetic properties. The Fe80.5Co5B11C2Si1Cu0.5 alloy with the largest critical thickness for amorphous formation of ˜35 μm possesses a high saturation magnetization (Bs) of ˜1.78 T, low coercivity of ˜14.6 A/m, and good bending ductility upon annealing in a wide temperature range of 513-553 K with maintaining the amorphous state. The fabrication of the new high-Fe-content Fe-Co-B-C-Si-Cu amorphous alloys by minor doping of Cu gives a guideline to developing high Bs amorphous alloys with excellent AFA.

  8. Biodistribution and Radiation Dosimetry of the Integrin Marker 64Cu-BaBaSar-RGD2 Determined from Whole-Body PET/CT in a Non-Human Primate

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Vorobyova, Ivetta; Park, Ryan; Conti, Peter S.

    2017-10-01

    Introduction: 64Cu-BaBaSar-RGD2 is a positron emission radiotracer taken up by integrin αvβ3, which is overexpressed in many malignancies. The aim of this study was to evaluate the biodistribution of 64Cu-BaBaSar-RGD2 in a non-human primate with positron emission tomography and to estimate the absorbed doses in major organs for human. Materials and methods: Whole-body PET imaging was done in a Siemens Biograph scanner in a male macaque monkey. After an i.v. injection of 13.1–19.7 MBq/kg of 64Cu-BaBaSar-RGD2, whole body scan was collected for a total duration of 180 min. Attenuation and scatter corrections were applied to reconstruction of the whole-body emission scan. After image reconstruction, three-dimensional volumes of interest (VOI) were hand-drawn on the PET transaxial or coronal slices of the frame where the organ was most conspicuous. Time-activity curves for each VOI were obtained, and residence time of each organ was calculated by integration of the time-activity curves. Human absorbed doses were estimated using the standard human model in OLINDA/EXM software. Results: Injection of 64Cu-BaBaSar-RGD2 was well tolerated in the macaque monkey, with no serious tracer-related adverse events observed. 64Cu-BaBaSar-RGD2 was cleared rapidly from the blood pool, with a 12.1-min biological half-time. Increased 64Cu-BaBaSar-RGD2 uptake was observed in the kidneys, and bladder, with mean percentage injected dose (ID%) values at 1 h after injection approximately 35.50 ± 6.47 and 36.89 ± 5.48, respectively. The calculated effective dose was 15.30 ± 2.21 µSv/MBq, and the kidneys had the highest absorbed dose at 108.43 ± 16.41 µGy/MBq using the non-voiding model. For an injected activity of 925 MBq 64Cu for human, the effective dose would be 14.2 ± 2.1 mSv. Discussion: Due to the limitation of the monkey number, we evaluated 64Cu-BaBaSar-RGD2 in the same monkey of three imaging sessions. Measured absorbed doses and effective doses of 64Cu-BaBaSar-RGD2 are

  9. Rapid removal of ultra-high-concentration p-nitrophenol in aqueous solution by microwave-enhanced Fe/Cu bimetallic particle (MW-Fe/Cu) system.

    PubMed

    Ren, Yi; Zhou, Jinfan; Pan, Zhicheng; Lai, Bo; Yuan, Donghai

    2017-10-10

    Ultra-high-concentration PNP-contained wastewaters are produced sometimes due to the wide application of this nitrophenolic compound in the chemical industry. However, there is a lack of appropriate technologies to rapidly pretreat the ultra-high-concentration wastewater. Therefore, a new microwave-enhanced Fe/Cu bimetallic particles (MW-Fe/Cu) system was developed to rapidly remove ultra-high-concentration PNP. First, the priority of the determinative parameters was obtained by orthogonal experiment. Based on this result, the effects of initial pH, microwave power, Fe/Cu dosage and initial PNP concentration on PNP removal were optimized thoroughly. Under the optimal conditions (i.e. initial pH = 1.0, MW power = 385 W, Fe/Cu dosage = 30 g/L and initial PNP concentration = 4000 mg/L), four control treatment systems (i.e. MW-Fe 0 , heating-Fe/Cu, MW alone and Fe/Cu alone system) were set up to compare with the MW-Fe/Cu system. The results suggest that high PNP removal (more than 99% with 2.5 min, k 1 /k 2  = 1.18/6.91 min -1 ) and COD removal (26.6% with 5 min treatment) could be obtained by the MW-Fe/Cu system, which were much superior to those obtained using the MW-Fe 0 (k 1 /k 2  = 0.62/2.21 min -1 ) and the heating-Fe/Cu system (k 1 /k 2  = 0.53/1.52 min -1 ). Finally, the determination of the intermediates of PNP degradation by HPLC indicated that the MW assistance process did not change the degradation pathway of PNP. This concludes that the new MW-Fe/Cu system was the promising technology for pretreatment of wastewater containing ultra-high-concentration toxic and refractory pollutants at a fairly short treatment time.

  10. Influence of Ba/Fe mole ratios on magnetic properties, crystallite size and shifting of X-ray diffraction peaks of nanocrystalline BaFe12O19 powder, prepared by sol gel auto combu

    NASA Astrophysics Data System (ADS)

    Suastiyanti, Dwita; Sudarmaji, Arif; Soegijono, Bambang

    2012-06-01

    Barium hexaferrite BaFe12O19 (BFO) is of great importance as permanent magnets, particularly for magnetic recording as well as in microwave devices. Nano-crystalline BFO powders were prepared by sol gel auto combustion method in citric acid - metal nitrates system. Hence the mole ratios of Ba/Fe were variated at 1:12; 1:11.5 and 1:11. Ratio of cation to fuel was fixed at 1:1. An appropriate amount of amonia solution was added dropwise to this solution with constant stirring until the PH reached 7 in all cases. Heating at 850oC for 10 hours for each sample to get final formation of BFO nanocrystalline. The data from XRD showing the lattice parameters a,c and the unit-cell volume V, confirm that BFO with ratio 1:12 has same crystall parameters with ratio 1:11. Ratio of Ba/Fe 1:12 and 1:11 have diffraction pattern similarly at almost each 2 θ for each samples. Ratio of Ba/Fe 1: 11.5 has the finest crystallite size 22 nm. Almost diffraction pattern peaks of Ba/Fe 1:11.5 move to the left from of Ba/Fe 1:12 then return to diffraction pattern of Ba/Fe 1:12 for Ba/Fe 1:11. SEM observations show the particle size less than 100 nm and the same shape for each sample. Ratio of Ba/Fe 1: 12 gives the highest intrinsic coercive Hc = 427.3 kA/m. The highest remanent magnetization is at ratio 1:11 with Mr = 0.170 T. BFO with mole ratio 1:11.5 has the finest grain 22 nm, good magnetic properties and the highest value of best FoM 89%.

  11. Tuning the magnetism of the top-layer FeAs on BaFe2As2 (001): First-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Jing; Liu, Kai; Lu, Zhong-Yi

    2018-04-01

    Magnetism may play an important role in inducing the superconductivity in iron-based superconductors. As a prototypical system, the surface of BaFe2As2 provides a good platform for studying related magnetic properties. We have designed systematic first-principles calculations to clarify the surface magnetism of BaFe2As2 (001), which previously has received little attention in comparison with surface structures and electronic states. We find that the surface environment has an important influence on the magnetic properties of the top-layer FeAs. For As-terminated surfaces, the magnetic ground state of the top-layer FeAs is in the staggered dimer antiferromagnetic (AFM) order, distinct from that of the bulk, while for Ba-terminated surfaces the collinear (single-stripe) AFM order is the most stable, the same as that in the bulk. When a certain coverage of Ba or K atoms is deposited onto the As-terminated surface, the calculated energy differences among different AFM orders for the top-layer FeAs on BaFe2As2 (001) can be much reduced, indicating enhanced spin fluctuations. To compare our results with available scanning tunneling microscopy (STM) measurements, we have simulated the STM images of several structural/magnetic terminations. Astonishingly, when the top-layer FeAs is in the staggered dimer AFM order, a stripe pattern appears in the simulated STM image even when the surface Ba atoms adopt a √{2 }×√{2 } structure, while a √{2 }×√{2 } square pattern comes out for the 1 ×1 full As termination. Our results suggest: (i) the magnetic state at the BaFe2As2 (001) surface can be quite different from that in the bulk; (ii) the magnetic properties of the top-layer FeAs can be tuned effectively by surface doping, which may likely induce superconductivity at the surface layer; (iii) both the surface termination and the AFM order in the top-layer FeAs can affect the STM image of BaFe2As2 (001), which needs to be taken into account when identifying the surface

  12. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  13. Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice.

    PubMed

    Kabbour, Houria; Janod, Etienne; Corraze, Benoît; Danot, Michel; Lee, Changhoon; Whangbo, Myung-Hwan; Cario, Laurent

    2008-07-02

    The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.

  14. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  15. Fe and Cu isotope mass balances in the human body

    NASA Astrophysics Data System (ADS)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  16. High-pressure electrical resistivity studies for Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Kawashima, C.; Soeda, H.; Takahashi, H.; Hawai, T.; Nambu, Y.; Sato, T. J.; Hirata, Y.; Ohgushi, K.

    2017-10-01

    High-pressure electrical resistance measurements were performed for iron-based ladder material Ba1-xCsxFe2Se3 (x = 0.25 and 0.65) using a diamond anvil cell (DAC). Recent high-pressure study revealed that iron-based ladder material BaFe2S3 exhibits an insulator-metal transition and superconductivity, and this discovery would provide important insight for understanding the mechanism of iron-based superconductors. Therefore, it is intriguing to investigate the high-pressure properties for the iron-based ladder material Ba1-xCsxFe2Se3 system. The parent compounds BaFe2Se3 and CsFe2Se3 show insulating and magnetic ordering features. For Ba1-xCsxFe2Se3 system, no magnetic ordering is observed for x = 0.25 and minimum charge gap was estimated for x = 0.65. The insulator-metal transitions are observed in both materials.

  17. High-pressure electrical resistivity studies for Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Kawashima, C.; Soeda, H.; Takahashi, H.; Hawai, T.; Nambu, Y.; Sato, T. J.; Hirata, Y.; Ohgushi, K.

    2017-10-01

    High-pressure electrical resistance measurements were performed for iron-based ladder material Ba1-xCsxFe2Se3 (x = 0.25 and 0.65) using a diamond anvil cell (DAC). Recent high-pressure study revealed that iron-based ladder material BaFe2S3 exhibits an insulator- metal transition and superconductivity, and this discovery would provide important insight for understanding the mechanism of iron-based superconductors. Therefore, it is intriguing to investigate the high-pressure properties for the iron-based ladder material Ba1-xCsxFe2Se3 system. The parent compounds BaFe2Se3 and CsFe2Se3 show insulating and magnetic ordering features. For Ba1-xCsxFe2Se3 system, no magnetic ordering is observed for x = 0.25 and minimum charge gap was estimated for x = 0.65. The insulator-metal transitions are observed in both materials.

  18. Electron microscopy of a Gd-Ba-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.

    1989-01-01

    An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.

  19. Optical plasma monitoring of Y-Ba-Cu-O rf sputter target transients

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1989-12-01

    The plasma emission spectra resulting from rf sputtering Y-Ba-Cu-O targets were observed as a function of sputter time. Although most lines of the observed spectra are not attributable to target species, peaks associated with each of the cation elements were resolved. The Ba and Cu peaks can be used as tracking indicators of process conditions. For example, switching from an O2/Ar sputter atmosphere to pure Ar enhanced the Ba peak much more than that associated with Cu. The emission spectra from a newly fabricated target exhibited a slow first-order transient response in seeking equilibrium with the rf plasma. The transient response of a previously sputtered target is also first order but has a much shorter time constant.

  20. Research progress in photolectric materials of CuFeS2

    NASA Astrophysics Data System (ADS)

    Jing, Mingxing; Li, Jing; Liu, Kegao

    2018-03-01

    CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.

  1. Sequential structural and antiferromagnetic transitions in BaFe2Se3 under pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Lin, Ling-Fang; Zhang, Jun-Jie; Dagotto, Elbio; Dong, Shuai

    2018-01-01

    The discovery of superconductivity in the two-leg ladder compound BaFe2S3 has established the 123-type iron chalcogenides as a novel and interesting subgroup of the iron-based superconductor family. However, in this 123 series, BaFe2Se3 is an exceptional member, with a magnetic order and crystalline structure different from all others. Recently, an exciting experiment reported the emergence of superconductivity in BaFe2Se3 at high pressure [J. Ying et al., Phys. Rev. B 95, 241109(R) (2017), 10.1103/PhysRevB.95.241109]. In this paper, we report a first-principles study of BaFe2Se3 . Our analysis unveils a variety of qualitative differences between BaFe2S3 and BaFe2Se3 , including in the latter an unexpected chain of transitions with increasing pressure. First, by gradually reducing the tilting angle of iron ladders, the crystalline structure smoothly transforms from P n m a to C m c m at ˜6 GPa. Second, the system becomes metallic at 10.4 GPa. Third, its unique ambient-pressure Block antiferromagnetic ground state is replaced by the more common stripe (so-called CX-type) antiferromagnetic order at ˜12 GPa, the same magnetic state as the 123-S ladder. This transition is found at a pressure very similar to the experimental superconducting transition. Finally, all magnetic moments vanish at 30 GPa. This reported theoretical diagram of the complete phase evolution is important because of the technical challenges to capture many physical properties in high-pressure experiments. The information obtained in our calculations suggests different characteristics for superconductivity in BaFe2Se3 and BaFe2S3 : in 123-S pairing occurs when magnetic moments vanish, while in 123-Se the transition region from Block- to CX-type magnetism appears to catalyze superconductivity. Finally, an additional superconducting dome above ˜30 GPa is expected to occur.

  2. Synthesis and characterization of high-Tc superconductors in the Tl-Ca-Ba-Cu-O system

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Farrell, D. E.

    1989-01-01

    Both Tl2Ca2Ba2Cu3O10 and TlCa3BaCu3O8.5 are investigated for superconductivity as a function of the sintering temperature, time, atmosphere, and quench rate in an effort to synthesize the high-Tc superconducting phase in the thallium system. The samples are characterized by electrical resistivity measurements, X-ray diffraction, and scanning electron microscopy. Samples of starting composition Tl2Ca2Ba2Cu3O10 fired in air at 860-900 C and rapidly quenched show a Tc of 96-107 K. In contrast, specimens of starting composition TlCa3BaCu3O8.5 when baked at 900 C and slowly cooled in oxygen superconduct at 116 K and above and consist of Tl2Ca2Ba2Cu3O(10+x) as the dominant phase. The results also show that, in contrast to the case of YBa2Cu3O(7-x), doping with a small concentration of fluorine sharpens the resistive transition and produces a large Tc increase in thallium-based superconductors.

  3. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  4. NH 3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less

  5. NH 3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects

    DOE PAGES

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; ...

    2017-10-07

    Cu, Fe and Cu + Fe ion exchanged Beta and SSZ-13 catalysts were prepared by solution ion exchange using commercial NH 4/Beta, and NH 4/SSZ-13 that was prepared in-house. To study hydrothermal aging effects, Beta supported catalysts were aged hydrothermally at 700 °C and SSZ-13 supported catalysts were aged at 750 °C. In order to reveal the effects of Fe addition in the co-exchanged catalysts, these catalysts were characterized by means of powder X-ray diffraction (XRD), N 2 adsorption-desorption, electron paramagnetic resonance (EPR), 27Al-nuclear magnetic resonance ( 27Al-NMR) and propylene coking followed with temperature programmed reaction (TPR), and further testedmore » with standard NH 3-SCR with and without the presence of propylene. Collectively, the catalyst characterizations and reaction testing indicated minor beneficial effects of Fe addition in Cu,Fe/Beta, where NH 3-SCR activity, N 2 selectivity and hydrothermal stability were all slightly improved. In contrast, Fe addition did not show apparent beneficial effects in low-temperature SCR for the Cu,Fe/SSZ-13 case. In conclusion, at elevated reaction temperatures, however, the presence of Fe indeed considerably improved NO conversion and N 2 selectivity for the hydrothermally aged Cu,Fe/SSZ-13 catalyst in the presence of propylene.« less

  6. Role of Cu During Sintering of Fe0.96Cu0.04 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sivaprahasam, D.; Sriramamurthy, A. M.; Bysakh, S.; Sundararajan, G.; Chattopadhyay, K.

    2018-04-01

    Nanoparticle agglomerates of passivated Fe ( n-Fe) and Fe0.96Cu0.04 ( n-Fe0.96Cu0.04), synthesized through the levitational gas condensation (LGC) process, were compacted and sintered using the conventional powder metallurgy method. The n-Fe0.96Cu0.04 agglomerates produced lower green density than n-Fe, and when compacted under pressure beyond 200 MPa, they underwent lateral cracking during ejection attributed to the presence of a passive oxide layer. Sintering under dynamic hydrogen atmosphere can produce a higher density of compact in n-Fe0.96Cu0.04 in comparison to n-Fe. Both the results of dilatometry and thermogravimetric (TG) measurements of the samples under flowing hydrogen revealed enhancement of the sintering process as soon as the reduction of oxide layers could be accomplished. The shrinkage rate of n-Fe0.96Cu0.04 reached a value three times higher than n-Fe at a low temperature of 723 K (450 °C) during heating. This enhanced shrinkage rate was the manifestation of accumulation of Cu at the surface of the particles. The formation of a thin-surface melted layer enriched with copper during heating to isothermal holding facilitated as a medium of transport for diffusion of the elements. The compacts produced by sintering at 773 K (500 °C), with relative density 82 pct, were found to be unstable and oxidized instantly when exposed to ambient atmosphere. The stable compacts of density more than 92 pct with 300- to 450-nm grain size could only be produced when sintering was carried out at 973 K (700 °C) and beyond. The 0.22 wt pct residual oxygen obtained in the sintered compact is similar to what is used for conventional ferrous powder metallurgy products.

  7. Single crystals of the 96 K superconductor (Hg,Cu)Ba2CuO4+δ: Growth, structure and magnetism

    NASA Astrophysics Data System (ADS)

    Pelloquin, D.; Hardy, V.; Maignan, A.; Raveau, B.

    1997-02-01

    Single crystals of the 1201 (n = 1) (Hg,Cu)Ba2CuO4+δ mercury based cuprate have been grown by using a simple process without dry box. The as-synthesized crystals exhibit constant Tc(onset) of 96 K with sharp superconducting transitions. The electron microscopy coupled with EDX analyses evidence a ``1201''-type structure while a mercury deficiency is observed balanced by an excess of copper. The structural refinements based on single-crystal X-ray diffraction data confirm the electron deficiency on the Hg site (0,0,0) and show a splitting of the latter along the c axis correlated to the partial substitution of Cu for Hg. This structural study leads to the following formula Hg0.84Cu0.16Ba2CuO4.19. The magnetic study of a large crystal (1.1 × 0.38 × 0.065 mm3) shows that the (Hg,Cu)-1201 crystals exhibit an irreversibility line higher than that of the 1201 Hg0.8Bi0.2Ba2CuO4+δ crystal (Tc = 75 K). From the reversible magnetization, a λab(0) = 2470 Å value can be extrapolated. Using a 3D-2D decoupling formula, we obtain γ = 29 for the electronic anisotropy of this phase.

  8. Magnetotransport of proton-irradiated BaFe 2As 2 and BaFe 1.985Co 0.015As 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D. A.; Yates, K. A.; Peng, N.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe 2As 2 and BaFe 1.985Co 0.015As 2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data aremore » observed and discussed.« less

  9. Structural and magnetic properties and superconductivity in Ba(Fe 1-xTM x) 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaler, Alexander

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe 2As 2. We grew four series of Ba(Fe 1-xTM 2) 2As 2 (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe 1-xCr x) 2As 2 and Ba(Fe 1-xCo x) 2As 2 to heat treatment to explore what changes might be induced.

  10. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2

    NASA Astrophysics Data System (ADS)

    Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.

    2018-03-01

    The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.

  11. Structural characterization of a new vacancy ordered perovskite modification found for Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.333}F{sub 0.333}): Towards understanding of vacancy ordering for different perovskite-type ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@kit.edu; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

    2015-05-15

    The new vacancy ordered perovskite-type compound Ba{sub 3}Fe{sub 3}O{sub 7}F (BaFeO{sub 2.33}F{sub 0.33}) was prepared by topochemical low-temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5} (BaFeO{sub 2.5}) using stoichiometric amounts of polyvinylidene difluoride (PVDF). The vacancy order was found to be unique so far for perovskite compounds, and the connectivity pattern can be explained by the formula Ba{sub 3}(FeX{sub 6/2}) (FeX{sub 5/2}) (FeX{sub 3/2}X{sub 1/1}), with X=O/F. Mössbauer measurements were used to confirm the structural analysis and agree with the presence of Fe{sup 3+} in the above mentioned coordination environments. Group–subgroup relationships were used to build a starting model for themore » structure solution and to understand the relationship to the cubic perovskite structure. Furthermore, a comparison of a variety of vacancy-ordered iron-containing perovskite-type structures is given, highlighting the factors which favour one structure type over the other depending on the composition. - Graphical abstract: The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. - Highlights: • The crystal structure of Ba{sub 3}Fe{sub 3}O{sub 7}F in comparison to other perovskite type ferrites. • Ba{sub 3}Fe{sub 3}O{sub 7}F was synthesized by low temperature fluorination of Ba{sub 2}Fe{sub 2}O{sub 5}. • Ba{sub 3}Fe{sub 3}O{sub 7}F shows a unique vacancy order not found for other perovskite type compounds. • The structure of Ba{sub 3}Fe{sub 3}O{sub 7}F was solved using group–subgroup relationships. • A systematic comparison to other ferrite type compounds reveals structural similarities and differences. • The A-site coordination of the cation is shown to play an important role for the type of vacancy order found.« less

  12. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  13. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  14. Critical current density in (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x melt-textured composites

    NASA Astrophysics Data System (ADS)

    Opata, Yuri Aparecido; Monteiro, João Frederico Haas Leandro; Jurelo, Alcione Roberto; Siqueira, Ezequiel Costa

    2018-06-01

    Melt textured (YBa2Cu3O7-δ)1-x-(PrBa2Cu3O7-δ)x composites (x = 0.00 and x = 0.05) were grown using the top seeding method. The effect of the PrBa2Cu3O7-δ phase on the growth process and the modification of the microstructure as well as on the physical properties was analyzed. X-ray analyses indicated that both pure and Pr-doped samples present an orthorhombic superconducting phase. From resistivity measurements for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, the Tcab did not change and was around 90.5 K. However, from magnetic measurements, the superconductivity was observed in critical temperatures TC = 92.9 K and 92.4 K for YBa2Cu3O7-δ and (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 samples, respectively. The YBa2Cu3O7-δ sample showed higher critical current densities than those shown by the (YBa2Cu3O7-δ)0.95-(PrBa2Cu3O7-δ)0.05 sample, with values of JC = 5.85 × 105 A/cm2 and 4.72 × 105 A/cm2, respectively. This paper also discusses the importance of Pr substitution on nano- and micro-meter scales to enhance JC(H).

  15. Coercivity Recovery Effect of Sm-Fe-Cu-Al Alloy on Sm2Fe17N3 Magnet

    NASA Astrophysics Data System (ADS)

    Otogawa, Kohei; Asahi, Toru; Jinno, Miho; Yamaguchi, Wataru; Takagi, Kenta; Kwon, Hansang

    2018-03-01

    The potential of a Sm-Fe-Cu-Al binder for improvement of the magnetic properties of Sm2Fe17N3 was examined. Transmission electron microscope (TEM) observation of a Sm-Fe-Cu-Al alloy-bonded Sm2Fe17N3 magnet which showed high coercivity revealed that the Sm-Fe-Cu-Al alloy had an effect of removing the surface oxide layer of the Sm2 Fe17N3 grains. However, the Sm-Fe-Cu-Al binder was contaminated by carbon and nitrogen, which originated from the organic solvent used as the milling medium during pulverization. To prevent carbon and nitrogen contamination, the Sm-Fe- Cu-Al alloy was added directly on the surface of the Sm2Fe17N3 grains by sputtering. Comparing the recovered coercivity per unit amount of the added binder the uncontaminated binder-coated sample had a higher coercivity recovery effect than the milled binder-added sample. These results suggested that sufficient addition of the contamination-free Sm-Fe-Cu-Al binder has the possibility to reduce the amount of binder necessary to produce a high coercive Sm2Fe17N3 magnet.

  16. Investigations on the local structures of Cu2+ at various BaO concentrations in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO glasses

    NASA Astrophysics Data System (ADS)

    Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He

    2017-11-01

    The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.

  17. Studies of iron impurities in YxPr1-xBa2Cu3O7-delta

    NASA Technical Reports Server (NTRS)

    Swartzendruber, L. J.; Bennett, L. H.; Ritter, J.; Rubinstein, M.; Harford, M. Z.

    1990-01-01

    Pr is the only rare earth which, when substituted for Y in YBa2Cu3O7, significantly alters the superconducting transition temperature T(sub c) without changing the crystal structure. For YxPr1-xBa2Cu3O7-delta with delta approx. equal to 0, T(sub c) is reduced rapidly as x is increased, reaching zero for x about 0.5. For x above 0.5 the compound is antiferromagnetic with a Neel temperature that increases with increasing x, rising to above room temperature for x near 1. A similar behavior is observed when the oxygen deficit delta is increased from zero to 1 with x=0. For the case of Pr substitution, the drop in T(sub c) is believed due to magnetic interactions. For the case of varying delta with x=0, the drop can be attributed to a combination of magnetic interactions, band filling, and changes in crystal structure. To study these effects, the Mossbauer effect of 57 Fe atoms substituted for the Cu atoms has been observed as a function of delta, x, and temperature. The observed spectra are all well described by a two quadrupole-split pairs, a central singlet, and a six-line magnetic hyperfine field pattern. For several Pr compositions both delta and temperature were varied, and the results support the hypothesis that a magnetic interaction exists between the Fe in the Cu lattice and the substitutional Pr atoms.

  18. Facile synthesis of CuFe2O4-Fe2O3 composite for high-performance supercapacitor electrode applications

    NASA Astrophysics Data System (ADS)

    Khan, Rashid; Habib, Muhammad; Gondal, Mohammed A.; Khalil, Adnan; Rehman, Zia Ur; Muhammad, Zahir; Haleem, Yasir A.; Wang, Changda; Wu, Chuan Qiang; Song, Li

    2017-10-01

    We report the synthesis of CuFe2O4-Fe2O3 composite material for efficient and highly stable supercapacitor electrode by using eco-friendly low-temperature co-precipitation method. The CuFe2O4-Fe2O3 composite demonstrated the highest specific capacitance of 638.24 F g-1 and excellent stability up to 2000 charge/discharge cycles. The achieved capacitance value is 16 times higher than that of pure CuFe2O4. The results revealed the extraordinary performance of CuFe2O4-Fe2O3 composite as supercapacitor electrode with excellent retention in comparison to CuFe2O4. The enhanced electrochemical activity of CuFe2O4-Fe2O3 composite is attributed to the synergistic effect which is responsible for redox coupling between Cu2+ and Fe3+ that has never been achieved by single component before.

  19. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  20. The interaction between dietary Fe, Cu and stress in Cu-67 retention and serum ceruloplasmin (Cp) activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellett, L.; Kattelmann, K.; Zinn, K.

    1991-03-15

    The objectives of the study were to determine the effects of dietary Fe and stress on Cu-67 retention and serum Cp activity in the rat. A 2 {times} 2 {times} 2 factorial arrangement of treatments was utilized. Male Sprague Dawley weanling rats were fed AIN-76 diets ad lib containing 0.8 ppm Cu (CuD) or 5.7 ppm Cu (CuA) with 22.5 ppm Fe (FeA) or 280 ppm Fe (FeE). After 19 days, one-half of the animals of each treatment were stressed by an intramuscular injection of 0.1 ml turpentine/100 gm body weight. Forty-eight hours later, animals were gavaged with Cu-67 andmore » counted over a 7 day period in a whole body high resolution gamma counter. Cu-67 retention was 20% higher in CuD rats compared to CuA rats. There were no significant effects caused by Fe or stress or the interaction between these variables on Cu-67 retention. In rats fed FeE-CuA diets, serum Cp activity was significantly depressed compared to rats fed FeA-CuA diets. These reductions in the acute phase protein Cp, were 85% and 70% in nonstressed and stressed rats, respectively. The results of this study suggest that the negative interaction effects of excess Fe on Cu utilization does not occur at the site of Cu absorption, but within the body and specifically in the liver.« less

  1. Fenton-like Degradation of Phenol Catalyzed by a Series of Fe-Containing Mixed Oxides Systems

    NASA Astrophysics Data System (ADS)

    Alhmoud, T. T.; Mahmoud, S. S.; Hammoudeh, A. Y.

    2018-02-01

    In our attempts to develop a solid catalyst to degrade organic pollutants in wastewater via the Fenton-like reaction, six Fe-containing mixed oxide systems were prepared by means of the sol-gel auto-combustion method to have the following stoichiometries: CuFe1.2O2.8, BaFe7.2O11.8, BaFe7.2Cu2O13.8, BaFe5.4V3O16.6, BaFe4.8Cu2V3O17.7 and Ag2Fe5.4V3O16.6. The prepared systems were thermally treated at 550°C, 650°C, 800°C and 1100°C, and then characterized by XRD to identify the present phases. The systems were tested with respect to their catalytic efficiency in the degradation of phenol (200 ppm) in water where CuFe1.2O2.8 was found to be the most reactive one (80% removal in 60 min). It showed thereby first-order kinetics and an enhanced behavior under irradiation with a 30-W LED light source. The positive role of irradiation was most obvious in the case of Ag2Fe5.4V3O16.6 in which almost complete conversion was achieved in 120 min compared to only 45% in the same period but without irradiation. However, increasing the temperature at which thermal treatment is performed was found to suppress the catalytic activity of the system. Due to their high efficiency and rather low leaching rates of constituents, CuFe1.2O2.8 or Ag2Fe5.4V3O16.6 seem to be very promising in the Fenton-like degradation of organic pollutants.

  2. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    PubMed

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  3. Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.

    2016-05-23

    The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less

  4. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  5. Coercivity enhancement of Nd-Fe-B hot-deformed magnets by the eutectic grain boundary diffusion process using Nd-Ga-Cu and Nd-Fe-Ga-Cu alloys

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Sepehri-Amin, H.; Sasaki, T. T.; Ohkubo, T.; Yano, M.; Sakuma, N.; Kato, A.; Shoji, T.; Hono, K.

    2018-05-01

    Nd80Ga15Cu5 and Nd62Fe14Ga20Cu4 alloys were used as diffusion sources for the eutectic grain boundary diffusion process, applying to 4 mm-thick Nd-Fe-B hot-deformed magnets. Both samples showed nearly same coercivity of 2.2 T, while the sample processed with Nd62Fe14Ga20Cu4 showed smaller remanence deterioration from 1.50 T to 1.30 T, in contrast to that of the sample processed with Nd80Ga15Cu5 to 1.08 T. Mr/Ms of the initial sample and the samples processed with Nd62Fe14Ga20Cu4 and Nd80Ga15Cu5 were 0.946, 0.934 and 0.917, respectively, suggesting that the sample processed with Nd62Fe14Ga20Cu4 retains stronger c-axis texture after the diffusion process. Nd-rich phases with Ia3 ¯ and fcc structures were observed in the sample processed with Nd80Ga15Cu5, while the Nd-rich phases with the Ia3 ¯ and hcp structures were found in the sample processed with Nd62Fe14Ga20Cu4, all of which are the phases commonly observed in Nd-Fe-B sintered magnets.

  6. Strain induced superconductivity in the parent compound BaFe2As2

    NASA Astrophysics Data System (ADS)

    Engelmann, J.; Grinenko, V.; Chekhonin, P.; Skrotzki, W.; Efremov, D. V.; Oswald, S.; Iida, K.; Hühne, R.; Hänisch, J.; Hoffmann, M.; Kurth, F.; Schultz, L.; Holzapfel, B.

    2013-12-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

  7. Kinetic phenomena in zero-gap semiconductors CuFeS2 and CuFeTe2: Effect of pressure and heat treatment

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Konstantinov, P. P.; Rud', Yu. V.

    2011-10-01

    Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature ( T = 1.7-310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14-300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n( T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n( T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n( T) and ρ( T) dependences is retained.

  8. Optical monitoring of ion beam Y-Ba-Cu-O sputtering

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1990-11-01

    The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.

  9. All high Tc edge-geometry weak links utilizing Y-Ba-Cu-O barrier layers

    NASA Technical Reports Server (NTRS)

    Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1991-01-01

    High quality YBa2Cu3O(7-x) normal-metal/YBa2Cu3O(7-x) edge-geometry weak links have been fabricated using nonsuperconducting Y-Ba-Cu-O barrier layers deposited by laser ablation at reduced growth temperatures. Devices incorporating 25-100 A thick barrier layers exhibit current-voltage characteristics consistent with the resistively shunted junction model, with strong microwave and magnetic field response at temperatures up to 85 K. The critical currents vary exponentially with barrier thickness, and the resistances scale linearly with Y-Ba-Cu-O interlayer thickness and device area, indicating good barrier uniformity, with an effective mormal metal coherence length of 20 A.

  10. ESR, SIMS and TEMF of an Y-Ba-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Kirschner, I.; Giber, J.; Halasz, I.

    1995-01-01

    Superconducting transition comes into being between 92 K and 82 K in the samples having a Meissner's state value of 68 vol. percent. The main material content has an orthorhombic unit cell of Y1Ba2Cu408 accompanied by low quantity CuO and a sporadic phase. A proof of anisotropic superconductivity, an unusually high Cu ion concentration and a temperature dependent transition of charge carriers have been observed.

  11. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Lee, Jongmin; Seo, Sehun; Yoon, Sejun; Seo, M. S.; Park, S. Y.; Kim, Ho-Sup; Ha, Dong-Woo; Lee, Sanghan; Jo, Youn Jung

    2018-06-01

    Static high critical current densities (Jc) > 1 MA/cm2 with magnetic field parallel or perpendicular to c-axis were realized in Co-doped/undoped multilayerd BaFe2As2 films. We made a current bridge by FIB to allow precise measurements, and confirmed that the boundary quality using FIB was considerably better than the quality achieved using a laser. The presence of a high in-plane Jc suggested the existence of c-axis correlated vortex pinning centers. To clarify the relationship between the Jc performance and superstructures, we investigated the magnetic flux pinning mechanism using scaling theory of the volume pinning force Fp(H). The Jc(H) curves, Fp/Fp,max vs. h = H/Hirr curves, and parameters p and q depended on the characteristics of the flux pinning mechanism. It was found that the dominant pinning mechanism of Co-doped/undoped multilayerd BaFe2As2 films was Δl-pinning and the inserted undoped BaFe2As2 layers remained non-superconducting. The dominant pin geometry varied when the magnetic field direction changed. It was concluded that the artificially layered BaFe2As2 film is a 3-D superconductor due to its long correlation length compared to the thickness of the non-superconducting layer.

  12. Point-contact tunneling in monophasic and polyphasic Y-Ba-Cu-O samples: Experiment and model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, R.S.; Andreone, D.; Lacquaniti, V.

    1989-02-01

    Tunneling experiments using large-area point-contact structures have been performed on several monophasic polycrystalline Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ samples and on polyphasic samples containing, mixed with the previous superconducting phase, also about 11% of the so-called green phase (BaY/sub 2/CuO/sub 5/). Both niobium and Y-Ba-Cu-O tips were used as counterelectrodes and measurements were made at 4.2 and 77 K. Results obtained at different experimental conditions show great reproducibility indicating the presence of the gap voltage at about 20 mV in the dynamic resistance curves. A phenomenological model was then developed to interpret in a quantitative way our data by meansmore » of a decomposition of the experimental conductance into a background component and a superconducting-tunneling component. The former results essentially in a parabolic contribution versus the bias voltage typical of a tunneling between normallike junction electrodes while the latter component is smeared out in voltage by a large amount of broadening. Using the model in a least-squares fit of the experimental data of Nb/Y-Ba-Cu-O junctions, values V/sub G/ = 21.3 +- 0.8 mV and V/sub G/ = 22.0 +- 0.6 mV for the voltage gaps at 4.2 K of monophasic and polyphasic materials, respectively, have been determined. These results have been well confirmed by measurements on Y-Ba-Cu-O/Y-Ba-Cu-O junctions while, at 77 K, there are no indications of a superconducting tunneling. We obtained also the parameters of the background conductance, which indicates the presence of a nonsuperconducting layer at the surface of the material.« less

  13. Synthesis and superconductivity of highly underdoped HgBa2CuO4+δ

    NASA Astrophysics Data System (ADS)

    Edwards, P. P.; Gameson, I.; Fletcher, A.; Peacock, G. B.

    1998-05-01

    The highest transition temperature superconductors are found within the complex homologous series HgBa2Can-1CunO2n+2+δ (n=1-7), with the third member, HgBa2Ca2Cu3O8+δ possessing the record-high transition temperature (Tc) of 135 K at room pressure. The first member of this family, HgBa2CuO4+δ having a Tc of up to 97 K, displays the highest transition temperature for any analogous compounds with a single copper-layer. The chemical reaction for the formation of this material is intrinsically complex due to the natural high volatility of mercury-bearing compounds; chemical synthesis has been postulated to proceed via a solid-vapour reaction. With this in mind, we have developed a mixed solid/vapour phase synthesis for HgBa2CuO4+δ using what one might term a `remote' source of mercury, in this case elemental Hg itself. Interestingly, because of the zero oxidation state of elemental mercury in the reagent mixture, the synthesis reaction proceeds under reducing conditions. By this route, a highly underdoped state (Tc<=35 K) of the superconducting phase HgBa2CuO4+δ is readily obtained. This level of underdoping is extremely difficult to achieve by more conventional synthetic routes. We comment on the unusually high oxygen affinity of the resulting underdoped compound, in relation to other cuprate superconductors, and the implied mobility of oxygen defects within the crystal structure.

  14. Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharma, Dipika; Satsangi, Vibha R.; Dass Kaura, Sahab; Shrivastav, Rohit; Waghmare, Umesh V.

    2016-10-01

    Band-offsets at BaTiO3/Cu2O heterojunction and enhanced photoelectrochemical response: theory and experiment Dipika Sharmaa, Vibha R. Satsangib, Rohit Shrivastava, Umesh V. Waghmarec, Sahab Dassa aDepartment of Chemistry, Dayalbagh Educational Institute, Agra-282 110 (India) bDepartment of Physics and Computer Sciences, Dayalbagh Educational Institute, Agra-282 110 (India) cTheoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560 064 (India) * Phone: +91-9219695960. Fax: +91-562-2801226. E-mail: drsahabdas@gmail.com. Study on photoelectrochemical activity of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction has been carried out using DFT based band offsets and charge carriers effective mass calculations and their experimental verification. The results of DFT calculations show that BaTiO3 and Cu2O have staggered type band alignment after the heterojunction formation and high mobility of electrons in Cu2O as compared to the electrons in BaTiO3. Staggered type band edges alignment and high mobility of electrons and holes improved the separation of photo-generated charge carriers in BaTiO3/Cu2O heterojunction. To validate the theoretical results experiments were carried out on pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction with varying thickness of Cu2O. All samples were characterized by X- Ray Diffractometer, SEM and UV-Vis spectrometry. Nanostructured thin films of pristine BaTiO3, Cu2O and BaTiO3/Cu2O heterojunction were used as photoelectrode in the photoelectrochemical cell for water splitting reaction. Maximum photocurrent density of 1.44 mA/cm2 at 0.90 V/SCE was exhibited by 442 nm thick BaTiO3/Cu2O heterojunction photoelectrode Increased photocurrent density and enhanced photoconversion efficiency, exhibited by the heterojunction may be attributed to improved conductivity and enhanced separation of the photogenerated carriers at the BaTiO3/Cu2O interface. The experimental results and first

  15. Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature

    NASA Astrophysics Data System (ADS)

    Mori, K.; Takeuchi, H.; Narita, F.

    2018-03-01

    The energy harvesting characteristics of piezoelectric/copper (BaTiO3/Cu) laminates rising from sharp temperature changes were investigated both numerically and experimentally. First, a phase field simulation was performed to determine the temperature-dependent piezoelectric coefficient and permittivity values. Then, the output voltages of the BaTiO3/Cu laminates were calculated for variations from room temperature to either a cryogenic temperature (77 K) or a higher temperature (333 K) using a 3D finite element simulation with the properties calculated from the phase field simulation. Finally, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured for the same temperature changes and were compared to the simulation results.

  16. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing.

