Sample records for baccata seedlings acclimated

  1. Influence of ozone on cold acclimation in sugar maple seedlings.

    PubMed

    Bertrand, Annick; Robitaille, Gilles; Nadeau, Paul; Castonguay, Yves

    1999-07-01

    During summer 1994, sugar maple (Acer saccharum Marsh.) seedlings were grown in open-top chambers supplied with air containing near ambient ozone concentration (control, low O(3)) or three times the ambient ozone concentration (high O(3)). The rate of CO(2) assimilation was significantly reduced by chronic exposure to a high concentration of ozone during the summer. During fall, seedlings were removed from the open-top chambers and acclimated to cold under natural conditions. In both species during cold acclimation, the starch concentration decreased, whereas the sucrose concentration increased. There was no treatment effect on the freezing tolerance of roots, even though roots in the high-O(3) treatment accumulated higher concentrations of the cryoprotective oligosaccharides raffinose and stachyose than control roots. Cold acclimation occurred earlier and stachyose concentration of stems was higher in high-O(3)-treated seedlings than in low-O(3)-treated seedlings. Cold acclimation was associated with an earlier accumulation of ABA in the xylem sap of high-O(3)-treated seedlings compared with low-O(3)-treated seedlings.

  2. Rapid photosynthetic acclimation of Shorea johorensis seedlings after logging disturbance in Central Kalimantan.

    PubMed

    Clearwater, M J; Susilawaty, R; Effendi, R; van Gardingen, P R

    1999-12-01

    This study examined the photosynthetic acclimation of pre-existing Shorea johorensis (Dipterocarpaceae) seedlings to the change in conditions that occurs at the time of logging in Central Kalimantan, Indonesia. The hypothesis was that the seedlings would be unable to acclimate beyond partially open conditions after canopy disturbance caused by logging, therefore limiting the potential for regeneration in the most open areas. Bleaching and reductions in the predawn ratio of variable to maximum fluorescence (F v /F m ) indicated chronic photoinhibition and damage to the previously shade-adapted leaves of seedlings in an area logged 2 weeks earlier. The majority of seedlings in partially open and open environments of an area logged 3 months earlier were already growing fast. Leaves that had developed in the new environment showed only small reductions in predawn F v /F m and large increases in the light saturated rate of photosynthesis (A max ) per unit area when compared to shaded seedlings. Leaves in the most open environments had higher but more variable nitrogen concentrations, A max per unit area and A max per unit mass when compared to seedlings in partially open environments. Increases in dark respiration were disproportionately large compared to increases in A max , and may have been the result of increased investment in photoprotective mechanisms. The response of stomatal conductance to the vapour pressure deficit and leaf temperature was examined, but it suggested only a 10% reduction in daily leaf level carbon gain in open environments. The ratio of leaf area to fine root mass was highest in shade-suppressed and newly exposed seedlings, suggesting a potential hydraulic limitation to transpiration during acclimation. However, rainfall during this period was high and leaf water potentials did not differ between disturbed and undisturbed environments. S. johorensis seedlings were capable of significant acclimation to conditions more extreme than partial canopy

  3. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.

    PubMed Central

    Anderson, M. D.; Prasad, T. K.; Stewart, C. R.

    1995-01-01

    The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666

  4. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Treesearch

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  5. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  6. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

    PubMed

    Marchin, Renée M; Broadhead, Alice A; Bostic, Laura E; Dunn, Robert R; Hoffmann, William A

    2016-10-01

    Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption. © 2016 John Wiley & Sons Ltd.

  7. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    PubMed

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.

  8. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    PubMed Central

    Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo

    2015-01-01

    Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field

  9. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings

    PubMed Central

    Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David

    2017-01-01

    Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332

  10. Chemical components of heartwood and sapwood of common Yew (Taxus baccata L.).

    PubMed

    Mertoğlu-Elmas, Gülnur

    2003-10-01

    Cell-wall components and solubility characteristics of the heartwood and sapwood of Taxus baccata L. were determined by methods of wood analysis and the differences between heartwood and sapwood were established. When we observe the data obtained, it is seen that the amount of extractive material found in the heartwood is substantially higher than the sapwood. The extractive material in Taxus baccata L. is originated from the hidden epithelial cells surrounded by resin canals.

  11. Acclimation responses to high light by Guazuma ulmifolia Lam. (Malvaceae) leaves at different stages of development.

    PubMed

    Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C

    2017-09-01

    The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    PubMed

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  13. Light acclimation strategies change from summer green to spring ephemeral as wild-leek plants age.

    PubMed

    Dion, Pierre-Paul; Brisson, Jacques; Fontaine, Bastien; Lapointe, Line

    2016-05-01

    Spring-ephemeral forest-herbs emerge early to take advantage of the high-light conditions preceding canopy closure; they complete their life cycle in a few weeks, then senesce as the tree canopy closes. Summer greens acclimate their leaves to shade and thus manage to maintain a net carbon gain throughout summer. Differences in phenology among life stages within a species have been reported in tree saplings, whose leaf activity may extend beyond the period of shade conditions caused by mature trees. Similar phenological acclimation has seldom been studied in forest herbs. We compared wild-leek bulb growth and leaf phenology among plants from seedling to maturity and from under 4 to 60% natural light availability. We also compared leaf chlorophyll content and chl a/b ratio among seedlings and adult plants in a natural population as an indicator of photosynthetic capacity and acclimation to light environment. Overall, younger plants senesced later than mature ones. Increasing light availability delayed senescence in mature plants, while hastening seedling senescence. In natural populations, only seedlings acclimated to the natural reduction in light availability through time. Wild-leek seedlings exhibit a summer-green phenology, whereas mature plants behave as true spring ephemerals. Growth appears to be more source-limited in seedlings than in mature plants. This modulation of phenological strategy, if confirmed in other species, would require a review of the current classification of species as either spring ephemerals, summer greens, wintergreens, or evergreens. © 2016 Botanical Society of America.

  14. Differential Proteomic Analysis Reveals the Effect of Calcium on Malus baccata Borkh. Leaves under Temperature Stress.

    PubMed

    Li, Lijie; Su, Hong; Ma, Huaiyu; Lyu, Deguo

    2017-08-11

    In the cool apple-producing areas of northern China, air temperature during early spring changes in a rapid and dramatic manner, which affects the growth and development of apple trees at the early stage of the growing season. Previous studies have shown that the treatment of calcium can increase the cold tolerance of Malus baccata Borkh., a widely-used rootstock apple tree in northern China. To better understand the physiological function of calcium in the response of M. baccata to temperature stress, we analyzed the effect of calcium treatment (2% CaCl₂) on M. baccata leaves under temperature stress. Physiological analysis showed that temperature stress aggravated membrane lipid peroxidation, reduced chlorophyll content and induced photo-inhibition in leaves, whereas these indicators of stress injuries were alleviated by the application of calcium. An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics approach was used in this study. Among the 2114 proteins that were detected in M. baccata leaves, 41, 25, and 34 proteins were differentially regulated by the increasing, decreasing, and changing temperature treatments, respectively. Calcium treatment induced 9 and 15 proteins after increasing and decreasing temperature, respectively, in comparison with non-treated plants. These calcium-responsive proteins were mainly related to catalytic activity, binding, and structural molecule activity. Hierarchical cluster analysis indicated that the changes in abundance of the proteins under increasing temperature and changing temperature treatments were similar, and the changes in protein abundance under decreasing temperature and increasing temperature with calcium treatment were similar. The findings of this study will allow a better understanding of the mechanisms underlying the role of calcium in M. baccata leaves under temperature stress.

  15. Differential Proteomic Analysis Reveals the Effect of Calcium on Malus baccata Borkh. Leaves under Temperature Stress

    PubMed Central

    Li, Lijie; Su, Hong; Ma, Huaiyu; Lyu, Deguo

    2017-01-01

    In the cool apple-producing areas of northern China, air temperature during early spring changes in a rapid and dramatic manner, which affects the growth and development of apple trees at the early stage of the growing season. Previous studies have shown that the treatment of calcium can increase the cold tolerance of Malus baccata Borkh., a widely-used rootstock apple tree in northern China. To better understand the physiological function of calcium in the response of M. baccata to temperature stress, we analyzed the effect of calcium treatment (2% CaCl2) on M. baccata leaves under temperature stress. Physiological analysis showed that temperature stress aggravated membrane lipid peroxidation, reduced chlorophyll content and induced photo-inhibition in leaves, whereas these indicators of stress injuries were alleviated by the application of calcium. An isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics approach was used in this study. Among the 2114 proteins that were detected in M. baccata leaves, 41, 25, and 34 proteins were differentially regulated by the increasing, decreasing, and changing temperature treatments, respectively. Calcium treatment induced 9 and 15 proteins after increasing and decreasing temperature, respectively, in comparison with non-treated plants. These calcium-responsive proteins were mainly related to catalytic activity, binding, and structural molecule activity. Hierarchical cluster analysis indicated that the changes in abundance of the proteins under increasing temperature and changing temperature treatments were similar, and the changes in protein abundance under decreasing temperature and increasing temperature with calcium treatment were similar. The findings of this study will allow a better understanding of the mechanisms underlying the role of calcium in M. baccata leaves under temperature stress. PMID:28800123

  16. Refolding of β-Stranded Class I Chitinases of Hippophae rhamnoides Enhances the Antifreeze Activity during Cold Acclimation

    PubMed Central

    Gupta, Ravi; Deswal, Renu

    2014-01-01

    Class I chitinases hydrolyse the β-1,4-linkage of chitin and also acquire antifreeze activity in some of the overwintering plants during cold stress. Two chitinases, HrCHT1a of 31 kDa and HrCHT1b of 34 kDa, were purified from cold acclimated and non-acclimated seabuckthorn seedlings using chitin affinity chromatography. 2-D gels of HrCHT1a and HrCHT1b showed single spots with pIs 7.0 and 4.6 respectively. N-terminal sequence of HrCHT1b matched with the class I chitinase of rice and antifreeze proteins while HrCHT1a could not be sequenced as it was N-terminally blocked. Unlike previous reports, where antifreeze activity of chitinase was cold inducible, our results showed that antifreeze activity is constitutive property of class I chitinase as both HrCHT1a and HrCHT1b isolated even from non-acclimated seedlings, exhibited antifreeze activity. Interestingly, HrCHT1a and HrCHT1b purified from cold acclimated seedlings, exhibited 4 and 2 times higher antifreeze activities than those purified from non-acclimated seedlings, suggesting that antifreeze activity increased during cold acclimation. HrCHT1b exhibited 23–33% higher hydrolytic activity and 2–4 times lower antifreeze activity than HrCHT1a did. HrCHT1b was found to be a glycoprotein; however, its antifreeze activity was independent of glycosylation as even deglycosylated HrCHT1b exhibited antifreeze activity. Circular dichroism (CD) analysis showed that both these chitinases were rich in unusual β-stranded conformation (36–43%) and the content of β-strand increased (∼11%) during cold acclimation. Surprisingly, calcium decreased both the activities of HrCHT1b while in case of HrCHT1a, a decrease in the hydrolytic activity and enhancement in its antifreeze activity was observed. CD results showed that addition of calcium also increased the β-stranded conformation of HrCHT1a and HrCHT1b. This is the first report, which shows that antifreeze activity is constitutive property of class I chitinase and cold

  17. Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation.

