Sample records for ba sr phosphors

  1. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    PubMed

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  2. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    PubMed Central

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  3. Luminescence Properties of Self-Activated Mm(VO4)2 (M = Mg, Ca, Sr, and Ba) Phosphors Synthesized by Solid-State Reaction Method.

    PubMed

    Min, Xin; Huang, Zhaohui; Fang, Minghao; Liu, Yan'gai; Tang, Chao; Wu, Xiaowen

    2016-04-01

    In this paper, M3(VO4)2 (M = Mg, Ca, Sr, and Ba) self-activated phosphors were prepared by a solid-state reaction method at 1,000 °C for 5 h. The phase formation and micrographs were analyzed by X-ray diffraction and scanning electron microscopy. The Ca3(VO4)2 phosphor does not show any emission peaks under excitation with ultraviolet (UV) light. However, the M3(VO4)2 (M = Mg, Sr, and Ba) samples are effectively excited by UV light chips ranging from 200 nm to 400 nm and exhibit broad emission bands due to the charge transfer from the oxygen 2p orbital to the vacant 3d orbital of the vanadium in the VO4. The color of these phosphors changes from yellow to light blue via blue-green with increasing ionic radius from Mg to Sr to Ba. The luminescence lifetimes and quantum yield decrease with the increasing unit cell volume and V-V distance, in the order of Mg3(VO4)2 to Sr3(VO4)2 to Ba3(VO4)2. The emission intensity decreases with the increase of temperatures, but presents no color shift. This confirms that these self-activated M3(VO4)2 phosphors can be suggested as candidates of the single-phase phosphors for light using UV light emitting diodes (LEDs).

  4. Synthesis and effect of Sr substitution on fluorescence of new Ba 2-xSr xZnS 3: Eu 2+ red phosphor: Considerable enhancement of emission intensity

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Woo; Petrykin, Valery; Kakihana, Masato

    2009-01-01

    A series of 0.5 mol% Eu 2+-activated Ba 2-xSr xZnS 3 phosphor materials were synthesized using precursors prepared by the polymerizable complex method and their fluorescent properties were studied for the first time. It was found that Sr substitution for Ba leads to the considerable improvement of internal quantum efficiency and emission intensity in these materials compared to Ba 2ZnS 3, while emission peak wavelength exhibits a blue shift from 680 to 660 nm. Rietveld refinement of crystal structure of sample with x=0.7 suggests that Sr ions preferentially occupy one of two Ba sites in this compound. Such a structural re-arrangement might be responsible for the observed quantum efficiency dependence on Sr concentration.

  5. Structure, luminescence and thermal quenching properties of Eu doped Sr{sub 2−x}Ba{sub x}Si{sub 5}N{sub 8} red phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.H.; Chen, L.; Zhou, X.F.

    Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasingmore » x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.« less

  6. Photoluminescence and cathodoluminescence properties of Eu{sup 3+} ions activated AMoO{sub 4} (A = Mg, Ca, Sr, Ba) phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Peng; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2015-10-15

    Highlights: • Under 393 nm excitation, strong red emission located at 615 nm was observed in all the samples. • The Eu{sup 3+}-activated CaMoO{sub 4} phosphor exhibited the strongest PL properties. • The CIE chromaticity coordinate of Eu{sup 3+}-activated CaMoO{sub 4} phosphor was (0.647,0.352). • The color purity of Eu{sup 3+}-activated CaMoO{sub 4} phosphor was 92.8%. • Strong CL properties were observed in the Eu{sup 3+}-activated CaMoO{sub 4} phosphor. - Abstract: Eu{sup 3+}-activated AMoO{sub 4} (A = Mg, Ca, Sr, Ba) phosphors were synthesized by a solid-state reaction method. Photoluminescence and cathodoluminescence (CL) spectra as well as X-ray diffraction patternsmore » were measured to characterize the fabricated samples. Under 393 nm excitation, strong red emissions located at ∼615 nm corresponding to the {sup 5}D{sub 0} → {sup 7}F{sub 2} transition of Eu{sup 3+} ions were observed in all the samples. Compared with other Eu{sup 3+} ions activated AMoO{sub 4} (A = Mg, Sr, Ba) phosphors, Eu{sup 3+}-activated CaMoO{sub 4} phosphor exhibited the strongest red emission intensity with better Commission Internationale de L’Eclairage chromaticity coordinate and higher color purity. Furthermore, the CL results indicated that the Eu{sup 3+}-activated CaMoO{sub 4} phosphor had excellent luminescence properties.« less

  7. White Light Emitting MZr4(PO4)6:Dy3+ (M = Ca, Sr, Ba) Phosphors for WLEDs.

    PubMed

    Nair, Govind B; Dhoble, S J

    2017-03-01

    A series of MZr 4 (PO 4 ) 6 :Dy 3+ (M = Ca, Sr, Ba) phosphors were prepared by the solid state diffusion method. Confirmation of the phase formation and morphological studies were performed by X-ray powder diffraction (XRD) measurements and scanning electron microscopy, respectively. Photoluminescence (PL) properties of these phosphors were thoroughly analyzed and the characteristic emissions of Dy 3+ ions were found to arise from them at an excitation wavelength of 351 nm. The PL emission spectra of the three phosphors were analyzed and compared. The CIE chromaticity coordinates assured that the phosphors produced cool white-light emission and hence, they are potential candidates for UV excited white-LEDs (WLEDs). Graphical Abstract ᅟ.

  8. Luminescence in Ba2 Sr2 Al2 O7 :RE (RE = Tb(3) (+) ,Eu(3) (+) and Dy(3) (+) ) novel aluminate phosphors.

    PubMed

    Pardhi, S A; Panse, V R; Dhoble, S J

    2016-09-01

    The luminescence of novel rare earth (Tb(3) (+) , Eu(3) (+) and Dy(3) (+) )-activated Ba2 Sr2 Al2 O7 phosphors for solid-state lighting is presented. The aluminate phosphors were synthesized using a one-step combustion method. X-Ray diffraction, scanning electron microscopy and photoluminescence characterizations were performed to understand the mechanism of excitation and the corresponding emission in the as-prepared phosphor, as characterized the phase purity and microstructure. Improvements in the luminescence properties of the phosphors with rare earth concentration were observed. The phosphor hue could be tuned from blue, green and red by proper selection of rare earth ions in typical concentrations. Effective absorption in the near-ultraviolet region was observed, which makes the phosphor a potential candidate for ultraviolet light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.

    2018-05-01

    The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.

  10. Photoluminescence of A- and B-site Eu{sup 3+}-substituted (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sletnes, M.; Lindgren, M.; Valmalette, J.C.

    The photoluminescence of two series of A- and B-site Eu{sup 3+} substituted (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6} double perovskite phosphor materials, (Sr{sub x}Ba{sub 1−x}){sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub y}Mo{sub 1−y}O{sub 6} and (Sr{sub x}Ba{sub 1−x}){sub 2}Ca{sub 0.96}Eu{sub 0.02}Li{sub 0.02}W{sub y}Mo{sub 1−y}O{sub 6} (x and y=0, 0.25, 0.50, 0.75, and 1), were studied systematically as a function of stoichiometry and crystal structure. The Eu{sup 3+} lattice sites controlled by co-doping with either K or Li were confirmed by Raman spectroscopy. The variation in integrated emission intensity and emission colour over the experimental matrix was examined using statistical tools, and themore » observed trends were rationalized based on the physical and electronic structure of the phosphors. Phosphors with Eu on B-site with maximum Sr content had remarkably higher emission intensities than all other materials, but the emission was more orange than red due to domination of the {sup 5}D{sub 0}–{sup 7}F{sub 1} (595 nm) transition of Eu{sup 3+}. The relative intensities of the {sup 5}D{sub 0}–{sup 7}F{sub 2} (615 nm) and {sup 5}D{sub 0}–{sup 7}F{sub 1} transitions of Eu{sup 3+}, and thus the red-shift of the emission, decreased linearly with increasing Sr content in the A-site Eu-substituted phosphors, and reached a maximum for Sr{sub 1.96}Eu{sub 0.02}K{sub 0.02}CaW{sub 0.25}Mo{sub 0.75}O{sub 6}. A maximum external quantum efficiency of 17% was obtained for the phosphor Sr{sub 2}Ca{sub 0.7}Eu{sub 0.15}Li{sub 0.15}W{sub 0.5}Mo{sub 0.5}O{sub 6} with Eu on B-site. - Highlights: • Systematic study of the photoluminescence of Eu{sup 3+}-doped (Sr{sub x}Ba{sub 1−x}){sub 2}CaW{sub y}Mo{sub 1−y}O{sub 6}. • The Eu{sup 3+} lattice sites were confirmed by Raman spectroscopy. • A large parameter space was investigated using statistical tools. • A maximum external QE of 17% was obtained for Sr{sub 2}Ca{sub 0.7}Eu{sub 0

  11. Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in Sr xBa 2-xSiO 4:Eu 2+ Orthosilicate Phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denault, Kristin A.; Brgoch, Jakoah; Gaultois, Michael W.

    The orthosilicate phosphors Sr xBa 2–xSiO 4:Eu 2+ have now been known for over four decades and have found extensive recent use in solid-state white lighting. It is well-recognized in the literature and in practice that intermediate compositions in the solid-solutions between the orthosilicates Sr 2SiO 4 and Ba 2SiO 4 yield the best phosphor hosts when the thermal stability of luminescence is considered. We employ a combination of synchrotron X-ray diffraction, total scattering measurements, density functional theory calculations, and low-temperature heat capacity measurements, in conjunction with detailed temperature- and time-resolved studies of luminescence properties to understand the origins ofmore » the improved luminescence properties. We observe that in the intermediate compositions, the two cation sites in the crystal structure are optimally bonded as determined from bond valence sum calculations. Optimal bonding results in a more rigid lattice, as established by the intermediate compositions possessing the highest Debye temperature, which are determined experimentally from low-temperature heat capacity measurements. Greater rigidity in turn results in the highest luminescence efficiency for intermediate compositions at elevated temperatures.« less

  12. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    PubMed

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  13. Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations.

    PubMed

    Lee, Jin-Woong; Singh, Satendra Pal; Kim, Minseuk; Hong, Sung Un; Park, Woon Bae; Sohn, Kee-Sun

    2017-08-21

    A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors in the Eu 2+ -doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors.

  14. Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln=Y, La) phosphors for applications in white LEDs with excellent color rendering index.

    PubMed

    Huang, Chien-Hao; Chen, Teng-Ming

    2011-06-20

    Eu(2+)-activated Sr(8)MgY(PO(4))(7) and Sr(8)MgLa(PO(4))(7) yellow-emitting phosphors were successfully synthesized by solid-state reactions for applications in excellent color rendering index white light-emitting diodes (LEDs). The excitation and reflectance spectra of these phosphors show broad band excitation and absorption in the 250-450 nm near-ultraviolet region, which is ascribed to the 4f(7) → 4f(6)5d(1) transitions of Eu(2+). Therefore, these phosphors meet the application requirements for near-UV LED chips. Upon excitation at 400 nm, the Sr(8)MgY(PO(4))(7):Eu(2+) and Sr(8)MgLa(PO(4))(7):Eu(2+) phosphors exhibit strong yellow emissions centered at 518, 610, and 611 nm with better thermal stability than (Ba,Sr)(2)SiO(4) (570 nm) commodity phosphors. The composition-optimized concentrations of Eu(2+) in Sr(8)MgLa(PO(4))(7):Eu(2+) and Sr(8)MgY(PO(4))(7):Eu(2+) phosphors were determined to be 0.01 and 0.03 mol, respectively. A warm white-light near-UV LED was fabricated using a near-UV 400 nm chip pumped by a phosphor blend of blue-emitting BaMgAl(10)O(17):Eu(2+) and yellow-emitting Sr(8)MgY(PO(4))(7):0.01Eu(2+) or Sr(8)MgLa(PO(4))(7):0.03Eu(2+), driven by a 350 mA current. The Sr(8)MgY(PO(4))(7):0.01Eu(2+) and Sr(8)MgLa(PO(4))(7):0.03Eu(2+) containing LEDs produced a white light with Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.348, 0.357) and (0.365, 0.328), warm correlated color temperatures of 4705 and 4100 K, and excellent color rendering indices of 95.375 and 91.75, respectively. © 2011 American Chemical Society

  15. Luminescence properties of Eu2+ in M2MgSi2O7 (M=Ca, Sr, and Ba) phosphors

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y.; Kang, S.

    2012-03-01

    The photoluminescence properties of alkali-earth magnesium silicates (M2MgSi2O7, M=Ca, Sr, and Ba) doped with Eu2+ were investigated. Solid solutions of Ba x Sr2- x Si2O7, Ca2MgSi2O7, and Sr2MgSi2O7 were prepared. Ba x Sr2- x Si2O7 retained a tetragonal crystal structure similar to the structure of the other compounds up to a stoichiometry of x=1.6, which enabled a systematic study of the common structure. Monoclinic Ba2MgSi2O7 was prepared, and the luminescence properties were compared with those of other samples. The emission and excitation spectra of tetragonal M2MgSi2O7 (M=Ca, Sr, and Ba) changed as a function of the covalency, site symmetry, and crystal field strength. The luminescence properties showed excellent agreement with theoretical predictions based on these factors. The Stokes shift differentiated the emission behaviors of the tetragonal and monoclinic structures.

  16. Studies on up/down-conversion emission of Yb3+ sensitized Er3+ doped MLa2(MoO4)4 (M = Ba, Sr and Ca) phosphors for thermometry and optical heating

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-01-01

    The photoluminescence properties of Yb3+ sensitized Er3+ doped BaLa2(MoO4)4, SrLa2(MoO4)4 and CaLa2(MoO4)4 phosphors synthesized via hydrothermal method are investigated upon 980 nm and 380 nm light excitations. The phase, purity, and morphology of the samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and Field emission scanning electron microscope. Among these three phosphors, the strongest emission intensity is seen in BaLa2(MoO4)4: Er3+/Yb3+ through both the 980 nm and 380 nm light excitations and is explained by the lifetime measurement of 4S3/2 level of Er3+ ion. Temperature sensing measurements were performed by using the fluorescence intensity ratio (FIR) of green emission bands originated from the two thermally coupled 2H11/2 → 4I15/2 and 4S3//2 → 4I15/2 transitions of Er3+ and maximum temperature sensitivity of 1.05% K-1 at 305 K is found for BLa2(MoO4)4: Er3+/Yb3+ sample. Moreover, the laser induced heating is measured in the samples and the maximum temperature of the sample particles is calculated as 422 K at 76 W/cm2 in BaLa2(MoO4)4: Er3+/Yb3+, pointing out large amount of heat generation in such phosphors. The BaLa2(MoO4)4: Er3+/Yb3+ also exhibits higher photothermal conversion efficiency of 46.7%.

  17. Long-persistence blue phosphors

    NASA Technical Reports Server (NTRS)

    Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)

    2000-01-01

    This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  18. UV-emitting phosphors: synthesis, photoluminescence and applications

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Muthal, P. L.; Dhopte, S. M.; Kondawar, V. K.; Moharil, S. V.

    2004-02-01

    UV-emitting phosphors find uses in various applications, such as photocopying, phototherapy, sun tanning, etc. The phosphor requirements for these applications vary. Simple methods for preparing different UV-emitting phosphors are described. Novel syntheses for some borates (SrB4O7:Eu, CeMgB5O10:Gd, GdBO3:Pr, LaB3O6:Ce,Bi, LaB3O6:Gd,Bi, LaB3O6:Ce, Ba2B5O9Cl:Eu), a silicate (Ba2SiO5:Pb), phosphates (Sr2-xMgxP2O7:Eu) and a sulphate (CaSO4:Eu) are reported. Photoluminescence spectra of the phosphors so prepared are presented and discussed in the context of applications like phototherapy and photocopying lamps, photoluminescent liquid crystal displays, radiophotoluminescence, etc.

  19. Structure, luminescence and thermal quenching properties of Eu doped Sr2-xBaxSi5N8 red phosphors

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Chen, L.; Zhou, X. F.; Liu, R. H.; Zhuang, W. D.

    2017-02-01

    Eu2+ doped Sr2-xBaxSi5N8 phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu2+ doped Sr2-xBaxSi5N8 is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs).

  20. (Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5)TiO3 thin films prepared by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Yamamichi, Shintaro; Yabuta, Hisato; Sakuma, Toshiyuki; Miyasaka, Yoichi

    1994-03-01

    (Ba0.5Sr0.5)TiO3 thin films were prepared by ion beam sputtering from powder targets with (Ba+Sr)/Ti ratios ranging from 0.80 to 1.50. All of the perovskite (Ba,Sr)TiO3 films were single phase except for the film with a (Ba+Sr)/Ti ratio of 1.41. The dielectric constant values notably depended on the (Ba+Sr)/Ti ratio for films thicker than 70 nm. The highest dielectric constant of 580 was achieved for the 5% (Ba+Sr) rich film. This (Ba+Sr)/Ti ratio dependence was diminished by the thickness dependence for thinner films. The grain sizes for the 9% (Ba+Sr) rich film and for the 6% (Ba+Sr) poor film ranged from 70 to 100 nm and from 30 to 60 nm, respectively. This grain size difference could explain why slightly A-site rich (Ba,Sr)TiO3 films have a larger dielectric constant than A-site poor films.

  1. Synthesis, structure, and luminescence properties of SrSiAl2O3N2:Eu(2+) phosphors for light-emitting devices and field emission displays.

    PubMed

    Wang, Xicheng; Zhao, Zhengyan; Wu, Quansheng; Li, Yanyan; Wang, Chuang; Mao, Aijun; Wang, Yuhua

    2015-06-28

    A series of SrSiAl2O3N2:Eu(2+) (0.005 ≤x≤ 0.05) phosphors were successfully synthesized through a pressureless, facile, and efficient solid state route. The crystal structure, band structure, and their photoluminescence and cathodoluminescence properties were investigated in detail. The phosphors exhibit rod shape morphology with a uniform Eu(2+) distribution. Under n-UV excitation the emission spectra shift from 477 to 497 nm with an increase of Eu(2+) concentration. The concentration quenching mechanism of Eu(2+) emission was dominated by the dipole-dipole interaction. The thermal stability is comparable to that of the commercial Ba2SiO4:Eu(2+) phosphor. The phosphor also exhibits high current saturation and high resistance under low voltage electron bombardment. All the results indicate that the SrSiAl2O3N2:Eu(2+) phosphors can be considered as candidates for application in both white LEDs and FEDs.

  2. Characterization and luminescence properties of Sr3Gd): Sm3+ orange-red phosphor

    NASA Astrophysics Data System (ADS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Sun, Yumei; Du, Haiyan

    2015-10-01

    Reddish-orange emitting phosphors, Sr3Gd): Sm3+, were successfully synthesized by a conventional solid-state reaction. The crystal structure of the phosphors was characterized by x-ray diffraction. The excitation spectra and emission spectra were utilized to characterize the luminescence properties of the as-prepared phosphors. The results show that the phosphor consisted of some sharp emission peaks of Sm3+ ions centered at 564, 600, 647, and 707 nm, respectively. The critical distance of Sr3Gd0.93): 0.07Sm3+ was calculated to be 19.18 Å and the lifetime value of the sample was 1.63 ms. The band gap of Sr3Gd) was estimated to be about 2.74 eV from the diffuse reflection spectrum. The optimum doping concentration is 7 mol. % and the quenching occurs via dipole-dipole interaction according to Dexter's theory. The Commission Internationale de L'Eclairage value of Sr3Gd): Sm3+ phosphors presented that it has high color purity. These results indicated that the Sr3Gd): Sm3+ may be a promising reddish-orange emitting phosphor for cost-effective near ultraviolet white light-emitting diodes.

  3. [Study on Hydrothermal Preparation and Luminescence Properties of Luminescent Material BaSrMg(PO₄)₂:Eu³⁺].

    PubMed

    Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa

    2016-02-01

    Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.

  4. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    NASA Astrophysics Data System (ADS)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  5. Luminescence properties of phosphate phosphor Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fu; Liu, Yufeng, E-mail: liuyufeng4@126.com; Tian, Xiaodong

    2015-05-15

    A series of reddish orange-emitting phosphate phosphors Ba{sub 3}Y{sub 1−x}(PO{sub 4}){sub 3}:xSm{sup 3+}(0.01≤x≤0.20) were synthesized by solid-state reaction. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of as-synthesized phosphors. The optimized phosphors Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} present several excitation bands from 300 to 500 nm, and exhibit intense reddish orange-emitting properties. The energy transfer type between Sm{sup 3+} ions was confirmed as d–d interaction by using Van Uitert model. The chromatic properties of the typical sample Ba{sub 3}Y(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor have been found to have chromaticity coordinates of (0.583, 0.405),more » which are located in reddish orange region under the excitation of 401 nm. These results indicated that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors have potential applications in the field of lighting and display due to their effective excitation in the near-ultraviolet range. - Graphical abstract: The color coordinates for 5 mol% Sm{sup 3+} doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphor were calculated to be (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. The peaks of Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor with the highest emission intensity at 600 nm are broader than those of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}O{sub 2}S:Eu{sup 3+} phosphors. All these characteristics suggest that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors are suitable for near-UV (370–410 nm) excitation and can be applicable to near UV-based WLEDs. ▪ - Highlights: • Different concentration Sm{sup 3+}-doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphors were fabricated by solid state method. • The optimized phosphors present the several excitation bands from 300 to 500 nm. • The Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} shows bright reddish

  6. Synthesis and luminescence characterization of a new yellowish-orange phosphor: Ba2 B10 O17 :Sm3.

    PubMed

    Li, Jiangong; Yan, Huifang; Yan, Fengmei

    2017-02-01

    A new yellowish-orange emitting phosphor, Ba 2 B 10 O 17 :Sm 3 + for use as a white light-emitting diode (W-LED) was synthesized by a solid-state reaction method. The X-ray diffraction results indicated that a pure Ba 2 B 10 O 17 material was obtained. As a potential yellowish-orange luminescent material for W-LEDs, the Ba 2 B 10 O 17 :Sm 3 + phosphor could be excited effectively by near-ultraviolet (n-UV) light and exhibited yellowish-orange emission centered at 560 nm corresponding to the 4 G 5/2  →  6 H 5/2 transition of Sm 3 + ions. The optimum concentration of Sm 3 + ions in Ba 2 B 10 O 17 , critical transfer distance (Ra) and concentration quenching mechanism of the presented phosphor were investigated. Moreover, CIE chromaticity coordinates and color purity performance of the Ba 2 B 10 O 17 :Sm 3 + phosphor were also discussed. The present work suggests that the Ba 2 B 10 O 17 :Sm 3 + phosphor has potential as a type of yellowish-orange emitting phosphor. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Synthesis, energy transfer and tunable emission properties of SrSb2O6:Eu3 +, Bi3 + phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Fu, Ting; Peng, Dedong; Cao, Chunyan; Ruan, Wen; Yu, Xiaoguang

    2016-12-01

    Host SrSb2O6, SrSb2O6:Bi3 +, SrSb2O6:Eu3 +, and SrSb2O6:Eu3 +, Bi3 + phosphors are synthesized by solid state reaction method in air. Host SrSb2O6 with excitation 254 nm shows weak green-yellow emission in the range of 320-780 nm due to Sb5 + → O2- transition. SrSb2O6:Bi3 + phosphor with excitation 365 nm emits green light within the range 400-650 nm owing to the 3P1 → 1S0 transition of Bi3 + ion. SrSb2O6:Eu3 + phosphor with excitation 254 nm exhibits a systematically varied hue from green to orange-red light by increasing Eu3 + concentration from 0 to 7 mol%, and that with excitation 394 nm only shows orange-red light. The optimal Eu3 + concentration is 4 mol% in SrSb2O6:Eu3 + phosphor. SrSb2O6:Eu3 +, Bi3 + phosphor with excitation 254 and 394 nm emits orange-red light. Emission intensity of SrSb2O6:Eu3 + phosphor may be enhanced > 2 times by co-doping Bi3 + ion because of the fluxing agent and energy transfer roles of Bi3 + ion in SrSb2O6:Eu3 +, Bi3 + phosphor. The luminous mechanism of SrSb2O6:Eu3 +, Bi3 + phosphor is analyzed and explained by the simplified energy level diagrams of Sb2O62 - group, Bi3 + and Eu3 + ions, and energy transfer processes between them.

  8. Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.

    PubMed

    Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong

    2014-01-03

    Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Design, synthesis and luminescence properties of Ba2 YB2 O6 Cl- and Ba2 YB2 O6 F-based phosphors.

    PubMed

    Chen, Wanping; Yang, Xin; Liu, Yan; Dai, Xiaoyan

    2015-05-01

    Using a high-temperature solid-state reaction, the chlorine in Ba2 YB2 O6 Cl is gradually replaced by F, and a new compound with the nominal chemical formula Ba2 YB2 O6 F and two phosphors doped with Ce(3+) and Eu(3+) , respectively, are obtained. X-Ray diffraction and photoluminescence spectroscopy are used to characterize the as-synthesized samples. The as-synthesized Ba2 YB2 O6 Cl exhibits bright blue emission in the spectral range ~ 330-410 nm with a maximum around 363 nm under X-ray or UV excitation. Ba2 YB2 O6 F:0.01Ce(3+) exhibits blue emission in the range ~ 340-570 nm with a maximum around 383 nm. Ba2 YB2 O6 F:0.01Eu(3+) exhibits a predominantly (5) D0 -(7)  F2 emission (~610 nm) and the relative intensities of the (5) D0 -(7)  F0,1,2 emissions are tunable under different wavelength UV excitation. The luminescence behaviors of the two phosphors are explained simply in terms of the host composition and site occupancy probability of Ce(3+) and Eu(3+) , respectively. The results indicate that these phosphors have potential application as a blue phosphor or as a red phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  10. New observations on the pressure dependence of luminescence from Eu2+-doped MF2 (M = Ca, Sr, Ba) fluorides.

    PubMed

    Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua

    2008-05-29

    The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.

  11. Superconductivity in the Sn-Ba-Sr-Y-Cu-O system

    NASA Technical Reports Server (NTRS)

    Aleksandrov, K. S.; Khrustalev, B. P.; Krivomazov, S. N.; Petrov, M. I.; Vasilyev, A. D.; Zwegintsev, S. A.

    1991-01-01

    After the discovery of high-T(sub c) superconductivity in the La-Ba-Cu-O compound, several families of superconducting oxides were synthesized. Here, researchers report the results of the search for superconductivity in the compounds based on tin which has a lone electron pair like Bi, Tl, and Pb. The following compounds were synthesized: Sn1Ba1Sr1Cu3O(sub x), Sn1Ba1Ca1Cu3O(sub x), Sn1Ba1Mg1Cu3O(sub x), Sn1Sr1Ca1Cu3O(sub x), Sn1Sr1Mg1Cu3O(sub x), and Sn1Ca1Mg1Cu3O(sub x). The initial components were oxides and carbonates of the appropriate elements. A standard firing-grinding procedure was used. Final heating was carried out at 960 C during 12 hours. Then the samples were cooled inside the furnace. All the synthesis cycles were carried out in air atmosphere. Among the synthesized compounds only Sn1Ba1Sr1Cu3O(sub x) showed remarkable conductivity. Other compounds were practically dielectrics. Presence of a possible superconductivity in Sn1Ba1Sr1Cu3O(sub x) was defined by using the Meissner effect. At low temperature a deviation from paramagnetic behavior is observed. The hysteresis loops obtained at lower temperature undoubtly testify to the presence of a superconductive phase in the sample. However, the part of the superconductive phase in the Sn1Ba1Sr1Cu3O(sub x) ceramic turned out to be small, less than 2 percent, which agrees with the estimation from magnetic data. In order to increase the content of the superconductive phase, two-valent cations Ba and Sr were partially substituted by univalent (K) and three-valent ones (Y).

  12. Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2018-04-01

    BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.

  13. Structure and Luminescence Properties of New Green-Emitting Phosphor BaAl12O19:Tb

    NASA Astrophysics Data System (ADS)

    Xiao, Linjiu; He, Mingrui; Tian, Yanwen; Chen, Yongjie; Karaki, Tomoaki; Zhang, Liqing; Wang, Ning

    2007-09-01

    New green-emitting BaAl12O19:Tb phosphors were prepared by using the sol-gel method, and their structure and luminescence property were characterized by X-ray diffraction (XRD) analysis and fluorescence spectrometry. The results of XRD analysis revealed that a Ba1-xAl12O19:Tbx crystal structure was obtained at 1300 °C and Tb3+ ions substituted Ba2+ ions into the BaAl12O19 phase in the ion range x=0.005--0.05. The excitation peak of BaAl12O19:Tb was a wide band at approximately 240 nm, originating from the 4 f8-4 f75d1 transition of Tb3+. The emission spectrum consisted of eight emission peaks, originating from the 5D3-7Fi (i=6,5,4,3) and 5D4-7Fj ( j=6,5,4,3) transitions of Tb3+. The emission intensity of BaAl12O19:Tb phosphors at 543 nm was strongest when the phosphors were crystallized at 1300 °C for 2 h, and the content of Tb3+ was 2 mol %.

  14. Preparation and luminescence properties of orange-red Ba3Y(PO4)3:Sm3+ phosphors

    NASA Astrophysics Data System (ADS)

    Xu, Qiguang; Xu, Denghui; Sun, Jiayue

    2015-04-01

    Ba3Y(PO4)3:Sm3+ phosphors were prepared by a high temperature solid-state reaction in air. X-ray diffraction (XRD), photoluminescence spectra and temperature-dependent emission spectra were utilized to characterize the structure and luminescence properties of the as-prepared phosphor. The results show that the phosphor can be efficiently excited by ultraviolet light and emit a satisfactory orange-red performance, nicely, fitting in well with the widely used UV LED chip. Under 403 nm excitation, the 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, and 11/2) emissions of Sm3+ are obviously observed. The optimum doping concentration is 5 mol% and corresponding quenching behavior is ascribed to be electric dipole-dipole interaction according to Dexter's theory. The temperature dependent luminescence of Ba3Y(PO4)3:Sm3+ phosphor is also discussed, and the activation energy for thermal quenching is calculated as 0.34 eV. Furthermore, the chromaticity coordinates of Ba3Y(PO4)3:Sm3+ phosphor are calculated to be (0.5558, 0.4380) and the lifetime values of Ba3Y0.995(PO4)3:0.005Sm3+ was 2.45 ms.

  15. Synthesis and Luminescence Properties of Rare Earth Activated Phosphors for near UV-Emitting LEDs for Efficacious Generation of White Light

    NASA Astrophysics Data System (ADS)

    Han, Jinkyu

    Solid state white-emitting lighting devices based on LEDs outperform conventional light sources in terms of lifetime, durability, and luminous efficiency. Near UV-LEDs in combination with blue-, green-, and red-emitting phosphors show superior luminescence properties over the commercialized blue-emitting LED with yellow-emitting phosphors. However, phosphor development for near UV LEDs is a challenging problem and a vibrant area of research. In addition, using the proper synthesis technique is an important consideration in the development of phosphors. In this research, efficient blue-, green-yellow, red-emitting, and color tunable phosphors for near UV LEDs based white light are identified and prepared by various synthetic methods such as solid state reaction, sol-gel/Pechini, co-precipitation, hydrothermal, combustion and spray-pyrolysis. Blue-emittingLiCaPO4:Eu2+, Green/yellow-emitting (Ba,Sr)2SiO4:Eu2+, color tunable solid solutions of KSrPO4-(Ba,Ca)2SiO4:Eu 2+, and red-emitting (Ba,Sr,Ca)3MgSi2O 8:Eu2+,Mn2+ show excellent excitation profile in the near UV region, high quantum efficiency, and good thermal stability for use in solid state lighting applications. In addition, different synthesis methods are analyzed and compared, with the goal of obtaining ideal phosphors, which should have not only have high luminous output but also optimal particle size (˜150--400 nm) and spherical morphology. For Sr2SiO 4:Eu2+, the sol-gel method appears to be the best method. For Ba2SiO4:Eu2+, the co-precipitation method is be the best. Lastly, the fabrication of core/SiO2 shell particles alleviate surface defects and improve luminescence output and moisture stability of nano and micron sized phosphors. For nano-sized Y2O 3:Eu3+, Y2SiO5:Ce3+,Tb 3+, and (Ba,Sr)2SiO4, the luminescence emission intensity of the core/shell particles were significantly higher than that of bare cores. Additionally, the moisture stability is also improved by SiO 2 shells, the luminescence output of

  16. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Bao-gai; Ma, Qing-lan; School of Electronics and Information, Nantong University, Jiangsu 226019

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of themore » absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.« less

  17. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  18. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    PubMed

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  19. Sol–gel synthesis, structure and luminescence properties of Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuntong; Liu, Xiaohua, E-mail: xhliuxhliu@tom.com

    2015-04-15

    Graphical abstract: The phosphor powders of Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} were prepared by sol–gel method. The dependence of luminescence intensity on the Eu{sup 3+} concentration was investigated. - Highlights: • We synthesize Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors by the sol–gel method. • The effect of temperature on the crystallinity and morphology is investigated. • The phosphor presents an intense CT band in near UV range (370–410 nm). • The concentration quenching mechanism is the exchange interaction. - Abstract: Double-perovskite Ba{sub 2}Zn{sub 1−x}MoO{sub 6}:xEu{sup 3+} (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) orange–red emitting phosphors were synthesized by using themore » sol–gel method. The crystalline structure and photoluminescence properties of the phosphors were investigated. The X-ray diffraction (XRD) patterns indicate that the structure of matrix Ba{sub 2}ZnMoO{sub 6} is cubic double-perovskite with space group Fm-3m. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors present an intense broad charge transfer (CT) band absorption in near UV range (370–410 nm), which attributes to the charge transfer state of MoO{sub 6}, and performs orange–red emission of Eu{sup 3+} ({sup 5}D{sub 0} → {sup 7}F{sub 1} transition) at around 596 nm. A low concentration quenching occurs in Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} and the optimal doping concentration is about 6 mol%. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors are considered to be a promising orange–red emitting phosphor for near ultraviolet GaN-based white light emitting diode.« less

  20. Polyvinylpyrrolidone (PVP)-assisted solvothermal synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yannan; Ren, Xiaolei; Zhai, Xuefeng

    Graphical abstract: A simple solvothermal method for the synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors with the assistance of polyvinylpyrrolidone (PVP, K30). Highlights: Black-Right-Pointing-Pointer Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors could be easily prepared by a simple solvothermal method with the assistance of polyvinylpyrrolidone (PVP). Black-Right-Pointing-Pointer The amount of PVP and the reaction time have a strong effect on controlling the morphology and optical properties of SrCO{sub 3}:Tb{sup 3+} particles. Black-Right-Pointing-Pointer The main synthesizing process and the growth mechanism for the formation of final samples were proposed. -- Abstract: Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors have been synthesized by anmore » inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO{sub 3}:Tb{sup 3+} particles. The results of XRD confirm the formation of a well-crystallized SrCO{sub 3} phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO{sub 3}:Tb{sup 3+} phosphor is proposed. The SrCO{sub 3}:Tb{sup 3+} phosphors show the characteristic {sup 5}D{sub 4}-{sup 7}F{sub J} (J = 6, 5, 4, 3) emission lines with green emission {sup 5}D{sub 4}-{sup 7}F{sub 5} (544 nm) as the most prominent group under ultraviolet excitation.« less

  1. Effect of UV irradiation on different types of luminescence of SrAl2 O4 :Eu,Dy phosphors.

    PubMed

    Jha, Piyush

    2016-11-01

    This paper reports the luminescence behavior of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors under UV-irradiation. The effect of UV-irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is investigated. The space group of Sr 0.097 Al 2 O 4 :Eu 0.01 ,Dy 0.02 phosphors is monoclinic P2 1 . The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV-irradiation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Luminescence analysis of SrGa2 Si2 O8 : RE3+ (RE = Dy, Tm) phosphors.

    PubMed

    R Kadukar, Monali; Dhoble, S J; Sahu, A K; Nayar, V; Sailaja, S; Reddy, B Sudhakar

    2017-03-01

    This article reports on the luminescence properties of rare earth (Dy 3 + and Tm 3 + )ions doped SrGa 2 Si 2 O 8 phosphor were studied. SrGa 2 Si 2 O 8 phosphors weresynthesizedby employing solid state reaction method.From the measured X-ray diffraction (XRD) pattern of the samplemonoclinic phase structure has been observed. Thermoluminescenceand Mechanoluminescence properties of the γ-ray irradiated samples have been studied. Photoluminescence spectra of Dy 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 348 nm,and it shows two emission bands at 483 and 574 nm due to 4 F 9 /2  →  6 H 15 /2 and 4 F 9 /2  →  6 H 13 /2 transitions respectively. Whereas the photoluminescence spectra of Tm 3 + activated SrGa 2 Si 2 O 8 phosphor has been measured with an excitation wavelength at 359 nm and it exhibits two emission bands at 454 and 472 nm due to 1 D 2  →  3 F 4 and 1 G 4  →  3 H 6 transitions respectively. In thermoluminescence study, γ-irradiatedthermoluminescence glow curve of SrGa 2 Si 2 O 8 :Dy 3 + phosphor shows two well defined peaks at 293 °C (peak1)and 170 °C (peak2) whereas thermoluminescence glow curve of SrGa 2 Si 2 O 8 :Tm 3 + phosphor shows peaks at 292 °C (peak1) and 184 °C (peak2) indicating that two sets of traps are being activated within the particular temperature range and the trapping parameters associated with the prominent glow peaks of SrGa 2 Si 2 O 8 :Dy 3 + and SrGa 2 Si 2 O 8 :Tm 3 + are calculated using Chen's peak shape and initial rise method.From the Mechanoluminescence study, only one glow peak has been observed. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Degradation of phosphor-in-glass encapsulants with various phosphor types for high power LEDs

    NASA Astrophysics Data System (ADS)

    Iqbal, Fauzia; Kim, Sunil; Kim, Hyungsun

    2017-10-01

    In order to replace conventional silicone-based phosphor light emitting diodes (LEDs), inorganic color converters with high thermal stabilities and transparencies, i.e., phosphors-in-glass (PiGs), have been investigated as encapsulants for high-power LEDs. In this paper, the effect of various types of phosphors, i.e., LuAG (green, Lu3Al5O12:Ce3+), silicate (yellow, Sr2SiO4:Eu2+), CASN (red, CaAlSiN3:Eu2+), and oxynitride (yellow, (Sr,Ba) Si2O2N2:Eu2+), on the reliability/degradation of the remote PiG encapsulants is explored for high power LEDs. For this purpose, a glass composition (SiO2-B2O3-ZnO-Na2O) was separately mixed with each type of phosphor and then sintered at appropriate temperatures to make the corresponding PiG. The reliabilities of the formed PiGs were evaluated by standard accelerated-aging tests (85 °C/85% RH) for 1000 h. Luminosity losses and shifts in the Commission Internationale de l'Eclairage (CIE) coordinates of the PiGs were measured before and after aging. Thermal, and moisture-induced quenching behavior was also analyzed. The surface of PiGs with different phosphors degraded differently, possibly because of structural incompatibilities between the glass matrix and phosphor type. Determining the compatibility of the glass composition with the type of phosphor used is therefore important in order to ensure the long-term stabilities of encapsulants for use in commercial LEDs.

  4. Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun

    2018-05-01

    The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.

  5. Luminescence properties of Na2Sr2Al2PO4Cl9:Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Shahare, D. I.; Dhoble, S. J.

    2018-04-01

    A series of Sm3+ ions doped Na2Sr2Al2PO4Cl9 phosphors were synthesized via solid state synthesis method. Photoluminescence (PL) emission spectra were obtained by keeping excitation wavelength at 406 nm. Emission spectra show three emission peaks at 563 nm, 595 nm and 644 nm. The CIE chromaticity diagram shows emission colour of the phosphor in the orange-red region of the visible spectrum, indicating that the phosphor may be useful in preparing orange light-emitting diodes. Na2Sr2Al2PO4Cl9:Sm3+ phosphors were irradiated by γ-rays from a 60Co source and β-rays from a 90Sr source. Their thermoluminescence (TL) glow curves were obtained by Nucleonix 1009I TL reader. TL Trapping parameters such as activation energy of trapped electrons and order of kinetics were obtained by using Chen's peak shape method, Glow curve fitting method and initial rise method.

  6. Preparation of porous (Ba,Sr)TiO3 by adding corn-starch

    NASA Astrophysics Data System (ADS)

    Kim, J.-G.; Sim, J.-H.; Cho, W.-S.

    2002-11-01

    A new method of preparing porous (Ba,Sr)TiO3 ceramics has been introduced, using an ordinary ceramics processing technique. The effect of corn-starch on the positive temperature coefficient of resistivity characteristics and microstructure of the porous (Ba,Sr)TiO3 ceramics has been investigated. When the corn-starch addition was 1-20 wt%, the PTCR jump was over 106 and 1-2 orders higher than that of samples without corn-starch. Also, it was found that the (Ba,Sr)TiO3 ceramics had porous microstructure by the addition of corn-starch. The porosity of the ceramics with 20 wt% corn-starch was 44%. The electrical properties of the (Ba,Sr)TiO3 ceramics have been discussed, based on the microstructure, resistivity of grain boundaries, donor concentration of grains and the electrical potential barrier of grain boundaries.

  7. Crystal structure, electronic structure, and photoluminescent properties of SrMoO{sub 4}:Tb{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung Wook; Moon, Byung Kee; Jeong, Jung Hyun, E-mail: jhjeong@pknu.ac.kr

    2015-10-15

    Highlights: • SrMoO{sub 4}:Tb{sup 3+} phosphor samples were synthesized at different temperatures. • The crystal and electronic structures, and luminescence properties were studied. • The excitation peak shifts to red with increasing the sintering temperature. • The luminescence mechanism of SrMoO{sub 4}:Tb{sup 3+} was suggested. - Abstract: The experimental and theoretical studies of the optical properties of SrMoO{sub 4}:Tb{sup 3+} phosphors were carried out. The structural, optical, and electronical properties of the phosphors were systematically studied. The phosphor samples were crystallized at different temperatures via a sol–gel method. Excitation spectra of SrMoO{sub 4}:Tb{sup 3+} powder samples exhibited gradual red shiftmore » and luminescent intensity changed with increasing the sintering temperature. Such spectral changes depend strongly on the crystallographic properties such as lattice parameters and crystallinity. The shift of the excitation spectra is mainly ascribed to the covalent bond interaction between Mo−O bonds. An energy band model was demonstrated to describe the luminescence mechanism in the material.« less

  8. Luminescence properties of Sr2Mg3P4O15:Mn2+ phosphor and the improvement by co-doping Bi3+

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Wang, Wudi; Zhang, Jinlong; Ye, Yujiao; Chen, Ting; Guo, Siling; Xiao, Fen; Luo, Zhiyang

    2018-05-01

    Sr2Mg3P4O15:R (R = Bi3+, Mn2+, and Bi3+/Mn2+) phosphors are synthesized by a solid-state reaction method in air. Sr2Mg3P4O15:Bi3+ phosphor with excitation 380 nm shows blue light and its emission band peaking at ∼445 nm is observed. Under excitation at 355 and 416 nm, Sr2Mg3P4O15:Mn2+ phosphor shows red emission with a single broad emission band peaking at ∼630 nm in the range of 500-800 nm owing to the 4T1(G) → 6A1 transition of the Mn2+ ion. The optimal Mn2+ ion content in Sr2Mg3P4O15:Mn2+ phosphor is ∼0.05 and the lifetime of Sr2Mg2.95P4O15:0.05Mn2+ phosphor is ∼6.17 ms. After Bi3+ ion is co-doped, emission intensity of Sr2Mg3P4O15:Mn2+ phosphor can be enhanced obviously due to energy transfer (ET) from Bi3+ to Mn2+, which is confirmed by the luminescence properties and lifetimes of Sr2Mg3-xP4O15:Bi3+, Mn2+ phosphor. Luminous mechanism and ET process of Sr2Mg3-xP4O15:Bi3+, Mn2+ phosphor are explained by the simple energy level diagram of Bi3+ and Mn2+ ions.

  9. Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.

    2012-11-01

    In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.

  10. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains.

    PubMed

    Balter, Vincent

    2004-03-01

    In biological systems, strontium (Sr) and barium (Ba) are two non-essential elements, in comparison to calcium (Ca) which is essential. The Sr/Ca and Ba/Ca ratios tend to decrease in biochemical pathways which include Ca as an essential element, and these processes are termed biopurification of Ca. The quantitative pathway of the biopurification of Ca in relation to Sr and Ba between two biological reservoirs ( Rn and R(n -1)) is measured with an observed ratio (OR) expressed by the (Sr/Ca) Rn /(Sr/Ca)( Rn-1) and (Ba/Ca) Rn /(Ba/Ca)( Rn-1) ratios. For a mammalian organism, during the whole biopurification of Ca starting with the diet to the ultimate reservoir of Ca which is the bone, the mean values for ORSr and ORBa are 0.25 and 0.2, respectively. In this study, published Sr/Ca and Ba/Ca ratios are used for three sets of soils, plants, and bones of herbivorous and carnivorous mammals, each comprising a trophic chain, to illustrate the biopurification of Ca at the level of trophic chains. Calculated ORSr and ORBa of herbivore bones in relation to plants and of bones of carnivores in relation to bones of herbivores give ORSr=0.30+/-0.08 and ORBa=0.16+/-0.08, thus suggesting that trophic chains reflect the Sr/Ca and Ba/Ca fluxes that are prevalent at the level of a mammalian organism. The slopes of the three regression equations of log(Sr/Ca) vs. log(Ba/Ca) are similar, indicating that the process of biopurification of Ca with respect to Sr and Ba is due to biological processes and is independent of the geological settings. Modifications of the logarithmic expression of the Sr/Ca and Ba/Ca relationship allow a new formula of the biopurification process to be deduced, leading to the general equation ORBa=ORSr(1.79+/-0.33), where the allometric coefficient is the mean of the slopes of the three regression equations. Some recent examples are used to illustrate this new analysis of predator-prey relations between mammals. This opens up new possibilities for the

  11. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  12. Green-emissive transparent BaSi 2O 5:Eu 2 + film phosphor on quartz glass created by a sputtering thermal diffusion process

    NASA Astrophysics Data System (ADS)

    Seo, K. I.; Park, J. H.; Kim, J. S.; Na, Y. H.; Choi, J. C.; Bae, J. S.

    2009-10-01

    Eu 2+-doped BaSi 2O 5 film phosphors on quartz substrates are fabricated by radio-frequency magnetron sputtering thermal diffusion. The BaSi 2O 5: Eu 2+ phosphor crystals have some preferred orientations that are lattice-spacing matched with the crystallized β- SiO 2 crystals, and they show pore and grain boundary-free morphology with a rod-like shape fused into the crystallized β- SiO 2 crystals. The BaSi 2O 5: Eu 2+ film phosphor has a high transparency, with a transmittance of about 30% in visible light. The BaSi 2O 5: Eu 2+ film phosphor shows 510 nm green emission from the f-d transition of the Eu 2+ ions, and in particular the best sample shows a green photoluminescence brightness of about 5% of a BaSi 2O 5: Eu 2+ powder phosphor screen. These excellences in optical properties can be explained by less optical scattering at pores or grain boundaries, and less reflection at the continuously index-changed interface.