    PubMed

    Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping

    2017-01-01

    A coagulation-flocculation as pre-treatment combined with mFe/Cu/O 3 (CF-mFe/Cu/O 3 ) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al 2 (SO 4 ) 3 ·18H 2 O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O 3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O 3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O 3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O 3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O 3 process was about 1.83 USD t -1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Electronic Structure of TlBa2CaCu2O(7-Delta)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1997-01-01

    The core levels of TlBa2CaCu2O(7-delta) (Tl-1212) epitaxial films have been measured with X-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin-tin-orbital band-structure method and measured with XPS. The calculations show that a van Hove singularity (VHS) lies above the Fermi level (E(sub F)) for the stoichiometric compound (delta = 0.5), while for 50% oxygen vacancies in the Tl-O layer (delta = 0.5) E(sub F) is in close proximity to the VHS. Samples annealed in nitrogen (to reduce the hole overdoping by the removal of oxygen) exhibit higher core-level binding energies and a higher T(sub c), consistent with a shift of E(sub F) closer to the VHS. Comparisons are made to the core levels and valence bands of Tl2Ba2CaCu2O(8 + delta)(Tl-2212) and HgBa2CaCu2O)6 + delta) (Hg- 1212). The similarity of the Cu 2p(sub 3/2) spectra for Tl-1212 and Tl-2212 indicates that the number of Tl-O layers has little effect on the Cu-O bonding. However, the Tl-1212 and Hg-1212 Cu 2p(sub 3/2) signals exhibit differences which suggest that the replacement of T(sup 3+) with Hg(sup 2+) results in a decrease in the O 2p right arrow Cu 3d charge-transfer energy and differences in the probabilities of planar vs apical oxygen charge transfer and/or Zhang-Rice singlet-state formation. Differences between the Tl-1212 and the Tl-2212 and Hg-1212 measured valence bands are consistent with the calculated Cu 3d and (Tl,Hg) 6s/5d partial densities of states.

  18. Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi

    1989-04-01

    Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.

  19. Liquidus Diagram of the Ba-Y-Cu-O System in the Vicinity of the Ba2YCu3O6+x Phase Field

    PubMed Central

    Wong-Ng, Winnie; Cook, Lawrence P.

    1998-01-01

    This paper describes the melting equilibria in the vicinity of the high Tc phase Ba2YCu3O6+x, including evidence for two Ba-Y-Cu-O immiscible liquids. Melting equilibria have been investigated in purified air using a combination of differential thermal analysis (DTA), thermogravimetric analysis (TGA), powder x-ray diffraction (XRD), MgO wick entrapment of liquid for analysis, scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDS), and hydrogen reduction for determination of copper oxidation state. For relatively barium-rich compositions, it was necessary to prepare the starting materials under controlled atmosphere conditions using BaO. A liquidus diagram was derived from quantitative data for the melts involved in various melting reactions. In general the 1/2(Y2O3) contents of the melts participating in these equilibria were low (mole fraction <4 %). The primary phase field of Ba2YCu3O6+x occurs at a mole fraction of <2.0 % 1/2Y2O3 and lies very close along the BaO-CuOx edge, extending from a mole fraction of ≈43 % CuO to a mole fraction of ≈76 % CuO. It is divided by a liquid miscibility gap and extends on either side about this gap. The topological sequence of melting reactions associated with the liquidus is presented as a function of temperature. Implications for the growth of Ba2YCu3O6+x crystals are discussed. PMID:28009382

  20. Synthesis and Characterization of an Earth-Abundant Cu2BaSn(S,Se)4 Chalcogenide for Photoelectrochemical Cell Application.

    PubMed

    Shin, Donghyeop; Ngaboyamahina, Edgard; Zhou, Yihao; Glass, Jeffrey T; Mitzi, David B

    2016-11-17

    Cu 2 BaSnS 4-x Se x films consisting of earth-abundant metals have been examined for photocathode application. Films with different Se contents (i.e., Cu 2 BaSnS 4-x Se x with x ≤ 2.4) were synthesized using a cosputter system with post-deposition sulfurization/selenization annealing treatments. Each film adopts a trigonal P3 1 crystal structure, with progressively larger lattice constants and with band gaps shifting from 2.0 to 1.6 eV, as more Se substitutes for S in the parent compound Cu 2 BaSnS 4 . Given the suitable bandgap and earth-abundant elements, the Cu 2 BaSnS 4-x Se x films were studied as prospective photocathodes for water splitting. Greater than 6 mA/cm 2 was obtained under illumination at -0.4 V versus reversible hydrogen electrode for Pt/Cu 2 BaSnS 4-x Se x films with ∼60% Se content (i.e., x = 2.4), whereas a bare Cu 2 BaSnS 4-x Se x (x = 2.4) film yielded ∼3 mA/cm 2 at -0.4 V/RHE.

  1. Structure and magnetism of Fe-doped BaSnO 3 thin films

    DOE PAGES

    Alaan, Urusa S.; N’Diaye, Alpha T.; Shafer, Padraic; ...

    2017-02-28

    BaSnO 3 is an excellent candidate system for developing a new class of perovskite-based dilute magnetic semiconductors. Here in this study, we show that BaSn 0.95Fe 0.05O 3 can be grown from a background pressure of ~2×10-3 mTorr to oxygen pressures of 300 mTorr with high crystallinity and excellent structural quality. When grown in vacuum, the films may be weakly ferromagnetic with a nonzero x-ray magnetic circular dichroism signal on the Fe L 3 edge. Growth with oxygen flow appears to suppress magnetic ordering. Even for very thick films grown in 100 mTorr O 2, the films are paramagnetic. Finally,more » the existence of ferromagnetism in vacuum-grown BaSnO 3 may be attributed to the F-center exchange mechanism, which relies on the presence of oxygen vacancies to facilitate the ferromagnetism. However, other possible extrinsic contributions to the magnetic ordering, such as clusters of Fe 3O 4 and FeO or contamination can also explain the observed behavior.« less

  2. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba{sub 2}FePnSe{sub 5} (Pn=Sb, Bi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    Two new barium iron pnictide–selenides, Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba{sub 3}FeS{sub 5} and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, respectively. According to differential scanning calorimetry, Ba{sub 2}FePnSe{sub 5} compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations revealmore » strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba{sub 2}FeSbSe{sub 5} and 79(2) K for Ba{sub 2}FeBiSe{sub 5}. The magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Graphical abstract: In Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} the magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Highlights: • New compounds Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} have been synthesized. • The crystal structure was determined by single crystal X-ray diffraction. • Both compounds melt congruently at temperatures above 1000 K. • Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} exhibit AFM ordering at 58 K (Sb) and 70 K (Bi). • Magnetic exchange between Fe{sup 3+} is mediated by either Se–Sb(Bi)–Se or Se–Ba–Se bridges.« less

  3. Positron annihilation study of Y 1- xPr xBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Zhao, Y. G.; Cao, B. S.; Yu, W. Z.; Du, Z. H.; Wang, Y. J.; Luo, C. Y.; Hu, H.; Wang, S.; Yang, J. H.; He, A. S.; Gu, B. L.

    1995-02-01

    A positron annihilation study of Y 1- xPr xBa 2Cu 3O 7 was performed. The results showed that charge transfer between the CuO 2 planes and 1D CuO chains upon Pr doping, as proposed in the literature, did not occur. Pr doping suppressed the anomaly of positron annihilation lifetime near and below Tc which has been observed in YBa 2Cu 3O 7. The perfection of the 1D CuO chains was reduced by Pr doping and this may be partly responsible for the increase of resistivity with Pr doping, and finally the semiconducting behaviour of DC resistivity in Y 1- xPr xBa 2Cu 3O 7 with x > 0.6.

  4. Theoretical and experimental studies on wide-band-gap p-type conductive BaCuSeF and related compounds

    NASA Astrophysics Data System (ADS)

    Sakakima, Hiroshi; Nishitani, Mikihiko; Yamamoto, Koichi; Wada, Takahiro

    2015-08-01

    BaCuSeF and related compounds, MCuQF (M = Ba, Sr; Q = Se, S), are known to show p-type conduction. The formation energies of the Cu vacancy ΔH[VCu] in a MCuQF system were computed by first-principles calculation with a generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional as an electron exchange and correlation functional. The density of states (DOS) of BaCuSeF was calculated with the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE) 06. ΔH[VCu] was found to be very small under both the Cu- and Q-rich conditions, which probably contributes to p-type conduction. The electronic structure of BaCuSeF was studied by X-ray photoelectron spectroscopy (XPS) with UV photoelectron yield spectroscopy (UVPYS) and photoemission yield spectroscopy (PYS). The determined depth of the top of the valence band relative to the vacuum level was about 4.9 eV. This value is desirable for applications in compound semiconductor thin-film tandem solar cells since the absorbers of polycrystalline thin-film solar cells, such as CdTe and Cu(In,Ga)Se2, are p-type semiconductors. The DOS of BaCuSeF calculated with the HSE06 functional was almost consistent with the XPS spectrum.

  5. [Effect of Eu(Pr) substitution at Ba sites on microstructure and superconductivity in EuBa2Cu3O7-delta ceramics].

    PubMed

    Peng, Zhen-sheng; Wang, Zhi-he

    2004-04-01

    Ceramics of Eu1+xBa2-xCu3O7-delta with x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and EuBa2-xPrxCu3O7-delta with x=0.0, 0.05, 0.1, 0.2, 0.3, 0.4 have been synthesized and investigated by X-ray diffraction, resistivity, and Raman spectroscopy. The results show that the transition of crystal structure from orthorhombic to tetragonal occurs and the criticaltemperature decreases withthe increase in doping concentration x. The Raman spectra show that the frequency of the Cu(1)-O(4) stretching mode andthe Cu(2)-(2, 3) out-of-phase mode shifts to higher wave number with increasing doping concentration x.

  6. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  7. Structure study of Ba 2CeCu 3O 7.4

    NASA Astrophysics Data System (ADS)

    Chen, Gao; Hsin, Wang; Tingzhu, Cheng; Ying, Liu; Wenhan, Liu; Yitai, Qian; Zhuyao, Chen

    1989-05-01

    Single phase Ba 2CeCu 3O 7.4 was prepared. EXAFS, X-ray diffraction and plasma spectroscopy measurements were performed. A structure model with the cell parameter: a=6.208 Å, b=6.232 Å and c=8.759 Å is proposed based on these experiments. The lack of superconductivity in this system may be caused by the entrance of Ce +4 in Cu-site and the formation of asymmetric [CuO 2] plane.

  8. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  9. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less

  10. Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Cao, Xingzhong; Cheng, Guodong; Lian, Xiangyu; Zhu, Te; Zhang, Peng; Yu, Runsheng; Wang, Baoyi

    2018-04-01

    We have studied the effect of isothermal annealing on the evolution of the open-volume defect and the Cu precipitate in deformed Fe0.15Cu, Fe0.3Cu and Fe0.6Cu alloys. Using the coincidence Doppler broadening, positron annihilation lifetime and the S-W couples, the evolution of local electronic circumstance around the annihilation sites, open-volume defects and interaction between open-volume defects and Cu precipitates were measured as a function of the isothermal annealing temperatures. Cold rolling deformation induced an obvious increment in S parameters due to the formation of open-volume defects. Annealing not only resulted in gradual recovery of open-volume defects and Cu thermal precipitation, but also promoted the combination and interaction between defects and Cu precipitates. The interaction between open-volume defects and Cu precipitates was revealed clearly by the view point of S-W relationship. The S-W interaction for the different CumVn complexes was also calculated theoretically by MIKA-Doppler, which supports our experimental observations qualitatively. The results indicate that open-volume defects were formed first after cold rolling, followed by the Cu precipitation and recovery of open-volume defects, Cu precipitates recovered at the end. It is interesting that the trajectory of (S, W) points with increasing annealing temperature formed a similar closed "Parallelogram" shape. It is benefit for revealing the behavior of Cu thermal precipitation and their evolution in various Cu-bearing steels under thermal treatment. In addition, we also investigated the Cu content effect on the Cu precipitation in FeCu alloys, and the Cu precipitate phenomenon was enhanced in higher Cu content alloys.

  11. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    NASA Astrophysics Data System (ADS)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  12. Defect Chemistry of " BaCuO2" I. Oxygen Non -Stoichiometry, Cation Molecularity and X-ray Diffraction Determinations

    NASA Astrophysics Data System (ADS)

    Spinolo, G.; Anselmi-Tamburini, U.; Arimondi, M.; Ghigna, P.; Flor, G.

    1995-11-01

    "BaCuO2" is the key intermediate in the synthesis of the Ba2YCu3O7-δ superconductor. Its very complex crystal structure is able to accommodate a large change in oxygen content. Oxygen non-stoichiometry of "BaCuO2" materials with 1:1 and 88:90 (Ba :Cu) molecularity has been investigated by polythermal X-ray powder diffraction coupled with isobaric-isothermal gravimetry determinations under different temperature and oxygen partial pressure conditions [300≤ T≤ 820 °C, 1 ≥ P(O2) ≥ 3 • 10-3 atm]. The 1:1 composition does not give well reproducible results, thus suggesting its polyphasic nature, at least in part of the investigated range. The results for the 88:90 ≅ 0.98 (Ba :Cu) composi­ tion are well reproducible and show that the material is single phase. Ba0.98CuO1.98 + δ is oxygen over-stoichiometric in the whole investigated [T, P(O2)] range, with a maximum value δ˜0.21. A Rietveld X-ray profile fitting is in agreement with previous single-crystal data. The trend of δ vs. P(O2) is consistent with the presence of oxygen interstitial defects on (possibly different) crystallographic sites.

  13. Indication of Confirmation of Transition and Formation Boundary from Ordered to Disordered Flux Vortex Chain State in High-Tc Superconductors Y1Ba2Cu3O7- δ and Bi2Sr2Ca2Cu3O10 and New Low-Field Data Delineating Magnetic Transition in Gd1Ba2(Fe0.02Cu0.98)3O7- δ

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. Christopher; Chen, Michaeline F.; Burke, Terence; Rosen, Carol

    1996-08-01

    Data are presented herein that support a phase boundary or quasi-phase-boundary delineating in Y1Ba2Cu3O7-δ and in Bi2Sr2Ca2Cu3O10 ceramic materials a transition from a vortex solid lattice to a line-flux disordered state that has been referred to as representing flux lattice melting to a flux liquid, but herein is interpreted not in terms of a liquid but in the form of a less-mobile `polymer'-like or entangled chain species. These data are derived from electrical resistance (r) versus applied magnetic field (H) measurements at various isotherms (T) corresponding to the zero resistance state of yttrium--barium--cuprate, and the mixed state foot regime of bismuth--strontium--calcium--cuprate. We interpret significant slope changes in r versus B at constant T in these materials to be indicative of the H-T conditions for a second-order or weakly first-order phase transition delineating the disordering of a flux lattice vortex solid. We believe that this technique is in ways more direct and at least as accurate as the conventional mechanical oscillator and vibrating magnetometer method to study the flux state. Additional very-low-field studies in Gd1Ba2(Fe0.02Cu0.98)3O7-δ, from 1 to 1000 mT, yield indication for what appears to be a magnetic transition at ca. 77 K at 575 mT, and possibly a second transition at 912 mT (also at ca. 77 K). These data points correspond well with the extrapolated low-field experimental magnetic phase transition boundary curve described at higher field herein (and by others using the mechanical technique), and also correspond well to theoretically predicted work regarding transition involving the vortex state.

  14. Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites

    NASA Astrophysics Data System (ADS)

    Bai, Dezhong; Feng, Huixia; Chen, Nali; Tan, Lin; Qiu, Jianhui

    2018-07-01

    In this paper, we introduced attapulgite (ATP) into the system of ferrite composites for the first time. By sol-gel self-propagating combustion method, attapulgite/barium ferrite (ATP/BaFe12O19) was prepared, and then ternary composites of attapulgite/barium ferrite/polyaniline (ATP/BaFe12O19/PANI) were obtained by in-situ oxidative polymerization of aniline on ATP/BaFe12O19 mixture. The phase composition, morphology and electromagnetic properties of the as-prepared composites were characterized by X-ray diffraction (XRD), Transmission election microscope (TEM), Fourier transform infrared (FTIR), vibrating sample magnetometer (VSM) and vector network analyzer (VNA). We found that the ATP/BaFe12O19/PANI composites at a thickness of 2 mm have the minimum reflection loss of -11.89 dB at 11.28 GHz, besides the effective absorption bandwidth (less than -5 dB) reached 6.39 GHz (from 8.42 GHz to 14.81 GHz).

  15. Ba2F2Fe2+ 0.5Fe3+ S3: a two-dimensional inhomogeneous mixed valence iron compound.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2008-03-03

    The structure of the new mixed valence compound Ba2F2Fe1.5S3 was solved by means of single crystal X-ray analysis. It crystallizes in an orthorhombic cell, in the Pnma space group with the cell parameters a = 12.528(3) A, b = 18.852(4) A, and c = 6.0896(12) A. The structure is formed by the alternated stacking of fluorite type [Ba2F2]2+ blocks and the newly discovered [Fe1.5S3]2- blocks. This [Fe1.5S3]2- block exhibits a mixed valence of iron with Fe(+II) located in octahedrons and Fe(+III) in tetrahedrons. Preliminary susceptibility measurements suggest a low dimensional antiferromagnetic behavior.

  16. Magnetic moment evolution and spin freezing in doped BaFe2As2

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Ishii, Kenji; ...

    2017-08-14

    Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe 2As 2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe 2As 2, as well as the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.

  17. The important role of polyvinylpyrrolidone and Cu on enhancing dechlorination of 2,4-dichlorophenol by Cu/Fe nanoparticles: Performance and mechanism study

    NASA Astrophysics Data System (ADS)

    Fang, Liping; Xu, Cuihong; Zhang, Wenbin; Huang, Li-Zhi

    2018-03-01

    The important role of polyvinylpyrrolidone (PVP) and Cu on the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) by Cu/Fe bimetal nanoparticles has been investigated. The synthesized PVP coated Cu/Fe bimetal nanoparticles with different Cu/Fe ratios were systematically characterized by FTIR, XRD, TEM and magnetic hysteresis loops. The Cu/Fe ratio and the PVP loading were optimized for dechlorination performance, and the optimum ratio of PVP to Cu/Fe was found to be 0.35 and the content of Cu in Cu/Fe nanoparticles was 41%. The presence of PVP as a dispersant/stabilizer results in a highly-dispersed Cu/Fe NPs and increase the reactivity of Cu/Fe NPs for 2,4-DCP removal. The dechlorination rate was enhanced at lower pH and higher temperature conditions. The presence of humic acid, PO43-, NO3-, SO42- leads to a slightly decreased removal efficiency of 2,4-DCP. The magnetic property of PVP-Cu/Fe nanoparticles allows rapid magnetic separation of the catalysts after reaction. A galvanic corrosion model was proposed where iron corrodes and transfers electrons to Cu-rich catalytic regions of the nanoparticles, and finally accelerating the reduction efficiency of 2,4-DCP.

  18. Comparative study of flux pinning, creep and critical currents between YBaCuO crystals with and without Y2BaCuO5 inclusions

    NASA Technical Reports Server (NTRS)

    Murakami, Masato; Gotoh, Satoshi; Fujimoto, Hiroyuki; Koshizuka, Naoki; Tanaka, Shoji

    1991-01-01

    In the Y-Ba-Cu-O system, YBa2Cu3O(x) phase is produced by the following peritectic reaction: Y2BaCuO5 + liquid yields 2YBa2Cu3O(x). Through the control of processing conditions and starting compositions, it becomes possible to fabricate large crystals containing fine Y2BaCuO5(211) inclusions. Such crystals exhibit Jc values exceeding 10000 A/sq cm at 77 K and 1T. Recently, researchers developed a novel process which can control the volume fraction of 211 inclusions. Elimination of 211 inclusions is also possible. In this study, researchers prepared YBaCuO crystals with and without 211 inclusions using the novel process, and compared flux pinning, flux creep and critical currents. Magnetic field dependence of Jc for YBaCuO crystals with and with 211 inclusions is shown. It is clear that fine 211 inclusions can contribute to flux pinning. It was also found that flux creep rate could be reduced by increasing flux pinning force. Critical current density estimates based on the conventional flux pinning theory were in good agreement with experimental results.

  19. Interfacial magnetic coupling in hetero-structure of Fe/double-perovskite NdBaMn2O6 single crystal

    NASA Astrophysics Data System (ADS)

    Lin, W. C.; Tsai, C. L.; Ogawa, K.; Yamada, S.; Gandhi, Ashish C.; Lin, J. G.

    2018-04-01

    The interfacial magnetic coupling between metallic Fe and the double-perovskite NdBaMn2O6 single crystal was investigated in the heterostructure of 4-nm Pd/10-nm Fe/NdBaMn2O6. A considerable magnetic coupling effect was observed in the temperature range coincident with the magnetic phase transition of NdBaMn2O6. When the temperature was elevated above 270 K, NdBaMn2O6 transformed from a state of antiferromagnetic fluctuating domains to a superparamagnetism-like (ferromagnetic fluctuation) state with high magnetic susceptibility. Concurrently, the interfacial magnetic coupling between the Fe layer and the NdBaMn2O6 crystal was observed, as indicated by the considerable squareness reduction and coercivity enhancement in the Fe layer. Moreover, the presence of the Fe layer changed the magnetic structure of NdBaMn2O6 from conventional 4-fold symmetry to 2-fold symmetry. These observations offer applicable insights into the mutual magnetic interaction in the heterostructures of metallic ferromagnetism/perovskite materials.

  20. Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations

    NASA Astrophysics Data System (ADS)

    Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.

    2018-04-01

    The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.

  1. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  2. Selective Metal Exsolution in BaFe 2-yMy(PO 4) 2 (M = Co 2+, Ni 2+) Solid Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcover, Ignacio Blazquez; Daviero-Minaud, Sylvie; David, Rénald

    2015-08-19

    The 2D-Ising ferromagnetic phase BaFe 2+ 2(PO 4) 2 shows exsolution of up to one-third of its iron content (giving BaFe 3+ 1.33(PO 4) 2) under mild oxidation conditions, leading to nanosized Fe 2O 3 exsolved clusters. Here we have prepared BaFe 2–yMy(PO 4) 2 (M = Co 2+, Ni 2+; y = 0, 0.5, 1, 1.5) solid solutions to investigate the feasibility and selectivity of metal exsolution in these mixed metallic systems. For all the compounds, after 600 °C thermal treatment in air, a complete oxidation of Fe 2+ to Fe 3+ leaves stable M 2+ ions, as verifiedmore » by 57Fe Mössbauer spectroscopy, TGA, TEM, microprobe, and XANES. Furthermore, the size of the nanometric α-Fe 2O 3clusters coating the main phase strongly depends on the y M metal concentration. For M-rich phases the iron diffusion is hampered so that a significant fraction of superparamagnetic α-Fe2O3 particles (100% for BaFe 0.5–xCo 1.5(PO 4) 2) was detected even at 78 K. Although Ni 2+and Co 2+ ions tend to block Fe diffusion, the crystal structure of BaFe 0.67Co 1(PO 4) 2demonstrates a fully ordered rearrangement of Fe 3+ and Co 2+ ions after Fe exsolution. We found that the magnetic behaviors of the Fe-depleted materials are mostly dominated by antiferromagnetic exchange, while Co 2+-rich compounds show metamagnetic transitions reminiscent of the BaCo 2(PO 4) 2 soft helicoidal magnet.« less

  3. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A., E-mail: paschoal.william@gmail.com

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{supmore » (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.« less

  4. Strain induced enhancement of magnetization in Ba{sub 2}FeMoO{sub 6} based heterostructure with (Ba{sub x}Sr{sub 1-x})TiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyeong-Won; Norton, David P.; Ghosh, Siddhartha, E-mail: ghoshsid@gmail.com

    2016-05-14

    High quality epitaxial Ba{sub 2}FeMoO{sub 6} thin films and Ba{sub 2}FeMoO{sub 6}–(Ba{sub x}Sr{sub 1−x})TiO{sub 3} bi-layer (BL) and superlattice (SL) structures were grown via pulsed laser deposition under low oxygen pressure, and their structural, magnetic, and magneto-transport properties were examined. Superlattice and bi-layer structures were confirmed by X-ray diffraction patterns. Low temperature magnetic measurement shows that the saturation magnetization (M{sub S}) is significantly higher for SLs and almost similar or lower for BLs, when compared to phase pure Ba{sub 2}FeMoO{sub 6} thin films. The variation of the coercive field (H{sub C}) follows exact opposite trend, where BL samples have highermore » H{sub C} and SL samples have lower H{sub C} than pure Ba{sub 2}FeMoO{sub 6} thin films. Also, a significant decrease of the Curie temperature is found in both BL and SL structures compared to pure Ba{sub 2}FeMoO{sub 6} thin films. Negative magneto-resistance is seen in all the BL and SL structures as well as in pure Ba{sub 2}FeMoO{sub 6} thin films. In contrast to the magnetic properties, the magneto-transport properties do not show much variation with induced strain.« less

  5. A new series of oxycarbonate superconductors (Cu(0.5)C(0.5))(m)Ba(m+1)Ca(n-1)Cu(n)O2(m+n)+1

    NASA Technical Reports Server (NTRS)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1995-01-01

    We found a new series of oxycarbonate superconductors in the Ba-CaCu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu(0.5)C(0.5)(m)Ba(m+1)Ca(n-1)Cu(n)O2)((m+n)+1) ((Cu,C)-m(m+1)(n-1)n). Thus far, n = 3, 4 members of the m = 1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n = 4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m = 2 series. (Cu,C)-1223 shows superconductivity below 67 K while T(sub c)'s of other compounds are above 110 K. In particular, (Cu,C)-1234 has the highest T(sub c) of 117 K.

  6. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  7. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  8. Site-selective doping and superconductivity in (La1-yPry)(Ba2-xLax)Cu3O7+δ

    NASA Astrophysics Data System (ADS)

    Mitzi, D. B.; Feffer, P. T.; Newsam, J. M.; Webb, D. J.; Klavins, P.; Jacobson, A. J.; Kapitulnik, A.

    1988-10-01

    Samples in the quaternary system (La1-yPry)(Ba2-xLax)Cu3O7+δ have been prepared and characterized using x-ray and neutron diffraction, thermogravimetric analysis, and transport and magnetic measurements. Pr substitutes on the oxygen-depleted La layers for y>0.0, while La substitutes on the Ba sites for x>0.0. The effect of doping on each site is inferred to be primarily local, affecting immediately adjacent Cu-O layers. The similar suppression of superconductivity that accompanies doping on each of the two distinct sites apparently correlates with the degree of oxidation of the Cu-O sheets (and not the chains), indicating that the sheets support the high temperature superconductivity. Comparison of orthorhombic and tetragonal samples with similar Ba:La ratios (and y=0) demonstrates that the orthorhombic phase yields the largest Meissner signals and highest transition temperatures in the La(Ba2-xLax)Cu3O7+δ system. The effect on superconductivity of oxygen-vacancy configuration in the Cu-O chain layers is proposed to derive, indirectly, from their influence on the Cu-O sheets. In addition, optimally superconducting La(Ba2-xLax)Cu3O7+δ samples exhibit interesting normal-state magnetic properties, with a paramagnetic susceptibility that decreases steadily with temperature between 350 K and Tc.

  9. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.

    1992-09-01

    Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.

  10. Effect of soil parameters on the kinetics of the displacement of Fe from FeEDDHA chelates by Cu.

    PubMed

    Schenkeveld, Walter D C; Reichwein, Arjen M; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2012-06-28

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is codetermined by the kinetics of the displacement reaction. In this study, the influence of soil parameters on the displacement kinetics has been examined in goethite suspensions. The displacement reaction predominantly takes place on the reactive surface rather than in solution. The rate at which the o,o-FeEDDHA concentration declined depended on the available reactive surface area, the Cu loading, and the FeEDDHA loading. Soil factors reducing FeEDDHA adsorption (high ionic strength, humic acid adsorption onto the goethite surface, and monovalent instead of divalent cations in the electrolyte) decreased the displacement rate. For meso o,o-FeEDDHA, the displacement rate equation was derived, which is first order in FeEDDHA loading and half order in Cu loading. For soil conditions, the equation can be simplified to an exponential decay function in meso o,o-FeEDDHA solution concentration.

  11. Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3

    NASA Astrophysics Data System (ADS)

    Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.

    2015-05-01

    We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.

  12. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  13. Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-07-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.

  14. Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.

    1995-01-01

    The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.

  15. Investigation de l'anisotropie du gap supraconducteur dans les composes Ba(Fe(1-x)Co(x))2As2, Ba(1-x)K(x)Fe2As2, LiFeAs et Fe1-deltaTe(1-x)Se(x)

    NASA Astrophysics Data System (ADS)

    Reid, Jean-Philippe

    ommaire La structure du gap supraconducteur et sa modulation sont intimement liees au potentiel d'interaction responsable de l'appariement des electrons d'un supraconducteur. Ainsi, l'etude de la structure du gap-SC et de sa modulation permettent de faire la lumiere sur la nature du mecanisme d'appariement des electrons. A cet egard, les resultats experimentaux des supraconducteurs a base de fer ne cadrent pas dans un seul ensemble, ce qui est en opposition au gap-SC universel des cuprates. Dans ce qui suit, nous presenterons une etude systematique du gap-SC pour plusieurs pnictides. En effet, en utilisant la conductivite thermique, une sonde directionnelle du gap-SC, nous avons ete en mesure de reveler la structure du gap-SC pour les composes suivants : Ba1-xKxFe 2As2, Ba(Fe1-xCo x)2As2, LiFeAs et Fe1-deltaTe 1-xSex. L'etude de ces quatre composes, de trois differentes familles structurales, a pu etablir un tableau partiel mais tres exhaustif de la structure du gap-SC de pnictides. En effet, tel qu'illustre dans cette these, ces quatre composes ne possedent aucun noeud dans leur structure du gap-SC a dopage optimal. Toutefois, a une concentration differente de celle optimale pour les composes K-Ba122 et Co-Ba122, des noeuds apparaissent sur la surface de Fermi, aux extremites 'du dome supraconducteur. Ceci suggere fortement que, pour ces composes, la presence de noeuds sur la surface de Fermi est nuisible a la phase supraconductrice. Mots-cles: Supraconducteurs a base de fer, Pnictides, Structure du gap supraconducteur, Conductivite thermique

  16. Structural, dielectric and ferroelectric studies of BZT doped Mg0.2Cu0.3Zn0.5Fe2O4 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Parveez, Asiya; Giridharan, N. V.; Sankarappa, T.

    2018-05-01

    The composites of ferrite-ferroelectric system (x) Mg0.2Cu0.3Zn0.5Fe2O4+ (1-x) Ba0.8Zr0.2TiO3 (x=15%, 30%, 45%) were synthesized by sintering mixtures of ferroelectric Ba0.8Zr0.2TiO3 (BZT) and ferrite component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The ferroelectric properties of synthesized composites were analyzed using a Precision ferroelectric tester. It is observed that the composites exhibited ferroelectric hysteresis with wide loops indicating lossy nature of composites.

  17. Elemental fractionation and magnetic properties of melt-based Y1Ba2Cu3Oz containing excess Tb or Pt

    NASA Technical Reports Server (NTRS)

    Hojaji, Hamid; Barkatt, Aaron; Hu, Shouxiang; Michael, Karen A.; Thorpe, Arthur N.; Talmy, Inna G.; Haught, Debbie A.; Alterescu, Sidney

    1990-01-01

    Scanning electron microscopy of certain partially melted Y-Ba-Cu-O materials containing minority metal oxide species (Y:Tb:Ba:Cu = 1:0.1:2:3 or Y:Ba:Cu with Pt impurities), accompanied by both EDX and EMP analysis, indicates that the minority species (Tb or Pt) is quantitatively concentrated in a relatively small number of 123-type grains. High magnetic susceptibility and magnetization observed for these materials indicate that such elemental distribution is not detrimental to superconducting behavior.

  18. Characteristics of B2O3 and Fe added into BaFe12O19 permanent magnets prepared at different milling time and sintering temperature

    NASA Astrophysics Data System (ADS)

    Sebayang, Perdamean; Sari, Ayu Yuswita; Ginting, Delovita; Allan, Yola; Nasruddin M., N.; Sebayang, Kerista

    2016-02-01

    The objective of present work is to investigate the characteristic of BaFe12O19, B2O3-BaFe12O19 and Fe-BaFe12O19 magnets fabricated at different milling time and sintering temperature. The characteristic of perrmanen magnet BaFe12O19 with different content of B2O3 and Fe which was fabricated at different milling time and sintering temperature were investigated. The powder mixtures were prepared by dry and wet milling at various milling time. The powder were mixtured and prepared by dry and wet milling at various milling time. The mixture powder was then compacted by anisotropic with compressive pressure of 50 N/cm2. The green bodies were sinter at 1050, 1100, 1150 and 1200°C and hold for 1 h, separately. The density, magnetic flux density and B-H curve were measured by Archimedes principle, Gauss meter and Permagraph, respectively. The microstructure and phase composition characterization were performed by SEM and XRD. The results of this study are presented in this paper. It shows that addition of Fe (in wet milling) and B2O3 (in dry milling) respectively give a potential benefit to reduce the sintering temperature and improve the magnetic flux density of barium hexaferrite.

  19. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  20. Electronic phase diagram of disordered Co doped BaFe2As2-δ

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.

    2013-02-01

    Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.

  1. Superconductivity in (Cu 0.5Tl 0.25Li 0.25)Ba 2Ca 2Cu 3- ySi yO 10- δ samples

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Qasim, Irfan; Khurram, A. A.

    2010-07-01

    The (Cu 0.5Tl 0.25Li 0.25)Ba 2Ca 2Cu 3- ySi yO 10- δ ( y = 0, 0.25 0.5, 0.75, 1.0, 1.25) superconductor samples have been prepared by solid-state reaction method. The critical temperature and as well as the magnitude of diamagnetism is increased up to Si concentration y = 1.0, however, from the doping level y = 1.25 a decrease in the critical temperature along with the vanishing of the diamagnetism was observed. The carrier's in the conducting CuO 2/SiO 2 planes were optimized by carrying out post-annealing in oxygen and an increase in the critical temperature was observed in all Si doped samples. The doping efficiency of Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in (Cu 0.5Tl 0.25Li 0.25)Ba 2Ca 2Cu 3- ySi yO 10- δ ( y = 0, 0.25 0.5, 0.75, 1.0, 1.25) samples is enhanced by doping Li +1 ion; as alkali metals are known to easily loose their outer most electron which could be supplied to CuO 2/SiO 2 conducting planes and would suppress the anti-ferromagnetism in the inner conducting planes. The FTIR absorption measurements have provided an indirect evidence of Si substitution at in CuO 2 planes.

  2. Tin doped PrBaFe 2O 5+δ anode material for solid oxide fuel cells

    DOE PAGES

    Dong, Guohui; Yang, Chunyang; He, Fei; ...

    2017-04-25

    Ceramic anodes have many advantages over cermet anodes for solid oxide fuel cells. We report the synthesis and characterization of Sn doped double perovskite PrBaFe (2-x)Sn xO 5+δ (x = 0–0.3) anode materials. Different crystal structures were observed depending on the Sn doping level and gas atmosphere. The materials demonstrated excellent stability in both reducing and redox atmospheres at elevated temperatures. The oxygen content in the as-prepared PrBaFe (2-x)Sn xO 5+δ was nonlinearly correlated to the Sn doping level and reached maximum values around x = 0.1. After the reducing treatment, the oxygen content linearly decreased with increasing Sn dopingmore » level. The electrical conductivity of bulk PrBaFe (2-x)Sn xO 5+δ (x = 0.1) reached 63.6 S cm -1 at 800 °C in humidified hydrogen. At 750 °C, the surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ reached the maximum values of 4.42 × 10 -6 m s -1 and 6.04 × 10 -7 m 2 s -1, respectively, in the reducing process when the Sn doping level was x = 0.1. The activation energies of surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ (x = 0.1) were 0.22 eV and 0.16 eV, respectively, in the reducing process. The area specific resistance of the PrBaFe (2-x)Sn xO 5+δ (x = 0.1) anode was 0.095–0.285 Ω cm 2 from 850–750 °C in humidified hydrogen, better than or comparable to the best ceramic anodes in the literature.« less

  3. Far-infrared study of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals

    NASA Astrophysics Data System (ADS)

    Trajic, J.; Romcevic, M.; Paunovic, N.; Curcic, M.; Balaz, P.; Romcevic, N.

    2018-05-01

    The analysis of the optical properties of mechanochemically synthesized stannite Cu2FeSnS4 nanocrystals has been performed using far-infrared spectroscopy. The Cu2FeSnS4 stannite nanocrystals were synthesized mechanochemically from elemental precursors Cu, Fe, Sn, and S. Milling time was 45, 60, 90 and 120 min. Reflectivity spectra were analyzed using the classical form of the dielectric function, which includes the phonon and the free carrier contribution. The influence of milling time on synthesis of stannite Cu2FeSnS4 is observed. Among the modes that are characteristic for the stannite Cu2FeSnS4, we registered the modes of binary phases of FeS and SnS. The total disappearance of the binary phases of FeS and SnS and forming pure Cu2FeSnS4 is observed when the milling time is 120 min. Effective permittivity of Cu2FeSnS4 and binary phases of FeS and SnS were modeled by Maxwell - Garnet approximation.

  4. Processing, electrical and microwave properties of sputtered Tl-Ca-Ba-Cu-O superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    A reproducible fabrication process has been established for TlCaBaCuO thin films on LaAlO3 substrates by RF magnetron sputtering and post-deposition processing methods. Electrical transport properties of the thin films were measured on patterned four-probe test devices. Microwave properties of the films were obtained from unloaded Q measurements of all-superconducting ring resonators. This paper describes the processing, electrical and microwave properties of Tl2Ca1Ba2Cu2O(x) 2122-plane phase thin films.

  5. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  6. Magnetic analysis of a melt-spun Fe-dilute Cu60Ag35Fe5 alloy

    NASA Astrophysics Data System (ADS)

    Kondo, Shin-ichiro; Kaneko, Kazuhiro; Morimura, Takao; Nakashima, Hiromichi; Kobayashi, Shin-Taro; Michioka, Chishiro; Yoshimura, Kazuyoshi

    2015-04-01

    The magnetic properties of a melt-spun Fe-dilute Cu60Ag35Fe5 alloy are examined by X-ray diffraction, magnetic measurements, and transmission electron microscopy (TEM). The X-ray diffraction patterns show that the as-spun and annealed (773 K×36 ks) samples contain Cu and Ag phases and no Fe phases; thus, most Fe atoms are dispersed as clusters. Magnetic measurements indicate that the as-spun and annealed samples exhibit superparamagnetic behavior at 300 K, whereas ferromagnetic and superparamagnetic behaviors coexist at 4.2 K. The magnetic moments of small clusters at 300 K are determined by the nonlinear least squares method as 5148 and 4671 μB for as-spun and annealed samples, respectively, whereas those at 300 K are experimentally determined as 3500 and 3200 μB. This decrease in magnetic moments may imply the formation of anti-ferromagnetic coupling by annealing. TEM observation of the melt-spun sample suggests that there are three regions with different compositions: Cu-rich, Ag-rich, and Fe-rich with no precipitation in the matrix. In addition, these regions have obscure interfaces. The magnetic clusters are attributed to the Fe-rich regions.

  7. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    NASA Astrophysics Data System (ADS)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  8. Enhanced Photocatalytic Activity in Bi1-x Ba x FeO3 Prepared by a PEG400 Assisted Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Zhang, Chenlan; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong

    2018-03-01

    Ferroelectric Bi1-x Ba x FeO3 nanoparticles for x = 0, 0.01, 0.03, 0.05 and 0.10 were synthesized by a polyethylene glycol 400 (PEG400) assisted sol-gel method. X-ray diffraction reveals that Bi1-x Ba x FeO3 nanoparticles exhibit a distorted rhombohedral structure with the R3c space group, and the diffraction peaks shift upon incorporation of Ba. Transmission electron microscope analysis shows that the particle size of Bi1-x Ba x FeO3 nanoparticles is in the range of 30-60 nm, decreasing with an increase in Ba content. Bi1-x Ba x FeO3 nanoparticles have band gaps in the range of 1.68-2.0 eV, which are capable of responding to visible light irradiation. The rate of the photocatalytic degradation of Bi1-x Ba x FeO3 nanoparticles for x = 0.03 to methyl orange (MO) dye achieves about 81% under visible light irradiation for 3 h, which is higher than that of 66% for pure phase BiFeO3 (BFO). Moreover, the effects of Ba2+ modification on the band gap of BFO crystallites have been investigated and discussed.

  9. Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Zhou, Qingjun; He, Qiang; He, Tianmin

    Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) have been investigated as potential anode materials for solid oxide fuel cells (SOFCs). At room temperature, A 2FeMoO 6- δ compounds crystallize in monoclinic, tetragonal, and cubic structures for A = Ca, Sr, and Ba, respectively. A weak peak observed at around 880 cm -1 in the Raman spectra can be attributed to traces of AMoO 4. XPS has confirmed the coexistence of Fe 2+-Mo 6+ and Fe 3+-Mo 5+ electronic configurations. Moreover, a systematic shift from Fe 2+/3+-Mo 6+/5+ to Fe 2+-Mo 6+ configuration is seen with increasing A-site cation size. A 2FeMoO 6- δ samples display distinct electrical properties in H 2, which can be attributed to different degrees of degeneracy of the Fe 2+-Mo 6+ and Fe 3+-Mo 5+ configurations. Ca 2FeMoO 6- δ is unstable in a nitrogen atmosphere, while Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are stable up to 1200 °C. The thermal expansion coefficients of Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are very close to that of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM). The performances of cells with 300 μm thick LSGM electrolyte, double-perovskite SmBaCo 2O 5+ x cathodes, and A 2FeMoO 6- δ anodes follow the sequence Ca 2FeMoO 6- δ < Ba 2FeMoO 6- δ < Sr 2FeMoO 6- δ. The maximum power densities of a cell with an Sr 2FeMoO 6- δ anode reach 831 mW cm -2 in dry H 2 and 735 mW cm -2 in commercial city gas at 850 °C, respectively.