    PubMed

    Gupta, Ravi; Deswal, Renu

    2014-01-01

    Class I chitinases hydrolyse the β-1,4-linkage of chitin and also acquire antifreeze activity in some of the overwintering plants during cold stress. Two chitinases, HrCHT1a of 31 kDa and HrCHT1b of 34 kDa, were purified from cold acclimated and non-acclimated seabuckthorn seedlings using chitin affinity chromatography. 2-D gels of HrCHT1a and HrCHT1b showed single spots with pIs 7.0 and 4.6 respectively. N-terminal sequence of HrCHT1b matched with the class I chitinase of rice and antifreeze proteins while HrCHT1a could not be sequenced as it was N-terminally blocked. Unlike previous reports, where antifreeze activity of chitinase was cold inducible, our results showed that antifreeze activity is constitutive property of class I chitinase as both HrCHT1a and HrCHT1b isolated even from non-acclimated seedlings, exhibited antifreeze activity. Interestingly, HrCHT1a and HrCHT1b purified from cold acclimated seedlings, exhibited 4 and 2 times higher antifreeze activities than those purified from non-acclimated seedlings, suggesting that antifreeze activity increased during cold acclimation. HrCHT1b exhibited 23-33% higher hydrolytic activity and 2-4 times lower antifreeze activity than HrCHT1a did. HrCHT1b was found to be a glycoprotein; however, its antifreeze activity was independent of glycosylation as even deglycosylated HrCHT1b exhibited antifreeze activity. Circular dichroism (CD) analysis showed that both these chitinases were rich in unusual β-stranded conformation (36-43%) and the content of β-strand increased (∼11%) during cold acclimation. Surprisingly, calcium decreased both the activities of HrCHT1b while in case of HrCHT1a, a decrease in the hydrolytic activity and enhancement in its antifreeze activity was observed. CD results showed that addition of calcium also increased the β-stranded conformation of HrCHT1a and HrCHT1b. This is the first report, which shows that antifreeze activity is constitutive property of class I chitinase and cold

  18. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  19. Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, J.A.

    1995-06-01

    Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grownmore » with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.« less

  20. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis1

    PubMed Central

    Zhang, Zhengjing; Li, Yuanya

    2016-01-01

    The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305

  1. Leaf physiological versus morphological acclimation to high-light exposure at different stages of foliar development in oak.

    PubMed

    Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I

    2008-05-01

    We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.

  2. Phosphorus supply affects acclimation of photosynthesis in loblolly pine to elevated carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, J.D.; Griffin, K.L.; Thomas, R.B.

    1993-06-01

    The interactive effects of phosphorus supply and mycorrhizal status on the acclimation of photosynthesis to elevated CO[sub 2] was investigated using 12 week old loblolly pine (Pinus taeda L.) seedlings. Seedlings were grown at either 35.5 Pa or 7 1.0 Pa CO[sub 2], with (M) or without (NM) mycorrhizal inoculum and with an adequate (High P) or a limiting (Low P) supply of phosphorus. Seedlings grown and measured at 7 1.0 Pa CO[sub 2] had significantly higher net assimilation rates (A) than seedlings grown and measured at 35.5 Pa. However, A did not vary between CO[sub 2] treatments when comparedmore » at either 35.5 or 71.0 Pa. Elevated CO[sub 2] resulted in reduced rubisco activity (V[sub cmax]) and increased RuBP regeneration capacity (J[sub max]). Low P plants had lower V[sub cmax], J[sub max] and A than High P plants. There were also significant three-way interactions between CO[sub 2] supply, phosphorus supply and mycorrhizal status on estimated values of V[sub cmax] and J[sub max]. Both V[sub cmax] and J[sub max] decreased in plants grown at elevated CO[sub 2] in all nutrient treatments except Low P, NM plants, where mean values of both parameters increased. These results indicate that plant phosphorus status affects the acclimation of photosynthesis to elevated carbon dioxide. Mycorrhizal infection ameliorated phosphorus deficiency effects on photosynthetic capacity.« less

  3. Taxus ingredients in the red arils of Taxus baccata L. determined by HPLC-MS/MS.

    PubMed

    Siegle, Lydia; Pietsch, Jörg

    2018-02-09

    Taxus baccata L. is an evergreen conifer whose plant parts are cardiotoxic. Only the red arils of the berries are described as non-toxic and taxane-free. Extraction and HPLC-MS/MS methods were developed for the investigation of the Taxus compounds 3,5-dimethoxyphenol, 10-deacetylbaccatin III, baccatin III, cephalomannine, taxol A and taxinine M in the red arils of the yew berries. MethodologyA liquid-liquid extraction method for the red arils of the fruits from three yews were developed. An accurate (ESI+) HPLC-MS/MS method was performed for the simultaneous detection and determination of the target compounds in multiple reaction monitoring (MRM) mode. All Taxus agents obtained were detected in the red arils. Highest concentrations were determined for baccatin III and 10-deacetylbaccatin III. The developed quantitative method is reliable and selective and was successfully applied for quantification of selected Taxus ingredients in red arils of Taxus baccata. It was disproved that the red arils of the berries do not contain the selected Taxus compounds. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Photosynthetic Light Response of Bottomland Oak Seedlings Raised Under Partial Sunlight

    Treesearch

    Emile S. Gardiner

    2002-01-01

    Seedlings of cherrybark oak (Quercus pagoda Rafinesque), Nuttall oak (Quercus nuttallii Palmer) and overcup oak (Quercus lyrata Walter) were grown under two light levels, partial (20 percent) or full sunlight, to study physiological acclimation of leaves to low light availability. Shifts in leaf morphology were...

  5. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities.

    PubMed

    Kreslavski, Vladimir; Tatarinzev, Nikolai; Shabnova, Nadezhda; Semenova, Galina; Kosobryukhov, Anatoli

    2008-10-09

    The nature of photosynthetic recovery was investigated in 10-d-old wheat (Triticum aestivum L., cv. Moskovskaya-35) seedlings exposed to temperatures of 40 and 42 degrees C for 20 min and to temperature 42 degrees C for 40 min in the dark. The aftereffect of heat treatment was monitored by growing the heat-treated plants in low/moderate/high light at 20 degrees C for 72h. The net photosynthetic rates (P(N)) and the fluorescence ratios F(v)/F(m) were evaluated in intact primary leaves and the rates of cyclic and non-cyclic photophosphorylation were measured in the isolated thylakoids. At least two temporally separated steps were identified in the path of recovery from heat stress at 40 and 42 degrees C in the plants growing in high and moderate/high light, respectively. Both photochemical activity of the photosystem II (PSII) and the activity of CO(2) assimilation system were lowered during the first step in comparison with the corresponding activities immediately after heat treatment. During the second step, the photosynthetic activities completely or partly recovered. Recovery from heat stress at 40 degrees C was accompanied by an appreciably higher rate of cyclic photophosphorylation in comparison with control non-heated seedlings. In pre-heated seedlings, the tolerance of the PSII to photoinhibition was higher than in non-treated ones. The mode of acclimation to different light intensities after heat exposures is analyzed.

  6. Effects of prolonged drought stress on Scots pine seedling carbon allocation.

    PubMed

    Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka

    2017-04-01

    As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with 13CO2 and litter bags containing 15N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g-1 s-1 for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed. © The

  7. Marked antigiardial activity of Yucca baccata extracts: a potential natural alternative for treating protozoan infections.

    PubMed

    Quihui-Cota, Luis; León-Trujillo, Rocio; Astiazarán-García, Humberto; Esparza-Romero, Julián; del Refugio Robles, María; Robles-Zepeda, Ramón E; Canett, Rafael; Sánchez-Escalante, Jesús

    2014-01-01

    Human giardiosis is a public health problem in Mexico, where the national prevalence was estimated to be up to 68%. Misuse of antiprotozoal drugs may result in low effectiveness and undesirable side effects. Research on natural products is a good strategy for discovering more effective antiparasitic compounds. This study evaluated the antigiardial activity of extracts of Yucca baccata, which is native to northwestern Mexico. Forty-two gerbils (females) were weighed and orally inoculated with 5 × 10(6) Giardia trophozoites. Two gerbils were selected at random to confirm infection. Forty living gerbils were randomly allocated into 5 treatment groups (8 per group). Gerbils were randomly assigned to be treated with 24.4 mg/mL, 12.2 mg/mL, and 6.1 mg/mL of extracts, metronidazole (2 mg/mL) or PBS, which were intragastrically administered once per day for 3 days. Nine gerbils died during the study course. On day 10 postinfection, gerbils were euthanized and trophozoites were quantified. Yucca extracts reduced, albeit not significantly, the trophozoite counts in the duodenum segment. Only the high-extract concentration significantly reduced the trophozoite counts in the proximal segment and it was similar to that of metronidazole. Extracts of Y. baccata may represent an effective and natural therapeutic alternative for human giardiosis.

  8. Presence of understory shrubs constrains carbon gain in sunflecks by advance-regeneration seedlings: evidence from Quercus Rubra seedling grouwing in understory forest patches with or without evergreen shrubs present

    Treesearch

    E.T. Nilsen; T.T. Lei; S.W. Semones

    2009-01-01

    We investigated whether dynamic photosynthesis of understory Quercus rubra L. (Fagaceae) seedlings can acclimate to the altered pattern of sunflecks in forest patches with Rhododendron maximum L. (Ericaceae), an understory evergreen shrub. Maximum photosynthesis (A) and total CO2 accumulated during lightflecks was greatest for 400-s lightflecks, intermediate for 150-s...

  9. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  10. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  11. Marked Antigiardial Activity of Yucca baccata Extracts: A Potential Natural Alternative for Treating Protozoan Infections

    PubMed Central

    Quihui-Cota, Luis; León-Trujillo, Rocio; Astiazarán-García, Humberto; Esparza-Romero, Julián; Robles, María del Refugio; Robles-Zepeda, Ramón E.; Canett, Rafael; Sánchez-Escalante, Jesús

    2014-01-01

    Human Giardiosis is a public health problem in Mexico, where the national prevalence was estimated to be up to 68%. Misuse of antiprotozoal drugs may result in low effectiveness and undesirable side effects. Research on natural products is a good strategy for discovering more effective antiparasitic compounds. This study evaluated the antigiardial activity of extracts of Yucca baccata, which is native to northwestern Mexico. Forty-two gerbils (females) were weighed and orally inoculated with 5 × 106 Giardia trophozoites. Two gerbils were selected at random to confirm infection. Forty living gerbils were randomly allocated into 5 treatment groups (8 per group). Gerbils were randomly assigned to be treated with 24.4 mg/mL, 12.2 mg/mL, and 6.1 mg/mL of extracts, metronidazole (2 mg/mL) or PBS, which were intragastrically administered once per day for 3 days. Nine gerbils died during the study course. On day 10 postinfection, gerbils were euthanized and trophozoites were quantified. Yucca extracts reduced, albeit not significantly, the trophozoite counts in the duodenum segment. Only the high-extract concentration significantly reduced the trophozoite counts in the proximal segment and it was similar to that of metronidazole. Extracts of Y. baccata may represent an effective and natural therapeutic alternative for human giardiosis. PMID:25250335

  12. Generic detection of basic taxoids in wood of European Yew (Taxus baccata) by liquid chromatography-ion trap mass spectrometry.