  13. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    PubMed

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  14. Crystal structure, thermally stability and photoluminescence properties of novel Sr{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qingfeng; Liao, Libing, E-mail: clayl@cugb.edu.cn; Mei, Lefu

    2015-03-15

    A series of novel luminescent phosphors Sr{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+} with apatite structure were synthesized via a high temperature solid-state reaction. The phase structure, photoluminescence (PL) properties, the PL thermal stability, as well as the fluorescence decay curves of the samples were investigated to characterize the resulting samples, and the selected Sr{sub 9.97}(PO{sub 4}){sub 6}O:0.03Eu{sup 2+} phosphor exhibits strong thermal quenching resistance, retaining the luminance of 88.73% at 150 °C. The quenching concentration of Eu{sup 2+} in Sr{sub 10}(PO{sub 4}){sub 6}O was about 0.03 attributing to the dipole–quadrupole interaction. The Sr{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+} phosphor exhibited a broad-bandmore » blue emission at 439 nm upon excitation at 346 nm. The results indicate that Sr{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+} phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Graphical abstract: Sr{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+} phosphors have potential applications as near UV-convertible phosphors for white-light UV LEDs. - Highlights: • Sr{sub 9.97}(PO{sub 4}){sub 6}O:0.03Eu{sup 2+} phosphor exhibits strong thermal quenching resistance. • Two different Eu{sup 2+} emission centers exists in Sr{sub 10}(PO{sub 4}){sub 6}O. • The activation energy was also estimated for the Eu{sup 2+} luminescence center.« less

  15. Strong green fluorescent hydrogels with Ba2 MgSi2 O7 :Eu2+ phosphor embedded in cellulose.

    PubMed

    Zhang, Xinguo; Qin, Xingzhen; Chen, Hailan

    2017-06-01

    Non-cytotoxic and green-emitting fluorescent hydrogels were constructed from a cellulose solution containing Ba 2 MgSi 2 O 7 :Eu 2 + green phosphor in a NaOH/urea aqueous system. The structure, optical properties and cytotoxicity of these hydrogels were studied. The Ba 2 MgSi 2 O 7 :Eu 2 + phosphor particles were dispersed evenly in the cellulose hydrogel matrix. Good luminescent properties of Ba 2 MgSi 2 O 7 :Eu 2 + phosphor were maintained in the hydrogels, leading to strong green emission under ultraviolet excitation. Fluorescent hydrogels have no obvious cytotoxicity in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation test, and have potential use in in vivo applications like optical imaging and drug delivery. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOEpatents

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  17. Photoluminescence properties and thermal stability of blue-emitting Ba5-xCl(PO4)3:xEu2+ (0.004≤x≤0.016) phosphors.

    PubMed

    Liu, Jie; Zhang, Zhi-Ming; Wu, Zhan-Chao; Wang, Fang-Fang; Li, Zhen-Jiang; Kuang, Shao-Ping; Wu, Ming-Mei

    2017-01-15

    A series of blue-emitting Ba 5-x Cl(PO 4 ) 3 :xEu 2+ (0.004≤x≤0.016) phosphors were synthesized by conventional high-temperature solid state reaction. The structure and photoluminescence (PL) properties of the phosphors were investigated. The as-prepared phosphors exhibit broad excitation band ranging from 250 to 420nm, and strong asymmetric blue emission band peaking at 436nm. The optimum concentration of Eu 2+ in the Ba 5 Cl(PO 4 ) 3 :Eu 2+ phosphor is x=0.01, and the concentration quenching mechanism is verified to be the combined actions of dipole-dipole interaction and radiation re-absorption mechanism. The thermal stability of Ba 5 Cl(PO 4 ) 3 :Eu 2+ was evaluated by temperature-dependent PL spectra. Compared with that of commercial BaMgAl 10 O 17 :Eu 2+ (BAM) phosphor, the Ba 5-x Cl(PO 4 ) 3 :xEu 2+ phosphors exhibit similarly excellent thermal quenching property. In addition, the CIE chromaticity coordinates of Ba 5-x Cl(PO 4 ) 3 :xEu 2+ (0.004≤x≤0.016) were calculated to evaluate the color quality. All the results indicate that Ba 5 Cl(PO 4 ) 3 :Eu 2+ is a promising candidate phosphor for near-ultraviolet (n-UV) pumped LED. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates.

    PubMed

    Jin, C-Q; Zhou, J-S; Goodenough, J B; Liu, Q Q; Zhao, J G; Yang, L X; Yu, Y; Yu, R C; Katsura, T; Shatskiy, A; Ito, E

    2008-05-20

    The cubic perovskite BaRuO(3) has been synthesized under 18 GPa at 1,000 degrees C. Rietveld refinement indicates that the new compound has a stretched Ru-O bond. The cubic perovskite BaRuO(3) remains metallic to 4 K and exhibits a ferromagnetic transition at T(c) = 60 K, which is significantly lower than the T(c) approximately = 160 K for SrRuO(3). The availability of cubic perovskite BaRuO(3) not only makes it possible to map out the evolution of magnetism in the whole series of ARuO(3) (A = Ca, Sr, Ba) as a function of the ionic size of the A-site r(A,) but also completes the polytypes of BaRuO(3). Extension of the plot of T(c) versus r(A) in perovskites ARuO(3) (A = Ca, Sr, Ba) shows that T(c) does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO(3). Suppressing T(c) by Ca and Ba doping in SrRuO(3) is distinguished by sharply different magnetic susceptibilities chi(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO(3) side and bandwidth broadening on the (Sr,Ba)RuO(3) side.

  19. High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates

    PubMed Central

    Jin, C.-Q.; Zhou, J.-S.; Goodenough, J. B.; Liu, Q. Q.; Zhao, J. G.; Yang, L. X.; Yu, Y.; Yu, R. C.; Katsura, T.; Shatskiy, A.; Ito, E.

    2008-01-01

    The cubic perovskite BaRuO3 has been synthesized under 18 GPa at 1,000°C. Rietveld refinement indicates that the new compound has a stretched Ru–O bond. The cubic perovskite BaRuO3 remains metallic to 4 K and exhibits a ferromagnetic transition at Tc = 60 K, which is significantly lower than the Tc ≈ 160 K for SrRuO3. The availability of cubic perovskite BaRuO3 not only makes it possible to map out the evolution of magnetism in the whole series of ARuO3 (A = Ca, Sr, Ba) as a function of the ionic size of the A-site rA, but also completes the polytypes of BaRuO3. Extension of the plot of Tc versus rA in perovskites ARuO3 (A = Ca, Sr, Ba) shows that Tc does not increase as the cubic structure is approached, but has a maximum for orthorhombic SrRuO3. Suppressing Tc by Ca and Ba doping in SrRuO3 is distinguished by sharply different magnetic susceptibilities χ(T) of the paramagnetic phase. This distinction has been interpreted in the context of a Griffiths' phase on the (Ca Sr)RuO3 side and bandwidth broadening on the (Sr,Ba)RuO3 side. PMID:18480262

  20. PTCR characteristics and microstructure of porous (Ba,Sr)TiO3 ceramics prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Ju; Tang, Dongxu; Park, K.; Cho, Won-Seung

    2010-02-01

    Porous Y-doped (Ba,Sr)TiO3 ceramics were prepared by the spark plasma sintering of (Ba,Sr)TiO3 powders with different amounts of carbon black, and by subsequently burning out the carbon black acting as a pore precursor. The microstructure, PTCR and gas-sensing characteristics for porous Y-doped (Ba,Sr)TiO3 ceramics were investigated. Spark plasma sintered (Ba,Sr)TiO3 ceramics revealed a very fine microstructure containing submicron-sized grains with a cubic phase and revealed an increased porosity after the carbon black was burned out. As a result of reoxidation treatment, the grain size of the (Ba,Sr)TiO3 ceramics increased to a few μm and the cubic phase transformed into a tetragonal phase. The phase transformation of (Ba,Sr)TiO3 ceramics was affected by grain size. The PTCR jump in the (Ba,Sr)TiO3 ceramics prepared by adding 40 vol.% carbon black showed an excellent value of 4.72 × 106, which was ten times higher than the PTCR jump in (Ba,Sr)TiO3 ceramics. The electrical resistivity of the porous (Ba,Sr)TiO3 ceramics was recovered as the atmosphere changed from a reducing gas (N2) to an oxidizing gas (O2) under consecutive heating and cooling cycles.

  1. Enhanced Photoluminescent Properties and Crystalline Morphology of LiBaPO4:Tm3+ Phosphor through Microwave Sintering Method

    PubMed Central

    Lai, Hsuan-Lin; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn

    2016-01-01

    An investigation of the photoluminescent properties and crystalline morphology of blue emitting LiBa1−xPO4:xTm3+ phosphors with various concentrations (x = 0.005–0.030) of Tm3+ ions were synthesized by microwave sintering. For comparison, the LiBa1−xPO4:xTm3+ powders sintered at the same sintering condition but in a conventional furnace were also investigated. LiBaPO4 without second phase was formed no matter which furnace was used. More uniform grain size distributions are obtained by microwave sintering. When the concentration of Tm3+ ion was x = 0.015, the luminescence intensity reached a maximum value, and then decreased with the increases of the Tm3+ concentration due to concentration quenching effect. The microwave sintering significantly enhanced the emission intensity of LiBa1−xPO4:xTm3+ phosphors. Additionally, the d-d interaction is the key mechanism of concentration quenching for LiBaPO4:Tm3+. The chromaticity (x, y) for all LiBa1−xPO4:xTm3+ phosphors are located at (0.16, 0.05), which will be classified as a blue region. PMID:28773483

  2. Hydrothermal synthesis infrared to visible upconversion luminescence of SrMoO4: Er3+/Yb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Kumar, Kaushal

    2018-04-01

    The upconversion emission properties in Er3+/Yb3+ doped SrMoO4 phosphor synthesized via hydrothermal method is investigated upon 980 nm laser light excitation. The crystal structure and morphology of the synthesized phosphor are characterized by X-ray diffraction and field emission scanning electron microscopy. The X-ray diffraction pattern suggests that SrMoO4 phosphor has tetragonal phase structure. The phosphor emits strong green (525 and 552 nm) and red (665 nm) UC emissions along with weak blue (410 and 488 nm) and near infrared (798 nm) emission bands. The color emitted from the phosphor is shifted from yellow to green region with increasing the power density from 15 to 65 W/cm2. The result indicates that the present material is suitable for making infrared to visible up-converts and display devices.

  3. Energy transfer in M₅(PO₄)₃  F:Eu²⁺,Ce³⁺ (M = Ca and Ba) phosphors.

    PubMed

    Shinde, K N; Dhoble, S J

    2014-08-01

    M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphors were successfully prepared by the combustion synthesis method. The introduction of co-dopant (Ce(3+)) into the host enhanced the luminescent intensity of the M5(PO4)3F:Eu(2+) (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce(3+) ➔Eu(2+) ions in M5(PO4)3F:Eu(2+) (M = Ca and Ba) phosphors, where Ce(3+) ions act as sensitizers and Eu(2+) ions act as activators. The M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphor exhibits great potential for use in white ultraviolet (UV) light-emitting diode applications to serve as a single-phased phosphor that can be pumped with near-UV or UV light-emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-06

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems.

  5. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  6. Computational study of Ca, Sr and Ba under pressure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2006-05-01

    A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.

  7. Terahertz dielectric response of ferroelectric Ba(x)Sr(1-x)TiO3 thin films.

    PubMed

    Kang, Seung Beom; Kwak, Min Hwan; Choi, Muhan; Kim, Sungil; Kim, Taeyong; Cha, Eun Jong; Kang, Kwang Yong

    2011-11-01

    Terahertz time-domain spectroscopy has been used to investigate the dielectric and optical properties of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films for nominal x-values of 0.4, 0.6, and 0.8 in the frequency range of 0.3 to 2.5 THz. The ferroelectric thin films were deposited at approximately 700 nm thickness on [001] MgO substrate by pulsed laser deposition. The measured complex dielectric and optical constants were compared with the Cole-Cole relaxation model. The results show that the Cole-Cole relaxation model fits well with the data throughout the frequency range and the dielectric relaxation behavior of ferroelectric Ba(x)Sr(1-x)TiO(3) thin films varies with the films compositions. Among the compositions of Ba(x)Sr(1-x)TiO(3) films with different Ba/Sr ratios, Ba(0.6)Sr(0.4)TiO(3) has the highest dielectric constants and the shortest dielectric relaxation time.

  8. Preparation and cathodoluminescence characteristics of rare earth activated BaAl2O4 phosphors.

    PubMed

    Benourdja, S; Kaynar, Ümit H; Ayvacikli, M; Karabulut, Y; Guinea, J Garcia; Canimoglu, A; Chahed, L; Can, N

    2018-04-18

    Undoped and Pr, Sm and Tb activated BaAl 2 O 4 phosphors have been synthesized by solid state reaction method and combustion method. The structure and morphological observation of the phosphor samples were monitored by X-ray powder diffraction (XRD) and environmental scanning electron microscope (ESEM) coupled to an energy dispersive X-ray spectrometer (EDS). The all diffraction peaks are well assigned to standard data card (PDF♯17-306). Emission properties of the samples were explored using light emission induced by an electron beam (i.e cathodoluminescence, CL) at room temperature (RT). Undoped BaAl 2 O 4 sample exhibits a broad defect emission from 300 to 500 nm from the aluminate defect centres. CL spectra recorded at room temperature display that the as-prepared BaAl 2 O 4 :Ln (Ln=Pr, Sm and Tb) phosphors exhibit different luminescence colors coming from different rare earth activator ions. The transition 4 G 5/2 → 6 H 7/2 located at 606 and 610 nm for Sm 3+ can occur as hypersensitive transition having the selection rule ΔJ = ± 1. For the Tb 3+ doped samples, they exhibit D45 green line emissions. The proposed luminescent mechanisms of all doped rare earth ions are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Synthesis of Sr2Si5N8:Ce3+ phosphors for white LEDs via an efficient chemical deposition

    PubMed Central

    Yang, Che-Yuan; Som, Sudipta; Das, Subrata; Lu, Chung-Hsin

    2017-01-01

    Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 μm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5–5 μm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2−xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes. PMID:28361999

  10. Synthesis of Sr2Si5N8:Ce3+ phosphors for white LEDs via an efficient chemical deposition

    NASA Astrophysics Data System (ADS)

    Yang, Che-Yuan; Som, Sudipta; Das, Subrata; Lu, Chung-Hsin

    2017-03-01

    Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 μm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5-5 μm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2-xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes.

  11. Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Suh, Jae Yong; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2017-05-10

    This paper reports designing a novel single composition blue/red color illuminating phosphor followed by fabricating "smart" agricultural/horticultural LED lighting. Color-tunable Eu 2+ /Mn 2+ co-activated alkaline earth phosphates, Na(Sr,Ba)PO 4 and Ca 3 Mg 3 (PO 4 ) 4 , are considered, and the stable doping sites for the corresponding activators are identified by using first-principle DFT calculations. We can realize the designated color purity with stable thermal quenching preserved luminescence behavior is induced by the Eu 2+ center positioned at different coordination states with intermixed Sr 2+ /Ba 2+ sites in Na(Sr,Ba)PO 4 hosts. Moreover, we demonstrate that the resultant LED lighting adopting the proposed novel phosphor composition stimulates the enhanced photosynthesis reaction for indoor hydroponics plants, such as oats and onions, which is superior to the narrow line emission band induced by the mixture of conventional red/green/blue LEDs. Thus, using the color-tunable single composition luminescent material may produce an innovative energy-efficient artificial lighting for indoor plant growth.

  12. Reduced graphene oxide enwrapped phosphors for long-term thermally stable phosphor converted white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Anoop, Gopinathan; Rani, Janardhanan R.; Lim, Juhwan; Jang, Myoung Soo; Suh, Dong Wook; Kang, Shinill; Jun, Seong Chan; Yoo, Jae Soo

    2016-09-01

    The long-term instability of the presently available best commercial phosphor-converted light-emitting diodes (pcLEDs) is the most serious obstacle for the realization of low-cost and energy-saving lighting applications. Emission from pcLEDs starts to degrade after approximately 200 h of operation because of thermal degradation of the phosphors. We propose a new strategy to overcome this thermal degradation problem of phosphors by wrapping the phosphor particles with reduced graphene oxide (rGO). Through the rGO wrapping, we have succeeded in controlling the thermal degradation of phosphors and improving the stability of fabricated pcLEDs. We have fabricated pcLEDs with long-term stability that maintain nearly 98% of their initial luminescence emission intensity even after 800 h of continuous operation at 85 °C and 85% relative humidity. The pcLEDs fabricated using SrBaSi2O2N2:Eu2+ phosphor particles wrapped with reduced graphene oxide are thermally stable because of enhanced heat dissipation that prevents the ionization of Eu2+ to Eu3+. We believe that this technique can be applied to other rare-earth doped phosphors for the realization of highly efficient and stable white LEDs.

  13. Determining Solute Sources and Water Flowpaths in a Forested Headwater Catchment: Advances With the Ca-Sr-Ba Multi-tracer

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.

    2011-12-01

    Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide

  14. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    PubMed

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  15. Luminescence characteristics of C5+ ions and 60Co irradiated Li2BaP2O7:Dy3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, J. A.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-04-01

    In this work a study on some thermoluminescence characteristics of Li2BaP2O7:Dy phosphor is presented. The phosphor was synthesized by solid state diffusion method and characterized for its phase purity by X-ray diffraction (XRD). FT-IR spectrum was also carried out to confirm the presence of phosphate family and vibrations corresponding to P-O-P group. Spectroscopic investigation was approached through photoluminescence (PL) and thermoluminescence (TL). PL emission spectrum of Dy3+ ions corresponding to 4F9/2 → 6H13/2 (483 nm) and 4F9/2 → 6H15/2 (574 nm) transitions is revealed under 351 nm excitation wavelength. This characteristic emission confirms the presence of Dy3+ ions in the Li2BaP2O7 host matrix. To induce TL properties in Li2BaP2O7:Dy phosphor was irradiated with C5+ ion beams and gamma rays (60Co). A nearly simple glow curve was observed for Li2BaP2O7:Dy under two different excitation sources. TL response is almost linear over a wide range. Average absorbed dose (D bar) and mean linear energy transfer (LET ‾) of C5+ ion beams in Li2BaP2O7:Dy have also been calculated. Values of parameters like E and S known as trap depth and frequency factor respectively were obtained by using TLanal computer program. Also SRIM based calculations were performed to study the effect of C5+ ion beams on the samples of Li2BaP2O7:Dy. SRIM calculations show that Ba2+ vacancies are highest in number. Till date no such luminescence information on Li2BaP2O7:Dy phosphor is available.

  16. Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp

    2017-04-01

    Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.

  17. Synthesis and TL/OSL properties of a novel high-sensitive blue-emitting LiSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Koparkar, K. A.; Bajaj, N. S.; Soni, A.; Omanwar, S. K.

    2016-07-01

    In this study, a series of Eu2+-doped LiSrPO4 phosphors were synthesized via solid-state method. The structural and morphological characterizations were done through X-ray diffraction and scanning electronic microscope. Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically stimulated luminescence (OSL) behaviours of LiSrPO4:Eu2+ phosphors were studied. The LiSrPO4:Eu2+ phosphor shows OSL sensitivity about 8 times than that of α-Al2O3:C phosphor and 6 times than that of LiMgPO4:Tb3+, B phosphor. Moreover, TL sensitivity was about 15 times more as compared to α-Al2O3:C phosphor. The kinetic parameters of TL curve were calculated using peak shape method. In TL/OSL mode, dose-response was almost linear nature, in the range of measurement. The minimum detectable dose was found to be 25.18 μGy with 3 σ of background. Also, reusability was also studies, which shows the phosphor can be reusable for 10 cycles with 0.1 % change in OSL output.

  18. Synthesis, structural and optical properties of BaMoO{sub 4}:Eu{sup 3+} shuttle like phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Bharat, L.; Lee, Soo Hyun; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2014-05-01

    Graphical abstract: - Highlights: • BaMoO{sub 4}:Eu{sup 3+} phosphors were synthesized by a facile synthesis route. • PL and CL spectra showed dominant emissions due to ({sup 5}D{sub 0} → {sup 7}F{sub 2}) hypersensitive transitions. • The excitation wavelengths in the UV-B region make BaMoO{sub 4}:Eu{sup 3+} phosphors as a good candidate in the red region for the development of UV-based white LEDs. • PL and CL spectra showed similar CIE values close to the commercially available Y{sub 2}O{sub 3}:Eu{sup 3+} phosphors. - Abstract: Eu{sup 3+} ions doped BaMoO{sub 4} phosphor samples were synthesized by a facile synthesis process. Themore » tetragonal phase of the host lattice was substantiated by the X-ray diffraction patterns. The morphological studies were carried out by taking the scanning electron microscope and transmission electron microscope images and confirmed the formation of shuttle like particles with perpendicular protrusions in the middle of the particle. The single crystalline nature of the phosphors was confirmed by the selected area electron diffraction pattern. The photoluminescence (PL) properties of the Eu{sup 3+} ions doped samples revealed good emission with a high asymmetry ratio when excited with ultraviolet B wavelengths (between 280 and 315 nm). The cathodoluminescence (CL) spectra showed similar results to the PL spectra. The calculated CIE values based on the PL and CL spectra were almost similar and confirmed the rich red emission.« less

  19. Insights into the discrepant luminescence for BaSiO3 :Eu2+ phosphors prepared by solid-state reaction and precipitation reaction methods.

    PubMed

    Xu, Jiao; Zhao, Yang; Chen, Jingjing; Mao, Zhiyong; Yang, Yanfang; Wang, Dajian

    2017-09-01

    Two synthesis routes, solid-state reaction and precipitation reaction, were employed to prepare BaSiO 3 :Eu 2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid-state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO 3 :Eu 2+ phosphors was performed by evaluation of X-ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO 3 :Eu 2+ phosphor, while the green emission was ascribed to a small amount of Ba 2 SiO 4 :Eu 2+ compound that was present in the solid-state reaction sample. This work clarifies the luminescence properties of Eu 2+ ions in BaSiO 3 and Ba 2 SiO 4 hosts. Copyright © 2017 John Wiley & Sons, Ltd.

  20. A novel double perovskite tellurate Eu3+-doped Sr2MgTeO6 red-emitting phosphor with high thermal stability

    NASA Astrophysics Data System (ADS)

    Liang, Jingyun; Zhao, Shancang; Yuan, Xuexia; Li, Zengmei

    2018-05-01

    A series of novel double perovskite tellurate red-emitting phosphors Sr2MgTeO6:xEu3+ (x = 0.05-0.40) were successfully synthesized by a high-temperature solid-state reaction method. The phase structure, photoluminescence properties and thermal stability of the phosphor were investigated in detail. The phosphor shows dominant emission peak at 614 nm belonging to the 5D0 → 7F2 electric dipole transition under 465 nm excitation. The luminescence intensity keeps increasing with increasing the content of Eu3+ to 25 mol%, and the critical transfer distance of Eu3+ was calculated to be 12 Å. The quenching temperature for Sr2MgTeO6:0.25Eu3+ was estimated to be above 500 K. This spectral feature reveals high color purity and excellent chromaticity coordinate characteristics. Therefore, Eu3+-doped Sr2MgTeO6 phosphors are potential red phosphors for blue chip-based white light-emitting diode and display devices.

  1. Composition-dependent surface chemistry of colloidal Ba xSr 1-xTiO 3 perovskite nanocrystals

    DOE PAGES

    Margossian, Tigran; Culver, Sean P.; Larmier, Kim; ...

    2016-11-01

    Ba xSr 1-xTiO 3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO 2 as a function of the alkaline earth composition (Ba vs. Sr). Lastly, the difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.

  2. Magnetic and magnetocaloric properties of Ba and Ti co-doped SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-12-28

    Temperature evolution of magnetic properties in Ba and Ti doped SrRuO{sub 3} has been investigated to observe the effects of larger ionic radius Ba at Sr site and isovalent nonmagnetic impurity Ti at Ru site. Ionic radius mismatch and different electronic configuration in comparison with Ru modify Sr(Ba)-O and Ru(Ti)-O bond lengths and Ru-O-Ru bond angle. The apical and basal Ru-O-Ru bond angles vary significantly with Ti doping. Ferromagnetic Curie temperature decreases from 161 K to 149 K monotonically with Ba (10%) and Ti (10%) substitutions at Sr and Ru sites. The zero field cooled (ZFC) magnetization reveals a prominent peak whichmore » shifts towards lower temperature with application of magnetic field. The substitution of tetravalent Ti with localized 3d{sup 0} orbitals for Ru with more delocalized 4d{sup 4} orbitals leads to a broad peak in ZFC magnetization. A spontaneous ZFC magnetization becomes negative below 160 K for all the compositions. The occurrence of both normal and inverse magnetocaloric effects in Ba and Ti co-doped SrRuO{sub 3} makes the system more interesting.« less

  3. Optical properties of Dy3+ and Eu3+ -Codoped SrWO4 phosphors for white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2018-01-01

    Dy3+ - and Eu3+ -codoped SrWO4 phosphor powders were prepared using a solid-state reaction technique by changing the molar concentration of Eu3+ within the range of 0 to 15 mol% at a fixed Dy3+ concentration of 5 mol%. The effects of Dy3+ and Eu3+ doping on the structural, morphological, and optical properties of SrWO4:Dy3+, Eu3+ phosphors were investigated via Xray diffraction, scanning electron microscopy, and photoluminescence spectrophotometry, respectively. Irrespective of the concentrations of Dy3+ and Eu3+ ions, the crystal structures of all the phosphors were tetragonal, and the grains exhibited a tendency to agglomerate. The emission spectra of Sr0.925WO4:5 mol% Dy3+ contained an intense yellow band at 573 nm arising from the 4 F 9/2 → 6 H 13/2 electric dipole transition of Dy3+, as well as three weak emission lines. When the Eu3+ ions were incorporated into the SrWO4:Dy3+ phosphors, a strong red emission peak at 615 nm originating from the 5D0 → 7F2 transition of Eu3+ appeared in addition to the four emission bands centered at 481, 573, 662, and 750 nm, which result from the 4 f-4 f transitions of Dy3+. The emission intensity decreased as the Eu3+ concentration increased up to 15 mol% due to concentration quenching, which resulted from dipole-dipole interactions. The results suggest that the color emissions and intensities of SrWO4:Dy3+, Eu3+ phosphors can be tuned from yellow to white to red by varying the types of ions used and the ratio of Dy3+ to Eu3+ ions.

  4. Microstructure and dielectric parameters of epitaxial SrRuO3/BaTiO3/SrRuO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Claeson, T.

    2001-05-01

    Epitaxial films of ferroelectric barium titanate are desirable in a number of applications but their properties are inferior to those of bulk material. Relations between microstructure and dielectric properties may give better understanding of limitations. Trilayer heterostructures SrRuO3/BaTiO3/SrRuO3 were grown by laser ablation on (100)LaAlO3 and (100)MgO substrates. The BaTiO3 layer was granular in structure. When grown on (100)SrRuO3/(100)LaAlO3, it was preferentially a-axis oriented due to tensile mechanical stress. Using (100)MgO as a substrate, on the other hand, produced a mixture of about equal value of a-axis and c-axis oriented grains of BaTiO3. The dielectric permittivity, ɛ, of the BaTiO3 layer was almost twice as large, at T>200 K and f=100 kHz, for the LaAlO3 substrate as compared to the MgO one. Its maximum value (ɛ/ɛ0≈6200) depended on temperature of growth, grain size, and electric field and compares well with optimal values commonly used for ceramic material. The maximum in the ɛ(T) shifted from about 370 to 320 K when the grain size in the BaTiO3 film decreased from 100 to 40 nm. At T<300 K, hysteresis loops in polarization versus electric field were roughly symmetric. The BaTiO3 films grown on (100)SrRuO3/(100)MgO exhibit the largest remnant polarizations and coercive fields in the temperature range 100-380 K.

  5. Discovery of a phosphor for light emitting diode applications and its structural determination, Ba(Si,Al)5(O,N)8:Eu2+.

    PubMed

    Park, Woon Bae; Singh, Satendra Pal; Sohn, Kee-Sun

    2014-02-12

    Most of the novel phosphors that appear in the literature are either a variant of well-known materials or a hybrid material consisting of well-known materials. This situation has actually led to intellectual property (IP) complications in industry and several lawsuits have been the result. Therefore, the definition of a novel phosphor for use in light-emitting diodes should be clarified. A recent trend in phosphor-related IP applications has been to focus on the novel crystallographic structure, so that a slight composition variance and/or the hybrid of a well-known material would not qualify from either a scientific or an industrial point of view. In our previous studies, we employed a systematic materials discovery strategy combining heuristics optimization and a high-throughput process to secure the discovery of genuinely novel and brilliant phosphors that would be immediately ready for use in light emitting diodes. Despite such an achievement, this strategy requires further refinement to prove its versatility under any circumstance. To accomplish such demands, we improved our discovery strategy by incorporating an elitism-involved nondominated sorting genetic algorithm (NSGA-II) that would guarantee the discovery of truly novel phosphors in the present investigation. Using the improved discovery strategy, we discovered an Eu(2+)-doped AB5X8 (A = Sr or Ba, B = Si and Al, X = O and N) phosphor in an orthorhombic structure (A21am) with lattice parameters a = 9.48461(3) Å, b = 13.47194(6) Å, c = 5.77323(2) Å, α = β = γ = 90°, which cannot be found in any of the existing inorganic compound databases.

  6. A novel greenish yellow-orange red Ba3Y4O9:Bi(3+),Eu(3+) phosphor with efficient energy transfer for UV-LEDs.

    PubMed

    Li, Kai; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2015-12-21

    A series of novel color-tunable Ba3Y4O9:Bi(3+),Eu(3+) phosphors were prepared for the first time via the high-temperature solid-state reaction route. The effect of Bi(3+) concentration on the emission intensity of Ba3Y4O9:Bi(3+) was investigated. The emission spectra of the Ba3Y4O9:Bi(3+),Eu(3+) phosphors present both a greenish yellow band of Bi(3+) emission centered at 523 nm, and many characteristic emission lines of Eu(3+), derived from the allowed (3)P1-(1)S0 transition of the Bi(3+) ion and the (5)D0-(7)FJ transition of the Eu(3+) ion, respectively. The energy transfer phenomenon from Bi(3+) to Eu(3+) ions is observed under UV excitation in Bi(3+), Eu(3+) co-doped Ba3Y4O9 phosphors, and their transfer mechanism is demonstrated to be a resonant type via dipole-quadrupole interaction. The critical distance between Bi(3+) and Eu(3+) for the energy transfer effect was calculated via the concentration quenching and spectral overlap methods. Results show that color tuning from greenish yellow to orange red can be realized by adjusting the mole ratio of Bi(3+) and Eu(3+) concentrations based on the principle of energy transfer. Moreover, temperature-dependent PL properties, CIE chromaticity coordinates and quantum yields of Ba3Y4O9:Bi(3+),Eu(3+) phosphors were also supplied. It is illustrated that the as-prepared Ba3Y4O9:Bi(3+),Eu(3+) phosphors can be potential candidates for color-tunable phosphors applied in UV-pumped LEDs.

  7. Sodium citrate (Na{sub 3}Cit)-assisted hydrothermal synthesis of uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaolei; Zhang, Yu; Li, Qiuyu

    2014-11-15

    Graphical abstract: A facile hydrothermal method for the synthesis of uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors with the assistance of sodium citrate (Na{sub 3}Cit). - Highlights: • Well-crystallized spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been synthesized. • The influence of the reaction temperature and reaction time were clearly shown. • The dosage of Na{sub 3}Cit has a strong effect on the spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors. • The growth mechanism for the formation of final samples was proposed. - Abstract: Highly uniform spindle-like SrMoO{sub 4}:Eu{sup 3+} phosphors have been prepared by a facile hydrothermal method using sodium citrate (Na{sub 3}Cit)more » as the chelating reagent. X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform-infrared spectroscopy (FT-IR) and photoluminescence spectra (PL) were used to characterize the resulting samples. The dosage of sodium citrate, reaction temperature and reaction time play key roles in the formation of the final samples. The possible formation mechanism for SrMoO{sub 4}:Eu{sup 3+} phosphors has been proposed. Upon excitation by ultraviolet radiation, the as-synthesized SrMoO{sub 4}:Eu{sup 3+} phosphors show the characteristic {sup 5}D{sub 0}–{sup 7}F{sub J} (J = 1, 2, 3, 4) emission lines with red emission {sup 5}D{sub 0}–{sup 7}F{sub 2} (613 nm) as the most prominent group.« less

  8. Multichannel Luminescence Properties of Mixed-Valent Eu2+/Eu3+ Coactivated SrAl3BO7 Nanocrystalline Phosphors for Near-UV LEDs.

    PubMed

    Liu, Xiaoming; Xie, Weijie; Lü, Ying; Feng, Jingchun; Tang, Xinghua; Lin, Jun; Dai, Yuhua; Xie, Yu; Yan, Liushui

    2017-11-20

    Up to now, orchestrating the coexistence of Eu 2+ and Eu 3+ activators in a single host lattice has been an extremely difficult task, especially for the appearance of the characteristic emission of Eu 2+ and Eu 3+ in order to generate white light. Nevertheless, here we demonstrate a new Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphor with abundant and excellent multichannel luminescence properties. A series of Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphors were prepared through a Pechini-type sol-gel method followed by a reduction process. With excitation of UV/NUV light, the prepared SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphors show not only the characteristic f-f transitions of Eu 3+ ion ( 5 D J → 7 F J,J' , J, J' = 0-3), but also the 5d → 4f transitions of Eu 2+ ion with comparable intensity from 400 to 700 nm in the whole visible spectral region. The luminescence color of the SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor can be tuned from blue, blue-green, white, and orange to orange-red by changing the excitation wavelength, the overall doping concentration of europium ions (Eu 2+ , Eu 3+ ), and the relative ratio of Eu 2+ to Eu 3+ ions to some extent. A single-phase white-light emission has been realized in SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor. The obtained SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor has potential application in the area of NUV white-light-emitting diodes.

  9. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  10. Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, V.K.; Perera, P. Kanchana; Pandey, Abhishek

    2012-06-25

    We report the growth of single crystals of SrCu2As2, SrCu2Sb2, SrCu2(As0.84Sb0.16)2, and BaCu2Sb2 using the self-flux technique and their structural, magnetic, thermal, and transport properties that were investigated by powder x-ray diffraction (XRD), magnetic susceptibility χ, specific heat Cp, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of XRD patterns for crushed crystals confirm that SrCu2As2 crystallizes in the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) and SrCu2Sb2 crystallizes in the CaBe2Ge2-type primitive tetragonal structure (space group P4/nmm). However, as reported previously, BaCu2Sb2 is found to have a large unit cell consisting ofmore » three blocks. Here a ThCr2Si2-type block is sandwiched between two CaBe2Ge2-type blocks along the c axis with an overall symmetry of I4/mmm, as reported, but likely with a monoclinic distortion. The χ data of all these compounds are diamagnetic and reveal nearly T-independent anisotropic behavior. The χ of SrCu2As2 is found to be larger in the ab plane than along the c axis, as also previously reported for pure and doped BaFe2As2, whereas the χ values of SrCu2Sb2 and BaCu2Sb2 are larger along the c axis. This difference in anisotropy appears to arise from the differences between the crystal structures. The finite values of the Sommerfeld linear specific heat coefficients γ and the T dependences of ρ reveal metallic character of all four compounds. The electronic and magnetic properties indicate that these compounds are sp metals with Cu in the nonmagnetic 3d10 electronic configuration corresponding to the oxidation state Cu+1, as previously predicted theoretically for SrCu2As2 by Singh [ Phys. Rev. B 79 153102 (2009)]. We present a brief review of theoretical and experimental work on the doping character of transition metals for Fe in BaFe2As2. The As–As covalent interlayer bond distances in the collapsed-tetragonal (Ca,Sr,Ba

  11. Structural, optoelectronic, and thermoelectric properties of AZn13 (A=Na, K, Ca, Sr, Ba) compounds

    NASA Astrophysics Data System (ADS)

    Basit, Abdul; Murtaza, G.; Mahmood, Asif; Yar, Abdullah; Muhammad, S.

    2016-08-01

    We report the structural, electronic, optical, and thermoelectric properties of the five cubic alkali-earth transition-metals AZn13 (A-Na, K, Ca, Sr, Ba) using density functional theory. Structural properties, electronic structures and optical behaviors are calculated explicitly via highly accurate contemporary full potential-linearized augmented plane wave (FP-LAPW) method. The investigated ground state data of these materials is quite close to the experimental information. The modified Becke-Johnson (mBJ) predicts the intermetallic nature of AZn13 (A-Na, K, Ca, Sr, Ba) materials. The complex dielectric function of these intermetallic compounds has been calculated and the observed noticeable peaks are examined through mBJ. With the help of complex dielectric function, the other important optical parameters like reflectivities, conductivities and refractive indices of AZn13 (A-Na, K, Ca, Sr, Ba) have been calculated as a function of energy. The optical response suggests that AZn13 (A-Na, K, Ca, Sr, Ba) compounds can be used for the optoelectronic devices. Further, the thermoelectric properties have been calculated through BoltzTraP program, the calculated values for different thermoelectric parameters recommend that these AZn13 (A-Na, K, Ca, Sr, Ba) materials are the suitable candidates for thermoelectric applications.

  12. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  13. Photoluminescence Properties of Red-Emitting Ca3Sr3-x(PO4)4:xEu3+ Phosphors for White Light-Emitting Diodes.

    PubMed

    Hakeem, D A; Park, K

    2015-07-01

    The photoluminescent properties of the Eu(3+)-activated Ca3Sr3(PO4)4 phosphors prepared by a solution combustion method were investigated. The excitation spectra of Ca3Sr3-x(PO4)4:xEu3+ (0.05 ≤ x ≤ 0.6) phosphors under 614 nm wavelength showed a broad band centered at 266 nm along with other peaks at 320, 362, 381, 394, 414, 464, and 534 nm. The emission spectra observed in the range of 450 to 750 nm under excitation at 394 nm were ascribed to the 5D0-7F1-4 transitions of Eu3+ ions. The Ca3Sr3-x(PO4)4:xEu3+ phosphors showed the strongest red emission at 614 nm due to the electric dipole 5DO -->7F2 transition of Eu3+. The strongest emission intensity was obtained for the Eu3+ ions of x = 0.5. The prepared Ca3Sr3-x(PO4)4:xEu3+ can be used as an efficient red phosphor for UV-based white LEDs.

  14. Blue-green and green phosphors for lighting applications

    DOEpatents

    Setlur, Anant Achyut; Chandran, Ramachandran Gopi; Henderson, Claire Susan; Nammalwar, Pransanth Kumar; Radkov, Emil

    2012-12-11

    Embodiments of the present techniques provide a related family of phosphors that may be used in lighting systems to generate blue or blue-green light. The phosphors include systems having a general formula of: ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.s- ub.y)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) (I), wherein 0Ba, Mg, Zn, or Sn or any combinations thereof. Advantageously, phosphors made accordingly to these formulations maintain emission intensity across a wide range of temperatures. The phosphors may be used in lighting systems, such as LEDs and fluorescent tubes, among others, to produce blue and blue/green light. Further, the phosphors may be used in blends with other phosphors, or in combined lighting systems, to produce white light suitable for illumination.

  15. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  16. Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III

    1991-01-01

    Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.

  17. Magmatic evolution of lunar highland rocks estimated from trace elements in plagioclase: A new bulk silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios

    NASA Astrophysics Data System (ADS)

    Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi

    2017-08-01

    The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.

  18. Blue-green tunable color of Ce3+/Tb3+ coactivated NaBa3La3Si6O20 phosphor via energy transfer

    PubMed Central

    Jia, Zhen; Xia, Mingjun

    2016-01-01

    A series of color tunable phosphors NaBa3La3Si6O20:Ce3+, Tb3+ were synthesized via the high-temperature solid-state method. NaBa3La3Si6O20 crystallizes in noncentrosymmetric space group Ama2 with the cell parameters of a = 14.9226(4) Å, b = 24.5215(5) Å and c = 5.6241(2) Å by the Rietveld refinement method. The Ce3+ ions doped NaBa3La3Si6O20 phosphors have a strong absorption band from 260 to 360 nm and show near ultraviolet emission light centered at 378 nm. The Ce3+ and Tb3+ ions coactivated phosphors exhibit color tunable emission light from deep blue to green by adjusting the concentration of the Tb3+ ions. An energy transfer of Ce3+ → Tb3+ investigated by the photoluminescence properties and lifetime decay, is demonstrated to be dipole–quadrupole interaction. These results indicate the NaBa3La3Si6O20:Ce3+, Tb3+ phosphors can be considered as potential candidates for blue-green components for white light emitting diodes. PMID:27628111

  19. Optimizing Blue Persistent Luminescence in (Sr 1-δ Ba δ ) 2 MgSi 2 O 7: Eu 2+ ,Dy 3+ via Solid Solution for Use in Point-of-Care Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Erin; Cobb, Angelica; Duke, Anna

    Inorganic persistent luminescent phosphors are an excellent class of optical reporters for enabling sensitive point-of-care diagnostics, particularly with smartphone-based biosensing devices in testing formats such as the lateral flow assay (LFA). Here, the development of persistent phosphors for this application is focused on the solid solution (Sr 1-δBa δ) 2MgSi 2O 7:Eu 2+,Dy 3+ (δ = 0, 0.125, 0.25, 0.375), which is prepared using a high-temperature solid-state reaction as confirmed by synchrotron X-ray powder diffraction. The substitution of barium for strontium enables control over the Eu 2+ 5d-orbital crystal field splitting (CFS) as a tool for tuning the emission wavelengthmore » while maintaining luminescence lifetimes >9 min across the composition range. Thermoluminescence measurements of the solid solution provide evidence that trap states contribute to the persistent lifetimes with the trap depths also remaining constant as a function of composition. Time-gated luminescence images of these compounds are captured on a smartphone arranged in a layout to mimic a point-of-care test and demonstrate the viability of using these materials as optical reporters. Moreover, comparing the blue-emitting (Sr 0.625Ba 0.375) 2MgSi 2O 7:Eu 2+,Dy 3+ and the green-emitting SrAl 2O 4:Eu 2+,Dy 3+ in a single LFA-type format shows these two compounds can be detected and resolved simultaneously, thereby permitting the development of a multiplexed LFA.« less

  20. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less

  1. Metal (Ca, Ba, Sr, Pb) heptafluorotantalates(V): Synthesis, Raman spectra and crystal structures

    NASA Astrophysics Data System (ADS)

    Bunič, Tina; Tramšek, Melita; Goreshnik, Evgeny; Žemva, Boris

    2007-01-01

    MTaF 7 (M = Ca, Sr, Ba, Pb) were prepared by the reaction of MF 2 + Ta + F 2 (Ca, Sr, Ba) or MF 2 + TaF 5 in anhydrous HF. CaTaF 7 crystallizes in a monoclinic P2 1/ a space group, a = 9.793(3) Å, b = 11.608(3) Å, c = 13.359(4) Å, β = 90.539(13)°, V = 1518.5(7) Å 3. All Ta atoms possess distorted pentagonal-bipyramidal environment with Ta-F distances of 1.878(14)-2.044(13) Å. Three crystallographically independent Ca atoms have coordination number 8. Ca-F distances lie in the range of 2.239(16)-2.836(17) Å. Each Ca 2+ and TaF 72- moiety is bonded to 6 counter-ions. BaTaF 7 crystallizes in a cubic system, space group Pa3¯,a = 9.9009(3)Å, V = 970.56(5) Å 3. Coordination sphere around Ta atom is mono-capped trigonal prism with a Ta-F distance of 1.916(5)-2.004(5) Å. Two crystallographically independent barium atoms have different coordination numbers: for Ba1 C.N. is 12 with Ba1-F distances of 6 × 2.761(5) Å and 6 × 2.858(5) Å, for Ba2 C.N. is 14 with Ba2-F bond lengths 6 × 2.718(5), 2 × 2.814(8) and 6 × 3.236(5) Å. Ba 2+ and TaF 72- moieties are bonded to 8 neighbors. Isostructural PbTaF 7 and SrTaF 7 appear to be monoclinic, space group P2 1/ m, a = 4.8657(11) Å, b = 7.2298(16) Å, c = 6.7370(16) Å, β = 93.932(13)°, V = 236.44(9) Å 3 for PbTaF 7, and a = 4.875(3) Å, b = 7.196(4) Å, c = 6.7218(13) Å, β = 94.265(10), V = 235.2(2) Å for SrTaF 7. Tantalum coordination polyhedron may be described as a distorted mono-capped trigonal prism with the capping atom located on one of the rectangular faces with Ta-F distances of 1.868(3)-1.982(3) Å (PbTaF 7) and 1.908(16)-2.019(12) Å (SrTaF 7). Lead (or strontium) atoms are 9-coordinated and may be viewed as strongly distorted tri-capped trigonal prism, Pb-F 2.438(4)-2.669(3) Å, Sr-F 2.501(19)-2.860(19) Å. Each cation is connected to 8 anions.

  2. Tuning the electrocaloric effect by varying Sr concentration in ferroelectric Ba1 -xSrxTiO3

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2018-05-01

    The electrocaloric effect is investigated systematically in Ba1 -xSrxTiO3 ferroelectrics using a semiclassical direct computational approach. The data are reported for the technologically important range of Sr concentrations of 0.0-0.6, electric fields up to 1000 kV/cm, and temperatures ranging from 5 to 600 K. A detailed comparison of computational data with experimental data from the literature reveals semiquantitative agreement and suggests the origin of discrepancies. The electrocaloric change in temperature Δ T shows strong dependence on Sr concentration which offers a way to tune electrocaloric response. In particular, the maximum electrocaloric Δ T is found to decrease with the increase in Sr concentration, whereas the location of the maximum shifts towards lower temperatures following the Curie point of the ferroelectric. Surprisingly, the width of the peak in the dependence of Δ T on the initial temperature is independent of the Sr concentration but shows a strong dependence on the applied electric field. Computational data are used to propose a compositionally graded ferroelectric Ba0.70Sr0.30TiO3/Ba0.55Sr0.45TiO3/Ba0.50Sr0.50TiO3/Ba0.45Sr0.55TiO3 whose Δ T shows almost no temperature dependence in the technologically important range of temperatures and electric fields. Such a desirable feature could potentially lead to the enhancement of relative cooling power.

  3. Upconversion luminescence in BaMoO{sub 4}:Pr{sup 3+} phosphor for display devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, Abhishek Kumar; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    2015-08-28

    The frequency upconversion is an important nonlinear optical property by which near infrared light is converted into the visible light. The BaMoO{sub 4}:Pr{sup 3+} powder phosphor has been synthesized by solid state reaction method. The upconversion emission bands are recorded under the excitation of 808 nm diode laser. The phase formation of the prepared phosphor has been identified by powder X-ray diffraction (XRD) technique. The upconversion emission mechanism and colour coordinate have been explained by using energy level and CIE (International Commission on Illumination) chromaticity diagram study, respectively.

  4. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  5. Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.

    PubMed

    Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush

    2017-11-01

    We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Red/blue-shift dual-directional regulation of α-(Ca, Sr)2SiO4:Eu(2+) phosphors resulting from the incorporation content of Eu(2+)/Sr(2+) ions.

    PubMed

    Lu, Zhijuan; Mao, Zhiyong; Chen, Jingjing; Wang, Dajian

    2015-09-21

    In this work, tunable emission from green to red and the inverse tuning from red to green in α-(Ca, Sr)2SiO4:Eu(2+) phosphors were demonstrated magically by varying the incorporation content of Eu(2+) and Sr(2+) ions, respectively. The tunable emission properties and the tuning mechanism of red-shift resulting from the Eu(2+) content as well as that of blue-shift induced by the Sr(2+) content were investigated in detail. As a result of fine-controlling the incorporation content of Eu(2+), the emission peak red-shifts from 541 nm to 640 nm. On the other hand, the emission peak inversely blue-shifts from 640 nm to 546 nm through fine-adjusting the incorporation content of Sr(2+). The excellent tuning characteristics for α-(Ca, Sr)2SiO4:Eu(2+) phosphors presented in this work exhibited their various application prospects in solid-state lighting combining with a blue chip or a near-UV chip.

  7. A green-yellow emitting oxyfluoride solid solution phosphor Sr[subscript 2]Ba(AlO[subscript 4]F)[subscript 1;#8722;x](SiO[subscript 5])x:Ce[superscript 3+] for thermally stable, high color rendition solid state white lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denault, Kristin A.; George, Nathan C.; Paden, Sara R.