  10. Electrical-transport properties and microwave device performance of sputtered TlCaBaCuO superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1992-01-01

    The paper describes the processing and electrical transport measurements for achieving reproducible high-Tc and high-Jc sputtered TlCaBaCuO thin films on LaAlO3 substrates, for microelectronic applications. The microwave properties of TlCaBaCuO thin films were investigated by designing, fabricating, and characterizing microstrip ring resonators with a fundamental resonance frequency of 12 GHz on 10-mil-thick LaAlO3 substrates. Typical unloaded quality factors for a ring resonator with a superconducting ground plane of 0.3 micron-thickness and a gold ground plane of 1-micron-thickness were above 1500 at 65 K. Typical values of penetration depth at 0 K in the TlCaBaCuO thin films were between 7000 and 8000 A.

  11. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe3O4 core-shell nanoparticles.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-08-01

    A core-shell nanostructure composed of zero-valent Cu (core) and Fe 3 O 4 (shell) (Cu@Fe 3 O 4 ) was prepared by a simple reduction method and was evaluated for the degradation of oxytetracycline (OTC), an antibiotic. The Cu core and the Fe 3 O 4 shell were verified by X-ray diffractometry (XRD) and transmission electron microscopy. The optimal molar ratio of [Cu]/[Fe] (1/1) in Cu@Fe 3 O 4 created an outstanding synergic effect, leading to >99% OTC degradation as well as H 2 O 2 decomposition within 10min at the reaction conditions of 1g/L Cu@Fe 3 O 4 , 20mg/L OTC, 20mM H 2 O 2 , and pH3.0 (and even at pH9.0). The OTC degradation rate by Cu@Fe 3 O 4 was higher than obtained using single nanoparticle of Cu or Fe 3 O 4 . The results of the study using radical scavengers showed that OH is the major reactive oxygen species contributing to the OTC degradation. Finally, good stability, reusability, and magnetic separation were obtained with approximately 97% OTC degradation and no notable change in XRD patterns after the Cu@Fe 3 O 4 catalyst was reused five times. These results demonstrate that Cu@Fe 3 O 4 is a novel prospective candidate for the pharmaceutical and personal care products degradation in the aqueous phase. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Phase compatibilities of YBa2Cu3O(9-delta) type structure in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Fjellvag, H.; Kjekshus, A.

    1990-01-01

    Electrical transport properties of the oxidic high T(sub c) superconductors are significantly affected by the presence of minor amounts of various elements adventing as impurities, e.g., from the chemical environment during manufacturing. YBa2Cu3O(9-delta) is prone to an extinction of the superconductivity on (partial) substitution of all four elemental components. E.g., Pr (for Y), La (for Ba), Zn (for Cu) or peroxygroup (for O) substituents will alter some of the superconductivity preconditions, like mixed valence state in Cu3O7/O(9-delta) network or structural distortion of the network. Although various pseudoternary chemical equilibrium phase diagrams of the Y(O)-Ba(O)-Cu(O) system now are available, no consensus is generally shown, however, this is partly due to lack of compatible definitions of the equilibrium conditions. Less information is available about the phase compatibilities in the appropriate quaternary phase diagram (including oxygen) and virtually no information exists about any pentenary phase diagrams (including one impurity). Unfortunately, complexity of such systems, stemming both from number of quaternary or pentenary compounds and from visualizing the five-component phase system, limits this presentation to more or less close surroundings of the YBa2Cu3O(9-delta) type phase in appropriate pseudoquaternary or pseudopseudoternary diagrams, involving Y-Ba-Cu and O, O-CO2, alkaline metals, Mg and alkaline earths, and Sc and most of the 3-d and 4-f elements. The systems were investigated by means of x ray diffraction, neutron diffraction and chemical analytical methods on samples prepared by sol-gel technique from citrates. The superconductivity was characterized by measuring the diamagnetic susceptibility by SQUID.

  13. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  14. Atomistic Simulations of Grain Boundary Pinning in CuFe Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zepeda-Ruiz, L A; Gilmer, G H; Sadigh, B

    2005-05-22

    The authors apply a hybrid Monte Carlo-molecular dynamics code to the study of grain boundary motion upon annealing of pure Cu and Cu with low concentrations of Fe. The hybrid simulations account for segregation and precipitation of the low solubility Fe, together with curvature driven grain boundary motion. Grain boundaries in two different systems, a {Sigma}7+U-shaped half-loop grain and a nanocrystalline sample, were found to be pinned in the presence of Fe concentrations exceeding 3%.

  15. Pulsed Laser Deposition Growth of Delafossite (CuFeO2) thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath; Ferrari, Piero; Borisov, Pavel; Cabrera, Alejandro; Lederman, David

    2014-03-01

    Owing to its narrow band gap (<2 eV) and p-type conductivity delafossite CuFeO2 is attractive for applications in the field of solar energy conversion. Obtaining pure phase CuFeO2 thin films, however, is relatively difficult. It is necessary to maintain the lowest possible Cu valency (+1) in order to avoid forming the comparably stable spinel compound CuFe2O4. We present a systematic study of the pulsed laser deposition (PLD) growth conditions for epitaxial (00.1) oriented CuFeO2 thin films on Al2O3 (00.1) substrates. The secondary impurity phase, CuFe2O4, was removed completely by optimizing the growth conditions. RHEED, XRD and TEM showed that the pure phase delafossite films are highly epitaxial to the substrate. The chemical purity was verified by Raman and XPS. The indirect bandgap of 1.15 eV was measured using infrared reflectivity, and is in agreement with the CuFeO2 bulk value. Finally, we discuss the growth and structural characterization of delafossite multilayers, CuFeO2/CuGaO2. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract # 2013-MA-2382) at WVU.

  16. Dynamic levitation performance of Gd-Ba-Cu-O and Y-Ba-Cu-O bulk superconductors under a varying external magnetic field

    NASA Astrophysics Data System (ADS)

    Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.

    2018-07-01

    We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.

  17. Colloidal Synthesis and Thermoelectric Properties of CuFeSe2 Nanocrystals

    PubMed Central

    Zhang, Bing-Qian; Zuo, Yong; Chen, Jing-Shuai; Niu, He-Lin; Mao, Chang-Jie

    2017-01-01

    Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications. PMID:29278381

  18. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe 2As 2

    DOE PAGES

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; ...

    2016-02-12

    Within the BaFe 2As 2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba 1-xTl xFe 2As 2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe 2As 2 (T N = T s = 133 K) increase for x = 0.05 (T N = 138 K, T s = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidencemore » from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (T N = T s = 131 K), and this is due to charge doping. Lastly, we illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.« less

  19. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    PubMed Central

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-01-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism. PMID:26867821

  20. Mechanism insight of pollutant degradation and bromate inhibition by Fe-Cu-MCM-41 catalyzed ozonation.

    PubMed

    Chen, Weirui; Li, Xukai; Tang, Yiming; Zhou, Jialu; Wu, Dan; Wu, Yin; Li, Laisheng

    2018-03-15

    A flexible catalyst, Fe-Cu-MCM-41, was employed to enhance diclofenac (DCF) mineralization and inhibit bromate formation in catalytic ozonation process. Greater TOC removal was achieved in Fe-Cu-MCM-41/O 3 process (78%) than those in Fe-MCM-41/O 3 (65%), Cu-MCM-41/O 3 (73%) and sole ozonation (42%). But it was interesting that both Cu-MCM-41/O 3 and Fe-MCM-41/O 3 achieved 93% bromate inhibition efficiency, only 71% inhibition efficiency was observed in Fe-Cu-MCM-41/O 3 . Influence of pH, TBA/NaHSO 3 and detection of by-products were conducted to explore the mechanism. By Pyridine adsorption-IR and XPS, a relationship was found among activity of catalysts, Lewis acid sites and electron transfer effect between Fe (II/III) and Cu (I/II). Fe-Cu-MCM-41 promoted ozone decomposition to generate OH, which accounted for enhanced DCF mineralization. The consumption of aqueous O 3 also suppressed the oxidative of Br - and HBrO/Br - . More HBrO/BrO - accumulated in catalytic ozonation process and less bromate generated. Bromate formation in Fe-Cu-MCM-41/O 3 process was sensitive with pH value, the acidic condition was not favor for bromate formation. Both DCF mineralization and bromate inhibition were influenced by surface reaction. Moreover, Fe-Cu-MCM-41 showed excellent catalytic performance in suppressing the accumulation of carboxylic acid, especially for oxalic acid. Nearly no oxalic acid was detected during Fe-Cu-MCM-41/O 3 process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Exploring the mechanism and kinetics of Fe-Cu-Ag trimetallic particles for p-nitrophenol reduction.

    PubMed

    Yuan, Yue; Yuan, Donghai; Zhang, Yunhong; Lai, Bo

    2017-11-01

    Preparation conditions of Fe-Cu-Ag trimetallic particles were optimized by single-factor and response surface methodology (RSM) batch experiments to obtain high-reactive Fe 0 -based materials for p-nitrophenol (PNP) removal. Under the optimal conditions (i.e., Fe 0 dosage of 34.86 g L -1 , theoretical Cu mass loading of 81.87 mg Cu/g Fe, theoretical Ag mass loading of 1.15 mg Ag/g Fe, and preparation temperature of 52.1 °C), the actual rate constant (k obs ) of PNP reduction in 5 min was 1.64 min -1 , which shows a good agreement between the model prediction (1.85 min -1 ) of RSM and the experimental data. Furthermore, the high reactivity of Fe 0 -based trimetals was mainly attributed to the plating order of transition metals (i.e., Ag and Cu). Furthermore, we propose a new theory that the pyramid trimetallic structure of Fe-Cu-Ag could improve the electron transport and create active sites with high electron density at the surface (Ag layer) that could enhance the generation of surface-bonded atomic hydrogen ([H] abs ) or the direct reduction of pollutant. Moreover, Fe-Cu-Ag trimetallic particles were characterized by SEM, EDS, and XPS, which also could confirm the proposed theory. In addition, the leached Cu 2+ (<10 μg L -1 ) and Ag + (below detection limits) in Fe-Cu-Ag system could be neglected completely, which suggests that Fe-Cu-Ag is reliable, safe, and environment friendly. Therefore, Fe-Cu-Ag trimetallic system would be promising for the removal of pollutants from industrial wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Crystallographic and magnetic properties of Cu2U-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Kamishima, K.; Tajima, R.; Watanabe, K.; Kakizaki, K.; Fujimori, A.; Sakai, M.; Watanabe, K.; Abe, H.

    2015-02-01

    We have investigated the synthesis conditions, and the magnetic properties of the Cu2U-type hexagonal ferrite, Ba4Cu2Fe36O60. The Cu2U-type hexaferrite was synthesized at the sintering temperature of 1050 °C with the initial composition of Ba4.4Cu2Fe37.6O62.8 (Cu2U+0.2T-block). The saturation magnetizations at 300 K and 5 K are 46.8 A m2/kg and 65.0 A m2/kg, respectively. The Curie temperature is 420 °C which is lower than that of the M-type ferrite (450 °C) but higher than that of the Cu2Y-type ferrite (320 °C). The amount of the nonmagnetic impurity in this sample is estimated to be about 10 wt% by the electron probe micro analysis. We estimated the expected saturation magnetization to be 65.2 A m2/kg, by assuming the model of a Néel-type ferrimagnetic structure and the reduction of magnetization by the 10 wt% nonmagnetic impurity. This is consistent with the observed magnetization of 65.0 A m2/kg at 5 K.

  3. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO 2

    DOE PAGES

    Wuttig, Anna; Krizan, Jason W.; Gu, Jing; ...

    2016-11-14

    Here, we report the tuning of CuFeO 2 photoelectrodes by Mg doping and Cu deficiency to demonstrate the effects of carrier concentration on the photoresponse. Carrier type and concentration were quantitatively assessed using the Hall effect on pure, Mg-incorporated, and Cu-deficient pellets (CuFe 1–xMg xO 2 and Cu 1–yFeO 2, x = 0, 0.0005, 0.005, 0.02, and y = 0.005, 0.02) over the range of thermodynamic stability achievable using solid-state synthesis. The same samples were used in a photoelectrochemical cell to measure their photoresponse. We find that the material with the lowest p-type carrier concentration and the highest carrier mobilitymore » shows the largest photoresponse. Furthermore, we show that increasing the p-type carrier concentration and thus the conductivity to high levels is limited by the delafossite defect chemistry, which changes the majority carrier type from p-type to n-type near the Mg solubility limit (x = 0.05) and at high Cu defect concentrations.« less

  4. Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor

    DOE PAGES

    Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...

    2016-09-02

    We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less

  5. Crystallographic Study of Mixture CeBa1.8Pb0.2Cu3Oy in the Range of 860°C to 940 °C

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Yilmaz, S.; Stergiou, C.

    2007-04-01

    A powder mixture with chemical formula CeBa1.8Pb0.2Cu3Oy was prepared. The mixture was heated in free atmosphere, at temperatures 860°C to 940°C, for 24 to 72h. The samples were measured by X-Ray powder diffraction with CuKa radiation. Each sample was characterized with the help of the PDF and refined, using the Rietveld's ``Powder Profile Analysis''. The first sample (860°C) was identified with the phases: Ba2CeBiO6, CuO and BaCuO2, while all the remaining samples (870°C-940°C) with the phases Ba2CePbO6, CuO and CeO2. The phases Ba2CeBiO6 and Ba2CePbO6 are the main phases with analogous chemical types, but different symmetry. The phase CuO is common in all the samples, while from the remaining phases the BaCuO2 appears only in the first sample and the CeO2 in all, except the first one. The quantity 0.2 of Pb is distributed in the Ba positions, substituting a part of these. The percentages of phases are about 82%, 10% and 8% for the first sample and for all the remaining about 85%, 8% and 7%, respectively with above serious.

  6. Activities in Cu2S-FeS-PbS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eriç, H.; Timuçin, M.

    1981-09-01

    The dew-point method was used to determine the vapor pressures of PbS over liquid sulfides of the system Cu2S-FeS-PbS at 1200 °C. From the PbS activity data, activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations. The systems Cu2S-PbS and Cu2S-FeS exhibit negative departures from ideal behavior, while the FeS-PbS melts are ideal solutions at 1200 °C.

  7. Characterization of Cu buffer layers for growth of L10-FeNi thin films

    NASA Astrophysics Data System (ADS)

    Mizuguchi, M.; Sekiya, S.; Takanashi, K.

    2010-05-01

    A Cu(001) layer was fabricated on a Au(001) layer to investigate the use of Cu as a buffer layer for growing L10-FeNi thin films. The epitaxial growth of a Cu buffer layer was observed using reflection high-energy electron diffraction. The flatness of the layer improved drastically with an increase in the substrate temperature although the layer was an alloy (AuCu3). An FeNi thin film was epitaxially grown on the AuCu3 buffer layer by alternate monatomic layer deposition and the formation of an L10-FeNi ordered alloy was expected. The AuCu3 buffer layer is thus a promising candidate material for the growth of L10-FeNi thin films.

  8. Electronic Structure of Tl2Ba2CuO(6+Delta) Epitaxial Films Measured by X-Ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Ren, Z. F.; Wang, J. H.

    1996-01-01

    The valence electronic structure and core levels of Tl2Ba2CuO(6 + delta) (Tl-2201) epitaxial films have been measured with X-ray photoelectron spectroscopy and are compared to those of Tl2Ba2CaCu2O(8 + delta) (Tl-2212). Changes in the Tl-2201 core-level binding energies with oxygen doping are consistent with a change in the chemical potential. Differences between the Tl-2201 and Tl-2212 measured densities of states are consistent with the calculated Cu 3d and Tl 6s partial densities of states.

  9. Near-neighbor mixing and bond dilation in mechanically alloyed Cu-Fe

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Kemner, K. M.; Das, B. N.; Koon, N. C.; Ehrlich, A. E.; Kirkland, J. P.; Woicik, J. C.; Crespo, P.; Hernando, A.; Garcia Escorial, A.

    1996-09-01

    Extended x-ray-absorption fine-structure (EXAFS) measurements were used to obtain element-specific, structural, and chemical information of the local environments around Cu and Fe atoms in high-energy ball-milled CuxFe1-x samples (x=0.50 and 0.70). Analysis of the EXAFS data shows both Fe and Cu atoms reside in face-centered-cubic sites where the first coordination sphere consists of a mixture of Fe and Cu atoms in a ratio which reflects the as-prepared stoichiometry. The measured bond distances indicate a dilation in the bonds between unlike neighbors which accounts for the lattice expansion measured by x-ray diffraction. These results indicate that metastable alloys having a positive heat of mixing can be prepared via the high-energy ball-milling process.

  10. Composite CuFe1 - xSnxO2/p-type silicon photodiodes

    NASA Astrophysics Data System (ADS)

    Al-Sehemi, Abdullah G.; Mensah-Darkwa, K.; Al-Ghamdi, Ahmed A.; Soylu, M.; Gupta, R. K.; Yakuphanoglu, F.

    2017-06-01

    CuFe1 - xSnxO2 composite thin film/p-type silicon diodes were prepared on substrate by sol-gel method (x = 0.00, 0.01, 0.03, 0.05, 0.07). The structure of CuFe1 - xSnxO2 composite thin films was studied using XRD analysis and films exhibited amorphous behavior. The elemental compositions and surface morphology of the films were characterized using SEM and EDX. EDX results confirmed the presence of the compositional elements. The optical band gap of CuFe1 - xSnxO2 composite thin films was determined using the optic spectra. The optical band gaps of the CuFe1 - xSnxO2 composite thin films were calculated using optical data and were found to be 3.75, 3.78, 3.80, 3.85 and 3.83 eV for x = 0.00, 0.01, 0.03, 0.05 and 0.07, respectively. The photoresponse and electrical properties of the Al/CuFe1 - xSnxO2/p-Si/Al diode were studied. The barrier height and ideality factor were determined to be averagely 0.67 eV and 2.6, respectively. The electrical and photoresponse characteristics of the diodes have been investigated under dark and solar light illuminations, respectively. The interface states were used to explain the results obtained in present study. CuFe1 - xSnxO2 photodiodes exhibited a high photoresponsivity to be used in optoelectronic applications.

  11. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  12. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  13. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  14. Reduced anti-ferromagnetism promoted by Zn 3d 10 substitution at CuO 2 planar sites of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductors

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Khan, Nawazish A.

    2009-11-01

    The role of charge carriers in ZnO 2/CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4-yZn yO 12-δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d 10 ( S=0) substitution at Cu 3d 9(S={1}/{2}) sites in the inner CuO 2 planes of Cu 0.5Tl 0.5Ba 2Ca 3Cu 4O 12-δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron-phonon interaction has an essential role in the mechanism of high- Tc superconductivity in these compounds.

  15. Comparison of Ab initio Low-Energy Models for LaFePO, LaFeAsO, BaFe2As2, LiFeAs, FeSe, and FeTe

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuma; Miyake, Takashi; Arita, Ryotaro; Imada, Masatoshi

    2010-03-01

    We present effective low-energy models for LaFePO and LaFeAsO (1111 family), BaFe2As2 (122), LiFeAs (111), and FeSe and FeTe (11) [1], based on ab initio downfolding scheme, a constrained random-phase-approximation method combined with maximally localized Wannier functions. Comparison among the effective models, derived for 5 Fe-3d bands, provides a basis for interpreting physics/chemistry; material dependences of electron correlations, a multiband character entangled by the 3d orbitals, and the geometrical frustration depending on hybridizations between iron and pnictogen/chalcogen orbitals. We found that LaFePO in the 1111 family resides in the weak correlation regime, while LaFeAsO and 111/122 compounds are the intermediate region and FeSe and FeTe in the 11 family are located in the strong correlation regime. A principal parameter relevant to the physics is clarified to be the pnictogen/chalcogen height from the iron layer. Implications in low-energy properties including magnetism and superconductivity are discussed. [1] T. Miyake, K. Nakamura, R. Arita, and M. Imada, arXiv:0911.3705.

  16. Activities in Cu2S-FeS-SnS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman

    1993-04-01

    The dew-point technique was used to measure the vapor pressures of SnS over liquid sulfides of the system Cu2S-FeS-SnS at 1200 °C. Activities of SnS were generated from the measured vapor pressures of SnS. Activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations from the known SnS activity data. The systems Cu2S-SnS and Cu2S-FeS exhibit negative departures from ideal behavior, while FeS-SnS melts exhibit positive deviations.

  17. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe-Cu steel characterized by atom-probe tomography.

    PubMed

    Kolli, R Prakash; Seidman, David N

    2014-12-01

    The composition of co-precipitated and collocated NbC carbide precipitates, Fe3C iron carbide (cementite), and Cu-rich precipitates are studied experimentally by atom-probe tomography (APT). The Cu-rich precipitates located at a grain boundary (GB) are also studied. The APT results for the carbides are supplemented with computational thermodynamics predictions of composition at thermodynamic equilibrium. Two types of NbC carbide precipitates are distinguished based on their stoichiometric ratio and size. The Cu-rich precipitates at the periphery of the iron carbide and at the GB are larger than those distributed in the α-Fe (body-centered cubic) matrix, which is attributed to short-circuit diffusion of Cu along the GB. Manganese segregation is not observed at the heterophase interfaces of the Cu-rich precipitates that are located at the periphery of the iron carbide or at the GB, which is unlike those located at the edge of the NbC carbide precipitates or distributed in the α-Fe matrix. This suggests the presence of two populations of NiAl-type (B2 structure) phases at the heterophase interfaces in multicomponent Fe-Cu steels.

  18. Crystal Structure Analysis of Electromagnetic Wave Absorber Material BaFe12-xTix/2Znx/2O19Based

    NASA Astrophysics Data System (ADS)

    Delina, M.; Nenni, N.; Adi, W. A.

    2018-04-01

    The optimization of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8)single phase composition have been performed. The materials were synthesized by solid state reaction method through mechanical milling technique.The materials were made from the mixture of oxide materials, which are BaCO3, Fe2O3, TiO2 and ZnO. The mixture was milled for five hours using a High Energy Milling (HEM), was dried at 100°C in the Oven and then was sintered at 1000°C for five hours in the Furnace. The phase identification of BaFe12-xTix/2Znx/2O19 (x=2.2; 2.4; 2.6; 2.8) were carried out by using a Match Program while the crystal structure analysis were investigated by using a General Structure Analysis System (GSAS) program. The refinement results of x-ray diffraction pattern showed that the sample of x ≤ 2.4 have a BaFe12O19 single phase while the sample of x> 2.4 have two phases, which are BaFe12O19 and ZnFe2O4 phases. The surface morphology of sample and the element of sample were identified through an analysis of Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) data.

  19. Ultrafast dynamics of quasiparticles and coherent acoustic phonons in slightly underdoped (BaK)Fe2As2

    PubMed Central

    Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen

    2016-01-01

    We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873

  20. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less

  1. Interfacial magnetism and exchange coupling in BiFeO3-CuO nanocomposite.

    PubMed

    Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev; Das, Kajari; Chaudhuri, Sheli Sinha; De, S K

    2013-12-20

    Ferromagnetic BiFeO3 nanocrystals of average size 9 nm were used to form a composite with antiferromagnetic CuO nanosheets, with the composition (x)BiFeO3/(100-x)CuO, x = 0, 20, 40, 50, 60, 80 and 100. The dispersion of BiFeO3 nanocrystals into the CuO matrix was confirmed by x-ray diffraction and transmission electron microscopy. The ferromagnetic ordering as observed in pure BiFeO3 occurs mainly due to the reduction in the particle size as compared to the wavelength (62 nm) of the spiral modulated spin structure of the bulk BiFeO3. Surface spin disorder of BiFeO3 nanocrystals gives rise to an exponential behavior of magnetization with temperature. Strong magnetic exchange coupling between the BiFeO3 nanocrystal and the CuO matrix induces an interfacial superparamagnetic phase with a blocking temperature of about 80 K. Zero field and field cooled magnetizations are analyzed by a ferromagnetic core and disordered spin shell model. The temperature dependence of the calculated saturation magnetization exhibits three magnetic contributions in three temperature regimes. The BiFeO3/CuO nanocomposites reveal an exchange bias effect below 170 K. The maximum exchange bias field HEB is 1841 Oe for x = 50 at 5 K under field cooling of 50 kOe. The exchange bias coupling results in an increase of coercivity of 1934 Oe at 5 K. Blocked spins within an interfacial region give rise to a remarkable exchange bias effect in the nanocomposite due to strong magnetic exchange coupling between the BiFeO3 nanocrystals and the CuO nanosheets.

  2. Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts

    NASA Astrophysics Data System (ADS)

    Li, Keyan; Zhao, Yongqin; Janik, Michael J.; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Fe-Cu composites with different compositions and morphologies were synthesized by a hydrothermal method combined with precursor thermal transformation. γ-Fe2O3/CuO and α-Fe2O3/CuO were obtained by calcining the Fe and Cu tartrates under air atmosphere at 350 °C and 500 °C, respectively, while Fe3O4/C/Cu was obtained by calcining the tartrate precursor under N2 atmosphere at 500 °C. The Fe3O4/C/Cu composite possessed mesoporous structure and large surface area up to 133 m2 g-1. The Fenton catalytic performance of Fe3O4/C/Cu composite was closely related to the Fe/Cu molar ratio, and only proper amounts of Fe and Cu exhibited a synergistic enhancement in Fenton catalytic activity. Cu inclusion reduced Fe3+ to Fe2+, which accelerated the Fe3+/Fe2+ cycles and favored H2O2 decomposition to produce more hydroxyl radicals for methylene blue (MB) oxidation. Due to the photo-reduction of Fe3+ and Cu2+, the Fenton catalytic performance was greatly improved when amending with visible light irradiation in the Fe3O4/C/Cu-H2O2 system, and MB (100 mg L-1) was nearly removed within 60 min. The Fe3O4/C/Cu composite showed good recyclability and could be conveniently separated by an applied magnetic field. Compared with conventional methods for mesoporous composite construction, the thermolysis method using mixed metal tartrates as precursors has the advantages of easy preparation and low cost. This strategy provides a facile, cheap and green method for the synthesis of mesoporous composites as excellent Fenton-like catalysts, without any additional reductants or organic surfactants.

  3. Rapid synthesis of Fe-doped CuO-Ce0.8Zr0.2O2 catalysts for CO preferential oxidation in H2-rich streams: Effect of iron source and the ratio of Fe/Cu

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Han, Caiyun; Gao, Xiaoya; Lu, Jichang; Wan, Gengpin; He, Dedong; Chen, Ran; Chen, Kezhen; He, Sufang; Luo, Yongming

    2017-03-01

    A facile route (urea grind combustion method) is described for the rapid synthesis of Fe-doped Cu-Ce-Zr catalysts within 30 min through simple grinding and combustion. The effects of iron source and Fe/Cu mass ratio on the performances of the catalysts for CO preferential oxidation (CO-PROX) are evaluated. The influences of H2O, CO2, and their mixture on the activity as well as stability of the catalysts are also investigated. The samples are characterized by XRD, N2 adsorption-desorption, H2-TPR, TEM, Raman and XPS. Fe(NO3)3 is found to be superior to FeCl3 and Fe2(SO4)3 as the iron source for Fe-CuCZ catalyst. Among the different synthesized catalysts, 1/10Fe(N)-CuCZ is found to be the most active catalyst, indicating that the optimal Fe/Cu mass ratio is 1/10. The influences of H2O, CO2, and H2O + CO2 on the catalytic performance of 1/10Fe(N)-CuCZ are in the order of CO2 < CO2 + H2O < H2O. 1/10Fe(N)-CuCZ exhibits excellent stability during a 228 h time-on-stream test. 1/10Fe(N)-CuCZ shows the highest catalytic activity and excellent stability even in the presence of H2O and CO2. The excellent catalytic performance can be attributed to the synergy between the highly dispersed copper species and ceria, as well as the formation of more oxygen vacancies and reduced copper species.

  4. Ba3Fe1.56Ir1.44O9: A Polar Semiconducting Triple Perovskite with Near Room Temperature Magnetic Ordering.

    PubMed

    Ferreira, Timothy; Carone, Darren; Huon, Amanda; Herklotz, Andreas; Stoian, Sebastian A; Heald, Steve M; Morrison, Gregory; Smith, Mark D; Loye, Hans-Conrad Zur

    2018-05-29

    The crystal chemistry and magnetic properties for two triple perovskites, Ba 3 Fe 1.56 Ir 1.44 O 9 and Ba 3 NiIr 2 O 9 , grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A 3 MM 2 'O 9 hexagonal symmetry characteristic of most triple perovskites, including Ba 3 NiIr 2 O 9, Ba 3 Fe 1.56 Ir 1.44 O 9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O 6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (T N = 270 K) was observed for Ba 3 Fe 1.56 Ir 1.44 O 9 .

  5. Effect of finite size in magnetic properties of BaFe12O19

    NASA Astrophysics Data System (ADS)

    Kumar, A. Sendil; Bhatnagar, Anil K.

    2018-05-01

    BaFe12O19 Nanoparticles are prepared through auto ignition method and structure, microstructure and magnetic properties are characterized. Samples having spherical shapes and elongated nanorods are chosen to investigate the role of finite size effect in magnetic properties. Magnetization studies show superparamagnetic, antiferromagnetic and ferrimagnetic behaviors depending on the size and shape. Very small coercive field of around 200 Oe is observed for spherical nanoparticles and a large coercive field of around 7000 Oe for nanorods is found. The shape and size plays an important role in magnetic properties of BaFe12O19 nanoparticles. Shape anisotropy has significant value compared to other anisotropies. Therefore shape of nanoparticles influences the magnetic order.

  6. Spectro-photometric determinations of Mn, Fe and Cu in aluminum master alloys

    NASA Astrophysics Data System (ADS)

    Rehan; Naveed, A.; Shan, A.; Afzal, M.; Saleem, J.; Noshad, M. A.

    2016-08-01

    Highly reliable, fast and cost effective Spectro-photometric methods have been developed for the determination of Mn, Fe & Cu in aluminum master alloys, based on the development of calibration curves being prepared via laboratory standards. The calibration curves are designed so as to induce maximum sensitivity and minimum instrumental error (Mn 1mg/100ml-2mg/100ml, Fe 0.01mg/100ml-0.2mg/100ml and Cu 2mg/100ml-10mg/ 100ml). The developed Spectro-photometric methods produce accurate results while analyzing Mn, Fe and Cu in certified reference materials. Particularly, these methods are suitable for all types of Al-Mn, Al-Fe and Al-Cu master alloys (5%, 10%, 50% etc. master alloys).Moreover, the sampling practices suggested herein include a reasonable amount of analytical sample, which truly represent the whole lot of a particular master alloy. Successive dilution technique was utilized to meet the calibration curve range. Furthermore, the workout methods were also found suitable for the analysis of said elements in ordinary aluminum alloys. However, it was observed that Cush owed a considerable interference with Fe, the later one may not be accurately measured in the presence of Cu greater than 0.01 %.

  7. Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles.

    PubMed

    Alzahrani, Khalid E; Niazy, Abdurahman A; Alswieleh, Abdullah M; Wahab, Rizwan; El-Toni, Ahmed M; Alghamdi, Hamdan S

    2018-01-01

    The increasing resistance of pathogenic bacteria to antibiotics is a challenging worldwide health problem that has led to the search for new and more efficient antibacterial agents. Nanotechnology has proven to be an effective tool for the fight against bacteria. In this paper, we present the synthesis and traits of trimetal (CuZnFe) oxide nanoparticles (NPs) using X-ray diffraction, high-resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. We evaluated the antibacterial activity of these NPs against gram-negative Escherichia coli and gram-positive Enterococcus faecalis and then compared it to that of their pure single-metal oxide components CuO and ZnO. Our study showed that the antibacterial activity of the trimetal oxide NPs was greater against E . coli than against E . faecalis . Overall, the antimicrobial effect of trimetal NPs is between those of pure ZnO and CuO nanoparticles, which may mean that their cytotoxicity is also between that of pure ZnO and CuO NPs, making them potential antibiotics. However, the cytotoxicity of trimetal NPs to mammalian cells needs to be verified. The combination of three metal oxide NPs (ZnO, CuO, and Fe 2 O 3 ) in one multimetal (CuZnFe) oxide NPs will enhance the therapeutic strategy against a wide range of microbial infections. Bacteria are unlikely to develop resistance against this new NP because bacteria must go through a series of mutations to become resistant to the trimetal oxide NP. Therefore, this NP can combat existing and emerging bacterial infections.

  8. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  9. Structure refinement of Zn and Pr-doped Y-Ba-Cu-oxides

    NASA Astrophysics Data System (ADS)

    Naik, M. S.; Sarode, P. R.; Priolkar, K. R.; Prabhu, R. B.

    2018-05-01

    Superconducting compounds of composition Y0.9 Pr0.1Ba2 [Cu1-yZny]3O7-δ (0 ≤ y ≤ 0.10) have been synthesized. The structure of these materials has been studied using powder X-ray diffraction technique and refinement has been carried out by using Rietveld refinement procedure. It has been shown that all these compounds crystallize in orthorhombic structure with slight change in c parameter. Increase of parameter O(2) and decrease of parameter O(3)suggest the changes in the Cu-O2 plane of these orthorhombic materials on Zn substitution.

  10. Thermoelectric power of high-pressure synthesized CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11{minus}{delta}}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Jin, C.; Yamauchi, H.

    We report measurements of thermoelectric power (TEP) for high-pressure synthesized CuBa{sub 2}Ca{sub 3}Cu{sub 4}O{sub 11{minus}{delta}} superconductors. The magnitude of TEP for the sample with {ital T}{sub {ital c},zero}=115.9 K is very small and shows a sign crossover at {approximately}160 K. The TEP shows a peak behavior and displays an approximately linear temperature dependence with a negative slope {minus}0.033 {mu}V/K{sup 2} for 120{le}{ital T}{le}240 K. These features resemble those for other known high-{ital T}{sub {ital c}} cuprate superconductors, in particular {ital S}{sub {ital a}} in the {ital a} direction for an untwinned YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} single crystal and polycrystalline Tl-2201more » samples. A brief discussion is given on the TEP behavior in comparison with CuBa{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} cuprate superconductors by considering their similar structure of building blocks and type of charge reservoir. {copyright} {ital 1996 The American Physical Society.}« less

  11. Enhancement of spin-Seebeck effect by inserting ultra-thin Fe{sub 70}Cu{sub 30} interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, D., E-mail: d.kikuchi@imr.tohoku.ac.jp; WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577; Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577

    2015-02-23

    We report the longitudinal spin-Seebeck effects (LSSEs) for Pt/Fe{sub 70}Cu{sub 30}/BiY{sub 2}Fe{sub 5}O{sub 12} (BiYIG) and Pt/BiYIG devices. The LSSE voltage was found to be enhanced by inserting an ultra-thin Fe{sub 70}Cu{sub 30} interlayer. This enhancement decays sharply with increasing the Fe{sub 70}Cu{sub 30} thickness, suggesting that it is not due to bulk phenomena, such as a superposition of conventional thermoelectric effects, but due to interface effects related to the Fe{sub 70}Cu{sub 30} interlayer. Combined with control experiments using Pt/Fe{sub 70}Cu{sub 30} devices, we conclude that the enhancement of the LSSE voltage in the Pt/Fe{sub 70}Cu{sub 30}/BiYIG devices is attributedmore » to the improvement of the spin-mixing conductance at the Pt/BiYIG interfaces.« less

  12. Positron trapping in Y1-xPrxBa2Cu3O7-δ and the Fermi surface of YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Hoffmann, L.; Manuel, A. A.; Walker, E.; Barbiellini, B.; Peter, M.

    1995-03-01

    Temperature-dependent positron lifetime measurements in ceramic Y1-xPrxBa2Cu3O7-δ samples reveal positron trapping, in particular at low temperature and for small x. Positrons appear to be completely delocalized for T~400 K and higher. At high temperatures the lifetime for YBa2Cu3O7-δ and PrBa2Cu3O7-δ is identical (~165 ps) and close to the theoretical value. For these reasons a two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectrum was measured in YBa2Cu3O7 at T=400 K. The spectrum width confirms the delocalization of the positron and the 2D-ACAR shows, apart from the one-dimensional Fermi surface due to CuO chains, a smaller Fermi surface sheet centered around the S point, in the first Brillouin zone.

  13. Comprehensive Study of Pr-Doped GdBa2Cu3O7 - y System

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-09-01

    An extensive study of the magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1 - xPrxBa2Cu3O7 - y (GdPr-123) is presented. Ceramic compounds have been synthesized by the solid state reaction technique, and characterized by XRD, SEM, TGA, and DT techniques. The parent compound GdBa2Cu3O7 - y (Gd-123) is a high-Tc superconductor and the endpoint compound, PrBa2Cu3O7 - y (Pr-123) is a magnetic insulator, both having the crystal structures isomorphic to the 123 phase structure. The superconducting transition temperature is reduced with increasing Pr content in a non-linear manner, in contrast to the Abrikosov-Gorkov pair breaking theory. A metal-insulator transition is observed at the critical Pr content, xcr 0.45, at which superconductivity completely disappears. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independent of the Pr content. The metal-insulator transition in this system is similar to that in the oxygen-deficient RBa2Cu3O7 - y (R-123) system. Based on this resemblance, we suggest that Pr doping reduces the carrier concentration (either by hole filling/localization or changes in the band structure) similar to the deoxygenated case. Hence, the environment surrounding the Cu-O layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be two dimensional feature. A chain-plane correlation (CPC) effect is plausible. The normal state conduction mechanism has been interpreted by the quantum percolation theory based on localized states. Localization is probably caused by the Pr valence fluctuations in the GdPr-123 system.

  14. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj; Katyal, S. C.

    2016-05-23

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO{sub 3} nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO{sub 3} and Bi{sub 0.85}A{sub 0.15}FeO{sub 3} (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO{sub 3} nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO{sub 3} to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO{sub 3} nanoparticles respectively. The magnetic measurements indicate enhancementmore » in magnetization for heterovalent A{sup 2+} substituted BiFeO{sub 3} samples and the magnetization increases with increase of ionic radius of the substituted ions.« less

  15. Renierite, Cu10ZnGe2Fe4S16-Cu11GeAsFe4S16: a coupled solid solution series.

    USGS Publications Warehouse

    Bernstein, L.R.

    1986-01-01

    The composition of renierite is found to be Cu10(Zn1-xCux)Ge2-xAsxFe4S16 (0 = or < x = or < 1), with continuous solid solution between the zincian and arsenian end-members, Cu10ZnGe2Fe4S16 and Cu11GeAsFe4S16, through the coupled substitution Zn(II) + Ge(IV) = Cu(I) + As(V). This is the first reported example of extensive coupled solid solution in a sulphide mineral. Arsenian renierite, not previously characterized, is similar to zincian renierite in polished section, with a slightly redder colour and lower anisotropy. It is reddish orange with relief very similar to that of bornite, though it is harder (VHN25 = 286) and does not tarnish in air. It is slightly bireflective, with colours varying from orange-yellow to reddish orange in nearly crossed polarizers. The strongest powder XRD lines are: 3.042(100), 1.861(29), 1.869(16), 1.594(11) and 1.017(10) A; D(calc.) 4.50 g/cm3. Specimens have been found at the Ruby Creek copper deposit, Alaska, where zincian renierite also occurs, and at the Inexco no. 1 mine, Jamestown, Colorado.-J.A.Z.

  16. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles.

    PubMed

    Sepúlveda, Pamela; Rubio, María A; Baltazar, Samuel E; Rojas-Nunez, J; Sánchez Llamazares, J L; Garcia, Alejandra García; Arancibia-Miranda, Nicolás

    2018-08-15

    In this study, bimetallic nanoparticles (BMNPs) with different mass ratios of Cu and Fe were evaluated. The influence of the morphology on the removal of pollutants was explored through theoretical and experimental studies, which revealed the best structure for removing arsenate (As(V)) in aqueous systems. To evidence the surface characteristics and differences among BMNPs with different mass proportions of Fe and Cu, several characterization techniques were used. Microscopy techniques and molecular dynamics simulations were applied to determine the differences in morphology and structure. In addition, X-ray diffraction (XRD) was used to determine the presence of various oxides. Finally, the magnetization response was evaluated, revealing differences among the materials. Our cumulative data show that BMNPs with low amounts of Cu (Fe 0.9 Cu 0.1 ) had a non-uniform core-shell structure with agglomerate-type chains of magnetite, whereas a Janus-like structure was observed in BMNPs with high amounts of Cu (Fe 0.5 Cu 0.5 ). However, a non-uniform core-shell structure (Fe 0.9 Cu 0.1 ) facilitated electron transfer among Fe, Cu and As, which increased the adsorption rate (k), capacity (q e ) and intensity (n). The mechanism of As removal was also explored in a comparative study of the phase and morphology of BMNPs pre- and post-sorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Macroscopic shape change of melt-processed YBa{sub 2}Cu{sub 3}O{sub x-}Y{sub 2}BaCuO{sub 5} bulk superconductors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diko, P.; Goretta, K. C.; Energy Technology

    A macroscopic change in the shape of five-domain melt-processed YBa{sub 2}Cu{sub 3}O{sub x}/Y{sub 2}BaCuO{sub 5} bulk superconductors is reported and explained. The change, a distortion from circular cross-section, is attributed to liquid transport from a slower growth front in an a-axis direction to a faster growth front in a c-axis direction at the edge between the a- and c-growth fronts, a phenomenon that we call the edge melt distribution (EMD) effect. Formation of bands of higher Y{sub 2}BaCuO{sub 5} particle density along the a/c growth boundaries, which nearly coincide with {l_brace}110{r_brace}-type planes, is explained by the EMD effect.