    PubMed

    Kite, Geoffrey C; Rowe, Emily R; Veitch, Nigel C; Turner, Jill E; Dauncey, Elizabeth A

    2013-02-01

    The occurrence of the cardiotoxin taxine (comprising taxine B and several other basic taxoids) in leaves of Taxus baccata L. (European yew) is well known and has led to public concerns about the safety of eating or drinking from utensils crafted from the wood of this poisonous species. The occurrence of basic taxoids in the heartwood of T. baccata had not been examined in detail, although the bark is known to contain 2'β-deacetoxyaustrospicatine. Initial examination of heartwood extracts for 2'β-deacetoxyaustrospicatine by liquid chromatography-mass spectrometry (LC-MS) revealed the presence of this basic taxoid at about 0.0007% dry weight, using a standard isolated from bark. Analyses for taxine B, however, proved negative at the extract concentration analysed. Observing other basic taxoids within the heartwood extracts was facilitated by developing generic LC-MS methods that utilised a fragment arising from the N-containing acyl group of basic taxoids as a reporter ion. Of the various MS strategies available on a hybrid ion trap-orbitrap instrument that allowed observation of this reporter ion, combining all-ion collisions with high resolution ion filtering by the orbitrap was most effective, both in terms of the number of basic taxoids detected and sensitivity. Numerous basic taxoids, in addition to 2'β-deacetoxyaustrospicatine, were revealed by this method in heartwood extracts of T. baccata. Red wine readily extracted the basic taxoids from heartwood while coffee extracted them less efficiently. Contamination with basic taxoids could also be detected in soft cheese that had been spread onto wood. The generic LC-MS method for detecting basic taxoids complements specific methods for detecting taxine B when investigating yew poisoning cases in which the analysis of complex extracts may be required or taxine B has not been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I.

    PubMed

    Campos, Huitziméngari; Trejo, Carlos; Peña-Valdivia, Cecilia B; García-Nava, Rodolfo; Conde-Martínez, F Víctor; Cruz-Ortega, Ma Del Rocío

    2014-10-01

    Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and -1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.

  14. Relationship between carbohydrate concentration and root growth potential in coniferous seedlings from three climates during cold hardening and dehardening

    Treesearch

    R.W. Tinus; K.E. Burr; N. Atzmon; J. Riov

    2000-01-01

    Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks....

  15. Melatonin Improves Waterlogging Tolerance of Malus baccata (Linn.) Borkh. Seedlings by Maintaining Aerobic Respiration, Photosynthesis and ROS Migration

    PubMed Central

    Zheng, Xiaodong; Zhou, Jingzhe; Tan, Dun-Xian; Wang, Na; Wang, Lin; Shan, Dongqian; Kong, Jin

    2017-01-01

    Waterlogging, one of the notorious abiotic stressors, retards the growth of apple plants and reduces their production. Thus, it is an urgent agenda for scientists to identify the suitable remedies for this problem. In the current study, we found that melatonin significantly improved the tolerance of apple seedlings against waterlogging stress. This was indicated by the reduced chlorosis and wilting of the seedlings after melatonin applications either by leaf spray or root irrigation. The mechanisms involve in that melatonin functions to maintain aerobic respiration, preserves photosynthesis and reduces oxidative damage of the plants which are under waterlogging stress. Melatonin application also enhances the gene expression of its synthetic enzymes (MbT5H1, MbAANAT3, MbASMT9) and increases melatonin production. This is the first report of a positive feedback that exogenous melatonin application promotes the melatonin synthesis in plants. A post-transcriptional regulation apparently participated in this regulation. When exogenous melatonin meets the requirement of the plants it is found that the protein synthesis of MbASMT9 was suppressed. Taken together, the results showed that melatonin was an effective molecule to protect plant, particularly apple plant, against waterlogging stress. PMID:28424730

  16. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  17. Leaf Respiratory Acclimation: Magnitude of Acclimation to the Long-term Warming in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Jung, C. G.; Peng, F.; Luo, Y.

    2016-12-01

    Plant respiration has a positive response with temperature; hence, the plant under warmer climate makes plant releases more CO2. However, plant leaf can acclimate to the warmer climate so that plant leaf respiratory acclimation contributes less positive feedback between climate warming and ecosystem CO2 release. In order to examine the feedback between ecosystem and evolution of carbon dioxide due to global warming, we conducted the experiment of warming and clipping as mimicking grazing effect in a tall grass prairie in central Oklahoma, US since November 1999. The warming plot's air and soil temperature show 1.1 °C and 2.3 °C higher than ambient, respectively. Since our experiment has been over 16 years, the plot's species compositions and plant richness have changed so far. Most species composition events occurred at the clipping plot; therefore, we selected the plants within unclipped plots to see whether plants that exposed long-term warming, play a role of thermal acclimation and how those major plant species across experimental site possess difference magnitude of acclimation. We have investigated five species, one legume, one forb, and three of C4 grass: Illinois bundle (Desmanthus illinoensis, C3), stiff goldenrod (Solidago rigida, C3), King Ranch bluestem (Bothriochloa ischaemum, C4), Indian grass (Sorghastrum nutans, C4), and Little bluestem (Schizachyrium scoparium, C4). Data has collected from May as the first month of growing season in our field site in 2016. In our results, measurements in +2 °C warming show strong acclimation across the species (185% ±41% s.e.m. among species). The strongest acclimation occurred by stiff goldenrod (309%). The lowest acclimation rate is 51% in Illinois bundle, as well as the partial acclimation. The other three C4 grass species have 188% acclimation rate (±37% s.e.m. among species). Whether different plant species have a different capability of acclimation or respond through different way as shown various

  18. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.

    PubMed

    Villar-Salvador, Pedro; Peñuelas, Juan L; Jacobs, Douglass F

    2013-02-01

    Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling

  19. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    PubMed Central

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  20. Photosynthetic acclimation of WS and WS-gpt2 in Arabidopsis thaliana under fluctuating natural light condition

    NASA Astrophysics Data System (ADS)

    Pa'ee, Furzani; Johnson, Giles

    2017-10-01

    Photoacclimation is a process by which photosynthetic capacity is regulated in response to environmental adjustments in terms of light regime. Photoacclimation is essential in determining the photosynthetic capacity to optimize light use and to avoid potentially damaging effects. Previous work in our laboratory has identified a gene, gpt2 (At1g61800) that is essential for plants to acclimate to an increase and decrease of growth irradiance, separately. To investigate the photoacclimation ability towards fluctuating natural light condition in Arabidopsis thaliana, photosynthetic capacity was measured in plants of the accession Wassileskija (WS) and in plants lacking expression of the gene At1g61800 (WS-gpt2). The experiment was carried out over a time span from early Autumn to early Spring season in 2010-2011 and 2011-2012. The seedlings were grown in an unheated greenhouse in Manchester, UK without supplementary lighting. Gas exchange measurements and chlorophyll content estimation were performed on WS and WS-gpt2 and it showed that both sets of plants were able to acclimate to fluctuating natural light condition. Therefore, it is suggested that the mechanisms of acclimation in a separate growth light condition is mechanistically distinct than the mechanism under fluctuating natural light condition.

  1. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  2. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    PubMed

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  3. Thermal Acclimation of Photosynthesis and Respiration Differ Across Mature Conifer Species in a Boreal Forest Peatland

    NASA Astrophysics Data System (ADS)

    Dusenge, M. E.; Stinziano, J. R.; Warren, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.; Way, D.

    2017-12-01

    Boreal forests are often assumed to be temperature-limited, and warming is therefore expected to stimulate their carbon uptake. However, much of our information on the ability of boreal conifers to acclimate photosynthesis and respiration to rising temperatures comes from seedlings. We measured net CO2 assimilation rates (A) and dark respiration (R) at 25 °C (A25 and R25) and at prevailing growth temperatures (Ag and Rg) in mature Picea mariana (spruce) and Larix laricina (tamarack) exposed to ambient, +2.25, +4.5, +6.75 and +9 °C warming treatments in open top chambers in the field at the SPRUCE experiment (MN, USA). In spruce, A25 and Ag were similar across plots in May and June. In August, spruce in warmer treatments had higher A25, an effect that was offset by warmer leaf temperatures in the Ag data. In tamarack, A25 was stimulated by warming in both June and August, an effect that was mainly offset by higher leaf temperatures when Ag was assessed in June, while in August, Ag was still slightly higher in the warmest treatments (+6.75 and +9) compared to the ambient plots. In spruce, R25 was enhanced in warm-grown trees in May, but was similar across treatments in June and August, indicating little acclimation of R. Rg slightly increased with warming treatments across the season in spruce. In contrast, R in tamarack thermally acclimated, as R25 decreased with warming. But while this acclimation generated homeostatic Rg in June, Rg in August was still highest in the warmest treatments. Our work suggests that the capacity for thermal acclimation in both photosynthesis and respiration varies among boreal tree species, which may lead to shifts in the performance of these species as the climate warms.

  4. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

    PubMed Central

    Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan

    2012-01-01

    A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265

  5. Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer.

    PubMed

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun

    2014-06-01

    The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.

  6. Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice

    PubMed Central

    2013-01-01

    Background The role of abscisic acid (ABA) as a possible activator of cold acclimation process was postulated since endogenous levels of ABA increase temporarily or constitutively during cold-hardening. Exogenous application of ABA has been known to induce freezing tolerance at ambient temperatures in in vitro systems derived from cold hardy plants. Yet, some cell cultures acquired much greater freezing tolerance by ABA than by cold whilst maintaining active growth. This raises questions about the relationships among ABA, cold acclimation and growth cessation. To address this question, we attempted to 1) determine whether exogenous ABA can confer freezing tolerance in chilling-sensitive rice suspension cells and seedlings, which obviously lack the mechanisms to acquire freezing tolerance in response to cold; 2) characterize this phenomenon by optimizing the conditions and compare with the case of cold hardy bromegrass cells. Results Non-embryogenic suspension cells of rice suffered serious chilling injury when exposed to 4°C. When incubated with ABA at the optimal conditions (0.5-1 g cell inoculum, 75 μM ABA, 25-30°C, 7–10 days), they survived slow freezing (2°C/h) to −9.0 ~ −9.3°C (LT50: 50% killing temperature) while control cells were mostly injured at −3°C (LT50: -0.5 ~ −1.5°C). Ice-inoculation of the cell suspension at −3°C and survival determination by regrowth confirmed that ABA-treated rice cells survived extracellular freezing at −9°C. ABA-induced freezing tolerance did not require any exposure to cold and was best achieved at 25-30°C where the rice cells maintained high growth even in the presence of ABA. ABA treatment also increased tolerance to heat (43°C) as determined by regrowth. ABA-treated cells tended to have more augmented cytoplasm and/or reduced vacuole sizes compared to control cultures with a concomitant increase in osmolarity and a decrease in water content. ABA-treated (2–7 days) in vitro grown

  7. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    PubMed

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  8. Bacterial Acclimation Inside an Aqueous Battery.