    2012-10-23

    A near-UV excited, oxyfluoride phosphor solid solution Sr{sub 1.975}Ce{sub 0.025}Ba(AlO{sub 4}F){sub 1-x}(SiO{sub 5}){sub x} has been developed for solid state white lighting applications. An examination of the host lattice, and the local structure around the Ce{sup 3+} activator ions through a combination of density functional theory, synchrotron X-ray and neutron powder diffraction and total scattering, and electron paramagnetic resonance, points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The maximum emission wavelength can be tuned from green ({lambda}{sub em} = 523 nm) to yellow ({lambda}{sub em} = 552 nm) by tuning themore » composition, x. Photoluminescent quantum yield is determined to be 70 {+-} 5% for some of the examples in the series. Excellent thermal properties were found for the x = 0.5 sample, with the photoluminescence intensity at 160 C only decreased to 82% of its room temperature value. Phosphor-converted LED devices fabricated using an InGaN LED ({lambda}{sub max} = 400 nm) exhibit high color rendering white light with R{sub a} = 70 and a correlated color temperature near 7000 K. The value of R{sub a} could be raised to 90 by the addition of a red component, and the correlated color temperature lowered to near 4000 K.« less

  8. Laser induced fluorescence of BaS: Sm phosphor and energy level splitting of Sm 3+ ion

    NASA Astrophysics Data System (ADS)

    Thomas, Reethamma; Nampoori, V. P. N.

    1990-03-01

    Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540-660nm superposed by the characteristic Sm 3+ lines. Energy level splitting pattern of Sm 3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm 3+ takes up Ba 2+ substitutional sites.

  9. Improvement of electron mobility in La:BaSnO{sub 3} thin films by insertion of an atomically flat insulating (Sr,Ba)SnO{sub 3} buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiogai, Junichi, E-mail: junichi.shiogai@imr.tohoku.ac.jp; Nishihara, Kazuki; Sato, Kazuhisa

    One perovskite oxide, ASnO{sub 3} (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO{sub 3} substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO{sub 3} / (Sr,Ba)SnO{sub 3} for buffering this large lattice mismatch between La:BaSnO{sub 3} and SrTiO{sub 3} substrate. The insertion of 200-nm-thick BaSnO{sub 3} on (Sr,Ba)SnO{sub 3} bilayer buffer structures reduces the number of dislocationsmore » and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO{sub 3} buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO{sub 3} shows that the highest obtained value of mobility is 78 cm{sup 2}V{sup −1}s{sup −1} because of its fewer dislocations. High electron mobility films based on perovskite BaSnO{sub 3} can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.« less

  10. Ba2ZnWO6:Sm3+ as promising orange-red emitting phosphors: Photoluminescence properties and energy transfer process

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Hu, Wenyuan; Yang, Dingming; Zhu, Jiayi; Zhang, Jing; Wu, Yadong

    2018-02-01

    Novel orange-red emitting phosphors, Ba2Zn1-xWO6:xSm3+ (x = 0.03, 0.04, 0.05, 0.06 and 0.07) (BZW:Sm3+), were prepared using a high-temperature solid-state reaction method. Their crystal structure and photoluminescence properties were characterized and the mechanism of energy transfers between Ba2ZnWO6 and Sm3+ elucidated in detail. It was found that the phosphors had a cubic structure with space group Fm 3 bar m . They can be excited by near-ultraviolet light, and the characteristic emissions of Sm3+ ions are observed at 564 nm, 598 nm and 645 nm, corresponding to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions, respectively. The 4G5/2 → 6H9/2 transitions shows the greatest intensity, which indicates that Sm3+ ions occupy the noncentrosymmetric sites. The optimal doping concentration of Sm3+ ions in Ba2ZnWO6 is about 5 mol% and the phenomenon of concentration quenching occurs when the content of Sm3+ ions exceeds 5 mol%. All results show that the Ba2ZnWO6:Sm3+ phosphor holds great promise for use in high-quality white light-emitting diodes.

  11. Pressure-induced photoluminescence in Mn2+-doped BaF2 and SrF2 fluorites

    NASA Astrophysics Data System (ADS)

    Hernández, Ignacio; Rodríguez, Fernando

    2003-01-01

    This work reports an effective way for inducing room temperature photoluminescence (PL) in Mn2+-doped BaF2 and SrF2 using high-pressure techniques. The aim is to understand the surprising PL behavior exhibited by Mn2+ at the cubal site of the fluorite structure. While Mn2+-doped CaF2 shows a green PL with quantum yield close to 1 at room temperature, Mn2+-doped MF2 (M=Ba,Sr) is not PL either at room temperature (SrF2) or at any temperature (BaF2) at ambient pressure. We associate the loss of Mn2+ PL on passing from CaF2 to SrF2 or BaF2 with nonradiative multiphonon relaxation whose thermal activation energy decreases along the series CaF2→SrF2→BaF2. A salient feature of this work deals with the increase of activation energy induced by pressure. It leads to a quantum yield enhancement, which favors PL recovery. Furthermore, the activation energy mainly depends on the crystal volume per molecule irrespective of the crystal structure or the local symmetry around the impurity. In this way, the relevance of the fluorite-to-cotunnite phase transition is analyzed in connection with the PL properties of the investigated compounds. The PL spectrum and the corresponding lifetime are reported for both structural phases as a function of pressure.

  12. Ionic-Liquid-Assisted Microwave Synthesis of Solid Solutions of Sr 1–xBa xSnO 3 Perovskite for Photocatalytic Applications

    DOE PAGES

    Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim; ...

    2017-06-06

    Nanocrystalline Sr 1–xBa xSnO 3 (x = 0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat-treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X-ray diffraction results, as the Ba content in the SrSnO 3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO 3 to the cubic BaSnO 3 structure. The analysis of the sample morphology by SEM reveals that the Sr 1–xBa xSnO 3more » samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba 2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr 0.8Ba 0.2SnO 3 > SrSnO 3 > BaSnO 3 > Sr 0.6Ba 0.4SnO 3 > Sr 0.2Ba 0.8SnO 3. Here, the highest photocatalytic activity was observed for Sr 0.8Ba 0.2SnO 3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band-edge position.« less

  13. Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2

    NASA Astrophysics Data System (ADS)

    Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang

    Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.

  14. Improved water resistance of SrAl2O4: Eu2+, Dy3+ phosphor directly achieved in a water-containing medium

    NASA Astrophysics Data System (ADS)

    Qi, Tonggang; Xia, Haofu; Zhang, Zhanhui; Kong, Shijin; Peng, Weikang; Zhao, Qi; Huang, Zhiliang

    2017-03-01

    In this paper, a heterogeneous precipitation method utilizing urea hydrolysis was adopted to coat a SiO2 layer on the surface of SrAl2O4:Eu2+, Dy3+ long persistence phosphors. To avoid phosphor hydrolysis in a water-containing coating medium, the hydrolysis and polymerization reactions of tetraethyl orthosilicate (TEOS) were concerned and carried out. The crystal phases, surface morphologies, hydrolysis stability and water resistance on afterglow properties of coated phosphors were investigated. Scanning electron microscopy, energy dispersive spectrum analysis, transmission electron microscope and Fourier transform infrared spectrum results confirmed that a continuous, uniform and compact SiO2 coating layer was successfully obtained on the phosphors surface. A theoretical coating amount of 5% or higher was found to be good for hydrolysis stability. Photoluminescence results revealed the coated phosphors showed much better water resistance on afterglow properties than the uncoated phosphor. We also discussed and proposed the hydrolysis restriction mechanism of SrAl2O4:Eu2+, Dy3+ in the water-containing coating medium.

  15. Luminescence properties of long-lasting phosphor SrMg2(PO4)2:Eu2+, Ho3+, Zr4+

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Wang, Mingwen; Lin, Wei; Ye, Yaping; Wu, Xue

    2016-12-01

    Novel long lasting phosphors SrMg2(PO4)2:Eu2+, SrMg2(PO4)2:Eu2+, Zr4+, SrMg2(PO4)2:Eu2+, Ho3+ and SrMg2(PO4)2:Eu2+, Ho3+, Zr4+ were synthesized by conventional solid-state reaction method. The luminescent properties were systematically characterized by X-ray diffraction, photoluminescent excitation and emission spectra, as well as thermoluminescence spectrum and decay curves. The XRD patterns indicated that the samples belonged to monoclinic phase and co-doping Eu2+, Ho3+ and Zr4+ ions had no effect on the basic crystal structure. These phosphors emitting purplish blue light is related to the characteristic emission of Eu2+. The afterglow time of Eu2+ activated SrMg2(PO4)2 can be greatly enhanced by the co-doping of Ho3+, Zr4+. After the 365 nm UV light excitation source switching off, the Sr0.92Mg1.95(PO4)2:Eu2+0.01, Zr4+0.05, Ho3+0.07 phosphorescence can be observed for more than 1013 s in the limit of light perception of dark-adapted human eyes (0.32 mcd/m2). Different kinds of TL peaks at 423, 448 and 473 K have appeared, and traps densities have increased compared with the Eu2+ single doped SrMg2(PO4)2 phosphor. By analyzing the TL curve the depths of traps were calculated to be 0.846, 0.896 and 0.946 eV, respectively, which suggested that the co-doping of Ho3+, Zr4+ improved the electron storage ability of material. Besides, the mechanism was discussed in this report.

  16. Eu2+-doped Ba2GaB4O9Cl blue-emitting phosphor with high color purity for near-UV-pumped white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gao, Zhiwen; Deng, Huajuan; Xue, Na; Jeong, Jung Hyun; Yu, Ruijin

    2018-01-01

    Eu2+-doped borate fluoride Ba2GaB4O9Cl was synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal luminescence quenching capabilities and CIE chromaticity coordinates were systematically investigated. Under the excitation at 340 nm, the phosphor exhibited an asymmetric broad-band blue emission with a peak at 445 nm, which is ascribed to the 4f-5d transition of Eu2+. It was further proved that energy transfer among the nearest neighbor ions is the major mechanism for concentration quenching of Eu2+ in Ba2-xGaB4O9Cl:xEu2+ phosphors. The luminescence quenching temperature is 432 K. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicated that the blue-emitting Ba2GaB4O9Cl:Eu2+ phosphor has potential application in white LEDs.

  17. A novel blue-greenish emitting phosphor Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} with high thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Chao; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Hu, Yingmo, E-mail: huyingmo@cugb.edu.cn

    Highlights: • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphors exhibit a broad excitation band. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} emission color adjust from blue to green. • The Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} show superior thermal stability. - Abstract: Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}(m = 0.01–0.50) phosphors have been prepared by a traditional high temperature solid-state reaction. XRD analysis verified the apatite-type phase structure of the as-prepared samples, and the morphology has been checked by the Scanning electron microscope (SEM). The emission spectrum of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:Tb{sup 3+} phosphor consists of two regions, blue emission bandmore » from 380 to 470 nm and green emission band from 470 to 650 nm. With increasing Tb{sup 3+} ions doped concentration (m), the color hue of Ba{sub 3}La{sub 1−m}K(PO{sub 4}){sub 3}F:mTb{sup 3+}adjusts from blue to green. On the basis of concentration quenching method, the critical distance between Tb{sup 3+} ions is calculated to be 7.98 Å, suggesting that multipolar interaction predominate in quenching process. In addition, the temperature-dependence PL spectra of Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.01Tb{sup 3+} and Ba{sub 3}LaK(PO{sub 4}){sub 3}F:0.40Tb{sup 3+} phosphor are given,which exhibit superior thermal stability.« less

  18. DEPENDENCE OF THE Sr-TO-Ba AND Sr-TO-Eu RATIO ON THE NUCLEAR EQUATION OF STATE IN METAL-POOR HALO STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Famiano, M. A.; Kajino, T.; Aoki, W.

    A model is proposed in which the dependence on the equation of state (EOS) of the scatter of [Sr/Ba] in metal-poor stars is studied. Light r-process element enrichment in these stars has been explained via a truncated r-process, or “tr-process.” The truncation of the r-process from a generic core-collapse event followed by a collapse into an accretion-induced black hole is examined in the framework of a galactic chemical evolution model. The constraints on this model imposed by observations of extremely metal-poor stars are explained, and the upper limits in the [Sr/Ba] distributions are found to be related to the nuclearmore » EOS in a collapse scenario. The scatter in [Sr/Ba] and [Sr/Eu] as a function of metallicity has been found to be consistent with turbulent ejection in core-collapse supernovae. Adaptations of this model are evaluated to account for the scatter in isotopic observables. This is done by assuming mixing in ejecta in a supernova event. Stiff EOS are eliminated by this model.« less

  19. A single-phase white light emitting Pr3+ doped Ba2CaWO6 phosphor: synthesis, photoluminescence and optical properties

    NASA Astrophysics Data System (ADS)

    Sreeja, E.; Vidyadharan, Viji; Jose, Saritha K.; George, Anns; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2018-04-01

    Pr3+ doped Ba2CaWO6 phosphor were prepared by traditional high-temperature solid-state reaction technique. The structure evolution was systematically investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The X-ray powder diffraction patterns indicate that the prepared phosphors crystallized in the cubic double-perovskite structure. The functional groups were identified using FTIR spectra and the elements present in the composition were confirmed by the EDS profile. The morphology of the phosphor was identified using SEM and TEM analysis. The PL spectra illustrated that these phosphors could be efficiently excited by charge transfer band of host and the maximum luminescence intensity was observed at 0.06 wt% of Pr3+ ion. Upon the charge transfer band excitation, emission spectra showed peaks at 489, 532, 647, 685 and 737 nm corresponding to 3P0→3H4, 3P1→3H5, 3P0→3F2, 3P0→3F3 and 3P0→3F4 transitions respectively. The concentration quenching of Ba2CaWO6:Pr3+ phosphor can be mainly attributed to dipole-dipole interaction. The CIE coordinates were estimated to be close to the white region. The decay curves are well fitted with double exponential decay models. The standard and modified Judd-Ofelt (JO) theories were used to determine the Judd-Ofelt intensity parameters, radiative transition probabilities and branching ratios. The optical properties indicate that Ba2CaWO6:Pr3+ phosphors can produce white light emission from a single phase host and its potential application for solid-state lighting and display devices.

  20. Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.

    Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that ofmore » commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.« less

  1. Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Smetana, V.; Mudring, A.-V.; Johnston, D. C.

    2018-01-01

    Crystals of SrMn2Sb2 and BaMn2Sb2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ , heat capacity Cp, and magnetic susceptibility χ measurements versus temperature T , and magnetization versus field M (H ) isotherm measurements. SrMn2Sb2 adopts the trigonal CaAl2Si2 -type structure, whereas BaMn2Sb2 crystallizes in the tetragonal ThCr2Si2 -type structure. The ρ (T ) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn2Sb2 and 0.16 eV for BaMn2Sb2 . The χ (T ) and Cp(T ) data reveal antiferromagnetic (AFM) ordering at TN = 110 K for SrMn2Sb2 and 450 K for BaMn2Sb2 . The anisotropic χ (T ≤TN) data also show that the ordered moments in SrMn2Sb2 are aligned in the hexagonal a b plane, whereas the ordered moments in BaMn2Sb2 are aligned collinearly along the tetragonal c axis. The a b -plane M (H ) data for SrMn2Sb2 exhibit a continuous metamagnetic transition at low fields 0 BaMn2Sb2 exhibits no metamagnetic transitions up to 5.5 T. The χ (T ) and C p(T ) data for both SrMn2Sb2 and BaMn2Sb2 indicate strong dynamic short-range AFM correlations above their respective TN up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl2Si2 and ThCr2Si2 crystal structures show that the TN values for the CaAl2Si2 -type compounds are much smaller than those for the ThCr2Si2 -type materials.

  2. Synthesis and Luminescence Properties of Blue Na(Sr0.97-xCa(x))PO4:0.03Eu2+ Phosphors for White Light Emitting Diode Applications.

    PubMed

    Hakeem, D A; Park, K

    2015-07-01

    The crystal structure and luminescence properties of Na(Sr0.97-xCax)PO4:0.03Eu2+ (0 < x < 1.0) phosphors were studied, depending on the Ca2+ concentration. All the Na(Sr0.97-xCax)PO4:0.03Eu2+ phosphors had a hexagonal crystal structure. The excitation spectra of the prepared phosphors showed a broad band ranging from 250 to 420 nm, which arises due to the 4f-5d transitions of Eu2+ ions. Upon the excitation of 334 nm wavelength, the emission spectra showed a broad blue band ranging from 400 to 700 nm peaking at 450 nm. Among the prepared phosphors, the Na(Sr0.72Ca0.25)PO4:0.03Eu2+ showed the strongest emission intensity and could be applied as a blue emitting phosphor for UV-based w-LEDs.

  3. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Rai, Vineet Kumar

    2016-08-01

    The Er3+-Yb3+ codoped strontium molybdate (SrMoO4) phosphors have been synthesized via chemical co-precipitation method by adding ammonium hydroxide as a base reagent. The phase, crystal structure and formation of spindle-like particles present in the prepared phosphors have been recognized by using the X-ray powder diffraction (XRPD) and Field emission scanning electron microscopy (FE-SEM) techniques. The Fourier transform infrared (FTIR) spectroscopy of the developed phosphors has been analyzed to mark the different functional groups present in synthesized phosphors. The multicolour upconversion emissions observed upon excitation with 980 nm and 808 nm laser diode have been explained on the basis of dopants ions concentration, pump power dependence, energy level structure and decay curve analysis. The colour co-ordinate study confirmed that the codoped phosphor emits non-tunable green colour when excited with the 980 nm laser diode, whereas it shows the colour tunability from yellow to green region upon excitation with the 808 nm laser diode. The applicability of non-tunable green colour emission has been demonstrated in the security ink and latent finger print detection. This shows the utility of the developed phosphors in the photonic and forensic applications.

  4. Inhomogenous Broadening, Charge Compensation, and Luminescence Quenching in Ce 3+-Doped Sr 3AlO 4F Phosphors

    DOE PAGES

    Setlur, A. A.; Porob, D. G.; Happek, U.; ...

    2015-09-24

    The local coordination around luminescent ions in phosphors can affect the properties of these materials. Here, we analyze the Ce 3+ luminescence for the various Ce 3+ centers in Sr 3AlO 4F-based phosphors and use the excitation, emission, and quenching of these phosphors to infer aspects of the local coordination. It is shown that Ce 3+ centers with lower energy 4f 1→5d 1 absorption bands are likely from charge compensation effects by the replacement of F - by O 2-. In addition, at higher RE 3+ concentrations, additional Ce 3+ centers with even lower energy 4f 1→5d 1 absorption bandsmore » are present, presumably due to Ce 3+-RE 3+ pair formation and O 2- charge compensation. These Ce 3+ centers with lower energy 4f 1→5d 1 absorption bands have their luminescence strongly quenched at room temperature. The relationships between composition and Ce 3+ luminescence quenching for Sr 3AlO 4F-based phosphors are also discussed, giving evidence that Ce 3+(5d 1) ionization is the main cause for luminescence quenching in these materials.« less

  5. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  6. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as

  7. Luminescent properties of MAl(SO4)2 Br:Eu(3+) (M = Sr or Mg) red phosphors for near-UV light-emitting diodes.

    PubMed

    Deshmukh, Priti B; Puppalwar, S P; Dhoble, N S; Dhoble, S J

    2015-02-01

    Eu(3+) -activated MAl(SO4 )2 Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu(3+) -doped SrAl(SO4 )2 Br and MgAl(SO4 )2 Br phosphors exhibited characteristic red emission coming from the (5) D0  → (7) F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu(3+) . The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4 )2 Br:Eu(3+) , (M = Mg, Sr) phosphors have potential application in near-UV light-emitting diodes as efficient red-emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Antiferromagnetism in semiconducting SrMn 2 Sb 2 and BaMn 2 Sb 2 single crystals

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2018-01-03

    Here, crystals of SrMn 2Sb 2 and BaMn 2Sb 2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ, heat capacity C p, and magnetic susceptibility χ measurements versus temperature T, and magnetization versus field M(H) isotherm measurements. SrMn 2Sb 2 adopts the trigonal CaAl 2Si 2-type structure, whereas BaMn 2Sb 2 crystallizes in the tetragonal ThCr 2Si 2-type structure. The ρ(T) data indicate semiconducting behaviors for both compounds with activation energies of ≳0.35 eV for SrMn 2Sb 2 and 0.16 eV for BaMn 2Sb 2. The χ(T) andmore » C p(T) data reveal antiferromagnetic (AFM) ordering at T N = 110 K for SrMn 2Sb 2 and 450 K for BaMn 2Sb 2. The anisotropic χ(T≤T N) data also show that the ordered moments in SrMn 2Sb 2 are aligned in the hexagonal ab plane, whereas the ordered moments in BaMn 2Sb 2 are aligned collinearly along the tetragonal c axis. The ab-plane M(H) data for SrMn 2Sb 2 exhibit a continuous metamagnetic transition at low fields 02Sb 2 exhibits no metamagnetic transitions up to 5.5 T. The χ(T) and C p(T) data for both SrMn 2Sb 2 and BaMn 2Sb 2 indicate strong dynamic short-range AFM correlations above their respective T N up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl 2Si 2 and ThCr 2Si 2 crystal structures show that the T N values for the CaAl 2Si 2-type compounds are much smaller than those for the ThCr 2Si 2-type materials.« less

  9. Enhanced photoluminescence of SrWO{sub 4}:Eu{sup 3+} red phosphor synthesized by mechanochemically assisted solid state metathesis reaction method at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Anthuvan John, E-mail: quantajohn@gmail.com; Banu, I. B. Shameem

    2015-06-24

    Optically efficient europium activated alkaline earth metal tungstate nano phosphor (SrWO{sub 4}) with different doping concentrations have been synthesized by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The XRD and Raman spectra results indicated that the prepared powders exhibit a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 854 cm{sup −1}, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO{sub 4}]{sup 2−} tetrahedron groups. Analysis of the emission spectra with different Eu{sup 3+} concentrations revealed that the optimum dopant concentration for SrWO{sub 4}: x Eu{sup 3+} phosphormore » is about 8 mol% of Eu{sup 3+}.The red emission intensity of the SSM prepared SrWO{sub 4}: 0.08Eu{sup 3+} phosphors are 2 times greater than that of the commercial Y{sub 2}O{sub 2}S: Eu{sup 3+} red phosphor prepared by the conventional solid state reaction method. All the results indicate that the phosphor is a promising red phosphor pumped by NUV InGaN chip for fabricating WLED.« less

  10. UVB emitting LiSrBO3 phosphor for phototherapy lamp

    NASA Astrophysics Data System (ADS)

    Kunghatkar, R. G.; Hemne, P. S.; Dhoble, S. J.

    2018-05-01

    LiSrBO3 doped Gadolinium have been synthesized by sol gel technique. The formation of host was confirmed by XRD techniques. The incorporation of Gd3+ was confirmed by photoluminescence (PL) characterization. The UVB emission is observed at 316 nm when UV excited by 274 nm. The second order emission are also observed in PL emission spectra at 612 nm and 627 nm. Energy band gap is found to be 5.81 eV by using Kubelka - Munk function. The UVB emission at 316 nm of Gd3+ doped materials are used as phototherapy lamp phosphor.

  11. Novel Red-Orange Phosphors Na2BaMg(PO4)2:Pr3+: Synthesis, Crystal Structure and Photoluminescence Performance

    NASA Astrophysics Data System (ADS)

    Pan, Lu; Yang, Xiaozhan; Xiong, Chaoyue; Deng, Dashen; Qin, Chunlin; Feng, Wenlin

    2018-01-01

    A series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l'Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.

  12. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jian; Laboratory of Glasses and Nanostructured Functional Materials, 122 Luoshi Road, Wuhan, Hubei 430070; Xie, Rong-Jun, E-mail: Xie.Rong-Jun@nims.go.jp

    2013-12-15

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, α-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a majormore » phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color

  13. Synthesis, Crystal and Electronic Structures of the Pnictides AE 3TrPn 3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

    DOE PAGES

    Stoyko, Stanislav; Voss, Leonard; He, Hua; ...

    2015-09-24

    New ternary arsenides AE 3TrAs 3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr 3GaP 3 and Ba 3AlP 3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr 3AlAs 3 and Ba 3AlAs 3 adopt the Ba 3AlSb 3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr 3GaP 3 and Ba 3AlP 3. Likewise, the compounds Sr 3GaAs 3 and Ba 3GaAs 3 crystallize with the Ba 3GaSb 3-type structure (Pearson symbol oP56, space groupmore » Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn 4 and GaPn 4 tetrahedra (Pn = pnictogen, i.e., P or As), separated by the alkaline-earth Sr 2+ and Ba 2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE 2+] 3[Tr 3+][Pn 3-] 3, or rather [AE 2+] 6[Tr 2Pn 6] 12-, i.e., as Zintl phases.« less

  14. Development of europium doped BaSO4 TL OSL dual phosphor for radiation dosimetry applications

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2015-08-01

    This paper presents the results on the preparation and characterization of Europium-doped Barium sulfate (BaSO4: Eu) TL /OSL dual phosphor. The OSL sensitivity was found to be 11% of the commercially available Al2O3: C, using area integration method. The sample also shows good TL sensitivity and the dosimetric peak appears around 190°C with a shoulder at 282°C. After OSL readout, No change in the TL glow curve is observed. Since the observed TL peaks are not responsible for the observed OSL, good OSL as well as TL sensitivity and low fading will make this phosphor suitable for applications in radiation dosimetry using OSL as well as TL.

  15. New yellow Ba 0.93Eu 0.07Al 2O 4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xufan; Budai, John D.; Liu, Feng

    2013-01-01

    Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba 0.93Eu 0.07Al 2O 4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80more » were readily achieved when combining the Ba 0.93Eu 0.07Al 2O 4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.« less

  16. Photoluminescence properties and structure of double perovskite Ba2ZnWO6:Eu3+, Li+ as a novel red emitting phosphor

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Dingming; Hu, Wenyuan; Zhang, Jing; Wu, Yadong

    2017-12-01

    Novel red-emitting Ba2Zn1-x-yWO6:xEu3+, yLi+ phosphors were prepared using a high-temperature solid-state method, and the crystal structure, the photoluminescence properties and the doping concentrations of Eu3+ and Li+ were investigated. The results show that these phosphors can be excited by near-ultraviolet light (250-400 nm) and co-doped Li+ can significantly enhance their PL performance. An intense red emission peak at 598 nm (5D0-7F1 transitions) was observed with an excitation wavelength of 316 nm. The CIE chromaticity coordinates of the phosphors are located in the red region, indicating that the BZW:Eu3+, Li+ phosphor holds promise as a red phosphor for near-ultraviolet excited WLEDs.

  17. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    NASA Astrophysics Data System (ADS)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  18. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  19. c-Axis oriented epitaxial Ba 0.25Sr 0.75TiO 3 films display Curie-Weiss behavior

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Claeson, T.

    2002-02-01

    Thin films of ferroelectrics have inferior dielectric properties, including microwave losses, compared to bulk material and generally do not display a proper Curie-Weiss behavior. This study shows that the film properties can be improved considerably, with a Curie-Weiss behavior, by choosing lattice matched electrodes and proper stoichiometry. A 700 nm thick Ba 0.25Sr 0.75TiO 3 layer was inserted, by laser ablation, between two epitaxial metallic oxide (200 nm) SrRuO 3 electrodes. Because of compressive stress in the plane of the substrate, the c-axis of the unit cell in the Ba 0.25Sr 0.75TiO 3 layer was normal to the substrate plane. Grains were of the order of 100-200 nm (with small misorientation angles in a× b plane) as determined by X-rays and AFM. The positions of pronounced maxima in the temperature dependence of the permittivity depended on external bias voltage applied between the SrRuO 3 electrodes to the dielectric film. The measured ε( T) curves agreed well with existing theoretical models at temperatures below and above the ferroelectric phase transition point. At T≈200 K, ε/ ε0 for the Ba 0.25Sr 0.75TiO 3 layer was suppressed up to 85% (from 4400 down to 560) when ±2.5 V bias voltage was applied to the metallic oxide electrodes. Well saturated polarization-vs.-voltage hysteresis loops were measured for the Ba 0.25Sr 0.75TiO 3 layer in the temperature interval 4.2-200 K. Because of depolarization effects, the polarization of the Ba 0.25Sr 0.75TiO 3 layer was suppressed at positive voltage applied between the electrodes, as compared with a negative one.

  20. A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong

    2014-09-01

    By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.

  1. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  2. Mechanochemical synthesis of MgF2 - MF2 composite systems (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Scholz, G.; Breitfeld, S.; Krahl, T.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2015-12-01

    The capability of mechanochemical synthesis for the formation of MgF2-MF2 (M: Ca, Sr, Ba) composites, solid solutions or well-defined compounds was tested applying a fluorination of different fluorine-free metal sources with NH4F directly at milling. No evidence was found for a substitution of Mg2+ with Ca2+ (Sr2+, Ba2+) ions, or vice versa, in rutile or fluorite structure. However, an equimolar ratio of Mg2+ to the second cation allows the mechanochemical synthesis of tetrafluoromagnesates, MMgF4, which is more and more hampered the smaller the radius of the cation M2+ is. BaMgF4 is formed even phase pure from the acetates, SrMgF4 can only be observed in a mixture accompanied by the binary fluorides. In addition, 19F MAS NMR spectra along with calculations of 19F isotropic chemical shift values according to the superposition model point to the formation of a metastable phase of CaMgF4, which disappears at thermal treatment and decomposes into the binary fluorides CaF2 and MgF2.

  3. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    PubMed

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  5. Prevention of thermal- and moisture-induced degradation of the photoluminescence properties of the Sr2Si5N8:Eu(2+) red phosphor by thermal post-treatment in N2-H2.

    PubMed

    Zhang, Chenning; Uchikoshi, Tetsuo; Xie, Rong-Jun; Liu, Lihong; Cho, Yujin; Sakka, Yoshio; Hirosaki, Naoto; Sekiguchi, Takashi

    2016-05-14

    A red phosphor of Sr2Si5N8:Eu(2+) powder was synthesized by a solid state reaction. The synthesized phosphor was thermally post-treated in an inert and reductive N2-H2 mixed-gas atmosphere at 300-1200 °C. The main phase of the resultant phosphor was identified as Sr2Si5N8. A passivation layer of ∼0.2 μm thickness was formed around the phosphor surface via thermal treatment. Moreover, two different luminescence centers of Eu(SrI) and Eu(SrII) in the synthesized Sr2Si5N8:Eu(2+) phosphor were proposed to be responsible for 620 nm and 670 nm emissions, respectively. More interestingly, thermal- and moisture-induced degradation of PL intensity was effectively reduced by the formation of a passivation layer around the phosphor surface, that is, the relative PL intensity recovered 99.8% of the initial intensity even after encountering thermal degradation; both moisture-induced degraded external and internal QEs were merely 1% of the initial QEs. The formed surface layer was concluded to primarily prevent the Eu(2+) activator from being oxidized, based on the systemic analysis of the mechanisms of thermal- and moisture-induced degradation.

  6. Facile solution-precipitation assisted synthesis and luminescence property of greenish-yellow emitting Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Haipeng; Huang, Zhaohui, E-mail: huang118@cugb.edu.cn; Xia, Zhiguo, E-mail: xiazg@ustb.edu.cn

    2016-03-15

    Highlights: • Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was prepared by the solution-precipitation assisted route. • The phosphors have satisfactory smooth grain surface and particle size. • It shows greenish-yellow color emission (maximum at 540 nm) upon blue light excitation. • Eu{sup 2+} is coordinated with isolated oxygen atoms and those from PO{sub 4} polyhedra. - Abstract: Greenish-yellow emitting microcrystalline Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphorsmore » were obtained with smooth grain surface and particle size of 2–8 μm. Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu{sup 2+} emission centers in the Ca{sub 6}Ba(PO{sub 4}){sub 4}O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO{sub 4} tetrahedra.« less

  7. Host composition dependent tunable multicolor emission in the single-phase Ba2(Ln(1-z)Tb(z))(BO3)2Cl:Eu phosphors.

    PubMed

    Xia, Zhiguo; Zhuang, Jiaqing; Meijerink, Andries; Jing, Xiping

    2013-05-14

    A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

  8. Numerical solutions of anharmonic vibration of BaO and SrO molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony, E-mail: tsumaryada@ipb.ac.id

    2016-03-11

    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function’s profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potentialmore » solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.« less

  9. High-brightness and high-color purity red-emitting Ca3Lu(AlO)3(BO3)4:Eu3+ phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes.

    PubMed

    Huang, Xiaoyong; Wang, Shaoying; Li, Bin; Sun, Qi; Guo, Heng

    2018-03-15

    In this work, we reported on high-brightness Eu 3+ -activated Ca 3 Lu(AlO) 3 (BO 3 ) 4 (CLAB) red-emitting phosphors. Under 397 nm excitation, the CLAB:Eu 3+ phosphors showed intense red emissions at around 621 nm with CIE coordinates of (0.657, 0.343). The optimal doping concentration of Eu 3+ ions was found to be 30 mol. %, and the CLAB:0.3Eu 3+ sample possessed high-color purity of 93% and ultra-high internal quantum efficiency as great as 98.5%. Importantly, the CLAB:0.3Eu 3+ also had good thermal stability. Finally, a white-light-emitting diode (WLED) lamp with good color-rendering index was fabricated by using a 365 nm ultraviolet chip and the phosphor blends of CLAB:0.3Eu 3+ red-emitting phosphors, (Ba,Sr) 2 SiO 4 :Eu 2+ green-emitting phosphors, and BaMgAl 10 O 7 :Eu 2+ blue-emitting phosphors.

  10. Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang

    2017-05-01

    Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.

  11. A novel single-phase white phosphor NaBaBO{sub 3}:Dy{sup 3+},K{sup +} for near-UV white light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianghui; Cheng, Qijin; Wu, Jieyang

    Highlights: • A white phosphor NaBaBO{sub 3}:Dy{sup 3+},K{sup +} with CIE coordinate (0.301, 0.308) was synthesized. • The optimum doping concentration of Dy{sup 3+} ions was found. • The effect and mechanism of K{sup +} ion as a charge compensator were discussed. • Temperature-dependent PL property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} was studied. • PL decay and quantum efficiency behaviors of the samples were investigated. - Abstract: A novel Dy{sup 3+}-doped NaBaBO{sub 3} white-emitting phosphor has been prepared by high temperature solid-state reaction method. The phase structure and luminescence properties of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} samples were investigated. Photoluminescence resultsmore » show that the as-prepared samples could be effectively excited by near-ultraviolet (NUV) light and generate white light emission due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2} (blue) transition and {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2} (yellow) transition of Dy{sup 3+} ions, respectively. The optimum doping concentration of Dy{sup 3+} ions in the NaBaBO{sub 3} host was determined to be 5.0 mol% and the CIE chromaticity of the sample was determined to be (0.301, 0.308). Moreover, the mechanism of K{sup +} ion as a charge compensator on the improvement of photoluminescence property and the effect of temperature on the photoluminescence property of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were investigated. Furthermore, photoluminescence decay and quantum efficiency behaviors of NaBaBO{sub 3}:Dy{sup 3+},K{sup +} were also studied. The present work demonstrates that the NaBaBO{sub 3}:Dy{sup 3+},K{sup +} phosphor is a potential candidate for NUV white light emitting diodes.« less

  12. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    PubMed

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications

    PubMed Central

    Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi

    2010-01-01

    Nitridosilicates are structurally built up on three-dimensional SiN4 tetrahedral networks, forming a very interesting class of materials with high thermomechanical properties, hardness, and wide band gap. Traditionally, nitridosilicates are often used as structural materials such as abrasive particles, cutting tools, turbine blade, etc. Recently, the luminescence of rare earth doped nitridosilicates has been extensively studied, and a novel family of luminescent materials has been developed. This paper reviews the synthesis, luminescence and applications of nitridosilicate phosphors, with emphasis on rare earth nitrides in the system of M-Si-Al-O-N (M = Li, Ca, Sr, Ba, La) and their applications in white LEDs. These phosphors exhibit interesting luminescent properties, such as red-shifted excitation and emission, small Stokes shift, small thermal quenching, and high conversion efficiency, enabling them to use as down-conversion luminescent materials in white LEDs with tunable color temperature and high color rendering index.

  14. Study on photoluminescence and energy transfer of Eu3+/Sm3+ single-doped and co-doped BaB8O13 phosphors

    NASA Astrophysics Data System (ADS)

    Lephoto, Mantwa A.; Tshabalala, Kamohelo G.; Motloung, Selepe J.; Ahemen, Iorkyaa; Ntwaeaborwa, Odireleng M.

    2018-04-01

    A series of Sm3+, Eu3+ and Eu3+- Sm3+ doped BaB8O13 were synthesized by using a solution combustion method. When excited at 394 nm, BaB8O13: Eu3+ emits red light, and the strongest peak was located at 614 nm, which is attributed to the 5D0→7F2 transition of Eu3+. BaB8O13: Sm3+ produced red-orange light, and the major emission peak was located at 596 nm under the 402 nm radiation excitation, which is assigned to the 4G5/2→6H7/2 transition of Sm3+. When excited at 402 nm, the PL emission intensity from BaB8O13: 0.05Eu3+; 0.005Sm3+ at 614 nm was enhanced considerably compared to that of the sample without Sm3+, suggesting that energy was transferred from Sm3+ to Eu3+. The Commission International de I‧Eclairage (CIE) chromaticity coordinates of BaB8O13: 0.05Eu3+; 0.005Sm3+ powder phosphor (0.637, 0.362) are located in the red region indicating that the phosphor can serve as a source of red light in LEDs.

  15. Synthesis and luminescence characterization of Y2 BaZnO5 :RE (RE = Eu3+ , Tb3+ , Pr3+ and Sm3+ ) phosphors.

    PubMed

    Taikar, D R; Joshi, C P; Moharil, S V

    2017-09-01

    Modified synthesis and luminescence of Y 2 BaZnO 5 phosphors activated with the rare earths (RE) Eu 3 + , Tb 3 + , Pr 3 + and Sm 3 + are reported. RE 2 BaZnO 5 phosphors have attracted attention because of their interesting magnetic and optical properties; and are usually prepared using a two-step solid-state reaction. In the first step, carbonates or similar precursors are thoroughly mixed and heated at 900°C to decompose them to oxides. To eliminate the unwanted phases like BaRE 2 O 4 , the resulting powders are reheated at 1100°C for a long time. We prepared Y 2 BaZnO 5 phosphors activated with various activators by replacing the first step with combustion synthesis. The photoluminescence results are presented. The photoluminescence results for Eu 3 + , Tb 3 + and Pr 3 + are in good agreement with the literature. However, photoluminescence emission from Sm 3 + has not been documented previously. The excitation spectrum of Eu 3 + is dominated by a charge transfer band around 261 nm, and an additional band around 238 nm is always present, irrespective of the type of activator. The presence of this band for all these different types of activators was interpreted as host absorption. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Development of europium doped BaSO{sub 4} TL OSL dual phosphor for radiation dosimetry applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patle, Anita, E-mail: patle.anita25@gmail.com; Patil, R. R.; Kulkarni, M. S.

    This paper presents the results on the preparation and characterization of Europium-doped Barium sulfate (BaSO{sub 4}: Eu) TL /OSL dual phosphor. The OSL sensitivity was found to be 11% of the commercially available Al{sub 2}O{sub 3}: C, using area integration method. The sample also shows good TL sensitivity and the dosimetric peak appears around 190°C with a shoulder at 282°C. After OSL readout, No change in the TL glow curve is observed. Since the observed TL peaks are not responsible for the observed OSL, good OSL as well as TL sensitivity and low fading will make this phosphor suitable formore » applications in radiation dosimetry using OSL as well as TL.« less

  17. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    NASA Astrophysics Data System (ADS)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  18. Structural studies of the rhombohedral and orthorhombic monouranates: CaUO{sub 4}, α-SrUO{sub 4}, β-SrUO{sub 4} and BaUO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Gabriel; Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au; Johannessen, Bernt

    The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In themore » rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.« less

  19. High dispersibility and enhanced luminescence properties of BaMgAl10O17:Eu2+ phosphors derived from molten salt synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Li, Jin-hong; Shi, Ping-lu; Guan, Wei-min; Zhang, Hong-yao

    2015-08-01

    BaMgAl10O17:Eu2+ (BAM) phosphors were prepared via the molten salt synthesis (MSS) method. The NaCl-KCl eutectic mixture and LiF were used as the molten salt and flux, respectively. X-ray powder diffraction (XRD) patterns indicate that the BAM phase is formed above 1200 °C and that the addition of LiF leads to an obvious improvement in crystallinity. The emission intensity of the BAM phosphor with 10 wt% LiF is about 85% higher than that of the phosphor without LiF and about 200% higher than that of the phosphor without molten salt and LiF. Scanning electron microscopy (SEM) reveal that the as-prepared phosphors have good crystallinity and regular morphology, and most importantly, they are not aggregated. Li+ doping is benefit for the thermal stability and results in a slightly longer decay times of 1.17 μs.

  20. Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman

    2010-03-01

    Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.

  1. Effect of divalent Ba cation substitution with Sr on coupled ‘multiglass’ state in the magnetoelectric multiferroic compound Ba3NbFe3Si2O14

    PubMed Central

    Rathore, Satyapal Singh; Vitta, Satish

    2015-01-01

    (Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled ‘multiglass’ behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions. PMID:25988657

  2. Origin and Luminescence of Anomalous Red-Emitting Center in Rhombohedral Ba9Lu2Si6O24:Eu(2+) Blue Phosphor.

    PubMed

    Liu, Yongfu; Zhang, Changhua; Cheng, Zhixuan; Zhou, Zhi; Jiang, Jun; Jiang, Haochuan

    2016-09-06

    We obtain a blue phosphor, Ba9Lu2Si6O24:Eu(2+) (BLS:Eu(2+)), which shows a strong emission peak at 460 nm and a weak tail from 460 to 750 nm. A 610 nm red emission is observed for the first time in this kind of rhombohedral structure material, which is much different from the same crystal structure of Ba9Sc2Si6O24:Eu(2+) and Ba9Y2Si6O24:Eu(2+). The luminescence properties and decays from 10 to 550 K are discussed. The new red emission arises from a trapped exciton state of Eu(2+) at the Ba site with a larger coordination number (12-fold). It exhibits abnormal luminescence properties with a broad bandwidth and a large Stokes shift. Under the 400 nm excitation, the external quantum efficiency of BLS:Eu(2+) is 45.4%, which is higher than the 35.7% for the commercial blue phosphor BAM:Eu(2+). If the thermal stability of BLS:Eu(2+) can be improved, it will show promising applications in efficient near-UV-based white LEDs.

  3. Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal

    DOE PAGES

    Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...

    2015-10-08

    In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less

  4. Les Néandertaliens étaient-ils essentiellement carnivores ? Résultats préliminaires sur les teneurs en Sr et en Ba de la paléobiocénose mammalienne de Saint-CésaireWere Neandertalians essentially carnivores? Sr and Ba preliminary results of the mammalian palaeobiocoenosis of Saint-Césaire

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Person, Alain; Labourdette, Nathalie; Drucker, Dorothée; Renard, Maurice; Vandermeersch, Bernard

    2001-01-01

    Strontium-calcium (Sr/Ca) and barium-calcium (Ba/Ca) ratios are reduced constantly between diet and bioapatite in mammal organisms. This phenomenon leads to a reduction in the Sr/Ca and Ba/Ca ratios at higher trophic level in predator-prey mammalian communities, and is applied here to the reconstruction of a castelperronian food web, which includes a Neanderthal specimen. Adapted chemical pretreatment allows to isolate bioapatite from diagenetic compounds for analysis of Ca, Sr and Ba. Sr/Ca and Ba/Ca results of the fauna are consistent with trophic predictions. Initial results for the Neandertal suggest that he was mostly carnivorous. Distribution of Ba/Ca values of bones of herbivorous taxa reveals that ruminant animals can be distinguished from non-ruminants. The biosegregation model predicts that the diet of the Neandertal was composed by about 97 % in weight of meat with a weak contribution of vegetable or fish, and that the association of fish and plant is excluded in any proportion.

  5. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  6. A new BaB{sub 2}Si{sub 2}O{sub 8}:Eu{sup 2+}/Eu{sup 3+}, Tb{sup 3+} phosphor - Synthesis and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saradhi, M.P.; Department of Chemistry, Indian Institute of Technology Hyderabad, Yeddumailaram, Hyderabad - 502205; Laboratoire de Cristallographie et Sciences des Materiaux, ENSICAEN, Universite de Caen, CNRS, 6 Bd Marechal Juin, F-14050 Caen

    2010-10-15

    In the present work, we have synthesized maleevite mineral phase BaB{sub 2}Si{sub 2}O{sub 8} for the first time, which is isostructural with the pekovite mineral SrB{sub 2}Si{sub 2}O{sub 8}. In these europium doped host lattices, we observed the partial reduction of Eu{sup 3+} to Eu{sup 2+} at high temperature during the synthesis in air. Tb{sup 3+} co-doping in MB{sub 2}Si{sub 2}O{sub 8}:0.01(Eu{sup 3+}/Eu{sup 2+}) [M=Sr, Ba] improves the emission properties towards white light. The emission color varies from bluish white to greenish white under UV lamp excitation when the host cation changes from Sr to Ba. - Graphical abstract: Themore » figure shows structure refinement of both MB{sub 2}Si{sub 2}O{sub 8} [M=Sr, Ba]. The structure refinement of newly synthesized phase BaB{sub 2}Si{sub 2}O{sub 8} was carried out by taking SrB{sub 2}Si{sub 2}O{sub 8} as starting structure model. Inset in the figure shows the structure projection of BaB{sub 2}Si{sub 2}O{sub 8}. The Sr{sup 2+}/Ba{sup 2+} are embedded in polyanionic network formed by corner sharing BO{sub 4}{sup 5-} and SiO{sub 4}{sup 4-} tetrahedral that intern form interconnected layers of 4 and 8 membered rings perpendicular to b-axis.« less

  7. Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Zhou, Qingjun; He, Qiang; He, Tianmin

    Double-perovskites A 2FeMoO 6- δ (A = Ca, Sr, Ba) have been investigated as potential anode materials for solid oxide fuel cells (SOFCs). At room temperature, A 2FeMoO 6- δ compounds crystallize in monoclinic, tetragonal, and cubic structures for A = Ca, Sr, and Ba, respectively. A weak peak observed at around 880 cm -1 in the Raman spectra can be attributed to traces of AMoO 4. XPS has confirmed the coexistence of Fe 2+-Mo 6+ and Fe 3+-Mo 5+ electronic configurations. Moreover, a systematic shift from Fe 2+/3+-Mo 6+/5+ to Fe 2+-Mo 6+ configuration is seen with increasing A-site cation size. A 2FeMoO 6- δ samples display distinct electrical properties in H 2, which can be attributed to different degrees of degeneracy of the Fe 2+-Mo 6+ and Fe 3+-Mo 5+ configurations. Ca 2FeMoO 6- δ is unstable in a nitrogen atmosphere, while Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are stable up to 1200 °C. The thermal expansion coefficients of Sr 2FeMoO 6- δ and Ba 2FeMoO 6- δ are very close to that of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM). The performances of cells with 300 μm thick LSGM electrolyte, double-perovskite SmBaCo 2O 5+ x cathodes, and A 2FeMoO 6- δ anodes follow the sequence Ca 2FeMoO 6- δ < Ba 2FeMoO 6- δ < Sr 2FeMoO 6- δ. The maximum power densities of a cell with an Sr 2FeMoO 6- δ anode reach 831 mW cm -2 in dry H 2 and 735 mW cm -2 in commercial city gas at 850 °C, respectively.

  8. On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp

    NASA Astrophysics Data System (ADS)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2013-06-01

    In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.