  18. Fabrication and chemical composition of RF magnetron sputtered Tl-Ca-Ba-Cu-O high Tc superconducting thin films

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Radpour, F.; Kapoor, V. J.; Lemon, G. H.

    1990-01-01

    The preparation of TlCaBaCuO superconducting thin films on (100) SrTiO3 substrates is described, and the results of their characterization are presented. Sintering and annealing the thin films in a Tl-rich ambient yielded superconductivity with a Tc of 107 K. The results of an XPS study support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca(2+) for Tl(3+), resulting in hole creation, and (2) charge transfer from Tl(3+) to the CuO layers, resulting in a Tl valence between +3 and +1.

  19. Designing a protonic ceramic fuel cell with novel electrochemically active oxygen electrodes based on doped Nd0.5Ba0.5FeO3-δ.

    PubMed

    Lyagaeva, Julia; Danilov, Nilolay; Tarutin, Arthem; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2018-06-19

    The Fe-based perovskite-structured Nd0.5Ba0.5FeO3-δ (NBF) system represents the basis for developing promising electrode materials for solid oxide fuel cells with proton-conducting electrolytes. This study aims at investigating the strategy of slight doping of neodymium-barium ferrite with some transition metals (M = Ni, Cu, Co) and examining the effect of this doping on the functional characteristics, such as phase structure, thermal expansion, total and ionic conductivity as well as electrochemical behavior, of Nd0.5Ba0.5Fe0.9M0.1O3-δ (NBFM) under testing in symmetrical cell (SC) and fuel cell (FC) modes of operation. Among the investigated dopants, cobalt (Co) is found to be the optimal dopant, resulting in an enhancement of transport properties and avoiding an undesirable increase in the thermal expansion coefficient. As a result, the electrode material made of NBFCo exhibits highest ionic conductivity and lowest polarization resistance in the SC mode of operation. Electrochemical characterization of the NBFCo cathode material in a protonic ceramic fuel cell (PCFC) followed by comparison of the obtained results with literature data demonstrates that NBFCo is an attractive cathode candidate for PCFC applications.

  20. Antifriction coating of Cu-Fe-Al-Pb system for plain bearings

    NASA Astrophysics Data System (ADS)

    Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan

    2017-09-01

    Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.

  1. Fluorescent and colorimetric detection of Fe(III) and Cu(II) by a difunctional rhodamine-based probe

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ye, Dandan; Li, Wenxuan; Liu, Yuanyuan; Li, Longhua; Zhang, Wenli; Ni, Liang

    2017-08-01

    A new rhodamine B hydrazone derivative (probe L) was synthesized and characterized. The probe L had sufficiently satisfactory selective response to Fe3 + and Cu2 + ions among various interferential metal ions, and high sensitivity with the detection limit of 4.63 × 10- 9 M and 5.264 × 10- 7 M for Fe3 + and Cu2 + ions, respectively. In the presence of Fe3 +, the probe L exhibited turn-on orange fluorescence accompanied by color change from colorless to pink. Toward Cu2 +, the probe L showed significant color change from colorless to red purple. These remarkable orange fluorescence and color change made probe L suitable naked-eye identify for Fe3 + and Cu2 + ions. By means of Job's plot, Benesi-Hildebrand studies and FTIR spectra, both 1:1 binding modes (L-Fe3 + and L-Cu2 +) were confirmed. The coordination mechanism and turn on/off fluorescence for L-Fe3 + and L-Cu2 + complexes were well explained by theoretical calculations. Moreover, probe L could be used as a quick, simple, visual test strip for Fe3 + and Cu2 + detection.

  2. Preparation of TbCu7-type Sm-Fe powders by low-temperature HDDR treatment

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Jinno, Miho; Ozaki, Kimihiro

    2018-05-01

    Low-temperature hydrogen-disproportionation-desorption-recombination (HDDR) treatment of Sm-Fe alloy powder was conducted to prepare a metastable TbCu7 type Sm-Fe alloy powder with a grain size of more than a few hundreds of nanometers. While a treatment temperature above 700 °C produced the familiar Th2Zn17 type alloy, one below 600 °C resulted in successful synthesis of the TbCu7 type Sm-Fe alloy with submicron-size grains. This TbCu7 type alloy powder, however, showed no significant improvement in magnetic properties compared to the Th2Zn17 type, as its composition was estimated to be near SmFe8.5 and thus did not achieve the expected Fe-rich composition. Therefore, cross-sectional transmission electron microscope observation of the unfinished TbCu7 type alloy powder was conducted in order to explore means of forming the Fe-rich phase.

  3. Integrated photooxidative-extractive desulfurization system for fuel oil using Cu, Fe and Cu-Fe/TiO2 and eutectic based ionic liquids: Effect of calcination temperature and duration

    NASA Astrophysics Data System (ADS)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2014-10-01

    Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.

  4. The influence of apical oxygen on the increase of Tc in Y Ba2Cu3O7-X

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.

    2004-07-01

    The direct current (DC) bulk resistance and acoustic emission of Y Ba2Cu3O7-X ceramic samples have simultaneously been measured during heating in a temperature region of 400-700 K. Near 560 K, an anomaly of rgr, accompanied by an acoustic emission, has been observed. After this anomaly rgr reached a lower value than had previously been measured. The observed rgr decrease and acoustic emission signals confirm that Y Ba2Cu3O7-X ceramic samples absorb oxygen during heating in the temperature region of 500-600 K, as shown by previous dilatometric measurements (Dul'kin 2001 J. Superconductivity 14 497). It is shown that absorbed oxygen atoms enter O4 apical oxygen sites and are able to increase the Tc in Y Ba2Cu3O7-X material.

  5. Transverse excitations in liquid Fe, Cu and Zn

    NASA Astrophysics Data System (ADS)

    Hosokawa, S.; Inui, M.; Kajihara, Y.; Tsutsui, S.; Baron, A. Q. R.

    2015-05-01

    Transverse acoustic (TA) excitation modes were observed in inelastic x-ray scattering spectra of liquid Fe, Cu and Zn. From the analysis of current correlation functions, we concluded that TA excitation modes can experimentally be detected through the quasi-TA branches in the longitudinal current correlation spectra in these liquid metals. The microscopic elastic constants are estimated and a characteristic difference from macroscopic polycrystalline value was found in Poisson's ratio of liquid Fe, which shows an extremely softer value of ∼0.38 compared with the macroscopic value of ∼0.275. The lifetime of the TA modes were determined to be ∼0.45 ps for liquid Fe and Cu and ∼0.55 ps for liquid Zn, reflecting different interatomic correlations between liquid transition metals and non-transition metals. The propagation length of the TA modes are ∼0.85 nm in all of liquid metals, corresponding to the size of icosahedral or similar size of cages formed instantaneously in these liquid metals.

  6. Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported.

  7. Hot seeding for the growth of c-axis-oriented Nd-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Chauhan, H. S.; Murakami, M.

    2000-06-01

    The fabrication of large single-grain RE-Ba-Cu-O (RE denotes rare earth elements) is essential for bulk applications. In the present study, we report on a hot-seeding method for growing Nd-Ba-Cu-O with Nd123 seed crystals. We made an arrangement, in which the Nd123 seed crystal can be transported to the centre of the furnace with a rod through a hole in a rubber cork and insulating stopper. The seed was placed in a small dip made in the rod, which can be turned to drop the seed on the sample. The advantage of this method is that perturbation in the growth conditions such as temperature and oxygen partial pressure can be minimized. Using this method we could grow large single-domain c-axis-oriented samples with the surface area larger than 3 cm×3 cm.

  8. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    PubMed

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  9. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    PubMed Central

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096

  10. Superconductivity and fluctuations in Ba 1–pK pFe 2As 2 and Ba(Fe 1–nCo n) 2As 2

    DOE PAGES

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Jost, D.; ...

    2016-08-11

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe 2As 2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22),more » we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A 1g and B 1g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.« less

  11. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  12. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.

  13. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  14. Reduced electronic correlation effects in half substituted Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Yaresko, A. N.; Li, Y.; Evtushinsky, D. V.; Dai, P.-C.; Borisenko, S. V.

    2018-06-01

    We report a comprehensive study of the tridimensional nature and orbital character of the low-energy electronic structure in 50% Cobalt doped Ba(Fe1-xCox)2As2 (d6.5), by using polarization- and photon energy-dependent angle-resolved photoemission spectroscopy. An extra electron-like Fermi surface is observed around the Brillouin zone boundary compared with isoelectronic KyFe2-xSe2 (d6.5). The bands near the Fermi level (EF) are mainly derived from Fe/Co 3d t2g orbitals, revealing visible dispersions along the kz direction. In combination with the local density approximation and the dynamical mean-field theory calculations, we find that the As 4p bands are non-renormalized and the whole 3d band needs to be renormalized by a "single" factor of ˜1.6, indicating moderate electronic correlation effects. The "single" factor description of the correlation strength among the different 3d orbitals is also in sharp contrast to orbital-dependent correlation effects in BaFe2As2. Our findings indicate a remarkable reduction of correlation effects with little difference among 3d orbitals in BaFeCoAs2, due to the increased filling of the electronic 3d shell in the presence of significant Hund's coupling. The results support that the electronic correlation effects and multiple orbital physics play an important role in the superconductivity of the 122 system and in other ferropnictides.

  15. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  16. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGES

    Lu, Yongwu; Yu, Fei; Hu, Jin; ...

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe 2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  17. Fabrication and Electromagnetic Properties of Conjugated NH2-CuPc@Fe3O4

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Pu, Zejun; Xu, Mingzhen; Wei, Renbo; Liu, Xiaobo

    2017-10-01

    Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached -33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below -10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.

  18. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  19. Cu(2+) and Fe(2+) mediated photodegradation studies of soil-incorporated chlorpyrifos.

    PubMed

    Rafique, Nazia; Tariq, Saadia R; Ahad, Karam; Taj, Touqeer

    2016-03-01

    The influences of Cu(2+) and Fe(2+) on the photodegradation of soil-incorporated chlorpyrifos were investigated in the present study. The soil samples spiked with chlorpyrifos and selected metal ions were irradiated with UV light for different intervals of time and analyzed by HPLC. The unsterile and sterile control soil samples amended with pesticides and selected metals were incubated in the dark at 25 °C for the same time intervals. The results of the study evidenced that photodegradation of chlorpyrifos followed the first-order kinetics. The dissipation t0.5 of chlorpyrifos was found to decrease from 41 to 20 days under UV irradiation. The rate of chlorpyrifos photodegradation was increased in the presence of both metals, i.e., Cu(2+) and Fe(2+). Thus, initially observed t0.5 of 19.8 days was decreased to 4.39 days in the case of Cu(+2) and 19.25 days for Fe(+2). Copper was found to increase the rate of photodegradation by 4.5 orders of magnitude while the microbial degradation of chlorpyrifos was increased only twofold. The microbial degradation of chlorpyrifos was only negligibly affected by Fe(2+) amendment. The studied trace metals also affected the abiotic degradation of the pesticide in the order Cu(2+) > Fe(2+).

  20. Chemical spray pyrolysis of Tl-Ba-Ca-Cu-O high-T(sub c) superconductors for high-field bitter magnets

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Zhang, John G.; Squillante, Michael R.; Hermann, A. M.; Duan, H. M.; Andrews, Robert J.; Kelliher, Warren C.

    1991-01-01

    The deposition of Tl-Ba-Ca-Cu-O thick films by spray pyrolyzing a Ba-Ca-Cu-O precursor film and diffusing thallium into the film to form the superconducting phase is examined. This approach was taken to reduce exposure to thallium and its health and safety hazards. The Tl-Ba-Ca-Cu-O system was selected because it has very attractive features which make it appealing to device and manufacturing engineering. Tl-Ba-Ca-Cu-O will accommodate a number of superconducting phases. This attribute makes it very forgiving to stoichiometric fluctuations in the bulk and film. It has excellent thermal and chemical stability, and appears to be relatively insensitive to chemical impurities. Oxygen is tightly bound into the systems, consequently there is no orthorhombic (conductor) to tetragonal (insulator) transition which would affect a component's lifetime. More significantly, the thallium based superconductors appear to have harder magnetic properties than the other high-Tc oxide ceramics. Estimates using magnetoresistance measurements indicate that at 77 K Tl2Ba2CaCu2O10 will have an upper critical field, H(sub c2) fo 26 Tesla for applied fields parallel to the c-axis and approximately 1000 Tesla for fields oriented in the a-b plane. Results to date have shown that superconducting films can be reproducibly deposited on 100 oriented MgO substrates. One film had a zero resistance temperature of 111.5 K. Furthermore, x ray diffraction analysis of the films showed preferential c-axis orientation parallel to the plane of the substrate. These results have now made it possible to consider the manufacture of a superconducting tape wire which can be configured into a topology useful for high-field magnet designs. The research which leads to the preparation of these films and plans for further development are reviewed.

  1. Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites

    NASA Astrophysics Data System (ADS)

    He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin

    2017-09-01

    Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.

  2. Local Structure of the Amorphous Precursor to Ba-Hexaferrite Thin Films: An Anisotropic Octahedral Fe-O Glass Network

    NASA Astrophysics Data System (ADS)

    Snyder, J. E.; Harris, V. G.; Koon, N. C.; Sui, X.; Kryder, M. H.

    1996-10-01

    Anisotropic local structure has been observed around both the Fe and Ba ions in the amorphous precursor to Ba-hexaferrite thin films, using polarization-dependent extended x-ray-absorption fine structure. This anisotropic local structure, consisting mainly of a network of Fe-O octahedra, determines the orientation of the fast-growing basal planes during crystallization, and thus the directions of the c axes and the resulting magnetic anisotropy.

  3. Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar

    2018-05-01

    Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.

  4. Phase diagram and neutron spin resonance of superconducting NaFe 1 - x Cu x As

    DOE PAGES

    Tan, Guotai; Song, Yu; Zhang, Rui; ...

    2017-02-03

    In this paper, we use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe 1-xCu xAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe 1-xCu xAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis inmore » NaFe 0.98Cu 0.02As. The resonance is high in energy relative to the superconducting transition temperature T c but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe 1-xCu xAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Finally, therefore, electron correlations is an important ingredient of superconductivity in NaFe 1-xCu xAs and other iron pnictides.« less

  5. Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Zhai, Qi-Jie; Liu, Fang-Yu; Liu, Ke-Ming; Lu, De-Ping

    2018-05-01

    A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

  6. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  7. Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13

    NASA Astrophysics Data System (ADS)

    Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.

    1995-11-01

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  8. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary: Consequence of sea level rise?

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Santos, Isaac R.; Barcellos, Renato; Silva Filho, Emmanoel V.

    2012-07-01

    Groundwater underlying a mangrove habitat was studied to determine the geochemical nature of Ba, Fe and Mn as related to dissolved organic carbon (DOC), SO4 and salinity (Sepetiba Bay, Brazil). Wells were placed across geobotanic facies and sampled monthly for a year. We observed non-conservative behavior and elevated concentrations of dissolved metals relative to local end-members (i.e., fresh river water and seawater). Average Ba concentrations were near 2000 nM in an area with low salinity (˜5.3). Dissolved Fe (up to 654 μM) was two orders of magnitude greater in fresh groundwater than in the seaward sampling stations. Manganese concentrations were greatest (112 μM) in the high salinity (˜65) zone, being directly influenced by salinity. Groundwater Ba, Fe and Mn showed differing site specific concentrations, likely related to ion exchange processes and redox-controlled cycling along distinct mangrove facies. The results of this work show that metal concentrations are altered relative to conservative mixing between terrestrial and marine endmembers, illustrating the importance of mangrove subterranean estuaries as biogeochemical reactors. Roughly-estimated submarine groundwater discharge-derived dissolved Ba, Fe and Mn fluxes were at least one order of magnitude greater than river-derived fluxes into Sepetiba Bay.

  9. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7 - delta interfaces as studied by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.

    1990-07-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.

  10. Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C

    NASA Astrophysics Data System (ADS)

    Archana Barla, Nikki

    2018-03-01

    Fe-Cu-C system is very popular in P/M industry for its good compressibility and dimensional stability with high strength. Fe-Cu-C is a structural material and is used where high strength with high hardness is required. The composition of powder metallurgy steel plays a vital role in the microstructure and physical properties of the sintered component. Fe-2Cu-0.7C-Ni alloy with varying nickel composition (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%) wt. % was prepared by powder metallurgy (P/M) sinter forging process. The present work discuss the effect of varying nickel content on microstructure and mechanical properties.

  11. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  12. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  13. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  14. Magnetic order tuned by Cu substitution in Fe 1.1–zCu zTe

    DOE PAGES

    Wen, Jinsheng; Xu, Zhijun; Xu, Guangyong; ...

    2012-07-02

    We study the effects of Cu substitution in Fe₁.₁Te, the nonsuperconducting parent compound of the iron-based superconductor, Fe₁₊ yTe₁₋ xSe x, utilizing neutron scattering techniques. It is found that the structural and magnetic transitions, which occur at ~60 K without Cu, are monotonically depressed with increasing Cu content. By 10% Cu for Fe, the structural transition is hardly detectable, and the system becomes a spin glass below 22 K, with a slightly incommensurate ordering wave vector of (0.5–δ, 0, 0.5) with δ being the incommensurability of 0.02, and correlation length of 12 Å along the a axis and 9 Åmore » along the c axis. With 4% Cu, both transition temperatures are at 41 K, though short-range incommensurate order at (0.42, 0, 0.5) is present at 60 K. With further cooling, the incommensurability decreases linearly with temperature down to 37 K, below which there is a first-order transition to a long-range almost-commensurate antiferromagnetic structure. A spin anisotropy gap of 4.5 meV is also observed in this compound. Our results show that the weakly magnetic Cu has a large effect on the magnetic correlations; it is suggested that this is caused by the frustration of the exchange interactions between the coupled Fe spins.« less

  15. Fe modified BaTiO{sub 3}: Influence of doping on ferroelectric property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh; Bisen, Supriya, E-mail: sbisen.sop@gmail.com; Jarabana, Kanaka Mahalakshmi

    2015-06-24

    We have investigate the ferroelectric property of Fe modified Barium Titanate (BaTiO{sub 3}) with possible tetragonal structure via solid state route was prepared. Modified sample of BaTi{sub 1−x}Fe{sub x}O{sub 3} (x=0.01, 0.02) were structural characterized by X-ray Diffraction (XRD) using a Bruker D8 Advance XRD instruments, the value of 2θ is in between 20° to 80°. Fourier transform infrared spectroscopy (FTIR) using a Bruker, vertex instruments has been performs to obtain Ti-O bonding in the modified sample; the region of wavenumber is from 4000 cm{sup −1} to 400 cm{sup −1}. P-E hysteresis loop measurements have been traced for different applied voltage- 100V,more » 300V and 500V.« less

  16. Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).

    PubMed

    Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill

    2015-01-28

    (Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed.

  17. Upper critical field of high temperature Y(1.2)Ba(0.8)CuO(4-delta) superconductor

    NASA Technical Reports Server (NTRS)

    Hor, P. H.; Meng, R. L.; Huang, J. Z.; Chu, C. W.; Huang, C. Y.

    1987-01-01

    A 20-T high-field magnet is used to measure electrical resistance as a function of temperature in the Y(1.2)Ba(0.8)CuO(4-delta) superconductor. The temperature dependence of the critical field, Hc2(T), is obtained from the superconduction transition. A Hc2(O) value of 166T is determined which is the highest critical field yet reported. Results show Y(1.2)Ba(0.8)CuO(4-delta) to be a 90K Type-II superconductor, with a lower critical field Hc1(O) of about 0.2T and a penetration depth of about 290 A.

  18. Simultaneous magnetic investigations of Cu precipitation and recovery in thermally aged Fe-Cu alloy by first-order-reversal-curves

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Kawagoe, Riko; Murakami, Hiroaki

    2018-05-01

    We have measured first-order reversal curves (FORCs) for Fe-1wt%Cu alloy thermally aged at 753 K up to 20000 min. While hardness exhibits a maximum at around 1000 min, reflecting the formation and growth of Cu precipitates, major-loop coercivity monotonically decreases and becomes almost constant above 100 min.; an increase of coercivity associated with Cu precipitation is masked by a large decrease due to recovery. On the other hand, FORC diagrams exhibit two distribution peaks at low and high switching fields after aging. While the former shifts towards a lower switching field after aging, reflecting recovery, the latter shows up after aging up to ˜1000 min, possibly due to the formation of Cu precipitates. These observations demonstrate that FORCs are useful to separately evaluate competing microstructural changes in thermally aged Fe-Cu alloy where recovery and Cu precipitation take place simultaneously.

  19. A new series of oxycarbonate superconductors (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1994-12-31

    We found a new series of oxycarbonate superconductors in the Ba-Ca-Cu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1 ((Cu,C)-m(m+1)(n-1)n). Thus far, n=3, 4 members of the m=1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n=4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m=2 series. (Cu,C)-1223 shows superconductivity below 67 K while T{sub c}`s of other compounds are above 110 K. In particular, (Cu,C)=1234 has the highest T{sub c} of 117 K.

  20. Influences of annealing temperature on sprayed CuFeO2 thin films

    NASA Astrophysics Data System (ADS)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  1. Vacuum and low oxygen pressure influence on BaFe12O19 film deposited by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Gaur, Anurag; Choudhary, R. J.

    2018-05-01

    BaFe12O19 hexaferrite thin films are deposited on Si (111) substrate by the pulse laser deposition (PLD) technique in high vacuum 10-6 Torr and low oxygen pressure (10 mTorr) at 650°C substrate temperature. The effects of high vacuum and low pressure on magnetic and optical properties are studied. These films are characterized by the x-ray diffractometer (XRD), SQUID-VSM magnetometer, and Photo-luminescence spectroscopy. XRD pattern reveals that the BaFe12O19 film well formed in both environments without any impurity pick. High magnetic saturazation 317 emu/cm3 and coercivity 130 Oe are observed for the film deposited in vacuum. Photoluminescence emission spectrum of BaFe12O19 film reveals that the higher intensity emission peak at ˜372 nm under the excitation wavelength of 270 nm is observed for the film grown in vacuum.

  2. Electric control of magnetism at the Fe/BaTiO 3 interface

    DOE PAGES

    Radaelli, G.; Petti, D.; Plekhanov, E.; ...

    2014-03-03

    Interfacial magnetoelectric coupling (MEC) is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO 3 (BTO) system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BTO dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial MEC in the Fe/BTO system. At the Fe/BTO interface, an ultrathin FeO x layer exists, whose magnetization can be electrically and reversibly switched on-off at room-temperature bymore » reversing the BTO polarization. The suppression / recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BTO produces on the exchange coupling constants in the adjacent FeOx layer. The observed giant magnetoelectric response holds potential for optimizing interfacial MEC in view of efficient, low-power spintronic devices.« less

  3. Characterization of the insulator barrier and the superconducting transition temperature in GdBa{sub 2}Cu{sub 3}O{sub 7−δ}/BaTiO{sub 3} bilayers for application in tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, H., E-mail: henrynavarro@cab.cnea.gov.ar; Sirena, M.; Haberkorn, N.

    2015-07-28

    The optimization of the superconducting properties in a bottom electrode and the quality of an insulator barrier are the first steps in the development of superconductor/insulator/superconductor tunnel junctions. Here, we study the quality of a BaTiO{sub 3} tunnel barrier deposited on a 16 nm thick GdBa{sub 2}Cu{sub 3}O{sub 7−δ} thin film by using conductive atomic force microscopy. We find that the tunnel current is systematically reduced (for equal applied voltage) by increasing the BaTiO{sub 3} barrier thickness between 1.6 and 4 nm. The BaTiO{sub 3} layers present an energy barrier of ≈1.2 eV and an attenuation length of 0.35–0.5 nm (depending on the appliedmore » voltage). The GdBa{sub 2}Cu{sub 3}O{sub 7−δ} electrode is totally covered by a BaTiO{sub 3} thickness above 3 nm. The presence of ferroelectricity was verified by piezoresponse force microscopy for a 4 nm thick BaTiO{sub 3} top layer. The superconducting transition temperature of the bilayers is systematically suppressed by increasing the BaTiO{sub 3} thickness. This fact can be associated with stress at the interface and a reduction of the orthorhombicity of the GdBa{sub 2}Cu{sub 3}O{sub 7−δ}. The reduction in the orthorhombicity is expected by considering the interface mismatch and it can also be affected by reduced oxygen stoichiometry (poor oxygen diffusion across the BaTiO{sub 3} barrier)« less

  4. Enhanced thermal stability of Cu alloy films by strong interaction between Ni and Zr (or Fe)

    NASA Astrophysics Data System (ADS)

    Zheng, Yuehong; Li, Xiaona; Cheng, Xiaotian; Li, Zhuming; Liu, Yubo; Dong, Chuang

    2018-04-01

    Low resistivity, phase stability and nonreactivity with surrounding dielectrics are the key to the application of Cu to ultra-large-scale integrated circuits. Here, a stable solid solution cluster model was introduced to design the composition of barrierless Cu-Ni-Zr (or Fe) seed layers. The third elements Fe and Zr were dissolved into Cu via a second element Ni, which is soluble in both Cu and Zr (or Fe). The films were prepared by magnetron sputtering on the single-crystal p-Si (1 0 0) wafers. Since the diffusion characteristics of the alloying elements are different, the effects of the strong interaction between Ni and Zr (or Fe) on the film’s stability and resistivity were studied. The results showed that a proper addition of Zr-Ni (Zr/Ni  ⩽  0.6/12) into Cu could form a large negative lattice distortion, which inhibits Cu-Si interdiffusion and enhances the stability of Cu film. When Fe-Ni was co-added into Cu, the lattice distortion of Cu reached a lower value, 0.0029 Å  ⩽  |Δa|  ⩽  0.0046 Å, and the films showed poor stability. Therefore, when the model is applied to the composition design of the films, the strong interaction between the elements and the addition ratio should be taken into consideration.

  5. Artificially layered films of CuBa{sub 2} (Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} grown using pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, C.; Balestrino, G.; Martellucci, S.

    We have shown that the pulsed laser deposition technique (PLD) can be successfully used to grow artificially layered films of the CuBa{sub 2}(Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} compound using only two targets having nominal composition BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y}, respectively. n was varied between 2 and 5. We have demonstrated, by a kinematic analysis of the x-ray diffraction spectra that the average random discrete thickness fluctuations which affect both the BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} layers are much smaller than one atomic layer. Such features are confirmed by the appearance of sharp peaks evenmore » for the n=2 artificially layered structure where only one (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} cell is deposited in the stacking sequence. These results show that truly new structures can be obtained by a layer by layer deposition technique with a low interfacial disorder and give strong support to the idea of synthesizing new artificial high T{sub c} structures by the PLD technique.{copyright} {ital 1997 American Institute of Physics.}« less

  6. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Biagini, M.; Calandra, C.; Ossicini, Stefano

    1995-10-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.

  7. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  8. One-step assembly of Fe(III)-CMC chelate hydrogel onto nanoneedle-like CuO@Cu membrane with superhydrophilicity for oil-water separation

    NASA Astrophysics Data System (ADS)

    Dai, Jiangdong; Chang, Zhongshuai; Xie, Atian; Zhang, Ruilong; Tian, Sujun; Ge, Wenna; Yan, Yongsheng; Li, Chunxiang; Xu, Wei; Shao, Rong

    2018-05-01

    The research of superhydrophilic interface is developing rapidly, but the preparations of superhydrophilic surfaces through simple methods are still challenging. Herein, we reported a facile, rapid and environmentally-friendly approach for preparing a novel superhydrophilic and underwater superoleophobic membrane via the thermal oxidation of Cu mesh and one-step coordinated assembly of Fe(III)-CMC chelate hydrogel. Superhydrophilicity was attributed to the hydrophilicity of Fe(III)-CMC chelate hydrogel and nanoneedle-like rough structure of CuO@Cu membrane. The membrane was used to separate a variety of oil/water mixtures and exhibited excellent separation performance. Moreover, the membrane exhibited the excellent durability and superior stability against corrosion conditions. We envision that the Fe(III)-CMC@CuO@Cu membrane with good underwater superoleophobicity could provide a candidate not only for oil/water separation but also many other potential applications such as underwater oil manipulation, self-clean, and bio-adhesion control.

  9. Theoretical Investigation of Calculating Temperatures in the Combining Zone of Cu/Fe Composite Plate Jointed by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Qu, Y. D.; Zhang, W. J.; Kong, X. Q.; Zhao, X.

    2016-03-01

    The heat-transfer behavior of the interface of Flyer plate (or Base Plate) has great influence on the microcosmic structures, stress distributions, and interface distortion of the welded interface of composite plates by explosive welding. In this paper, the temperature distributions in the combing zone are studied for the case of Cu/Fe composite plate jointed by explosive welding near the lower limit of explosive welding. The results show that Flyer plate (Cu plate) and Base Plate (Fe plate) firstly almost have the same melting rate in the explosive welding process. Then, the melting rate of Cu plate becomes higher than that of Fe plate. Finally, the melt thicknesses of Cu plate and Fe plate trend to be different constants, respectively. Meanwhile, the melting layer of Cu plate is thicker than that of Fe plate. The research could supply some theoretical foundations for calculating the temperature distribution and optimizing the explosive welding parameters of Cu/Fe composite plate to some extent.

  10. Surface spins enhanced magnetoelectric coefficient and impedance spectroscopy of BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in; Akal School of Physics, Eternal University, Baru Sahib, Himachal Pradesh 173101; Tripathi, S.K.

    2015-08-15

    Highlights: • Multiferroic Fe-doped BaTiO{sub 3} nanorods. • Sol–gel. • Magnetoelectric coefficient. • Transmission electron microscopy. • Cole–Cole plots. - Abstract: Multiferroic BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} (BFT1) and BaFe{sub 0.015}Ti{sub 0.985}O{sub 3} (BFT15) nanorods were prepared by a sol–gel synthesis and annealed at 700 °C/2 h. The tetragonal phase and nano dimensions of BFT samples are identified by X-ray diffraction and transmission electron microscopy. The enhancement in ferroelectricity depends upon low porosity, tetragonal phase, space charge field, larger surface area and oriented growth. The ferromagnetism depends upon partially filled inner shells, surface spins and oxygen vacancies. The magnetoelectric coefficient ismore » explained on the basis of surface spins, short-range interactions near surface boundary, compressive stress and twin structure contributed by nano grains which can reside stress near grain boundaries. The frequency dependent real (Z′) and imaginary (Z″) parts of impedance spectra are confirmed by the variations that observed in dielectric properties. The values of resistance of grain boundaries, R{sub gb} is higher than grains, R{sub g} indicating that the effect of grain boundaries is dominant in BFT nanorods.« less

  11. Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity.

    PubMed

    Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N  = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c  = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .

  12. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE PAGES

    Li, L.; Zheng, Q.; Zou, Q.; ...

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  13. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Zheng, Q.; Zou, Q.

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  14. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  15. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Kuru, Hilal; Kockar, Hakan; Alper, Mursel

    2017-12-01

    Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe

  16. Structures and unimolecular chemistry of M(Pro2-H)(+) (M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn) by IRMPD spectroscopy, SORI-CID, and theoretical studies.

    PubMed

    Jami-Alahmadi, Yasaman; Fridgen, Travis D

    2016-01-21

    M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.

  17. Self-assembly of an imidazolate-bridged Fe(III)/Cu(II) heterometallic cage.

    PubMed

    Reichel, Florian; Clegg, Jack K; Gloe, Karsten; Gloe, Kerstin; Weigand, Jan J; Reynolds, Jason K; Li, Chun-Guang; Aldrich-Wright, Janice R; Kepert, Cameron J; Lindoy, Leonard F; Yao, Hong-Chang; Li, Feng

    2014-01-21

    A rare, discrete, mixed-valent, heterometallic Fe(III)/Cu(II) cage, [Cu6Fe8L8](ClO4)12·χsolvent (H3L = tris{[2-{(imidazole-4-yl)methylidene}amino]ethyl}amine), was designed and synthesized via metal-ion-directed self-assembly with neutral tripodal metalloligands. The formation of this coordination cage was demonstrated by X-ray crystallography, ESI mass spectrometry, FT-IR, and UV-vis-NIR spectroscopy.

  18. Vibrational spectra and lattice instabilities in the high-Tc superconductors YBa2Cu3O7 and GdBa2Cu3O7

    NASA Astrophysics Data System (ADS)

    Bozović, I.; Mitzi, D.; Beasley, M.; Kapitulnik, A.; Geballe, T.; Perkowitz, S.; Carr, G. L.; Lou, B.; Sudharsanan, R.; Yom, S. S.

    1987-09-01

    The exceptionally high Tc of layered cuprates was proposed recently as originating from electronically driven structural instabilities. We have studied the infrared and Raman spectra of YBa2Cu3O7-δ and GdBa2Cu3O7-δ over a broad range of temperatures, from 10 to 300 K. We observed neither mode softening nor any other spectroscopic signature of lattice instabilities.

  19. Structural and magnetic phase transitions near optimal superconductivity in BaFe 2(As 1-xP x) 2

    DOE PAGES

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; ...

    2015-04-17

    In this study, we use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe 2(As 1-xP x) 2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (T s) and paramagnetic to antiferromagnetic (AF, T N) transitions in BaFe 2(As 1-xP x) 2 are always coupled and approach to T N ≈ T s ≥ T c (≈ 29 K) formore » x = 0.29 before vanishing abruptly for x ≥ 0.3. These results suggest that AF order in BaFe 2(As 1-xP x) 2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  20. Crystal growth of YBa2Cu3O(7-x) and reaction of gold crucible with Ba-Cu-rich flux

    NASA Technical Reports Server (NTRS)

    Tao, Y. K.; Chen, H. C.; Martini, L.; Bechtold, J.; Huang, Z. J.; Hor, P. H.

    1991-01-01

    YBa2Cu3O(7-x) crystals are grown in a gold crucible by a self-flux method. The flux moves along the gold surface due to surface wetting and leaves Y123 crystals behind. The obtained crystals are clean and have a size up to two millimeters and a Tc is greater than 90 K. In an effort to recycle the used crucibles, it is found that the used gold is contaminated by copper. A CuO thin film is easily formed on the surface of the crucible that is made of the used gold. This film provides good surface wetting and a buffer layer, which reduces the reaction between gold and the Y-Ba-Cu-oxide melt.

  1. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  2. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe 12O 19

    DOE PAGES

    Cao, Huibo B.; Zhao, Zhiying Y.; Lee, Minseong; ...

    2015-06-24

    High quality single crystals of BaFemore » $$_{12}$$O$$_{19}$$ were grown with the floating zone technique in flowing oxygen atmosphere of 100 atm. BaFe$$_{12}$$O$$_{19}$$ melts incongruently in atmospheric oxygen. High oxygen pressure above 50 atm modifies the melting behavior to be congruent, which allows for the crystal growth with the crucible-free floating zone technique. Single crystal neutron diffraction were measured to determine the nuclear and magnetic structures at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$$^{3+}$$ ions at the bypyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of specific heat shows no anomaly associated with the long range polar ordering in the temperature range of 1.90-300~K. The inverse dielectric constant along the c-axis shows a $T^2$ temperature dependence below 20 K and then following by a plateau below 10 K, recognized as quantum paraelectric features. Further cooling below 1.4 K, the upturn region was clearly revealed and indicates BaFe$$_{12}$$O$$_{19}$$ is a critical quantum paraelectric system with Fe$$^{3+}$$ ions playing roles for both magnetic and electric dipoles.« less

  3. Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Tarantini, C.; Grinenko, V.; Hänisch, J.; Jaroszynski, J.; Reich, E.; Mori, Y.; Sakagami, A.; Kawaguchi, T.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Ikuta, H.; Hühne, R.; Iida, K.

    2015-02-01

    Microstructurally clean, isovalently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at μ 0 H = 35 T for H ‖ a b and μ 0 H = 18 T for H ‖ c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.

  4. Evaporation Mechanism of Cu from Liquid Fe Containing C and S

    NASA Astrophysics Data System (ADS)

    Jung, Sung-Hoon; Kang, Youn-Bae

    2016-08-01

    A number of liquid-gas experiments were carried out in order to elucidate evaporation mechanism of Cu from liquid Fe containing C and S. Rate of Cu evaporation in liquid Fe droplets at 1873 K (1600 °C) was determined using electromagnetic levitation equipment. Evaporation rate of the Cu under various conditions (flow rate of gas mixtures, initial C, and S concentrations) was examined. It was found from a series of kinetic analyses of the experimental data that Cu evaporates in forms of Cu(g) and CuS(g). As was reported for the Sn evaporation from liquid iron (Jung et al. Met. Mater. Trans. 46B, 250-258, 2014), S plays two roles for the evaporation of Cu: accelerating the rate by forming CuS(g) and decelerating the rate by blocking evaporation sites. As a result of these combinatorial effects, the evaporation of Cu is decelerated at low S content, but is accelerated at high S content. Based on the elucidated mechanism, an evaporation model equation for Cu was developed in the present study, which takes into account (1) evaporation of Cu in the two forms (Cu(g) and CuS(g)), (2) surface blocking by S using ideal Langmuir adsorption, and (3) effect of C. The obtained rate constant of a reaction Cu i + S i = CuS i (g), k CuS R , is 1.37 × 10-9 m4 mol-1 s-1, and the residual rate constant, k CuS r , is 4.11 × 10-10 m4 mol-1 s-1 at 1873 K (1600 °C). Both of them were found to be one order lower than those for Sn evaporation.

  5. Irreversibility and critical current density of FeSr2ErCu2O6+y

    NASA Astrophysics Data System (ADS)

    Hata, Y.; Iida, I.; Mochiku, T.; Yasuoka, H.

    2018-03-01

    FeSr2ErCu2O6+y (ErFe1212) and non-superconducting FeSr2ErCu1.9Zn0.1O6+y were synthesized to study the property of the superconductivity and the irreversibility of ErFe1212. A large irreversibility in the temperature dependence of magnetization and a hysteresis in the magnetization curve were observed in ErFe1212. By comparison with non-superconducting FeSr2ErCu1.9Zn0.1O6+y, it was found that the most part of the hysteresis at high magnetic eld originates from the magnetism of Fe ion and some part of the hysteresis at low magnetic eld originates from the superconductivity. Using the magnetization curve of ErFe1212 and FeSr2ErCu1.9Zn0.1O6+y, the J c of ErFe1212 in individual grains at 10 K under 0.1 T was estimated by the Bean model and {J}\\text{c}\\text{intra} was 2.6 × 109 A/m2. The critical current density across inter-grain boundaries at 10 K estimated by V ‑ I measurement was {J}\\text{c}\\text{intra} = 5.7 × 104 A/m2. A large difference between {J}\\text{c}\\text{intra} and {J}\\text{c}\\text{intra} was observed in ErFe1212. {J}\\text{c}\\text{intra} and {J}\\text{c}\\text{intra} of ErFe1212 are 2.2 and 5.2 times larger than these of YFe1212, respectively.

  6. Thermochemical process for recovering Cu from CuO or CuO.sub.2

    DOEpatents

    Richardson, deceased, Donald M.; Bamberger, Carlos E.

    1981-01-01

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  7. On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films.

    PubMed

    Tileli, Vasiliki; Duchamp, Martial; Axelsson, Anna-Karin; Valant, Matjaz; Dunin-Borkowski, Rafal E; Alford, Neil McN

    2015-01-07

    The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces.

  8. Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2017-11-01

    Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.

  9. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  10. Modulation of Jahn-Teller effect on magnetization and spontaneous electric polarization of CuFeO2

    NASA Astrophysics Data System (ADS)

    Xiao, Guiling; Xia, Zhengcai; Wei, Meng; Huang, Sha; Shi, Liran; Zhang, Xiaoxing; Wu, Huan; Yang, Feng; Song, Yujie; Ouyang, Zhongwen

    2018-03-01

    CuFe0.99Mn0.01O2 and CuFe0.99Co0.01O2 single crystal samples are grown by a floating zone technique and their magnetization and spontaneous electric polarization have been investigated. Similarly with pure CuFeO2, an obviously anisotropic magnetization and spontaneous electric polarization were observed in the both doped samples, and their phase transition critical fields and temperatures are directly doping ion dependent. Considering the different d-shell configuration and ionic size between Mn3+, Co3+ and Fe3+ ions, in which the Mn3+ ion with Jahn-Teller (J-T) effect has different distortion on the geometry frustration from both of Fe3+ and Co3+ ion. Since for Mn3+ ion, the orbital splitting results from the low-symmetry J-T distortion in a crystal-field environment leads to a distorted MnO6 octahedron, which different from undistorted FeO6 and CoO6 octahedrons. The strain between distorted and undistorted octahedrons produces different effects on the spin reorientation transition and spontaneous electric polarization. Although the pure CuFeO2 has a very strong and robust frustration, the presence of the strain due to the random distribution of distorted MnO6 octahedron and undistorted CoO6 (FeO6) octahedrons leads to its spin reorientation transitions and spontaneous electric polarization different from CuFeO2.