    PubMed

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  9. Bacterial Acclimation Inside an Aqueous Battery

    PubMed Central

    Dong, Dexian; Chen, Baoling; Chen, P.

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm-2 and 1.4-2.1 V. Bacterial addition within 1.0×1010 cells mL-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms. PMID:26070088

  10. Cold acclimation and cognitive performance: A review.

    PubMed

    Jones, Douglas M; Bailey, Stephen P; Roelands, Bart; Buono, Michael J; Meeusen, Romain

    2017-12-01

    Athletes, occupational workers, and military personnel experience cold temperatures through cold air exposure or cold water immersion, both of which impair cognitive performance. Prior work has shown that neurophysiological pathways may be sensitive to the effects of temperature acclimation and, therefore, cold acclimation may be a potential strategy to attenuate cold-induced cognitive impairments for populations that are frequently exposed to cold environments. This review provides an overview of studies that examine repeated cold stress, cold acclimation, and measurements of cognitive performance to determine whether or not cold acclimation provides beneficial protection against cold-induced cognitive performance decrements. Studies included in this review assessed cognitive measures of reaction time, attention, logical reasoning, information processing, and memory. Repeated cold stress, with or without evidence of cold acclimation, appears to offer no added benefit of improving cognitive performance. However, research in this area is greatly lacking and, therefore, it is difficult to draw any definitive conclusions regarding the use of cold acclimation to improve cognitive performance during subsequent cold exposures. Given the current state of minimal knowledge on this topic, athletes, occupational workers, and military commands looking to specifically enhance cognitive performance in cold environments would likely not be advised to spend the time and effort required to become acclimated to cold. However, as more knowledge becomes available in this area, recommendations may change. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of the components extracted from the needles of Taxus baccata on protein biosynthesis in a cell-free rat liver system.

    PubMed

    Sredzińska, K; Gajko, A; Gałasiński, W; Gindzieński, A

    1999-01-01

    Various species of Taxus contain taxanes that promote polymerization and stabilization of microtubules. They have been reported as antineoplastic compounds with highly effective chemiotherapeutic application. A decrease in incorporation of the radiolabelled precursors into DNA, RNA and proteins in vivo has been reported too. The preliminary results have shown that also the other compounds present in the aqueous extract from Taxus baccata needles, participate in the inhibition of the protein biosynthesis. The binding site of eEF-2 on the ribosome seems to be the target of this inhibition process.

  12. Light Is More Important Than Nutrient Ratios of Fertilization for Cymodocea nodosa Seedling Development.

    PubMed

    Alexandre, Ana; Silva, João; Santos, Rui

    2018-01-01

    . nodosa have the ability to rapidly acclimate to the surrounding light and nutrient environment while still attached to the seeds. C. nodosa seedlings experiencing fertilization under low light levels showed slightly enhanced growth if nourished with a balanced formulation, whereas a slight increase in growth was also observed with unbalanced formulations under a higher light level. Our results highlight the importance of high light availability at the seedling restoration sites.

  13. Physiological and morphological responses to permanent and intermittent waterlogging in seedlings of four evergreen trees of temperate swamp forests.

    PubMed

    Zúñiga-Feest, Alejandra; Bustos-Salazar, Angela; Alves, Fernanda; Martinez, Vanessa; Smith-Ramírez, Cecilia

    2017-06-01

    Waterlogging decreases a plant's metabolism, stomatal conductance (gs) and photosynthetic rate (A); however, some evergreen species show acclimation to waterlogging. By studying both the physiological and morphological responses to waterlogging, the objective of this study was to assess the acclimation capacity of four swamp forest species that reside in different microhabitats. We proposed that species (Luma apiculata [D.C.] Burret. and Drimys winteri J.R. et G. Forster.) abundant in seasonally and intermittently waterlogged areas (SIWA) would have a higher acclimation capacity than species abundant in the inner swamp (Blepharocalyx cruckshanksii [H et A.] Mied. and Myrceugenia exsucca [D.C.] Berg.) where permanent waterlogging occurs (PWA); it was expected that the species from SIWA would maintain leaf expansion and gas exchange rates during intermittent waterlogging treatments. Conversely, we expected that PWA species would have higher constitutive waterlogging tolerance, and this would be reflected in the formation of lenticels and adventitious roots. Over the course of 2 months, we subjected seedlings to different waterlogging treatments: (i) permanent (sudden, SW), (ii) intermittent (gradual) or (iii) control (field capacity, C). Survival after waterlogging was high (≥80%) for all species and treatments, and only the growth rate of D. winteri subjected to SW was affected. Drimys winteri plants had low, but constant A and g during both waterlogging treatments. Conversely, L. apiculata had the highest A and g values, and g increased significantly during the first several days of waterlogging. In general, seedlings of all species subjected to waterlogging produced more adventitious roots and fully expanded leaves and had higher specific leaf area (SLA) and stomatal density (StD) than seedlings in the C treatment. From the results gathered here, we partially accept our hypothesis as all species showed high tolerance to waterlogging, maintained growth, and had

  14. Sweating responses during heat acclimation and moderate conditioning

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Van Beaumont, W.

    1979-01-01

    Experiments were conducted on ten young male subjects to determine sweating onset, distribution, and patterns as well as the relationships of these responses to body temperature during heat acclimation and moderate conditioning performed in temperate (24 C) conditions. The subjects are randomly assigned to two groups of five subjects each. The experimental period consisted of eight successive days of either graded exercise to exhaustion on a bicycle ergometer in heat (acclimation group) or in a temperate environment (control group). Major conclusions are that (1) acclimation and conditioning result in relatively more sweat rate on the limbs than on the torso, but that these changes are less related to body temperature than torso sweat rate; and (2) sweating sensitivity increases during acclimation and conditioning, but its contribution to heat acclimation is minor.

  15. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus.

    PubMed

    Camejo, Daymi; Martí, María del C; Nicolás, Emilio; Alarcón, Juan J; Jiménez, Ana; Sevilla, Francisca

    2007-11-01

    Seedlings of Lycopersicon esculentum Mill. var. Amalia were grown in a growth chamber under a photoperiod of 16 h light at 25 degrees C and 8 h dark at 20 degrees C. Five different treatments were applied to 30-day-old plants: Control treatment (plants maintained in the normal growth conditions throughout the experimental time), heat acclimation (plants exposed to 35 degrees C for 4 h in dark for 3 days), dark treatment (plants exposed to 25 degrees C for 4 h in dark for 3 days), heat acclimation plus heat shock (plants that previously received the heat acclimation treatment were exposed to 45 degrees C air temperature for 3 h in the light) and dark treatment plus heat shock (plants that previously received the dark treatment were exposed to 45 degrees C air temperature for 3 h in the light). Only the heat acclimation treatment increased the thermotolerance of the photosynthesis apparatus when the heat shock (45 degrees C) was imposed. In these plants, the CO(2) assimilation rate was not affected by heat shock and there was a slight and non-significant reduction in maximum carboxylation velocity of Rubisco (V(cmax)) and maximum electron transport rate contributing to Rubisco regeneration (J(max)). However, the plants exposed to dark treatment plus heat shock showed a significant reduction in the CO(2) assimilation rate and also in the values of V(cmax) and J(max). Chlorophyll fluorescence measurements showed increased thermotolerance in heat-acclimated plants. The values of maximum chlorophyll fluorescence (F(m)) were not modified by heat shock in these plants, while in the dark-treated plants that received the heat shock, the F(m) values were reduced, which provoked a significant reduction in the efficiency of photosystem II. A slight rise in the total superoxide dismutase (SOD) activity was found in the plants that had been subjected to both heat acclimation and heat shock, and this SOD activity was significantly higher than that found in the plants subjected to

  16. Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings.

    PubMed

    Toca, Andrei; Oliet, Juan A; Villar-Salvador, Pedro; Maroto, Judit; Jacobs, Douglass F

    2018-01-01

    Frost determines the evolution and distribution of plants in temperate and cold regions. Several environmental factors can influence frost acclimation of woody plants but the magnitude and direction of the effect of nitrogen (N) availability is controversial. We studied the effect of N availability on root and shoot frost tolerance in mid-fall and in winter in seedlings of four pines of contrasting ecology: Pinus nigra J.F. Arnold, P. pinaster Ait., P. pinea L. and P. halepensis Mill.. Organ N and soluble sugar concentration, and timing of cessation of shoot elongation were measured to assess the physiological mechanisms underlying frost acclimation. Nitrogen was supplied at high and low rates only during the pre-hardening period and at a moderate N rate during hardening in the fall. Shoot frost tolerance increased over winter while root frost tolerance did not change in any species. Pre-hardening N availability affected the frost tolerance of both roots and shoots, although the effect was species-specific: high N reduced the overall root and shoot frost tolerance in P. pinea and P. halepensis, and increased the frost tolerance in P. nigra, but had no effect in P. pinaster. Nitrogen supply in the fall consistently increased frost tolerance in all species. Differences in frost tolerance among species and N treatments were not explained by variations in organ N or soluble carbohydrate concentration, nor by timing of cessation of shoot elongation; however, the most frost tolerant species ceased elongation earlier than the least frost tolerant species. Despite the close phylogenetic relatedness of the studied species, the effect of N availability on seedling frost tolerance differed among species, indicating that species ecology (especially frost acclimation physiology) and timing of N supply drives the effect of N availability on frost tolerance of pine species. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  17. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits

    PubMed Central

    Pintor, Anna F. V.; Schwarzkopf, Lin; Krockenberger, Andrew K.

    2016-01-01

    Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances

  18. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits.

    PubMed

    Pintor, Anna F V; Schwarzkopf, Lin; Krockenberger, Andrew K

    2016-01-01

    Species' tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of

  19. Deconditioning-induced exercise responses as influenced by heat acclimation

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1979-01-01

    A study to determine the effect of heat acclimation and physical training in temperate conditions on changes in exercise tolerance following water-immersion deconditioning is presented. Five young men were tested on a bicycle ergometer before and after heat acclimation and after water immersion. The subjects and the experimental procedure, heat acclimation and exercise training, water immersion, and exercise tolerance are discussed. Heat acclimation resulted in the usual decreases in exercise heart rate and rectal temperature and an increase in sweat rate. Water immersion resulted in substantial diuresis despite water consumed. The results show that heat acclimation provides an effective method of preventing the adverse effects of water-immersion deconditioning on exercise tolerance.

  20. Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration.

    PubMed

    Way, Danielle A; Yamori, Wataru

    2014-02-01

    While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.

  1. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals

    PubMed Central

    Bay, Rachael A.; Palumbi, Stephen R.