  9. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    PubMed

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. White light emission and effect of annealing on the Ho{sup 3+}–Yb{sup 3+} codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pumpmore » power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.« less

  11. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Cui, Qingzhi; Wang, Zhanyong; Liu, Gan; Tian, Tian; Xu, Jiayue

    2016-09-01

    Moderate level of exposure to the solar irradiation containing UV component is essential for health care. To incorporate the UV-emitting phosphors into the commercial YAG-based white light-emitting diode introduces the possibilities of healthy illumination to individuals' daily lives. 1 mol.% Er3+-doped BaGd2ZnO5 (BGZ) particles were synthesized via sol-gel method and efficient up-converted luminescence peaked at 380 nm was detected under 480 nm excitation. The mixed phosphors with varied mass ratio of Er3+:BGZ and Ce3+:YAG particles were encapsulated to form LEDs. The study of the LEDs indicated that the introduction of BGZ component favored the enhancement of color-rendering index and the neutralization of the white light emitting. The WLED with the BGZ/YAG ratio of 8:2 was recommendable for its excellent overall white light luminous performances and UV intensity of 84.55 mW/cm2. The UV illumination dose of the WLEDs with mixed YAG and BGZ was controllable by adjusting the ratio, the illumination distance and the illumination time. Er3+:BGZ phosphors are promising UVemitting phosphors for healthy indoor illumination.

  12. Remarkably Enhancing Green-Excitation Efficiency for Solar Energy Utilization: Red Phosphors Ba2ZnS3:Eu2+, X- Co-Doped Halide Ions (X = Cl, Br, I).

    PubMed

    Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun

    2017-05-15

    Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.

  13. Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Viji; Mani, Kamal P.; Sajna, M. S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2014-12-01

    Luminescence properties of Pr3+ activated Sr1.5Ca0.5SiO4 phosphors synthesized by solid state reaction method are reported in this work. Blue, orange red and red emissions were observed in the Pr3+ doped sample under 444 nm excitation and these emissions are assigned as 3P0 → 3H4, 3P0 → 3H6 and 3P0 → 3F4 transitions. The emission intensity shows a maximum corresponding to the 0.5 wt% Pr3+ ion. The decay analysis was done for 0.05 and 0.5 wt% Pr3+ doped samples for the transition 3P0 → 3H6. The life times of 0.05 and 0.5 wt% Pr3+ doped samples were calculated by fitting to exponential and non-exponential curve respectively, and are found to be 156 and 105 μs respectively. The non-exponential behaviour arises due to the statistical distribution of the distances between the ground state Pr3+ ions and excited state Pr3+ ions, which cause the inhomogeneous energy transfer rate. The XRD spectrum confirmed the triclinic phase of the prepared phosphors. The compositions of the samples were determined by the energy dispersive X-ray spectra. From the SEM images it is observed that the particles are agglomerated and are irregularly shaped. IR absorption bands were assigned to different vibrational modes. The well resolved peaks shown in the absorption spectra are identical to the excitation spectra of the phosphor samples. Pr3+ activated Sr1.5Ca0.5SiO4 phosphors can be efficiently excited with 444 nm irradiation and emit multicolour visible emissions. From the CIE diagram it can be seen that the prepared phosphor samples give yellowish-green emission.

  14. Effect of charge compensator ions (R+ = Li+, Na+ and K+) on Sr2MgSi2O7:Dy3+ phosphors by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad

    2016-09-01

    The Sr2MgSi2O7:Dy3+ and Sr2MgSi2O7:Dy3+, R+ (R+ = Li+, Na+ and K+) phosphors were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The prepared phosphors were excited at 350 nm, and their corresponding emission spectrum were recorded at blue (482 nm) and yellow (575 nm) region due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions, respectively, of Dy3+ ions. Commission Internationale de L'Eclairage coordinates have been calculated for each sample and its value exhibited that overall emission is near white light. The possible mechanisms of discussed white light emitting phosphors were also investigated. In order to investigate the suitability of the samples as white color light sources for industrial uses, color purity, correlated color temperature (CCT) and color rendering index (CRI) were calculated. Values of color purity, CCT and CRI were found well within the defined acceptable range. With incorporating (R+ = Li+, Na+ and K+) as charge compensator ions, the emission intensity of Sr2MgSi2O7:Dy3+ can be obviously enhanced. The results indicate that prepared phosphors may be a potential application in display devices.

  15. Photoluminescence properties and energy transfer in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8) phosphors for potential application in ultraviolet white light-emitting diodes.

    PubMed

    Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan

    2013-01-01

    Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    NASA Astrophysics Data System (ADS)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  17. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  18. Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO 2

    DOE PAGES

    Perriot, R.; Liu, X. -Y.; Stanek, C. R.; ...

    2015-01-08

    The diffusivity of the solid fission products (FP) Zr (Zr 4+), Ru (Ru 4+, Ru 3+), Ce (Ce 4+), Y (Y 3+), La (La 3+), Sr (Sr 2+) and Ba (Ba 2+) by a vacancy mechanism has been calculated, using a combination of density functional theory (DFT) and empirical potential (EP) calculations. The activation energies for the solid fission products are compared to the activation energy for Xe fission gas atoms calculated previously. Apart from Ru, the solid fission products all exhibit higher activation energy than Xe. Furthermore, for all solid FPs except Y 3+, the migration of the FPmore » has lower barrier than the migration of a neighboring U atom, making the latter the rate limiting step for direct migration. An indirect mechanism, consisting of two successive migrations around the FP, is also investigated. The calculated diffusivities show that most solid fission products diffuse with rates similar to U self-diffusion. But, Ru, Ba and Sr exhibit faster diffusion than the other solid FPs, with Ru 3+ and Ru 4+ diffusing even faster than Xe for T < 1200 K. The diffusivities correlate with the observed fission product solubility in UO 2, and the tendency to form metallic and oxide second phase inclusions.« less

  19. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  20. Color-tunable photoluminescence and energy transfer properties of single-phase Ba{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+}, Mn{sup 2+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qingfeng; Liao, Libing, E-mail: clayl@cugb.edu.cn; Mei, Lefu, E-mail: mlf@cugb.edu.cn

    2015-12-15

    Single-phase Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} samples with apatite structure have been synthesized via a solid-state reaction method. The phase structure, luminescence properties, lifetime, PL thermal stability, as well as fluorescence decay curves of the samples were investigated. Effective energy transfer occurs from Eu{sup 2+} to Mn{sup 2+} in Ba{sub 10}(PO{sub 4}){sub 6}O and a possible mechanism of the energy-transfer from Eu{sup 2+} to Mn{sup 2+} is proposed. The critical distances R{sub c} was calculated by concentration quenching and turned out to be about 0.817 nm (x{sub c}=0.21). The CIE and thermally stable luminescence behaviors of Ba{sub 9.94}(PO{sub 4}){submore » 6}O:0.06Eu{sup 2+} phosphor were also studied in detail. All the results indicate that Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+}, yMn{sup 2+} phosphors have potential applications as near UV-convertible phosphors for white light-emitting diodes. - Graphical abstract: Crystal structure and luminescence property of Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} have been discussed. - Highlights: • Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} was firstly reported. • Ba{sub 9.94}(PO{sub 4}){sub 6}O:0.06Eu{sup 2+} exhibits high thermal quenching resistance. • The energy transfer between Eu{sup 2+} and Mn{sup 2+} was investigated.« less

  1. Interface Control of Ferroelectricity in an SrRuO3 /BaTiO3 /SrRuO3 Capacitor and its Critical Thickness.

    PubMed

    Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung-Jin; Nahm, Ho-Hyun; Murugavel, Pattukkannu; Kim, Jeong Rae; Cho, Myung Rae; Wang, Lingfei; Yang, Sang Mo; Yoon, Jong-Gul; Chung, Jin-Seok; Kim, Miyoung; Zhou, Hua; Chang, Seo Hyoung; Noh, Tae Won

    2017-05-01

    The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3 /BaTiO 3 /SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO 2 -BaO and SrO-TiO 2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Interface Control of Ferroelectricity in an SrRuO 3/BaTiO 3/SrRuO 3 Capacitor and its Critical Thickness

    DOE PAGES

    Shin, Yeong Jae; Kim, Yoonkoo; Kang, Sung -Jin; ...

    2017-03-03

    Here, the atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (P O2) during growth plays an important role in controlling the interfacial terminations of SrRuO 3/BaTiO 3/SrRuO 3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high P O2 (around 150 mTorr), usually exhibits a mixture of RuO 2-BaOmore » and SrO-TiO 2 terminations. By reducing P O2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO 2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.« less

  3. Effect of Heat Treatment on The Crystal Structur, Electrical Conductivity and Surface of Ba1.5Sr0.5Fe2O5 Composite

    NASA Astrophysics Data System (ADS)

    Purwanto, P.; Adi, WA; Yunasfi

    2017-05-01

    The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.

  4. Enhancement of white-light-emission from single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors for near-UV white LEDs.

    PubMed

    Feng, Yaomiao; Huang, Jinping; Liu, Lili; Liu, Jie; Yu, Xibin

    2015-09-07

    A series of single-phase broadband white-light-emitting Sr5(PO4)3F:Eu(2+),Mn(2+) phosphors were prepared by a solid state reaction. The luminescence property, and the crystal and electronic structures of the fluorophosphates were studied by photoluminescence analysis, XRD Rietveld refinement and density functional theory calculation (DFT), respectively. Under near ultraviolet excitation in the 250 to 430 nm wavelength range, the phosphors exhibit two emission bands centered at 440 and 556 nm, caused by the Eu(2+) and Mn(2+) ions. By altering the relative ratios of Eu(2+) and Mn(2+) in the compounds, the emission color could be modulated from blue to white. The efficient energy transfer from the Eu(2+) to Mn(2+) ions could be ascribed to the well crystallized host lattice and the facile substitution of Eu(2+) and Mn(2+) for Sr(2+) sites due to similar ionic radii. A series of fluxes were investigated to improve the photoluminescence intensity. When KCl was used as flux in the synthesis, the photoluminescence intensity of Sr5(PO4)3F:Eu(2+),Mn(2+) was enhanced by 85% compared with no fluxes added. These results demonstrate that the single-phase Sr5(PO4)3F:Eu(2+),Mn(2+) with enhanced luminescence efficiency could be promising as a near UV-convertible direct white-light-emitting phosphor for WLED applications.

  5. The influences of mole composition of strontium (x) on properties of barium strontium titanate (Ba{sub 1−x}Sr{sub x}TiO{sub 3}) prepared by solid state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandi, Dianisa Khoirum; Supriyanto, Agus; Iriani, Yofentina, E-mail: yopen-2005@yahoo.com

    2016-02-08

    Barium Strontium Titanate (Ba{sub 1-x}Sr{sub x}TiO{sub 3}) or BST was prepared by solid state reaction method. Raw materials are BaCO{sub 3}, SrCO{sub 3}, and TiO{sub 2}. Those materials are mixed for 8 h, pressed, and sintered at temperature 1200°C for 2 h. Mole composition of Sr (x) was varied to study its influences on structural, morphological, and electrical properties of BST. Variation of (x) are x = 0; x = 0.1; and x = 0.5. XRD patterns showed a single phase of BST, which mean that mixture of raw materials was homogenous. Crystal structure was influenced by x. BaTiO{sub 3} and Ba{submore » 0.9}Ti{sub 0.1}TiO{sub 3} have tetragonal crystal structure, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is cubic. The diffraction angle shifted to right side (angle larger) as the increases of x. Crystalline size of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3}, and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} are 38.13 nm; 38.62 nm; and 37.13 nm, respectively. SEM images showed that there are still of pores which were influenced by x. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface (pores are few and small in size). Sawyer Tower circuit showed that BaTiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1} TiO{sub 3} is ferroelectric, while Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} is paraelectric. The dielectric constants of BaTiO{sub 3}, Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} and Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} at frequency of 1 KHz are 156; 196; and 83, respectively. Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has relatively highest dielectric constant. It is considered that Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} has densest surface.« less

  6. Magneto-optical properties of BaTiO3/La0.76Sr0.24MnO3/BaTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Moog, M.; Singamaneni, S. R.; Prater, J. T.; Biegalski, M. D.; Tsui, F.

    2018-05-01

    The magnetic properties of epitaxial BaTiO3/La0.76Sr0.24MnO3/BaTiO3 (BTO/LSMO/BTO) heterostructures have been studied using magneto-optic Kerr effect (MOKE) technique. Both longitudinal and polar MOKE were probed as a function of magnetic field and temperature (in the range between 80 and 320 K) for epitaxial films of BTO/LSMO/BTO and LSMO grown on TiO2-terminated SrTiO3 (001) substrates by pulsed laser deposition technique. The LSMO film without the BTO layers exhibits nearly square field-dependent MOKE hysteresis loops with low saturation fields below a bulk-like Curie temperature (TC) of ˜ 350K. In contrast, the film with the BTO layers exhibits a significantly suppressed TC of 155 K, accompanied by significantly enhanced coercive fields and perpendicular magnetic anisotropy.

  7. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  8. Photoluminescence and thermal stability of yellow-emitting Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphor for light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayue, E-mail: jiayue_sun@126.com; Di, Qiumei; Cui, Dianpeng

    2014-12-15

    Highlights: • Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7}:Sm{sup 3+} phosphors are obtained via a solid-state reaction method. • Excitation at 402 nm, the yellow color purity is close to 100%. • The mechanism of concentration quenching is dipole–dipole interaction. • The temperature-dependent luminescence property exceed that of YAG:Ce{sup 3+}. - Abstract: A series of yellow-emitting Na{sub 2}(Ba{sub 2−x}Sm{sub x})Si{sub 2}O{sub 7} phosphors have been prepared via solid-state reaction technique. X-ray diffraction (XRD), photoluminescence (PL) spectra, temperature-dependent luminescence property, concentration quenching mechanism and luminescence lifetime are applied to characterize the obtained samples. Under 402 nm near ultraviolent excitation, the samples emit yellowmore » light and the color purity is close to 100%. The critical quenching concentration of Sm{sup 3+} in the Na{sub 2}Ba{sub 2}Si{sub 2}O{sub 7} host is about 3.6 mol% and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, superior to the commercial yellow Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor and the activation energy for thermal quenching is calculated as 0.18 eV.« less

  9. Sol-gel synthesis and luminescence property of Sr4 Al2 O7 :Re3+ ,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors for white LEDs.

    PubMed

    Zhang, Wentao; Yu, Meng; Dai, Siyi; Chen, Xianfei; Long, Jianping

    2017-09-01

    Sr 4 Al 2 O 7 :Eu 3+ and Sr 4 Al 2 O 7 :Dy 3+ phosphors with alkali metal substitution were prepared using a sol-gel method. The effects of a charge compensator R on the structure and luminescence of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr 4 Al 2 O 7 . Under ultraviolet excitation, all Sr 4 Al 2 O 7 :Eu 3+ ,R + samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu 3+ ions. All Sr 4 Al 2 O 7 :Dy 3+ ,R + phosphors showed two emission peaks at 492 and 582 nm, due to the 4 F 9/2  →  6 H 15/2 and 4 F 9/2  →  6 H 13/2 transitions of Dy 3+ ions, respectively. The luminescence intensity of Sr 4 Al 2 O 7 :Re 3+ ,R + (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light-emitting diodes with a near-ultraviolet chip. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The effect of doping Mg2+ on structure and properties of Sr(1.992-x)MgxSiO4: 0.008Eu2+ blue phosphor synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Yang, Lingxiang; Wang, Jin-shan; Zhu, Da-chuan; Pu, Yong; Zhao, Cong; Han, Tao

    2018-01-01

    In order to improve the luminescence property of silicate phosphors, a series of Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. And then the crystal structure and luminescence properties of the phosphors are investigated by means of X-Ray Diffraction and spectrophotometer. The results show that β-phase existed in the mixed phases of Sr2SiO4 (β+α‧) would transform to α‧-phase with Mg2+ ions doping into the silicate host until it disappeared. On the other hand, the introduction of Mg2+ ions can enhance the intensity of the excitation spectrum and promote the excitation sensitivity of Sr(1.992-x)MgxSiO4: 0.008Eu2+ phosphors in NUV region. Under NUV excitation at 350 nm, all samples exhibit a broadband emission in range of 400-550 nm due to the 4f65d1→4f7(8S7/2) transition of Eu2+ ions. According to Multi-peak fitting to emission spectra by Gauss method, the broad emission band consists of two single bands with peaks Em1 and Em2 locating at 460 and 490 nm, which corresponds to Eu2+ ions occupying the ten-fold oxygen-coordinated Sr1 site and the nine-fold oxygen-coordinated Sr2 site, respectively. The luminescence intensity of Sr(1.992-x)MgxSiO4:0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors has been enhanced remarkably after Mg2+ ions are added. Meanwhile, the chromaticity coordinates change from the blue-green region to the blue region as x moves from 0 to 0.75. Moreover, the decay curves are measured and can be well fitted with double exponential decay equation. It shows that the average lifetime is extended with the concentration of Mg2+ ions increasing. These results indicate that Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) can be used as a potential blue phosphor in near UV-excited white LEDs.

  11. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic

  12. THE GREEN PHOSPHOR SrAl2O4:Eu2+, R3+ (R=Y, Dy) AND ITS APPLICATION IN ALTERNATING CURRENT LIGHT-EMITTING DIODES

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali

    2013-07-01

    The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.

  13. Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7

    NASA Astrophysics Data System (ADS)

    Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.

    2018-06-01

    The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.

  14. Kimzeyite garnet phosphors

    DOEpatents

    Lyons, Robert Joseph

    2013-05-14

    A phosphor of formula I is included in a phosphor composition in a lighting apparatus capable of emitting white light, Ca.sub.3-x-zSr.sub.xCe.sub.zM.sup.1.sub.2M.sup.2AlSiO.sub.12 (I) wherein M.sup.1 is Hf, Zr, or a combination thereof; M.sup.2 is Al, or a combination of Al and Ga; z<3-x; and 0.2>x.gtoreq.0. The lighting apparatus includes a semiconductor light source in addition to the phosphor composition.

  15. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    PubMed

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.

  16. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  17. Tuning the growth and strain relaxation of ferroelectric BaTiO3 thin films on SrRuO3 electrode: influence on electrical properties

    NASA Astrophysics Data System (ADS)

    Aidoud, Amina; Maroutian, Thomas; Matzen, Sylvia; Agnus, Guillaume; Amrani, Bouhalouane; Driss-Khodja, Kouider; Aubert, Pascal; Lecoeur, Philippe

    2018-01-01

    This study is focused on the link between the structural and electric properties of BaTiO3 thin films grown on SrRuO3-buffered (001) SrTiO3 substrates, SrRuO3 acting as bottom electrode. The growth regime and film structure are here tuned through the growth pressure for pulsed laser deposition in the 1-200 mTorr range. The dielectric, ferroelectric and leakage current properties are systematically measured for the different strain states of the BaTiO3 thin films on SrRuO3. The results are discussed with the help of ab initio calculations on the effects of Ba- and Ti-vacancies on BaTiO3 lattice parameters. A sharp increase of the dielectric constant is evidenced in the high pressure region, where the tetragonality of the BaTiO3 is decreasing rapidly with growth pressure. We interpret this divergence of the dielectric function as the signature of the vicinity of the phase boundary between the out-of-plane and in-plane orientations of the tetragonal BTO films.

  18. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue

  19. Melting and Vaporization of the 1223 Phase in the System (Tl-Pb-Ba-Sr-Ca-Cu-O)

    PubMed Central

    Cook, L. P.; Wong-Ng, W.; Paranthaman, P.

    1996-01-01

    The melting and vaporization of the 1223 [(Tl,Pb):(Ba,Sr):Ca:Cu] oxide phase in the system (Tl-Pb-Ba-Sr-Ca-Cu-O) have been investigated using a combination of dynamic methods (differential thermal analysis, thermogravimetry, effusion) and post-quenching characterization techniques (powder x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectrometry). Vaporization rates, thermal events, and melt compositions were followed as a function of thallia loss from a 1223 stoichiometry. Melting and vaporization equilibria of the 1223 phase are complex, with as many as seven phases participating simultaneously. At a total pressure of 0.1 MPa the 1223 phase was found to melt completely at (980 ± 5) °C in oxygen, at a thallia partial pressure (pTl2O) of (4.6 ± 0.5) kPa, where the quoted uncertainties are standard uncertainties, i.e., 1 estimated standard deviation. The melting reaction involves five other solids and a liquid, nominally as follows: 1223→1212+(Ca,Sr)2CuO3+(Sr,Ca)CuO2+BaPbO3+(Ca,Sr)O+Liquid Stoichiometries of the participating phases have been determined from microchemical analysis, and substantial elemental substitution on the 1212 and 1223 crystallographic sites is indicated. The 1223 phase occurs in equilibrium with liquids from its melting point down to at least 935 °C. The composition of the lowest melting liquid detected for the bulk compositions of this study has been measured using microchemical analysis. Applications to the processing of superconducting wires and tapes are discussed. PMID:27805086

  20. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅more » RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.« less

  1. Synthesis, structural and optical properties of (ALa)(FeMn)O6 (A = Ba and Sr) double perovskites

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Sudarshan, V.; Singh, Akhilesh Kumar

    2018-05-01

    Here, we report structural and optical properties of ALaFeMnO6 (A = Ba and Sr) double perovskite synthesized via auto-combustion followed by calcinations process. Rietveld refinement of structure using x-ray diffraction data reveals that BaLaFeMnO6 crystallizes into cubic crystal structure with space group Pm-3m while SrLaFeMnO6 crystallizes into rhombohedral crystal structure having space group R-3c. The absorption spectrum measurement using UV-Vis spectroscopy reveals that these samples are prefect insulator having energy band gap between conduction and valence band of the order of 6 eV.

  2. Electrical transport across nanometric SrTiO3 and BaTiO3 barriers in conducting/insulator/conducting junctions

    NASA Astrophysics Data System (ADS)

    Navarro, H.; Sirena, M.; González Sutter, J.; Troiani, H. E.; del Corro, P. G.; Granell, P.; Golmar, F.; Haberkorn, N.

    2018-01-01

    We report the electrical transport properties of conducting/insulator/conducting heterostructures by studying current-voltage IV curves at room temperature. The measurements were obtained on tunnel junctions with different areas (900, 400 and 100 μm2) using a conducting atomic force microscope. Trilayers with GdBa2Cu3O7 (GBCO) as the bottom electrode, SrTiO3 or BaTiO3 (thicknesses between 1.6 and 4 nm) as the insulator barrier, and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO3 substrates For SrTiO3 and BaTiO3 barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. In addition, hysteretic IV curves are obtained for BaTiO3 barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/BaTiO3/GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/insulator/conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures).

  3. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    NASA Astrophysics Data System (ADS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-11-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO3 sensible oxide. Nonstoichiometric BaSrTiFeO3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO3 pseudo-cubic phase and Ba4Ti12O27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz.

  4. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  5. Uniform-large Area BaSrTiO3 Growth and Novel Material Designs to Enable Fabrication of High Quality, Affordable, and Performance Consistent Phase Shifters for OTM Phased Array Antennas

    DTIC Science & Technology

    2012-07-11

    molar flux of each precursor entering the reactor. The molar fluxes for Ba , Sr , and Ti are measured and computed in real-time, and these measured values...allows control of the relative amounts of Ba , Sr , and Ti, and the overall total mass flow in umole/min reaching the substrate. In all, there are three...is the Ba:Sr ratio with depth (from the top of the film). The ratio of Ba to Sr was controlled from 0.87 to 0.43. The total film thickness is 130 nm

  6. Synthesis and thermoluminescence characterizations of Sr2B5O9Cl:Dy3+ phosphor for TL dosimetry.

    PubMed

    Oza, Abha H; Dhoble, N S; Park, K; Dhoble, S J

    2015-09-01

    The photoluminescence (PL) and thermoluminescence (TL) displayed by Dy-activated strontium haloborate (Sr2 B5 O9 Cl) were studied. A modified solid-state reaction was employed for the preparation of the phosphor. Photoluminescence spectra showed blue (484 nm) and yellow (575 nm) emissions due to incorporation of Dy(3+) into host matrix. The Dy-doped (0.5 mol%) Sr2 B5 O9 Cl was studied after exposure to γ-irradiation and revealed a prominent glow curve at 261°C with a small hump around 143°C indicating that two types of traps were generated. The glow peak at the higher temperature side (261°C) was more stable than the lower temperature glow peak. The TL intensity was 1.17 times less than that of the standard CaSO4 :Dy thermoluminescence dosimetry (TLD) phosphor, the phosphor showed a linear dose-response curve for different γ-ray irradiation doses (0.002-1.25 Gy) and fading of 5-7% was observed for higher temperature peaks upon storage. Trapping parameters and their estimated error values have been calculated by Chen's peak shape method and by the initial rise method. Values of activation energies estimated by both these techniques were comparable. The slight difference in activation energy values calculated by Chen's peak shape method indicated the formation of two kinds of traps Furthermore, slight differences in frequency values are due to various escaping and retrapping probabilities. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Color stable phosphors for LED lamps and methods for preparing them

    DOEpatents

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  8. LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study

    PubMed Central

    De Clercq, Olivier Q.; Korthout, Katleen

    2017-01-01

    Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl−/Na+/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging. PMID:29231901

  9. Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.

  10. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Blundy, Jonathan D.; Wood, Bernard J.

    1991-01-01

    The isothermal (750°C) experiments of LAGACHE and DUJON (1987) reveal that the partitioning of Sr between plagioclase feldspar and hydrothermal solutions is a funtion of the anorthite (An) content of the plagioclase, indicating that crystal chemistry may exert a powerful influence on trace element partitioning. In order to compare these results with those on trace element partitioning between plagioclase and silicate melts we have compiled from the literature a large dataset of experimental and volcanic distribution coefficients ( D's) for Sr (and Ba). These data, which span a compositional range from lunar basalt to high silica rhyolite and a temperature range of over 650°C, show a relationship between DSr (and DBa) and mole fraction An ( XAn) which is similar to that exhibited by the hydrothermal results obtained at constant temperature. Plots of In DSr and In DBa versus XAn are linear with negative slope, indicating that both elements are more compatible in albite than anorthite. In terms of molar distribution coefficients ( D Sr∗) the hydrothermal and silicate melt data display an identical linear relationship between RT In D Sr∗ (where T is the absolute temperature in K and R is the gas constant, 8.314 JK -1 mol -1) and XAn. We conclude therefore that crystal chemistry provides the dominant control on partitioning of Sr and Ba into plagioclase and that the effects of temperature, pressure, and fluid composition are minor. Apparent relationships between DSr (and DBa) and the reciprocal temperature (1/ T) are artefacts of the linear relationships between XAn and 1/ T in the experimental studies. By defining a Henry's law standard state for the silicate melts and hydrothermal solutions, and considering plagioclases to be ternary regular solutions, we are able to relate the observed relationships between RT In D i∗ (where i is Ba or Sr) and XAn to the excess free energies of the trace element partitioning reactions between plagioclase and melt or

  11. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695

    2016-04-04

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{submore » 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.« less

  12. Theoretical investigation on thermoelectric properties of (Ca,Sr,Ba)Fe2(As/Bi)2 compounds under temperature

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, D. S.; Sundareswari, M.; Viswanathan, E.; Das, Abhijeet

    2018-04-01

    The electrical conductivity, resistivity and Seebeck coefficient, Pauli magnetic susceptibility and power factor are computed under temperature (100 K - 800 K) in steps of 100 K for the theoretically designed compounds namely (Ca,Sr,Ba)Fe2Bi2 and their parent compounds namely (Ca,Sr,Ba)Fe2As2 by using Boltzmann transport theory interfaced to the Wien2k program. The Bulk modulus, electron phonon coupling constant, thermoelectric figure of merit (ZT) and transition temperature are calculated for the optimized anti ferromagnetic phase of the proposed compounds. The results are discussed for the novel compounds in view of their superconductivity existence and compared with their parent unconventional superconducting compounds.

  13. Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sunil, E-mail: sunilchauhanjiit@gmail.com; Kumar, Manoj; Katyal, S. C.

    2016-05-23

    A Comparative study of heterovalent Ba, Sr and Ca ions substitution on the structural, vibrational, optical and magnetic properties of BiFeO{sub 3} nanoparticles was carried out. The distorted rhombohedral structure was confirmed from both X-ray diffraction and Raman spectroscopy techniques in pure BiFeO{sub 3} and Bi{sub 0.85}A{sub 0.15}FeO{sub 3} (A= Ba, Sr and Ca) samples. UV-Visible spectroscopy results show that the band-gap of BiFeO{sub 3} nanoparticles can be tuned by heterovalent ions substitution from 2.12 eV for BiFeO{sub 3} to 2.10, 2.06 and 2.03 eV for Ca, Sr and Ba substituted BiFeO{sub 3} nanoparticles respectively. The magnetic measurements indicate enhancementmore » in magnetization for heterovalent A{sup 2+} substituted BiFeO{sub 3} samples and the magnetization increases with increase of ionic radius of the substituted ions.« less

  14. Preparation and properties of Ba xSr 1- xCo yFe 1- yO 3- δ cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng

    Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.

  15. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol-gel method.

    PubMed

    Pan, Heng; Li, Xu; Zhang, Jinping; Guan, Li; Su, Hongxin; Yang, Zhiping; Teng, Feng

    2016-07-04

    A series of Eu2+ (0.0025≤ × ≤0.025) activated Sr2SiO4:xEu2+ (SSO:xEu2+) phosphors were synthesized via a sol-gel method. The phosphors were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. The differences between α' and β phase of SSO in the density of states and energy band gap were investigated. The energy gap of α'-SSO and β-SSO are 4.489 and 4.106 eV, respectively. While, two samples showed similar total and partial densities of states. Under the excitation by the ultra violet (UV) light (365 nm), the SSO:xEu2+ phosphor exhibited a green emission band from 400 to 700 nm, which was corresponding to the transition of 5d → 4f of Eu2+ ions. Two emission peaks at 464 and 532 nm could be obtained through Gauss fitting curves. The ratio of the blue to green emission peak decreased with the Eu2+ concentration and the peaks shifted regularly with it. The thermal quenching property was investigated and its activation energy was calculated. The results indicated that this phosphor could be a candidate of green phosphor for UV-based light-emitting diodes (LEDs).

  16. First-Principles Prediction of Two-Dimensional Electron Gas Driven by Polarization Discontinuity in Nonpolar/Nonpolar AHfO3/SrTiO3 (A=Ca, Sr, and Ba) Heterostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Jianli; Nazir, Safdar; Yang, Kesong

    By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) in nonpolar/nonpolar AHfO3/SrTiO3 (A = Ca, Sr, and Ba) heterostructures (HS). Two types of interfaces, AO/TiO2 and HfO2/SrO, each with AO and HfO2 surface terminations, are modeled, respectively. The polarization domain and resulting interfacial electronic property are found to be more sensitive to the surface termination of the film rather than the interface model. As film thickness increases, an insulator-to-metal transition (IMT) is found in all the HS with HfO2 surface termination: for AO/TiO2 interfaces, predicted critical film thickness for an IMT is about 7, 6, and 3 unit cells for CaHfO3/SrTiO3, SrHfO3/SrTiO3, and BaHfO3/SrTiO3, respectively; for HfO2/SrO interfaces, the critical film thickness is about 7.5, 5.5, and 4.5 unit cells, respectively. In contrast, for the HS with AO surface termination, only CaHfO3/SrTiO3 exhibits an IMT with a much larger critical film thickness about 11 - 12 unit cells. This work is expected to stimulate further experimental investigation to the interfacial conductivity in the nonpolar/nonpolar AHfO3/SrTiO3 HS. National Science Foundation and Department of Defense National Security Science and Engineering Faculty Fellowship.

  17. Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo

    Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal havingmore » 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)« less

  18. Enhancing the Photocatalytic Activity of Sr4 Al14 O25 : Eu2+ , Dy3+ Persistent Phosphors by Codoping with Bi3+ Ions.

    PubMed

    García, Carlos R; Oliva, Jorge; Romero, Maria Teresa; Diaz-Torres, Luis A

    2016-03-01

    The photocatalytic activity of Bismuth-codoped Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr 4 Al 14 O 25 : Eu 2+ , Dy 3+ , Bi 3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5-20 μm. The samples present an intense greenish-blue fluorescence and persistent emissions at 495 nm, attributed to the 5d-4f allowed transitions of Eu 2+ . The fluorescence decreases as Bi concentration increases; that suggest bismuth-induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi 3+ can be an alternative to enhance their photocatalytic activity. © 2016 The American Society of Photobiology.

  19. Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.

    PubMed

    Xu, Yebin; Liu, Ting; He, Yanyan; Yuan, Xiao

    2009-11-01

    Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.

  20. Study of formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors.

    PubMed

    Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R

    2016-04-01

    This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Structures, phase transitions and microwave dielectric properties of the 6H perovskites Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba

    NASA Astrophysics Data System (ADS)

    Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert

    2009-03-01

    We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.

  2. Investigations of Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics and powders prepared by direct current arc discharge technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuangbin; Wang, Xiaohan; University of Chinese Academy of Sciences, Beijing 100049

    2014-09-01

    Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1−x}TiO{sub 3} ceramics was found to occur at x ≈ 0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrummore » of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1−x}TiO{sub 3} solid solution with x < 1 is discussed in the frame of specific atomic arrangement.« less

  3. Sr{sub 7}Ge{sub 6}, Ba{sub 7}Ge{sub 6} and Ba{sub 3}Sn{sub 2} -Three new binary compounds containing dumbbells and four-membered chains of tetrel atoms with considerable Ge-Ge {pi}-bonding character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siggelkow, Lisa; Hlukhyy, Viktor; Faessler, Thomas F., E-mail: thomas.faessler@lrz.tum.de

    2012-07-15

    The germanides Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} as well as the stannide Ba{sub 3}Sn{sub 2} were prepared by arc melting and annealing in welded tantalum ampoules using induction as well as resistance furnaces. The compounds were investigated by powder and single crystal X-ray diffraction. Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} crystallize in the Ca{sub 7}Sn{sub 6} structure type (space group Pmna, Z=4: a=7.777(2) A, b=23.595(4) A, c=8.563(2) A, wR{sub 2}=0.081 (all data), 2175 independent reflections, 64 variable parameters for Sr{sub 7}Ge{sub 6} and a=8.0853(6) A, b=24.545(2) A, c=8.9782(8) A, wR{sub 2}=0.085 (all data), 2307 independent reflections, 64more » variable parameters for Ba{sub 7}Ge{sub 6}). Ba{sub 3}Sn{sub 2} crystallizes in an own structure type with the space group P4{sub 3}2{sub 1}2, Z=4, a=6.6854(2) A, c=17.842(2) A, wR{sub 2}=0.037 (all data), 1163 independent reflections, 25 variable parameters. In Sr{sub 7}Ge{sub 6} and Ba{sub 7}Ge{sub 6} the Ge atoms are arranged as Ge{sub 2} dumbbells and Ge{sub 4} four-membered atom chains. Their crystal structures cannot be rationalized according to the (8-N) rule. In contrast, Ba{sub 3}Sn{sub 2} presents Sn{sub 2} dumbbells as a main structural motif and thereby can be described as an electron precise Zintl phase. The chemical bonding situation in these structures is discussed on the basis of partial and total Density Of States (DOS) curves, band structures including fatbands, topological analysis of the Electron Localization Function (ELF) as well as Bader analysis of the bond critical points using the programs TB-LMTO-ASA and WIEN2K. While Ba{sub 3}Sn{sub 2} reveals semiconducting behaviour, all germanides Ae{sub 7}Ge{sub 6} (Ae=Ca, Sr, and Ba) show metallic properties and a considerable {pi}-bonding character between the Ge atoms of the four-membered chains and the dumbbells. The {pi}-bonding character of the germanides is best reflected by the resonance hybrid structures {l

  4. Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran

    2017-06-01

    An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

  5. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  6. Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.

    PubMed

    Thieme, Christian; Görls, Helmar; Rüssel, Christian

    2015-12-15

    The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.

  7. Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.

    At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less

  8. Storage Phosphors for Medical Imaging

    PubMed Central

    Leblans, Paul; Vandenbroucke, Dirk; Willems, Peter

    2011-01-01

    Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation. In the 35 years of CR history, several storage phosphor families were investigated and developed. An explanation is given as to why some materials made it to the commercial stage, while others did not. The photo stimulated luminescence mechanism of the current commercial storage phosphors, BaFBr:Eu2+ and CsBr:Eu2+ is discussed. The relation between storage phosphor plate physical characteristics and image quality is explained. It is demonstrated that the morphology of the phosphor crystals in the CR imaging plate has a very significant impact on its performance. PMID:28879966

  9. Blue-green phosphor for fluorescent lighting applications

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  10. Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix.

    PubMed

    Yoon, Hee Chang; Yoshihiro, Kouhara; Yoo, Heeyeon; Lee, Seung Woo; Oh, Ji Hye; Do, Young Rag

    2018-05-09

    We introduce a low-melting-point (MP) Sn-P-F-O glass ceramic material into the phosphor-in-glass (PIG) material to realize an 'on-chip' chip-on-board (COB) type of phosphor-converted (pc) white light-emitting diode (WLED) with green (BaSr) 2 SiO 4 :Eu 2+ and red (SrCa)AlSiN 3 :Eu 2+ (SCASN) phosphors. The optimum Sn-P-F-O-based ceramic components can be sintered into the glass phase with a facile one-step heating process at 285 °C for 1 min. Specifically, these soft-fabrication conditions can be optimized to minimize the degradation of the luminescent properties of the red SCASN phosphor as well as the green silicate phosphor in PIG-based white COB-type pc-LEDs owing to the low thermal loss of the phosphors at low fabrication temperatures below 300 °C. Moreover, the constituents of the COB package, in this case the wire bonding and plastic exterior, can be preserved simultaneously from thermal damage. That is, the low sintering temperature of the glass ceramic encapsulant is a very important factor to realize excellent optical qualities of white COB LEDs. The optical performances of low-MP Sn-P-F-O-based PIG on-chip COB-type pc-WLEDs exhibit low yellowing phenomena, good luminous efficacy of 70.9-86.0 lm/W, excellent color rendering index of 94-97 with correlated color temperatures from 2700 to 10000 K, and good long-term stability.

  11. Photoluminescence properties of Li2SrGeO4:RE3+ (RE = Ce/Tb/Dy) phosphors and enhanced luminescence through energy transfer between Ce3+ and Tb3+/Dy3+

    NASA Astrophysics Data System (ADS)

    Huang, Shuai; Li, Guogang

    2014-07-01

    Li2SrGeO4:RE3+ (RE = Tb/Dy/Ce) phosphors were prepared by the conventional solid-state reaction. X-ray diffraction (XRD), photoluminescence (PL) spectra, and lifetimes were utilized to characterize samples. Under the excitation of ultraviolet (231 nm for Tb3+ and 351 nm for Dy3+), the Li2SrGeO4:Tb3+ and Li2SrGeO4:Dy3+ phosphors show their respective characteristic emissions of Tb3+ (5D3,4 → 7FJ‧, J‧ = 3, 4, 5, 6) and Dy3+ (4F9/2 → 6H15/2 and 4F9/2 → 6H13/2), respectively. Ce3+ activated Li2SrGeO4 phosphors exhibit broad band blue emission due to the 5d-4f transition of Ce3+. Co-doping Ce3+ into the LSG: Ce3+/Dy3+ samples enhances the luminescence intensity of Tb3+ and Dy3+ significantly under the excitation wavelength at 340 nm through energy transfer from Ce3+ to Tb3+/Dy3+. In addition, the energy transfer mechanism between Ce3+ and Tb3+/Dy3+ has been demonstrated to be a resonant type via a dipole-quadrupole interaction.

  12. Multi-proxy Reconstructions of the Eastern Equatorial Pacific: Measuring Sr/Ca, Ba/Ca, and Li/Mg in Modern Corals Using ICP-OES

    NASA Astrophysics Data System (ADS)

    Cheung, A. H.; Cole, J. E.; Vetter, L.; Jimenez, G.; Thompson, D. M.; Tudhope, A. W.

    2017-12-01

    Sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) exhibits large variability on multiple timescales. These variations are often related to modes of climate variability that exert significant influence on global climate, such as the El Niño Southern Oscillation. However, the short length and sparsity of instrumental data in the EEP limits our ability to discern changes in this region. Geochemical signals in corals can help extend instrumental data further back in time. While δ18O and Sr/Ca are the most commonly analyzed geochemical tracers of SST in corals, they often have site-specific complications. Several alternatives (e.g., Li/Mg) have been proposed to overcome these challenges, but have yet to be applied to long climate records, in part due to the cost and time required to measure these elements. Here, we develop a new method that uses Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) to analyze Li/Mg, Sr/Ca, and Ba/Ca ratios in coral aragonite. We apply this method to two Porites spp. corals collected from the northern Galapagos archipelago (Wolf and Darwin Islands). We specifically assess the fidelity of Li/Mg and Sr/Ca to reconstruct SST, and Ba/Ca to reconstruct upwelling conditions. Our results confirm that both Li/Mg and Sr/Ca track SST. We show that despite analytical noise, downcore reconstructions of Li/Mg have the potential to provide additional information about SST that is not present in reconstructions generated from Sr/Ca alone. Skeletal Ba/Ca shows little relationship with upwelling, perhaps because of the distance of our sites from the center of upwelling in the southern Galapagos. These results demonstrate the potential for analyzing Sr, Li, Ba, Mg simultaneously in corals with a cost- and time- efficient method, which may be applied to coral paleoclimate sites worldwide.

  13. Color-tunable photoluminescence phosphors of Ce{sup 3+} and Tb{sup 3+} co-doped Sr{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2} for UV w-LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qingfeng; Liao, Libing, E-mail: clayl@cugb.edu.cn; Mei, Lefu

    2015-05-15

    A series of new luminescent emission-tunable phosphors Sr{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}:Ce{sup 3+}, Tb{sup 3+} with apatite structure have been synthesized by a high temperature solid-state reaction. The phase structure, photoluminescence emission and excitation spectra, lifetime, as well as the effect of Tb{sup 3+} concentration are investigated to characterize the resulting samples. The critical distance was calculated to be 8.26 Å by using the concentration quenching method. The intense green emission was observed in the Sr{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}:Ce{sup 3+}, Tb{sup 3+} phosphors on the basis of the efficient energy transfer from Ce{sup 3+} to Tb{sup 3+}more » with an efficiency of 68.55%. And a possible mechanism of the energy-transfer from Ce{sup 3+} to Tb{sup 3+} ion is also proposed. The results indicate that Sr{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}:Ce{sup 3+}, Tb{sup 3+} phosphors have potential applications to be used as near UV-convertible phosphors for white light-emitting diodes because of the broad excitation in the near-ultraviolet range and the efficient green emission light. - Graphical abstract: Crystal structure and luminescence properties of Sr{sub 2}La{sub 8}(SiO{sub 4}){sub 6}O{sub 2}:Ce{sup 3+},Tb{sup 3+} phosphors have been discussed. - Highlights: • Ce{sup 3+} and Tb{sup 3+} ions entered both La sites in SLSO. • The energy transfer efficiency can reach at 68.55%. • The emitting color of SLSO phosphors shifted from the blue to green region.« less

  14. Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices.

    PubMed

    Zhang, Fei; Wu, Biao; Zhou, Guowei; Quan, Zhi-Yong; Xu, Xiao-Hong

    2018-01-17

    Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO 3 layers between La 0.67 Sr 0.33 MnO 3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La 0.67 Sr 0.33 MnO 3 /BaTiO 3 superlattices. The preferential orbital occupancy of e g (x 2 -y 2 ) in La 0.67 Sr 0.33 MnO 3 layers induced by the tensile strain of BaTiO 3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La 0.67 Sr 0.33 MnO 3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

  15. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature allmore » work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.« less

  16. Crystal structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, W.T.; Akerboom, S.; IJdo, D.J.W.

    2007-05-15

    Structures of the double perovskites Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6} have been studied by the profile analysis of X-ray diffraction data. The end members, Ba{sub 2}SrWO{sub 6} and Ba{sub 2}CaWO{sub 6}, have the space group I2/m (tilt system a {sup 0} b {sup -} b {sup -}) and Fm3-barm (tilt system a {sup 0} a {sup 0} a {sup 0}), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3-bar phase (tilt system a {sup -} a {sup -} a {sup -}) instead of the tetragonal I4/mmore » phase (tilt system a {sup 0} a {sup 0} c {sup -}). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba{sub 2} MM'O{sub 6}-type double perovskites, and disagrees with a recent proposal that the formation of the {pi}-bonding, e.g., d {sup 0}-ion, determines the tetragonal symmetry in preference to the rhombohedral one. - Graphical abstract: Enlarged sections showing the evolution of the basic (222) and (400) reflections in Ba{sub 2}Sr{sub 1-} {sub x} Ca {sub x} WO{sub 6}. Tick marks below are the positions of Bragg's reflections calculated using the space groups I2/m (x=0), R3-bar (x=0.25, 0.5 and 0.75) and Fm3-barm (x=1), respectively.« less

  17. Enhanced red fluorescence in Sr2Si1-xGexO4:Eu3+ phosphors by the substitution of Si by Ge for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Xu, Shiqing; Guo, Meiquan; Wang, Chenyue; Hua, Youjie; Zhao, Shilong; Deng, Degang; Wang, Huanping; Jia, Guohua

    2012-07-01

    Eu3+-doped Sr2Si1-xGexO4 (x=0-1) phosphors have been prepared by the high temperature solid-state reaction method. The luminescent properties of these phosphors were investigated. Red fluorescence of Eu3+ is enhanced gradually in the samples with increasing substitution of Si by Ge upon the excitation of 393 nm light. The intensity is increased by 50% with full substitution of Si by Ge. These results are originated from the structural changes and the phonon energy reduction in the samples due to the substitution of Si by Ge. The CIE chromaticity coordinates of the phosphors vary slightly around (0.62, 0.37) and all are in the red color region. The results indicate that these phosphors could be promising red phosphors for white light emitting diodes.

  18. Tunable Luminescence in Sr2MgSi2O7:Tb3+, Eu3+Phosphors Based on Energy Transfer

    PubMed Central

    Li, Minhong; Wang, Lili; Ran, Weiguang; Deng, Zhihan; Shi, Jinsheng; Ren, Chunyan

    2017-01-01

    A series of Tb3+, Eu3+-doped Sr2MgSi2O7 (SMSO) phosphors were synthesized by high temperature solid-state reaction. X-ray diffraction (XRD) patterns, Rietveld refinement, photoluminescence spectra (PL), and luminescence decay curves were utilized to characterize each sample’s properties. Intense green emission due to Tb3+ 5D4→7F5 transition was observed in the Tb3+ single-doped SMSO sample, and the corresponding concentration quenching mechanism was demonstrated to be a diople-diople interaction. A wide overlap between Tb3+ emission and Eu3+ excitationspectraresults in energy transfer from Tb3+ to Eu3+. This has been demonstrated by the emission spectra and decay curves of Tb3+ in SMSO:Tb3+, Eu3+ phosphors. Energy transfer mechanism was determined to be a quadrupole-quadrupole interaction. And critical distance of energy transfer from Tb3+ to Eu3+ ions is calculated to be 6.7 Å on the basis of concentration quenching method. Moreover, white light emission was generated via adjusting concentration ratio of Tb3+ and Eu3+ in SMSO:Tb3+, Eu3+ phosphors. All the results indicate that SMSO:Tb3+, Eu3+ is a promising single-component white light emitting phosphor. PMID:28772587

  19. Optically stimulated luminescence in an imaging plate using BaFi:Eu.

    PubMed

    Nanto, H; Araki, T; Daimon, M; Kusano, E; Kinbara, A; Kawabata, K; Nakano, Y

    2002-01-01

    BaFI:Eu phosphors are fabricated using a new method of synthesis: liquid phase synthesis, in which the phosphor particles are formed through the association of Ba2+ ions, F-ions and Eu2+ ions in solution. An intense optically stimulated luminescence (OSL) peak at about 410 nm is observed by stimulating X ray irradiated BaFI:Eu phosphor with about 550-750 nm light. It is found that the peak wavelength of the optically stimulation spectrum is about 690 nm. This result suggests that the semiconductor laser can be used as the stimulating light source. It is also found that the OSL intensity is increased with increasing the X ray dose. The BaFI:Eu phosphor as a photostimulable material for the imaging plate of a computed radiography system provides the following advantages; (1) high X ray absorption coefficient, (2) high monodispersion in size which would contribute to sharp images, (3) high OSL and thus low luminescence mottle and (4) high DQE (detective quantum efficiency).