  11. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  12. Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    NASA Technical Reports Server (NTRS)

    Karen, P.; Braaten, O.; Fjellvag, H.; Kjekshus, A.

    1991-01-01

    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents.

  13. Effect of Heat Treatment on The Crystal Structur, Electrical Conductivity and Surface of Ba1.5Sr0.5Fe2O5 Composite

    NASA Astrophysics Data System (ADS)

    Purwanto, P.; Adi, WA; Yunasfi

    2017-05-01

    The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.

  14. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Zhou, Hao; You, Wenlong; Yang, Hao

    2016-08-01

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. The results show that the magnetic moments of insulating BaFe10.2Sc1.8O19 can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe10.2Sc1.8O19 is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

  15. Magnetic structure of Ba (TiO ) Cu4(PO4)4 probed using spherical neutron polarimetry

    NASA Astrophysics Data System (ADS)

    Babkevich, P.; Testa, L.; Kimura, K.; Kimura, T.; Tucker, G. S.; Roessli, B.; Rønnow, H. M.

    2017-12-01

    The antiferromagnetic compound Ba (TiO ) Cu4(PO4)4 contains square cupola of corner-sharing CuO4 plaquettes, which were proposed to form effective quadrupolar order. To identify the magnetic structure, we have performed spherical neutron polarimetry measurements. Based on symmetry analysis and careful measurements, we conclude that the orientation of the Cu2 + spins form a noncollinear in-out structure with spins approximately perpendicular to the CuO4 motif. Strong Dzyaloshinskii-Moriya interaction naturally lends itself to explain this phenomenon. The identification of the ground-state magnetic structure should serve well for future theoretical and experimental studies into this and closely related compounds.

  16. Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios.

    PubMed

    Chidambarampadmavathy, Karthigeyan; Karthikeyan, Obulisamy Parthiba; Huerlimann, Roger; Maes, Gregory E; Heimann, Kirsten

    2017-07-15

    Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH 4 ) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH 4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu 2+ ) and iron (Fe 2+ ) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu 2+ and Fe 2+ (5:5, 5:25 and 5:50 μM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH 4 oxidation capacity, CH 4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo ® & Celligen ® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu 2+ /Fe 2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu 2+ /Fe 2+ ratios, while biomass growth was unaffected. In general, high Fe 2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu 2+ /Fe 2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe 2+ concentrations. Although methanotroph

  17. Electron-positron momentum density in Tl 2Ba 2CuO 6

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.

    1994-08-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.

  18. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  19. Controlling superstructural ordering in the clathrate-I Ba 8 M 16 P 30 (M = Cu, Zn) through the formation of metal–metal bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolyniuk, J.; Whitfield, P. S.; Lee, K.

    2017-01-01

    Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16-xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in themore » additional substitution of Zn for P in Ba8M16+yP30-y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pm[3 with combining macron]n). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.« less

  20. Enhancement of ferromagnetic properties in composites of BaSnO3 and CoFe2O4

    NASA Astrophysics Data System (ADS)

    Manju, M. R.; Ajay, K. S.; D'Souza, Noel M.; Hunagund, Shivakumar; Hadimani, R. L.; Dayal, Vijaylakshmi

    2018-04-01

    In this paper, we report structural and magnetic properties of BaSnO3(BSO)(1-x)-CoFe2O4 (CFO)(x) composite (with x = 0%, 1% (C1), 2% (C2) and 5% (C3) in molar ratio) synthesized using nitrate precursor method. The X-ray diffraction (XRD) pattern of the composite powder confirmed presence of both BaSnO3 with the cubic perovskite structure and CoFe2O4 with the cubic spinel structure. No signature of any other phases in pure BaSnO3, CoFe2O4 and composites have been detected either in XRD or energy dispersive X-ray (EDS) analysis. The temperature dependent zero field cooled (ZFC) & field cooled (FC) magnetization and magnetic field dependence magnetization measurements have been carried at room temperature of the pure BaSnO3. We observe a weak ferromagnetic (FM) behavior at room temperature in pure BaSnO3 even though it is non-magnetic in nature. The room temperature Raman spectroscopy and electron spin resonance measurements of the sample confirm the presence of oxygen vacancy and formation of F-center, which is responsible for the FM behavior. The oxidation state and elemental analysis have been carried out using X-ray photoelectron spectroscopy (XPS). The magnetic field dependence of magnetization of the composite samples reveal increase of saturation magnetization (Ms), remanence magnetization (Mr) and coercivity (Hc) with increase in ferrite content in the composite. Significant enhancement in FM components is observed with lowering of temperature.

  1. Partitioning of Cu between mafic minerals, Fe-Ti oxides and intermediate to felsic melts

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan

    2015-02-01

    This study used improved capsule technique i.e., Pt95Cu05 or Au95Cu05 alloy capsules as Cu sources to determine Cu partitioning between mafic minerals, Fe-Ti oxides and intermediate to felsic melts at 0.5-2.5 GPa, 950-1100 °C and various oxygen fugacities (fO2). In combination with the data from the mafic composition systems, the results demonstrate that Cu is generally highly incompatible in mafic minerals and moderately incompatible to compatible in Fe-Ti oxides. The general order of mineral/melt Cu partition coefficients (DCu) is garnet (0.01-0.06) ⩽ olivine (0.04-0.20) ≈ opx (0.04-0.24) ≈ amphibole (0.04-0.20) ⩽ cpx (0.04-0.45) ⩽ magnetite, titanomagnetite and Cr-spinel (0.18-1.83). The variations in DCu depend mainly on temperature, fO2 or mineral composition. In general, DCu for olivine (and perhaps opx) increases with decreasing temperature and increasing fO2. DCu increases for cpx with Na+ (pfu) in cpx, for magnetite and Cr-spinel with Fe3+ (pfu) in these phases and for titanomagnetite with Ti4+ (pfu) in this phase. The large number of DCu data (99 pairs) serves as a foundation for quantitatively understanding the behavior of Cu during magmatic processes. The generation of intermediate to felsic magmas via fractional crystallization or partial melting of mafic rocks (magmas) at deep levels of crust involves removal of or leaving assemblages of mafic minerals + Fe-Ti oxides ± sulfides. With our DCu data on mafic minerals and Fe-Ti oxides, DCubulk values around 0.2 were obtained for the sulfide-free assemblages. Cu will thus be concentrated efficiently in the derived melts during these two processes if sulfides are absent or negligible, explaining that high fO2 and sulfide-destabilization are favorable to formation of the porphyry Cu system.

  2. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  3. The influence of high pressure to crystalline and magnetic structure of Ba 2 FeMoO 6

    NASA Astrophysics Data System (ADS)

    Turchenko, V. A.; Kalanda, N. A.; Kovalev, L. V.; Yarmolich, M. V.; Petrov, A. V.; Lukin, Ye V.; Doroshkevich, A. S.; Balasoiu, M.; Lupu, N.; Savenko, B. N.

    2018-03-01

    The behavior of the crystalline and magnetic structure of Ba 2 FeMoO 6 compound in a wide pressure range from 0 to 4.7 GPa was studied. The crystal structure of ceramic sample was described in the framework of SG I4/mmm (No 139) and contains less 10% of anti-site defects. The change of tetragonal structure (I4/mmm) was not observed in all measured pressure range. It was shown multidirectional influence of ambient pressure onto the average interionic distances of metal-ligand in oxygen octahedrons of FeO 6 and MoO 6. For tetragonal structure of Ba 2 FeMoO 6 were determined coefficients of the linear and all-round compressibility. The influence of ambient pressure on the value of magnetic moment of iron sublattice was shown.

  4. Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires

    NASA Astrophysics Data System (ADS)

    Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.

    2017-04-01

    Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.

  5. Heteroepitaxial growth of Ba1 - xSrxTiO3/YBa2Cu3O7 - x by plasma-enhanced metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chern, C. S.; Liang, S.; Shi, Z. Q.; Yoon, S.; Safari, A.; Lu, P.; Kear, B. H.; Goodreau, B. H.; Marks, T. J.; Hou, S. Y.

    1994-06-01

    Epitaxial Ba1-xSrxTiO3(BST)/YBa2Cu3O7-x heterostructures with superior electrical and dielectric properties have been fabricated by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD). Data of x-ray diffraction and high resolution transmission electron microscopy showed that <100> oriented Ba1-xSrxTiO3 layers were epitaxially deposited on epitaxial (001) YBa2Cu3O7-x layers. The leakage current density through the Ba1-xSrxTiO3 films was about 10-7 A/cm2 at 2 V (about 2×105 V/cm) operation. Moreover, the results of capacitance-temperature measurements showed that the PE-MOCVD Ba1-xSrxTiO3 films had Curie temperatures of about 30 °C and a peak dielectric constant of 600 at zero bias voltage. The Rutherford backscattering spectrometry and x-ray diffraction results showed that the BST film composition was controlled between Ba0.75Sr0.25TiO3 and Ba0.8Sr0.2TiO3. The structural and electrical properties of the Ba1-xSrxTiO3/YBa2Cu3O7-x heterostructure indicated that conductive oxide materials with close lattice to Ba1-xSrxTiO3 can be good candidates for the bottom electrode.

  6. Sediment pollution in margins of the Lake Guaíba, Southern Brazil.

    PubMed

    de Andrade, Leonardo Capeleto; Tiecher, Tales; de Oliveira, Jessica Souza; Andreazza, Robson; Inda, Alberto Vasconcellos; de Oliveira Camargo, Flávio Anastácio

    2017-12-02

    Sediments are formed by deposition of organic and inorganic particles on depth of water bodies, being an important role in aquatic ecosystems, including destination and potential source of essential nutrients and heavy metals, which may be toxic for living organisms. The Lake Guaíba supplies water for approximately two million people and it is located in the metropolitan region of Porto Alegre, Rio Grande do Sul State, Brazil. Thus, the aim of this study was to evaluate the sediment pollution in the margins of Lake Guaíba in the vicinity of Porto Alegre city. Surface sediment was sampled in 12 sites to assess the concentration of several elements (C, N, P, Fe, Al, Ca, Mg, Na, K, Mn, Ba, Zn, V, Pb, Cu, Cr, Ni, Cd, Mo, and Se) and the mineralogical composition. Sediment in margins of Lake Guaíba presented predominantly (> 95%) sandy fraction in all samples, but with significant differences between evaluated sites. Sediments in the margins of Lake Guaíba showed indications of punctual water pollution with Pb, Cu, Cr, Ni, TOC, TKN, and P, mainly derived from urban streams that flow into the lake. In order to solve these environmental liabilities, public actions should not focus only on Guaíba, but also in the streams that flow into the lake.

  7. Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells

    PubMed Central

    Li, Meng; Hua, Bin; Pu, Jian; Chi, Bo; Jian, Li

    2015-01-01

    Pd-, Cu-, Ni- and NiCu-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anodes, designated as M-BZCYYb, were prepared by impregnating M-containing solution into BZCYYb scaffold, and investigated in the aspects of electrocatalytic activity for the reactions of H2 and CH4 oxidation and the resistance to carbon deposition. Impregnation of Pd, Ni or NiCu significantly reduced both the ohmic (RΩ) and polarization (RP) losses of BZCYYb anode exposed to H2 or CH4, while Cu impregnation decreased only RΩ in H2 and the both in CH4. Pd-, Ni- and NiCu-BZCYYb anodes were resistant to carbon deposition in wet (3 mol. % H2O) CH4 at 750°C. Deposited carbon fibers were observed in Pd- and Ni-BZCYYb anodes exposed to dry CH4 at 750°C for 12 h, and not observed in NiCu-BZCYYb exposed to dry CH4 at 750°C for 24 h. The performance of a full cell with NiCu-BZCYYb anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd doped CeO2 (LSCF-GDC) cathode was stable at 750°C in wet CH4 for 130 h, indicating that NiCu-BZCYYb is a promising anode for direct CH4 solid oxide fuel cells (SOFCs). PMID:25563843

  8. In-plane anisotropy of the electric field gradient in Ba(Fe 1 -xCox)2As2 observed by 75As NMR

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Ichikawa, Akihiro; Kobayashi, Yoshiaki; Sato, Masatoshi; Itoh, Masayuki

    2018-05-01

    We have performed 75As NMR measurements on single crystals to investigate the nematic behavior via the in-plane anisotropy of the electronic state at the As site far from Co impurities in the representative iron arsenides Ba (Fe1-xCox) 2As2 . From the analysis of the angular dependence of the NMR satellites in the c plane using the binominal distribution, we find that there is the in-plane fourfold symmetry breaking, namely, the orthorhombic-type anisotropy in the electric field gradient (EFG) at the As site with no Co atom at the nearest neighboring Fe sites even in the tetragonal phase of both BaFe2As2 and Ba (Fe1-xCox) 2As2(x ≠0 ) . The NMR spectrum in the antiferromagnetically ordered state of BaFe2As2 is shown not to support a nanotwin model on the basis of the nematic order proposed from the pair-distribution analysis of neutron scattering data. Based on results of the x and temperature T dependences of the in-plane anisotropy in the wide x and T ranges, the symmetry breaking is concluded to come from the local orthorhombic domains induced by disorder such as Co impurities or lattice imperfections. Furthermore, we find that the asymmetry parameter of EFG η obeys the Curie-Weiss law which may be governed by nematic susceptibility, and the Weiss temperature becomes zero at xc˜0.05 in Ba (Fe1-xCox) 2As2 .

  9. High resolution positron annihilation induced Auger electron spectroscopy of the CuM 2,3VV-transition and of Cu sub-monolayers on Pd and Fe

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-09-01

    We present a high resolution positron annihilation induced Auger Electron Spectroscopy (PAES) of the CuM 2,3VV-transition with the unprecedented energy resolution of Δ/EE <1%. This energy resolution and the highly intense positron source NEPOMUC enabled us to resolve the double peak structure with PAES for the first time within a measurement time of only 5.5 h. In addition, sub-monolayers of Cu were deposited on Fe- and Pd-samples in order to investigate the surface selectivity of PAES in comparison with EAES. The extremely high surface selectivity of PAES due to the different positron affinity of Cu and Fe lead to the result that with only 0.96 monolayer of Cu on Fe more than 55% of the emitted Auger electrons stem from Cu, whereas with EAES the Cu Auger fraction amounted to less than 6%.

  10. Magnetic spin structure and magnetoelectric coupling in BiFeO{sub 3}-BaTiO{sub 3} multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazenka, Vera, E-mail: Vera.Lazenka@fys.kuleuven.be; Modarresi, Hiwa; Bisht, Manisha

    2015-02-23

    Magnetic spin structures in epitaxial BiFeO{sub 3} single layer and an epitaxial BaTiO{sub 3}/BiFeO{sub 3} multilayer thin film have been studied by means of nuclear resonant scattering of synchrotron radiation. We demonstrate a spin reorientation in the 15 × [BaTiO{sub 3}/BiFeO{sub 3}] multilayer compared to the single BiFeO{sub 3} thin film. Whereas in the BiFeO{sub 3} film, the net magnetic moment m{sup →} lies in the (1–10) plane, identical to the bulk, m{sup →} in the multilayer points to different polar and azimuthal directions. This spin reorientation indicates that strain and interfaces play a significant role in tuning the magnetic spin order.more » Furthermore, large difference in the magnetic field dependence of the magnetoelectric coefficient observed between the BiFeO{sub 3} single layer and multilayer can be associated with this magnetic spin reorientation.« less

  11. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    PubMed

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-05

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to

  12. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    PubMed

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  13. Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)

    PubMed Central

    Cook, L. P.; Wong-Ng, W.; Paranthaman, P.

    1996-01-01

    The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086

  14. Fe{sub 3}O{sub 4}/CuO/ZnO/Nano graphene platelets (Fe{sub 3}O{sub 4}/CuO/ZnO/NGP) composites prepared by sol-gel method with enhanced sonocatalytic activity for the removal of dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendry, Tju; Taufik, Ardiansyah; Saleh, Rosari, E-mail: rosari.saleh@gmail.com, E-mail: rosari.saleh@ui.ac.id

    2016-04-19

    In this study, an attempt has been made to synthesize nanographene platelets coupled with Fe3O4/CuO/ZnO (Fe3O4/CuO/ZnO/NGP) with various ZnO loadings using a two step methods, sol-gel followed by hydrothermal method. Characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy and vibrating sample magnetometer. The sonocatalytic performance was evaluated by degradation of methylene blue under ultrasonic irradiation.The Fe3O4/CuO/ZnO/NGP showed superior sonocatalytic activity than the Fe3O4/CuO/ZnO materials. They also showed high stability and can be easily separated from the reaction system for recycling process.

  15. Emergence of high-mobility minority holes in the electrical transport of the Ba (Fe1 -xMnxAs )2 iron pnictides

    NASA Astrophysics Data System (ADS)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Heguri, S.; Oguro, H.; Watanabe, K.; Tanigaki, K.

    2015-05-01

    In Fe pnictide (Pn) superconducting materials, neither Mn nor Cr doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali-metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magnetotransport properties in Ba (Fe1 -xMnxAs )2 for elucidating the intrinsic reason. The negative Hall coefficient for x =0 estimated in the low magnetic field (B ) regime gradually increases as x increases, and its sign changes to a positive one at x =0.020 . Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin-density wave transition at low temperatures, while original majority electrons and holes residing in the paraboliclike Fermi surfaces of the semimetallic Ba (FeAs )2 are negligibly affected. Present results indicate that the mechanism of hole doping in Ba (Fe1 -xMnxAs )2 is greatly different from that of the other superconducting FePn family.

  16. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-11-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.

  17. Effect of sputtering condition and heat treatment in Co/Cu/Co/FeMn spin valve

    NASA Astrophysics Data System (ADS)

    Kim, Hong Jin; Bae, Jun Soo; Lee, Taek Dong; Lee, Hyuck Mo

    2002-03-01

    The exchange field of Cu(50 Å)/FeMn(50 Å)/Co(50 Å) sputtered on Si substrate was studied in terms of surface roughness and phase formation of γ-FeMn under a variety of Ar pressures and powers in sputtering. It was found that the exchange field is stronger when the surface is smoother and the FeMn layer forms better. The exchange bias field increased by more than three times after heat treatment. The effect of heat treament on magnetoresistance (MR) and resistance of the top spin valve, substrate/Co(30 Å)/Cu(30 Å)/Co(30 Å)/FeMn(150 Å), was studied. It was observed that the MR started to increase with annealing temperature and the effect was significant at 150°C. The heat treatment led to the disappearance of the intermixed layer between Co and Cu, and the concentration profile of Cu became flat and smooth at this temperature.

  18. Dielectric relaxation in 0-3 PVDF-Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, K. P., E-mail: kpchandra23@gmail.com; Singh, Rajan; Kulkarni, A. R., E-mail: ajit2957@gmail.com

    2016-05-06

    (1-x)PVDF-xBa(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts ofmore » dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.« less

  19. Electronic structure of Pr{sub 1{minus}x}Y{sub x}Ba{sub 2}Cu{sub 3}O{sub y} (x=0, 0.5, and 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, K.; Fueki, K.

    1997-08-01

    In order to elucidate the reason why PrBa{sub 2}Cu{sub 3}O{sub y}is not a superconductor, we examined the Pr valence and measured the oxygen nonstoichiometry and the conductivity at temperatures up to 1200 K for three kinds of oxides, PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y}, and YBa{sub 2}Cu{sub 3}O{sub y}. The valence of Pr was found to be +3. Any difference was not found in oxygen nonstoichiometry and conductivity among three kinds of oxides. We analyzed the data of oxygen nonstoichiometry on the basis of defect thermodynamics and calculated the numbers of Cu{sup +}, Cu{sup 2+}, andmore » Cu{sup 3+} ions in the unit cell as a function of y. The number of Cu{sup 3+} ions (the amount of holes) was found to be proportional to ({Delta}y){sup 1.6}({Delta}y=y{minus}6.0), whereas the conductivity was found to be proportional to ({Delta}y){sup 3.2} in these oxides. We interpreted the remarkable increase of {sigma} with {Delta}y as an evidence of the increase of both mobility and hole concentration with {Delta}y. At high temperatures, we detected the conductivity minimum {sigma}{sub min} which was found in the log{sub 10}{sigma}{minus}log{sub 10}P{sub O{sub 2}} plot at constant temperatures. From the slope of the Arrhenius plot for {sigma}{sub min}, the band gap was determined to be 1.21, 1.32, and 1.37 eV for PrBa{sub 2}Cu{sub 3}O{sub y}, (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} and YBa{sub 2}Cu{sub 3}O{sub y}, respectively. We determined the conductivity of the same oxygen content as a function of temperature from 4.2 to 1200 K. The energy gap {Delta}E between the acceptor level and the top of the valence band was calculated from the slope of the Arrhenius plot for conductivity. {Delta}E for superconducting YBa{sub 2}Cu{sub 3}O{sub y} and (Pr{sub 0.5}Y{sub 0.5})Ba{sub 2}Cu{sub 3}O{sub y} were zero at 300 K but that for nonsuperconducting PrBa{sub 2}Cu{sub 3}O{sub y} was 20 meV at 100 K even for y=6.93. (Abstract

  20. Kinetic analysis of the non-isothermal crystallization process, magnetic and mechanical properties of FeCoBSiNb and FeCoBSiNbCu bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Stoica, Mihai; Taghvaei, A. H.; Prashanth, K. G.; Ravi Kumar, Eckert, Jürgen

    2016-02-01

    The crystallization kinetics of [(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 and {[(Fe0.5Co0.5)0.75B0.2Si0.05]0.96Nb0.04}99.5Cu0.5 bulk metallic glasses were evaluated using differential scanning calorimetry under non-isothermal condition. The fully glassy rods with diameters up to 2 mm were obtained by copper mold injection casting. Both glasses show good thermal stability, but the addition of only 0.5% Cu completely changes the crystallization behavior. The average activation energy required for crystallization decreases from 645 kJ/mol to 425 kJ/mol after Cu addition. Upon heating, the Cu-free alloy forms only the metastable Fe23B6 phase. In contrast, two well-separated exothermic events are observed for the Cu-added bulk glassy samples. First, the (Fe,Co) phase nucleates and then (Fe,Co)2B and/or (Fe,Co)3B crystallize from the remaining glassy matrix. The Cu-added alloy exhibits a lower coercivity and a higher magnetic saturation than the base alloy, both in as-cast as well as in annealed condition. Besides, the Cu-added glassy sample with 2 mm diameter exhibits a maximum compressive fracture strength of 3913 MPa together with a plastic strain of 0.6%, which is highest plastic strain ever reported for 2 mm diameter ferromagnetic bulk metallic glass sample. Although Cu addition improves the magnetic and mechanical properties of the glass, it affects the glass-forming ability of the base alloy.

  1. Preparation and Dielectric Measurements of the Rare Earth Green Phases R2BaCuO(5-x) (R = Y, Sm, Gd, Dy, Ho, Er, Yb)

    NASA Technical Reports Server (NTRS)

    Gonzalez-Titman, Carlos

    1994-01-01

    It has been demonstrated that R2BaCuO(5-x) (R = Y, Sm, Gd, Dy, Ho, Er, Yb) does not undergo significant densification unless the sintering temperatures are near the incongruent melting point or the sintering times are long. Good quality powders of Y2BaCuO(5-x) have been synthesized by using oxide raw materials or precursors such as acetates and nitrates. The acetates- and the nitrates-derived yttrium green phase resulted in finer particle sizes, acceptable dielectric properties and lower melting temperatures than those processed via oxide raw materials. The hot pressing technique has been employed to produce a dense R2BaCuO(5-x) (R=Y,Gd) substrate with satisfactory dielectric properties. Reactivity to reducing conditions, i.e. graphite die, limited the optimization of the properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO,.,,. Oxygen treatment at 950 OC has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. A high sensitivity to the annealing atmosphere has been demonstrated in Y2BaCuO(5-x). Oxygen treatment at 950 C has been shown to improve the dielectric properties while treatment in nitrogen, at the same temperature, degraded desirable properties. The dielectric constants of the rare earth green phases R2BaCuO(5-x) were found to be low. Relaxation peaks were detected at low temperatures (T less than 150 K) and at high temperatures (150 less than T greater than 420 K). The dielectric losses and conductivities at 77 K were measured to be in the range of 10(exp -4) and 10(exp -12) (Omega-cm)(exp -1), respectively. Many parameters were found to exhibit dependencies on the rare earth cation sizes.

  2. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  3. Conduction Mechanisms in Multiferroic Multilayer BaTiO3/NiFe2O4/BaTiO3 Memristors

    NASA Astrophysics Data System (ADS)

    Samardzic, N.; Bajac, B.; Srdic, V. V.; Stojanovic, G. M.

    2017-10-01

    Memristive devices and materials are extensively studied as they offer diverse properties and applications in digital, analog and bio-inspired circuits. In this paper, we present an important class of memristors, multiferroic memristors, which are composed of multiferroic multilayer BaTiO3/NiFe2O4/BaTiO3 thin films, fabricated by a spin-coating deposition technique on platinized Si wafers. This cost-effective device shows symmetric and reproducible current-voltage characteristics for the actuating voltage amplitude of ±10 V. The origin of the conduction mechanism was investigated by measuring the electrical response in different voltage and temperature conditions. The results indicate the existence of two mechanisms: thermionic emission and Fowler-Nordheim tunnelling, which alternate with actuating voltage amplitude and operating temperature.

  4. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  5. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    NASA Astrophysics Data System (ADS)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  6. A Hybrid Mineral Battery: Energy Storage and Dissolution Behavior of CuFeS2 in a Fixed Bed Flow Cell.

    PubMed

    Deen, Kashif Mairaj; Asselin, Edouard

    2018-05-09

    The development of a hybrid system capable of storing energy and the additional benefit of Cu extraction is discussed in this work. A fixed bed flow cell (FBFC) was used in which a composite negative electrode containing CuFeS 2 (80 wt %) and carbon black (20 wt %) in graphite felt was separated from a positive (graphite felt) electrode by a proton-exchange membrane. The anolyte (0.2 m H 2 SO 4 ) and catholyte (0.5 m Fe 2+ in 0.2 m H 2 SO 4 with or without 0.1 m Cu 2+ ) were circulated in the cell. The electrochemical activity of the Fe 2+ /Fe 3+ redox couple over graphite felt significantly improved after the addition of Cu 2+ in the catholyte. Ultimately, in the CuFeS 2 ∥Fe 2+ /Cu 2+ (CFeCu) FBFC system, the specific capacity increased continuously to 26.4 mAh g -1 in 500 galvanostatic charge-discharge (GCD) cycles, compared to the CuFeS 2 ∥Fe 2+ (CFe) system (13.9 mAh g -1 ). Interestingly, the specific discharge energy gradually increased to 3.6 Wh kg -1 in 500 GCD cycles for the CFeCu system compared to 3.29 Wh kg -1 for the CFe system in 150 cycles. In addition to energy storage, 10.75 % Cu was also extracted from the mineral, which is an important feature of the CFeCu system as it would allow Cu extraction and recovery through hydrometallurgical methods. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Giant interfacial perpendicular magnetic anisotropy in Fe/CuIn 1 -xGaxSe2 beyond Fe/MgO

    NASA Astrophysics Data System (ADS)

    Masuda, Keisuke; Kasai, Shinya; Miura, Yoshio; Hono, Kazuhiro

    2017-11-01

    We study interfacial magnetocrystalline anisotropies in various Fe/semiconductor heterostructures by means of first-principles calculations. We find that many of those systems show perpendicular magnetic anisotropy (PMA) with a positive value of the interfacial anisotropy constant Ki. In particular, the Fe/CuInSe 2 interface has a large Ki of ˜2.3 mJ /m2 , which is about 1.6 times larger than that of Fe/MgO known as a typical system with relatively large PMA. We also find that the values of Ki in almost all the systems studied in this work follow the well-known Bruno's relation, which indicates that minority-spin states around the Fermi level provide dominant contributions to the interfacial magnetocrystalline anisotropies. Detailed analyses of the local density of states and wave-vector-resolved anisotropy energy clarify that the large Ki in Fe/CuInSe 2 is attributed to the preferable 3 d -orbital configurations around the Fermi level in the minority-spin states of the interfacial Fe atoms. Moreover, we have shown that the locations of interfacial Se atoms are the key for such orbital configurations of the interfacial Fe atoms.

  8. Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate

    NASA Astrophysics Data System (ADS)

    Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.

    1988-07-01

    High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.

  9. Large dielectric permittivity and possible correlation between magnetic and dielectric properties in bulk BaFeO{sub 3−δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagdeo, Archna; Gautam, Kamini; Singh, M. N.

    2014-07-28

    We report structural, magnetic, and dielectric properties of oxygen deficient hexagonal BaFeO{sub 3−δ}. A large dielectric permittivity comparable to that of other semiconducting oxides is observed in BaFeO{sub 3−δ}. Magnetization measurements indicate magnetic inhomogeneity and the system shows a paramagnetic to antiferromagnetic transition at ∼160 K. Remarkably, the temperature, at which paramagnetic to antiferromagnetic transition occurs, around this temperature, a huge drop in the dissipation factor takes place and resistivity shoots up; this indicates the possible correlation among magnetic and dielectric properties. First principle simulations reveal that some of these behaviors may be explained in terms of many body electron correlationmore » effect in the presence of oxygen vacancy present in BaFeO{sub 3−δ} indicating its importance in both fundamental science as well as in applications.« less

  10. Enhanced magnetoimpedance and field sensitivity in microstructure controlled FeSiCuNbB ribbons

    NASA Astrophysics Data System (ADS)

    Sahoo, Trilochan; Chandra Mishra, Amaresh; Srinivas, V.; Nath, T. K.; Srinivas, M.; Majumdar, B.

    2011-10-01

    Fe73.5Si13.5Cu1Nb3B9 and Fe77.2Si11.2Cu0.8Nb3.3B7.5 nanocomposite materials consisting of nanocrystalline phase in an amorphous matrix were obtained by heat-treatment of their precursor amorphous ribbons. The influence of structural modifications induced during the heat-treatment on soft magnetic properties and magnetoimpedance (MI) effect have been studied. The structural investigations on both these ribbons revealed the presence of two phases, fine grained Fe3Si phase and a residual amorphous phase on heat-treatment. The maximum MI ratio obtained in the present study is 95% at f = 4 MHz, for the optimized heat-treated Fe77.2Si11.2Cu0.8Nb3.3B7.5 ribbon. This is ascribed to the increase in magnetic permeability and decrease in coercive force and intrinsic resistivity. Moreover, a maximum magnetic field sensitivity (ξ) of 8.3%/Oe at f = 2.5 MHz is obtained, for the optimized nanocrystalline Fe73.5Si13.5Cu1Nb3B9 ribbon. This suggests that tailoring of the nanocrystalline microstructures induced by optimum heat-treatment conditions can result in obtaining excellent combinations of the magnetic permeability and resistivity. Our results indicate that these Fe-based nanocrystalline materials can be ideally used for low magnetic field and high frequency sensor applications.

  11. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  12. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE PAGES

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; ...

    2016-09-20

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  13. The preparation and activity of Cu-Fe-Zr-Ce based catalysts for water gas shift

    NASA Astrophysics Data System (ADS)

    Wu, H. D.; Liu, T. S.; Liu, H. Z.

    2018-01-01

    CeO2-ZrO2 composite oxide was synthesized with precipitation method as support and CuaFeb(ZrCe4)8Ox catalysts were prepared by impregnation; X-ray diffraction, H2 temperature program reduction, and scanning electron microscope techniques were jointly used to characterize the crystal phases and reduction properties of catalysts. Then the activity of catalysts in water gas shift was studied, thus investigated how catalyst composition impacted the water gas shift. Conclusions drew from the results can be briefly stated. CuaFeb(ZrCe4)8Ox was provided with stable cubic crystalline framework and Cu and Fe, as the active components, was highly dispersed on the surface of supports in the form of CuO and Fe2O3 respectively. The strong interactions between copper and iron component enhanced the reducing capacity of CuO and Fe2O3. CuaFeb(ZrCe4)8Ox catalysts exhibited high catalytic activity and selectivity while the main active components were Cu and Fe3O4. The CO conversion rate reached 96% when Cu7Fe3(ZrCe4)8Ox catalysts was used in water gas shift at 623K and the only products were H2 and CO2. The activity was still desirable even the catalysts was applied at 723K.

  14. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  15. Magnetization reversal process and evaluation of thermal stability factor in Cu doped granular L10 FePt films

    NASA Astrophysics Data System (ADS)

    Jain, S.; Papusoi, C.; Admana, R.; Yuan, H.; Acharya, R.

    2018-05-01

    Curie temperature TC distributions and magnetization reversal mechanism in Cu doped L10 FePt granular films is investigated as a function of film thickness in the range of ˜5-12 nm with Cu mol. % varying in the range of 0%-6%. It is shown that Cu doping increases the FePt tetragonality and chemical ordering. For Cu doped FePt-X films, coercivity (HC) exhibits a non-monotonic behavior with increasing film thickness, i.e., HC increases initially up to tcr ˜ 7 nm, and decreases thereafter. We attribute this behavior to the change in magnetization reversal mechanism from coherent to an incoherent (domain-wall driven) mode. While in un-doped films, the domain-walls nucleate at the grain boundaries, in doped films the Cu atoms may act as domain-wall nucleation and pinning sites, isolating magnetic spin clusters of reduced dimensionality with respect to the physical grain size. This is experimentally supported by a much poorer dependence of the AC susceptibility (both, real and imaginary components) on the film thickness above 7 nm than in the case of un-doped films. The formation of magnetic spin clusters inside the grains as a consequence of the reduced coupling between Fe-Fe and Fe-Pt-Fe atoms with increasing Cu doping can explain the experimentally evidenced reduction of both, the film Curie temperature, TC, and intrinsic anisotropy energy density, KC, with increasing Cu doping.

  16. Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.

    1994-09-01

    Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.

  17. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    PubMed

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Magnetic moment in single crystalline BaFe2-xZnxAs2

    NASA Astrophysics Data System (ADS)

    Guo, Yanfeng; Wang, Xia; Li, Jun; Yamaura, Kazunari; Takayama-Muromachi, Eiji

    2012-02-01

    Nature of the magnetism for iron-based superconductors (FeSCs) has been actively studied since the discovery of this new family of compounds in 2008, largely owing to its significance for interpreting the paring mechanism. The approach through impurity substitution to shed light into this issue is always one of major ways. The substitution shows distinct responses to species of impurities, where partially replacement of Fe in parent FeSCs with a variety of d-metals like Co, Ni Ru, Rh, Pd, Ir, and Pt generally results in superconductivity, while recent progress in Zn doped FeSCs gives rather contrary result, where Zn severely degenerates the TC. Herein we show the magnetic and electrical studies on BaFe2-xZnxAs2 single crystals. Nonmagnetic Zn doping progressively suppresses the SDW without resulting in superconductivity, while it alternatively develops the spin-glass state, possibly suggestive of local magnetic moment around the Fe sites induced by Zn. The characterizations by X-ray diffraction, magnetic and electrical transport properties, specific heat capacity, and Hall coefficient have been done and the results will be discussed in detail.

  19. Synthesis, crystal structure and magnetic properties of superconducting single crystals of HgBa2CuO4+δ

    NASA Astrophysics Data System (ADS)

    Bertinotti, A.; Viallet, V.; Colson, D.; Marucco, J.-F.; Hammann, J.; Forget, A.; Le Bras, G.

    1996-02-01

    Single crystals of HgBa2CuO4+δ of submillimetric sizes were grown with the same one step, low pressure, gold amalgamation technique used to obtain single crystals of HgBa2Ca2Cu3O8+δ. Remarkable superconducting properties are displayed by the samples which are optimally doped as grown. The sharpness of the transition profiles of the magnetic susceptibility, its anisotropy dependence and the volume fraction exhibiting the Meissner effect exceed the values obtained with the best crystal samples of Hg-1223. X-rays show that no substitutional defects have been found in the mercury plane, in particular no mixed occupancy of copper at the mercury site. The interstitial oxygen content at (1/2, 1/2, 0) δ = 0.066+/-0.008 is about one third that observed in optimally doped Hg-1223, resulting in an identical doping level per CuO2 plane in both compounds.

  20. Thermoelectric Properties of Selenospinel Cu6Fe4Sn12Se32

    NASA Astrophysics Data System (ADS)

    Suekuni, Koichiro; Kunii, Masaru; Nishiate, Hirotaka; Ohta, Michihiro; Yamamoto, Atsushi; Koyano, Mikio

    2012-06-01

    This report describes thermoelectric properties up to 500 K for polycrystalline selenospinel Cu6Fe4Sn12Se32 samples. Thermal conductivity shows a low value of 1 W/Km because of their structural complexity such as Fe/Sn site disorder. Electrical resistivity ρ varies as exp( T 0/ T 1/4) and thermopower S varies as T 1/2 at low temperatures, which indicates that Mott variable-range hopping is the dominant conduction mechanism. However, at high temperatures (above 350 K), ρ and S decrease simultaneously. The temperature dependences are attributed to the thermal excitation of electrons. The possible band structure for Cu6Fe4Sn12Se32 is examined to clarify the behavior of ρ and S.

  1. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  2. High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe{sub 12}O{sub 19}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, H. B.; Zhao, Z. Y.; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996

    2015-06-01

    High quality single crystals of BaFe{sub 12}O{sub 19} were grown using the floating zone technique in 100 atm of flowing oxygen. Single crystal neutron diffraction was used to determine the nuclear and magnetic structures of BaFe{sub 12}O{sub 19} at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe{sup 3+} ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range frommore » 1.90 to 300 K. The inverse dielectric permittivity, 1/ε, along the c-axis shows a T{sup 2} temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in 1/ε. These features resemble those of classic quantum paraelectrics such as SrTiO{sub 3}. The presence of the upturn in 1/ε indicates that BaFe{sub 12}O{sub 19} is a critical quantum paraelectric system with Fe{sup 3+} ions involved in both magnetic and electric dipole formation.« less

  3. Growing barium hexaferrite (BaFe{sub 12}O{sub 19}) thin films using chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budiawanti, Sri, E-mail: awanty77@yahoo.com; Faculty of Teacher Training and Education, Sebelas Maret University; Soegijono, Bambang

    Barium hexaferrite (BaFe{sub 12}O{sub 19}, or simply known as BaM) thin films has been recognized as a potential candidate for microwave-based devices, magnetic recording media and data storage. To grow BaM thin films, chemical solution deposition is conducted using the aqueous solution of metal nitrates, which involves spin coatings on Si substrates. Furthermore, Thermal Gravimeter Analysis (TGA), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) are applied to evaluate the decomposition behavior, structure, morphology, and magnetic properties of BaM thin films. Additionally, the effects of number of layers variation are also investigated. Finally, magnetic properties analysismore » indicates the isotropic nature of the films.« less

  4. Magnetic properties of quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub x}Cu{sub 3}Fe{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Makoto; Mori, Shigeo; Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp

    Magnetic properties of the quadruple perovskite solid solutions Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} and Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} are investigated. Ca{sub 1–x}Y{sub x}Cu{sub 3}Fe{sub 4}O{sub 12} shows continuous increase in the ferromagnetic transition temperature as x increases. Y{sub 1–y}Ce{sub y}Cu{sub 3}Fe{sub 4}O{sub 12} exhibits a ferromagnetic-antiferromagnetic transition in the vicinity of y = 0.5. These observations demonstrate the electron doping effect on magnetic properties of charge-disproportionated ACu{sub 3}Fe{sub 4}O{sub 12} phases.

  5. Preparation and properties of Ba xSr 1- xCo yFe 1- yO 3- δ cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng

    Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.

  6. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao

    2018-06-01

    A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.

  7. Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy

    NASA Astrophysics Data System (ADS)

    Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben

    2018-06-01

    We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.