    2015-01-01

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29–33 °C), mimicking local heat stress conditions. Within 7–11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29–33 °C) exhibited a muted stress response—the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. PMID:25979751

  2. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.

    PubMed

    Bay, Rachael A; Palumbi, Stephen R

    2015-05-15

    Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during a 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29 °C), increased stable temperature (31 °C), and variable temperature (29-33 °C), mimicking local heat stress conditions. Within 7-11 days, individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31 °C or 29-33 °C) exhibited a muted stress response--the magnitude of expression change before and after heat stress was less than in 29 °C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within 7 days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer term response, distinguishable by its shift in baseline expression, under nonstressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Exercise-heat acclimation in young and older trained cyclists.

    PubMed

    Best, Stuart; Thompson, Martin; Caillaud, Corinne; Holvik, Liv; Fatseas, George; Tammam, Amr

    2014-11-01

    The purpose of this study was to investigate the effect of age on the capacity to acclimatise to exercise-heat stress. This study hypothesised that age would not affect body temperature and heat loss effector responses to short-term exercise-heat acclimation in trained subjects. Seven young subjects (19-32 years) were matched with 7 older subjects (50-63 years). Subjects were highly trained but not specifically heat acclimated when they exercised for 60 min at 70%VO2max in hot-dry (35 °C, 40%RH) and thermoneutral (20 °C, 40%RH) conditions, pre and post 6 days of exercise-heat acclimation (70%VO2max, 35 °C, 40%RH). Rectal temperature (Tr), skin temperature (Tsk), heart rate (HR), cutaneous vascular conductance (CVC) and whole body sweat loss (Msw) were measured during each testing session and Tr and HR were measured during each acclimation session. Tr, Tsk, %HRmax, CVC and Msw were similar across age groups both pre and post heat acclimation. Following heat acclimation relative decreases and increases in Tr and Msw, respectively, were similar in both subject groups. There was a significant reduction in heart rate (%HRmax) and increase in final CVC following the acclimation programme in the young group (all p < 0.05) but not the older group. When comparing young and older well trained adults we found age affected the cardiovascular adaptation but not body temperature or whole body sweat loss to exercise-heat acclimation. These data suggest age does not affect the capacity to acclimatise to exercise-heat stress in highly trained adults undergoing short-term heat acclimation. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Short Duration Heat Acclimation in Australian Football Players

    PubMed Central

    Kelly, Monica; Gastin, Paul B.; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J.

    2016-01-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac-]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key points Some minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat. The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season. Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  5. Short Duration Heat Acclimation in Australian Football Players.

    PubMed

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p < 0.05) during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007) after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat

  6. Preliminary acclimation strategies for successful startup in conventional biofilters.

    PubMed

    Elías, Ana; Barona, Astrid; Gallastegi, Gorka; Rojo, Naiara; Gurtubay, Luis; Ibarra-Berastegi, Gabriel

    2010-08-01

    The question of how to obtain the best inocula for conventional biofilters arises when an acclimation/adaptation procedure is to be applied. Bearing in mind that no standardized procedure for acclimating inocula exists, certain preliminary strategies for obtaining an active inoculum from wastewater treatment sludge are proposed in this work. Toluene was the contaminant to be degraded. Concerning the prior separation of sludge phases, no obvious advantage was found in separating the supernatant phase of the sludge before acclimation. As far as a continuous or discontinuous acclimation mode is concerned, the latter is recommended for rapidly obtaining acclimated sludge samples by operating the system for no longer than 1 month. The continuous mode rendered similar degradation rates, although it required longer operating time. Nevertheless, the great advantage of the continuous system lay in the absence of daily maintenance and the ready availability of the activated sample.

  7. Effects of heat acclimation on time perception.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Timpmann, Saima; Burk, Andres; Ööpik, Vahur; Allik, Jüri; Kreegipuu, Kairi

    2015-03-01

    Cognitive performance is impaired during prolonged exercise in hot environment compared to temperate conditions. These effects are related to both peripheral markers of heats stress and alterations in CNS functioning. Repeated-exposure to heat stress results in physiological adaptations, and therefore improvement in exercise capacity and cognitive functioning are observed. The objective of the current study was to clarify the factors contributing to time perception under heat stress and examine the effect of heat acclimation. 20 young healthy male subjects completed three exercise tests on a treadmill: H1 (at 60% VO(2)peak until exhaustion at 42°C), N (at 22°C; duration equal to H1) and H2 (walk until exhaustion at 42°C) following a 10-day heat acclimation program. Core temperature (T(C)) and heart rate (HR), ratings of perceived fatigue and exertion were obtained continuously during the exercise, and blood samples of hormones were taken before, during and after the exercise test for estimating the prolactin, growth hormone and cortisol response to acute exercise-heat stress. Interval production task was performed before, during and after the exercise test. Lower rate of rise in core temperature, heart rate, hormone response and subjective ratings indicated that the subjects had successfully acclimated. Before heat acclimation, significant distortions in produced intervals occurred after 60 minutes of exercise relative to pre-trial coefficients, indicating speeded temporal processing. However, this effect was absent after in acclimated subjects. Blood prolactin concentration predicted temporal performance in both conditions. Heat acclimation slows down the increase in physiological measures, and improvement in temporal processing is also evident. The results are explained within the internal clock model in terms of the pacemaker-accumulator functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Iron-regulated Transporter, MbNRAMP1, Isolated from Malus baccata is Involved in Fe, Mn and Cd Trafficking

    PubMed Central

    Xiao, Haihua; Yin, Liping; Xu, Xuefeng; Li, Tianzhong; Han, Zhenhai

    2008-01-01

    Background and Aims Iron deficiency is one of the most common nutritional disorders in plants, especially in fruit trees grown in calcareous soil. Malus baccata is widely used as an apple rootstock in north China and is highly resistant to low temperatures. There are few studies on iron absorption by this species at the molecular level. It is very important to understand the mechanism of iron uptake and transport in such woody plants. As a helpful tool, the aim of the present study was the cloning and functional analysis of NRAMP (natural resistance-associated macrophage protein) genes from the apple tree in relation to trafficking of micronutrients (Fe, Mn and Cd). Methods Reverse transcription-PCR (RT-PCR) combined with RACE (rapid amplification of cDNA ends) was adopted to isolate the full-length NRAMP1 cDNA. Southern blotting was used to test gene copy information, and northern blot was used to detect the gene's expression level. Complementation experiments using the yeast mutant strains DEY1453 and SLY8 were employed to confirm the iron- and manganese-transporting ability of NRAMP1 from apple, and inductively coupled plasma (ICP) spectrometry was used to measure Cd accumulation in yeast. NRAMP1–green fluorescent protein (GFP) fusion protein was used to determine the cellular localization in yeast. Key Results A 2090 bp cDNA was isolated and named MbNRAMP1. It encodes a predicted polypeptide of 551 amino acids. MbNRAMP1 exists in the M. baccata genome as a single copy and was expressed mainly in roots. MbNRAMP1 rescued the phenotype of yeast mutant strains DEY1453 and SLY8, and also increased Cd2+ sensitivity and accumulation. MbNRAMP1 expression in yeast was largely influenced by iron status, and the expression pattern of MbNRAMP1–GFP varied with the environmental iron nutrition status. Conclusions MbNRAMP1 encodes a functional metal transporter capable of mediating the distribution of ions as well as transport of the micronutrients, Fe and Mn, and the

  9. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    NASA Astrophysics Data System (ADS)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  10. Mechanisms of thermal acclimation to exercise and heat

    NASA Technical Reports Server (NTRS)

    Nadel, E. R.; Pandolf, K. B.; Roberts, M. F.; Stolwijk, J. A. J.

    1974-01-01

    By plotting local sweating rate from a given area against the central sweating drive (which is analogous to esophageal temperature, when mean skin temperature is constant), it is possible to determine the characteristic gain constant of that area as well as its point of zero central drive. An increase in the gain constant as a result of acclimation would indicate an increased sensitivity of the sweating mechanism per unit of central sweating drive, i.e., enhanced peripheral sensitivity. A displacement of the point of zero central drive as a result of acclimation would indicate that central mechanisms are responsible for the heightened sweating response. The study was undertaken to provide information about whether central or peripheral physiological mechanisms provide for increased sweating capabilities during acclimation, and about whether the increased sweating capabilities in heat acclimation and physical training are provided for by the same mechanisms.

  11. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.

    PubMed

    Le, Mai Q; Pagter, Majken; Hincha, Dirk K

    2015-01-01

    During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at -3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.

  12. Heat and cold acclimation in helium-cold hypothermia in the hamster.

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1972-01-01

    A study was made of the effects of acclimation of hamsters to high (34-35 C) and low (4-5 C) temperatures for periods up to 6 weeks on the induction of hypothermia in hamsters. Hypothermia was achieved by exposing hamsters to a helox mixture of 80% helium and 20% oxygen at 0 C. Hypothermic induction was most rapid (2-3 hr) in heat-acclimated hamsters and slowest (6-12 hr) in cold-acclimated hamsters. The induction period was intermediate (5-8 hr) in room temperature nonacclimated animals (controls). Survival time in hypothermia was relatable to previous temperature acclimations. The hypothesis that thermogenesis in cold-acclimated hamsters would accentuate resistance to induction of hypothermia was substantiated.

  13. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development. © 2014 John Wiley & Sons Ltd.

  14. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less

  15. Transgenerational acclimation of fishes to climate change and ocean acidification.

    PubMed

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  16. Marketing and Seedling Distribution of Longleaf Pine Seedlings

    Treesearch

    Mark J. Hainds

    2002-01-01

    The Longleaf Alliance, a partnership of people and organizations interested in longleaf pine, started tracking longleaf pine (Pinus palustris Mill.) seedling production in 1996. Total Longleaf seedling production has increased annually from 1996 to 2000. Bareroot seedling production decreased from 1996 to 1997, and decreased again from 1997 to 1998....

  17. A comparison of the effects of two methods of acclimation of aerobic biodegradability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, H.M.

    1993-11-01

    The acclimation or adaptation of microorganisms to organic chemicals is an important factor influencing both the rate and the extent of biodegradation. In this study two acclimation procedures were evaluated in terms of their effectiveness in enhancing biodegradation, their relative ease of use in the laboratory, and the implications for biodegradability testing. In the single-flask procedure, microorganisms were acclimated for 2 to 7 d in a single acclimation flask at constant or increasing concentrations of the test chemical without transfer of microorganisms. In the second procedure, the enrichment procedure, microorganisms were acclimated in a series of flasks over a 21-dmore » period by making adaptive transfers to increasing concentrations of the test chemical. Acclimated microorganisms from each procedure were used as the source of inoculum for subsequent biodegradation tests in which carbon dioxide evolution was measured. Six chemicals were tested: quinoline, p-nitrophenol, N-methylaniline, N,N-dimethylaniline, acrylonitrile, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate. Microorganisms acclimated in the single-flask procedure were much more effective than those acclimated in the enrichment procedure in degrading the test chemicals. The single-flask procedure is more convenient to use, and it permits monitoring of the time needed for acclimation. The results from these studies have implications for the methodology used in biodegradation test systems and suggest caution before adopting a multiple-flask, enrichment acclimation procedure before the performance of standardized tests for aerobic biodegradability.« less

  18. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  19. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  20. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation.