  20. Structural and photoluminescence study of bulk SrZnO2

    NASA Astrophysics Data System (ADS)

    Manju, Jain, Megha; Kumar, Ravi; Kumar, Shalendra; Thakur, Anup; Vij, Ankush

    2018-05-01

    In present work, we report synthesis, X-ray diffraction study and photoluminescence of SrZnO2. The SrZnO2 phosphors were prepared through high energy ball milling process and subsequent annealing. The annealing at various temperatures helped in emergence of single phased SrZnO2 phosphors. The texture coefficient of prominent planes was found to be growing with annealing temperature. At an excitation wavelength of 325 nm, the photoluminescence spectrum is spanning from yellow to IR region. As SrZnO2 is wide band gap phosphor, so the observed emission is believed to be due to oxygen vacancies or cation interstitial defects.

  1. The effect of Eu{sup 2+} doping concentration on luminescence properties of Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} yellow phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yue; Liu, Quansheng, E-mail: liuqs@cust.edu.cn; School of Physics, JiLin University, No. 2699 Qianjin Street, Changchun 130012

    2013-10-15

    Graphical abstract: - Highlights: • The concentration quenching mechanism of Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+}can be interpreted by the dipole–dipole (d–d) interaction of Eu{sup 2+} ions. • The average electronegativity of O{sup 2−} ions located around Eu{sup 2+} ion is 1.9991 eV. • The optimum concentration of Eu{sup 2+} ions in Sr{sub 3}B{sub 2}O{sub 6} is 7 mol%. • Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} is a hexagonal crystal structure. - Abstract: The Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} yellow phosphors were synthesized by high-temperature solid state reaction method. The crystal structure and optical properties of the Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+}more » phosphor was studied. Results indicate that Sr{sub 3}B{sub 2}O{sub 6}:Eu{sup 2+} has a hexagonal crystal structure. The excitation spectrum indicates that this phosphor can be effectively excited by ultraviolet light of near 390 nm and blue light of 460 nm. The emission spectrum shows a intense broad band spectrum peaking at 566 nm, which corresponds to the 4f{sup 6}({sup 7}F)5d ({sup 2}e{sub g})→{sup 8}S{sub 7/2} (4f{sup 7})transition of Eu{sup 2+} ion. The excitation spectrum is a broad asymmetric excitation band extending from 300 nm to 500 nm and the main excitation peak is at 468 nm. The average electronegativity of O{sup 2−} ions located around Eu{sup 2+} ion is 1.9991 eV. The optimum concentration of Eu{sup 2+} is 7 mol%. The concentration quenching mechanism can be interpreted by the dipole–dipole (d–d) interaction of Eu{sup 2+} ions.« less

  2. Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  3. Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.

    2000-01-01

    The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.

  4. Concentrations and ratios of Sr, Ba and Ca along an estuarine river to the Gulf of Mexico - implication for sea level rise effects on trace metal distribution

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2015-11-01

    Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers in the world face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88 km long estuary, the Calcasieu River in South Louisiana, USA, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to August 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth, with a salinity range from 0.02 to 29.50 ppt. Water samples were analyzed for Sr, Ba, and Ca concentrations. In-situ measurements were made on salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance. We found that the Sr and Ca concentrations and the Sr / Ca ratio all increased significantly with increasing salinity. The average Sr concentration at the site closest to the Gulf of Mexico (site 6) was 46.21 μmol L-1, which was about 130 times higher than that of the site furthest upstream (site 1, 0.35 μmol L-1). The average Ca concentration at site 6 was 8.19 mmol L-1, which was about 60 times higher than that of site 1 (0.13 mmol L-1). The average Sr / Ca ratio at site 6 (8.41 mmol mol-1) was about 3 times the average Sr / Ca ratio at site 1 (2.89 mmol mol-1). However, the spatial variation in Ba concentration was marginal, varying from 0.36 μmol L-1 at site 6 to 0.47 at site 5. The average Ba / Ca ratio at site 1 (4.82 mmol mol-1) was about 54 times the average Ba / Ca ratio at site 6 (0.09 mmol mol-1), showing a clear negative relation between the Ba / Ca ratio and increasing

  5. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  6. Enhanced emission of encaged-OH--free Ca12(1-x)Sr12xAl14O33:0.1%Gd3+ conductive phosphors via tuning the encaged-electron concentration for low-voltage FEDs.

    PubMed

    Zhang, Meng; Liu, Yuxue; Yang, Jian; Zhu, Hancheng; Yan, Duanting; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan; Zhang, Hong

    2017-05-24

    Encaged-OH - -free Ca 12(1-x) Sr 12x Al 14 O 33 :0.1%Gd 3+ conductive phosphors were prepared through a melt-solidification process in combination with a subsequent heat treatment. Absorption spectra showed that the maximum encaged-electron concentration was increased to 1.08 × 10 21 cm -3 through optimizing the doping amount of Sr 2+ (x = 0.005). Meanwhile, FTIR and Raman spectra indicated that pure Ca 11.94 Sr 0.06 Al 14 O 33 :0.1%Gd 3+ conductive phosphor without encaged OH - and C 2 2- anions was acquired. For the conductive powders heat-treated in air for different times, the encaged-electron concentrations were tuned from 1.02 × 10 21 to 8.3 × 10 20 cm -3 . ESR, photoluminescence, and luminescence kinetics analyses indicated that the emission at 312 nm mainly originated from Gd 3+ ions surrounded by encaged O 2- anions, while Gd 3+ ions surrounded by encaged electrons had a negative contribution to the UV emission due to the existence of an energy transfer process. Under low-voltage electron-beam excitation (3 kV), enhanced cathodoluminescence (CL) of the conductive phosphors could be achieved by tuning the encaged-electron concentrations. In particular, for the encaged-OH - -free conductive phosphor, the emission intensity of the CL was about one order of magnitude higher than that of the conductive phosphor containing encaged OH - anions. Our results suggested that the encaged-OH - -free conductive phosphors have potential application in low-voltage FEDs.

  7. Microstructural and thermal properties of pure BaFe{sub 12}O{sub 19} and Sr doped barium ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) synthesized by auto combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha

    2016-05-23

    Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less

  8. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less

  9. Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films

    NASA Astrophysics Data System (ADS)

    Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.

    2018-04-01

    By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.

  10. Second harmonic generation response of the cubic chalcogenides Ba( 6-x)Sr x[Ag( 4-y)Sn( y/4)](SnS 4) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo

    We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less

  11. Structural and electronic properties of Sr{sub x}Ba{sub 1-x}SnO{sub 3} from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2012-03-15

    Neutron diffraction data for Sr{sub x}Ba{sub 1-x}SnO{sub 3} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions were used as inputs to obtain optimized geometries and electronic properties using the density functional theory (DFT) formalism considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The crystal structures and SnO{sub 6} octahedra tilting angles found after total energy minimization agree well with experiment, specially for the GGA data. Elastic constants were also obtained and compared with theoretical and experimental results for cubic BaSnO{sub 3}. While the alloys with cubic unit cell have an indirect band gap, tetragonalmore » and orthorhombic alloys exhibit direct band gaps (exception made to x=1.0). The Kohn-Sham minimum electronic band gap oscillates from 1.52 eV (cubic x=0.0, LDA) to 2.61 eV (orthorhombic x=1.0, LDA), and from 0.74 eV (cubic BaSnO{sub 3}, GGA) to 1.97 eV (orthorhombic SrSnO{sub 3}, GGA). Parabolic interpolation of bands has allowed us to estimate the effective masses for charge carriers, which are shown to be anisotropic and larger for holes. - Graphical Abstract: Highlights: Black-Right-Pointing-Pointer DFT calculations were performed on Sr{sub x}Ba{sub 1-x}SnO{sub 3} solid solutions. Black-Right-Pointing-Pointer Calculated crystal structures agree well with experiment. Black-Right-Pointing-Pointer Alloys have direct or indirect gaps depending on the Sr molar fraction. Black-Right-Pointing-Pointer The Kohn-Sham gap variation from x=0.0 to x=1.0 is close to the experimental value. Black-Right-Pointing-Pointer Carrier effective masses are very anisotropic, specially for holes.« less

  12. Influence of MO/MF2 modifiers (M = Ca, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate and borate glasses

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Janek, Joanna; Pietrasik, Ewa; Sołtys, Marta; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-11-01

    Series of Eu3+-doped lead-free germanate and borate glasses were synthesized. The MO glass modifiers (M = Ca, Sr or Ba) were partially or totally substituted by MF2 in chemical composition. In contrast to samples modified by CaO/CaF2 or SrO/SrF2, the germanate glass samples containing BaO and/or BaF2 are fully amorphous, while the lead-free borate glasses are fully amorphous, independently from glass modifiers. Effect of glass modifiers on spectroscopic properties of Eu3+ were systematically investigated. For that reason, excitation and emission spectra of Eu3+ ions in examined systems were registered. Based on the emission spectra, ratio of integrated luminescence intensity of the 5D0 → 7F2 transition to that of the 5D0 → 7F1 transition (R factor) was calculated. Moreover, the luminescence decay curves were collected and the luminescence lifetimes of the 5D0 excited state of Eu3+ ions were determined in function of MF2 concentration.

  13. Luminescence of BaBrI and SrBrI single crystals doped with Eu2+

    NASA Astrophysics Data System (ADS)

    Shalaev, A. A.; Shendrik, R.; Myasnikova, A. S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A.

    2018-05-01

    The crystal growth procedure and luminescence properties of pure and Eu2+-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu2+ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu2+ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.

  14. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    NASA Astrophysics Data System (ADS)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  15. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  16. Structure and optical band gaps of (Ba,Sr)SnO{sub 3} films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Timo; Raghavan, Santosh; Ahadi, Kaveh

    2016-09-15

    Epitaxial growth of (Ba{sub x}Sr{sub 1−x})SnO{sub 3} films with 0 ≤ x ≤ 1 using molecular beam epitaxy is reported. It is shown that SrSnO{sub 3} films can be grown coherently strained on closely lattice and symmetry matched PrScO{sub 3} substrates. The evolution of the optical band gap as a function of composition is determined by spectroscopic ellipsometry. The direct band gap monotonously decreases with x from to 4.46 eV (x = 0) to 3.36 eV (x = 1). A large Burnstein-Moss shift is observed with La-doping of BaSnO{sub 3} films. The shift corresponds approximately to the increase in Fermi level and is consistent with the low conduction band mass.

  17. Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.

    2017-04-01

    NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.

  18. Effect of Sr doping on structural and magnetic behavior of SmBa1-xSrxCo2O5+δ (x = 0 and 1)

    NASA Astrophysics Data System (ADS)

    Kumari, Archana; Dhanasekhar, C.; Das, A. K.

    2018-05-01

    Layered double perovskite, SmBa1-xSrxCo2O5+δ (x = 0, δ = 0.5 and x = 1, δ = 1) samples were prepared by solid state reaction method. X-ray diffraction studies show that the SmBaCo2O5.5 sample crystallizes in the orthorhombic crystal structure with Pmmm space group, whereas SmSrCo2O6 sample crystallizes in the orthorhombic crystal structure with Pnma space group. The temperature dependent magnetization of the SmBaCo2O5.5 sample shows a paramagnetic (PM)-ferromagnetic (FM) and a FM-antiferromagnetic (AFM) transitions at TC = 267 K and TN = 221 K, respectively. In contrast, the SmSrCo2O6 sample shows a PM-FM transition at TC = 175 K. According to Goodenough-Kanamori-Anderson rules, the ferromagnetic behavior in SmSrCo2O6 can be understood from the super exchange interaction between the intermediate spin Co3+ and low spin Co4+ via O2- (IS Co3+ -O2- - LS Co4+). The change in magnetic entropy (ΔSMmax) is found to be maximum for the SmSrCo2O6 sample.

  19. Synthesis and luminescence studies of Eu (III) doped Sr2P2O7 phosphor for white LED applications

    NASA Astrophysics Data System (ADS)

    Khan, Z. S.; Ingale, N. B.; Omanwar, S. K.

    2018-05-01

    Europium (III) doped distrontium diphosphate (Sr2P2O7) is synthesized by slow vaporization method and its luminescence properties are carried out. Using X-Ray diffraction, the crystal structure of this material was confirmed. Photoluminescence (PL) measurement make clear the phosphor exhibited intense emission at 593 nm (yellow) and 612 nm (orange) respectively corresponding to 5D0→7F1 and 5D0→7F2 transitions of Eu3+ on excitation with most favourable 394 nm wavelengths. The remaining excitation peaks at 381 nm and 465 nm with broad band 200-310 nm are also witness in the excitation spectra. The particle morphology using SEM images shows micro level particles for this phosphor. The effect of concentration of Eu3+ ions on the PL intensity has also been investigated. It has been observed that the powder sample exhibits highest PL emission intensity for Eu3+ concentration of about 0.02 moles. The emission spectra exhibit orange performance (CIE chromaticity coordinates: X = 0.672, Y = 0.328), which is due to the 5D0→7F2 transitions of Eu3+ ions. This phosphor is very good for white LED applications.

  20. Study of optical properties of cerium ion doped barium aluminate phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohe, P. P., E-mail: prachiti.lohe2012@gmail.com; Omanwar, S. K.; Bajaj, N. S.

    2016-05-06

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl{sub 2}O{sub 4} doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl{sub 2}O{sub 4}: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescentmore » properties.« less

  1. Thermally stable green Ba(3)Y(PO(4))3:Ce(3+),Tb(3+) and red Ca(3)Y(AlO)(3)(BO(3))4:Eu(3+) phosphors for white-light fluorescent lamps.

    PubMed

    Huang, Chien-Hao; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-03

    A class of thermal stable of green-emitting phosphors Ba(3)Y(PO(4))(3):Ce(3+),Tb(3+) (BYP:Ce(3+),Tb(3+)) and red-emitting phosphors Ca(3)Y(AlO)(3)(BO(3))(4):Eu(3+) (CYAB:Eu(3+)) for white-light fluorescent lamps were synthesized by high temperature solid-state reaction. We observed a decay of only 3% at 150 °C for BYP:0.25Ce3+,0.25Tb3+ (3% for LaPO4:Ce(3+),Tb(3+)), and a decay of 4% for CYAB:0.5Eu(3+) (7% for Y(2)O(3):Eu(3+), 24% for Y(2)O(2)S:Eu(3+)). The emission intensity of composition-optimized Ba(3)(Y(0.5)Ce(0.25)Tb(0.25))(PO(4))(3) is 70% of that of commercial LaPO(4):Ce(3+),Tb(3+) phosphors, and the CIE chromaticity coordinates are found to be (0.323, 0.534). The emission intensity of Ca(3)(Y(0.5)Eu(0.5))(AlO)(3)(BO(3))(4) is 70% and 83% of those of Y(2)O(3):Eu(3+) and Y(2)O(2)S:Eu(3+) phosphors, respectively, and the CIE chromaticity coordinates are redder (0.652, 0.342) than those of Y(2)O(3):Eu(3+) (0.645, 0.347) and Y(2)O(2)S:Eu(3+) (0.647, 0.343). A white-light fluorescent lamp is fabricated using composition-optimized Ba(3)(Y(0.5)Ce(0.25)Tb(0.25))(PO(4))(3) and Ca(3)(Y(0.5)Eu(0.5))(AlO)(3)(BO(3))(4) phosphors and matching blue-emitting phosphors. The results indicate that the quality of the brightness and color reproduction is suitable for application in shortwave UV fluorescent lamps. The white-light fluorescent lamp displays CIE chromaticity coordinates of x = 0.33, y = 0.35, a warm white light with a correlated color temperature of 5646 K, and a color-rendering index of Ra = 70.

  2. Solvothermal synthesis of well-dispersed MF2 (M = Ca,Sr,Ba) nanocrystals and their optical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lian, Hongzhou; Lin, Jun

    2008-02-01

    MF2 (M = Ca,Sr,Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively. Possible growth mechanisms were proposed to explain these results. The as-prepared NCs are highly crystalline and can be well dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrate strong emission bands centred at 400 nm in photoluminescence (PL) spectra compared with the cyclohexane solvent. The PL properties of the colloidal solutions of the as-prepared NCs can be ascribed to the trap states of surface defects.

  3. A flux-free method for synthesis of Ce{sup 3+}-doped YAG phosphor for white LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Yaochun; Yu, Yuxi, E-mail: yu_heart@xmu.edu.cn; Chen, Guolong

    2016-02-15

    Highlights: • A series of CeF{sub 3}-doped YAG phosphors were successfully synthesized. • CeF{sub 3} not only can be used as the Ce{sup 3+} source but also can play the role of a flux. • The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. • YAG:CeF{sub 3} phosphor exhibits excellent thermal stability. • Using CeF{sub 3} as the Ce{sup 3+} source is a promising flux-free method to prepare YAG:Ce{sup 3+}. - Abstract: A series of CeF{sub 3}-doped Y{sub 3}Al{sub 5}O{sub 12} (YAG:CeF{sub 3}) phosphor, CeO{sub 2}-doped Y{sub 3}Al{sub 5}O{sub 12}more » (YAG:Ce{sub 2}O{sub 3}) phosphor and 5 wt% BaF{sub 2} added YAG:Ce{sub 2}O{sub 3} (YAG:Ce{sub 2}O{sub 3} + BaF{sub 2}) phosphor were successfully synthesized by a solid-state reaction method. The microstructure, morphology, luminescence spectra, luminescence quantum yield (QY) and thermal quenching of the phosphors were investigated. The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. At 150 °C, the luminescence intensity of YAG:CeF{sub 3} phosphor, YAG:Ce{sub 2}O{sub 3} phosphor and YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor was 85%, 86% and 89% of that measured at 25 °C, respectively. The comprehensive performance of the white LED lamp employing YAG:CeF{sub 3} phosphor is even better than that of the white LED lamp employing YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor. The experimental results show that it is a promising flux-free method to synthesize Ce{sup 3+}-doped YAG phosphor by employing CeF{sub 3} as the Ce{sup 3+} source.« less

  4. A novel tunable white light emitting multiphase phosphor obtained from Ba2TiP2O9 by introducing Eu3+

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Wan, Jieqiong; Ni, Jia; Lu, Zhouguang; Ma, Ruguang; Zhou, Yao; Wang, Jiacheng; Liu, Qian

    2016-04-01

    Tunable white light was realized in samples Ba2(1- x)TiP2O9:2 xEu ( x = 0-0.80) by introducing orange-red light emitting Eu3+ in self-activated blue-green light emitting matrix Ba2TiP2O9. The sample Ba2(1- x)TiP2O9:2 xEu is a multiphase system consisting of Ba2TiP2O9, EuPO4 and TiO2 when x is greater than or equal to 0.20. The tunable light from blue-green to bluish-white, to white, and eventually to pinky-white of samples Ba2(1- x)TiP2O9:2 xEu under UV light excitation is attributed to the light mixture of tunable blue-green light from Ti4+-O2- charge transfer transition in Ba2TiP2O9 and orange-red light from Eu3+ 4f-4f transition mostly in EuPO4. The Commission International de l'Eclairage chromaticity coordinates, correlated color temperature and color rendering index were tuned from (0.262, 0.339), 9492 K and 74 for matrix sample Ba2TiP2O9 to (0.324, 0.346), 5876 K and 87 for sample Ba2(1- x)TiP2O9:2 xEu ( x = 0.40) under UV light excitation. Therefore, a kind of promising UV-excited white light emitting multiphase phosphor was obtained.

  5. Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors

    PubMed Central

    Rodríguez Burbano, Diana C.; Capobianco, John A.

    2017-01-01

    The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m2. However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl2O4:Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl2O4:Eu,Dy) participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors. PMID:28773228

  6. Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum

    2015-05-15

    In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.

  7. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent Halides AB 2 I 5 : Eu 2 + ( A = Li – Cs ; B = Sr , Ba)

    DOE PAGES

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB 2I 5:Eu 2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa 2I 5:Eu 2+ and KSr 2I 5:Eu 2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB 2I 5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containingmore » compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa 2I 5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABa VIIISr VIII 5:Eu as scintillators having enhanced homogeneity and electronic properties.« less

  8. Extraction of heavy metal (Ba, Sr) and high silica glass powder synthesis from waste CRT panel glasses by phase separation.

    PubMed

    Xing, Mingfei; Wang, Jingyu; Fu, Zegang; Zhang, Donghui; Wang, Yaping; Zhang, Zhiyuan

    2018-04-05

    In this study, a novel process for the extraction of heavy metal Ba and Sr from waste CRT panel glass and synchronous preparation of high silica glass powder was developed by glass phase separation. CRT panel glass was first remelted with B 2 O 3 under air atmosphere to produce alkali borosilicate glass. During the phase separation process, the glass separated into two interconnected phases which were B 2 O 3 -rich phase and SiO 2 -rich phase. Most of BaO, SrO and other metal oxides including Na 2 O, K 2 O, Al 2 O 3 and CaO were mainly concentrated in the B 2 O 3 -rich phase. The interconnected B 2 O 3 -rich phase can be completely leached out by 5mol/L HNO 3 at 90 ℃. The remaining SiO 2 -rich phase was porous glasses consisting almost entirely of silica. The maximum Ba and Sr removal rates were 98.84% and 99.38% and high silica glass powder (SiO 2 purity > 90 wt%) was obtained by setting the temperature, B 2 O 3 added amount and holding time at 1000-1100 ℃, 20-30% and 30 min, respectively. Thus this study developed an potential economical process for detoxification and reclamation of waste heavy metal glasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Composition and phase analysis of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) by using general structure analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id

    2016-03-11

    Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less

  10. Effects of nanostructuring on luminescence properties of SrS:Ce,Sm phosphor: An experimental and phenomenological study

    NASA Astrophysics Data System (ADS)

    Yazdanmehr, Mohsen; Sadeghi, Hossein; Tehrani, Masoud Kavosh; Hashemifar, Seyed Javad; Mahdavi, Mohammad

    2018-01-01

    In this work, we employ various experimental techniques to illustrate the effects of nanostructuring on improvement of the luminescence properties of the polycrystalline SrS co-activated by cerium and samarium dopants (SrS : Ce , Sm). The nano and microstructure SrS : Ce , Sm powders were synthesized by the co-precipitation and solid state diffusion methods, respectively, followed by the spark plasma sintering (SPS) process to densify powders into pellet shape. It is observed that the photo-luminescence (PL), radio-luminescence (RL), and optically stimulated luminescence (OSL) emission intensity of the nanostructure samples are significantly improved with respect to the microstructure samples. Moreover, by using an accurate photomultiplier tube, we measured the CW-OSL decay curves of the samples to demonstrate much higher and faster sensitivity of the nanostructure SrS : Ce , Sm for in-flight and online OSL radiation dosimetry. The obtained absorption and emission spectra are used for phenomenology of the electronic band structure of the SrS : Ce , Sm micro and nano-phosphors inside the band gap. The proposed phenomenological electronic structures are then used to clarify the role of Ce3+ and Sm3+ localized energy levels in the luminescence properties of the nano and microstructure samples. It is argued that electronic transitions from the 2T2g state of Ce3+ and the 4G5/2 state of Sm3+ have strong contribution to the PL and RL emission spectra, while in the OSL mechanism, the Sm3+ 4G5/2 state is mainly responsible for electrons trapping.

  11. High ferroelectric polarization in c-oriented BaTiO 3 epitaxial thin films on SrTiO 3/Si(001)

    DOE PAGES

    Scigaj, M.; Chao, C. H.; Gázquez, J.; ...

    2016-09-21

    The integration of epitaxial BaTiO 3 films on silicon, combining c-orientation, surface flatness, and high ferroelectric polarization is of main interest towards its use in memory devices. This combination of properties has been only achieved so far by using yttria-stabilized zirconia buffer layers. Here, the all-perovskite BaTiO 3/LaNiO 3/SrTiO 3 heterostructure is grown monolithically on Si(001). The BaTiO 3 films are epitaxial and c-oriented and present low surface roughness and high remnant ferroelectric polarization around 6 μC/cm 2. Lastly, this result paves the way towards the fabrication of lead-free BaTiO 3 ferroelectric memories on silicon platforms.

  12. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite

    USGS Publications Warehouse

    Tesoriero, A.J.; Pankow, J.F.

    1996-01-01

    Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.

  13. AC conductivity studies of La doped Ba0.5Sr0.5TiO3

    NASA Astrophysics Data System (ADS)

    D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil

    2017-05-01

    Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.

  14. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  15. Microfabrication of SrRuO3 thin films on various oxide substrates using LaAlO3/BaOx sacrificial bilayers

    NASA Astrophysics Data System (ADS)

    Harada, Takayuki; Tsukazaki, Atsushi

    2018-02-01

    Oxides provide various fascinating physical properties that could find use in future device applications. However, the physical properties of oxides are often affected by formation of oxygen vacancies during device fabrication processes. In this study, to develop a damage-free patterning process for oxides, we focus on a lift-off process using a sacrificial template layer, by which we can pattern oxide thin films without severe chemical treatment or plasma bombardment. As oxides need high thin-film growth temperature, a sacrificial template needs to be made of thermally stable and easily etchable materials. To meet these requirements, we develop a sacrificial template with a carefully designed bilayer structure. Combining a thermally and chemically stable LaAlO3 and a water-soluble BaOx, we fabricated a LaAlO3/BaOx sacrificial bilayer. The patterned LaAlO3/BaOx sacrificial bilayers were prepared on oxide substrates by room-temperature pulsed laser deposition and standard photolithography process. The structure of the sacrificial bilayer can be maintained even in rather tough conditions needed for oxide thin film growth: several hundred degrees Celsius under high oxygen pressure. Indeed, the LaAlO3/BaOx bilayer is easily removable by sonication in water. We applied the lift-off method using the LaAlO3/BaOx sacrificial bilayer to a representative oxide conductor SrRuO3 and fabricated micron-scale Hall-bar devices. The SrRuO3 channels with the narrowest line width of 5 μm exhibit an almost identical transport property to that of the pristine film, evidencing that the developed process is beneficial for patterning oxides. We show that the LaAlO3/BaOx lift-off process is applicable to various oxide substrates: SrTiO3, MgO, and Al2O3. The new versatile patterning process will expand the range of application of oxide thin films in electronic and photonic devices.

  16. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; Lakshminarayana, G.; Dong, M. G.; Ersundu, M. Çelikbilek; Ersundu, A. E.; Kityk, I. V.

    2018-04-01

    In this work, mass attenuation coefficients (μ/ρ), effective atomic number (Zeff), electron density (Ne), mean free path (MFP), and half-value layer (HVL) of 20 BaO/SrO‒(x) Bi2O3‒(80‒x) B2O3 glasses (where x=10, 20, 30, 40, 50 and 60 mol%) were calculated using WinXCom program and MCNP5 code. The obtained (μ/ρ) results using both MCNP5 code and WinXCom program were in good agreement. It is found that the addition of Bi2O3 leads to increase the Zeff values in both BaO/SrO‒Bi2O3‒B2O3 glass systems. However, the Zeff values of the BaO‒Bi2O3‒B2O3 glass system are higher than those of the SrO‒Bi2O3‒B2O3 glasses. The fast neutrons effective removal cross sections (ΣR) for 20 SrO‒40 Bi2O3‒40 B2O3 glass is the highest among all studied glasses. The calculated half-value layer values were compared with different glass systems and it was found that the shielding properties of the selected glasses are comparable or even better than other glass systems such as phosphate glasses.

  17. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties

    PubMed Central

    Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.

    2013-01-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726

  18. Heterobimetallic Complexes with MIII-(μ-OH)-MII Cores (MIII = Fe, Mn, Ga; MII = Ca, Sr, and Ba): Structural, Kinetic, and Redox Properties.

    PubMed

    Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2013-02-01

    The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.

  19. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  20. Co-operative energy transfer in Yb3+-Er3+ co-doped SrGdxOy upconverting phosphor

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Pathak, Trilok K.; Dhoble, S. J.; . Terblans, J. J.; Swart, H. C.

    2018-04-01

    Upconversion nanoparticles (UCNPs) have shown considerable interest in many fields; however, low upconversion efficiency of UCNPs is still the most severe limitation of their applications. Yb3+ and Er3+ co-doped SrGd4O7/Gd2O3(SGO) upconversion (UC) phosphors were synthesized by a modified co-precipitation process. The UC properties were investigated by direct excitation with a 980 nm laser. It was observed that the as prepared materials showed relatively strong green emission, while upon the incorporation of the Er3+ ion, there was an increase in the upconversion luminescence intensity for the red component. The effect of different doping concentration of Er3+on the emission spectra and X-ray diffraction patterns of the UC materials have also been studied. The luminescence lifetimes and Commission Internationale de L'Eclairage coordinates for these as prepared samples were determined to understand the energy transfer (ET) mechanisms occurring between Yb3+ and Er3+ in the SGO host matrix. The UC luminescence intensity as a function of laser pump power was monitored and it was confirmed that the UC process in SGO:Yb3+/Er3+is a two-photon absorption process. The findings reported here are expected to provide a better approach for understanding of the ET mechanisms in the oxide based Yb3+/Er3+ co-doped UC phosphors. This study might be helpful in precisely defined applications where optical transitions are essential criterion and this can be easily achieved by smart tuning of the emission properties of Yb3+/Er3+ co-doped UC phosphors.

  1. New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Singh, David J.

    2017-10-16

    The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less

  2. New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Zhang, Lijun; Singh, David J.

    The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less

  3. Data-driven discovery of energy materials: efficient BaM2Si3O10 : Eu2+ (M = Sc, Lu) phosphors for application in solid state white lighting.

    PubMed

    Brgoch, Jakoah; Hasz, Kathryn; Denault, Kristin A; Borg, Christopher K H; Mikhailovsky, Alexander A; Seshadri, Ram

    2014-01-01

    In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

  4. p-tert-Butylcalix[6]arene hexacarboxylic acid as host for Pb(ii), Sr(ii) and Ba(ii)†

    PubMed Central

    Adhikari, Birendra Babu; Zhao, Xiang; Derakhshan, Shahab

    2015-01-01

    p-tert-Butylcalixarene hexacarboxylic acid initially binds with low symmetry, to later adopt a highly symmetric up-down alternating conformation in the presence of Pb, Sr or Ba. The conformational dynamics for the three ions are distinct, from 15 hours, to 20 days, to 38 days, respectively. PMID:25198172

  5. Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6}:Eu{sup 3+}, Li{sup +}: An emission tunable phosphor through site symmetry and excitation wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Ning; Shen, Jun; Xiao, Tengjiao

    2015-10-15

    The emission of Eu{sup 3+} doped Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors could be tunable by the site symmetry of the activators and the excitation wavelengths. - Highlights: • The emission of Eu{sup 3+} depends on site symmetry and excitation wavelengths. • The color of the samples was tunable by structure and excitation wavelength. • The effect of W and Eu content on the properties of the samples was investigated. - Abstract: A series of Eu{sup 3+} substituted double-perovskite Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors were prepared by solid state reactions. The phase, photoluminescence and energy transfer of the phosphorsmore » were investigated by X-ray diffraction (XRD), photoluminescence (PL) and luminescence decay respectively. It is found that the emission of the Eu{sup 3+} substituted double perovskites depends on both the site symmetry of the activators and the excitation wavelengths. Based on the decay analysis of Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} matrix and Eu{sup 3+} doped samples, the energy transfer efficiencies between the host and activators Eu{sup 3+} were investigated. The results of the emission tunable phosphors indicate their potential applications in LEDs.« less

  6. Effect of bottom electrode on dielectric property of sputtered-(Ba,Sr)TiO{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Shinichi; Yamada, Tomoaki; Takahashi, Kenji

    2009-03-15

    (Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) films were deposited on (111)Pt/TiO{sub 2}/SiO{sub 2}/Al{sub 2}O{sub 3} substrates by rf sputtering. By inserting a thin layer of SrRuO{sub 3} in between BST film and (111)Pt electrode, the BST films grew fully (111)-oriented without any other orientations. In addition, it enables us to reduce the growth temperature of BST films while keeping the dielectric constant and tunability as high as those of BST films directly deposited on Pt at higher temperatures. The dielectric loss of the films on SrRuO{sub 3}-top substrates was comparable to that on Pt-top substrates for the same level of dielectricmore » constant. The results suggest that the SrRuO{sub 3} thin layer on (111)Pt electrode is an effective approach to growing highly crystalline BST films with (111) orientation at lower deposition temperatures.« less

  7. Raman-Spektren der Hexathiohypodiphosphate des NH4, Mg, Ca, Sr und Ba

    NASA Astrophysics Data System (ADS)

    Pätzmann, Ulrich; Brockner, Wolfgang

    1987-06-01

    The title compounds have been prepared and their Raman spectra recorded. The observed frequencies of (NH4)4P2S6 and Mg2P2S6 are assigned on the basis of P2S64- units with D3d symmetry. The Raman spectra of the Calcium, Strontium and Barium compounds indicate symmetry splitting, therefore the P2S64- frequencies are assigned with C2h symmetry. This assignment is supported by the correlation D3d → C2h. It is concluded that Sr2P2S6 and Ba2P2S6 crystallize in the monoclinic modification II.

  8. On the photo-luminescence properties of sol–gel derived undoped and Dy{sup 3+} ion doped nanocrystalline Scheelite type AMoO{sub 4} (A = Ca, Sr and Ba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Paramananda; Gupta, Santosh K., E-mail: santufrnd@gmail.com; Natarajan, V.

    2015-04-15

    Nanocrystalline Scheelite type Dy doped AMoO{sub 4} [where A = Ba, Sr and Ca] samples were prepared by acrylamide assisted sol–gel process and characterized by XRD, FT-Raman, FTIR, SEM and photoluminescence (PL). PL of undoped sample shows blue/green emission in CaMoO{sub 4} and SrMoO{sub 4} but multicolour visible emission leading to near white light in BaMoO{sub 4} nanoparticles; the origin of which is explained. It was observed that on doping 0.5 mol% of Dy{sup 3+} in molybdate samples complete energy transfer takes place in case of SrMoO{sub 4} and BaMoO{sub 4}, but host contributed substantially in Dy doped BaMoO{sub 4}more » sample, resulting in biexponential decay. It was also observed that symmetry around Dy{sup 3+} decreases as the size of alkaline earth ion increases. Due to combined blue, yellow and red colour emission in dysprosium doped sample; all samples showed near white light emission under UV and near UV excitation.« less

  9. Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence.

    PubMed

    Su, Yue; Liu, Xiuling; Lei, Pengpeng; Xu, Xia; Dong, Lile; Guo, Xianmin; Yan, Xingxu; Wang, Peng; Song, Shuyan; Feng, Jing; Zhang, Hongjie

    2016-07-05

    Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) have been successfully fabricated via the thermal decomposition method. Upconversion nanoparticles (UCNPs) were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), upconversion luminescence (UCL) spectroscopy, etc. Under 980 nm excitation, the emission intensities of the UCNPs are remarkably enhanced after coating the MF2 (M = Ca, Sr, and Ba) shell. Among these samples, CaF2 coated UCNPs show the strongest overall emission, while BaF2 coated UCNPs exhibit the longest lifetime. These results demonstrate that alkaline earth metal fluorides are ideal materials to improve the UCL properties. Meanwhile, although the lattice mismatch between the ternary NaREF4 core and the binary MF2 (M = Sr and Ba) shell is relatively large, the successfully synthesized NaLuF4:Yb/Er@NaLuF4:Yb@MF2 indicates a new outlook on the fabrication of heterostructural core-shell UCNPs.

  10. Luminescence properties of tunable white-light long-lasting phosphor YPO4: Eu3+, Tb3+, Sr2+, Zr4+

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Wang, Mingwen; Meng, Xiangxue; Lin, Wei

    2016-04-01

    A series of novel YPO4: Eu3+, Tb3+, Sr2+, Zr4+ tunable white-light long lasting phosphors were synthesized by conventional solid-state reaction method. The luminescent properties were systematically characterized by X-ray diffraction, photoluminescent excitation and emission spectra, thermoluminescence spectrum and decay curves. The XRD patterns indicated that the samples belonged to tetragonal phase and co-doping Eu3+, Tb3+, Sr2+ and Zr4+ ions have no effect on the basic crystal structure. Under the excitation of 372 nm wavelength, it was first discovered that the specific concentration of Sr2+ can improve the emission intensity of Eu2+. The blue (Eu2+), green (Tb3+) and red (Eu3+) lights were emitted simultaneously and therefore produced white light in the same YPO4 matrix. Tunable color from the white to purple region was achieved not only by increasing the concentration of Zr4+ and Sr2+, but also by increasing the concentration of Eu3+. The CIE chromaticity coordinates of Y0.89PO4: Eu3+0.06, Tb3+0.05, Sr2+0.06, Zr4+0.06 (0.33, 0.31) were the closest to point (0.33, 0.33) which delegates the ideal white and trap depths for the two glow peaks are 0.88 eV and 0.85 eV. The fitting decay constant of τ2 corresponding to the slow exponentially decay components was 101.30 s.

  11. Synthesis of MSnO{sub 3} (M = Ba, Sr) nanoparticles by reverse micelle method and particle size distribution analysis by whole powder pattern modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Jahangeer; Blakely, Colin K.; Bruno, Shaun R.

    2012-09-15

    Highlights: ► BaSnO{sub 3} and SrSnO{sub 3} nanoparticles synthesized using the reverse micelle method. ► Particle size and size distribution studied by whole powder pattern modeling. ► Nanoparticles are of optimal size for investigation in dye-sensitized solar cells. -- Abstract: Light-to-electricity conversion efficiency in dye-sensitized solar cells critically depends not only on the dye molecule, semiconducting material and redox shuttle selection but also on the particle size and particle size distribution of the semiconducting photoanode. In this study, nanocrystalline BaSnO{sub 3} and SrSnO{sub 3} particles have been synthesized using the microemulsion method. Particle size distribution was studied by whole powdermore » pattern modeling which confirmed narrow particle size distribution with an average size of 18.4 ± 8.3 nm for SrSnO{sub 3} and 15.8 ± 4.2 nm for BaSnO{sub 3}. These values are in close agreement with results of transmission electron microscopy. The prepared materials have optimal microstructure for successive investigation in dye-sensitized solar cells.« less

  12. (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 solid solutions: phase evolution, microstructure, dielectric properties and impedance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu

    2018-06-01

    Perovskite solid solution ceramics of (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 (BBSTBV, BBSTBT, 0.02 ≤ x ≤ 0.2) were prepared by the traditional solid state reaction technique. The phase evolution, microstructure and dielectric properties of BBSTBV and BBSTBT ceramics were researched. X-Ray diffraction results illustrated that both BBSTBV and BBSTBT could form a homogenous solid solution which has a similar structure with BaTiO3. The optimized properties of (Ba0.8Bi0.1Sr0.1)(Ti0.8Bi0.1Ti0.1)O3 ceramics with stable ɛ r ( 1769-2293), small Δ ɛ/ ɛ 25 °C values (± 15%) over a broad temperature range from - 58 to 151 °C and low tan δ ≤ 0.03 from - 11 to 131 °C were obtained. In the high-temperature region, the relaxation and conduction process are attributed to the thermal activation and the oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.

  13. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    PubMed Central

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  14. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  15. Rare gases and Ca, Sr, and Ba in Apollo 17 drill-core fines

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.; Dragon, J. C.; Johnson, N. L.; Bates, A.; Coscio, M. R., Jr.; Murthy, V. R.

    1975-01-01

    Trapped gas isotopic compositions and spallation gas concentrations as functions of depth in the Apollo 17 drill core were determined from mass spectrometer studies by means of correlation techniques. The distribution of He, Ne, Ar, Kr, and Xe as well as Ca, Sr, and Ba was investigated, and rare-gas spallation and neutron capture profiles are compared with attention to proposed depositional models for the Taurus-Littrow regolith. The data exclude a sedimentation pattern similar to that found at the Apollo 15 site but are possibly compatible with long-term continuous accretion models or models of very recent rapid accumulation of regolith.

  16. Structural trends for celestite (SrSO[subscript 4]), anglesite (PbSO[subscript 4]), and barite (BaSO[subscript 4]): Confirmation of expected variations within the SO[subscript 4] groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.

    2012-05-10

    The crystal structures of the isostructural orthorhombic sulfates celestite (SrSO{sub 4}), anglesite (PbSO{sub 4}), and barite (BaSO{sub 4}) were refined by Rietveld methods using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Their structural model was refined in space group Pbnm. The unit-cell parameters are a = 6.87032(3), b = 8.36030(5), c = 5.34732(1) {angstrom}, and V = 307.139(3) {angstrom}{sup 3} for SrSO{sub 4}; a = 6.95802(1), b = 8.48024(3), c = 5.39754(1) {angstrom}, and V = 318.486(1) {angstrom}{sup 3} for PbSO{sub 4}; and a = 7.15505(1), b = 8.88101(3), c = 5.45447(1) {angstrom}, and V = 346.599(1) {angstrom}{sup 3} formore » BaSO{sub 4}. The average [12] distances are 2.827(1), 2.865(1), and 2.953(1) {angstrom} for SrSO{sub 4}, PbSO{sub 4}, and BaSO{sub 4}, respectively, and their corresponding average [4] distances are 1.480(1), 1.477(3), and 1.471(1) {angstrom}. The geometrical features of the SO{sub 4} and MO{sub 12} polyhedra become more symmetrical from SrSO{sub 4} to BaSO{sub 4}. Across the series, the a, b, and c parameters vary non-linearly with increasing V. The radii of the M{sup 2+} cations, rM, [12], and [4] distances vary linearly with V. These structural trends arise from the effective size of the M{sup 2+} cation (rM: Sr < Pb < Ba) that is coordinated to 12 O atoms.« less

  17. New insulating antiferromagnetic quaternary iridates MLa 10Ir 4O 24 (M=Sr, Ba)

    DOE PAGES

    Zhao, Qingbiao; Han, Fei; Stoumpos, Constantinos C.; ...

    2015-07-01

    Recently, oxides of Ir 4+ have received renewed attention in the condensed matter physics community, as it has been reported that certain iridates have a strongly spin-orbital coupled (SOC) electronic state, J eff = ½, that defines the electronic and magnetic properties. The canonical example is the Ruddlesden-Popper compound Sr 2IrO 4, which has been suggested as a potential route to a new class of high temperature superconductor due to the formal analogy between J eff = ½ and the S = ½ state of the cuprate superconductors. The quest for other iridium oxides that present tests of the underlyingmore » SOC physics is underway. In this spirit, here we report the synthesis and physical properties of two new quaternary tetravalent iridates, MLa 10Ir 4O 24 (M = Sr, Ba). The crystal structure of both compounds features isolated IrO 6 octahedra in which the electronic configuration of Ir is d 5. As a result, both compounds order antiferromagnetically despite the lack of obvious superexchange pathways, and resistivity measurement shows that SrLa 10Ir 4O 24 is an insulator.« less

  18. Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce(3+)/Tb(3+), Tb(3+)/Eu(3+) Phosphors for w-LEDs.

    PubMed

    Li, Kai; Liang, Sisi; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2016-08-01

    A series of Ce(3+), Tb(3+), Eu(3+) doped Ba2Y2(PO4)2(SiO4) (BYSPO) phosphors were synthesized via the high-temperature solid-state reaction route. X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared, solid-state NMR, photoluminescence (PL) including temperature-dependent PL, and fluorescent decay measurements were conducted to characterize and analyze as-prepared samples. BYSPO was obtained by the substitution of Y+SiO4 for Ba+PO4 in Ba3Y(PO4)3 (BYPO). The red shift of PL emission from 375 to 401 nm occurs by comparing BYSPO:0.14Ce(3+) with BYPO:0.14Ce(3+) under 323 nm UV excitation. More importantly, the excitation edge can be extended from 350 to 400 nm, which makes it be excited by UV/n-UV chips (330-410 nm). Tunable emission color from blue to green can be observed under 365 nm UV excitation based on the energy transfer from Ce(3+) to Tb(3+) ions after codoping Tb(3+) into BYSPO:0.14Ce(3+). Moreover, energy transfer from Tb(3+) to Eu(3+) ions also can be found in BYSPO:Tb(3+),Eu(3+) phosphors, resulting in the tunable color from green to orange red upon 377 nm UV excitation. Energy transfer properties were demonstrated by overlap of excitation spectra, variations of emission spectra, and decay times. In addition, energy transfer mechanisms from Ce(3+) to Tb(3+) and Tb(3+) to Eu(3+) in BYSPO were also discussed in detail. Quantum yields and CIE chromatic coordinates were also presented. Generally, the results suggest their potential applications in UV/n-UV pumped LEDs.

  19. Synthesis and Photoluminescence Properties of Li2SrSiO4 Activated with Dy3+ and Sm3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2015-01-01

    Li2SrSiO4:M (M: Dy3+ and Sm3+) phosphors were synthesized by the conventional solid state reaction. The synthesized materials were characterized by powder XRD. The emission and excitation spectra of these phosphors were measured at room temperature with a spectrofluorometer. The first phosphor, Li2SrSiO4:Dy3+, emits at 479, 573, and 666 nm upon 351 nm excitation. The second phosphor, Li2SrSiO4:Sm3+, emits at 561-571, 594, 647-655, and 703-713 nm upon 399 nm excitation. Also, the dependence of the photoluminescence properties of both phosphors on boric acid concentration was investigated. The results showed that boric acid was effective in improving the photoluminescence intensity of both phosphors.

  20. Theoretical Investigation of Half-Metallic Oxides XFeO3 (X = Sr, Ba) via Modified Becke-Johnson Potential Scheme

    NASA Astrophysics Data System (ADS)

    Maqsood, Saba; Rashid, Muhammad; Din, Fasih Ud; Saddique, M. Bilal; Laref, A.

    2018-03-01

    The cubic XFeO3 (X = Sr, Ba) perovskite oxides are studied for their thermodynamic stability in the ferromagnetic phase by using density functional theory calculations. We also explore the elastic properties of these compounds in terms of elastic constants C ij, bulk modulus B, shear modulus G, anisotropy factor A, Poisson's ratio ν and the B/ G ratio. The electronic properties are examined to elucidate the magnetic order, and the thermoelectric properties of XFeO3 (X = Sr, Ba) materials are also presented. The modified Becke-Johnson local density approximation scheme has been used to compute the electronic band structure and density of states, which show that these materials are half-metallic ferromagnetic. We study the magnetic properties by computing the crystal field energy (ΔCF), John-Teller energy (ΔJT) and the exchange splitting energies Δx( d) and Δx( pd). Our results indicate that strong hybridization causes a decrease in the magnetic moment of Fe, which then produces permanent magnetic moments in the nonmagnetic sites.

  1. Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Shahid, A.; Mahmood, Q.

    2018-02-01

    Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.