  8. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  9. Step-by-step thermal transformations of a new porous coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} (Me{sub 2}mal{sup 2-}=dimethylmalonate): Thermal degradation to barium cuprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauzolkova, Natalya, E-mail: zauzolkova@igic.ras.ru; Dobrokhotova, Zhanna; Lermontov, Anatoly

    The reactions of CuSO{sub 4}{center_dot}5H{sub 2}O, dimethylmalonic acid and Ba(OH){sub 2}{center_dot}H{sub 2}O (Cu: H{sub 2}Me{sub 2}mal: Ba=1: 2: 2) in aqueous and aqueous-ethanol solutions (H{sub 2}O: EtOH=1: 1) resulted in formation of 3D-porous coordination polymers [(H{sub 2}O){sub 3}({mu}-H{sub 2}O){sub 2}CuBa({mu}{sub 3}-Me{sub 2}mal)(Me{sub 2}mal)]{sub n} (1) and [({mu}-H{sub 2}O)CuBa({mu}{sub 3}-Me{sub 2}mal)({mu}{sub 4}-Me{sub 2}mal)]{sub n} (2), respectively. It has been shown that compound 2 was an intermediate in the thermal degradation of compound 1. Thorough studies of solid-state thermolysis of 1 and 2 allowed to detect formation of coordination polymer [CuBa({mu}{sub 4}-Me{sub 2}mal)({mu}{sub 5}-Me{sub 2}mal)]{sub n} (3), structure of which was determinedmore » by X-ray powder diffraction. It has been found that the channels in polymer 3 were accessible for guest molecules (MeOH). Theoretical estimation of methanol diffusion barrier was carried out. Complete solid-phase thermolysis of 1 and 2 leads to a mixture of BaCuO{sub 2}, BaCO{sub 3}, and CuO. Special conditions for obtaining of a crystalline phase of pure cubic BaCuO{sub 2} were determined. - Graphical abstract: Step-by-step transformation of new coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} to [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} and [CuBa(Me{sub 2}mal){sub 2}]{sub n} were performed. Dehydration of initial compound leads to structural changes of 12-membered ring fragment. All compounds have porous structure. The final product of thermal decomposition is crystalline phase of individual cubic BaCuO{sub 2}. Highlights: Black-Right-Pointing-Pointer New 3D-polymers [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} and [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} were synthesized. Black-Right-Pointing-Pointer Thermal analysis showed step-by-step transformations of [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n}. Black

  10. Experimental investigation of inhomogeneities, nanoscopic phase separation, and magnetism in arc melted Fe-Cu metals with equal atomic ratio of the constituents

    NASA Astrophysics Data System (ADS)

    Hassnain Jaffari, G.; Aftab, M.; Anjum, D. H.; Cha, Dongkyu; Poirier, Gerald; Ismat Shah, S.

    2015-12-01

    Composition gradient and phase separation at the nanoscale have been investigated for arc-melted and solidified with equiatomic Fe-Cu. Diffraction studies revealed that Fe and Cu exhibited phase separation with no trace of any mixing. Microscopy studies revealed that immiscible Fe-Cu form dense bulk nanocomposite. The spatial distribution of Fe and Cu showed existence of two distinct regions, i.e., Fe-rich and Cu-rich regions. Fe-rich regions have Cu precipitates of various sizes and different shapes, with Fe forming meshes or channels greater than 100 nm in size. On the other hand, the matrix of Cu-rich regions formed strips with fine strands of nanosized Fe. Macromagnetic response of the system showed ferromagnetic behavior with a magnetic moment being equal to about 2.13 μB/ Fe atom and a bulk like negligible value of coercivity over the temperature range of 5-300 K. Anisotropy constant has been calculated from various laws of approach to saturation, and its value is extracted to be equal to 1350 J/m3. Inhomogeneous strain within the Cu and Fe crystallites has been calculated for the (unannealed) sample solidified after arc-melting. Annealed sample also exhibited local inhomogeneity with removal of inhomogeneous strain and no appreciable change in magnetic character. However, for the annealed sample phase separated Fe exhibited homogenous strain.

  11. Theoretical investigation on thermoelectric properties of (Ca,Sr,Ba)Fe2(As/Bi)2 compounds under temperature

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet

    2018-04-01

    The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.

  12. Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba{sub 3}Fe{sub 3}O{sub 7}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@nano.tu-darmstadt.de; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; University of Birmingham, School of Chemistry, Birmingham B152TT

    2016-11-15

    This article describes a detailed investigation of the crystallographic and magnetic structure of perovskite type Ba{sub 3}Fe{sub 3}O{sub 7}F by a combined analysis of X-ray and neutron powder diffraction data. Complete ordering of vacancies within the perovskite lattice could be confirmed. In addition, the structure of the anion sublattice was studied by means of the valence bond method, which suggested partial ordering of the fluoride ions on two of the six crystallographically different anion sites. Moreover, the compound was found to show G-type antiferromagnetic ordering of Fe moments, in agreement with magnetometric measurements as well as previously recorded {sup 57}Femore » Mössbauer spectroscopy data. - Graphical abstract: The vacancy and anion ordered structure of Ba{sub 3}Fe{sub 3}O{sub 7}F is described together with its magnetic properties. - Highlights: • Ba{sub 3}Fe{sub 3}O{sub 7}F possesses a unique vacancy order not found for other perovskite type compounds. • The valence bond method was used to locate oxide and fluoride ions. • Fluoride ions are distributed only on two of the six anion sites in Ba{sub 3}Fe{sub 3}O{sub 7}F. • The compound shows G-type antiferromagnetic ordering of magnetic moments. • The magnetic structure could be refined in one of the maximal magnetic subgroups of the nuclear structure.« less

  13. Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4)

    USGS Publications Warehouse

    Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.

    1985-01-01

    The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.

  14. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    PubMed

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  15. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.

  16. Silicon induced Fe deficiency affects Fe, Mn, Cu and Zn distribution in rice (Oryza sativa L.) growth in calcareous conditions.

    PubMed

    Carrasco-Gil, Sandra; Rodríguez-Menéndez, Sara; Fernández, Beatriz; Pereiro, Rosario; de la Fuente, Vicenta; Hernandez-Apaolaza, Lourdes

    2018-04-01

    A protective effect by silicon in the amelioration of iron chlorosis has recently been proved for Strategy 1 species, at acidic pH. However in calcareous conditions, the Si effect on Fe acquisition and distribution is still unknown. In this work, the effect of Si on Fe, Mn, Cu and Zn distribution was studied in rice (Strategy 2 species) under Fe sufficiency and deficiency. Plants (+Si or-Si) were grown initially with Fe, and then Fe was removed from the nutrient solution. The plants were then analysed using a combined approach including LA-ICP-MS images for each element of interest, the analysis of the Fe and Si concentration at different cell layers of root and leaf cross sections by SEM-EDX, and determining the apoplastic Fe, total micronutrient concentration and oxidative stress indexes. A different Si effect was observed depending on plant Fe status. Under Fe sufficiency, Si supply increased Fe root plaque formation, decreasing Fe concentration inside the root and increasing the oxidative stress in the plants. Therefore, Fe acquisition strategies were activated, and Fe translocation rate to the aerial parts was increased, even under an optimal Fe supply. Under Fe deficiency, +Si plants absorbed Fe from the plaque more rapidly than -Si plants, due to the previous activation of Fe deficiency strategies during the growing period (+Fe + Si). Higher Fe plaque formation due to Si supply during the growing period reduced Fe uptake and could activate Fe deficiency strategies in rice, making it more efficient against Fe chlorosis alterations. Silicon influenced Mn and Cu distribution in root. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  18. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, A., E-mail: takeuchi@imr.tohoku.ac.jp; Zhang, Y.; Takenaka, K.

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermicmore » enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si

  19. Anomalous thermal expansion behaviors in Sm-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Okaji, Masahiro; Yamada, Naofumi; Mase, Atsushi; Ikuta, Hiroshi; Mizutani, Uichiro

    2000-11-01

    Linear thermal expansion coefficients α of c-axis oriented Ag-added Sm-Ba-Cu-O superconductors have been measured in the range of 10 - 300 K. The α showed a large bump along the c-axis and a large dent along the ab-plane around 170 - 260 K for the 2 wt% and 5 wt% Ag 2O specimens, but these anomalies essentially disappeared with thermal cycles between room and cryogenic temperatures. In contrast, there were no significant anomalies for the 10 wt% and 20 wt% Ag 2O specimens. These results suggest that the addition of Ag 2O should moderate deformation and help to increase mechanical strength.

  20. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  1. Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, B D; Asoka-Kumar, P; Howell, R H

    2001-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs andmore » VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450 C and irradiated at 288 C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288 C clearly show the existence of long lifetime ({approx}500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.« less

  2. Microstructure, Piezoelectric, and Ferroelectric Properties of BZT-Modified BiFeO3-BaTiO3 Multiferroic Ceramics with MnO2 and CuO Addition

    NASA Astrophysics Data System (ADS)

    Guan, Shibo; Yang, Huabin; Chen, Guangcong; Zhang, Rui

    2018-02-01

    A new lead-free piezoelectric ceramic, 0.67BiFeO3-0.33BaTiO3-xBi(Zn0.5Ti0.5) O3 + 0.0035MnO2 + 0.004CuO, was prepared through the solid-state reaction route. The ceramic was sintered in the 950-990°C range. In this paper, the crystal structure of the sample is pure perovskite structure with a pseudo-cubic structure in the range of x = 0-0.05, and does not change greatly with the increase of x. The grain size increases first and then decreases with the increase of x. The addition of Bi(Zn0.5Ti0.5) O3(BZT) promoted the grain growth of the sample. The piezoelectric constant reached the maximum value of d 33 = 188 pC/N, electromechanical coupling coefficient k p = 0.301 and the remanent polarization P r = 61.20 μC/cm2 at x = 0.03. It has a high Curie temperature of T c = 420°C. On the other hand, the depolarization temperature reaches the maximum value, T d = 426°C, at x = 0. A small amount of BZT doping can improve the piezoelectric, dielectric, and ferroelectric properties of the samples. Therefore, this material can be considered as a promising lead-free piezoelectric ceramic material in the application field of high-temperature materials.

  3. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    NASA Astrophysics Data System (ADS)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-06-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.

  4. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    NASA Astrophysics Data System (ADS)

    Meng, F.; Chaudhary, R. P.; Gandha, K.; Nlebedim, I. C.; Palasyuk, A.; Simsek, E.; Kramer, M. J.; Ott, R. T.

    2018-04-01

    This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5-20 at.%) and Co (60-45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (H c > 10 kOe) can be achieved without any microstructural refinement.

  5. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jiandi

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature.more » However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.« less

  6. Field trapping and magnetic levitation performances of large single-grain Gd Ba Cu O at different temperatures

    NASA Astrophysics Data System (ADS)

    Nariki, S.; Fujikura, M.; Sakai, N.; Hirabayashi, I.; Murakami, M.

    2005-10-01

    We measured the temperature dependence of the trapped field and the magnetic levitation force for c-axis-oriented single-grain Gd-Ba-Cu-O bulk samples 48 mm in diameter. Trapped magnetic field of the samples was 2.1-2.2 T at 77 K and increased with decreasing temperature and reached 4.1 T at 70 K, however the sample fractured during the measurements at lower temperatures due to a large electromagnetic force. The reinforcement by a metal ring was effective in improving the mechanical strength. The sample encapsulated in an Al ring could trap a very high magnetic field of 9.0 T at 50 K. In liquid O 2 the Gd-Ba-Cu-O bulk exhibited a trapped field of 0.42 T and a magnetic levitation force about a half value of that in liquid N 2.

  7. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    PubMed

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  9. Crystal structure and physical properties of quaternary clathrates Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x} and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, Navida; Grytsiv, Andriy; Melnychenko-Koblyuk, Nataliya

    2010-10-15

    Three series of vacancy-free quaternary clathrates of type I, Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}, Ba{sub 8}(Zn,Cu){sub x}Ge{sub 46-x}, and Ba{sub 8}(Zn,Pd){sub x}Ge{sub 46-x}, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 {sup o}C. In all cases cubic primitive symmetry (space group Pm3n, a{approx}1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y}. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed formore » the 6d site. Site preference of Ge and Si in Ba{sub 8}Zn{sub x}Ge{sub 46-x-y}Si{sub y} has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the 'Ba{sub 8}Ge{sub 46}' corner at 800 {sup o}C has been derived and a three-dimensional isothermal section at 800 {sup o}C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba{sub 8{l_brace}}Cu,Pd,Zn{r_brace}{sub x}Ge{sub 46-x} and Ba{sub 8}Zn{sub x}Si{sub y}Ge{sub 46-x-y} evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba{sub 8}Ge{sub 43}. A promising figure of merit, ZT {approx}0.45 at 750 K, has been derived for Ba{sub 8}Zn{sub 7.4}Ge{sub 19.8}Si{sub 18.8}, where pricey germanium is exchanged by reasonably cheap silicon. - Graphical abstract: Quaternary phase diagram of Ba-Pd-Zn-Ge system at 800 {sup o}C.« less

  10. Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype

    NASA Astrophysics Data System (ADS)

    Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.

    2016-09-01

    Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.

  11. Fabrication of Fe{sub 3}O{sub 4}@CuO core-shell from MOF based materials and its antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajabi, S.K.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Ghafourian, S.

    Magnetic Fe{sub 3}O{sub 4}@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe{sub 3}O{sub 4}@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe{sub 3}O{sub 4} core and a CuO shell. The Fe{sub 3}O{sub 4}@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe{sub 3}O{sub 4}-CuO core-shell was investigated againstmore » gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Graphical abstract: Fe{sub 3}O{sub 4}@CuO core-shell release of copper ions. These Cu{sup 2+} ions were responsible for the exhibited antibacterial activity. - Highlights: • The Fe{sub 3}O{sub 4}@CuO core-shell was prepared by MOF method. • This is the first study of antibacterial activity of core-shell consist of CuO and Fe{sub 3}O{sub 4}. • The core-shell can be reused effectively. • Core-shell was separated from the reaction solution by external magnetic field.« less

  12. Raman and thermal-stability studies on annealed HgBa 2CuO 4+δ

    NASA Astrophysics Data System (ADS)

    Ren, Y. T.; Chang, H.; Xiong, Q.; Xue, Y. Y.; Chu, C. W.

    1994-06-01

    We have studied as-synthesized, vacuum-annealed and high-pressure oxygen annealed HgBa 2CuO 4+δ(Hg-1201) using Raman scattering. The apical-oxygen vibrational frequencies showed a slight but systematic shift (590, 591 and 587 cm -1), in agreement with the slight change in the Hg-O bond length from neutron-diffraction results. This suggested that the valence of Hg did not change significantly with oxygen content. The intensity of the ∼ 570 cm -1 peak decreased significantly after vacuum anneal and increased after high-pressure oxygen anneal, confirming the early assignment of this mode to interstitial oxygen. The thermal stability of these samples was studied by increasing laser power. High power density resulted in the decomposition of Hg-1201, mainly to BaCuO 2-δ, suggesting mercury loss upon local heating. It was found that the annealed samples decomposed more easily. In addition, one kind of crystallites exhibited a 326 cm -1 broad peak, which disappeared after high-power irradiation. We propose that this extra peak may come from HgO and/or the defect oxygen O (4).

  13. X-ray photoemission studies of Zn doped Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam

    2007-03-01

    The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.

  14. Cation Distribution and Local Configuration of Fe 2+ Ions in Structurally Nonequivalent Lattice Sites of Heterometallic Fe(II)/ M(II) ( M = Mn, Co, Ni, Cu, Zn) Diaquadiformato Complexes

    NASA Astrophysics Data System (ADS)

    Devillers, M.; Ladrière, J.

    1993-03-01

    57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.

  15. High Tc superconducting IR detectors from Y-Ba-Cu-O thin films

    NASA Technical Reports Server (NTRS)

    Lindgren, M.; Ahlberg, H.; Danerud, M.; Larsson, A.; Eng, M.

    1990-01-01

    A thin-film high-Tc superconducting multielement optical detector made of Y-Ba-Cu-O has been designed and evaluated using optical pulses from a diode laser (830 nm) and a Q-switched CO2-laser (10.6 microns). Different thin films have been tested. A laser deposited film showed the strongest response amplitude for short pulses and responded to an ultrafast, 50 ps wide pulse. Comparisons between dR/dT and response as a function of temperature indicated, however, a bolometric response.

  16. Hyper- and hypobaric processing of Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Routbort, J. L.; Shi, Donglu; Chen, J. G.; Hash, M. C.

    1989-11-01

    Tl-based superconductors of initial composition Tl:Ca:Ba:Cu equal to 2:2:2:3 and 1:3:1:3 were heated in oxygen at pressures of 10(sup 4) to 6 (times) 10(sup 5) Pa. The 2:2:2:3 composition formed primarily the 2-layer superconductor with zero resistance from 77 to 104 K. The 1:3:1:3 composition formed nearly phase pure 3-layer superconductor with a maximum zero resistance temperature of 120 K. Application of hyperbaric pressure influenced phase purities and transition temperatures slightly; phase purities decreased significantly with application of hypobaric pressures.

  17. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices.

    PubMed

    Piraux, Luc; Renard, Krystel; Guillemet, Raphael; Matéfi-Tempfli, Stefan; Matéfi-Tempfli, Maria; Antohe, Vlad Andrei; Fusil, Stéphane; Bouzehouane, Karim; Cros, Vincent

    2007-09-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires. This novel approach promises to be of strong interest for subsequent fabrication of phase-locked arrays of spin transfer nano-oscillators with increased output power for microwave applications.

  18. Effects of aging time and temperature of Fe-1wt.%Cu on magnetic Barkhausen noise and FORC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Muad; Cao, Yue; Edwards, Danny J.

    Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy (TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700°C for 0.5 – 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEMmore » measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850°C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures.« less

  19. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Rajabi, S. K.; Sohrabnezhad, Sh.; Ghafourian, S.

    2016-12-01

    Magnetic Fe3O4@CuO nanocomposite with a core/shell structure was successfully synthesized via direct calcinations of magnetic Fe3O4@HKUST-1 in air atmosphere. The morphology, structure, magnetic and porous properties of the as-synthesized nano composites were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and vibration sample magnetometer (VSM). The results showed that the nanocomposite material included a Fe3O4 core and a CuO shell. The Fe3O4@CuO core-shell can be separated easily from the medium by a small magnet. The antibacterial activity of Fe3O4-CuO core-shell was investigated against gram-positive and gram-negative bacteria. A new mechanism was proposed for inactivation of bacteria over the prepared sample. It was demonstrated that the core-shell exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent.

  20. Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Wu, Deming; Wang, Manye; Wei, Yi; Xu, Aihua; Li, Xiaoxia

    2018-01-01

    A heterogeneous magnetic CuFe2O4@OMS-2 catalyst was fabricated through a facile solvent-free process using Mn(CH3COO)2 and KMnO4 in the presence of CuFe2O4. It was found that the BET surface area of OMS-2 as well as the ratio of low-valent manganese species significantly increased in the hybrid catalyst, due to interactions between CuFe2O4 and the precursor of amorphous manganese oxide. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the CuFe2O4@OMS-2 catalyst within 30 min in the presence of peroxymonosulfate (PMS), while CuFe2O4 and OMS-2 showed no significant activity for the reaction. The hybrid catalyst also exhibited excellent long-term stability and could be easily recovered with the assistance of an external magnetic field. A possible degradation mechanism for the synergistic effects of different valent metal species and reactive radicals was proposed, which involved the electron transfer from Mn(III) or Mn(II) species to PMS with the generation of sulfate and hydroxyl radicals, and from AO7 and Cu(I) in CuFe2O4 to Mn(IV) and Mn(III) to reduce these Mn species.

  1. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    NASA Astrophysics Data System (ADS)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    2018-01-01

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  2. Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094

    2016-05-06

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less

  3. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  4. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less

  5. Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction.

    PubMed

    Koutsospyros, Agamemnon; Pavlov, Julius; Fawcett, Jacqueline; Strickland, David; Smolinski, Benjamin; Braida, Washington

    2012-06-15

    A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis and Characterization of BaFe12O19/Poly(aniline, pyrrole, ethylene terephthalate) Composites Coatings as Radar Absorbing Material (RAM)

    NASA Astrophysics Data System (ADS)

    Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti

    2017-07-01

    This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.

  7. Etude de l'halogénation de EuBa2Cu3O6

    NASA Astrophysics Data System (ADS)

    Tshimanga Kabeya, D.; Mokhtari, M.; Perrin, C.; Sergent, M.; Grushko, Yu.; Kokovina, L.; Rozhniakova, N.

    1994-11-01

    Sintered samples of EuBa2Cu3O6 have been halogenated at low temperature (t < 300 ^circC) by treatments under NF3 or CCl4 flow diluted in nitrogen, or by reaction with iodine in sealed tubes. Such mild conditions of synthesis allowed to avoid the decomposition of the material during the reactions. The incorporation of the halogen in the sample has been evidenced by the weight gain, by the evolution of the unit-cell parameters and by SEM and EDS analyses. After fluorination and chlorination, the samples become superconducting, but no superconducting behaviour is observed after iodination. These results are compared to the ones previously obtained during the halogenation of YBa2Cu3O6. Des échantillons frittés de EuBa2Cu3O6 ont été halogénés à basse température (t < 300 ^circC) par traitement sous courant de NF3 ou de CCl4 dilué dans de l'azote, ou par réaction avec de l'iode en tube scellé. De telles conditions de synthèse ont permis de limiter la décomposition du matériau au cours de la réaction. L'incorporation de l'halogène dans l'échantillon est mise en évidence par variation de masse, par l'évolution des paramètres de maille, par observations au MEB et analyses EDS. Après fluoration et chloration l'échantillon devient supraconducteur, tandis qu'aucun comportement supraconducteur n'est observé après iodation. Ces résultats sont comparés avec ceux qui avaient été obtenus préalablement lors de l'halogénation de YBa2Cu3O6.

  8. Distribution of Ca, Fe, Cu and Zn in primary colorectal cancer and secondary colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.

    2010-07-01

    A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.

  9. Oxygen hyperstoichiometric hexagonal ferrite CaBaFe4O7+δ (δ≈0.14): Coexistence of ferrimagnetism and spin glass behavior

    NASA Astrophysics Data System (ADS)

    Sarkar, Tapati; Duffort, V.; Pralong, V.; Caignaert, V.; Raveau, B.

    2011-03-01

    An oxygen hyperstoichiometric ferrite CaBaFe4O7+δ (δ ≈ 0.14) has been synthesized using “soft” reduction of CaBaFe4O8. Like the oxygen stoichiometric ferrimagnet CaBaFe4O7, this oxide also keeps the hexagonal symmetry (space group P63mc), and exhibits the same high Curie temperature of 270 K. However, the introduction of extra oxygen into the system weakens the ferrimagnetic interaction significantly at the cost of increased magnetic frustration at low temperature. Moreover, this canonical spin glass (Tg~166 K) exhibits an intriguing crossover from de Almeida-Thouless type to Gabay-Toulouse type critical line in the field temperature plane above a certain field strength, which can be identified as the anisotropy field. Domain-wall pinning is also observed below 110 K. These results are interpreted on the basis of cationic disordering on the iron sites.

  10. NiFeCo/Cu superlattices with high magnetoresistive sensitivity and weak hysteresis

    NASA Astrophysics Data System (ADS)

    Bannikova, N. S.; Milyaev, M. A.; Naumova, L. I.; Krinitsina, T. P.; Patrakov, E. I.; Proglyado, V. V.; Chernyshova, T. A.; Ustinov, V. V.

    2016-10-01

    The microstructure and the magetoresistive characteristics of [NiFeCo/Cu]8 superlattices prepared by magnetron sputtering with various thickness of the buffer NiFeCr layer and exhibiting a giant magnetoresistive effect have been studied. It has been found that these nanostructures are formed with a strong or weak hysteresis depending on the structure (bcc or fcc) formed in the NiFeCr buffer layer. The method of the substantial decrease in the hysteresis loop width of the magnetoresistance by using the composite Ta/NiFeCr buffer layer has been suggested.

  11. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    DOE PAGES

    Meng, F.; Chaudhary, R. P.; Gandha, K.; ...

    2018-04-23

    Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less

  12. Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, F.; Chaudhary, R. P.; Gandha, K.

    Here, this work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu) 5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure andmore » phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu) 5 microstructure in which high coercivity ( H c > 10 kOe) can be achieved without any microstructural refinement.« less

  13. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, Alan F.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  14. Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol-gel auto-combustion process

    NASA Astrophysics Data System (ADS)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2016-03-01

    Copper hexaferrite (CuFe12O19) nanostructures were prepared by a simple route utilizing maltose-assisted sol-gel process. The morphology, phase structure, composition and purity of nanostructures can be controlled by type of surfactant and also adjusting the Cu:surfactant, Cu:Fe and Cu:reductant ratios. The bean-shape structures are formed in the absence of the surfactant when the molar ratio of Cu:Fe and Cu:reductant are 1:12 and 1:26, respectively. The agglomerated spherical nanoparticles with diameters ranging from 7 to 20 nm are obtained in the presence of triplex, when ratio of Cu:reductant is 1:26. In the absence of surfactant and also in the presence of triplex, the samples are found to be CuFe12O19. When polymer is used, there are still the peaks of CuFe12O19 and also some boad peaks in XRD patterns, because of the small size and encapsulation of nanostructures with polymer. Magnetic measurments show superparamagnetic behavior for the all samples. The Ms for the samples obtained in the presence of polymer shows that the coating of magnetic nanostructures does not always increase Ms. FT-IR frequency bands in the range 463-626, 607 and 542 cm-1 correspond to the formation of metal oxides in ferrites.

  15. Superconducting properties of Ba(Fe1-xNix)2As2 thin films in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Richter, Stefan; Kurth, Fritz; Iida, Kazumasa; Pervakov, Kirill; Pukenas, Aurimas; Tarantini, Chiara; Jaroszynski, Jan; Hänisch, Jens; Grinenko, Vadim; Skrotzki, Werner; Nielsch, Kornelius; Hühne, Ruben

    2017-01-01

    We report on the electrical transport properties of epitaxial Ba(Fe1-xNix)2As2 thin films grown by pulsed laser deposition in static magnetic fields up to 35 T. The thin film shows a critical temperature of 17.2 K and a critical current density of 5.7 × 105 A/cm2 in self field at 4.2 K, while the pinning is dominated by elastic pinning at two-dimensional nonmagnetic defects. Compared to the single-crystal data, we find a higher slope of the upper critical field for the thin film at a similar doping level and a small anisotropy. Also, an unusual small vortex liquid phase was observed at low temperatures, which is a striking difference to Co-doped BaFe2As2 thin films.

  16. Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Hakikat; Bala, Kanchan; Negi, N. S.

    2016-05-01

    In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).

  17. Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq

    NASA Astrophysics Data System (ADS)

    Franzblau, Rachel E.; Daughney, Christopher J.; Swedlund, Peter J.; Weisener, Christopher G.; Moreau, Magali; Johannessen, Bernt; Harmer, Sarah L.

    2016-01-01

    There is currently poor understanding of metal removal by composites of bacteria and iron oxide minerals, even though they commonly co-occur and are among the most important sorbents in near-surface fluid-rock environments. This study evaluated Cu removal by composites of Anoxybacillus flavithermus and iron oxide over time during the addition, oxidation, and hydrolysis of Fe(II)aq and precipitation of the mineral, in comparison to Cu removal in the two single-sorbent end-member systems. In the absence of iron oxide, Cu removal by A. flavithermus was well described by a previously published surface complexation model, after inclusion of additional reactions describing aqueous complexation by exudate ligands released by the bacteria. In the absence of bacterial cells, Cu removal by iron oxide synthesized in the presence of the bacterial exudate ligands demonstrated the formation of ternary surface complexes. Removal of Cu by the A. flavithermus-iron oxide composites was ca. 20% greater than the prediction based on assumption of additivity in the two end-member systems. This non-additive behavior was attributed to (1) progressive physical blockage of bacterial surface sites by the iron oxide particles, (2) physical blockage of adsorption sites as a result of self-aggregation of the iron oxide particles, and (3) the reduction of Cu(II) to Cu(I) at the bacterial cell surface, as demonstrated by X-ray absorption spectroscopy. The extent of reduction of Cu(II) to Cu(I) was proportional to the concentration of solid phase Fe(II), suggesting that iron oxidation and copper reduction are linked. This study has shown that Cu removal by bacteria-iron oxide composites is greatly affected by redox processes such as Cu(II) reduction on the cell surface both by other bacterial surface ligands and the oxidation of sorbed Fe(II), as well as Fe(II) redox interactions, and aging effects of the mineral (i.e. surface site masking).

  18. Cu-Mn-Fe alloys and Mn-rich amphiboles in ancient copper slags from the Jabal Samran area, Saudi Arabia: With synopsis on chemistry of Fe-Mn(III) oxyhydroxides in alteration zones

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.

    2015-01-01

    In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled

  19. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties

    PubMed Central

    Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.

    2013-01-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726

  20. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties.

    PubMed

    Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2013-02-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.

  1. Effects of Oxygen Deficiency and Dopping of pr in Gd1-x Prx Ba2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Zolfagharkhani, G.; Daadmehr, V.; Farzaneh, M.; Sedighiani, A.; Akhavan, M.

    2000-09-01

    Single phase crystalline samples of Gd1-x Prx Ba2Cu3O7-y with 0.0 ≤ x ≤ 0.2 have been prepared by standard solid state reaction technique and characterized by SEM and XRD. The electrical measurements show two plateaus in Tc versus y curve for GdBa2Cu3O7-y (0CuO2 planes. The experiments indicate that in GdPr-123 samples, presence of Pr causes the oxygen bond to become stronger than in undoped samples.

  2. Hall-plot of the phase diagram for Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Mönch, Ingolf; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.

    2016-06-01

    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1-xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.

  3. Phase-pure eutectic CoFe2O4-Ba1-xSrxTiO3 composites prepared by floating zone melting

    NASA Astrophysics Data System (ADS)

    Breitenbach, Martin; Ebbinghaus, Stefan G.

    2018-02-01

    Composites consisting of ferrimagnetic CoFe2O4 and ferroelectric Ba1-xSrxTiO3 were grown by the floating zone technique. The influence of Sr substitution, growth rate and atmosphere during the floating zone process were investigated. The formation of the non-ferroelectric, hexagonal modification of BaTiO3 was avoided by a slight Sr substitution of 3 mol% and the formation of BaFe12O19 was suppressed using pure nitrogen as atmosphere during the floating zone melting. These synthesis parameters led to phase-pure, but electrically conductive CoFe2O4-Ba1-xSrxTiO3 composites. A thermal treatment at 973 K in air resulted in a strong increase of the electric resistivity accompanied by a decrease of the unit-cell parameters of both components indicating the healing of oxygen defects. SEM investigations revealed a variety of different geometric structures and crack-free interfaces between both phases. The low porosities observed in the micrographs correspond with densities above 90%. Magnetoelectric (ME) measurements confirmed a coupling between the ferroic orders of both phases with a hysteresis and maximum αME of 1.3 mV Oe-1 cm-1.

  4. Redetermination of clinobaryl-ite, BaBe(2)Si(2)O(7).

    PubMed

    Domizio, Adrien J Di; Downs, Robert T; Yang, Hexiong

    2012-10-01

    Clinobaryl-ite, ideally BaBe(2)Si(2)O(7) (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl-ite. It belongs to a group of compounds characterized by the general formula BaM(2+) (2)Si(2)O(7), with M(2+) = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl-ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl-ite can be considered as a framework of BeO(4) and SiO(4) tetra-hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO(4) tetra-hedra share corners, forming chains parallel to the c axis, which are inter-linked by the Si(2)O(7) units oriented parallel to the a axis. The Ba(2+) cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si-O(br) (bridging O atom, at site symmetry m..) bond length, the Si-O(nbr) (non-bridging O atoms) bond lengths, and the Si-O-Si angle within the Si(2)O(7) unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373-384].

  5. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-12-01

    The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5-10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.

  6. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1) h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4, Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dielectric and Impedance Characteristics of Nickel-Modified BiFeO3-BaTiO3 Electronic Compound

    NASA Astrophysics Data System (ADS)

    Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N.

    2018-01-01

    The temperature- and field-dependent capacitive, resistive and conducting characteristics of nickel-modified binary electronic systems of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) have been investigated using dielectric and impedance spectroscopy techniques. The orthorhombic crystal structures of the solid solution (Bi1-2xNixBax)(Fe1-2xTi0.2x)O3 (with x = 0.10, 0.15, 0.20 and 0.25) have been identified from powder x-ray crystallography. The micrographs exhibit the development of dense samples with reduced grain size for higher percentage of Ni in the BiFeO3-BaTiO3. The stoichiometric content of each sample has been realized using the energy dispersive x-ray technique. The relationship between micro-structural study and frequency-temperature-dependent electrical properties of the compound has revealed a negative temperature coefficient of resistance behavior. A non-Debye-type relaxation process is observed from the Niquist plot. The studied compound presents important dielectric properties for the formulation of electronic devices.

  8. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong

    2016-08-22

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominantmore » mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.« less

  9. Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7

    NASA Astrophysics Data System (ADS)

    Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.

    2018-06-01

    The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.

  10. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    EPA Science Inventory

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  11. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO{sub 2}) at temperatures ≤90 °C in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, Melanie, E-mail: melanie.john@min.uni-muenchen.de; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    In this study, we present the mechanism of CuFeO{sub 2} formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR–SO{sub 4}, a Fe(II–III) layered double hydroxysulphate (Fe{sup 2+}{sub 4}Fe{sup 3+}{sub 2}(OH){sub 12}·SO{sub 4}) and Cu{sub 2}O precipitate first. During further OH{sup −} supply GR–SO{sub 4} oxidizes and forms Fe{sub 10}O{sub 14}(OH){sub 2}, Cu{sub 2}O and CuFeO{sub 2} crystals. Due to the high pH further CuFeO{sub 2} crystals grow at the cost of themore » unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO{sub 2} (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH{sup −} supply during the pH-stat time and rather low temperatures. - Highlights: • We solve the formation mechanism of pure CuFeO{sub 2} using sulfates as reactants. • CuFeO{sub 2} nanoparticles crystallize on cost of green rust, Fe{sub 10}O{sub 14}(OH){sub 2} and Cu{sub 2}O. • The reaction rate increases with increasing temperature and OH- concentration. • CuFeO{sub 2} nanoparticles form at 50 °C within one week and at 70 °C within 10 h. • 2H-polytype of CuFeO{sub 2} is favored by additional NaOH supply during pH-stat-time.« less

  12. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE PAGES

    Li, Boyan; Zhang, Lei; Li, Chengliang; ...

    2018-04-18

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  13. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Boyan; Zhang, Lei; Li, Chengliang

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  14. (Cu 0.5Tl 0.5)Ba 2Ca n-1 Cu n- yGe yO 2 n+4- δ ( n = 3, 4 and y = 0.5, 0.75, 1.0); superconductors with GeO 2 planes

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Irfan, M.

    2008-12-01

    We have successfully synthesized germanium doped (Cu 0.5Tl 0.5)Ba 2Ca n-1 Cu n- yGe yO 2 n+4- δ ( n = 3, 4 and y = 0, 0.5, 0.75, 1.0) superconductors and investigated the effect of Ge doping on the superconducting properties of these compounds. The solubility of Ge till y = 1 in the CuO 2 planes of (Cu 0.5Tl 0.5)Ba 2Ca 2Cu 3- yGe yO 10- δ, have been found to give superconductivity above 77 K. To our surprise an enhanced superconductivity is observed with the doping of semiconductor germanium in some samples. The enhanced superconductivity associated with mixed CuO 2/GeO 2 planes can be extremely useful for the understanding of mechanism of superconductivity; since we very well know the properties of germanium based semiconductors.

  15. Optimization of rotational speed for growing BaFe12O19 thin films using spin coating

    NASA Astrophysics Data System (ADS)

    Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.

    2017-07-01

    Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.

  16. Transport current density at temperatures up to 25 K of Cu/Ag composite sheathed 122-type tapes and wires

    NASA Astrophysics Data System (ADS)

    Liu, Shifa; Lin, Kaili; Yao, Chao; Zhang, Xianping; Dong, Chiheng; Wang, Dongliang; Awaji, Satoshi; Kumakura, Hiroaki; Ma, Yanwei

    2017-11-01

    The fabrication of iron-based superconductors with high transport critical current density (J c) and low cost is a crucial determinant of whether they can be used for practical applications. In this paper, Cu/Ag composite sheathed Sr0.6K0.4Fe2As2 (Sr122) tapes and Ba0.6K0.4Fe2As2 (Ba122) round wires were fabricated via an ex situ powder-in-tube method and heat-treated by the hot pressing and hot isostatic pressing process respectively. In order to thoroughly reveal the application potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconductors, transport J c of tapes and wires in high fields at temperatures up to 25 K was measured. High transport J c of 4.4 × 104 A cm-2 at 4.2 K and 3.6 × 103 A cm-2 at 20 K in 10 T was achieved in Cu/Ag composite sheathed Sr122 tapes. Transport J c of Ba122 wires is 9.4 × 103 A cm-2 at 4.2 K and 1.9 × 103 A cm-2 at 20 K in 10 T. These results demonstrate the great potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconducting tapes and wires for high-field applications at intermediate temperatures around 20 K, which can be easily obtained by using cryocoolers.

  17. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ran; Bi, Huiping, E-mail: hpbi@njust.edu.cn; He, Guangyu

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopymore » (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.« less

  18. Synthesis, spectroscopy, and binding constants of ketocatechol-containing iminodiacetic acid and its Fe(III), Cu(II), and Zn(II) complexes and reaction of Cu(II) complex with H₂O₂ in aqueous solution.

    PubMed

    Gao, Jiaojiao; Xing, Feifei; Bai, Yueling; Zhu, Shourong

    2014-06-07

    A new neuromelanin-like ketocatechol-containing iminodiacetic acid ligand, (N-(3,4-dihydroxyl)phenacylimino)diacetic acid (H4L), which is also quite similar to compounds found in insect cuticle, has been synthesized and characterized. The X-ray crystal structure of H4L has been successfully determined. Proton binding and coordination with Fe(III), Cu(II), and Zn(II) have been studied by potentiometric titrations and UV-vis spectrophotometry in aqueous solution. UV spectra of H4L in the absence and presence of different metal ions indicate complexes formed with the catechol moiety of H4L in aqueous solution. Visible spectra and NMR reveal that H4L with Fe(III), Cu(II), and Zn(II) can all give stable mono-(ML) and dinuclear complexes [M(ML)]. Fe(III) can also form {Fe(FeL)2} and {Fe(FeL)3} species with sufficient base. The process is accompanied by a drastic color change from light blue to deep-blue to wine-red. The Fe(III)-Cu(II) heteronuclear complex also exists in aqueous solution whose spectra are similar to the homonuclear Fe(III) complex. However, the spectra of {Fe(CuL)} shifted to a longer wavelength and {Fe(CuL)2} and {Fe(CuL)3} shifted to a shorter wavelength. Keto-enol tautomerism was observed in weak basic aqueous solution as indicated by (1)H NMR spectra. The reaction products of Cu(II) complex with H2O2 depend on the H2O2 concentration and pH value. Low concentrations of H2O2 oxidize H4L to a series of semiquinone and quinone compounds with absorption maxima at 314-400 nm, while a high concentration of H2O2 oxidizes H4L to colorless muconic acid derivatives. NaIO4 gives different oxidase products, but no 2,4,5-trihydroxyphenylalanine quinone (TPQ)-like hydroxyquinone can be found.

  19. Re-exchange of Fe and Cu at the interface in sintered Nd-Fe-B magnets: A method to eliminate Fe precipitation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Yang, YuQi; Si, HengGang; Yang, Hao; Zhang, Lan; Huang, DongFang; Chen, BaiYi; Xu, Fang; Hu, YongMei; Han, BaoJun

    2018-01-01

    According to the decoupling hypothesis for magnetic grains, the coercivity in sintered Nd-Fe-B magnets is increased after Cu doping, which is due to the formation of non-magnetic grain boundaries. However, this method partially fails, and ferromagnetic Fe-segregation occurs at the grain boundary. We discovered both experimentally and through calculation that the Fe content at the grain boundaries can be tuned across a wide range by introducing another element of Ag. Segregated Fe at high temperature at the grain boundary re-dissolves into Nd2Fe14B grains during annealing at low temperature. Both configurable and magnetic entropies contribute a large driving force for the formation of nonmagnetic grain boundaries. Almost zero Fe content could be achieved at the grain boundaries of sintered Nd-Fe-B magnet.

  20. Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui

    2017-02-01

    We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.

  1. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Brown, J. William; Ramesh, P. S.; Geetha, D.

    2018-02-01

    We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.

  2. Effects of neutron and electron irradiation on superconducting HgBa 2CuO 4+ δ single crystals

    NASA Astrophysics Data System (ADS)

    Zehetmayer, M.; Eisterer, M.; Kazakov, S. M.; Karpinski, J.; Wisniewski, A.; Puzniak, R.; Daignere, A.; Weber, H. W.

    2004-08-01

    We report on measurements of the magnetic moment in superconducting HgBa 2CuO 4+ δ single crystals by SQUID magnetometry. Neutron and electron irradiation are employed to modify the defect structure. Both types of radiation affect the irreversible properties, but characteristic qualitative differences occur, which will be discussed.

  3. A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr 3 Fe 2 O 5 Cu 2 Q 2 ( Q = S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng; Mentré, Olivier; Gordon, Elijah E.