    PubMed

    Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P

    2006-06-01

    It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation

  1. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.

    PubMed

    Markle, Tricia M; Kozak, Kenneth H

    2018-05-01

    Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further

  2. Hypoxic acclimation leads to metabolic compensation after reoxygenation in Atlantic salmon yolk-sac alevins.

    PubMed

    Polymeropoulos, Elias T; Elliott, Nicholas G; Frappell, Peter B

    2017-11-01

    Hypoxia is common in aquatic environments and has substantial effects on development, metabolism and survival of aquatic organisms. To understand the physiological effects of hypoxia and its dependence on temperature, metabolic rate ( [Formula: see text] ) and cardiorespiratory function were studied in response to acute hypoxia (21→5kPa) at different measurement temperatures (T a ; 4, 8 and 12°C) in Salmo salar alevins that were incubated under normoxic conditions (P O 2 =21kPa) or following hypoxic acclimation (P O 2 =10kPa) as well as two different temperatures (4°C or 8°C). Hypoxic acclimation lead to a developmental delay manifested through slower yolk absorption. The general response to acute hypoxia was metabolic depression (~60%). Hypoxia acclimated alevins had higher [Formula: see text] s when measured in normoxia than alevins acclimated to normoxia. [Formula: see text] s were elevated to the same degree (~30% per 4°C change) irrespective of T a . Under severe, acute hypoxia (~5kPa) and irrespective of T a or acclimation, [Formula: see text] s were similar between most groups. This suggests that despite different acclimation regimes, O 2 transport was limited to the same degree. While cardiorespiratory function (heart-, ventilation rate) was unchanged in response to acute hypoxia after normoxic acclimation, hypoxic acclimation led to cardiorespiratory changes predominantly in severe hypoxia, indicating earlier onset and plasticity of cardiorespiratory control mechanisms. Although [Formula: see text] in normoxia was higher after hypoxic acclimation, at the respective acclimation P O 2 , [Formula: see text] was similar in normoxia and hypoxia acclimated alevins. This is indicative of metabolic compensation to an intrinsic [Formula: see text] at the acclimation condition in hypoxia-acclimated alevins after re-exposure to normoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.

    PubMed

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando

    2009-01-01

    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  4. Sustained and generalized extracellular fluid expansion following heat acclimation

    PubMed Central

    Patterson, Mark J; Stocks, Jodie M; Taylor, Nigel A S

    2004-01-01

    We measured intra- and extravascular body-fluid compartments in 12 resting males before (day 1; control), during (day 8) and after (day 22) a 3-week, exercise–heat acclimation protocol to investigate plasma volume (PV) changes. Our specific focus was upon the selective nature of the acclimation-induced PV expansion, and the possibility that this expansion could be sustained during prolonged acclimation. Acclimation was induced by cycling in the heat, and involved 16 treatment days (controlled hyperthermia (90 min); core temperature = 38.5°C) and three experimental exposures (40 min rest, 96.9 min (s.d. 9.5 min) cycling), each preceded by a rest day. The environmental conditions were a temperature of 39.8°C (s.d. 0.5°C) and relative humidity of 59.2% (s.d. 0.8%). On days 8 and 22, PV was expanded and maintained relative to control values (day 1: 44.0 ± 1.8; day 8: 48.8 ± 1.7; day 22: 48.8 ± 2.0 ml kg−1; P < 0.05). The extracellular fluid compartment (ECF) was equivalently expanded from control values on days 8 (279.6 ± 14.2versus 318.6 ± 14.3 ml kg−1; n = 8; P < 0.05) and 22 (287.5 ± 10.6 versus 308.4 ± 14.8 ml kg−1; n = 12; P < 0.05). Plasma electrolyte, total protein and albumin concentrations were unaltered following heat acclimation (P > 0.05), although the total plasma content of these constituents was elevated (P < 0.05). The PV and interstitial fluid (ISF) compartments exhibited similar relative expansions on days 8 (15.0 ± 2.2% versus 14.7 ± 4.1%; P > 0.05) and 22 (14.4 ± 3.6%versus 6.4 ± 2.2%; P = 0.10). It is concluded that the acclimation-induced PV expansion can be maintained following prolonged heat acclimation. In addition, this PV expansion was not selective, but represented a ubiquitous expansion of the extracellular compartment. PMID:15218070

  5. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  6. Boreal and temperate trees show strong acclimation of respiration to warming.

    PubMed

    Reich, Peter B; Sendall, Kerrie M; Stefanski, Artur; Wei, Xiaorong; Rich, Roy L; Montgomery, Rebecca A

    2016-03-31

    Plant respiration results in an annual flux of carbon dioxide (CO2) to the atmosphere that is six times as large as that due to the emissions from fossil fuel burning, so changes in either will impact future climate. As plant respiration responds positively to temperature, a warming world may result in additional respiratory CO2 release, and hence further atmospheric warming. Plant respiration can acclimate to altered temperatures, however, weakening the positive feedback of plant respiration to rising global air temperature, but a lack of evidence on long-term (weeks to years) acclimation to climate warming in field settings currently hinders realistic predictions of respiratory release of CO2 under future climatic conditions. Here we demonstrate strong acclimation of leaf respiration to both experimental warming and seasonal temperature variation for juveniles of ten North American tree species growing for several years in forest conditions. Plants grown and measured at 3.4 °C above ambient temperature increased leaf respiration by an average of 5% compared to plants grown and measured at ambient temperature; without acclimation, these increases would have been 23%. Thus, acclimation eliminated 80% of the expected increase in leaf respiration of non-acclimated plants. Acclimation of leaf respiration per degree temperature change was similar for experimental warming and seasonal temperature variation. Moreover, the observed increase in leaf respiration per degree increase in temperature was less than half as large as the average reported for previous studies, which were conducted largely over shorter time scales in laboratory settings. If such dampening effects of leaf thermal acclimation occur generally, the increase in respiration rates of terrestrial plants in response to climate warming may be less than predicted, and thus may not raise atmospheric CO2 concentrations as much as anticipated.

  7. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Sugar-mediated acclimation: the importance of sucrose metabolism in meristems.

    PubMed

    Carpentier, Sebastien Christian; Vertommen, Annelies; Swennen, Rony; Witters, Erwin; Fortes, Claudia; Souza, Manoel T; Panis, Bart

    2010-10-01

    We have designed an in vitro experimental setup to study the role of sucrose in sugar-mediated acclimation of banana meristems using established highly proliferating meristem cultures. It is a first step toward the systems biology of a meristem and the understanding of how it can survive severe abiotic stress. Using the 2D-DIGE proteomic approach and a meristem-specific EST library, we describe the long-term acclimation response of banana meristems (after 2, 4, 8, and 14 days) and analyze the role of sucrose in this acclimation by setting up a control, a sorbitol, and a sucrose acclimation treatment over time. Sucrose synthase is the dominant enzyme for sucrose breakdown in meristem tissue, which is most likely related to its lower energy consumption. Metabolizing sucrose is of paramount importance to survive, but the uptake of sugar and its metabolism also drive respiration, which may result in limited oxygen levels. According to our data, a successful acclimation is correlated to an initial efficient uptake of sucrose and subsequently a reduced breakdown of sucrose and an induction of fermentation likely by a lack of oxygen.

  9. Effects of open-field experimental warming on the growth of two-year-old Pinus densiflora and Abies holophylla seedlings

    NASA Astrophysics Data System (ADS)

    Han, S.; Son, Y.; Lee, S.; Jo, W.; Yoon, T.; Park, C.; Ko, S.; Kim, J.; Han, S.; Jung, Y.

    2012-12-01

    Temperature increase due to climate change is expected to affect tree growth and distribution [Way and Oren, 2010]. The responses of trees to warming vary with tree species, ontogenic stages, tree life forms, and biomes. Especially, seedling stage is a vulnerable period for tree survival and competition [Saxe et al., 2007] and thus research on effects of temperature increase on seedling stage is needed. We aimed to examine the responses of coniferous seedlings to future temperature increase by conducting an open-field warming experiment. An experimental warming set-up using infra-red heater was built in 2011 and the temperature in warming plots has been regulated to 3°C higher than that of control plots constantly. The seeds of Pinus densiflora and Abies holophylla were planted in each 1 m × 1 m plot (n=3) in April, 2012. Seedling growth, root collar diameter (RCD) and height of 45 individuals of each plot were measured in June and July, 2012. The survival rate of seedlings was also measured. Survival rate of P. densiflora was lower in warming plots (93.3%) than in control plots (100.0%, p<0.05) and that of A. holophylla was also decreased in warming plots (79.3%) than in control plots (97.0%, p<0.01). RCD and height of P. densiflora seedlings were not significantly different between control and warming plots, however, height of A. holophylla was significantly higher in warming plots in June and July (p<0.01). Comparatively, RCD of A. holophylla was only higher in control plots in June. While there is still a lack of case studies on the growth of seedlings under experimental warming, a few studies reported increased seedling growth [Yin et al., 2008] or and no difference [Han et al., 2009] in warming plots. Different responses of seedling growth between two species of the current study might be derived from species-specific acclimation to temperature increase and/or other limiting factors [Way and Oren, 2010]. This result is, to our knowledge, unprecedented and

  10. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities.

    PubMed

    Mayer, Boris F; Ali-Benali, Mohamed Ali; Demone, Jordan; Bertrand, Annick; Charron, Jean-Benoit

    2015-11-01

    Little is known about the capacity of Cannabis sativa to cold-acclimate and develop freezing tolerance. This study investigates the cold acclimation (CA) capacity of nine C. sativa varieties and the underlying genetic and epigenetic responses. The varieties were divided into three groups based on their contrasting CA capacities by comparing the survival of non-acclimated and cold-acclimated plants in whole-plant freeze tests. In response to the CA treatment, all varieties accumulated soluble sugars but only the varieties with superior capacity for CA could maintain higher levels throughout the treatment. In addition, the varieties that acclimated most efficiently accumulated higher transcript levels of cold-regulated (COR) genes and genes involved in de novo DNA methylation while displaying locus- and variety-specific changes in the levels of H3K9ac, H3K27me3 and methylcytosine (MeC) during CA. Furthermore, these hardy C. sativa varieties displayed significant increases in MeC levels at COR gene loci when deacclimated, suggesting a role for locus-specific DNA methylation in deacclimation. This study uncovers the molecular mechanisms underlying CA in C. sativa and reveals higher levels of complexity regarding how genetic, epigenetic and environmental factors intertwine. © 2014 Scandinavian Plant Physiology Society.

  11. The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; Khazraeenia, Soheila; Yerushalmi, Gil Y; Donini, Andrew; Li, Natalia G; Sinclair, Brent J

    2018-02-01

    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na + -K + ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Plasma aldosterone and sweat sodium concentrations after exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Kirby, C. R.; Convertino, V. A.