  2. Synthesis and photoluminescent properties of Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} phosphor prepared by polymer metal complex method for WLEDs applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Dhia A., E-mail: dhia_hassan@yahoo.com; Department of Chemistry, College of Education for Pure Science, University of Basrah, Basrah 61004; Xu, Jian

    2016-07-15

    Highlights: • SrSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} phosphor was prepared by polymer metal complex (pechini method). • The annealing time was decreased from 6 h in solid state method to 3 h. • The particles are crystalline and dispersed well with average size 6.5 μm. - Abstract: Green emitting Sr{sub (1−x)}Si{sub 2}O{sub 2}N{sub 2}: xEu{sup 2+} (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) phosphors were synthesized by polymer metal complex or pechini method. The XRD results confirm the formation of a pure phase at 1400 °C for 3 h. The SEM and particles size results indicate thatmore » the prepared phosphor consists of a polyhedral crystalline shape with well dispersed and the average particle size around 6.5 μm. The maximum PL intensity was found at 0.04% Eu{sup 2+} with a wide emission band between 460 and 640 nm and a green emission peak at 531.4 nm. The external quantum efficiency of 0.04% Eu{sup 2+} sample was 43.13%. The results indicate that pechini method is an alternative way and close in efficiency to the solid state method to prepare SrSi{sub 2}O{sub 2}N{sub 2} phosphor with higher homogeneity and more uniform size distribution for near UV and blue region applications for white light emitting diodes WLEDs.« less

  3. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    PubMed

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  4. Magnetic and structural transitions in La1-xAxCoO3 ( A=Ca , Sr, and Ba)

    NASA Astrophysics Data System (ADS)

    Kriener, M.; Braden, M.; Kierspel, H.; Senff, D.; Zabara, O.; Zobel, C.; Lorenz, T.

    2009-06-01

    We report thermal-expansion, lattice-constant, and specific-heat data of the series La1-xAxCoO3 for 0≤x≤0.30 with A=Ca , Sr, and Ba. For the undoped compound LaCoO3 , the thermal-expansion coefficient α(T) exhibits a pronounced maximum around T=50K caused by a temperature-driven spin-state transition from a low-spin state of the Co3+ ions at low temperatures toward a higher spin state at higher temperatures. The partial substitution of the La3+ ions by divalent Ca2+ , Sr2+ , or Ba2+ ions causes drastic changes in the macroscopic properties of LaCoO3 . The large maximum in α(T) is suppressed and completely vanishes for x≳0.125 . For A=Ca three different anomalies develop in α(T) with further increasing x , which are visible in specific-heat data as well. Together with temperature-dependent x-ray data, we identify several phase transitions as a function of the doping concentration x and temperature. From these data we propose an extended phase diagram for La1-xCaxCoO3 .

  5. White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies.

    PubMed

    Lin, Huan-Ting; Tien, Ching-Ho; Hsu, Chen-Peng; Horng, Ray-Hua

    2014-12-29

    We fabricated a phosphor-conversion white light emitting diode (PC-WLED) using a thin-film flip-chip GaN LED with a roughened u-GaN surface (TFFC-SR-LED) that emits blue light at 450 nm wavelength with a conformal phosphor coating that converts the blue light into yellow light. It was found that the TFFC-SR-LED with the thin-film substrate removal process and surface roughening exhibits a power enhancement of 16.1% when compared with the TFFC-LED without a sapphire substrate. When a TFFC-SR-LED with phosphors on a Cu-metal packaging-base (TFFC-SR-Cu-WLED) was operated at a forward-bias current of 350 mA, luminous flux and luminous efficacy were increased by 17.8 and 11.9%, compared to a TFFC-SR-LED on a Cup-shaped packaging-base (TFFC-SR-Cup-WLED). The angular correlated color temperature (CCT) deviation of a TFFC-SR-Cu-WLED reaches 77 K in the range of -70° to + 70° when the average CCT of white LEDs is around 4300 K. Consequently, the TFFC-SR-LED in a conformal coating phosphor structure on a Cu packaging-base could not only increase the luminous flux output, but also improve the angular-dependent CCT uniformity, thereby reducing the yellow ring effect.

  6. Red phosphors for use in high CRI fluorescent lamps

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Vankatesan; Setlur, Anant Achyut

    2005-11-15

    Novel red emitting phosphors for use in fluorescent lamps resulting in superior color rendering index values compared to conventional red phosphors. Also disclosed is a fluorescent lamp including a phosphor layer comprising blends of one or more of a blue phosphor, a blue-green phosphor, a green phosphor and a red a phosphor selected from the group consisting of SrY.sub.2 O.sub.4 :Eu.sup.3+, (Y,Gd)Al.sub.3 B.sub.4 O.sub.12 :Eu.sup.3+, and [(Y.sub.1-x-y-m La.sub.y)Gd.sub.x ]BO.sub.3 :Eu.sub.m wherein y<0.50 and m=0.001-0.3. The phosphor layer can optionally include an additional deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of the disclosed red phosphors in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over the course of the lamp life.

  7. Structure refinement of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d} as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my; Osman, Rozana A. M., E-mail: rozana@unimap.edu.my

    2016-07-19

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less

  8. Instense red phosphors for UV light emitting diode devices.

    PubMed

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  9. Pb, Sr and Ba calix[6]arene hexacarboxylic acid octahedral complexation: a dramatic effect of dealkylation

    PubMed Central

    Adhikari, Birendra Babu; To, Cuong-Alexander; Iwasawa, Tetsuo; Schramm, Michael P.

    2015-01-01

    Calix[6]arene hexacarboxylic acid binds instantly and with low symmetry to Pb, Sr and Ba. Later a highly symmetric up-down alternating conformation emerges. The solution structures are identical to their p-tert-butylcalix[6]arene hexacarboxylic acid counterparts. With either receptor an octahedral cage is formed around the metal. The transformation from low to high symmetry however proceeds at significantly faster rates for the de-t-butylated host. PMID:26752941

  10. Differences in photoluminescence properties and thermal degradation between nanoparticle and bulk particle BaMgAl10O17:Eu2+ phosphors under UV?VUV irradiation.

    PubMed

    Liu, Bitao; Xin, Shuangyu; Li, Fenghua; Zhang, Jiachi; Wang, Yuhua

    2014-05-01

    BaMgAl10O17:Eu2+ (BAM) phosphors used for plasma display panels and three-band fluorescence lamps are exposed to an oxidizing environment at about 500 degrees C, which is currently unavoidable in actual applications. We investigated the mechanism of the luminance degradation of BAM caused by annealing at 500 degrees C based on the difference in luminance degradation of bulk particle and nanoparticle samples under various excitation source irradiations. When the samples were excited by the different light sources, more than 30% degradation of luminance occurred under 147 nm while less than 10% degradation occurred under 254 nm both for nanoparticle and bulk particle samples. In addition, the luminescence degradation of nanophosphors shows a different tendency compared to the bulk phosphors. With a model based on the particle size and excitation light penetration depth, we demonstrate that the degradation is still mainly ascribed to the oxidized of divalent Eu. The differences in luminescence properties between nanophosphors and bulk phosphors are also illustrated by this model. As a result, the potential industrial applications of nanophosphors are evaluated.

  11. Strain evolution of each type of grains in poly-crystalline (Ba,Sr)TiO3 thin films grown by sputtering

    PubMed Central

    Park, Woo Young; Park, Min Hyuk; Lee, Jong Ho; Yoon, Jung Ho; Han, Jeong Hwan; Choi, Jung-Hae; Hwang, Cheol Seong

    2012-01-01

    The strain states of [111]-, [110]-, and [002]-oriented grains in poly-crystalline sputtered (Ba,Sr)TiO3 thin films on highly [111]-oriented Pt electrode/Si substrates were carefully examined by X-ray diffraction techniques. Remarkably, [002]-oriented grains respond more while [110]- and [111]-oriented grains do less than the theoretically estimated responses, which is understandable from the arrangement of the TiO6 octahedra with respect to the stress direction. Furthermore, such mechanical responses are completely independent of the degree of crystallization and film thickness. The transition growth temperature between the positive and negative strains was also different depending on the grain orientation. The unstrained lattice parameter for each type of grain was different suggesting that the oxygen vacancy concentration for each type of grain is different, too. The results reveal that polycrystalline (Ba,Sr)TiO3 thin films are not an aggregation of differently oriented grains which simply follow the mechanical behavior of single crystal with different orientations. PMID:23230505

  12. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2017-10-01

    The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops had shapes similar to those of the strain-electric field (s-E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.

  13. Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.

    2014-03-01

    We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

  14. Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}: A novel blue emitting phosphor for white LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Panlai, E-mail: li_panlai@126.com; Wang, Zhijun, E-mail: wangzj1998@126.com; Yang, Zhiping

    2014-12-15

    Graphical abstract: Under the 350 nm radiation excitation, Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band. When the temperature turned up to 150 °C, the emission intensity of Ba{sub 1.97}B{sub 2}O{sub 5}:0.03Ce{sup 3+} is 63.4% of the initial value at room temperature. The activation energy ΔE is calculated to be 0.25 eV, which prove the good thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. All the properties indicate that Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} may have potential application in white LEDs. - Highlights: • Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band under themore » 350 nm radiation excitation. • Emission intensity of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} is 63.4% (150 °C) of the initial value (30 °C). • The activation energy ΔE for thermal quenching is 0.25 eV. - Abstract: A novel blue emitting phosphor Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} is synthesized by a high temperature solid state method. The luminescent property and the thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} are investigated. Under the 350 nm radiation excitation, Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band, and the peak locates at 417 nm which is assigned to the 5d{sup 1}–4f{sup 1} transition of Ce{sup 3+}. It is further proved that the dipole–dipole interaction results in the concentration quenching of Ce{sup 3+} in Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. When the temperature turned up to 150 °C, the emission intensity of Ba{sub 1.97}B{sub 2}O{sub 5}:0.03Ce{sup 3+} is 63.4% of the initial value at room temperature. The activation energy ΔE is calculated to be 0.25 eV, which prove the good thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. All the properties indicate that Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} may have potential application in white LEDs.« less

  15. Growth of Nanoscale BaTiO3/SrTiO3 Superlattices by Molecular-Beam Epitaxy

    DTIC Science & Technology

    2008-05-01

    also of interest for novel acous- tic phonon devices including mirrors, filters, and cavities for coherent acoustic phonon generation and control...phonon “laser”).4 The structure of these devices is de- termined by the acoustic phonon wavelength, which is typically in the range of a few nanometers...nanoscale [(BaTiO3)n /(SrTiO3)m]p superlattices with atomically abrupt interfaces that are vital for the perfor- mance of acoustic phonon devices as

  16. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17:Eu2+ blue phosphors for solid-state lighting

    NASA Astrophysics Data System (ADS)

    Pradal, Nathalie; Potdevin, Audrey; Chadeyron, Geneviève; Bonville, Pierre; Caillier, Bruno; Mahiou, Rachid

    2017-02-01

    Blue-emitting BaMgAl10O17:Eu2+ (BAM:Eu), suitable for applications in a next generation of Hg-free lamps based on UV LEDs, was prepared by a microwave induced solution combustion synthesis, using urea as combustion fuel and nitrates as oxidizers. Purity control of the as-synthesized blue phosphor was undertaken by a washing step followed by a reduction one. Structural and morphological properties of the outcoming phosphors have been considered. Synthesis process allows producing a well-crystallized and nanostructured BAM phase within only few minutes. The influence of reduction treatment on the relative amounts of Eu2+/Eu3+ in our samples has been investigated through an original study by magnetization and Mössbauer spectroscopy. Furthermore, a complete optical study has been carried out and allowed us to determine the europium localization in the three possible sites in BAM matrix. The percentage of Eu2+ increased twofold after the reduction treatment, entailing an increase in the luminescence efficiency upon UV excitation. Finally, temperature-dependent luminescence of combustion-derived powders has been studied till 170 °C and compared to that of commercial BAM:Eu. MISCS-derived phosphors present a higher thermal stability than commercial one: whereas the emission efficiency of this last was reduced by 64%, the one of combustion-derived BAM:Eu experienced an only 12% decline. Furthermore, while commercial BAM suffered from a severe blue-shift with increasing temperature, our phosphors keep its color quality with a good stability of the photometric parameters.

  17. Octonary resistance states in La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 multiferroic tunnel junctions

    DOE PAGES

    Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...

    2015-10-06

    General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ showsmore » at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO 3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less

  18. Synthesis and characterisation of the n = 2 Ruddlesden–Popper phases Ln{sub 2}Sr(Ba)Fe{sub 2}O{sub 7} (Ln = La, Nd, Eu)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurusinghe, Nicola N.M.; Figuera, Juand de la; Marco, José F.

    2013-09-01

    Graphical abstract: - Highlights: • Some Ruddlesden–Popper phases have been characterised. • Substitution on the A site influences cationic order. • The magnetic moment redirects with temperature - Abstract: A series of n = 2 Ruddlesden–Popper phases A{sub 2}B{sub 2}O{sub 7} of composition Ln{sub 2}Sr(Ba)Fe{sub 2}O{sub 7} (Ln = La, Nd, Eu) have been prepared. La{sub 2}SrFe{sub 2}O{sub 7} and La{sub 2}BaFe{sub 2}O{sub 7} crystallise in the tetragonal space group I4/mmm. The structures of Eu{sub 2}SrFe{sub 2}O{sub 7} and Nd{sub 2}SrFe{sub 2}O{sub 7} are best described in space group P4{sub 2}/mnm. Substitution on the A site with smaller lanthanide- andmore » larger alkaline metal- ions leads to enhanced cationic order in these phases and reflects increasing differences in cationic radii. All the compounds are antiferromagnetically ordered between 298 and 2 K. In La{sub 2}SrFe{sub 2}O{sub 7} the magnetic moment lies along [1 1 0] at all temperatures between 298 and 2 K whereas in La{sub 2}BaFe{sub 2}O{sub 7} the magnetic moment at 298 K lies along the crystallographic x-axis but redirects from the [1 0 0] to the [1 1 0] direction between 210 and 190 K and is retained in this direction until 2 K. In Nd{sub 2}SrFe{sub 2}O{sub 7} the magnetic moment at 298 K lies along [1 1 0] but rotates from [1 1 0] to [0 0 1] between 17 and 9 K. A series of {sup 57}Fe Mössbauer spectra recorded from La{sub 2}SrFe{sub 2}O{sub 7} between 290 and 600 K indicate a magnetic ordering temperature of T{sub N} ≥ 535 K.« less

  19. Strain induced enhancement of magnetization in Ba{sub 2}FeMoO{sub 6} based heterostructure with (Ba{sub x}Sr{sub 1-x})TiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyeong-Won; Norton, David P.; Ghosh, Siddhartha, E-mail: ghoshsid@gmail.com

    2016-05-14

    High quality epitaxial Ba{sub 2}FeMoO{sub 6} thin films and Ba{sub 2}FeMoO{sub 6}–(Ba{sub x}Sr{sub 1−x})TiO{sub 3} bi-layer (BL) and superlattice (SL) structures were grown via pulsed laser deposition under low oxygen pressure, and their structural, magnetic, and magneto-transport properties were examined. Superlattice and bi-layer structures were confirmed by X-ray diffraction patterns. Low temperature magnetic measurement shows that the saturation magnetization (M{sub S}) is significantly higher for SLs and almost similar or lower for BLs, when compared to phase pure Ba{sub 2}FeMoO{sub 6} thin films. The variation of the coercive field (H{sub C}) follows exact opposite trend, where BL samples have highermore » H{sub C} and SL samples have lower H{sub C} than pure Ba{sub 2}FeMoO{sub 6} thin films. Also, a significant decrease of the Curie temperature is found in both BL and SL structures compared to pure Ba{sub 2}FeMoO{sub 6} thin films. Negative magneto-resistance is seen in all the BL and SL structures as well as in pure Ba{sub 2}FeMoO{sub 6} thin films. In contrast to the magnetic properties, the magneto-transport properties do not show much variation with induced strain.« less

  20. A comparative study on the magnetic and electrical properties of MFe12O19 (M=Ba and Sr)/BiFeO3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Mansour, S. F.; Ismael, H.

    2015-03-01

    M-type hexaferrite (MFe12O19), M=Ba or Sr nanoparticles with hexagonal crystal structure have been successfully synthesized by a citrate auto-combustion method. BiFeO3 (BFO) was prepared by the flash auto-combustion technique. Different nanocomposites were prepared according to the formula [(1-X) MFe12O19+XBiFeO3; M=Ba or Sr, X=0.3, 0.4, 0.5 and 0.6]. The structure and morphology of the obtained nanocomposites have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). From the results, it is observed that the value of saturation magnetization decreases with increasing BFO content, which was mainly due to the contribution of the volume of the weak-magnetic BFO to the total sample volume.

  1. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    NASA Astrophysics Data System (ADS)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  2. MOCVD (Ba{sub x}Sr{sub 1-x})Ti{sub 1+y}O{sub 3+z} (BST) thin films for high frequency tunable devices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, P. K.; Kaufman, D. Y.; Im, J.

    2001-01-01

    We have investigated the structural and electrical characteristics of (Ba{sub x}Sr{sub 1-x})Ti{sub 1+y}O{sub 3+z} (BST) thin films synthesized at 650{sup o}C on Pt/SiO{sub 2}/Si substrates using a large area, vertical metalorganic chemical vapor deposition (MOCVD) reactor equipped with a liquid delivery system. Films with a Ba/Sr ratio of 70/30 were studied, as determined using X-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). A substantial reduction of the dielectric loss was achieved when annealing the entire capacitor structure in air at 700{sup o}C. Dielectric tunability as high as 2.3:1 was measured for BST capacitors with the currently optimized processing conditions.

  3. Influences of alkaline earth metal substitution on the crystal structure and physical properties of magnetic RuSr1.9A0.1GdCu2O8 (A = Ca, Sr, and Ba) superconductors.

    PubMed

    Hur, Su Gil; Park, Dae Hoon; Hwang, Seong-Ju; Kim, Seung Joo; Lee, J H; Lee, Sang Young

    2005-11-24

    We have investigated the effect of alkaline earth metal substitution on the crystal structure and physical properties of magnetic superconductors RuSr(1.9)A(0.1)GdCu(2)O(8) (A = Ca, Sr, and Ba) in order to probe an interaction between the magnetic coupling of the RuO(2) layer and the superconductivity of the CuO(2) layer. X-ray diffraction and X-ray absorption spectroscopic analyses demonstrate that the isovalent substitution of Sr ions with Ca or Ba ions makes it possible to tune the interlayer distance between the CuO(2) and the RuO(2) layers. From the measurements of electrical resistance and magnetic susceptibility, it was found that, in contrast to negligible change of magnetization, both of the alkaline earth metal substitutions lead to a notable depression of zero-resistance temperature T(c) (DeltaT(c) approximately 17-19 K). On the basis of the absence of a systematic correlation between the T(c) and the interlayer distance/magnetization, we have concluded that the internal magnetic field of the RuO(2) layer has insignificant influence on the superconducting property of the CuO(2) layer in the ruthenocuprate.

  4. Optimization of single crystals of solid electrolytes with tysonite-type structure (LaF3) for conductivity at 293 K: 2. Nonstoichiometric phases R 1- y M y F3- y ( R = La-Lu, Y; M = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.; Krivandina, E. A.; Zhmurova, Z. I.

    2015-01-01

    Single crystals of fluorine-conducting solid electrolytes R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y ( R = La-Lu, Y) with a tysonite-type structure (LaF3) have been optimized for room-temperature conductivity σ293 K. The optimization is based on high-temperature measurements of σ( T) in two-component nonstoichiometric phases R 1 - y M y F3 - y ( M = Sr, Ba) as a function of the MF2 content. Optimization for thermal stability is based on studying the phase diagrams of MF2- RF3 systems ( M = Sr, Ba) and the behavior of nonstoichiometric crystals upon heating when measuring temperature dependences σ( T). Single crystals of many studied R 1 - y Sr y F3 - y and R 1 - y Ba y F3 - y phases have σ293 K values large enough to use these materials in solid-state electrochemical devices (chemical sensors, fluorine-ion batteries, accumulators, etc.) operating at room temperature.

  5. 87Sr/86Sr Across the Devonian-Carboniferous Transition Within the Pho Han Formation, Cat Ba Island, Vietnam: New Data Outside of an Old Orogeny

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Carmichael, S. K.; Dombrowski, A. D.; Batchelor, C. J.; Coleman, D. S.; Waters, J. A.; Königshof, P.

    2017-12-01

    The Devonian-Carboniferous (D-C) transition is a period of mass extinction and rapid global faunal changes that affected both marine and terrestrial ecosystems. Although the paleontology and carbon and oxygen isotopes across of the D-C boundary have been studied in detail, there is very little continuous 87Sr/86Sr isotope data for this time iteration due to unconformities and/or diagenetic alteration in many sections. Conodont biostratigraphy indicates that the D-C boundary is present within the Pho Han Formation on Cat Ba Island in northeastern Vietnam. This unit represents a starved basinal facies on the South China carbonate platform, and has continuous sedimentation across the D-C boundary. Whole rock geochemical results indicate increased clastic input at the D-C transition, potentially due to the regression observed in many Hangenberg Event localities around the world, but the isolated nature of the basin could instead indicate complete shutdown of the carbonate factory. New 87Sr/86Sr measurements of carbonate across the D-C boundary in the Pho Han Formation indicate oscillating fluctuations from 0.708052 to 0.708672. Many of these values are within the McArthur et al. (2012) LOWESS fit for seawater, with excursions towards higher values tentatively identified at the boundary between the Palmatolepis expansa and lower Siphonodella praesulcata conodont zones, and within the Siphonodella duplicata zone. There is a lack of correlation between 87Sr/86Sr values with whole rock geochemistry and δ18O isotope values across the section, suggesting that these 87Sr/86Sr values are not due to clastic contamination and that the samples have not experienced major diagenetic alteration. The continuous sedimentation in this section and its location in an area far from the Variscan orogeny make this unit a valuable site in which to compare 87Sr/86Sr ratios to existing studies in Europe and North America which experienced substantial sediment shedding from the Appalachian

  6. Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; hide

    1999-01-01

    Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.

  7. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  8. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba.

    PubMed

    Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R

    1999-09-29

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.

  9. Synthesis and coordination chemistry of TpC*MI complexes where M=Mg, Ca, Sr, Ba and Zn and TpC*=tris[3-(2-methoxy-1,1-dimethyl)pyrazolyl]hydroborate.

    PubMed

    Chisholm, Malcolm H; Gallucci, Judith C; Yaman, Gulsah

    2009-01-14

    Reactions involving MI2 where M=Mg, Ca, Sr, Ba or Zn and M'TpC* where M'=Na or Tl and TpC*=tris[3-methoxy-1,1-dimethyl)pyrazolyl]hydroborate in tetrahydrofuran are described leading to the isolation and characterization of the complexes TpC*MgI, , TpC*CaI, , TpC*SrI, , TpC*SrI(THF), , TpC*BaI, , TpC*BaI(pz*H), , where pz*H=3-(2-methoxyl-1,1-dimethyl)pyrazole, TpC*BaI.1/2toluene, and TpC*ZnI, . The compounds , , , , and have been characterized by single-crystal X-ray crystallography. Compounds and are isostructural and are salt-like containing kappa6-TpM+ cations and I- anions. In all other structures, the iodide is bound to the metal and TpC* is kappa6 bonded to the group 2 M(2+) ions. Reactions involving TpC*CaI, , and sodium or lithium alkoxides or amides failed to yield the amide or alkoxide calcium TpC* derivative, though related reactions involving TpC*ZnI, , and KOSiMe3 proceeded quantitatively to yield kappa3TpC*ZnOSiMe3, , which was also structurally characterized and shown to have the kappa3-TpC* bound ligand.

  10. Interdiffusion effect on strained La0.8Ba0.2MnO3 thin films by off-axis sputtering on SrTiO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.

    2007-02-01

    Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.

  11. 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kate, O.M. ten, E-mail: o.m.tenkate@tudelft.nl; Energy Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven; Zhang, Z.

    Optical data of Sm, Tb and Yb doped Ca{sub 2}Si{sub 5}N{sub 8} and Sr{sub 2}Si{sub 5}N{sub 8} phosphors that have been prepared by solid-state synthesis, are presented. Together with luminescence data from literature on Ce{sup 3+} and Eu{sup 2+} doping in the M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba) hosts, energy level schemes were constructed showing the energy of the 4f and 5d levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band. The schemes were of great help in interpreting the optical data of the lanthanide doped phosphors and allow commenting on the valencemore » stability of the ions, as well as the stability against thermal quenching of the Eu{sup 2+}d-f emission. Tb{sup 3+} substitutes on both a high energy and a low energy site in Ca{sub 2}Si{sub 5}N{sub 8}, due to which excitation at 4.77 eV led to emission from both the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels, while excitation at 4.34 eV gave rise to mainly {sup 5}D{sub 4} emission. Doping with Sm resulted in typical Sm{sup 3+}f-f line absorption, as well as an absorption band around 4.1 eV in Ca{sub 2}Si{sub 5}N{sub 8} and 3.6 eV in Sr{sub 2}Si{sub 5}N{sub 8} that could be identified as the Sm{sup 3+} charge transfer band. Yb on the other hand was incorporated in both the divalent and the trivalent state in Ca{sub 2}Si{sub 5}N{sub 8}. - Graphical abstract: Energy level schemes showing the 4f ground states of the trivalent ( Black-Down-Pointing-Small-Triangle ) and divalent ( Black-Up-Pointing-Small-Triangle ) lanthanide ions and lowest energy 5d states of the trivalent ({nabla}) and divalent ({Delta}) ions with respect to the valence and conduction bands of Ca{sub 2}Si{sub 5}N{sub 8} (left) and Sr{sub 2}Si{sub 5}N{sub 8} (right). Highlights: Black-Right-Pointing-Pointer Construction of energy level schemes of all lanthanides within the M{sub 2}Si{sub 5}N{sub 8} hosts. Black-Right-Pointing-Pointer Construction was done by analyzing existing as well as new

  12. Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes

    PubMed Central

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-01-01

    The KMg4(PO4)3:Eu2+ phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu2+ were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu2+ in the KMg4(PO4)3 host was determined to be 1mol% and the quenching mechanism was certified to be the dipole–dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24eV. Upon excitation at 365nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu2+ was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu2+ is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs). PMID:25855866

  13. Crystal structure and temperature-dependent luminescence characteristics of KMg4(PO4)3:Eu(2+) phosphor for white light-emitting diodes.

    PubMed

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-04-09

    The KMg4(PO4)3:Eu(2+) phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu(2+) were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu(2+) in the KMg4(PO4)3 host was determined to be 1 mol% and the quenching mechanism was certified to be the dipole-dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84 Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24 eV. Upon excitation at 365 nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu(2+) was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu(2+), green-emitting (Ba,Sr)2SiO4:Eu(2+), and red-emitting CaAlSiN3:Eu(2+) phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08 K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu(2+) is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs).

  14. Study on possible correlation of superconductivity with defects and superparamagnetism in undoped AFe2As2 with A =Ca, Sr and Ba

    NASA Astrophysics Data System (ADS)

    Zhao, Kui; Lv, Bing; Deng, Liangzi; Xue, Yuyi; Chu, Paul; High pressure low temperature lab Team

    2014-03-01

    Extensive studies have been carried out on the induction of bulk superconductivity in the Fe-pnictide 122 system with a Tc up to 38 K through doping and/or pressure. However, non-bulk superconductivity has also been detected unexpectedly in undoped AFe2As2 where A = Ca, Sr, and Ba with Tc = ~12K, ~22K and ~23K, respectively. The reason for the observation remains unknown. Recently, systematic investigation shows that highly anisotropic superconductivity with a Tc up to 49 K and superparamagnetism occur in rare-earth doped Ca122. Further examination reveals slight deviation from the 1:2:2 stoichiometry which correlates closely with the occurrence of non-bulk superconductivity and superparamagnetism in these samples. We have therefore decided to investigate systematically the stoichiometry, defects, magnetism and superconductivity in undoped AFe2As2 single crystals under different synthesis conditions where A = Ca, Sr, and Ba. Results will be presented and discussed.

  15. Electronic, optical properties and chemical bonding in six novel 1111-like chalcogenide fluorides AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, V.V.; Shein, I.R.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru

    2012-12-15

    Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted 'experimental' gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atomsmore » from the blocks (MCh); thus, these phases belong to the layered materials with 'natural multiple quantum wells'. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge. - Graphical Abstract: Isoelectronic surface for SrAgSeF and atomic-resolved densities of states for SrAgTeF, and SrCuTeF. Highlights: Black-Right-Pointing-Pointer Very recently six new layered 1111-like chalcogenide fluorides AMChF were synthesized. Black-Right-Pointing-Pointer Electronic, optical properties for AMChF phases were examined from first principles. Black-Right-Pointing-Pointer All these materials are characterized as non-magnetic semiconductors. Black-Right-Pointing-Pointer Bonding is highly anisotropic and includes ionic and covalent contributions. Black-Right-Pointing-Pointer Introduction of magnetic ions in AMChF is proposed for search of novel magnetic materials.« less

  16. Dielectric properties and microstructure of nano-MgO dispersed Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} thin films prepared by sputter deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.-F.; Chu, Jinn P.; Lin, C.C.

    2005-07-01

    In this study, thin films prepared from the targets of Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (BST), BST/5 mol % MgO, BST/10 mol % MgO, and BST/20 mol % MgO composites, using radio frequency magnetron sputtering, have been reported. As-deposited films were found to be amorphous and began to crystallize after annealing at temperatures of 650 deg. C and above. The addition of MgO in the BST films resulted in the hindrance of crystallization and inhibition of grain growth. MgO was substituted into the BST lattices to a certain degree. High-resolution transmission electron microscopy results revealed some MgO dispersed in the BSTmore » matrix. The MgO dispersed in the dense BST matrix was found to be around 25 nm in size. The dielectric constant was estimated to be 90 for the pure BST film annealed at 700 deg. C, and observed to be slightly reduced with the MgO addition. The dielectric losses of the Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (0.006) and BST/MgO films (0.002-0.004) were much less than those of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}(0.013) and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films (0.11-0.13). The leakage current was smaller for the BST/10 mol % MgO film compared to the pure BST film and this low leakage current may be attributed to the substitution of Mg in the B sites of BST lattices which might have behaved as an electron acceptors.« less

  17. Hydration Energies and Structures of Alkaline Earth Metal Ions, M2+ (H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba

    PubMed Central

    Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.

    2005-01-01

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612

  18. Modification of energy band alignment and electric properties of Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, S.; Komissinskiy, P., E-mail: komissinskiy@oxide.tu-darmstadt.de; Flege, S.

    2014-06-28

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Agmore » significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.« less

  19. Prompt isothermal decay properties of the Sr4Al14O25 co-doped with Eu2+ and Dy3+ persistent luminescent phosphor

    NASA Astrophysics Data System (ADS)

    Asal, Eren Karsu; Polymeris, George S.; Gultekin, Serdar; Kitis, George

    2018-06-01

    Thermoluminescence (TL) techniques are very useful in the research of the persistent Luminescence (PL) phosphors research. It gives information about the existence of energy levels within the forbidden band, its activation energy, kinetic order, lifetime etc. The TL glow curve of Sr4Al14O25 :Eu2+,Dy3+ persistent phosphor, consists of two well separated glow peaks. The TL techniques used to evaluate activation energy were the initial rise, prompt isothermal decay (PID) of TL of each peak at elevated temperatures and the glow - curve fitting. The behavior of the PID curves of the two peak is very different. According to the results of the PID procedure and the subsequent data analysis it is suggested that the mechanism behind the low temperature peak is a delocalized transition. On the other hand the mechanism behind the high temperature peak is localized transition involving a tunneling recombination between electron trap and luminescence center.

  20. Crystallization studies and dielectric properties of (Ba0.7Sr0.3)TiO3 in bariumaluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Divya, P. V.; Vignesh, G.; Kumar, V.

    2007-12-01

    Ferroelectric glass-ceramics with a basic composition (1 - y)(Ba0.70Sr0.30)TiO3 : y(BaO : Al2O3 : 2SiO2) have been synthesized by the sol-gel method. The major crystalline phase is the perovskite. The crystallization of the ferroelectric phase in the glass matrix have been studied using differential thermal analysis and x-ray diffraction and the kinetic parameters characterizing the crystallization have been determined using an Arrhenius model. Glass contents <= 5 mol% promoted liquid phase sintering, which reduced the sintering temperature to 1250 °C. The dielectric permittivity of the glass-ceramic samples decreased and the ferroelectric-paraelectric phase transition became more diffuse with increasing glass content. The dielectric connectivity of the ferroelectric phase in the composite have also been investigated and are reported.

  1. Luminescence properties of cerium-doped di-strontium magnesium di-silicate phosphor by the solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Prasad Sahu, Ishwar

    2016-05-01

    A series of Sr2MgSi2O7:xCe3+ (x = 1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325 nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. Commission International de I'Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.

  2. Structural, electrical and multiferroic characteristics of thermo-mechanically fabricated BiFeO3-(BaSr)TiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2018-05-01

    A solid solution consisting of two perovskite compounds (BiFeO3 and (BaSr)TiO3) of chemical composition (Bi1/2Ba1/4Sr1/4)(Fe1/2Ti1/2)O3 has been fabricated in the low dimensional regime by thermo-mechanical (ball milling and heating) approach. The effect of particle size on the structural, micro-structural, relative permittivity, switching (ferroelectric and magnetic) and conduction phenomena of the material has been studied using various experimental techniques such as x-rays diffraction, transmission and scanning electron microscopy, ferroelectric and magnetic hysteresis, dynamic magneto-electric coupling measurement and impedance spectroscopy techniques. All the above extracted properties are found to be particle size dependent. The first order magneto-electric coupling constant is found to be 2.56, 6.6 and 8.7 mV cm‑1.Oe for 30, 60 and 90 h milled calcined (hmc) sample respectively. As the above micro/nano-material with different particle size, has a high relative dielectric constant and low tangent loss, it can be used for some multifunctional devices including capacity energy storage device in nano-electronics.

  3. Superconducting Sr 2- xAxCuO 2F 2+ δ( A=Ca, Ba): Synthetic Pathways and Associated Structural Rearrangements

    NASA Astrophysics Data System (ADS)

    Francesconi, M. G.; Slater, P. R.; Hodges, J. P.; Greaves, C.; Edwards, P. P.; Al-Mamouri, M.; Slaski, M.

    1998-01-01

    The low-temperature fluorination of a range of insulating alkaline earth cuprates Sr2-xAxCuO3(A=Ca (0≤x≤2);A=Ba (0≤x≤0.6)) can result in superconducting oxide fluorides Sr2-xAxCuO2F2+δ. In contrast, conventional high-temperature solid-state reactions produce thermodynamically more stable mixtures of oxides and fluorides. Various soft-chemistry fluorination pathways (utilizing F2gas, NH4F,MF2[M=Cu, Zn, Ni, Ag]) are compared with respect to their efficacy and mechanisms. Attention is also focused on the structural features of the mixed-oxide precursor and the final-oxide fluorides to highlight the remarkable structural rearrangements that occur during the low-temperature fluorination. The effects of fluorination of other Sr-Cu-O systems are used to identify the structural requirements of the precursor oxide in order to achieve such transformations.

  4. Analysis of Sr{sub 5{minus}x}Ba{sub x}(PO{sub 4}){sub 3}F:Yb{sup 3+} crystals for improved laser performance with diode-pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffers, K.I.; Bayramian, A.J.; Marshall, C.D.

    Crystals of Yb{sup 3+}:Sr{sub 1-x}Ba{sub x}(PO{sub 4}){sub 3}F (0 < x < 5) have been investigated as a means to obtain broader absorption bands than are currently available with Yb{sup 3+}:S-FAP [Yb{sup 3+}: Sr{sub 5}(PO{sub 4}){sub 3}F], thereby improving diode-pumping efficiency for high peak power applications. Large diode-arrays have a FWHM pump band of >5 nm while the FWHM of the 900 nm absorption band for Yb:S-FAP is 5.5 nm; therefore, a significant amount of pump power can be wasted due to the nonideal overlap. Spectroscopic analysis of Yb:Sr{sub 5-x}Ba{sub x}-FAP crystals indicates that adding barium to the lattice increasesmore » the pump band to 13-16 run which more than compensates for the diode-array pump source without a detrimental reduction in absorption cross section. However, the emission cross section decreases by approximately half with relatively no effect on the emission lifetime. The small signal gain has also been measured and compared to the parent material Yb:S-FAP and emission cross sections have been determined by the method of reciprocity, the Filchtbauer-Ladenburg method, and small signal gain. Overall, Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F crystals appear to achieve the goal of nearly matching the favorable thermal and laser performance properties of Yb:S-FAP while having a broader absorption band to better accommodate diode pumping.« less

  5. Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Vizhi, R. Ezhil; Rajan Babu, D.; Saravanan, P.

    2018-02-01

    The effect of conventional and spark plasma sintering processes on the structural and magnetic properties of Ba0.5Sr0.5Fe12-2xCox(MgZn)x/2O19 (x = 0.2, 0.4 and 0.6) was investigated in this study. XRD patterns of both conventionally sintered (CS) and spark plasma sintered (SPS) samples with x = 0.2 and 0.4 showed the crystallization of Ba0.5Sr0.5Fe12O19-phase with space group of P63/mmc. However, in the case of SPS sample with x = 0.4, a secondary peak of α-Fe2O3 was observed. SEM analysis on the SPS samples revealed dense morphology with low porosity; while the CS samples showed the presence of aggregated particles with spherical shapes. Maximum values of saturation magnetization, MS (58 emu/g) and coercivity, HC (3.5 kOe) were obtained for the CS samples with x = 0.4; while their SPS counterparts revealed increased MS (65 emu/g) and HC (3.9 kOe) values. The observed magnetization reversal behaviour for both sintering conditions were not smooth in the case of x = 0.2, which indicated the existence of two-phase behavior. The temperature dependent magnetization studies for x = 0.2 and 0.4 were performed in order to analyze the variation in Curie temperature against Co-Mg-Zn substitution and the obtained results are discussed on the basis of crystallization of hexaferrite-phase.

  6. Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar

    Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measuredmore » dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.« less

  7. Primary fragmentation pathways of gas phase [M(uracil-H)(uracil)]+ complexes (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd , Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO.

    PubMed

    Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D

    2012-04-23

    Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermoelectric properties of AMg 2X 2, AZn 2Sb 2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba 2ZnX 2 (X = Sb, Bi) Zintl compounds

    DOE PAGES

    Sun, Jifeng; Singh, David J.

    2017-04-03

    In this paper, we report a theoretical investigation of the electronic structure and transport properties of eleven Zintl compounds including nine 122 phases (AMg 2X 2, AZn 2Sb 2 (A = Ca, Sr, Ba; X = Sb, Bi)) and two 212 phases (Ba 2ZnX 2 (X = Sb, Bi)). The electronic structures and electrical transport properties are studied using ab initio calculations and semi-classical Boltzmann theory within the constant relaxation time approximation. All the compounds are semiconducting. We find that the n-type 122 phases with the CaAl 2Si 2 structure type show better performance than p-type materials due to themore » multi-valley degeneracy with anisotropic carrier pockets at and near the conduction band minimum. The pocket anisotropy is beneficial in achieving high conductivity and Seebeck coefficient simultaneously. This mechanism yields substantial improvement in the power factor. Finally, the general performance of 212 phases is inferior to that of the 122 phases, with the Ba 2ZnSb 2 compound showing better performance.« less

  9. White-emission in single-phase Ba2Gd2Si4O13:Ce3 +,Eu2 +,Sm3 + phosphor for white-LEDs

    NASA Astrophysics Data System (ADS)

    Jiang, Xiumin; Zhang, Yuqian; Zhang, Jia

    2018-03-01

    To develop new white-light-emitting phosphor, a series of Ce3 +-Eu2 +-Sm3 + doped Ba2Gd2Si4O13 (BGS) phosphors were prepared by the solid-state reaction method, and their photoluminescence properties were studied. The Ce3 + and Eu2 + single-doped BGS show broad emission bands around in the region of 350-550 and 420-650 nm, respectively. By co-doping Ce3 +-Eu2 + into BGS, the energy transfer (ET) from Ce3 + to Eu2 + is inefficient, which could be due to the competitive absorption between the two activator ions. The Sm3 +-activated BGS exhibits an orangey-red emission in the region of 550-750 nm. To achieve white emission, the BGS:0.06Ce3 +,0.04Eu2 +,ySm3 + (0 ≤ y ≤ 0.18) phosphors were designed, in which the ET from Ce3 +/Eu2 + to Sm3 + was observed. The emission color can be tuned by controlling the Sm3 + concentration, and white emission was obtained in the BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample. The investigation of thermal luminescence stability for the typical BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample reveals that the emission intensities of both Eu2 + and Sm3 + demonstrate continuous decrease but the Ce3 + emission is enhanced gradually with increasing temperature. The corresponding reason has been discussed.

  10. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  11. Decoupling of magnetism and electric transport in single-crystal (Sr1‑x A x )2IrO4 (A  =  Ca or Ba)

    NASA Astrophysics Data System (ADS)

    Zhao, H. D.; Terzic, J.; Zheng, H.; Ni, Y. F.; Zhang, Y.; Ye, Feng; Schlottmann, P.; Cao, G.

    2018-06-01

    We report a systematical structural, transport and magnetic study of Ca or Ba doped Sr2IrO4 single crystals. Isoelectronically substituting Ca2+ (up to 15%) or Ba2+ (up to 4%) ion for the Sr2+ ion provides no additional charge carriers but effectively changes the lattice parameters in Sr2IrO4. In particular, 15% Ca doping considerably reduces the c-axis and the unit cell by nearly 0.45% and 1.00%, respectively. These significant, anisotropic compressions in the lattice parameters conspicuously cause no change in the Néel temperature which remains at 240 K, but drastically reduces the electrical resistivity by up to five orders of magnitude or even precipitates a sharp insulator-to-metal transition at lower temperatures, i.e. the vanishing insulating state accompanies an unchanged Néel temperature in (Sr1‑x A x )2IrO4. This observation brings to light an intriguing difference between chemical pressure and applied pressure, the latter of which does suppress the long-range magnetic order in Sr2IrO4. This difference reveals the importance of the Ir1–O2–Ir1 bond angle and homogenous volume compression in determining the magnetic ground state. All results, along with a comparison drawn with results of Tb and La doped Sr2IrO4, underscore that the magnetic transition plays a nonessential role in the formation of the charge gap in the spin–orbit-tuned iridate.

  12. Average and local structure of the Pb-free ferroelectric perovskites ( Sr , Sn ) TiO 3 and ( Ba , Ca , Sn ) TiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurita, Geneva; Page, Katharine; Suzuki, Shoichiro

    2015-12-16

    The characteristic structural off -centering of Pb 2+ in oxides, associated with its 6s 2 lone pair, allows it to play a dominant role in polar materials, and makes it a somewhat ubiquitous component of ferroelectrics. In this work, we examine the compounds Sr 0.9Sn 0.1TiO 3 and Ba 0.79Ca 0.16Sn 0.05TiO 3 using neutron total scattering techniques with data acquired at di erent temperatures. In these compounds, previously reported as ferroelectrics, Sn 2+ appears to display some of the characteristics of Pb 2+. We compare the local and long-range structures of the Sn2+-substituted compositions to the unsubstituted parent compoundsmore » SrTiO 3 and BaTiO 3. Lastly, we find that even at these small substitution levels, the Sn 2+ lone pairs drive the local ordering behavior, with the local structure of both compounds more similar to the structure of PbTiO 3 rather than the parent compounds.« less

  13. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  14. Topological insulators double perovskites: A2TePoO6 (A = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Zhou, Jian; Pi, Shu-Ting; Wang, Yin-Kuo

    2017-12-01

    Based on first-principle calculations and direct density functional theory calculations of surface bands, we predict a new class of three-dimensional (3D) Z2 topological insulators (TIs) with larger bulk bandgaps up to 0.4 eV in double perovskite materials A2TePoO6 (A = Ca, Sr, and Ba). The larger nontrivial gaps are induced by the symmetry-protected band contact along with band inversion occurring in the absence of spin-orbit coupling (SOC) making the SOC more effective than conventional TIs. The proposed materials are chemically inert and more robust to surface perturbations due to its intrinsic protection layer. This study provides the double perovskite material as a rich platform to design new TI-based electronic devices.

  15. Alkyl complexes of strontium and barium: synthesis and structural characterization of [(Me3Si)2(MeOMe2Si)C]2Sr(THF) and [(Me3Si)2(MeOMe2Si)C]2Ba(MeOCH2CH2OMe).

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2003-06-25

    Metathesis between either SrI2 or BaI2 and 2 equiv of {(Me3Si)2(MeOMe2Si)C}K in THF yields the novel heavier alkali metal dialkyls {(Me3Si)2(MeOMe2Si)C}2M(L) [M(L) = Sr(THF) (2), Ba(DME) (3) (DME = 1,2-dimethoxyethane)] after recrystallization.

  16. Effects of applied electric field during postannealing on the tunable properties of (Ba,Sr)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Xia, Yidong; Cheng, Jinbo; Pan, Bai; Wu, Di; Meng, Xiangkang; Liu, Zhiguo

    2005-08-01

    The impact of postannealing in electric field on the structure, tunability, and dielectric behavior of rf magnetron sputtering derived (Ba,Sr)TiO3 films has been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability remarkably and destroy the symmetry of capacitance-voltage characteristics of the films. The increased out-of-plane lattice constant and the appearance of the hysteresis loops in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature.

  17. The effect of X-ray exposure on Ba2SiO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Volhard, Max-Fabian; Jüstel, Thomas

    2018-03-01

    The ortho-silicates Ba2SiO4:Eu3+ and Ba2SiO4:Eu2+ are well-established materials for fluorescent light sources, e.g., phosphor converted LEDs. Samples containing Eu2+or Eu3+were synthesised by the solid-state-method, and the phase purity was determined by X-ray powder diffractometry. The photoluminescence of both phosphors was examined as a function of the pre-treatment. Upon irradiation of Ba2SiO4:Eu3+ with X-rays (tungsten target source), the reduction of Eu3+ towards Eu2+ was observed. This reduction behaviour was thoroughly recorded, and the linearity of the process was determined. Furthermore, the relationship between the acceleration voltage and the reduction process is discussed.

  18. The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.

    2016-07-01

    The FP-LAPW method is utilized to investigate the elastic, optoelectronic and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) within the GGA. The calculated lattice constants and bulk modulus are found in agreement with previous studies. The present oxide-perovskite compounds are characterized as elastically stable and anisotropic. CaTiO3 and SrTiO3 are categorized as ductile compounds, whereas the BaTiO3 compound is in the critical region between ductile and brittle. The DOS and the band structure calculations reveal indirect (M-Γ) energy bandgap for the present compounds. The hydrostatic pressure increases the energy bandgap and the width of the valence band. The character of the band structure does not change due to this pressure. The optical parameters are calculated in different radiation regions. Beneficial optics applications are predicted as revealed from the optical spectra. The transport properties are applied as a function of the variable temperatures or carrier concentration. It is found that the compounds under study are classified as a p-type semiconductor. The majority charge carriers responsible for conduction in these calculated compounds are holes rather than electrons.

  19. Internal residual stress studies and enhanced dielectric properties in La0.7Sr0.3CoO3 buffered (Ba,Sr)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, Shengbo; Xu, Zhengkui

    2009-09-01

    Ba0.6Sr0.4TiO3 (BST) thin films were deposited on La0.7Sr0.3CoO3 (LSCO) buffered and unbuffered Pt (111)/Ti/SiO2/Si substrates by pulsed laser deposition. The former exhibits a (100) preferred orientation and the latter a random orientation, respectively. Grazing incident x-ray diffraction study revealed that the tensile residual stress observed in the latter is markedly reduced in the former. As a result, the dielectric property of the LSCO buffered BST thin film is greatly improved, which shows a larger dielectric constant and tunability, smaller loss tangent, and lower leakage current than those of the unbuffered BST thin film. The relaxation of the larger tensile residual stress is attributed to the larger grain size in the buffered BST thin film and to a closer match of thermal expansion coefficient between the BST and the LSCO buffer layer.

  20. Artificially layered films of CuBa{sub 2} (Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} grown using pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, C.; Balestrino, G.; Martellucci, S.