    2017-12-01

    The layered oxysulfide Sr3Fe2O5Cu2S2 was prepared, and its crystal structure and magnetic properties were characterized by synchrotron X-ray diffraction (XRD), powder neutron diffraction (PND), Mössbauer spectroscopy measurements and by density functional theory (DFT) calculations. In addition, the spin exchange interactions leading to the ordered magnetic structure of Sr3Fe2O5Cu2S2 were compared with those of its selenium analogue Sr3Fe2O5Cu2Se2. The oxysulfide Sr3Fe2O5Cu2S2 adopts a G-type antiferromagnetic (AFM) structure at a temperature in the range 485–512 K, which is comparable with the three-dimensional (3D) AFM ordering temperature, TN ≈ 490 K, found for Sr3Fe2O5Cu2Se2. Consistent with this observation, the spin exchange interactions ofmore » the magnetic (Sr3Fe2O5)2+ layers are slightly greater (but comparable) for oxysulfide than for the oxyselenide. Attempts to reduce or oxidize Sr3Fe2O5Cu2S2 using topochemical routes yield metallic Fe.« less

  4. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    USGS Publications Warehouse

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  5. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  6. The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Arabi, H.; Wang, X. L.

    2017-09-01

    Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.

  7. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  8. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  9. Structural investigation of Y1-xNixBa2Cu3O7-δ superconductor

    NASA Astrophysics Data System (ADS)

    Hadi-Sichani, Behnaz; Shakeripour, Hamideh; Salamati, Hadi

    2018-07-01

    Y1-xNixBa2Cu3O7-δ superconducting samples with 0 ≤ x ≤ 0.02 were synthesized by standard solid-state reaction and characterized by the X-ray powder diffraction technique. The Rietveld fitted XRD refinements show that all samples are crystallized in single phase, having orthorhombic structure with Pmmm space group. We investigated the effect of adding a magnetic element on the structure of this superconductor. The c cell parameter increases by doping of Ni until to an optimal value of Ni content, x ∼ 0.004, and then starts to decrease by higher value of Ni substitution. Moreover, it is seen that Cu(2)sbnd O(2) bond length decreases with increasing Ni up to the optimal concentration of Ni, too. The CuO2 planes become more distorted and hence charge carriers may have better chances of transportation to the CuO2 planes. By further increasing of Ni content than the optimal value, the Cu(2)sbnd O(2) bond lengths start to increase, and cause CuO2 planes to be flatten. We suggest, besides affecting the magnetic characteristic of Ni impurity, the Ni substitution leads to interesting crystallographic changes.

  10. Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3.

    PubMed

    Wan, Lianghui; Sheng, Jiayi; Chen, Haihang; Xu, Yiming

    2013-11-15

    Photocatalytic degradation of organic pollutants on TiO2 and WO3 have been widely studied, but the effects of Cu(2+) and Fe(3+) ions still remain unclear. In this work, we have found that the recycle behavior of Cu(2+) and Fe(3+) are greatly dependent on the photocatalytic activity of metal oxide used. With TiO2 (P25, anatase, and rutile), all the time profiles of phenol degradation in water under UV light well fitted to the apparent first-order rate equation. On the addition of Cu(2+), phenol degradation on anatase, rutile and WO3 also followed the first-order kinetics. On the addition of Fe(3+), the initial rate of phenol degradation on each oxide was increased, but only the reactions on three TiO2 became to follow the first order kinetics after half an hour. The relevant rate constants for phenol degradation in the presence of Cu(2+) or Fe(3+) were larger than those in the absence of metal ions. Under visible light, phenol degradation on WO3 was also accelerated on the addition of Fe(3+) or Cu(2+). Moreover, several influencing factors were examined, including the metal ion photolysis in solution. It becomes clear that as electron scavengers of TiO2 and WO3, Fe(3+) is better than Cu(2+), while they are better than O2. We propose that Fe(3+) recycle occurs through H2O2, photogenerated from TiO2, not from WO3, while Cu(2+) regeneration on a moderate photocatalyst is through the dissolved O2 in water. Copyright © 2013. Published by Elsevier B.V.

  11. Phase-transformation in iron oxide and formation of Cu/γ-Fe2O3 nanocomposite using radio-frequency sputtering with metal chips on an α-Fe2O3 target

    NASA Astrophysics Data System (ADS)

    Abe, Seishi; Watanabe, Masato

    2017-07-01

    A simple technique that uses radio-frequency sputtering with a functional element on a hematite (α-Fe2O3) target is presented for the production of maghemite (γ-Fe2O3) thin films. These films are prepared on water-cooled glass substrates in an Ar atmosphere. Investigations are done with Ti, Si, Al, Cu, Mo, and Zn, with γ-Fe2O3 being obtained only in the presence of Cu, indicating that phase transition occurs only for this metal. Mössbauer spectra and magnetization analysis reveal that the quality of the obtained γ-Fe2O3 films is higher than that of the film produced using Mg, which was reported in our previous work. High-angle annular dark-field scanning tunneling electron microscopy and electron energy-loss spectroscopy reveal that the added Cu remains in a metallic state (without oxidization), forming a Cu/γ-Fe2O3 phase-mixture in the as-deposited film. The Cu/γ-Fe2O3 composite film exhibits negative magnetoresistance (MR), with a MR ratio of approximately 0.6% at room temperature in an applied field of 10 kOe, and a negative Faraday rotation of -5708 deg cm-1 at 830 nm.

  12. Microstructural and thermal properties of pure BaFe{sub 12}O{sub 19} and Sr doped barium ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) synthesized by auto combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha

    2016-05-23

    Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less

  13. Magnetodielectric properties of the square cupola antiferromagnet Ba(TiO)Cu4(PO4)4

    NASA Astrophysics Data System (ADS)

    Kimura, Kenta; Sera, Masakazu; Nakano, Takehito; Nozue, Yasuo; Kimura, Tsuyoshi

    2018-05-01

    Magnetodielectric properties of the tetragonal magnetic insulator Ba(TiO)Cu4(PO4)4 consisting of asymmetric Cu4O12 square cupolas have been investigated in a magnetic field along the [001] axis (B[001]), where a metamagnetic transition occurs at Bc||[001] 12 T and 1.4 K. Clear anomalies associated with the transition to the high-field phase are observed in dielectric constants both along the [100] (ε[100]) and [001] (ε[001]) axes. It is found that the B dependence of ε[001] and ε[100] across Bc||[001] is anisotropic: ε[001] decreases while ε[100] increases. The origin of this anisotropic magnetodielectric response is discussed.

  14. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  15. Two superconducting transitions in single-crystal La 2 - x Ba x CuO 4

    DOE PAGES

    Tee, X. Y.; Ito, T.; Ushiyama, T.; ...

    2017-02-27

    Here, we use spatially-resolved transport techniques to investigate the superconducting properties of single crystals La 2-xBa xCuO 4. We also found a superconducting transition temperature T cs associated with the ab-plane surface region which is considerably higher than the bulk T c. This effect is pronounced in the region of charge carrier doping x with strong spin-charge stripe correlations, reaching T cs = 36 K or 1.64T c.

  16. Characterisation of the antiferromagnetic transition of Cu2FeSnS4, the synthetic analogue of stannite

    NASA Astrophysics Data System (ADS)

    Caneschi, A.; Cipriani, C.; di Benedetto, F.; Sessoli, R.

    2003-04-01

    Magnetisation measurements between 260 and 1.9K were performed on the synthetic analogue of stannite, Cu_2FeSnS_4, tetragonal Ioverline{4}2m. Fe(II) ions, in the high spin S=2 configuration for tetrahedral coordination, are responsible for the high temperature paramagnetism. In agreement with Bernardini et al. (2000), an antiferromagnetic transition was observed, lowering temperature below 8K. Refined measurements evidenced a T_N=6.1K for the Néel temperature. In spite of a small difference, observed in the behaviour between the zero-field cooled and the field cooled curves, which suggests the possible presence of a spin-glass phase, the AC measurements did not provide evidence of dependence of the magnetic susceptibility on frequency, as expected in spin-glass systems. On the basis of the experimental data, in agreement with the existent literature (Fries et al., 1997), a collinear antiferromagnetic structure should be preferred. The Fe ions, in fact, are distributed in two sublattices obtained by magnetic differentiation of the symmetry equivalent (0,0,0) and (frac{1}{2}frac{1}{2}frac{1}{2}) Fe positions (wyckoff: 2a). The low value for the Nèel temperature, as compared e.g. to the room-temperature antiferromagnet chalcopyrite (CuFeS_2), very close in composition and structure to stannite, is to be related to the increased distance between the Fe ions (˜6.6Å). This weak interaction is not detected in natural samples, where diamagnetic Zn(II) replace paramagnetic Fe(II), thus increasing the mean Fe-Fe distance. Fries, T., Shapira, Y., Palacio, F., Moròn, M.C., McIntyre, G.J., Kershaw, R., Wold, A. and McNiff, E.J. Jr. (1997): Mangetic ordering of the antiferromagnet Cu_2MnSnS_4 from magnetisation and neutron-scattering measurements. Phys. Rev. B, 6(9), 5424-5431 Bernardini, G.P., Borrini, D., Caneschi, A. Di Benedetto, F., Gatteschi, D., Ristori, S. and Romanelli, M. (2000): EPR and SQUID magnetometry study of Cu_2FeSnS_4 (stannite) and Cu_2ZnSnS_4 (kesterite

  17. The Gibbs free energy of nukundamite (Cu3.38Fe0.62S4): A correction and implications for phase equilibria

    USGS Publications Warehouse

    Seal, R.R.; Inan, E.E.; Hemingway, B.S.

    2001-01-01

    The Gibbs free energy of formation of nukundamite (Cu3.38Fe0.62S4) was calculated from published experimental studies of the reaction 3.25 Cu3.38Fe0.62S4 + S2 = 11 CuS + 2 FeS2 in order to correct an erroneous expression in the published record. The correct expression describing the Gibbs free energy of formation (kJ???mol-1) of nukundamite relative to the elements and ideal S2 gas is ??fG?? nukundamite T(K) = -549.75 + 0.23242 T + 3.1284 T0.5, with an uncertainty of 0.6%. An evaluation of the phase equilibria of nukundamite with associated phases in the system Cu-Fe-S as a function of temperature and sulfur fugacity indicates that nukundamite is stable from 224 to 501??C at high sulfidation states. At its greatest extent, at 434??C, the stability field of nukundamite is only 0.4 log f(S2) units wide, which explains its rarity. Equilibria between nukundamite and bornite, which limit the stability of both phases, involve bornite compositions that deviate significantly from stoichiometric Cu5FeS4. Under equilibrium conditions in the system Cu-Fe-S, nukundamite + chalcopyrite is not a stable assemblage at any temperature.

  18. Phase formation and magnetic hardening mechanism of TbCu7 type Sm-Fe-N powders

    NASA Astrophysics Data System (ADS)

    Lu, Cifu; Hong, Xiufeng; Ding, Zhiyi; Shi, Jiaxing; Bao, Xiaoqian; Gao, Xuexu; Zhu, Jie

    2018-06-01

    (Sm0.7Zr0.3)x(Fe0.9Co0.1)100-x (x = 9.1,10.7,10.9,12.6,13.4) alloys almost consist of TbCu7 type phase were prepared by rapid quenching technique and annealing. A series of TbCu7 type Sm-Zr-Fe-Co-N magnetically hard powders were prepared through nitrogenization of the alloys. With (Sm0.7Zr0.3) content increases, the coercivity increased but magnetization decreases. TbCu7-type nitride powder with coercivity of 10.8 kOe can be obtained when x = 13.6. The initial magnetization curves of the powders indicate that the coercivity should be controlled by pinning mechanism.

  19. Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: A case of hexabromocyclododecane (HBCD).

    PubMed

    Li, Xiang; Liu, Hongli; Jia, Xiaoshan; Li, Guiying; An, Taicheng; Gao, Yanpeng

    2018-04-15

    Cu and Fe based metal-organic frameworks (Cu-BTC and Fe-BTC) were synthesized via a simple solvothermal method and innovatively utilized to remove a typical nonionic brominated flame retardant, hexabromocyclododecane (HBCD), from aquatic environment. Results show that over 80% of HBCD was removed by Cu-BTC within 5h, which is 1.3 times higher than removal by Fe-BTC. Thermodynamic analysis confirms spontaneous adsorption of HBCD onto the metal-organic frameworks (MOFs). Furthermore, the Gibbs free energy of Cu-BTC (-9.11kJ/mol) is more negative than that of Fe-BTC (-5.04kJ/mol). Both adsorption isotherms of HBCD onto Cu-BTC and Fe-BTC followed the Langmuir model, indicating a typical monomolecular-layer adsorption mechanism. In addition, the water stability test of these MOFs shows that the collapse of the Cu-BTC crystal structure is significantly hindered in the aquatic environment due to adsorption of the hydrophobic HBCD. The proposed adsorption mechanism includes van der Waals and hydrophobic interactions. These findings demonstrate that Cu/Fe-BTC are promising adsorbents for the removal of hydrophobic organic pollutants from aquatic environments, and may further improve the understanding of MOF materials for environmental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  1. Preparation of TlBa2Ca2Cu3O9±δ high Tc thin films by laser ablation in combination with thermal evaporation of thallium oxide

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Löw, R.; Betz, J.; Schönberger, R.; Renk, K. F.

    1993-11-01

    TlBa2Ca2Cu3O9±δ high Tc thin films were prepared on MgO <100> surfaces by a combination of laser ablation from a stoichiometric Ba2Ca2Cu3Ox target and the thermal evaporation of thallium oxide. X-ray diffraction measurements showed that the films consisted of predominantly c axis oriented TlBa2Ca2Cu3O9±δ, and scanning electron microscopy revealed that the surfaces had a flat, platelike morphology. The ac inductive measurements indicated that the onset of superconductivity occurred at 117 K with a transition width (10%-90%) of ˜3 K. Zero resistivity was reached at 120 K. The critical current density was ˜3×104 A/cm2 at 110 K.

  2. Strong coercivity reduction and high initial permeability in NiCoP coated BaFe12O19-polystyrene bilayer composite

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.; El-Sayed, Adly H.; Hemeda, O. M.; Tawfik, A.

    2016-03-01

    Soft-magnetic NiCoP coated hard-magnetic M-type ferrite BaFe12O19 (BaM)-polystyrene (PS) bilayer composite film was successfully synthesized. X-ray diffraction peaks exhibited no change in the structure of BaM after coating with PS. The NiCoP coated BaM-PS composite exhibited a wasp-waisted magnetic hysteretic loop with remarkable reduction in the coercivity, remanence and squareness with respect to BaM-PS, which is useful for the core of a magnetic switching device to control currents so large that they are unmanageable. Moreover, the initial permeability measurement exhibits initial permeability of around 100 000 and thermal stability up to 558 K, which is good for flux-amplifying components of smaller inductors.

  3. Scanning Tunneling Microscopy/Spectroscopy study on Optimally Potassium Doped Single Crystal BaFe2 As 2

    NASA Astrophysics Data System (ADS)

    Ma, Jihua; Li, Ang; Zhang, Chenglin; Dai, Pengcheng; Pan, Shuheng

    2011-03-01

    The iron pnictide parent compound material can be brought into superconducting state by chemical doping. It is worthwhile to study and compare the hole- and electron-doped iron pnictides. Among the well-known family of AEFe 2 As 2 (AE=Ca, Sr, Ba), the scanning tunneling microscopy/spectroscopy study on hole-doped samples is insufficient. In this talk we will present high resolution STM/STS results on (001) surface of the optimally doped single crystal Ba 0.6 K0.4 Fe 2 As 2 (Tc ~ 37 K). With the data we will discuss the spatial variation of the superconducting energy gap.

  4. Investigating the Magneto Electric Coupling of [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] novel multiferroiccomposite system by increasing of BaM grain size

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Raut, Subhajit; Kuila, Sourav; Chandrasekhar, Mallam; Panigrahi, Simanchala

    2017-02-01

    Polycrystalline three novel [90 wt%Na0.5Bi0.5TiO3 (NBT)-10 wt% BaFe12O19 (BaM)] magnetoelctricmultiferroic composite systems were fabricated by considering the variation (increasing) of BaM grain size. The desired formation of composites was confirmed by X-ray diffraction study. The FESEM and SEM study were verified the variation of grain size and 0-3 type connectivity of composite systems. To predict the room temperature multiferroicbehaviour of theses composite systems we were taken PE and MH loop. For investigating the extrinsic and intrinsic magnetoelctric effect magneto impedance spectroscopy was considered for theses composite systems. The variation of intrinsic magnetoelctric coupling was predicted by proposing a simple mechanical model.

  5. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    PubMed Central

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117

  6. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  7. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  8. Homo- and heterometallic Cu(II)-M(II) (M = Ca, Sr and Ba) bis(salamo)-based complexes: Syntheses, structures and fluorescent properties.

    PubMed

    Zhao, Qing; Wei, Zhi-Li; Kang, Quan-Peng; Zhang, Han; Dong, Wen-Kui

    2018-06-02

    Four homo/heterometallic complexes [Cu 3 (L)(μ 2 -OAc) 9 (CH 3 OH) 9 ]·3CHCl 3 (1), [Cu 2 (L)Ca(μ 2 -NO 3 ) 9 ] (9), [{Cu 2 (L)Sr(μ 2 -NO 3 ) 9 } 9 ]·CH 3 CH 2 OH (11) and [Cu 2 (L)Ba(μ 2 -OAc) 9 (OAc)] (14), containing an acyclic naphthalenediol-based ligand H 4 L, were synthesized and characterized by elemental analyses, IR, UV-Vis, fluorescence spectra, TG-DTA and X-ray crystallography. The complex 1 was obtained by the reaction of H 4 L with 11 equivalents of Cu(OAc) 9 ·2H 2 O. The heterometallic complexes 9, 11, 14 were acquired by the reaction of H 4 L with 9 equivalents of Cu(OAc) 9 ·2H 2 O or Cu(NO 3 ) 9 ·2H 2 O and 1 equivalent of M(OAc) 9 (M = Ca, Sr and Ba). Owing to the different coordination cavities of the N 2 O 2 and O 6 of the completely deprotonated (L) 14- unit, the crystal structures showed the N 2 O 2 sites were occupied by Cu(II) atoms, alkaline earth metal(II) atoms occupied the O 6 site of the ligand (L) 14- unit, respectively. Furthermore, the fluorescence properties and TG-DTA analyses were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. High Temperature Superconductivity in Praseodymium Doped (0%, 2%, 4%) in Melt-Textured Y(1-x)Pr(x)Ba2Cu3O(7-delta) Systems

    NASA Technical Reports Server (NTRS)

    James, Claudell

    1995-01-01

    A study of the magnetic and structural properties of the alloy Y(1-x)Pr(x)Ba2Cu3O(7-delta) of 0%, 2%, and 4% doping of praseodymium is presented. The resulting oxides of the alloy series are a high-temperature superconductor Y-Ba-Cu-O, which has an orthorhombic superconducting crystal-lattice. Magnetic relaxation studies have been performed on the Y-Pr-Ba-CuO bulk samples for field orientation parallel to the c-axis, using a vibrating sample magnetometer. Relaxation was measured at several temperatures to obtain the irreversible magnetization curves used for the Bean model. Magnetization current densities were derived from the relaxation data. Field and temperature dependence of the logarithmic flux-creep relaxation was measured in critical state. The data indicates that the effective activation energy U(eff) increases with increasing T between 77 K and 86 K. Also, the data shows that U(eff)(T) and superconducting transition temperature, Tc, decreased as the lattice parameters increased with increasing Pr ion concentration, x, for the corresponding Y(1-x)Pr(x)Ba(x)Cu3O(7-delta) oxides. One contribution to Tc decrease in this sampling is suspected to be due to the larger ionic radius of the Pr(3+) ion. The upper critical field (H(sub c2)) was measured in the presence of magnetic field parallel to the c axis. A linear temperature dependence with H(sub c2) was obtained.

  10. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤90 °C in aqueous solution

    NASA Astrophysics Data System (ADS)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    2016-02-01

    In this study, we present the mechanism of CuFeO2 formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR-SO4, a Fe(II-III) layered double hydroxysulphate (Fe2+4Fe3+2(OH)12·SO4) and Cu2O precipitate first. During further OH- supply GR-SO4 oxidizes and forms Fe10O14(OH)2, Cu2O and CuFeO2 crystals. Due to the high pH further CuFeO2 crystals grow at the cost of the unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO2 (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH- supply during the pH-stat time and rather low temperatures.

  11. Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2 BaSn(S,Se)4 Absorber.

    PubMed

    Shin, Donghyeop; Zhu, Tong; Huang, Xuan; Gunawan, Oki; Blum, Volker; Mitzi, David B

    2017-06-01

    In recent years, Cu 2 ZnSn(S,Se) 4 (CZTSSe) materials have enabled important progress in associated thin-film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu 2 BaSnS 4 (CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two-step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high-quality nominally pinhole-free films with large (>1 µm) grains of selenium-incorporated (x = 3) Cu 2 BaSnS 4- x Se x (CBTSSe) for high-efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single-junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air-annealing step, a CBTSSe-based PV device with 5.2% PCE (total area 0.425 cm 2 ) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se-rich Cu 2 BaSnS 4- x Se x family for high-efficiency and earth-abundant PV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metal-insulator transition in Ba3Fe1 -xRu2 +xO9 : Interplay between site disorder, chemical percolation, and electronic structure

    NASA Astrophysics Data System (ADS)

    Middey, S.; Aich, Payel; Meneghini, C.; Mukherjee, K.; Sampathkumaran, E. V.; Siruguri, V.; Mahadevan, P.; Ray, Sugata

    2016-11-01

    Perovskites containing barium metal at the A site often take up unusual hexagonal structures having more than one type of possible sites for the B cation to occupy. This opens up various different B -B - or B -O-B -type connectivities and consequent physical properties which are naturally missing in cubic perovskites. BaRuO3 is one such system where doping of Ru (4 d4 ) by other transition metals (Mn +) creates similar conditions, giving rise to various M -Ru interactions. Interestingly, the 6 H hexagonal structure of doped barium ruthenate triple perovskite (Ba3M Ru2O9 ) seems to possess some internal checks because within the structure M ion always occupies the 2 a site and Ru goes to the 4 f site, allowing only M -O-Ru 180∘ and Ru-O-Ru 90∘ interactions to occur. The only exception is observed in the case of the Fe dopant, which allows us to study almost the full Ba3Fe1 -xRu2 +xO9 series of compounds with wide ranges of x because here Fe ions have the ability to freely go to the 4 f sites and Ru readily takes up the 2 a positions. Therefore, here one has the opportunity to probe the evolution of electronic and magnetic properties as a function of doping by going from BaRuO3 (paramagnetic metal) to BaFeO3 (ferromagnetic insulator). Our detailed experimental and theoretical results show that the series does exhibit a percolative metal-insulator transition with an accompanying but not coincidental magnetic transition as a function of x .

  13. Self-adjusted flux for the traveling solvent floating zone growth of YBaCuFeO5 crystal

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Chung; Shu, Guo-Jiun; Chen, Wei-Tin; Du, Chao-Hung; Chou, Fang-Cheng

    2015-03-01

    A modified traveling solvent floating zone (TSFZ) technique was used to successfully grow a large size and high quality single crystal of multiferroic material YBaCuFeO5. This modified TSFZ growth uses a stoichiometric feed rod and pure copper oxide as the initial flux without prior knowledge of the complex phase diagram involving four elements, and the optimal flux for the growth of incongruently melt crystal is self-adjusted after a prolonged stable pulling. The wetting of the feed rod edge that often perturbs the molten zone stability was avoided by adding 2 wt% B2O3. The optimal flux concentration for the YBaCuFeO5 growth can be extracted to be near YBaCuFeO5:CuO=13:87 in molar ratio. The crystal quality was confirmed by the satisfactory refinement of crystal structure of space group P4mm and the two consecutive anisotropic antiferromagnetic phase transitions near 455 K and 170 K.

  14. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2 -xTxAs2 (T =Co,Ni )

    NASA Astrophysics Data System (ADS)

    Tam, David W.; Song, Yu; Man, Haoran; Cheung, Sky C.; Yin, Zhiping; Lu, Xingye; Wang, Weiyi; Frandsen, Benjamin A.; Liu, Lian; Gong, Zizhou; Ito, Takashi U.; Cai, Yipeng; Wilson, Murray N.; Guo, Shengli; Koshiishi, Keisuke; Tian, Wei; Hitti, Bassam; Ivanov, Alexandre; Zhao, Yang; Lynn, Jeffrey W.; Luke, Graeme M.; Berlijn, Tom; Maier, Thomas A.; Uemura, Yasutomo J.; Dai, Pengcheng

    2017-02-01

    We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe2As2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe1.9Co0.1As2 , and a 15% increase for BaFe1.915Ni0.085As2 . We also observe an increase of the AF ordering temperature (TN) of about 0.25 K/MPa in all compounds, consistent with density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. The doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.

  15. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces

    NASA Astrophysics Data System (ADS)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-11-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1 cm-2 after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L-1 cm-2 and 107.38 μmol L-1

  16. Microstructural Modification of Sn-0.7Cu Solder Alloys by Fe/Bi-Addition for Achieving High Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Said, Suhana Mohd; Mahdavifard, Mohammad Hossein; Sukiman, Nazatul Liana; Jauhari, Iswadi

    2017-08-01

    In this work, we studied the Fe/Bi-bearing tin-copper (Sn-0.7Cu) solders for their microstructural and mechanical properties. The microstructure was studied using field emission scanning electron microscopy (FESEM) with a backscattered electron (BSE) detector, x-ray diffraction (XRD) analysis, and energy-dispersive x-ray spectroscopy (EDX). The microstructure study showed that Fe forms very few FeSn2 intermetallic compounds (IMCs) and does not significantly alter the microstructure of Sn-0.7Cu, whereas Bi controls the size of inter-dendritic regions containing Cu6Sn5 and Ag3Sn IMCs of the alloy, as well as significantly refines its primary β-Sn dendrites. Moreover, Bi atoms dissolve in β-Sn matrix, which in turn strengthen the solder by the Bi solid solution strengthening mechanism. Such microstructural modification leads to significant improvements in various mechanical properties of the alloy, including shear strength, impact toughness, and hardness values. Shear tests were performed with a 0.25 mm/min shear speed. The results showed that shear strength improves from 16.57 MPa to 38.36 MPa with the addition of Fe/Bi to Sn-0.7Cu, raising by about 130%. The energy absorbed during impact tests was measured for samples with the help of a Charpy impact testing machine with a 5.4 m/s impact speed. The results revealed that the addition of Fe/Bi to Sn-0.7Cu improves its impact absorbed energy by over 35%, increasing it from 7.5 J to 10.3 J. Vickers hardness tests were carried out for the test samples with a 245.2 mN applied load and 10 s dwell time. The results showed that the hardness number improves from 9.89 to 24.13 with Fe/Bi to Sn-0.7Cu, increasing by about 140%.

  17. Phase equilibria in the nominally Al65Cu23Fe12 system at 3, 5 and 21 GPa: Implications for the quasicrystal-bearing Khatyrka meteorite

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Bindi, Luca; Steinhardt, Paul J.; Fei, Yingwei

    2017-10-01

    Two of the three natural quasiperiodic crystals found in the Khatyrka meteorite show a composition within the Al-Cu-Fe system. Icosahedrite, with formula Al63Cu24Fe13, coexists with the new Al62Cu31Fe7 quasicrystal plus additional Al-metallic minerals such as stolperite (AlCu), kryachkoite [(Al,Cu)6(Fe,Cu)], hollisterite (AlFe3), khatyrkite (Al2Cu) and cupalite (AlCu), associated to high-pressure phases like ringwoodite/ahrensite, coesite, and stishovite. These high-pressure minerals represent the evidence that most of the Khatyrka meteoritic fragments formed at least at 5 GPa and 1200 °C, if not at more extreme conditions. On the other hand, experimental studies on phase equilibria within the representative Al-Cu-Fe system appear mostly limited to ambient pressure conditions, yet. This makes the interpretation of the coexisting mineral phases in the meteoritic sample quite difficult. We performed experiments at 3, 5 and 21 GPa and temperatures of 800-1500 °C using the multi-anvil apparatus to investigate the phase equilibria in the Al65Cu23Fe12 system representative of the first natural quasicrystal, icosahedrite. Our results, supported by single-crystal X-ray diffraction and analyses by scanning electron microscopy, confirm the stability of icosahedrite at high pressure and temperature along with additional coexisting Al-bearing phases representative of khatyrkite and stolperite as those found in the natural meteorite. One reversal experiment performed at 5 GPa and 1200 °C shows the formation of the icosahedral quasicrystal from a pure Al, Cu and Fe mixture, a first experimental synthesis of icosahedrite under those conditions. Pressure appears to not play a major role in the distribution of Al, Cu and Fe between the coexisting phases, icosahedrite in particular. Results from this study extend our knowledge on the stability of icosahedral AlCuFe at higher temperature and pressure than previously examined, and provide a new constraint on the stability of

  18. Influence of Oxygen on Cu Distribution Behavior Between Molten Iron and FeS-Based Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Shin, Kil-Sun; Morita, Kazuki

    2018-06-01

    Cu distribution behavior between molten iron and a sulfide flux was investigated under different oxygen contents in the sulfide flux to clarify the effect of oxygen content in FeS-based flux on Cu removal. The activity coefficient of CuS0.5 could be experimentally estimated according to the oxygen content. Based on the present result, the possibility of Cu removal by sulfide flux containing a certain amount of oxide was discussed.

  19. THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, A; Caro, M; Lopasso, E M

    2005-04-14

    The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less

  20. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles.

    PubMed

    Arora, Priya; Fermah, Alisha; Rajput, Jaspreet Kaur; Singh, Harminder; Badhan, Jigyasa

    2017-08-01

    In this work, Cu-loaded Fe 3 O 4 @TiO 2 core shell nanoparticles were prepared in a single pot by coating of TiO 2 on Fe 3 O 4 nanoparticles followed by Cu loading. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), Brunauer-Emmett- Teller (BET), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and valence band X-ray photoelectron spectroscopy (VB XPS) techniques were used for characterization of as prepared nanoparticles. Synergism between copper and titania was evaluated by studying the solar light-driven photodegradation of Congo red dye solution in the presence of Fe 3 O 4 @TiO 2 nanoparticles on one side and Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles on the other side. The latter performed better than the former catalyst, indicating the enhanced activity of copper-loaded catalyst. Further photodegradation was studied by three means, i.e., under ultraviolet (UV), refluxing, and solar radiations. Cu-loaded Fe 3 O 4 @TiO 2 enhanced the degradation efficiency of Congo red dye. Thus, Cu act possibly by reducing the band gap of TiO 2 and widening the optical response of semiconductor, as a result of which solar light could be used to carry out photocatalysis. Graphical abstract Photodegradation of congo red over Cu-loaded Fe 3 O 4 @TiO 2 nanoparticles.

  1. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe 2 As 2 Superconductors

    DOE PAGES

    Zou, Qiang; Wu, Zhiming; Fu, Mingming; ...

    2017-02-03

    Combined scanning tunneling microscopy, spectroscopy, and local barrier height (LBH) studies show that low-temperature-cleaved optimally doped Ba(Fe 1–xCo x) 2As 2 crystals with x = 0.06, with T c = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba- and As-dominated surface terminations, respectively. Magnetic impurities, possibly due to Co or Fe atoms, are believed to createmore » local in-gap state and, in addition, suppress the superconducting coherence peaks. Lastly, this study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors and its relation with the electronic structures.« less

  2. Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.

    2018-04-01

    The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.

  3. High critical currents in heavily doped (Gd,Y)Ba 2Cu 3O x superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa 2Cu 3O x superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2Cu 3O x superconductor tapes,more » which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11 cm –2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high J c films.« less

  4. Influence of Fabrication Conditions on the Structural and the Magnetic Properties of Co-doped BaFe12O19 Hexaferrites

    NASA Astrophysics Data System (ADS)

    Tran, Ngo; Kim, Deok Hyeon; Lee, Bo Wha

    2018-03-01

    BaFe11CoO19 hexaferrites were prepared by using a co-precipitation method and heat treatment. By changing the ion molar ratio of (Fe + Co)/Ba = ( x + 1)/1, we found a clear difference in the crystalline structural and magnetic properties. Particularly, the magnetic properties became optimal at x = 11 - 13 based on the saturation magnetization and coercivity values. The effects of heat treatment on the morphological, structural and magnetic properties were assessed. With the results of thermal gravimetric analyses, X-ray diffraction patterns, and magnetic-field-dependent magnetization, we found that M-type hexaferrite nanocrystals start being formed at a temperature of 650°C, which was much lower than temperatures reported previously.

  5. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  6. Electronic structure and the van Hove singularity scenario in high-T(sub c)H(g)Ba2CuO(4+delta) superconductors

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.

  7. Gd Ba Cu O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Iida, K.; Babu, N. H.; Shi, Y. H.; Cardwell, D. A.; Murakami, M.

    2006-06-01

    Single-grain Gd-Ba-Cu-O (GdBCO) bulk superconductors have been grown by a seeded infiltration and growth (SIG) technique under a 1% O2+N2 atmosphere using a generic MgO-doped Nd-Ba-Cu-O (MgO-NdBCO) seed placed on the sample surface at room temperature (the so-called the cold-seeding method). Partial melting of the MgO-NdBCO seeds fabricated in air under notionally identical thermal processing conditions, however, limited the reliability of this bulk GdBCO single-grain process. The observed seed decomposition is attributed to the dependence of the peritectic temperature Tp of MgO-doped Nd1+xBa2-xCu3Oy solid solution (MgO-doped Nd-123ss, where ss indicates solid solution) compounds on both oxygen partial pressure during the melt process and the level of solid solution (x). The peritectic decomposition temperature of MgO-doped Nd-123ss, with x ranging from 0 to 0.5 under p(O2) = 1.00 atm, was observed to remain constant at 1120 °C. Tp was observed to decrease linearly as a function of solid solution level, on the other hand, under oxygen partial pressures of both p(O2) = 0.21 and 0.01 atm. Based on these results, MgO-doped NdBCO seed crystals should be grown under reduced oxygen partial pressure in order to obtain a stable MgO-doped NdBCO seed crystal suitable for cold-seeding processes of large-grain (RE)BCO bulk superconductors (where RE is a rare earth element).

  8. Magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) prepared by various heat treatments

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Katsuyama, Shigeru; Yoshimura, Kazuyoshi; Kosuge, Koji

    1991-02-01

    The magnetic susceptibility of YBa2(Cu/1-x/Fe/x/)3O(y) specimens was measured following a standard heat treatment and a special heat treament stabilizing the orthorhombic phase to higher Fe concentrations. The values of the effective magnetic moment per Fe in the Cu1 site, estimated from the magnetic susceptibility and Mossbauer effect measurements, were 4.4 and 2.2 muB for the standard and specially treated specimens, respectively. The smaller effective magnetic moment in the case of specially treated specimens is attributed to the antiferromagnetic coupling between Fe spins at high temperatures.

  9. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Wang, Kebai; Li, Dai; Qin, Jiabin

    2017-10-01

    The novel graphite carbon coating hollow CuFe2O4 spheres were fabricated through solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra, etc. The catalytic performance of the graphite carbon coating hollow CuFe2O4 spheres was evaluated in photo-Fenton-like degradation of methylene blue (MB) using H2O2 as a green oxidant under light irradiation (λ > 400 nm). The results demonstrated that the hollow CuFe2O4 spheres with graphite carbon coating exhibited superior catalytic activity. In the preparation process of catalyst, the addition of glucose was very important to its catalytic performance. Photoresponse analysis of the typical samples proved that CuFe2O4@graphite carbon core-shell hollow spheres possessed excellent photocurrent response and lower electrochemical impedance. In addition, a possible mechanism for photocatalytic degradation of MB had been presumed. Moreover, after five regeneration cycles, the graphite carbon coating hollow CuFe2O4 spheres still exhibited better properties.

  10. Expansion of the tetragonal magnetic phase with pressure in the iron arsenide superconductor Ba 1 - x K x Fe 2 As 2

    DOE PAGES

    Hassinger, Elena; Gredat, G.; Valade, F.; ...

    2016-04-01

    In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba 1–xK xFe 2As 2 and Ba 1–xNa xFe 2As 2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x = 0.28 for Bamore » 1–xK xFe 2As 2. In a prior study, an unidentified phase was discovered for x < 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba 1–xK xFe 2As 2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba 1–xK xFe 2As 2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. As a result, this reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material.« less

  11. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lityńska-Dobrzyńska, Lidia, E-mail: l.litynska@imim.pl; Mitka, Mikołaj; Góral, Anna

    Aluminium matrix composites containing 15, 30 and 50 vol.% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} (in at.%) melt spun ribbons have been prepared by a vacuum hot pressing (T = 673 K, P = 600 MPa). The microstructure of the initial ribbon and the composites was investigated using X-ray, scanning and transmission electron microscopy. In the as-spun ribbon the quasicrystalline icosahedral phase (i-phase) coexisted with the cubic copper rich β-Al(Cu, Fe) intermetallic compound. The phase composition of Al-Cu-Fe particles changed after consolidation process and the i-phase transformed partially to the ω-Al{sub 70}Cu{sub 20}Fe{sub 10} phase. Additionally, the Θ-Al{sub 2}Cu phasemore » formed at the α(Al)/Al-Cu-Fe particle interfaces. With an increase in volume fraction of the reinforcement the hardness of the composites increased up to HV = 180 for the highest amount of added particles. The ultimate compression strength of the same sample reached the value of 545 MPa. - Highlights: • Al and 15, 30, 50% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon were consolidated. • The initial ribbon consisted of the icosahedral i-phase and copper rich β-Al(Cu, Fe). • The i-phase partially transforms to ω-Al{sub 7}Cu{sub 2}Fe phase in all composites. • Increase of microhardness and compressive strength with content of reinforcement • Ultimate compression strength 545 MPa for 50% of added particles.« less

  12. Microstructure and characterization of W-type hexaferrite Ba1-xLaxFe22+Fe163+O27 prepared by solid state method

    NASA Astrophysics Data System (ADS)

    Tang, Jin; Liu, Xiansong; Mehmood Ur Rehman, Khalid; Li, Dan; Li, Mingling; Yang, Yujie

    2018-04-01

    We report a successful preparation of Ba1-xLaxFe22+Fe163+O27 (x = 0.00-0.10) W-type hexagonal ferrites by standard ceramic method in a reduced oxygen atmosphere. In this work, the effect of the substitution La3+ rare-earth ions for Ba2+ ions on the structural and magnetic properties of the prepared samples have been studied. The phase identification of magnetic powders was performed by X-ray diffraction. The results of XRD show that the single phase was observed in the W-type ferrites with different La content. The SEM micrographs showed that the ferrites have formed the hexagonal structure. The magnetic properties of the samples were metric by a vibrating sample magnetometer. The coercivity (Hc) of the particles decreases with the increase of La content(x), while the saturation magnetization (Ms) of the particles first increases with x from 0 to 0.05, and then begins to decrease when x continues to increase. The monotonic dependence of the magnetic anisotropy field Ha and coercivity Hc on the La3+ doping amount is found to be mainly dominated by the competition between Ms and Keff.

  13. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe

    NASA Astrophysics Data System (ADS)

    Ripley, Edward M.; Brophy, James G.; Li, Chusi

    2002-09-01

    The solubility of copper in a sulfur-saturated basaltic melt has been determined at 1245°C as a function of fO 2 and fS 2. Copper solubilities at log fO 2 values between -8 and -11 fall into two distinct populations as a function of fS 2. At log fS 2 values < -1.65, sulfide liquid that coexists with the basaltic glass quenches to sulfur-poor bornite solid solution. At log fS 2 values in excess of -1.65, the sulfide liquid quenches to a complex intergrowth of sulfur-rich bornite and intermediate solid solution. Copper solubilities in the low-fS 2 population range from 594 to 1550 ppm, whereas those in the high-fS 2 population range from 80 to 768 ppm. Sulfide liquid/silicate liquid partition coefficients (D) for Cu and Fe range from 480 to 1303 and 0.7 to 13.6, respectively. Metal-sulfur complexing in the silicate liquid is shown to be insignificant relative to metal-oxide complexing for Fe but permissible for Cu at high fS 2 values. On log D Fe (sulfide-silicate) and log D Cu (sulfide-silicate) vs. 1/2 (log fS 2 - log fO 2) diagrams, both fS 2 populations show distinct but parallel trends. The observation of two D values for any fS 2/fO 2 ratio indicates nonideal mixing of species involved in the exchange reaction. The two distinct trends observed for both Cu and Fe are thought to be due to variations in activity coefficient ratios (e.g., γ FeO/γ FeS and γ CuO 0.5/γ CuS 0.5). Results of the experiments suggest that accurate assessments of fS 2/fO 2 ratios are required for the successful numerical modeling of processes such as the partial melting of sulfide-bearing mantle and the crystallization of sulfide-bearing magmas, as well as the interpretation of sulfide mineralogical zoning. In addition, the experiments provide evidence for oxide or oxy-sulfide complexing for Cu in silicate magmas and suggest that the introduction of externally derived sulfur to mafic magma may be an important process for the formation of Cu-rich disseminated magmatic sulfide ore

  14. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    NASA Astrophysics Data System (ADS)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  15. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).