    1986-01-01

    The relationship between plasma aldosterone levels and sweat sodium excretion after chronic exercise and heat acclimation was investigated, using subjects exercised, at 40 C and 45 percent humidity, for 2 h/day on ten consecutive days at 45 percent of their maximal oxygen uptake. The data indicate that, following heat acclimation, plasma aldosterone concentrations decrease, and that the eccrine gland responsiveness to aldosterone, as represented by sweat sodium reabsorption, may be augmented through exercise and heat acclimation.

  13. Acclimation of CO2 Assimilation in Cotton Leaves to Water Stress and Salinity 1

    PubMed Central

    Plaut, Zvi; Federman, Evelyn

    1991-01-01

    Cotton (Gossypium hirsutum L. cv Acala SJ2) plants were exposed to three levels of osmotic or matric potentials. The first was obtained by salt and the latter by withholding irrigation water. Plants were acclimated to the two stress types by reducing the rate of stress development by a factor of 4 to 7. CO2 assimilation was then determined on acclimated and nonacclimated plants. The decrease of CO2 assimilation in salinity-exposed plants was significantly less in acclimated as compared with nonacclimated plants. Such a difference was not found under water stress at ambient CO2 partial pressure. The slopes of net CO2 assimilation versus intercellular CO2 partial pressure, for the initial linear portion of this relationship, were increased in plants acclimated to salinity of −0.3 and −0.6 megapascal but not in nonacclimated plants. In plants acclimated to water stress, this change in slopes was not significant. Leaf osmotic potential was reduced much more in acclimated than in nonacclimated plants, resulting in turgor maintenance even at −0.9 megapascal. In nonacclimated plants, turgor pressure reached zero at approximately −0.5 megapascal. The accumulation of Cl− and Na+ in the salinity-acclimated plants fully accounted for the decrease in leaf osmotic potential. The rise in concentration of organic solutes comprised only 5% of the total increase in solutes in salinity-acclimated and 10 to 20% in water-stress-acclimated plants. This acclimation was interpreted in light of the higher protein content per unit leaf area and the enhanced ribulose bisphosphate carboxylase activity. At saturating CO2 partial pressure, the declined inhibition in CO2 assimilation of stress-acclimated plants was found for both salinity and water stress. ImagesFigure 2 PMID:16668429

  14. Heat acclimation: Gold mines and genes

    PubMed Central

    Schneider, Suzanne M.

    2016-01-01

    ABSTRACT The underground gold mines of South Africa offer a unique historical setting to study heat acclimation. The early heat stress research was conducted and described by a young medical officer, Dr. Aldo Dreosti. He developed practical and specific protocols to first assess the heat tolerance of thousands of new mining recruits, and then used the screening results as the basis for assigning a heat acclimation protocol. The mines provide an interesting paradigm where the prevention of heat stroke evolved from genetic selection, where only Black natives were recruited due to a false assumption of their intrinsic tolerance to heat, to our current appreciation of the epigenetic and other molecular adaptations that occur with exposure to heat. PMID:28090556

  15. Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Seebacher, Frank

    2013-09-15

    Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the

  16. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  17. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  18. Benefits of thermal acclimation in a tropical aquatic ectotherm, the Arafura filesnake, Acrochordus arafurae.

    PubMed

    Bruton, Melissa J; Cramp, Rebecca L; Franklin, Craig E

    2012-05-01

    The presumption that organisms benefit from thermal acclimation has been widely debated in the literature. The ability to thermally acclimate to offset temperature effects on physiological function is prevalent in ectotherms that are unable to thermoregulate year-round to maintain performance. In this study we examined the physiological and behavioural consequences of long-term exposure to different water temperatures in the aquatic snake Acrochordus arafurae. We hypothesised that long dives would benefit this species by reducing the likelihood of avian predation. To achieve longer dives at high temperatures, we predicted that thermal acclimation of A. arafurae would reduce metabolic rate and increase use of aquatic respiration. Acrochordus arafurae were held at 24 or 32°C for 3 months before dive duration and physiological factors were assessed (at both 24 and 32°C). Although filesnakes demonstrated thermal acclimation of metabolic rate, use of aquatic respiration was thermally independent and did not acclimate. Mean dive duration did not differ between the acclimation groups at either temperature; however, warm-acclimated animals increased maximum and modal dive duration, demonstrating a longer dive duration capacity. Our study established that A. arafurae is capable of thermal acclimation and this confers a benefit to the diving abilities of this snake.

  19. Molecular processes of transgenerational acclimation to a warming ocean

    NASA Astrophysics Data System (ADS)

    Veilleux, Heather D.; Ryu, Taewoo; Donelson, Jennifer M.; van Herwerden, Lynne; Seridi, Loqmane; Ghosheh, Yanal; Berumen, Michael L.; Leggat, William; Ravasi, Timothy; Munday, Philip L.

    2015-12-01

    Some animals have the remarkable capacity to acclimate across generations to projected future climate change; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and correlated the resulting expression profiles with acclimated metabolic traits from the same fish. We identified 69 contigs representing 53 key genes involved in thermal acclimation of aerobic capacity. Metabolic genes were among the most upregulated transgenerationally, suggesting shifts in energy production for maintaining performance at elevated temperatures. Furthermore, immune- and stress-responsive genes were upregulated transgenerationally, indicating a new complement of genes allowing the second generation of fish to better cope with elevated temperatures. Other differentially expressed genes were involved with tissue development and transcriptional regulation. Overall, we found a similar suite of differentially expressed genes among developmental and transgenerational treatments. Heat-shock protein genes were surprisingly unresponsive, indicating that short-term heat-stress responses may not be a good indicator of long-term acclimation capacity. Our results are the first to reveal the molecular processes that may enable marine fishes to adjust to a future warmer environment over multiple generations.

  20. Passive heat acclimation improves skeletal muscle contractility in humans.

    PubMed

    Racinais, S; Wilson, M G; Périard, J D

    2017-01-01

    The aim of this study was to investigate the effect of repeated passive heat exposure (i.e., acclimation) on muscle contractility in humans. Fourteen nonheat-acclimated males completed two trials including electrically evoked twitches and voluntary contractions in thermoneutral conditions [Cool: 24°C, 40% relative humidity (RH)] and hot ambient conditions in the hyperthermic state (Hot: 44-50°C, 50% RH) on consecutive days in a counterbalanced order. Rectal temperature was ~36.5°C in Cool and was maintained at ~39°C throughout Hot. Both trials were repeated after 11 days of passive heat acclimation (1 h per day, 48-50°C, 50% RH). Heat acclimation decreased core temperature in Cool (-0.2°C, P < 0.05), increased the time required to reach 39°C in Hot (+9 min, P < 0.05) and increased sweat rate in Hot (+0.7 liter/h, P < 0.05). Moreover, passive heat acclimation improved skeletal muscle contractility as evidenced by an increase in evoked peak twitch amplitude both in Cool (20.5 ± 3.6 vs. 22.0 ± 4.0 N·m) and Hot (20.5 ± 4.7 vs. 22.0 ± 4.0 N·m) (+9%, P < 0.05). Maximal voluntary torque production was also increased both in Cool (145 ± 42 vs. 161 ± 36 N·m) and Hot (125 ± 36 vs. 145 ± 30 N·m) (+17%, P < 0.05), despite voluntary activation remaining unchanged. Furthermore, the slope of the relative torque/electromyographic linear relationship was improved postacclimation (P < 0.05). These adjustments demonstrate that passive heat acclimation improves skeletal muscle contractile function during electrically evoked and voluntary muscle contractions of different intensities both in Cool and Hot. These results suggest that repeated heat exposure may have important implications to passively maintain or even improve muscle function in a variety of performance and clinical settings. Copyright © 2017 the American Physiological Society.

  1. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    PubMed

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish.

    PubMed

    Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A

    2007-11-29

    The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.

  3. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis

    NASA Astrophysics Data System (ADS)

    Grenchik, M. K.; Donelson, J. M.; Munday, P. L.

    2013-03-01

    Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50-100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.

  4. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  5. [Effects of 2-chlorophenol-acclimation on microbial community structure in anaerobic granular sludge].

    PubMed

    Huang, Ai-Qun; Dai, Ya-Lei; Chen, Ling; Chen, Hao; Zhang, Wen

    2008-03-01

    The microbial community structure in 2-chlorophenol-acclimated anaerobic granular sludge and inoculating sludge were analyzed by 16S rDNA-based approach. Total DNA was extracted directly from the inoculating sludge and 2-CP-acclimated anaerobic sludge, and then amplified by polymerase chain reaction (PCR) technique with the specific primer pair ARC21F/ARC958R for Archaea and 31F/907R for Acidobacteria respectively. The positive PCR products were cloned and sequenced. The sequences analysis shows that there exist common Archaea in both sludge, including Methanothrix soehngenii, Methanosaeta concilii and uncultured euryarchaeote etc. Some special Archaea appear in the 2-CP-acclimated sludge, such as Methanobacterium aarhusense, Methanobacterium curvum and Methanobacterium beijingense etc. Others originally existed in the inoculating sludge disappear after acclimation. Common Acidobacteria are found in both sludge, including uncultured bacterium, uncultured Acidobacterium and unknown Actinomycete (MC 9). Some special microbes originally existed in the inoculating sludge, such as Desulfotomaculum sp. 176, uncultured Deltaproteobacterium n8d and uncultured hydrocarbon seep bacterium etc. disappear after acclimation, and uncultured Holophaga/Acidobacterium, uncultured Acidobacteria bacterium and unidentified Acidobacterium are found after 2-CP-acclimation.

  6. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    PubMed

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the

  7. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  8. Longleaf Seedling Trends

    Treesearch

    Mark J. Hainds

    2002-01-01

    Demand for longleaf pine (Pinus palustris Mill.) seedlings continues to increase throughout the Southeast. Overall production of longleaf pine seedlings has increased annually for at least the last 3 years (51 percent increase over the past 3 years), while demand for seedlings has continued to exceed the supply. There are several reasons for the...

  9. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    PubMed

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  10. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.

    PubMed

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-05-23

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001. Copyright © 2014, Wakao et al.

  11. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.

    PubMed

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei; Angelidaki, Irini; Zhang, Yifeng

    2017-07-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before moving into MECs, respectively. Subsequently, CSFE was used as feedstock in all the three MECs. The maximum hydrogen yield with the anode pre-acclimated with butyrate (5.21±0.24L H 2 /L CSFE) was higher than that pre-acclimated with acetate (4.22±0.19L H 2 /L CSFE) and CSFE (4.55±0.14L H 2 /L CSFE). The current density (480±11A/m 3 ) and hydrogen production rate (4.52±0.13m 3 /m 3 /d) with the anode pre-acclimated with butyrate were also higher that another two reactors. These results demonstrated that the anode biofilm pre-acclimated with butyrate has significant advantages in CSFE treatment and could improve the performance of hydrogen production in MEC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Treesearch

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  13. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  14. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.

    PubMed

    Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik

    2017-05-01

    Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.