    We have shown that the pulsed laser deposition technique (PLD) can be successfully used to grow artificially layered films of the CuBa{sub 2}(Ca{sub 1{minus}x}Sr{sub x}){sub n{minus}1}Cu{sub n}O{sub y} compound using only two targets having nominal composition BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y}, respectively. n was varied between 2 and 5. We have demonstrated, by a kinematic analysis of the x-ray diffraction spectra that the average random discrete thickness fluctuations which affect both the BaCuO{sub y} and (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} layers are much smaller than one atomic layer. Such features are confirmed by the appearance of sharp peaks evenmore » for the n=2 artificially layered structure where only one (Ca{sub 1{minus}x}Sr{sub x})CuO{sub y} cell is deposited in the stacking sequence. These results show that truly new structures can be obtained by a layer by layer deposition technique with a low interfacial disorder and give strong support to the idea of synthesizing new artificial high T{sub c} structures by the PLD technique.{copyright} {ital 1997 American Institute of Physics.}« less

  1. Ae2Sb2X4F2 (Ae = Sr, Ba): new members of the homologous series Ae2M(1+n)X(3+n)F2 designed from rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2006-03-20

    We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.

  2. Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2011-08-01

    [100] oriented Sr0.75Ba0.25Nb2O6 relaxor crystals have been studied by means of acoustic emission (AE) over a wide 20-400 °C temperature range. Both the Burns temperature, Td = 350 °C, and the intermediate temperature, T* = 183°C, and the susceptibility maximum temperature, Tm (59 °C on heating and 47 °C on cooling), have been successfully detected. Dependent upon the external electric field, the Tm exhibits a local minimum near 0.25 kV/cm accompanied by pronounced AE maximum in a manner which had recently been detected in Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 by Dul'kin et al. [Appl. Phys. Lett. 94, 252904 (2009)] and in Pb(Sc1/2Ta1/2)O3 by Dul'kin et al. [Phys. Rev. B 82, 180101(R) (2010)], whereas the T* increases monotonically, similar to that which had recently been revealed in BaTiO3 by Dul'kin et al. [Appl. Phys. Lett. 97, 032903 (2010)] with a rate of 7.5 K cm/kV. An observed Tm behavior is discussed from the point of view of the existence of the random electric field components along the [100] direction in Sr0.75Ba0.25Nb2O6 crystals.

  3. Search for d0-Magnetism in Amorphous MB6 (M = Ca, Sr, Ba) Thin Films

    NASA Astrophysics Data System (ADS)

    Suter, Andreas; Ackland, Karl; Stilp, Evelyn; Prokscha, Thomas; Salman, Zaher; Coey, Michael

    In the past decade there have been various reports on insulating or semi-conducting compounds showing weak ferromagnetic-like properties, even though none of their constituent have partially occupied d or f shells. Among them are HfO2 [1], highly oriented pyrolytic graphite [2], CaB2C2 [3], CaB6 [4,5], and ZnO2 [6]. From the very beginning it has been speculated that lattice defects might play a significant role. These effects can potentially be amplified when these materials are grown in thin film form, due to strain and interface effects. With low-energy μSR (LE-μSR) we studied various amorphous thin films of alkaline earth hexaborides MB6 (M = Ca, Sr, Ba) grown on Al2O3. Furthermore, we studied the starting materials which were used for the pulsed laser deposition (PLD) targets for the films with bulk μSR to ensure the quality of these powders. Similar to the results in Ref. [5] we find an increased second moment of the static width (ZF/LF dynamic Kubo-Toyabe function) compared to the nuclear width which suggest a very weak magnetic contribution which must originate from the electronic system (defect polarization, grain boundary effects, etc.). Two complications arise from the fact that a strong quadrupolar level crossing resonance is found in the hexaborides at rather low field values, and muon diffusion sets in at rather low temperature. The thin film results demonstrate a strong suppression of the muon diffusion which makes it more suitable to search for weak magnetic signatures. Indeed we find essentially a temperature independent second moment equal to the low temperature value found in the starting powders. This indicates that the weak magnetic state is stabilized up to much higher temperatures.

  4. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  5. Luminescence properties of Dy 3+ -doped Li 2 SrSiO 4 for NUV-excited white LEDs

    NASA Astrophysics Data System (ADS)

    You, Panli; Yin, Guangfu; Chen, Xianchun; Yue, Bo; Huang, Zhongbing; Liao, Xiaoming; Yao, Yadong

    2011-09-01

    A series of single-phase full color phosphors, Dy 3+-doped Li 2SrSiO 4 was synthesized by a solid-state reaction method. The phase of the as-prepared powders was measured by X-ray diffraction pattern (XRD) and the chemical composition was characterized using energy dispersive spectroscopy (EDS). The luminescent properties of Li 2SrSiO 4:Dy 3+ were systematically investigated by concentration quenching, decay behavior and thermal stability measurements. The results suggested that the emission intensity of the Li 2SrSiO 4:Dy 3+ was much stronger than that of Li 2SrSiO 4:Eu 2+. It was worth to mention that Li 2SrSiO 4:Dy 3+ phosphor possessed excellent thermal stability for use in light-emitting diodes (LEDs) and the emission intensity measured at 300 °C was only decreased 8% comparing with that measured at room temperature. Furthermore, the Commission International del'Eclairage (CIE) chromaticity coordinates of Li 2SrSiO 4:Dy 3+ moved toward the ideal white light coordinates (0.33, 0.33). All results demonstrated that Li 2SrSiO 4:Dy 3+ might be a potential phosphor for NUV-based white light-emitting diodes.

  6. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7 - delta interfaces as studied by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.

    1990-07-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.

  7. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  8. X-ray absorption spectroscopy and photoluminescence study of rare earth ions doped strontium sulphide phosphors

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Gautam, Sanjeev; Kumar, Vinay; Brajpuriya, R.; Kumar, Ravi; Singh, Nafa; Chae, Keun Hwa

    2013-01-01

    We present here the electronic structure and photoluminescence properties of Sm (0.1-1.0 mol%) doped SrS phosphors. The doping in SrS was probed by near-edge X-ray absorption fine structure (NEXAFS) at M5,4-edges of Sm in total electron yield mode. The simulated absorption edges using atomic multiplet calculations were correlated with experimental results, which clearly reveal the presence of trivalent state of Sm in SrS matrix. However, for Sm (1 mol%), very minor traces of Sm2+ were also observed, which have been explained by comparing the NEXAFS spectra in total electron and florescence yield mode. The PL emission of SrS:Sm comprises of three sharp bands at 567, 602 and 650 nm owing to the well-known intra 4f transitions from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2) levels of Sm3+ ions in SrS host. The effect of Ce co-doping on SrS:Sm phosphors was also investigated, which exhibits characteristic PL emission of independent ions at their respective excitation wavelengths. However, at an excitation wavelength of 393 nm, SrS:Ce,Sm exhibits the simultaneous characteristic PL emission of both ions spanning into blue-green-red region. The CIE chromaticity coordinates also clearly show the influence of excitation wavelengths on the emission colour of SrS:Ce,Sm.

  9. Strain-mediated magnetic response in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/BaTiO3 structure

    NASA Astrophysics Data System (ADS)

    Swain, Anupama; Komatsu, Katsuyoshi; Itoh, Mitsuru; Taniyama, Tomoyasu; Gorige, Venkataiah

    2018-05-01

    Electric field controlled magnetism is an exciting area of condensed matter physics to explore the device applications at ultra-low power consumption compared to the conventional current controlled or magnetic field controlled devices. In this study, an attempt was made to demonstrate electric field controlled magnetoresistance (MR) in a tri-layer structure consisting of La0.67Sr0.33MnO3 (LSMO) (40 nm)/SrTiO3 (10 nm)/LSMO (10 nm) grown on a 500-μm-thick BaTiO3 (001) (BTO) single crystal substrate by pulsed laser deposition technique. Epitaxial growth of the trilayer structure was confirmed by x-ray diffraction measurements. Jumps observed in the temperature-dependent magnetization curve at around the structural phase transitions of BTO ensure the strain-mediated magnetoelectric coupling between LSMO and BTO layers. A significant change in MR of this structure in applied electric fields does not show any polarity dependence. The findings are related to the lattice strain-mediated magnetoelectric coupling in ferromagnetic LSMO/ferroelectric BTO heterostructures.

  10. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  11. Method of forming a dielectric thin film having low loss composition of Ba.sub.x Sr.sub.y Ca.sub.1-x-y TiO.sub.3 : Ba.sub.0.12-0.25 Sr.sub.0.35-0.47 Ca.sub.0.32-0.53 TiO.sub.3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2000-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  12. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  13. Electrical Characteristics and Preparation of (Ba0.5Sr0.5)TiO3 Films by Spray Pyrolysis and Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Ku, Hong-Kou; Kawai, Tomoji

    2007-04-01

    Functional films of (Ba0.5Sr0.5)TiO3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba0.5Sr0.5)TiO3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400 °C and 57.7% weight loss up to 1000 °C. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750 °C for 5 min while leakage current density is 1.5× 10-6 A/cm2 in the film annealed at 550 °C for 5 min.

  14. On the substitution of Sr ions at Y sites in YB(suba2)Cu3O(sub7-d)

    NASA Astrophysics Data System (ADS)

    Siddiqi, S. A.; Sreedhar, K.; Drobac, D.; Infante, C.; Matacotta, F. C.; Ganguly, P.

    1989-10-01

    The effect of Sr substitution at the Ba sites in YBa2 Cu3 O sub 7-d has been studied; attempts to substitute Sr exclusively at Y sites have not been successful. We have been able to substitute Sr at Y sites only when the Ba ions are simultaneously substituted by Sr to give solid solutions of the type Y sub 1-x Sr sub x Ba sub 2-2x Sr sub 2x Cu3 O(sub 7-)x(sub /2-d). These examples show superconducting transitions higher than 78 K without significant deterioration in the magnitude of the ac susceptibility. The substitutions are best understood in terms of site constraints on the ions occupying the Y and Ba sites.

  15. Electromagnon in the Y-type hexaferrite BaSrCoZnFe11AlO22

    NASA Astrophysics Data System (ADS)

    Vít, Jakub; Kadlec, Filip; Kadlec, Christelle; Borodavka, Fedir; Chai, Yi Sheng; Zhai, Kun; Sun, Young; Kamba, Stanislav

    2018-04-01

    We investigated static and dynamic magnetoelectric properties of single crystalline BaSrCoZnFe11AlO22 , which is a room-temperature multiferroic with Y-type hexaferrite crystal structure. Below 300 K, a purely electric-dipole-active electromagnon at ≈1.2 THz with the electric polarization oscillating along the hexagonal axis was observed by THz and Raman spectroscopies. We investigated the behavior of the electromagnon with applied dc magnetic field and linked its properties to static measurements of the magnetic structure. Our analytical calculations determined selection rules for electromagnons activated by the magnetostriction mechanism in various magnetic structures of Y-type hexaferrite. Comparison with our experiment supports that the electromagnon is indeed activated by the magnetostriction mechanism involving spin vibrations along the hexagonal axis.

  16. Photoluminescence properties of novel KBaBP2O8:M (M = Pb2+ and Bi3+) phosphors

    NASA Astrophysics Data System (ADS)

    Han, Bing; Zhang, Jie; Li, Pengju; Li, Jianliang; Bian, Yang; Shi, Hengzhen

    2014-11-01

    A series of novel inorganic phosphors KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 (0.01 ⩽ x ⩽ 0.08) were synthesized by using a solid-state reaction technique at high-temperature and their photoluminescence properties were investigated. The dependence of the emission intensity on the Pb2+ and Bi3+ concentration for the KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 was studied, in which the optimal concentration as well as the critical transfer distance Rc for Pb2+ and Bi3+ was obtained and determined. The as-prepared phosphors can be effectively excited with ultraviolet (UV), and exhibit UV - blue emission with large Stokes shift. The above work indicates these phosphors could be potential candidates for application in UV lamps industry.

  17. Strain Dependent Electronic Structure and Band Offset Tuning at Heterointerfaces of ASnO3 (A=Ca, Sr, and Ba) and SrTiO3

    PubMed Central

    Baniecki, John D.; Yamazaki, Takashi; Ricinschi, Dan; Van Overmeere, Quentin; Aso, Hiroyuki; Miyata, Yusuke; Yamada, Hiroaki; Fujimura, Norifumi; Maran, Ronald; Anazawa, Toshihisa; Valanoor, Nagarajan; Imanaka, Yoshihiko

    2017-01-01

    The valence band (VB) electronic structure and VB alignments at heterointerfaces of strained epitaxial stannate ASnO3 (A=Ca, Sr, and Ba) thin films are characterized using in situ X-ray and ultraviolet photoelectron spectroscopies, with band gaps evaluated using spectroscopic ellipsometry. Scanning transmission electron microscopy with geometric phase analysis is used to resolve strain at atomic resolution. The VB electronic structure is strain state dependent in a manner that correlated with a directional change in Sn-O bond lengths with strain. However, VB offsets are found not to vary significantly with strain, which resulted in ascribing most of the difference in band alignment, due to a change in the band gaps with strain, to the conduction band edge. Our results reveal significant strain tuning of conduction band offsets using epitaxial buffer layers, with strain-induced offset differences as large as 0.6 eV possible for SrSnO3. Such large conduction band offset tunability through elastic strain control may provide a pathway to minimize the loss of charge confinement in 2-dimensional electron gases and enhance the performance of photoelectrochemical stannate-based devices. PMID:28195149

  18. Bond length (Ti-O) dependence of nano ATO3-based (A = Pb, Ba, Sr) perovskite structures: Optical investigation in IR range

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Okay, Cengiz

    2018-01-01

    In the current study, ABO3 (A = Pb, Ba, Sr and B = Ti) perovskite structures are produced by the auto-combustion route by using citric acid (CA) and nitric acid (NA) as fuel and oxidizer. The X-ray diffraction (XRD) patterns confirmed the perovskite nanostructure with cubic, tetragonal, and rhombohedral for SrTiO3, PbTiO3, and BaTiO3, respectively. Using Scherrer’s equation and XRD pattern, the average crystallite size of the samples were acquired. The effect of Ti-O bond length on the structure of the samples was evaluated. The type of structures obtained depends on Ti-O bond length which is in turn influenced by A2+ substitutions. Microstructural studies of nanostructures calcined at 850∘C confirmed the formation of polyhedral particles with a narrow size distribution. The values of optical band gaps were measured and the impact of A2+ was discussed. The optical properties such as the complex refractive index and dielectric function were calculated by IR spectroscopy and Kramers-Kronig (K-K) relations. Lead, as the element with the highest density as compared to other elements, changes the optical constants, remarkably due to altering titanium and oxygen distance in TO6 groups.

  19. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed Central

    Huang, Xiaokun; Zhang, Weiyi

    2016-01-01

    The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119

  20. How does the spin-state of Co ions affect the insulator-metal transition in Bi2A2Co2O8 (A = Ca, Sr, Ba)?

    PubMed

    Huang, Xiaokun; Zhang, Weiyi

    2016-11-30

    The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.

  1. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weihuan; Zhang, Yuepin, E-mail: zhangyuepin@nbu.edu.cn; Ouyang, Shaoye

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlapmore » with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.« less

  2. Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

    2013-05-01

    The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

  3. Physical characteristics and magnetic properties of BaFe{sub 12}O{sub 19}/SrTiO{sub 3} based composites derived from mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widodo, Rahmat Doni, E-mail: rahmat-doni@yahoo.com; Manaf, Azwar

    2016-04-19

    A composite system BaFe{sub 12}O{sub 19}/SrTiO{sub 3} with ferrimagnetic BaFe{sub 12}O{sub 19} phase (BHF) and ferroelectric SrTiO{sub 3} phase (STO) have been prepared by mechanical alloying and subsequent heat treatment. The composite powders were studied by Particle Size Analyze, X-ray diffraction and magnetic measurement. It was found that the particle size of composite powders initially increased due to laminated layers formation of a composite and then decreased to an asymptotic value of ∼8 µm as the milling time extended even to a relatively longer time. However, based on results of line broadening analysis the mean grain size of the particles wasmore » found in the nanometer scale. We thus believed that mechanical blending and milling of mixture components for the composite materials has promoted heterogeneous nucleation and only after successive sintering at 1100°C the milled powder transformed into particles of nanograin. In this report, microstructure as well as magnetic properties for the composite is also briefly discussed.« less

  4. Thermoelectric properties of doped BaHfO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com; Bhamu, K. C.; Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. Themore » doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.« less

  5. Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming

    2015-12-01

    We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.

  6. Original Synthetic Route To Obtain a SrAl2O4 Phosphor by the Molten Salt Method: Insights into the Reaction Mechanism and Enhancement of the Persistent Luminescence.

    PubMed

    Rojas-Hernandez, Rocío Estefanía; Rubio-Marcos, Fernando; Gonçalves, Ricardo Henrique; Rodriguez, Miguel Ángel; Véron, Emmanuel; Allix, Mathieu; Bessada, Catherine; Fernandez, José Francisco

    2015-10-19

    SrAl2O4:Eu(2+), Dy(3+) has been extensively studied for industrial applications in the luminescent materials field, because of its excellent persistent luminescence properties and chemical stability. Traditionally, this strontium aluminate material is synthesized in bulk form and/or fine powder by the classic solid-state method. Here, we report an original synthetic route, a molten salt assisted process, to obtain highly crystalline SrAl2O4 powder with nanometer-scale crystals. The main advantages of salt addition are the increase of the reaction rate and the significant reduction of the synthesis temperature because of much higher mobility of reactants in the liquid medium than in the solid-state method. In particular, the formation mechanism of SrAl2O4, the role of the salt, and the phase's evolution have been explored as a function of temperature and time. Phosphorescent powders based on SrAl2O4:Eu(2+), Dy(3+) with high crystallinity are obtained after 1 h treatment at 900 °C. This work could promote further interest in adopting the molten salt strategy to process high-crystallinity materials with enhanced luminescence to design technologically relevant phosphors.

  7. Synthesis, characterization and properties of Dy3+-activated single host borosilicate phosphors

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Chen, Shanyong; Chen, Jinlei

    2017-12-01

    New phosphors Sr3B2SiO8: Dy3+ have been successfully synthesized via solid-state reaction process. Emission/excitation spectra, photoluminescence decay behaviors were investigated in detail. Under the excitation of 351 nm, the emission spectrum consisting of the characteristic transitions of Dy3+ which mainly peaking at 480, 487 nm and 574 nm corresponding to the4F9/2→6H15/2 and4F9/2→6H13/2, respectively, the intensity of the blue emission stronger than the yellow one which indicated that Dy3+ ions take the site without inversion symmetry. The chromaticity coordinates of Sr3-xB2SiO8: x Dy3+ fixed in the white region. The results showed the kind of phosphor may be act potential applications in the fields of UV-excited white LEDs.

  8. Ionic‐Liquid‐Assisted Microwave Synthesis of Solid Solutions of Sr1−xBaxSnO3 Perovskite for Photocatalytic Applications

    PubMed Central

    Alammar, Tarek; Slowing, Igor I.; Anderegg, Jim

    2017-01-01

    Abstract Nanocrystalline Sr1−xBaxSnO3 (x=0, 0.2, 0.4, 0.8, 1) perovskite photocatalysts were prepared by microwave synthesis in an ionic liquid (IL) and subsequent heat‐treatment. The influence of the Sr/Ba substitution on the structure, crystallization, morphology, and photocatalytic efficiency was investigated and the samples were fully characterized. On the basis of X‐ray diffraction results, as the Ba content in the SrSnO3 lattice increases, a symmetry increase was observed from the orthorhombic perovskite structure for SrSnO3 to the cubic BaSnO3 structure. The analysis of the sample morphology by SEM reveals that the Sr1−xBaxSnO3 samples favor the formation of nanorods (500 nm–5 μm in diameter and several micrometers long). The photophysical properties were examined by UV/Vis diffuse reflectance spectroscopy. The band gap decreases from 3.85 to 3.19 eV with increasing Ba2+ content. Furthermore, the photocatalytic properties were evaluated for the hydroxylation of terephthalic acid (TA). The order of the activities for TA hydroxylation was Sr0.8Ba0.2SnO3>SrSnO3>BaSnO3>Sr0.6Ba0.4SnO3>Sr0.2Ba0.8SnO3. The highest photocatalytic activity was observed for Sr0.8Ba0.2SnO3, and this can be attributed to the synergistic impacts of the modification of the crystal structure and morphology, the relatively large surface area associated with the small crystallite size, and the suitable band gap and band‐edge position. PMID:28589568

  9. Microwave properties of film Ba x Sr1 - x TiO3 ferroelectric variconds with a magnesium-containing additive

    NASA Astrophysics Data System (ADS)

    Tumarkin, A. V.; Tepina, E. R.; Nenasheva, E. A.; Kartenko, N. F.; Kozyrev, A. B.

    2012-06-01

    The electrophysical properties of bulk ceramics based on Ba x Sr1 - x TiO3 solid solutions with a Mg-containing additive and planar variconds based on ferroelectric films obtained by the ion-plasma sputtering of targets with different elemental compositions are studied. Controllability n( U) = C(0)/ C( U) and the dielectric loss tangent (tanδ) of ferroelectric variconds are measured as functions of the elemental composition of the ferroelectric. The figure of merit of the variconds is estimated, and the film composition providing the best electrophysical parameters is determined.

  10. Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains

    NASA Astrophysics Data System (ADS)

    Yang, Daeyeol; Kang, Soo-Bin; Lim, Ji-Ho; Yoon, Songhyeon; Ryu, Jungho; Choi, Jong-Jin; Velayutham, Thamil Selvi; Kim, Hyungsun; Jeong, Dae-Yong

    2017-09-01

    We studied the temperature stable high-energy storage capacitors. Sr0.5Ba0.5Nb2O6 (SBN) is the lead-free ferroelectric solid solution between BaNb2O6 and SrNb2O6. By doping Dy into SBN, the Curie temperature was lowered and dielectric constant was increased. To improve the breakdown behavior of Dy-doped SBN, the aerosoldeposition(AD) was applied to fabricate the dense films with nano-sized grains. These nano-grain give a large number of grain boundaries, suppressing the electron conduction in ceramics. The dielectric constant and breakdown electric field of the AD films annealed at 650 °C were measured as 2307 and 9.9 MV/m, while bulk were 1080 and 4 MV/m. Energy density and efficiency of the AD films annealed at 650 °C were also enhanced as 0.65 J/cc and 90.2% and bulk were 0.08 J/cc and 72.1%, respectively. In addition, the dielectric constant of AD film annealed at 550 °C and 650 °C were quite stable up to 150 °C.

  11. All-in-one light-tunable borated phosphors with chemical and luminescence dynamical control resolution.

    PubMed

    Lin, Chun Che; Liu, Yun-Ping; Xiao, Zhi Ren; Wang, Yin-Kuo; Cheng, Bing-Ming; Liu, Ru-Shi

    2014-06-25

    Single-composition white-emitting phosphors with superior intrinsic properties upon excitation by ultraviolet light-emitting diodes are important constituents of next-generation light sources. Borate-based phosphors, such as NaSrBO3:Ce(3+) and NaCaBO3:Ce(3+), have stronger absorptions in the near-ultraviolet region as well as better chemical/physical stability than oxides. Energy transfer effects from sensitizer to activator caused by rare-earth ions are mainly found in the obtained photoluminescence spectra and lifetime. The interactive mechanisms of multiple dopants are ambiguous in most cases. We adjust the doping concentration in NaSrBO3:RE (RE = Ce(3+), Tb(3+), Mn(2+)) to study the energy transfer effects of Ce(3+) to Tb(3+) and Mn(2+) by comparing the experimental data and theoretical calculation. The vacuum-ultraviolet experimental determination of the electronic energy levels for Ce(3+) and Tb(3+) in the borate host regarding the 4f-5d and 4f-4f configurations are described. Evaluation of the Ce(3+)/Mn(2+) intensity ratios as a function of Mn(2+) concentration is based on the analysis of the luminescence dynamical process and fluorescence lifetime measurements. The results closely agree with those directly obtained from the emission spectra. Density functional calculations are performed using the generalized gradient approximation plus an on-site Coulombic interaction correction scheme to investigate the forbidden mechanism of interatomic energy transfer between the NaSrBO3:Ce(3+) and NaSrBO3:Eu(2+) systems. Results indicate that the NaSrBO3:Ce(3+), Tb(3+), and Mn(2+) phosphors can be used as a novel white-emitting component of UV radiation-excited devices.

  12. Fluorescent and cathodoluminescent phosphors structurally related to sodalite

    DOEpatents

    Phillips, M.L.F.; Shea, L.E.

    1998-09-29

    Blue, quantum-confined phosphors are disclosed for field-emission displays made by reducing metal (M) sulfoaluminates at high temperature. This yields phases of the type M{sub 4}(AlO{sub 2}){sub 6}S. Bulk sulfide contaminant mixed with the reduced sulfoaluminate phase is removed by treating it with a chelating agent in nonaqueous solution. A photometric cathodoluminescence efficiency of 9 lumen/watt at 1,000 V for Sr{sub 3}PbS(AlO{sub 2}){sub 6} is observed. Undoped Sr{sub 4}S(AlO){sub 6} displays 5 lumen/watt at 1,000 V, with excellent blue chromatic saturation. 2 figs.

  13. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    NASA Astrophysics Data System (ADS)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  14. Strong anisotropy of electric field effects on uniaxial relaxor ferroelectric Sr0.75Ba0.25Nb2O6 crystals proved by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2018-01-01

    [001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).

  15. Site Occupation of Eu2+ in Ba2- xSr xSiO4 ( x = 0-1.9) and Origin of Improved Luminescence Thermal Stability in the Intermediate Composition.

    PubMed

    Lin, Litian; Ning, Lixin; Zhou, Rongfu; Jiang, Chunyan; Peng, Mingying; Huang, Yucheng; Chen, Jun; Huang, Yan; Tao, Ye; Liang, Hongbin

    2018-06-18

    Knowledge of site occupation of activators in phosphors is of essential importance for understanding and tailoring their luminescence properties by modifying the host composition. Relative site preference of Eu 2+ for the two distinct types of alkaline earth (AE) sites in Ba 1.9995- x Sr x Eu 0.0005 SiO 4 ( x = 0-1.9) is investigated based on photoluminescence measurements at low temperature. We found that Eu 2+ prefers to be at the 9-coordinated AE2 site at x = 0, 0.5, and 1.0, while at x = 1.5 and 1.9, it also occupies the 10-coordinated AE1 site with comparable preference, which is verified by density functional theory (DFT) calculations. Moreover, by combining low-temperature measurements of the heat capacity, the host band gap, and the Eu 2+ 4f 7 ground level position, the improved thermal stability of Eu 2+ luminescence in the intermediate composition ( x = 1.0) is interpreted as due to an enlarged energy gap between the emitting 5d level and the bottom of the host conduction band (CB), which results in a decreased nonradiative probability of thermal ionization of the 5d electron into the host CB. Radioluminescence properties of the samples under X-ray excitation are finally evaluated, suggesting a great potential scintillator application of the compound in the intermediate composition.

  16. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  17. A dual-emitting core-shell carbon dot-silica-phosphor composite for white light emission

    NASA Astrophysics Data System (ADS)

    Chen, Yonghao; Lei, Bingfu; Zheng, Mingtao; Zhang, Haoran; Zhuang, Jianle; Liu, Yingliang

    2015-11-01

    A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated.A unique dual-emitting core-shell carbon dot-silica-phosphor (CDSP) was constructed from carbon dots (CDs), tetraethoxysilane (TEOS) and Sr2Si5N8:Eu2+ phosphor through a one-pot sol-gel method. Blue emitting CDs uniformly disperse in the silica layer covering the orange emitting phosphor via a polymerization process, which makes CDSP achieve even white light emission. Tunable photoluminescence of CDSP is observed and the preferable white light emission is achieved through changing the excitation wavelength or controlling the mass ratio of the phosphor. When CDSP powders with a phosphor rate of 3.9% and 5.1% are excited at a wavelength of 400 nm, preferable white light emission is observed, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.32, 0.32) and (0.34, 0.32), respectively. Furthermore, CDSP can mix well with epoxy resin to emit strong and even white light, and based on this, a CDSP-based white LED with a high colour rendering index (CRI) of 94 was fabricated

  18. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    PubMed

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  19. Up-conversion luminescence properties and energy transfer of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Deng, Junru

    2015-11-15

    Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphorsmore » present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.« less

  20. Synthesis and luminescent properties of Sr3Al2O5Cl2: Eu2+, Dy3+ rod-like nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhengliang; Zhang, Qiuhan; Rong, Meizhu; Tan, Huiying; Wang, Qin; Zhou, Qiang; Chen, Guo

    2016-08-01

    White long afterglow phosphor with nano-rods, Sr3Al2O5Cl2: Eu2+, Dy3+, has been successfully synthesized by the solid state reaction. Their structure, morphology, scanning electron microscopy, luminescent properties and long afterglow properties were investigated by X-ray diffraction, transmission electron microscopy luminescence spectra and the luminescence decay curve. The obtained phosphor Sr3Al2O5Cl2: Eu2+, Dy3+ exhibits two broad emission bands, which are located at ∼445 nm and ∼590 nm, respectively. White light can be observed from this phosphor with appropriate CIE values (x = 0.357, y = 0.332). The white afterglow duration of this phosphor is about 0.5 h (>0.35 mcd/m2).

  1. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  2. RF sputter deposition of SrS:Eu and ZnS:Mn thin film electroluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Droes, Steven Roy

    1998-09-01

    The radio-frequency (rf) sputter deposition of thin film electroluminescent (TFEL) materials was studied. Thin films of strontium sulfide doped with europium (SrS:Eu) and zinc sulfide doped with manganese (ZnS:Mn) were RF sputter deposited at different conditions. Photoluminescent and electroluminescent behaviors of these films were examined. Photoluminescent active, crystalline films of SrS:Eu were deposited at temperatures from 300o C to 650o C. The best temperature was 400o C, where a PL efficiency of 35% was achieved. Films were deposited at two power levels (90 and 120 watts) and five H2S concentrations (0.6%, 1.3%, 2.4%, 4.0% and 5.3%). The H2S concentration affected the crystallinity of the films and the PL performance. Lower H2S concentrations resulted in films with smaller crystallite sizes and poorer PL performance. Increased H2S concentrations increased the PL intensity and the overall spectra resembled that of an efficient SrS:Eu powder. Although there was a correlation between crystallinity and PL performance other factors such as europium concentration, distribution, and local environment also influence PL performance. Analytical results suggested that, although a film may be crystalline and have the correct europium concentration, unless the europium is in the correct localized environment, optimum PL response will not be achieved. Increased H2S concentrations produced films with europium located in optimum locations. Contrary to vacuum or chemical vapor deposited films, the sputter deposited films showed no trailing edge emission during electroluminescence. A suggested reason for this lack of a trailing edge emission in these films is that the sputter deposition process produces phosphor- insulator interfaces without shallow trap states. A statistical design of experiments approach was implemented for the sputter deposition of ZnS:Mn. The effects of four factors (substrate temperature, chamber pressure, power to the target, and H2S concentration) on

  3. Thermally assisted interlayer magnetic coupling through Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3} barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carreira, Santiago J.; Steren, Laura B.; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB

    2016-08-08

    We report on the interlayer exchange coupling across insulating barriers observed on Ni{sub 80}Fe{sub 20}/Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3}/La{sub 0.66}Sr{sub 0.33}MnO{sub 3} (Py/BST{sub 0.05}/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO{sub 3} (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate.more » An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST{sub 0.05}. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.« less

  4. The 1201 superconductors Hg1-y(VO4)y(Ba, Sr)2CuO4-2y+δ: evidence for VO4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Malo, S.; Hervieu, M.; Maignan, A.; Knížek, K.; Raveau, B.; Michel, C.

    1997-02-01

    A series of mercury based cuprates with nominal composition Hg1-yV(y)Ba2-xSrxCuO4+2y+δ has been prepared for x = 0, 0.25, 0.5, 0.75, 1 and 1.25. The actual solid solution limit from the EDS measurement is x = 1.1, y ranges from 0.2 to 0.35. The single crystal study coupled with high resolution electron microscopy shows for the first time the presence of VO4 tetrahedra replacing partly the mercury atoms according to the formulation Hg1-y(VO4)y(Ba,Sr)2 CuO4-2y+δ. The role of vanadium for the stabilisation of the structure and as a doping agent in the superconducting properties is discussed.

  5. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  6. Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.

    2002-06-01

    Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.

  7. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi₃ (A = Sr and Ba).

    PubMed

    Shao, D F; Luo, X; Lu, W J; Hu, L; Zhu, X D; Song, W H; Zhu, X B; Sun, Y P

    2016-02-19

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity.

  8. Validity and limitations of the superexchange model for the magnetic properties of Sr2IrO4 and Ba2IrO4 mediated by the strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Mazurenko, V. V.; Katanin, A. A.

    2015-12-01

    Layered perovskites Sr2IrO4 and Ba2IrO4 are regarded as the key materials for understanding the properties of magnetic relativistic insulators, mediated by the strong spin-orbit (SO) coupling. One of the most fundamental issues is to which extent these properties can be described by the superexchange (SE) model, formulated in the limit of the large Coulomb repulsion for some appropriately selected pseudospin states, and whether these materials themselves can be classified as Mott insulators. In this work, we address these issues by deriving the relevant models and extracting parameters of these models from the electronic-structure calculations with the SO coupling, based on the density functional theory. First, we construct the effective Hubbard-type model for the magnetically active t2 g bands, by recasting the problem in the language of localized Wannier orbitals. Then, we map the obtained electron model onto the pseudospin model by applying the theory of SE interactions, which is based on the second-order perturbation theory with respect to the transfer integrals. We discuss the microscopic origin of anisotropic SE interactions, inherent to the compass Heisenberg model, and the appearance of the antisymmetric Dzyaloshinskii-Moriya term, associated with the additional rotation of the IrO6 octahedra in Sr2IrO4 . In order to solve the pseudospin Hamiltonian problem and evaluate the Néel temperature (TN), we employ the nonlinear sigma model. We have found that, while for Sr2IrO4 our value of TN agrees with the experimental data, for Ba2IrO4 it is overestimated by a factor of 2. We argue that this discrepancy is related to limitations of the SE model: while for more localized t2 g states in Sr2IrO4 it works reasonably well, the higher-order terms in the perturbation theory expansion play a more important role in the more "itinerant" Ba2IrO4 , giving rise to the new type of isotropic and anisotropic exchange interactions, which are not captured by the SE model. This

  9. Excitation-dependent local symmetry reversal in single host lattice Ba2A(BO3)2:Eu3+ [A = Mg and Ca] phosphors with tunable emission colours.

    PubMed

    Jayakiruba, S; Chandrasekaran, S Selva; Murugan, P; Lakshminarasimhan, N

    2017-07-05

    Eu 3+ activated phosphors are widely used as red emitters in various display devices and light emitting diodes (LEDs). The emission characteristics of Eu 3+ depend on the local site symmetry. The present study demonstrates the role of excitation-dependent local symmetry changes due to the structural reorganization on the emission colour tuning of Eu 3+ from orange-red to orange in single host lattices, Ba 2 Mg(BO 3 ) 2 and Ba 2 Ca(BO 3 ) 2 . The choice of these lattices was based on the difference in the extent of strain experienced by the oxygen atoms. The samples with Eu 3+ at Ba or Mg (Ca) sites were synthesized using the conventional high-temperature solid-state reaction method. The samples were characterized using powder XRD, 11 B MAS-NMR, FT-IR, and diffuse reflectance UV-Vis spectroscopic techniques. The room temperature photoluminescence (PL) recorded using different excitation wavelengths revealed a clear difference in the PL emission features due to symmetry reversal from non-inversion to inversion symmetry around Eu 3+ . The reorganization of highly strained oxygen atoms leads to such symmetry reversal. First-principles calculations were used to deduce the optimized structures of the two borate host lattices, and local geometries and their distortions upon Eu 3+ substitution. The outcomes of these calculations support the experimental findings.

  10. The crystal structure of tin sulphate, SnSO[subscript 4], and comparison with isostructural SrSO[subscript 4], PbSO[subscript 4], and BaSO[subscript 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.

    2012-10-23

    The crystal structure of tin (II) sulphate, SnSO{sub 4}, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO{sub 4} are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) {angstrom}, and V = 334.383(1) {angstrom}{sup 3}. The average [12] distance is 2.9391(4) {angstrom}. However, the Sn{sup 2+} cation has a pyramidal [3]-coordination to O atoms and the average [3] = 2.271(1) {angstrom}. If Sn is considered as [12]-coordinated, SnSO{sub 4} has a structure similar to barite, BaSO{sub 4}, and its structuralmore » parameters are intermediate between those of BaSO{sub 4} and PbSO{sub 4}. The tetrahedral SO{sub 4} group has an average [4] = 1.472(1) {angstrom} in SnSO{sub 4}. Comparing SnSO{sub 4} with the isostructural SrSO{sub 4}, PbSO{sub 4}, and BaSO{sub 4}, several well-defined trends are observed. The radii, rM, of the M{sup 2+}(=Sr, Pb, Sn, and Ba) cations and average distances vary linearly with V because of the effective size of the M{sup 2+} cation. Based on the trend for the isostructural sulphates, the average [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn{sup 2+} cation.« less

  11. Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes

    NASA Astrophysics Data System (ADS)

    Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel

    2018-01-01

    Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable D 3 /2 ,5 /2 2 states of Ca+, Sr+, and Ba+ are studied, such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other theory and observation, which is promising for further applications in alkalilike systems.

  12. Combinatorial synthesis of phosphors using arc-imaging furnace

    PubMed Central

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-01-01

    We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432

  13. Combinatorial synthesis of phosphors using arc-imaging furnace

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo

    2011-10-01

    We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.

  14. Solvent directed morphologies and enhanced luminescent properties of BaWO4:Tm3+,Dy3+ for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Hongyue; Yang, Junfeng; Wang, Xiaoxue; Gan, Shucai; Li, Linlin

    2018-05-01

    A series of Tm3+ and Dy3+ codoped BaWO4 phosphors with tunable shapes were controllably synthesized by a facile solvothermal method. The effects of ratio of ethylene glycol (EG) and water on the morphologies of BaWO4 structures are systematically studied. It was discovered that the reason for these morphological changes is based on the reaction speed of the kinetic control, which relates to the strong chelating abilities of ethylene glycol. And when the solvent is pure ethylene glycol, the peanut-like BaWO4:Dy3+ has the strongest emission intensity. Moreover, the emission color of the phosphors varied from blue (0.232, 0.180) to white (0.268, 0.250) by controlling Dy3+ ions content with a fixed Tm3+ concentration. The energy transfer mechanism was investigated in detail. With increasing the doped concentration of Dy3+ ions, the energy transfer efficiency of BaWO4:0.005Tm3+,yDy3+ increased gradually and reached as high as 63% when the Dy3+ doped concentration is 0.03. The critical distance RC calculated by the spectral overlap method is about 19.93 Å, and it is in good agreement with that obtained using the concentration quenching method (19.70 Å), indicating that the electric dipole-dipole interaction is the main energy transfer mechanism for BaWO4:Tm3+,Dy3+ phosphors.

  15. The effect of temperature and surface area on Sr, Ba and REE fractionation during low temperature serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, C. P.; Bizimis, M.; Foustoukos, D.

    2013-12-01

    Peridotite hosted hydrothermal vent systems are a direct link between the hydrosphere and the Earth's mantle. They promote elemental mass exchange between these two regimes, driven by hydrothermal alteration of peridotite by seawater. Most experimental, theoretical and field studies of peridotite alteration have focused on high temperature (>1800C) conditions where serpentinization is readily observed, but less is known for low-temperature alteration that likely resembles near seafloor processes. Furthermore, while major element exchange during serpentinization has been studied extensively, the behavior of trace elements remains unclear, especially at low temperatures (<1000C). Here we report data from time-series experiments designed to constrain the reaction of Sr, Ba and REE between synthetic seawater and olivine as a function of both temperature (15-900C) and mineral grain size (geometric surface area). Our experimental data shows a clear decoupling of REE from Sr-Ba under all experimental conditions. While Sr and Ba remain quantitatively in solution, the REE are being removed from the solution at rates that increase with increasing temperature and GSA (i.e. decreasing particle size). We also observe the HREE are removed from solution faster than the LREE. The REE removal can be described as a two-stage process, with a fast initial rate followed by a slower rate as the reaction approaches equilibrium. For instance at 900C and GSA of 57.57cm2/g (average grain diameter of 258.7μm), 50% of Nd is removed in 8 hours but only 80% at 120 hours. We quantify the initial reaction rate constant of each element as a function of temperature and grain size, in order to understand the mechanisms of REE removal. The experimentally determined surface-normalized reaction rate constants (0.29-1.84 s-1m-2), constrain the temperature dependence and activation energy for the scavenging of REE driven by olivine hydrolysis. For example, LREE reaction rates have a higher temperature

  16. Interaction of ultra-depleted MORBs with plagioclase: implications for CO2/Ba ratios

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Hauri, E.; Saal, A. E.; Perfit, M. R.; Hekinian, R.

    2017-12-01

    Carbon in Earth's upper mantle can significantly reduce its solidus temperature, which in turn can affect other physical properties through generation of partial melt. Carbon content in the depleted upper mantle can be estimated using ultra-depleted mid-ocean ridge basalt (UD-MORB) glasses and melt inclusions that are undersaturated in CO2. CO2 has been shown to behave as a highly incompatible element during mantle melting both through natural samples and experiments. Given its highly incompatible behavior, CO2/Ba and CO2/Nb ratios in CO2 undersaturated UD-MORBs have been used to estimate the CO2/Ba and CO2/Nb ratios and carbon content in Earth's upper mantle. A potential issue with part of this approach is the effect of melt-plagioclase chemical interaction on the CO2/Ba ratios in UD-MORBs. Plagioclase is ubiquitous in the oceanic crust and is enriched in Ba relative to other phases. Chemical interactions (assimilation and/or diffusion) between MORB melts and plagioclase bearing rocks have been shown to affect the Ba (and Sr and Eu) concentrations in MORBs, implying that such processes may also affect their CO2/Ba ratio. Hence, understanding the effect of chemical interaction between plagioclase and UD-MORBs is important for having better constraints on CO2/Ba ratio and carbon content in Earth's upper mantle. In this study, we report on the compositions of olivine-hosted melt inclusions and glasses from the Siqueiros and Garrett transform faults. A subset of melt inclusions in lavas from both transform faults show potential signatures of chemical interaction with plagioclase such as low CO2/Ba, Nb/Ba, and Nd/Sr. CO2 degassing cannot explain the low CO2/Ba ratio in the samples as they are undersaturated in CO2. To better understand the effect of chemical interaction with plagioclase on the composition of UD-MORBs, we model end-member scenarios, which are (1) assimilation of plagioclase and (2) diffusion of elements from plagioclase into the UD-MORBs. In general

  17. Potential of Sm3+ doped LiSrVO4 nanophosphor to fill amber gap in LEDs

    NASA Astrophysics Data System (ADS)

    Biswas, P.; Kumar, Vinay; Sharma, Vishal; Bedyal, A. K.; Padha, Naresh; Swart, H. C.

    2018-04-01

    The LiSrVO4:Sm3+ phosphor powders were synthesized by the combustion method by varying the concentration of the Sm3+ ions from 0.25 mol% to 2.5 mol%. The powder X-ray diffraction (XRD) studies confirmed that the phosphors were crystallized as monoclinic structure belonging to space group P2/m and the transmission electron microscopy (TEM) revealed nanosized grains of the powders. The Fourier transform infrared studies (FTIR) established the formation of non-hygroscopic vanadate powders. The photoluminescence (PL) and diffused reflectance studies (DRS) were also carried out and discussed. Under 401 nm excitation, the optimized phosphor exhibited the characteristic 568, 600, 646 and 704 nm emissions of Sm3+ which corresponded to the orange-red (amber) color with (0.59, 0.41) Commission Internationale de' Eclairage (CIE) chromaticity coordinates. Concentration quenching of phosphor intensity on account of non-radiative energy transfer was ascribed to dipole-dipole interaction between activators. DRS study reveals that the host of the phosphor is a wide bandgap material which accommodates the dopant successfully. The present results signify that the LiSrVO4:Sm3+ phosphor can suitably be excited by the GaN family of UV-LEDs chips for efficient amber LEDs applications.

  18. Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors

    NASA Astrophysics Data System (ADS)

    Xiang-Hong, He; Zhao-Lian, Ye; Ming-Yun, Guan; Ning, Lian; Jian-Hua, Sun

    2016-02-01

    Pr3+-activated barium tungsto-molybdate solid solution phosphor Ba(Mo1-zWz)O4:Pr3+ is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr3+-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO4] for [MoO4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo1-zWz)O4:Pr3+ owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity, well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white light-emitting diodes (LEDs). Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology, China, the Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, China (Grant No. KHK1409), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the National Natural Science Foundation of China (Grant No. 21373103).

  19. Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Arshad, I.; Mahmood, Q.

    2017-11-01

    We report the structural, electronic, optical and thermoelectric (TE) properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites as a function of X cations belonging to the group IIA. The computations are done by using the most recently introduced modified Becke-Johnson potential. It has been observed that the cubic lattice constant increases as the cations change from Ca to Ba, consequently, the bulk modulus reduces. The bottom of conduction band shows strong hybridization between Pb-6p, O-2p and X-s states, in contrast, valence band maxima are mainly manufactured by Pb-6p states. The anti-perovskites exhibit narrow direct band gap that show an inverse relation to the static real dielectric constants that verifies Penn’s model. In addition, the X cations induced tuning of the absorption edge in the visible and the ultraviolet energy suggest optical device applications. The computed TE parameters have been found sensitive to the X cations and have been demonstrated to be best suited for the TE devices operating at high temperatures.

  20. Next neighbors effect along the Ca-Sr-Ba-åkermanite join: Long-range vs. short-range structural features

    NASA Astrophysics Data System (ADS)

    Dondi, Michele; Ardit, Matteo; Cruciani, Giuseppe

    2013-06-01

    An original approach has been developed herein to explore the correlations between short- and long-range structural properties of solid solutions. X-ray diffraction (XRD) and electronic absorption spectroscopy (EAS) data were combined on a (Ca,Sr,Ba)2(Mg0.7Co0.3)Si2O7 join to determine average and local distances, respectively. Instead of varying the EAS-active ion concentration along the join, as has commonly been performed in previous studies, the constant replacement of Mg2+ by a minimal fraction of a similar size cation (Co2+) has been used to assess the effects of varying second-nearest neighbor cations (Ca, Sr, Ba) on the local distances of the first shell. A comparison between doped and un-doped series has shown that, although the overall symmetry of the Co-centered T1-site was retained, greater relaxation occurs at the CoO4 tetrahedra which become increasingly large and more distorted than the MgO4 tetrahedra. This is indicated by an increase in both the quadratic elongation (λT1) and the bond angle variance (σ2T1) distortion indices, as the whole structure expands due to an increase in size in the second-nearest neighbors. This behavior highlights the effect of the different electronic configurations of Co2+ (3d7) and Mg2+ (2p6) in spite of their very similar ionic size. Furthermore, although the overall symmetry of the Co-centered T1-site is retained, relatively limited (<10 deg) angular variations in O-Co2+-O occur along the solid solution series and large changes are found in molar absorption coefficients showing that EAS Co2+-bands are highly sensitive to change in the local structure.

  1. A single-phase Ba{sub 9}Lu{sub 2}Si{sub 6}O{sub 24}:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor with tunable full-color emission for NUV-based white LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changhua; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Liu, Yongfu, E-mail: liuyongfu@nimte.ac.cn

    Highlights: • A single phase Ba{sub 9}Lu{sub 2}Si{sub 6}O{sub 24}:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor with full-color emission was obtained by solid-state reactions. • Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} acts as blue, green, and red luminescence centers, respectively. • The BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. • Combining this single phosphor with a 395 nm NUV-chip, an ideal white LED with a high CRI of 85 and a CCT of 6300 K was obtained. - Abstract: We obtained a single phase BLS:Eu{sup 2+}, Ce{supmore » 3+}, Mn{sup 2+} phosphor by solid-state reactions. Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} gives rise to the blue, green, and red emission, respectively. The Mn{sup 2+} red emission can be effectively enhanced via energy transfers from both Eu{sup 2+} and Ce{sup 3+}. Thus a tunable full color emission from 410 to 750 nm was realized in this single phosphor. The Eu{sup 2+} → Mn{sup 2+} energy transfer mechanism was investigated by the fluorescence decay curves. This single phosphor exhibits an efficient excitation band covering from 390 to 410 nm, which matches well with the emission light of the efficient NUV chips. The optimized BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. When this single phosphor was combined with a 395 nm NUV-chip, an ideal white LED with a high color render index (CRI) of 85 and a correlated color temperature (CCT) of 6300 K was obtained. This demonstrates the promising application of the BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} single phosphor for the NUV-based white LEDs.« less

  2. Phase diagram of the isovalent phosphorous-substituted 122-type iron pnictides

    DOE PAGES

    Zhao, YuanYuan; Tai, Yuan -Yen; Ting, C. S.