    PubMed

    Guo, Anque; Kontoudakis, Nikolaos; Scollary, Geoffrey R; Clark, Andrew C

    2017-03-22

    This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In addition to the expected products, a colorless product, tentatively assigned as a lactone, was detected for the first time. The results show the importance of Fe ions and a synergistic influence of Mn(II) in degrading tartaric acid to glyoxylic acid, whereas the other metal ions had minimal activity in this mechanistic step. Fe(II) and Fe(III) were shown to mediate the (+)-catechin-glyoxylic acid addition reaction, a role previously attributed to only Cu(II). Importantly, the study demonstrates that C-8 addition products of (+)-catechin are promoted by Cu(II), whereas C-6 addition products are promoted by Fe ions.

  16. Linear magnetic field dependence of the magnetodielectric effect in eutectic BaTiO3-CoFe2O4 multiferroic material fabricated by containerless processing

    NASA Astrophysics Data System (ADS)

    Fukushima, J.; Ara, K.; Nojima, T.; Iguchi, S.; Hayashi, Y.; Takizawa, H.

    2018-05-01

    To maximize the formation of an anisotropic interface between the magnetostrictive phase and the electrostrictive phase, a eutectic BaTiO3-CoFe2O4 multiferroic material is fabricated by containerless processing. The composites in this process had a fine eutectic structure, especially at a eutectic composition of BaTiO3:CoFe2O4 = 62:38. TEM observations revealed that the (1 0 0) plane of tetragonal BaTiO3 and the (1 0 0) plane of CoFe2O4 were oriented in parallel. In addition to the largest magnetodielectric effect in the eutectic-composition samples, we confirmed the permittivity is controlled linearly by applying a high magnetic field through forced magnetostriction. So far, the peak of the magnetodielectric effect around 0.25 T has been only found in the sintered CoFe2O4 polycrystalline sample. Thus, the containerless processing provides us a route to produce an ideal microstructure without accompanying 90° domain wall process and rotational magnetization process, which enhances the magnetodielectric effect.

  17. High-temperature friction and wear studies of Fe-Cu-Sn alloy with graphite as solid lubricant under dry sliding conditions

    NASA Astrophysics Data System (ADS)

    Mushtaq, Shuhaib; Wani, M. F.

    2018-02-01

    Solid lubricants are particularly used in the advanced mechanical motion systems with extreme conditions such as (high temperature, vacuum, radiation, extreme contact pressure, etc). The main focus of this paper is to study the dry sliding friction and wear behavior of Fe-Cu-Sn alloy with varying wt% of graphite at high temperature up to 423 K. The influence of temperature, sliding distance and load on friction and wear behavior of Fe-Cu-Sn alloy against EN8 steel was studied using ball (EN8) on disc (Fe-Cu-Sn alloy). Lower wear and lower friction of Fe-Cu-Sn alloy were observed at high temperature, as compared to room temperature. Surface morphological and surface analytical studies of fresh and worn surfaces were carried out using optical microscopy, 3D profilometer, scanning electron microscope, energy dispersive x-ray spectroscopy, XRD, and Raman spectroscopy to understand the friction and wear behavior.

  18. CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell

    NASA Astrophysics Data System (ADS)

    Du, Jiandi; Ding, Dongyan; Zhang, Wenlong; Xu, Zhou; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-11-01

    Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg-Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 °C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy.

  19. Mössbauer study of Cu1-xZnxFe2O4 catalytic materials

    NASA Astrophysics Data System (ADS)

    Koleva, K.; Velinov, N.; Tsoncheva, T.; Mitov, I.

    2014-04-01

    Copper zinc ferrites (Cu1-xZnxFe2O4) with different composition (x = 1; 0.2; 0.5; 0.8) were prepared by conventional thermal method. Formation of well crystallized ferrite phase with cubic structure and crystallites size of about 19.08-24.39 nm was observed by Powder X-ray diffraction and Mössbauer spectroscopy. The ferrite materials were tested as catalysts in methanol decomposition to CO and H2. A strong dependence of the catalytic behaviour of Cu1-xZnxFe2O4 ferrites of their composition and the phase transformations which occurred under the reaction medium was established.

  20. Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate.

    PubMed

    Pham, Van Luan; Kim, Do-Gun; Ko, Seok-Oh

    2018-01-01

    Novel Cu@Fe 3 O 4 core-shell nanoparticles prepared via a simple reduction method were evaluated for degradation of oxytetracycline (OTC) in pre-treated leachate (L p-TREA ) (leachate treated by conventional methods). Changes in the characteristics of dissolved organic matter (DOM) in the leachate were also investigated to gain a better understanding of the effects of DOM on the performance of Cu@Fe 3 O 4 . An excellent OTC degradation of >99% was achieved within 30 min under conditions of 1 g/L Cu@Fe 3 O 4 , 20 mg/L OTC, 20 mM H 2 O 2 , and initial pH 3.0, which was similar to the efficiency obtained in deionized water (90% even at pH 9.05). Humic acid (HA) and fulvic acid (FA) were completely degraded at initial pH 3, while aromatic protein (AP) with 32.7% of 1-3 kDa constituents were totally transformed to 0.5-1 kDa compounds, and 17% < 0.5 kDa material was degraded. The OTC removal rate decreased gradually as Cu@Fe 3 O 4 was repeatedly used, but it was significantly enhanced when Cu@Fe 3 O 4 was washed after five uses to remove the organic matter on its surface. The results suggest that Cu@Fe 3 O 4 is a promising and effective catalyst for pharmaceutical and personal care product degradation in landfill leachates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  2. High-field transport properties of a P-doped BaFe2As2 film on technical substrate.

    PubMed

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-12

    High temperature (high-T c ) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-T c Nb 3 Sn due probably to cost and processing issues. The recent discovery of a second class of high-T c materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe 2 As 2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, H c2 , moderate H c2 anisotropy, and intermediate T c . Here we report on in-field transport properties of P-doped BaFe 2 As 2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport J c of 10 5  A/cm 2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field J c over MgB 2 and NbTi, and a comparable level to Nb 3 Sn above 20 T. By analysing the E - J curves for determining J c , a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  3. Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media

    PubMed Central

    La, Duong Duc; Nguyen, Tuan Anh; Jones, Lathe A.; Bhosale, Sheshanath V.

    2017-01-01

    A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing. PMID:28587257

  4. Electrochemical corrosion behavior, microstructure and magnetic properties of sintered Nd-Fe-B permanent magnet doped by CuZn5 powders

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Wang, Z.; Sun, C.; Yue, M.; Liu, Y. Q.; Zhang, D. T.; Zhang, J. X.

    2014-05-01

    Nd-Fe-B permanent magnets with a small amount of CuZn5 powders doping were prepared by conventional sintered method. The effects of CuZn5 contents on magnetic properties and microstructure, electrochemical corrosion resistance of sintered Nd-Fe-B magnets were systematically studied. The results show that the magnetic properties of magnets do not have a significant variation by CuZn5 powders doping; the coercivity of magnets rises gradually, while the remanence of the magnets decreases a little with increasing of the CuZn5 amount. The CuZn5 doped magnets have more positive corrosion potential, Ecorr, and much lower corrosion current density, icorr, than the magnets without CuZn5 doping, indicating CuZn5 doping could improve the corrosion resistance. Both Zn and Cu enrich mainly into the Nd-rich phase, fully improve the wettability between the Nd-rich phase and the Nd2Fe14B phase, and repair the defects of the main phase, so the coercivity of magnets doped with CuZn5 powders rises. Such microstructure modification effectively restrains the aggressive inter-granular corrosion. As a result, the CuZn5 doped magnet possesses excellent corrosion resistance in NaCl electrolyte.

  5. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    PubMed

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  6. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe 2 - x T x As 2 ( T = Co , Ni )

    DOE PAGES

    Tam, David W.; Song, Yu; Man, Haoran; ...

    2017-02-17

    In this paper, we use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe 2As 2 and its Co- and Ni-substituted members near optimal superconductivity. In the low-temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11% increase under 40 MPa for BaFe 1.9Co 0.1As 2, and a 15% increase for BaFe 1.915Ni 0.085As 2. We also observe an increase of the AF ordering temperature (T N) of about 0.25 K/MPa in all compounds, consistent withmore » density functional theory calculations that reveal better Fermi surface nesting for itinerant electrons under uniaxial pressure. Finally, the doping dependence of the magnetic ordered moment is captured by combining dynamical mean field theory with density functional theory, suggesting that the pressure-induced moment increase near optimal superconductivity is closely related to quantum fluctuations and the nearby electronic nematic phase.« less

  7. On magnetic structure of CuFe 2Ge 2: Constrains from the 57Fe Mössbauer spectroscopy

    DOE PAGES

    Bud’ko, Sergey L.; Jo, Na Hyun; Downing, Savannah S.; ...

    2017-09-20

    57Fe Mössbauer spectroscopy measurements were performed on a powdered CuFe 2Ge 2 sample that orders antiferromagnetically at ~175 K. Whereas a paramagnetic doublet was observed above the Néel temperature, a superposition of paramagnetic doublet and magnetic sextet (in approximately 0.5:0.5 ratio) was observed in the magnetically ordered state, suggesting a magnetic structure similar to a double-Q spin density wave with half of the Fe paramagnetic and another half bearing static moment of ~0.5–1μ B. Lastly, these results call for a re-evaluation of the recent neutron scattering data and band structure calculations, as well as for deeper examination of details ofmore » sample preparation techniques.« less

  8. Critical current densities in superconducting Y-Ba-Cu-O prepared by chelating method

    NASA Astrophysics Data System (ADS)

    Fujisawa, Tadashi; Okuyama, Katsuro; Ohshima, Shigetoshi; Takagi, Akira

    1990-10-01

    The IDA, NTA, HEDTA, EDTA, TTHA, and DTPA chelating agents have been used to prepare the Y-Ba-Cu-O compounds whose critical current is presently investigated. It is noted that the precursor YBCO prepared from large stability-constant metal complexes (HEDTA, EDTA, DTPA, and TTHA) exhibited very fine and homogeneous particles. The critical current density of a 1 x 4 x 15 mm block of YBCO sintered at 880-910 C for 24 h and subsequently annealed at 500 C in an O2 flow was approximately 500 A/sq cm at 77 K, in zero magnetic field.

  9. COEXISTENCE OF DIFFERENT TYPES OF TRANSVERSE CONDUCTIVITY IN Y1-xPrxBa2Cu3 O7-δ SINGLE CRYSTALS WITH DIFFERENT PRASEODYMIUM CONCENTRATIONS

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Goulatis, I. L.; Chroneos, A.

    2013-10-01

    In this paper, the influence of praseodymium doping on the conductivity across (transverse) the basal plane of high-temperature superconducting Y1-xPrxBa2Cu3O7-δ single crystals is investigated. It is determined that an increase of praseodymium doping leads to increased localization effects and the implementation of a metal-insulator transition Y1-xPrxBa2Cu3O7-δ, which always precedes the superconducting transition. The increase of the praseodymium concentration also leads to a significant displacement of the point of the metal-insulator transition to the low temperature region.

  10. Redetermination of clinobaryl­ite, BaBe2Si2O7

    PubMed Central

    Domizio, Adrien J. Di; Downs, Robert T.; Yang, Hexiong

    2012-01-01

    Clinobaryl­ite, ideally BaBe2Si2O7 (chemical name barium diberyllium disilicate), is a sorosilicate mineral and dimorphic with baryl­ite. It belongs to a group of compounds characterized by the general formula BaM 2+ 2Si2O7, with M 2+ = Be, Mg, Fe, Mn, Zn, Co, or Cu, among which the Be-, Fe-, and Cu-members have been found in nature. The crystal structure of clinobaryl­ite has been re-examined in this study based on single-crystal X-ray diffraction data collected from a natural sample from the type locality (Khibiny Massif, Kola Peninsula, Russia). The structure of clinobaryl­ite can be considered as a framework of BeO4 and SiO4 tetra­hedra, with one of the O atoms coordinated to two Be and one Si, one coordinated to two Si, and two O atoms coordinated to one Si and one Be atom. The BeO4 tetra­hedra share corners, forming chains parallel to the c axis, which are inter­linked by the Si2O7 units oriented parallel to the a axis. The Ba2+ cations (site symmetry m..) are in the framework channels and are coordinated by eleven O atoms in form of an irregular polyhedron. The Si—Obr (bridging O atom, at site symmetry m..) bond length, the Si—Onbr (non-bridging O atoms) bond lengths, and the Si—O—Si angle within the Si2O7 unit are in marked contrast to the corresponding values determined in the previous study [Krivovichev et al. (2004 ▶). N. Jb. Miner. Mh. pp. 373–384]. PMID:23125568

  11. Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst

    PubMed Central

    Qi, Huan; Wolfe, Jonathan; Fichou, Denis; Chen, Zhong

    2016-01-01

    Layered double hydroxides (LDHs) are bimetallic hydroxides that currently attract considerable attention as co-catalysts in photoelectrochemical (PEC) systems in view of water splitting under solar light. A wide spectrum of LDHs can be easily prepared on demand by tuning their chemical composition and structural morphology. We describe here the electrochemical growth of NiFe-LDH overlayers on Cu2O electrodes and study their PEC behavior. By using the modified Cu2O/NiFe-LDH electrodes we observe a remarkable seven-fold increase of the photocurrent intensity under an applied voltage as low as −0.2 V vs Ag/AgCl. The origin of such a pronounced effect is the improved electron transfer towards the electrolyte brought by the NiFe-LDH overlayer due to an appropriate energy level alignment. Long-term photostability tests reveal that Cu2O/NiFe-LDH photocathodes show no photocurrent loss after 40 hours of operation under light at −0.2 V vs Ag/AgCl low bias condition. These improved performances make Cu2O/NiFe-LDH a suitable photocathode material for low voltage H2 production. Indeed, after 8 hours of H2 production under −0.2 V vs Ag/AgCl the PEC cell delivers a 78% faradaic efficiency. This unprecedented use of Cu2O/NiFe-LDH as an efficient photocathode opens new perspectives in view of low biasd or self-biased PEC water splitting under sunlight illumination. PMID:27487918

  12. X-ray photoelectron spectroscopy characterization of a nonsuperconducting Y-Ba-Cu-O superconductor-normal-metal-superconductor barrier material

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1992-01-01

    A film of a novel nonsuperconducting Y-Ba-Cu-O (YBCO) barrier material was grown using conditions similar to those reported by Agostinelli et al. (1991) for forming a cubic semiconducting (c-YBCO) phase, and the material was characterized using X-ray photoelectron spectroscopy (XPS). A comparison of the XPS spectra of this material to those obtained from the orthorhombic and tetragonal phases of YBCO (o-YBCO and t-YBCO, respectively) showed that the barrier material had spectral characteristics different from those of o-YBCO and t-YBCO, particularly in the O 1s region. Features associated with the Cu-O chain and surface-reconstructed Cu-O planes were absent, consistent with expectations for the simple perovskite crystal structure of c-YBCO proposed by Agostinelli et al.

  13. Structural, magnetic, and Mössbauer spectroscopy of Cu substituted M-type hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awadallah, Ahmad, E-mail: ahmadmoh@yahoo.co; Mahmood, Sami H., E-mail: s.mahmood@ju.edu.jo; Maswadeh, Yazan, E-mail: nawabra251@gmail.com

    2016-02-15

    Highlights: • Single BaM hexaferrite structural phases with Cu substations were prepared. • The magnetocrystalline anisotropy decreased with Cu substitution. • The coercivity was significantly modified while the magnetization remained high. • Hexaferrites with 0.2–0.4 Cu possess properties suitable for magnetic recording. • Ionic distributions from structural refinement agreed with Mössbauer spectroscopy. - Abstract: BaFe{sub 12−x}Cu{sub x}O{sub 19} hexaferrites were prepared using ball milling and sintering at 1100 °C. Refinement of the X-ray diffraction patterns was carried out to determine the structural parameters and the ionic distribution over the crystallographic sites. The preferential site occupation and valence state of Cumore » was consistent with the results obtained from the analysis of Mössbauer spectra. Further, the magnetic parameters of the samples were discussed in light of the structural and Mössbauer analyses. The magnetic phase transition temperature was found to decrease with the level of Cu substitution, in accordance with the reduction of the superexchange interactions. Further, the magnetic softening of the hexaferrite and the significant reduction in magnetocrystalline anisotropy with Cu substitution was consistent with the ionic distribution in the lattice. This study clearly demonstrated the feasibility of using a simple method to fabricate hexaferrites with a modified coercivity, while maintain the saturation magnetization high enough for practical applications.« less

  14. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-x Cr x O2 (x  =  0.25, 0.5, 0.75)

    NASA Astrophysics Data System (ADS)

    Ruttanapun, Chesta; Maensiri, Santi

    2015-12-01

    Mixed-trivalent Fe3+/Cr3+ content CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) compounds were synthesized to investigate the effects of spin entropy, and lattice strain on their electronic, thermoelectric and optical properties. The XPS results showed the existence of mixed Cu1+/Cu2+, Fe3+/Fe4+ and Cr2+/Cr3+ ion states in the structures. The mixed Fe3+/Cr3+ions caused a strong correlation to occur between the spin and the orbitals of the carriers in the octahedral layer of the sample, affecting the carrier degeneracy Seebeck coefficient behaviour, and the Cu2+ and Fe4+ ions caused an effect of enhancing the electric conductivity. These effects meant that CuFe0.75Cr0.25O2 had the highest electrical conductivity, an enhanced Seebeck coefficient compared to that of CuFeO2-based compounds, and the highest thermopower value. The lowest thermal conductivity was that of CuFe0.5Cr0.5O2, which was a result of the mismatched atomic radii of the mixed trivalent Fe3+(0.645 Å)/Cr3+(0.615 Å), which caused the lattice strain to occur in the structure and thus affected the point defect scattering of the phonon thermal conductivity. The lowest total thermal conductivity was that of CuFe0.5Cr0.5O2, because it had the maximum lattice strain. Overall, the effect of the mixed trivalent elements caused CuFe0.75Cr0.25O2 to have the highest value of the dimensionless figure of merit ZT, with a value that was four times that of CuFeO2-based compounds and six times that of CuCrO2-based compounds. With regard to optical properties, the lattice strain causes the indirect optical gap to increase with increasing x content, but has no effect on the direct optical gap. These results verified that the mixed-trivalent Fe3+/Cr3+ content of CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) affected the electronic, thermoelectric and optical properties of the structure by causing spin entropy and lattice strain to occur.

  15. Fe and Co nanostructures embedded into the Cu(100) surface: Self-Organization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, S. V., E-mail: kolesnikov@physics.msu.ru; Klavsyuk, A. L.; Saletsky, A. M.

    The self-organization and magnetic properties of small iron and cobalt nanostructures embedded into the first layer of a Cu(100) surface are investigated using the self-learning kinetic Monte Carlo method and density functional theory. The similarities and differences between the Fe/Cu(100) and the Co/Cu(100) are underlined. The time evolution of magnetic properties of a copper monolayer with embedded magnetic atoms at 380 K is discussed.

  16. Structural and multiferroic properties of Ba2+ doped BiFeO3 nanoparticles synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shisode, M. V.; Kharat, Prashant B.; Bhoyar, Dhananjay N.; Vinayak, Vithal; Babrekar, M. K.; Jadhav, K. M.

    2018-05-01

    Ba2+ doped Bismuth ferrite nanoparticles having general formula Bi1-xBaxFeO3 (where, x = 0.00 and 0.20) were successfully synthesized by sol gel method, using nitrates as a starting material. Ethylene glycol was used as a solvent. The synthesized powder was sintered at 650°C for 4 hours to obtain pure phase BFO. Leaching with dilute nitric acid (HNO3) and distilled water (H2O) is done to remove the impurities. The structural, morphological, magnetic and ferroelectric properties were systematically investigated using standard characterization techniques like X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and room temperature magnetic behavior of the samples was studied using pulse field hysteresis loop tracer technique showing increase in saturation magnetizaion. P-E loop confirms the ferroelectric behavior of prepared nanoparticles. The coexistence of ferromagnetic and ferroelectric hysteresis loops in BFO and Bi0.8Ba0.2FeO3 nanoparticles samples at room temperature; it indicates that the samples are potential candidates for information storage and spintronics devices. The increase in magnetic properties may be important for practical application at room temperature.

  17. Synthesis, structural and electronic properties of monodispersed self-organized single crystalline nanobricks of isocubanite CuFe{sub 2}S{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubutin, Igor S., E-mail: lyubutinig@mail.ru; Lin, Chun-Rong, E-mail: crlin@mail.nptu.edu.tw; Starchikov, Sergey S.

    2015-01-15

    The nanoparticles with a pure cubic phase of isocubanite CuFe{sub 2}S{sub 3} are successfully synthesized for the first time. The particles are self-organized into the single crystalline nanocomposites with a shape of “bricks” which are well ordered in a certain anisotropic orientation. All bricks have nearly the same shape and dimensions and may be considered as monodispersed nanobricks. Magnetic measurements show paramagnetic behavior of the compound down to 4.2 K with the antiferromagnetic correlation between iron ions. An average magnetic moment is about 2.8–3.0 μ{sub B} per formula unit CuFe{sub 2}S{sub 3}. Mössbauer spectroscopy data reveal that the ferric ionsmore » in isocubanite are in the high-spin state (spin S=5/2) whereas the ferrous ions are in the intermediate-spin state (S=1). The Fe{sup 3+} and Fe{sup 2+} ions are distributed randomly over tetrahedral sites and the electron exchange between these ions is absent. This can explain nonmagnetic behavior of isocubanite. In the suggested method, the combined nanocomposites containing the magnetic chalcopyrite CuFeS{sub 2} and the nonmagnetic isocubanite CuFe{sub 2}S{sub 3} can be synthesized in a certain sequence. Such composites could be useful for the applied nanotechnology. - Graphical abstract: Self-organized single crystalline “nanobricks” of isocubanite CuFe{sub 2}S{sub 3} synthesized by a thermal pyrolysis method. - Highlights: • Self-organized single crystalline “nanobricks” of CuFe{sub 2}S{sub 3} were synthesized. • All bricks are nearly monodispersed and well-ordered in a certain anisotropic orientation. • XRD, HRTEM, magnetic measurements and Mössbauer spectroscopy were used for characterization. • Nanobricks are paramagnetic down to 4.2 K with effective magnetic moment about 3.0 μ{sub B} per f.u. • Mössbauer spectroscopy data indicate different spin states of Fe{sup 2+} and Fe{sup 3+} ions.« less

  18. Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath

    NASA Astrophysics Data System (ADS)

    Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H.

    2017-01-01

    Instead of ordinal pure Ag, Ag-based Sn binary alloys (up to 7.5 at%Sn) with higher mechanical strength are used for the sheath material of ex situ powder-in-tube (PIT)-processed (Ba,K)Fe2As2(Ba-122) tapes. We found that the use of the Ag-Sn alloy enhances the densification and texturing of the Ba-122 core, resulting in higher transport, J c. Moreover, the optimum heat treatment temperature for a high J c can be lowered by around 100 °C due to the higher packing density of the Ba-122 core prior to the final heat treatment. We also found that the smoothness of the interface between the sheath and Ba-122 core is significantly improved by using the Ag-Sn binary alloy sheaths. These results show that the Ag-Sn alloy is promising as a sheath material in PIT-processed Ba-122 superconducting wires.

  19. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries.

    PubMed

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-11

    Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  20. Fluctuation-induced conductivity analyses of Be-doped (Bi0.25Cu0.25Li0.25Tl0.25)Ba2Ca2Cu3O10-δ superconductors in the critical regime and beyond

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Qurat-ul-Ain; Firdous, Umber; Shaheryar

    2012-02-01

    We have successfully synthesized (Bi0.25Cu0.25Li0.25Tl0.25)Ba2Ca2Cu3O10-δ and (Bi0.25Cu0.25Li0.25Tl0.25)Ba2(Ca1.5Be0.5)Cu3O10-δ samples and studied their excess conductivity analyses (fluctuation-induced conductivity) of resistivity data. The main objective of such analyses is to investigate the influence of Be-substitution on the superconductivity parameters at the microscopic level. The width of the 3D-2D Lawrence-Doniach regime is increased with the doping of Be at the Ca sites. The energy required to break apart the Cooper pairs is increased from 0.03 eV to 0.08 eV in Be-doped samples. Using the Ginzburg-Landau number (NG) and GL equations, the thermodynamic critical magnetic field Bc(0), the lower critical field Bc1(0), the upper critical field Bc2(0), the critical current density Jc(0), and penetration depth λp.d are also calculated from these analyses. The values of critical fields [Bc(0) Bc1(0)], Jc(0), and phase relaxation time τϕ are increased whereas the penetration depth λp.d and κ values are suppressed with Be-doping. It is most likely that as a result of the enhancement in the density of the carriers in the (Bi0.25Cu0.25Li0.25Tl0.25)Ba2(Ca1.5Be0.5)Cu3O10-δ sample, this charge density gap is suppressed, which in turn suppresses the pseudo-gap resulting into enhancement of Bc (0), Bc1(0), and Jc(0).

  1. Comparison of the effects of platinum and CeO2 on the properties of single grain, Sm-Ba-Cu-O bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Shi, Yunhua; Radušovská, Monika; Dennis, Anthony R.; Durrell, John H.; Diko, Pavel; Cardwell, David A.

    2016-12-01

    SmBa2Cu3O7-δ (Sm-123) is a light-rare-earth barium-cuprate (LRE-BCO) high-temperature superconductor (HTS) with significant potential for high field industrial applications. We report the fabrication of large, single grain bulk [Sm-Ba-Cu-O (SmBCO)] superconductors containing 1 wt% CeO2 and 0.1 wt% Pt using a top-seeded melt growth process. The performance of the SmBCO bulk superconductors containing the different dopants was evaluated based on an analysis of their superconducting properties, including critical transition temperature, T c and critical current density, J c , and on sample microstructure. We find that both CeO2 and Pt dopants refine the size of Sm2BaCuO5 (Sm-211) particles trapped in the Sm-123 superconducting phase matrix, which act as effective flux pinning centres, although the addition of CeO2 results in broadly improved superconducting performance of the fully processed bulk single grain. However, 1 wt% CeO2 is significantly cheaper than 0.1 wt% Pt, which has clear economic benefits for use in medium to large scale production processes for these technologically important materials. Finally, the use of CeO2 results generally in the formation of finer Sm-211 particles and to the generation of fewer macro-cracks and Sm-211 free regions in the sample microstructure.

  2. Structural and dielectric properties of La and Ni-doped M-type BaFe{sub 12}O{sub 19} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Poorva; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: dubea89@yahoo.com; Kumar, Ashwini

    2016-05-23

    BaFe{sub 12}O{sub 19} and Ba{sub 0.98}La{sub 0.02}Fe{sub 12-x}Ni{sub x}O{sub 19} (x = 0.02, 0.05) samples synthesized using solid-state reaction route crystallizes in hexagonal structure with space group P6{sub 3}/mmc as revealed from X-ray diffraction. A Raman spectrum shows seven strong and sharp modes at 291.9 (A{sub 1g}), 410.4 (E{sub 2g}), 496.09 (A{sub 1g}), 611.3 (E{sub 2g}), 681(A{sub 1g}), 1048.0 (A{sub 1g}+A{sub 1g}) and 1313.3 cm{sup −1} (A{sub 1g}+E{sub 2g}), identifying the presence of barium hexaferrite phase. The higher values of the dielectric constant at lower frequency and lower values at higher frequency indicate the dispersion due to interfacial polarization. Dielectricmore » constant decreases as the doping concentration of Ni increases due to increase in band gap. A resonance peak has been observed in all three sample and is attributed to the fact that hopping frequency of charge carrier matches well with the frequency of the applied field. Henceforth, Ba{sub 0.98}La{sub 0.02}Fe{sub 12-x}Ni{sub x}O{sub 19} (x = 0.02, 0.05) is suitable novel materials for microwave application with low dielectric constant and dielectric loss values.« less

  3. TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.

  4. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  5. The role of bacterial consortium and organic amendment in Cu and Fe isotope fractionation in plants on a polluted mine site.

    PubMed

    Pérez Rodríguez, Nathalie; Langella, Francesca; Rodushkin, Ilia; Engström, Emma; Kothe, Erika; Alakangas, Lena; Öhlander, Björn

    2014-01-01

    Copper and iron isotope fractionation by plant uptake and translocation is a matter of current research. As a way to apply the use of Cu and Fe stable isotopes in the phytoremediation of contaminated sites, the effects of organic amendment and microbial addition in a mine-spoiled soil seeded with Helianthus annuus in pot experiments and field trials were studied. Results show that the addition of a microbial consortium of ten bacterial strains has an influence on Cu and Fe isotope fractionation by the uptake and translocation in pot experiments, with an increase in average of 0.99 ‰ for the δ(65)Cu values from soil to roots. In the field trial, the amendment with the addition of bacteria and mycorrhiza as single and double inoculation enriches the leaves in (65)Cu compared to the soil. As a result of the same trial, the δ(56)Fe values in the leaves are lower than those from the bulk soil, although some differences are seen according to the amendment used. Siderophores, possibly released by the bacterial consortium, can be responsible for this change in the Cu and Fe fractionation. The overall isotopic fractionation trend for Cu and Fe does not vary for pot and field experiments with or without bacteria. However, variations in specific metabolic pathways related to metal-organic complexation and weathering can modify particular isotopic signatures.

  6. Direct characterization of photoinduced lattice dynamics in BaFe 2As 2

    DOE PAGES

    Gerber, S.; Kim, K. W.; Zhang, Y.; ...

    2015-06-08

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe 2As 2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent latticemore » dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.« less

  7. Direct characterization of photoinduced lattice dynamics in BaFe2As2

    PubMed Central

    Gerber, S.; Kim, K. W.; Zhang, Y.; Zhu, D.; Plonka, N.; Yi, M.; Dakovski, G. L.; Leuenberger, D.; Kirchmann, P.S.; Moore, R. G.; Chollet, M.; Glownia, J. M.; Feng, Y.; Lee, J.-S.; Mehta, A.; Kemper, A. F.; Wolf, T.; Chuang, Y.-D.; Hussain, Z.; Kao, C.-C.; Moritz, B.; Shen, Z.-X.; Devereaux, T. P.; Lee, W.-S.

    2015-01-01

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe–As–Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands. PMID:26051704

  8. Ce-Fe-modified zeolite-rich tuff to remove Ba(2+)-like (226)Ra(2+) in presence of As(V) and F(-) from aqueous media as pollutants of drinking water.

    PubMed

    Olguín, María Teresa; Deng, Shuguang

    2016-01-25

    The sorption behavior of the Ba(2+)-like (226)Ra(2+) in the presence of H2AsO4(-)/HAsO4(2-) and F(-) from aqueous media using Ce-Fe-modified zeolite-rich tuff was investigated in this work. The Na-modified zeolite-rich tuff was also considered for comparison purposes. The zeolite-rich tuff collected from Wyoming (US) was in contact with NaCl and CeCl3-FeCl3 solutions to obtain the Na- and Ce-Fe-modified zeolite-rich tuffs (ZUSNa and ZUSCeFe). These zeolites were characterized by scanning electron microscopy and X-ray diffraction. The BET-specific surface and the points of zero charge were determined as well as the content of Na, Ce and Fe by neutron activation analysis. The textural characteristics and the point of zero charge were changed by the presence of Ce and Fe species in the zeolitic network. A linear model described the Ba(2+)-like (226)Ra(2+) sorption isotherms and the distribution coefficients (Kd) varied with respect to the metallic species present in the zeolitic material. The As(V) oxianionic chemical species and F(-) affected this parameter when the Ba(2+)-like (226)Ra(2+)-As(V)-F(-) solutions were in contact with ZUSCeFe. The H2AsO4(-)/HAsO4(2-) and F(-) were adsorbed by ZUSCeFe in the same amount, independent of the concentration of Ba(2+)-like (226)Ra(2+) in the initial solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. High-resolution, hard x-ray photoemission investigation of BaFe2As2 : Moderate influence of the surface and evidence for a low degree of Fe3d-As4p hybridization of electronic states near the Fermi energy

    NASA Astrophysics Data System (ADS)

    de Jong, S.; Huang, Y.; Huisman, R.; Massee, F.; Thirupathaiah, S.; Gorgoi, M.; Schaefers, F.; Follath, R.; Goedkoop, J. B.; Golden, M. S.

    2009-03-01

    Photoemission data taken with hard x-ray radiation on cleaved single crystals of the barium parent compound of the MFe2As2 pnictide high-temperature superconductor family are presented. Making use of the increased bulk sensitivity upon hard x-ray excitation, and comparing the results to data taken at conventional vacuum ultraviolet photoemission excitation energies, it is shown that the BaFe2As2 cleavage surface provides an electrostatic environment that is slightly different to the bulk, most likely in the form of a modified Madelung potential. However, as the data argue against a different surface doping level, and the surface-related features in the spectra are by no means as dominating as seen in systems such as YBa2Cu3Ox , we can conclude that the itinerant, near- EF electronic states are almost unaffected by the existence of the cleavage surface. Furthermore, exploiting the strong changes in photoionization cross section between the Fe and As states across the wide photon energy range employed, it is shown that the degree of energetic overlap between the iron 3d and arsenic 4p valence bands is particularly small at the Fermi level, which can only mean a very low degree of hybridization between the Fe3d and As4p states near and at EF . Consequently, this means that the itinerancy of the charge carriers in this group of materials involves mainly the Fe3d-Fe3d overlap integrals with at best a minor role for the Fe3d-As4p hopping parameters and that the states which support superconductivity upon doping are essentially of Fe3d character.

  10. Composition and phase analysis of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) by using general structure analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id

    2016-03-11

    Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less

  11. L10 FePtCu bit patterned media

    NASA Astrophysics Data System (ADS)

    Brombacher, C.; Grobis, M.; Lee, J.; Fidler, J.; Eriksson, T.; Werner, T.; Hellwig, O.; Albrecht, M.

    2012-01-01

    Chemically ordered 5 nm-thick L10 FePtCu films with strong perpendicular magnetic anisotropy were post-patterned by nanoimprint lithography into a dot array over a 3 mm-wide circumferential band on a 3 inch Si wafer. The dots with a diameter of 30 nm and a center-to-center pitch of 60 nm appear as single domain and reveal an enhanced switching field as compared to the continuous film. We demonstrate successful recording on a single track using shingled writing with a conventional hard disk drive write/read head.

  12. Characterization of Y1-xCaxBa2Cu4O8 (x=0.0˜ 0.1) with Double Cu-O Chains by Raman Spectra

    NASA Astrophysics Data System (ADS)

    Kodama, Yasuharu; Tanemura, Sakae; Ikeda, Teruki

    1991-08-01

    Raman spectra of Y1-xCaxBa2Cu4O8 (x=0.0, 0.02, 0.05 and 0.1) ceramic samples synthesized under high oxygen pressure were investigated. Seven clear peaks assigned to Ag modes were observed for the sample with x=0. With increasing x, the peaks at 238 cm-1, 332 cm-1, 430 cm-1 and 590 cm-1 were broadened. The origin of the broadening of the peaks at 238 cm-1 and 590 cm-1 is considered to be the destruction of the double Cu-O chains due to the substitution of Ca for Y.

  13. Observation of grain size effect on multiferroism and magnetoelectric coupling of Na0.5Bi0.5TiO3 - BaFe12O19 novel composite system

    NASA Astrophysics Data System (ADS)

    Pattanayak, Ranjit; Kuila, Sourav; Raut, Subhajit; Ghosh, Surya Prakash; Dhal, Satyanarayan; Panigrahi, Simanchalo

    2017-12-01

    Four novel polycrystalline magnetoelectric composite systems: S1, S2, S3 and S4 having composition [90 wt% Na0.5Bi0.5TiO3 (NBT) - 10 wt% BaFe12O19 (BaM)] considering the variation of grain size of both the phases [NBT(Lg)-BaM(Lg)-[S1], NBT(Lg)-BaM(Sg)-[S2], NBT(Sg)-BaM(Lg)-[S3] and NBT(Sg)-BaM(Sg)-[S4

  14. Relaxor-like ferroelectric behaviour favoured by short-range B-site ordering in 10% Ba{sup 2+} substituted MgFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chithra Lekha, P.; Ramesh, G.; Revathi, V.

    2014-05-01

    Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin ofmore » polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.« less

  15. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.

    PubMed

    Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa

    2016-02-14

    We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.

  16. The 1201 superconductors Hg1-y(VO4)y(Ba, Sr)2CuO4-2y+δ: evidence for VO4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Malo, S.; Hervieu, M.; Maignan, A.; Knížek, K.; Raveau, B.; Michel, C.

    1997-02-01

    A series of mercury based cuprates with nominal composition Hg1-yV(y)Ba2-xSrxCuO4+2y+δ has been prepared for x = 0, 0.25, 0.5, 0.75, 1 and 1.25. The actual solid solution limit from the EDS measurement is x = 1.1, y ranges from 0.2 to 0.35. The single crystal study coupled with high resolution electron microscopy shows for the first time the presence of VO4 tetrahedra replacing partly the mercury atoms according to the formulation Hg1-y(VO4)y(Ba,Sr)2 CuO4-2y+δ. The role of vanadium for the stabilisation of the structure and as a doping agent in the superconducting properties is discussed.

  17. Structural properties of ultrafine Ba-hexaferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makovec, Darko, E-mail: Darko.Makovec@ijs.si; Primc, Darinka; Sturm, Saso

    2012-12-15

    Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was studied using X-ray diffractometry (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption fine structure (XAFS), and Moessbauer spectroscopy (MS), to be compared to the structure of larger nanoparticles and the bulk. The nanoparticles were synthesized with hydrothermal treatment of an appropriate suspension of Ba and Fe hydroxides in the presence of a large excess of OH{sup -}. The ultrafine nanoparticles were formed in a discoid shape, {approx}10 nm wide and only {approx}3 nm thick, comparable to the size of the hexagonal unit cell in the c-direction.more » The HRTEM image analysis confirmed the hexaferrite structure, whereas EDXS showed the composition matching the BaFe{sub 12}O{sub 19} formula. XAFS and MS analyses showed considerable disorder of the structure, most probably responsible for the low magnetization. - Graphical abstract: Left: HREM image of an ultrafine Ba-hexaferrite nanoparticle (inset: TEM image of the nanoparticles); Right: the experimental HRTEM image is compared with calculated image and corresponding atomic model. Highlights: Black-Right-Pointing-Pointer Crystal structure of ultrafine Ba-hexaferrite (BaFe{sub 12}O{sub 19}) nanoparticles was compared to the structure of the bulk. Black-Right-Pointing-Pointer Thickness the discoid nanoparticles was comparable to the size of the hexagonal unit cell in the c-direction. Black-Right-Pointing-Pointer Considerable disorder of the nanoparticles' structure is most probably responsible for their low magnetization.« less

  18. X-ray Magnetic Linear Dichroism of Fe-Ni Alloys on Cu(111)

    DTIC Science & Technology

    2001-04-01

    the study of magnetism and magnetic materials. This control allows for the study of the relationship between magnetic and structural properties for...effect in NiFe /Cu systems that are relevant to magnetic disk drive heads. Using core-level photoelectron spectroscopies on magnetized samples allows

  19. The impact of wine components on fractionation of Cu and Fe in model wine systems: Macromolecules, phenolic and sulfur compounds.

    PubMed

    Kontoudakis, Nikolaos; Smith, Mark; Guo, Anque; Smith, Paul A; Scollary, Geoffrey R; Wilkes, Eric N; Clark, Andrew C

    2017-08-01

    A variety of techniques have been developed with the ability to measure different forms of metals in wine with the ultimate aim of providing a more accurate indicator of metal induced spoilage of wine. This study was conducted in order to identify which wine components influence the measurement of Cu and Fe in their fractionated and/or electrochemically active forms. The measurement techniques involved detection of labile Cu by stripping potentiometry and fractionation of Cu and Fe by sequential solid phase extraction, with detection by inductively coupled plasma-optical emission spectroscopy. The wine components assessed included those extracted from wine (red wine tannin, white wine protein, white wine polysaccharide, red wine polyphenol, white wine polyphenol), and commercially available monomeric compounds, including phenolic compounds and sulfur-containing compounds. For Cu, only hydrogen sulfide, which is known to induce the formation of Cu(I) sulfide, showed any appreciable influence on the fractionation and electrochemical detection of Cu. This form of Cu was also identified as the major component of red and white wines. For Fe, the fractionation was different for red versus white wine, and influenced significantly by extracted red wine polyphenol, (-)-epicatechin, gallic acid and tartaric acid. The wine components showed more influence on Fe at pH4.00 compared to pH3.25. These results enable a targeted use of these techniques in the assessment of metal-induced spoilage of wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Correlation of x-ray diffraction and Mössbauer effect measurements with magnetic properties of heat-treated Cu80Co15Fe5 ribbons

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Rubinstein, M.; Das, B. N.; Koon, N. C.

    1994-05-01

    X-ray diffraction (XRD) and Mössbauer Effect (ME) measurements were performed on heat-treated Cu80Co15Fe5 melt-spun ribbons in an attempt to understand the trends in magnetic properties with heat treatment. ME measurements indicate that the majority of Fe atoms (86%) occupy sites in ferromagnetic FCC CoFe clusters after the initial quench. A heat treatment at 900 °C acts to complete the chemical separation of Fe from the Cu matrix. The presence of Co in the Cu matrix, even after high temperature anneals, provides a paramagnetic component that prohibits saturation even at high fields.