    2015-05-11

    Recent experiments demonstrated that the isovalent doping system gives a similar phase diagram as the heterovalent doped cases. For example, with the phosphorous (P) doping, the magnetic order in BaFe 2(As 1–xP x) 2 compound is first suppressed, then the superconductivity dome emerges to an extended doping region but eventually it disappears at large x. With the help of a minimal two-orbital model for both BaFe 2As 2 and BaFe 2P 2, together with the self-consistent lattice Bogoliubov-de Gennes (BdG) equation, we calculate the phase diagram against the P content x in which the doped isovalent P atoms are treatedmore » as impurities. Furthermore, we show that our numerical results can qualitatively compare with the experimental measurements.« less

  3. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    NASA Astrophysics Data System (ADS)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  4. Luminescence properties of Na3SrB5O10:Dy3+ plate-like microstructures for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Dillip, G. R.; Dhoble, S. J.; Raju, B. Deva Prasad

    2013-10-01

    A series of novel plate-like microstructure Na3SrB5O10 doped with various Dy3+ ions concentration have been synthesized for the first time by solid-state reaction (SSR) method. X-ray diffraction (XRD) results demonstrated that the prepared Na3SrB5O10:Dy3+ phosphors are single-phase pentaborates with triclinic structure. The plate-like morphology of the phosphor is examined by Field emission scanning electron microscopy (FE-SEM). The existence of both BO3 and BO4 groups in Na3SrB5O10:Dy3+ phosphors are identified by Fourier transform infrared (FT-IR) spectroscopy. Upon excitation at 385 nm, the PL spectra mainly comprising of two broad bands: one is a blue light emission (˜486 nm) and another is a yellow light emission (˜581 nm), originating from the transitions of 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 in 4f9 configuration of Dy3+ ions, respectively and the optimized dopant concentration is determined to be 3 at.%. Interestingly, the yellow-to-blue (Y/B) emission integrated intensity ratio is close to unity (0.99) for 3 at.% Dy3+ ions, suggesting that the phosphors are favor for white illumination. Moreover, the calculated Commission International de l'Eclairage (CIE) chromaticity coordinates of Na3SrB5O10:Dy3+ phosphors shows the values lie in white light region and the estimated CCT values are located in cool/day white light region.

  5. Synthesis and photoluminescence of EuII in barium zinc orthosilicate: a novel green color emitting phosphor for white-LEDs.

    PubMed

    Kasturi, S; Sivakumar, V; Varadaraju, U V

    2017-05-01

    A series of Eu 2+ -activated barium orthosilicates (BaZnSiO 4 ) were synthesized using a high-temperature solid-state reaction. A photoluminescence excitation study of Eu 2 + shows a broad absorption band in the range of 270-450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f-5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450-550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu 2 + in two different Ba sites in the BaZnSiO 4 host lattice. The energy transfers between the Eu 2 + ions in BaZnSiO 4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu 2 + -activated BaZnSiO 4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV-region (270-420 nm), making them attractive candidate as a green phosphor for solid state lighting-white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Induced Ti magnetization at La 0.7Sr 0.3MnO 3 and BaTiO 3 interfaces

    DOE PAGES

    Liu, Yaohua; Tornos, J.; te Velthuis, S. G. E.; ...

    2016-04-01

    In artificial multiferroics hybrids consisting of ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO) and ferroelectric BaTiO 3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Lastly, besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.

  7. Dielectric relaxation and electrical conduction mechanism in A2HoSbO6 (A=Ba, Sr, Ca) Double Perovskite Ceramics: An impedance spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Halder, Saswata; Dutta, Alo; Sinha, T. P.

    2017-03-01

    The AC electrical properties of polycrystalline double perovskite oxides A2HoSbO6 (A=Ba, Sr, Ca; AHS) synthesized by solid state reaction technique has been explored by using impedance spectroscopic studies. The Rietveld refinement of the room temperature X-ray diffraction data show that Ba2HoSbO6 (BHS) has cubic phase and Sr2HoSbO6 (SHS) and Ca2HoSbO6 (CHS) crystallize in monoclinic phase. The samples show significant frequency dispersion in their dielectric properties. The polydispersive nature of the relaxation mechanism is explained by the modified Cole-Cole model. The scaling behavior of dielectric loss indicate the temperature independence of the relaxation mechanism. The magnitude of the activation energy indicates that the hopping mechanism is responsible for carrier transport in AHS. The frequency dependent conductivity spectra follow the double power law. Impedance spectroscopic data presented in the Nyquist plot (Z" versus Z‧) are used to identify an equivalent circuit along with to know the grain, grain boundary and interface contributions. The constant phase element (CPE) is used to analyze the experimental response of BHS, SHS and CHS comprehending the contribution of different microstructural features to the conduction process. The temperature dependent electrical conductivity shows a semiconducting behavior.

  8. Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1-xLaxTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, H.; Pan, J. S.; Chen, X. F.; Zhu, W. G.

    2007-07-01

    (Ba0.65Sr0.35)1-xLaxTiO3 (BSLT) thin films with different La concentrations have been deposited on Si field emitter arrays (FEAs) using sol-gel technology for field electron emission applications. The films exhibit the perovskite structure at low La substitution level (x ≤0.5) and the pyrochlore phase at high La concentration (x ≥0.75). The 30-nm-thick BSLT (x =0.25) thin film has higher crystallinity of perovskite structure in the surface region. An x-ray photoelectron spectroscopy study indicates that the oxygen vacancy concentration decreases with La substitution. With respect to the undoped Ba0.65Sr0.35TiO3 thin film, the Fermi level shifts down for the BSLT sample with x =0.1 ascribed to the decreasing oxygen vacancy concentration, and then shifts up for the BSLT sample with x =0.25 attributed to the increasing La substitution level. In highly doped films with an x value over 0.5, it shifts down again associated with the second pyrochlore phase formation. The best enhancement in field emission is found for the BSLT-coated (x =0.25) Si FEAs due to the improved perovskite structure in the surface region and up-moved Fermi level of the coating.

  9. Preparing, Characterizing, and Investigating Luminescent Properties of a Series of Long-Lasting Phosphors in a SrO-Al[subscript 2]O[subscript 3] System: An Integrated and Inquiry-Based Experiment in Solid State Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping

    2017-01-01

    An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…

  10. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  11. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  12. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  13. Influence of applied electric field annealing on the microwave properties of (Ba0.5Sr0.5)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Cho, Kwang-Hwan; Lee, Chil-Hyoung; Kang, Chong-Yun; Yoon, Seok-Jin; Lee, Young-Pak

    2007-04-01

    The effect of heat treatment in electric field on the structure and dielectric properties at microwave range of rf magnetron sputtering derived (Ba0.5Sr0.5)TiO3 thin films have been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability. The increased out-of-plane lattice constant in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature. And in dielectric loss, as the Ti-O bonding lengths increase, the energy scattering on the ferroelectric mode also increases. So, the value of dielectric loss is slightly increased.

  14. Structures and unimolecular chemistry of M(Pro2-H)(+) (M = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn) by IRMPD spectroscopy, SORI-CID, and theoretical studies.

    PubMed

    Jami-Alahmadi, Yasaman; Fridgen, Travis D

    2016-01-21

    M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.

  15. Homo- and heterometallic Cu(II)-M(II) (M = Ca, Sr and Ba) bis(salamo)-based complexes: Syntheses, structures and fluorescent properties.

    PubMed

    Zhao, Qing; Wei, Zhi-Li; Kang, Quan-Peng; Zhang, Han; Dong, Wen-Kui

    2018-06-02

    Four homo/heterometallic complexes [Cu 3 (L)(μ 2 -OAc) 9 (CH 3 OH) 9 ]·3CHCl 3 (1), [Cu 2 (L)Ca(μ 2 -NO 3 ) 9 ] (9), [{Cu 2 (L)Sr(μ 2 -NO 3 ) 9 } 9 ]·CH 3 CH 2 OH (11) and [Cu 2 (L)Ba(μ 2 -OAc) 9 (OAc)] (14), containing an acyclic naphthalenediol-based ligand H 4 L, were synthesized and characterized by elemental analyses, IR, UV-Vis, fluorescence spectra, TG-DTA and X-ray crystallography. The complex 1 was obtained by the reaction of H 4 L with 11 equivalents of Cu(OAc) 9 ·2H 2 O. The heterometallic complexes 9, 11, 14 were acquired by the reaction of H 4 L with 9 equivalents of Cu(OAc) 9 ·2H 2 O or Cu(NO 3 ) 9 ·2H 2 O and 1 equivalent of M(OAc) 9 (M = Ca, Sr and Ba). Owing to the different coordination cavities of the N 2 O 2 and O 6 of the completely deprotonated (L) 14- unit, the crystal structures showed the N 2 O 2 sites were occupied by Cu(II) atoms, alkaline earth metal(II) atoms occupied the O 6 site of the ligand (L) 14- unit, respectively. Furthermore, the fluorescence properties and TG-DTA analyses were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Synthesis and luminescence properties of blue-emitting phosphor Ca12 Al14 O32 F2 :Eu2+ for white light-emitting diode.

    PubMed

    Chen, Wanping; Zhang, Xinzhu; Wang, Liping

    2017-09-01

    A blue-emitting phosphor Ca 12 Al 14 O 32 F 2 :Eu 2+ was synthesized using a high-temperature solid-state reaction under a reductive atmosphere. The X-ray diffraction measurements indicate that a pure phase Ca 12 Al 14 O 32 F 2 :Eu 2+ can be obtained for low doping concentration of Eu 2+ . The phosphor has a strong absorption in the range 270-420 nm with a maximum at ~340 nm and blue emission in the range 400-500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as-synthesized phosphor were evaluated by comparison with those of Ca 12 Al 14 O 32 Cl 2 :Eu 2+ and the commercially available phosphor BaMgAl 10 O 17 :Eu 2+ . The emission intensity of Ca 12 Al 14 O 32 F 2 :Eu 2+ was ~72% that of BaMgAl 10 O 17 :Eu 2+ under excitation at λ = 375 nm. The results indicate that Ca 12 Al 14 O 32 F 2 :Eu 2+ has potential application as a near-UV-convertible blue phosphor for white light-emitting diodes. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Structural, spectroscopic and electronic properties of hydrogen-bonded water molecules in crystals. Ab initio calculations and experimental data of MC1 2· n(H,D) 2O, M = Sr or Ba

    NASA Astrophysics Data System (ADS)

    Möller, H.; Niu, J. E.; Lutz, H. D.; Schwarz, W. H. E.

    1997-12-01

    Structural, spectroscopic and electronic properties of (more or less deuterated) water molecules in the crystal fields of SrCl 2·2H 2O, SrCl 2·H 2O and BaCl 2·H 2O, previously investigated by experimental techniques, were calculated by ab initio SCF-MP methods. The H 2O molecules of each compound are asymmetrically surrounded by three adjacent chloride ions, one hydrogen atom being attached to a nearby Cl -, the other less perturbed hydrogen atom bridging the two less near Cl -. The diversity of structural and spectroscopic features found experimentally, for instance the trends from free H 2O to H 2O in BaCl 2·H 2OSrCl 2·H 2OSrCl 2·2H 2O, are well reproduced by the model calculations, which provide the correct assignment and physical interpretation. The differences between the compounds and the asymmetry of the hydrate water molecules can be rationalized with the help of crystal fields. The crystal environment expands the internuclear distances of H 2O by up to 3 pm. The change of vibrational frequencies can be explained qualitatively by only taking the coupling and anharmonicity of the free water molecule and its modified structure in the crystals into account. The infra-red intensities, however, are strongly influenced by the electronic polarization.

  18. Mineralogy and fluid inclusions study of carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.

    2010-05-01

    The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.

  19. Study on Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ-Ce0.85Gd0.15O1.95 composite cathode material for intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.

    2018-05-01

    xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.

  20. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.

    PubMed

    Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia

    2017-06-14

    The evolution of mineral composition and wine strontium isotopic ratio 87 Sr/ 86 Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87 Sr/ 86 Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87 Sr/ 86 Sr, not precluding the use of this parameter for wine traceability purposes.

  1. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  2. Structural studies of zirconium doped Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} lead free ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa

    2016-05-06

    Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.

  3. Highly sensitive Europium doped SrSO4 OSL nanophosphor for radiation dosimetry applications

    NASA Astrophysics Data System (ADS)

    Patle, Anita; Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.; Moharil, S. V.

    2015-10-01

    Highly sensitive Europium doped SrSO4 optically stimulated luminescent (OSL) phosphor was developed by synthesizing a nano phosphor which is treated at 1000 °C. Excellent OSL properties are observed in the developed phosphor and the sensitivity is found to be 1.26 times to that of the commercial Al2O3:C (Landauer Inc.) phosphor based on area integration method. The sample showed a single TL glow peak around 230 °C which is found to reduce by 47% after the OSL readout. Sublinear dose response with the saturation around 100 mGy is observed in this sample which suggests that it is extremely sensitive and hence will be suitable in detecting very low dose levels. Minimum measurable dose on the used set up is estimated to be 1.42 μGy. Practically no fading is observed for first ten days and the phosphor has excellent reusability. High sensitivity, low fading, excellent reusability will make this phosphor suitable for radiation dosimetry applications using OSL.

  4. Spin-orbit coupling enhanced superconductivity in Bi-rich compounds ABi3 (A = Sr and Ba)

    PubMed Central

    Shao, D. F.; Luo, X.; Lu, W. J.; Hu, L.; Zhu, X. D.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-01-01

    Recently, Bi-based compounds have attracted attentions because of the strong spin-orbit coupling (SOC). In this work, we figured out the role of SOC in ABi3 (A = Sr and Ba) by theoretical investigation of the band structures, phonon properties, and electron-phonon coupling. Without SOC, strong Fermi surface nesting leads to phonon instabilities in ABi3. SOC suppresses the nesting and stabilizes the structure. Moreover, without SOC the calculation largely underestimates the superconducting transition temperatures (Tc), while with SOC the calculated Tc are very close to those determined by measurements on single crystal samples. The SOC enhanced superconductivity in ABi3 is due to not only the SOC induced phonon softening, but also the SOC related increase of electron-phonon coupling matrix elements. ABi3 can be potential platforms to construct heterostructure of superconductor/topological insulator to realize topological superconductivity. PMID:26892681

  5. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO 3-buffered ferroelectric BaTiO 3 film on GaAs

    DOE PAGES

    Qiao, Q.; Zhang, Y.; Contreras-Guerrero, Rocio; ...

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO 3 thin filmsgrown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO 3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. We also use a combination of aberration-corrected scanning transmission electron microscopy andmore » first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectricpolarization of a BaTiO 3 thin filmgrown on GaAs. Moreover, we demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO 3), and propose that the presence of surface charge screening allows the formation of switchable domains.« less

  6. The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films

    NASA Astrophysics Data System (ADS)

    Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.

    1991-09-01

    The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.

  7. Impedance and magnetoelectric characteristics of (1 - x)BaTiO3- xLa0.7Sr0.3MnO3 ( x = 0.1 and 0.3) nano-composites

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Murugavel, P.; Dinesh Kumar, S.; Subramanian, V.

    2015-08-01

    We have synthesized the phase-pure (1 - x)BaTiO3- xLa0.7Sr0.3MnO3 ( x = 0.1 and 0.3) magnetoelectric composites without interdiffusion among the existing phases. The magnetic measurements revealed an anomaly at the ferroelectric Curie temperature (393 K) of BaTiO3, and the dielectric data revealed an anomaly at the ferromagnetic transition temperature (360 K) of La0.7Sr0.3MnO3 ascertaining the magnetoelectric coupling in the composite. Impedance analysis indicated dipolar polarization contributions to the dielectric spectrum with two non-Debye-type relaxations. Both the grain and grain boundary contributions were present in the system with dominant grain boundary effect in all the composites. The composites show semiconducting behavior with the barrier hopping-type conducting mechanism. To avoid the free charge carrier and the space charge contributions, the magnetoelectric response was measured at high frequency range. The maximum values of magnetoelectric voltage coefficient measured at 100 kHz were 221 and 219 mV/Oe-cm for x = 0.1 and 0.3 samples, respectively.

  8. Unraveling the distinct luminescence thermal quenching behaviours of A/B-site Eu3+ ions in double perovskite Sr2CaMoO6:Eu3+

    NASA Astrophysics Data System (ADS)

    Wang, Chunhao; Ye, Shi; Zhang, Qinyuan

    2018-01-01

    Eu3+-doped Sr2CaMoO6 phosphors have a broad excitation band at around 350-425 nm, which meets the demand of Near-ultraviolet (NUV, 365-410 nm) absorption when applied in NUV-excitable phosphor-converted white light emitting diodes (WLEDs). The luminescence thermal quenching effects of Eu3+ ions at A/B sites (612 nm/593 nm) in Sr2CaMoO6 might be distinct with resultant emission colour variation, which is less studied but of significance for a scientific perspective. This research investigates on the temperature-dependent luminescence and decay curves of the nominal Sr1.9Li0.05Eu0.05CaMoO6 and Sr2Ca0.9Li0.05Eu0.05MoO6 phosphors. Results indicate that the luminescence of B-site Eu3+ ions is quenched more easily than that of A-site Eu3+ ions, directly evidenced by the fast and slow decay components in the decay curves. A distortion of B-site octahedron with elevating temperature and strong coupling with phonons may be partially responsible for the relatively poor thermal quenching behaviors of B-site Eu3+ ions. The research gives perspective on the thermal quenching of emissive lanthanide ions at different sites in phosphors.

  9. The New Mode of Energy Transferring between Mn2+ and Eu2+ in Nitride Based Phosphor SrAlSi4N7 with Tunable Light and Excellent Thermal Stability.

    PubMed

    Ding, Jianyan; Seto, Takatoshi; Wang, Yichao; Cao, Yaxin; Li, Hua; Wang, YuHua

    2018-06-19

    In this work, energy transfers reciprocally between Mn2+ and Eu2+ ions in nitride SrAlSi4N7 have been found and investigated in detailed. In contrast to Mn2+ and Eu2+ activated oxide based phosphors, the red light centering at 608 nm is ascribed to 4f-5d transitions of Eu2+ ions and Mn2+ activated SrAlSi4N7 emits a cyan light peaked at 500 nm. Additionally, the special broad excitation band of SrAlSi4N7: Mn2+ centering at 362 nm has been covered by that of Eu2+ ions ranging from 300 to 550 nm. The overlap of energy level of Mn2+ and Eu2+ ions creates the condition for the energy transferring reciprocally between Eu2+ and Mn2+ ions. A series of SrAlSi4N7: 0.002Mn2+, xEu2+ (0 ≤x≤ 005) with tunable emission light have been synthesized and the decay curves of samples prove the happening of the energy transfer between Mn2+ and Eu2+ ions reciprocally. This mode of energy transfer not only prevents the loss of energy, but also improves the thermal stability and the intensity of SrAlSi4N7: Mn2+, Eu2+ at 150 °C is still beyond 92 % of the initial intensity. The results provide a new mode of energy transfer, which is expected to improve the drawback existing in energy transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    NASA Astrophysics Data System (ADS)

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  11. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  12. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  14. Enhancement of encaged electron concentration by Sr(2+) doping and improvement of Gd(3+) emission through controlling encaged anions in conductive C12A7 phosphors.

    PubMed

    Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan

    2016-07-28

    Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).

  15. Study of optically stimulated luminescence in LiSrAlF6:Eu2+

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Nikam, M. S.; Wankhede, S. P.; Moharil, S. V.

    2018-05-01

    In this context the results on beta induced thermoluminescence and optically stimulated luminescence properties of LiSrAlF6:Eu2+ are reported. Phosphor shows good luminescence properties for both thermal and optical stimulation. The continuous wave optically stimulated luminescence (CW-OSL) signal as recorded using blue (470 nm) stimulation was found to be 37 % that of standard phosphor Lithium Magnesium Phosphate. The phosphor shows linear response of CW-OSL for various exposures ranging from 20 mGy to 10 Gy with minimum detectable dose approximately equal to 13 µGy. About 20% reduction in the TL signal of the phosphor after OSL readout was observed. About 50% fading of OSL signal was observed within three days of irradiation out of which about 35% OSL signal depleted within a day after irradiation.

  16. High permittivity and low loss ceramics in the BaO-SrO-Nb{sub 2}O{sub 5} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Mohanan, P.

    1995-06-01

    A new group of compounds with composition (Ba{sub 5{minus}X}Sr{sub x})Nb{sub 4}O{sub 15}, having high permittivity and low loss have been prepared and characterized in the microwave frequency region. X-ray diffraction studies showed that monophase compound existed for all values of x from 0 to 5. Microwave dielectric properties such as {var_epsilon}{sub r} and {tau}{sub f} showed smooth variation with x, while the unloaded quality factor (Q{sub u}) showed remarkable improvement with x. A range of ceramic dielectric resonators (DR) with 40 < {var_epsilon}{sub r} < 50, {minus}10 < {tau}{sub f} < +10 and Q {times} f > 10,000 can bemore » obtained in this system.« less

  17. Structure and photoluminescence properties of Ba2-xSi4O10:2xSm3+

    NASA Astrophysics Data System (ADS)

    Ramteke, D. D.; Swart, H. C.

    2018-04-01

    We investigated the structure and photoluminescence properties of novel Ba2-xSi4O10:2xSm3+ phosphor prepared by the solid state reaction method. In the prepared phosphor the high temperature monoclinic phase was dominant over the low temperature orthorhombic phase. The shifting of the X-ray diffraction peaks with the Sm3+ ion addition was explained on the basis of the refinement results. The photoluminescence study showed that on excitation with 402 nm the phosphor emitted at 560 nm, 600 nm and 645 nm which corresponds to the 4G5/2→4H5/2, 4G5/2→4H7/2 and 4G5/2→4H9/2 transitions, respectively. Concentration quenching effect was also observed in the prepared phosphor. CIE chromaticity coordinates showed that the phosphor can be further developed for display applications.

  18. Structural and Optical properties of poly-crystalline BaTiO3 and SrTiO3 prepared via solid state route

    NASA Astrophysics Data System (ADS)

    Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya

    2016-10-01

    Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.

  19. Transient Response in Monolithic Mach-Zehnder Optical Modulator Using (Ba,Sr)TiO3 Film Sputtered at Low Temperature on Silicon

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nagata, Kazuma; Tanushi, Yuichiro; Yokoyama, Shin

    2007-04-01

    We have fabricated Mach-Zhender interferometers (MZIs) using the (Ba,Sr)TiO3 (BST) film sputter-deposited at 450 °C, which is a critical temperature for the process after metallization. An optical modulation of about 10% is achieved when 200 V is applied (electric field in BST is 1.2× 104 V/cm). However, the response time of optical modulation to step function voltage is slow (1.0-6.3 s). We propose a model for the slow transient behavior based on movable ions and a long dielectric relaxation time for the BST film, and good qualitative agreement is obtained with experimental results.

  20. Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Reichart, P.

    2006-07-01

    Thin films of Ba0.5Sr0.5TiO3 (BST) were deposited on c-plane (0001) sapphire by rf magnetron sputtering and investigated by complementary materials analysis methods. Microwave properties of the films, including tunability and Q factor were measured from 1to20GHz by patterning interdigital capacitors (IDCs) on the film surface. The tunability is correlated with texture, strain, and grain size in the deposited films. An enhanced capacitance tunability of 56% at a bias field of 200kV/cm and total device Q of more than 15 (up to 20GHz) were achieved following postdeposition annealing at 900°C.

  1. Highly Efficient Green-Emitting Phosphors Ba2Y5B5O17 with Low Thermal Quenching Due to Fast Energy Transfer from Ce3+ to Tb3.

    PubMed

    Xiao, Yu; Hao, Zhendong; Zhang, Liangliang; Xiao, Wenge; Wu, Dan; Zhang, Xia; Pan, Guo-Hui; Luo, Yongshi; Zhang, Jiahua

    2017-04-17

    This paper demonstrates a highly thermally stable and efficient green-emitting Ba 2 Y 5 B 5 O 17 :Ce 3+ , Tb 3+ phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce 3+ and green emission lines of Tb 3+ upon Ce 3+ excitation in the near-UV spectral region. The effect of Ce 3+ to Tb 3+ energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce 3+ and various concentrations (0-40%) of Tb 3+ . The green emission of Tb 3+ upon Ce 3+ excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb 3+ . Meanwhile, Ce 3+ emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce 3+ thermal de-excitation through fast energy transfer to Tb 3+ , which in the green-emitting excited states is highly thermally stable such that no lifetime shortening is observed with raising temperature to 210 °C. The predominant green emission is observed for Tb 3+ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb 3+ . The internal and external quantum yield of the sample with Tb 3+ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

  2. High mobility La-doped BaSnO3 on non-perovskite MgO substrate

    NASA Astrophysics Data System (ADS)

    Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin

    (Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.

  3. Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interface

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Stübinger, M.; Jin, L.; Kamp, M.; Pfaff, F.; Lubk, A.; Büchner, B.; Sing, M.; Claessen, R.

    2018-04-01

    The perovskite BaBiO3 (BBO) is a versatile oxide parent material which displays superconductivity upon p-doping, while n-doping has been predicted to establish a wide-bandgap topological insulator phase. Here, we report on a mechanism that allows for epitaxial deposition of high-quality crystalline BBO thin films on SrTiO3 substrates despite a significant lattice mismatch of as large as 12%. It is revealed that the growth takes place through domain matching epitaxy, resulting in domains with alternating lateral sizes of 8 and 9 BBO unit cells. In particular, a structurally modified interface layer is identified which serves as a nucleation layer for the BBO films and gradually relieves the strain by decoupling the film lattice from the substrate. The BBO growth mechanism identified here may be prototypical for prospective thin film deposition of other perovskites with large lattice constants.

  4. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  5. Defect Structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) Nonstoichiometric Tysonite Phases

    NASA Astrophysics Data System (ADS)

    Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Bolotina, N. B.

    2018-01-01

    Characteristic features of defect structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) nonstoichiometric phases of different compositions are determined from X-ray diffraction data. Interest in subtle details of their structure is determined by the possibility of ion transport over fluorine vacancies and by a strong compositional dependence of the ionic conductivity. The La0.95Sr0.05F2.95, La0.95Ba0.05F2.95, and Nd0.95Ca0.05F2.95 phases, as well as the La0.9Ba0.1F2.9 phase, crystallize as β-LaF3 (sp. gr. P3̅c1, Z = 6). The La0.9Sr0.1F2.9 and Nd0.9Ca0.1F2.9 phases lose their superstructure and are described by a cell whose volume is three times smaller (sp. gr. P63/ mmc, Z = 2). Defects of crystal structure R1 - y M y F3 - y are not exhausted by vacancies in fluorine positions. All crystals with a "large" cell are twinned according to the merohedral twin law. The majority of atomic positions in models with a "small" cell are split by group symmetry elements and are occupied statistically.

  6. Toward scatter-free phosphors in white phosphor-converted light-emitting diodes

    PubMed Central

    Park, Hoo Keun; Oh, Ji Hye; Rag Do, Young

    2012-01-01

    Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs. PMID:22535113

  7. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

  8. Luminescence and Site Occupancy of Eu2+ in Ba2 Ca(BO3)2

    NASA Astrophysics Data System (ADS)

    Li, Pan-Lai; Wang, Zhi-Jun; Yang, Zhi-Ping; Guo, Qing-Lin

    2011-01-01

    A green phosphor Ba2Ca(BO3)2:Eu2+ was synthesized by a high temperature solid-state reaction method under a reductive atmosphere. The luminescence and site occupancy of Eu2+ in Ba2Ca(BO3)2 are investigated. Ba2Ca(BO3)2:Eu2+ shows one green band (537 nm) under 400 nm near ultraviolet excitation which is suitable for UV LED. Ca2+ and Ba2+ ions in Ba2Ca(BO3)2 are replaced by Eu2+ ions, the Ba2Ca(BO3)2:Eu2+ shows a dissymmetrical emission band. The influence of Eu2+ doping concentrations on the emission intensity of Ba2Ca(BO3)2:Eu2+ is studied. It is found that the emission intensity is influenced by the Eu2+ concentration and reaches the maximum value at 2% Eu2+. According to the Dexter theory, the concentration quenching mechanisms of Eu2+ in Ba2Ca(BO3)2 are the d-dinteraction.

  9. Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric AxBa1-xNb2O6 (A: Sr,Ca)

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuertes, J.; Gomis, O.; Segura, A.; Bettinelli, M.; Burianek, M.; Mühlberg, M.

    2018-01-01

    In this letter, we have investigated the electronic structure of AxBa1-xNb2O6 relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to paraelelectric phase transition at 4 GPa, the light scattering produced by micro- and nano-ferroelectric domains at 3.3 eV in Ca0.28Ba0.72Nb2O6 has been probed. The direct bandgap remains virtually constant under compression with a drop of only 0.01 eV around the phase transition. Interestingly, we have also found that light scattering by the polar nanoregions in the paraelectric phase is comparable to the dispersion due to ferroelectric microdomains in the ferroelectric state. Finally, we have obtained that the bulk modulus of the ferroelectric phase of Ca0.28Ba0.72Nb2O6 is B0 = 222(9) GPa.

  10. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes

    USGS Publications Warehouse

    Futa, K.; Stern, C.R.

    1988-01-01

    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  11. Structure and properties of CaMnO3/SrMnO3/BaMnO3 superlattices from first principles

    NASA Astrophysics Data System (ADS)

    Li, Shen; Oh, Seongshik; Rabe, Karin

    2008-03-01

    Previous theoretical and experimental studies have shown that three-component, or ``tri-color'' superlattices can exhibit intrinsic electric polarization due to inversion-symmetry breaking in the layer sequence. In ferromagnetic inversion-symmetry-breaking superlattices, controlled symmetry lowering is similarly expected to lead to interesting new and tunable properties. Here, we present results of first-principles density-functional-theory calculations for short-period CaMnO3/SrMnO3/BaMnO3 superlattices, using VASP. The ground state structure, magnetic ordering, polarization and dielectric response will be presented. The role of epitaxial strain in the individual layers and the role of layer sequence will be explored. Connections to experimental studies and prospects for future work will be discussed.

  12. Low-temperature synthesis of homogeneous solid solutions of scheelite-structured Ca 1-xSr xWO 4 and Sr 1-xBa xWO 4 nanocrystals

    DOE PAGES

    Culver, Sean P.; Greaney, Matthew J.; Tinoco, Antonio; ...

    2015-07-24

    Here, a series of compositionally complex scheelite-structured nanocrystals of the formula A 1-xA’ xWO 4 (A = Ca, Sr, Ba) have been prepared under benign synthesis conditions using the vapor diffusion sol–gel method. Discrete nanocrystals with sub-20 nm mean diameters were obtained after kinetically controlled hydro- lysis and polycondensation at room temperature, followed by composition-dependent thermal aging at or below 60 °C. Rietveld analysis of X-ray diffraction data and Raman spectroscopy verified the synthesis of continuous and phase-pure nanocrystal solid solutions across the entire composition space for A 1-xA’ xWO 4, where 0 ≤ x ≤ 1. Elemental analysis bymore » X-ray photoelectron and inductively coupled plasma- atomic emission spectroscopies demonstrated excellent agreement between the nominal and experi- mentally determined elemental stoichiometries, while energy dispersive X-ray spectroscopy illustrated good spatial elemental homogeneity within these nanocrystals synthesized under benign conditions.« less

  13. Temperature and voltage stress dependent dielectric relaxation process of the doped Ba0.67Sr0.33TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2013-09-01

    The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.

  14. A -cation control of magnetoelectric quadrupole order in A (TiO)Cu 4(PO4)4(A =Ba ,Sr, and Pb)

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Toyoda, M.; Babkevich, P.; Yamauchi, K.; Sera, M.; Nassif, V.; Rønnow, H. M.; Kimura, T.

    2018-04-01

    Ferroic magnetic quadrupole order exhibiting macroscopic magnetoelectric activity is discovered in the novel compound A (TiO ) Cu4(PO4)4 with A = Pb, which is in contrast with antiferroic quadrupole order observed in the isostructural compounds with A = Ba and Sr. Unlike the famous lone-pair stereochemical activity which often triggers ferroelectricity as in PbTiO3, the Pb2 + cation in Pb (TiO ) Cu4(PO4)4 is stereochemically inactive but dramatically alters specific magnetic interactions and consequently switches the quadrupole order from antiferroic to ferroic. Our first-principles calculations uncover a positive correlation between the degree of A -O bond covalency and a stability of the ferroic quadrupole order.

  15. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Time-Resolved Detection of Fingermarks on Non-Porous and Semi-Porous Substrates Using Sr2MgSi2O7:Eu2+, Dy3+ Phosphors.

    PubMed

    Xiong, Xiaobo; Yuan, Ximing; Song, Jiangqi; Yin, Guoxiang

    2016-06-01

    Eu(2+), Dy(3+) co-doped strontium-magnesium silicate phosphors, Sr2MgSi2O7:Eu(2+), Dy(3+) (SMSEDs), have shown great potential in optoelectronic device due to their unique luminescent property. However, their potential applications in forensic science, latent fingermark detection in particular, are still being investigated. In this contribution, SMSEDs were successfully employed to latent fingermarks on a variety of non-porous and semi-porous surfaces, including aluminum foil, porcelain, glass, painted wood, colored paper, and leather. All the results illustrated that this luminescent powder, as a long-lasting phosphorescence material (LLP), was an ideal time-resolved detection reagent of fingermark for elimination of background interferences from various difficult substrates, and offered a good contrast to allow their identification without the need to enhance the results compared to nanosized organic fluorescent powder. © The Author(s) 2016.

  17. Giant piezoelectric property of (110) oriented BaxSr1-xTiO3 films

    NASA Astrophysics Data System (ADS)

    Chen, Z. H.; Chen, Z.; Qiu, J. H.; Yuan, N. Y.; Ding, J. N.

    2017-10-01

    A phenomenological Landau-Devonshire theory is applied to investigate the phase diagrams and physical properties of (110) oriented BaxSr1-xTiO3 films. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase, appear in the ;misfit strain-temperature; phase diagrams for (110) oriented films compared with that of (001) oriented films. Moreover, the orthorhombic a2 c phase, and the tetragonal c phase and the triclinic γ phase are stable at low temperature for x = 0.5 and x = 0.7 , respectively. The ferroelectric, dielectric, and piezoelectric properties strongly depend on the misfit strain and electric field. (110) oriented Ba0.7Sr0.3TiO3 film has the larger ferroelectric polarization and piezoelectric coefficient than that of Ba0.5Sr0.5TiO3 film. The giant piezoelectric coefficient of 340 pm / V is obtained at the electric field of 50 KV / cm in (110) oriented Ba0.7Sr0.3TiO3 film, which is comparable with the values of Pb (Zr1-xTix)O3 and (1 - x) Pb (Mg1/3Nb2/3)O3 -xPbTiO3 films. It makes (110) oriented BaxSr1-xTiO3 films suitable for applications in electromechanical devices.

  18. Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 lead-free multiferroic structures

    NASA Astrophysics Data System (ADS)

    Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui

    2017-10-01

    We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.

  19. Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor

    DOE PAGES

    Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei; ...

    2017-07-03

    Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less

  20. Red persistent luminescence in rare earth-free AlN:Mn 2+ phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jian; Cherepy, Nerine J.; Ueda, Jumpei

    Here, we investigated the persistent luminescence (PersL) properties of a rare earth-free Mn 2+ doped AlN (AlN:Mn) red phosphor together with a commercial SrAl 2O 4:Eu 2+, Dy 3+ green persistent phosphor as a reference. Similar to its photoluminescence (PL) spectrum, the PersL spectrum of the AlN:Mn phosphor exhibited a red emission band centered at 600 nm due to the Mn 2+: 4T 1( 4G) → 6A 1( 6S) transition with a relatively narrow full width at half maximum (FWHM) of 43 nm. The luminance of AlN:Mn powders was 0.65 mcd/m 2 at 60 min after ceasing ultraviolet (UV) illumination,more » and its duration upon 0.32 mcd/m 2 could reach over 110 min. An extremely broad thermoluminescence (TL) glow curve was observed ranging from 100 K to 600 K and peaked at around 310 K, indicating a wide trap distribution in this material.« less

  1. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  2. The synthesis and the luminescence properties of Sr2Ga3La1-xDyxGe3O14

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Zhongfei; Yang, Lurong; Zhang, Shaoan; Zhu, Daoyun; Yang, Yibin; Luo, Dongxiang; Wu, Fugen

    2018-02-01

    A series of Sr2Ga3La1-xDyxGe3O14 (x = 0, 0.015, 0.03, 0.045, 0.06, 0.075, 0.09) phosphors were synthesized by high temperature solid state reactions. X-ray diffraction analysis proves that single-phase Sr2Ga3La1-xDyxGe3O14 (0 ≤ x ≤ 0.09) has been obtained. The particle size of these powders is in the range from 1 to 3 μm. The host Sr2Ga3LaGe3O14 emits blue white light under the excitation of 260 nm ultraviolet light. Dy3+ doped samples can be effectively excited with near ultraviolet light and exhibit two emission bands in the blue (4F9/2 → 6H15/2) and yellow regions (4F9/2 → 6H13/2), which can form white light. Present research indicates that Dy3+ doped Sr2Ga3LaGe3O14 have the potential to be a single-phase full-color emitting phosphor.

  3. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values

  4. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  5. Luminescence properties of Sm3+-doped alkaline earth ortho-stannates

    NASA Astrophysics Data System (ADS)

    Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2014-05-01

    A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.

  6. Luminescence studies of a combustion-synthesized blue-green BaAlxOy:Eu2+,Dy3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bem, Daniel B.; Dejene, F. B.; Luyt, A. S.; Swart, H. C.

    2012-05-01

    Blue-green emitting BaAlxOy:Eu2+,Dy3+ phosphor was synthesized by the combustion method. The influence of various parameters on the structural, photoluminescence (PL) and thermoluminescence (TL) properties of the phosphor were investigated by various techniques. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. In the PL studies, broad-band excitation and emission spectra were observed with major peaks at 340 and 505 nm, respectively. The observed afterglow is ascribed to the generation of suitable traps due to the presence of the co-doped Dy3+ ions. Though generally broad, the peak structure of the TL glow curves obtained after irradiation with UV light was non-uniform with suggesting the contribution to afterglow from multiple events at the luminescent centers. Further insight on the afterglow behavior of the phosphor was deduced from TL decay results.

  7. The Density and Compressibility of BaCO3-SrCO3-CaCO3-K2CO3-Na2CO3-Li2CO3 Liquids: New Measurements and a Systematic Trend with Cation Field Strength

    NASA Astrophysics Data System (ADS)

    Hurt, S. M.; Lange, R. A.; Ai, Y.

    2015-12-01

    The volumetric properties of multi-component carbonate liquids are required to extend thermodynamic models that describe partial melting of the deep mantle (e.g. pMELTS; Ghiorso et al., 2003) to carbonate-bearing lithologies. Carbonate in the mantle is an important reservoir of carbon, which is released to the atmosphere as CO2 through volcanism, and thus contributes to the carbon cycle. Although MgCO3 is the most important carbonate component in the mantle, it is not possible to directly measure the 1-bar density and compressibility of MgCO3 liquid because, like other alkaline-earth carbonates, it decomposes at a temperature lower than its melting temperature. Despite this challenge, Liu and Lange (2003) and O'Leary et al. (2015) showed that the one bar molar volume, thermal expansion and compressibility of the CaCO3 liquid component could be obtained by measuring the density and sound speeds of stable liquids in the CaCO3-Li2CO3-Na2CO3-K2CO3 quaternary system at one bar. In this study, this same strategy is employed on SrCO3- and BaCO3-bearing alkali carbonate liquids. The density and sound speed of seven liquids in the SrCO3-Li2CO3-Na2CO3-K2CO3 quaternary and three liquids in the BaCO3-Li2CO3-Na2CO3-K2CO3 quaternary were measured from 739-1367K, with SrCO3 and BaCO3 concentrations ranging from 10-50 mol%. The density measurements were made using the double-bob Archimedean method and sound speeds were obtained with a frequency-sweep acoustic interferometer. The molar volume and sound speed measurements were used to calculate the isothermal compressibility of each liquid, and the results show the volumetric properties mix ideally with composition. The partial molar volume and compressibility of the SrCO3 and BaCO3 components are compared to those obtained for the CaCO3 component as a function of cation field strength. The results reveal a systematic trend that allows the partial molar volume and compressibility of the MgCO3 liquid component to be estimated.

  8. Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice.

    PubMed

    Kabbour, Houria; Janod, Etienne; Corraze, Benoît; Danot, Michel; Lee, Changhoon; Whangbo, Myung-Hwan; Cario, Laurent

    2008-07-02

    The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.

  9. Fabrication and electrical properties of (111) textured (Ba0.6Sr0.4)TiO3 film on platinized Si substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Liu, Baoting; Wei, Feng; Yang, Zhimin; Du, Jun

    2007-01-01

    The authors report the fabrication of (Ba0.6Sr0.4)TiO3 (BST) film on Pt /Si(001) substrate without Ti adhesion layer by magnetron sputtering. X-ray diffraction technique is used to characterize the orientation and phase purity of BST/Pt heterostructure. It is found that both BST and Pt films are (111) textured. The (111) BST films are observed to have high tunability of 49.4%; the dielectric constant and dielectric loss of the BST film are about 682 and 0.015, respectively. The leakage current density of BST film agrees well with the space-charge-limited current theory at room temperature and is only 3.90×10-8A/cm2 at 455kV/cm.

  10. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  11. Thermoluminescent phosphor

    DOEpatents

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  12. Low loss composition of BaxSryCa1-x-yTiO3: Ba0.12-0.25Sr0.35-0.47Ca0.32-0.53TiO3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2001-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  13. Influence of Substrate Biasing on (Ba,Sr)TiO3 Films Prepared by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji

    2004-03-01

    (Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.

  14. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    PubMed

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  15. Effect of concurrent Mg/Nb-doping on dielectric properties of Ba0.45Sr0.55TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Reich, Michael; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-08-01

    Composition, microstructure, and dielectric properties of undoped and Ba(Mg1/3Nb2/3)O3 (BMN) doped Ba0.45Sr0.55TiO3 (BST) thin films deposited via rf. magnetron sputtering on platinized alumina substrates have been investigated. The analysis of microstructure has shown that despite the sizable effect of doping on the residual stress, the latter is partially compensated by the thermal expansion coefficient mismatch, and its influence on the BST film crystal structure is insignificant. It was revealed that BMN doped film demonstrated an average (over 2000 devices) of 52.5% tunability at 640 kV/cm, which is ˜8% lower than the value for the undoped film. This drop is associated with the presence of Mg ions in BMN; however, the effect of Mg doping is partially compensated by that of Nb ions. The decrease in grain size upon doping may also contribute to the tunability drop. Doping with BMN allows achievement of a compensation concentration yielding no free carriers and resulting in significant leakage current reduction when compared with the undoped film. In addition, the presence of large amounts of empty shallow traps related to NbTi• allows localizing free carriers injected from the contacts thus extending the device control voltage substantially above 10 V.

  16. Development of new inorganic luminescent materials by organic-metal complex route

    NASA Astrophysics Data System (ADS)

    Manavbasi, Alp

    The development of novel inorganic luminescent materials has provided important improvements in lighting, display, and other technologically-important optical devices. The optical characteristics of inorganic luminescent materials (phosphors) depend on their physicochemical characteristics, including the atomic structure, homogeneity in composition, microstructure, defects, and interfaces which are all controlled by thermodynamics and kinetics of synthesis from various raw materials. A large variety of technologically-important phosphors have been produced using conventional high-temperature solid-state methods. For the synthesis of functional ceramic materials with ionic dopants in a host lattice, (such as phosphors), synthesis using organic-metal complex methods and other wet chemistry routes have been found to be excellent techniques. These methods have inherent advantages such as good control of stoichiometry by molecular level of mixing, product homogeneity, simpler synthesis procedures, and use of relatively-low calcination temperatures. Supporting evidence for this claim is accomplished by a comparison of photoluminescence characteristics of a commercially available green phosphor, Zn2SiO4:Mn, with the same material system synthesized by organic-metal synthesis route. In this study, new inorganic luminescent materials were produced using rare-earth elements (Eu3+, Ce3+, Tb3+ ) and transition metals (Cu+, Pb2+) as dopants within the crystalline host lattices; SrZnO2, Ba2YAlO 5, M3Al2O6 (M=Ca,Sr,Ba). These novel phosphors were prepared using the organic-metal complex route. Polyvinyl alcohol, sucrose, and adipic acid were used as the organic component to prepare the ceramic precursors. Materials characterization of the synthesized precursor powders and calcined phosphor samples was performed usingX-Ray Diffraction, Scanning Electron Microscopy, Photon-Correlation spectroscopy, and Fourier Transform Infrared Spectroscopy techniques. In addition to the

  17. Electric field-tunable Ba{sub x}Sr{sub 1-x}TiO{sub 3} films with high figures of merit grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikheev, Evgeny; Kajdos, Adam P.; Hauser, Adam J.

    2012-12-17

    We report on the dielectric properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST) films grown by molecular beam epitaxy on epitaxial Pt bottom electrodes. Paraelectric films (x Less-Than-Or-Equivalent-To 0.5) exhibit dielectric losses that are similar to those of BST single crystals and ceramics. Films with device quality factors greater than 1000 and electric field tunabilities exceeding 1:5 are demonstrated. The results provide evidence for the importance of stoichiometry control and the use of a non-energetic deposition technique for achieving high figures of merit of tunable devices with BST thin films.

  18. Effect of Mn and Ti substitution on the reflection loss characteristic of Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0, 1, 2 and 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Cahyadi, L., E-mail: lina.cahyadi@uph.edu; Adi, W. Ari, E-mail: dwisnuaa@batan.go.id

    2016-04-19

    The synthesis and characterization of composition Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0; 1; 2 and 3) compound by solid state reaction using mechanical milling have been performed. The raw materials were BaCO{sub 3}, SrCO{sub 3}, Fe{sub 2}O{sub 3}, MnCO{sub 3}, and TiO{sub 2}. The mixed powder was compacted and sintered at 1000°C for 5 hours. X-ray diffraction studies indicate expansion of hexagonal unit cell and compression of atomic density with substitution of Mn{sup 2+} and Ti{sup 4+} ions. Effect of substitution upon magnetic properties revealed that total magnetization, remanence, and coercivity changed with substitution due to preferentialmore » site occupancy of substituted Mn{sup 2+} and Ti{sup 4+} ions. Since the coercivity and total magnetization may be controlled by substitution while maintaining resistive properties, this material is useful for microwave absorber.« less

  19. Advanced phosphors

    DOEpatents

    Xiang, Xiao-Dong; Sun, Xiaodong; Schultz, Peter G.

    2000-01-01

    This invention relates to new phosphor materials and to combinatorial methods of synthesizing and detecting the same. In addition, methods of using phosphors to generate luminescence are also disclosed.

  20. Unification of the negative electrocaloric effect in Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-BaTiO{sub 3} solid solutions by Ba{sub 1/2}Sr{sub 1/2}TiO{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Sarir; Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120; Zheng, Guang-Ping, E-mail: mmzheng@polyu.edu.hk

    2013-12-07

    The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperaturemore » changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.« less