  15. Fever: exchange of shivering by nonshivering pyrogenesis in cold-acclimated guinea pigs.

    PubMed

    Blatteis, C M

    1976-01-01

    The pyrogenic response of adult, unanesthetized guinea pigs to 2 mug/kg iv of Salmonella enteritidis endotoxin was measured at 27 and 7 degrees C ambient temperatures, both before and after an 8-wk exposure to 7 degrees C. There were no significant differences between the onset, maximum height, and total duration of the fevers produced before and after cold acclimation in both thermal environments. However, in 27 degrees C, before cold acclimation, fever production was associated with vigorous shivering activity; two temperature maxima typically developed. After cold acclimation, visible shivering was not detectable during pyrogenesis; moreover, only a single maximum occurred, culminating during the interval between the two rises previously. In 7 degrees C, shivering occurred in both the non-cold- and cold-acclimated endotoxin-treated guinea pigs, but the increase in oxygen consumption was significantly greater in the latter. These results indicated, therefore, that nonshivering (NST) replaces shivering thermogenesis (ST) in a thermoneutral, while ST is added onto NST in a cold, environment in cold-acclimated guinea pigs in supplying the necessary heat for fever production, and that these effects involve alterations in the character of the febrile course.

  16. Douglas-Fir Seedlings Exhibit Metabolic Responses to Increased Temperature and Atmospheric Drought

    PubMed Central

    Jansen, Kirstin; Du, Baoguo; Kayler, Zachary; Siegwolf, Rolf; Ensminger, Ingo; Rennenberg, Heinz; Kammerer, Bernd; Jaeger, Carsten; Schaub, Marcus; Kreuzwieser, Jürgen; Gessler, Arthur

    2014-01-01

    In the future, periods of strongly increased temperature in concert with drought (heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions. PMID:25436455

  17. Chlorophyll Fluorescence Analysis of Cyanobacterial Photosynthesis and Acclimation

    PubMed Central

    Campbell, Douglas; Hurry, Vaughan; Clarke, Adrian K.; Gustafsson, Petter; Öquist, Gunnar

    1998-01-01

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV′/FM′,qp,qN, NPQ, and φPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity. PMID:9729605

  18. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  19. Global convergence in leaf respiration from estimates of thermal acclimation across time and space.

    PubMed

    Vanderwel, Mark C; Slot, Martijn; Lichstein, Jeremy W; Reich, Peter B; Kattge, Jens; Atkin, Owen K; Bloomfield, Keith J; Tjoelker, Mark G; Kitajima, Kaoru

    2015-09-01

    Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  1. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.

    PubMed

    Rome, Lawrence C

    2007-11-29

    There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.

  2. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    USGS Publications Warehouse

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  3. Thermotolerance and heat acclimation may share a common mechanism in humans

    PubMed Central

    Gillum, Trevor; Dokladny, Karol; Bedrick, Edward; Schneider, Suzanne; Moseley, Pope

    2011-01-01

    Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations. PMID:21613575

  4. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.

    PubMed

    Xu, Wei; Dang, Wei; Geng, Jun; Lu, Hong-Liang

    2015-10-01

    The thermal acclimatory capacity of a particular species may determine its resilience to environmental change. Evaluating the physiological acclimatory responses of economically important species is useful for determining their optimal culture conditions. Here, juvenile Chinese three-keeled pond turtles (Mauremys reevesii) were acclimated to one of three different temperatures (17, 25 or 33°C) for four weeks to assess the effects of thermal acclimation on some physiological traits. Thermal acclimation significantly affected thermal resistance, but not thermal preference, of juvenile M. reevesii. Turtles acclimated to 17°C were less resistant to high temperatures than those acclimated to 25°C and 33°C. However, turtles increased resistance to low temperatures with decreasing acclimation temperature. The acclimation response ratio of the critical thermal minimum (CTMin) was lower than that of the critical thermal maximum (CTMax) for acclimation temperatures between 17 and 25°C, but slightly higher between 25 and 33°C. The thermal resistance range (i.e., the difference between CTMax and CTMin) was widest in turtles acclimated to the intermediate temperature (25°C), and narrowest in those acclimated to low temperature (17°C). The standard metabolic rate increased as body temperature and acclimation temperature increased, and the temperature quotient (Q10) between acclimation temperatures 17 and 25°C was higher than the Q10 between 25 and 33°C. Our results suggest that juvenile M. reevesii may have a greater resistance under mild thermal conditions resembling natural environments, and better physiological performance at relatively warm temperatures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  6. No effects of acclimation to heat on immune and hormonal responses to passive heating in healthy volunteers

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Sugenoya, Junichi; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko

    2012-01-01

    Heat acclimation results in whole body-adaptations that increase heat tolerance, and might also result in changed immune responses. We hypothesized that, after heat acclimation, tumor necrosis factor alpha, interleukin 6 and the lymphocyte count would be altered. Heat acclimation was induced in 6 healthy men by 100 min of heat exposure for 9 days. Heat exposure consisted of (1) 10 min of immersion up to chest-level in water at 42°C and (2) 90 min of passive heating by a warm blanket to maintain tympanic temperature at 37.5°C. The climatic chamber was maintained at 40°C and a relative humidity of 50%. Blood samples were analyzed before and after heat acclimation for natural killer (NK) cell activity, counts of lymphocytes B and T, before and after heat acclimation for peripheral blood morphology, interleukin 6, tumor necrosis factor alpha, and cortisol. A Japanese version of the profile of mood states questionnaire was also administered before and after acclimation. The concentrations of white blood cells, lymphocytes B and T, cortisol, interleukin 6, tumor necrosis factor alpha and NK cell activity showed no significant differences between pre- and post-acclimation, but there was a significantly lower platelet count after acclimation and, with the profile of mood states questionnaire, there was a significant rise in anger after acclimation. It is concluded that heat acclimation by passive heating does not induce alterations in immune or endocrine responses.

  7. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation

    NASA Astrophysics Data System (ADS)

    Welch, Megan J.; Watson, Sue-Ann; Welsh, Justin Q.; McCormick, Mark I.; Munday, Philip L.

    2014-12-01

    Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2 (refs , ). However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 μatm) and high (912 μatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 μatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.

  8. Effect of high CO{sub 2} on cold acclimation and deacclimation of three conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tinus, R.W.; Greer, D.H.; Robinson, L.A.

    1995-12-31

    Atmospheric CO{sub 2} levels are rising, and whether or not this leads to a climate change, high CO{sub 2} is known to have some direct effects of plants. One aspect that has only begun to be explored is possible effects on cold hardiness. Well adapted woody plants can tolerate the lowest temperatures to which they may be exposed at all times of the year. Every year temperate and boral woody plants must cold harden in a timely manner in autumn, become hardy enough to withstand the coldest winter temperatures, and not lose their hardiness prematurely in the spring. The authorsmore » objective was to determine the effect of elevated CO{sub 2} on cold acclimation and deacclimation of three commercially important conifers. Seedlings of three conifers were cold hardened and dehardened in growth rooms under 350 or 700 ppm CO{sub 2}. High CO{sub 2} had little effect on cold hardiness of radiata pine, but increased autumn and spring hardiness of Douglas-fir. High CO{sub 2} increased hardiness of ponderosa pine in autumn and decreased it in the spring.« less

  9. Acclimation of photosynthesis to low leaf water potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, M.A.; Boyer, J.S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantummore » yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.« less

  10. Hypohydration and Heat Acclimation: Plasma Renin and Aldosterone during Exercise,

    DTIC Science & Technology

    1983-01-01

    vasoconstriction in heat-stressed men: role of McGraw-Hill, 1964, p. 419-423. renin - angiotensin system . J. AppL PhysioL: Respirat. Environ. 13. LINDQUIST, E...AL.A137 365 HYPOHYDRATION AND HEAT ACCLIMATION: PLASMA RENIN AND I/ ALDOSTERONE DURING EXERCISE(U) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE...heat acclimation:plasma renin dependent not only on the mode of exercise but also the and aldosterone during exercise. J. Appl. Physiol.: Respirat

  11. Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants

    PubMed Central

    Bazihizina, Nadia; Taiti, Cosimo; Marti, Lucia; Rodrigo-Moreno, Ana; Spinelli, Francesco; Giordano, Cristiana; Caparrotta, Stefania; Gori, Massimo; Azzarello, Elisa; Mancuso, Stefano

    2014-01-01

    Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants. Plant acclimation, on the other hand, increased plant dry mass and leaf area up to 1.6-fold compared with non-acclimated ones. In non-acclimated plants, the addition of 250 μM ZnSO4 led to transient membrane depolarization and stomatal closure within 24h from the addition of the stress; by contrast, the acclimation process was associated with an improved stomatal regulation and a superior ability to maintain a negative root membrane potential, with values on average 37% more negative compared with non-acclimated plants. The different response at the plasma-membrane level between acclimated and non-acclimated plants was associated with an enhanced vacuolar Zn2+ sequestration and up to 2-fold higher expression of the tobacco orthologue of the Arabidopsis thaliana MTP1 gene. Thus, the acclimation process elicited specific detoxification mechanisms in roots that enhanced Zn2+ compartmentalization in vacuoles, thereby improving root membrane functionality and stomatal regulation in leaves following elevated Zn2+ stress. PMID:24928985

  12. Phenolic extracts from Sorbus aucuparia (L.) and Malus baccata (L.) berries: antioxidant activity and performance in rapeseed oil during frying and storage.

    PubMed

    Aladedunye, Felix; Matthäus, Bertrand

    2014-09-15

    In the present study, phenolic extracts and fractions from Canadian rowanberry (Sorbus aucuparia) and crabapple (Malus baccata) were screened for antioxidant activity using DPPH radical scavenging activity, and β-carotene bleaching assays. Furthermore, rapeseed oil was supplemented with extracts/fractions and performance was assessed during accelerated storage at 65°C, under Rancimat at 120°C, and during frying at 180°C. A number of phenolic fractions showed significantly higher radical scavenging and antioxidant activity in the oil than the synthetic antioxidant, butylated hydroxytoluene (BHT). At the end of the 7-day storage, the peroxide value was reduced by up to 42% in the presence of extracts. The extent of thermooxidative degradation was significantly lower in oils fortified with the fruit extracts, with fractions from Sorbus species being more effective. Results from the present study suggested that polyphenolic extracts from these fruits can offer effective alternative to synthetic antioxidants during frying and storage of vegetable oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Whole-body heat exchange during heat acclimation and its decay.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Friesen, Brian J; Hardcastle, Stephen G; Kenny, Glen P

    2015-02-01

    The purpose of this study was to quantify how much whole-body heat loss increases during heat acclimation and the decay in these improvements after heat acclimation. Ten males underwent a 14-d heat acclimation protocol that consisted of 90 min of cycling in the heat (40°C, 20% relative humidity) at approximately 50% of maximum oxygen consumption. Before (day 0), during (day 7), and at the end (day 14) of the heat acclimation protocol as well as 7 and 14 d after heat acclimation (days 21 and 28), whole-body heat exchange (evaporative and dry) was measured using direct calorimetry during three bouts of 30-min exercise at 300 (Ex1), 350 (Ex2), and 400 W·m (Ex3), each separated by 10 and 20 min of recovery, respectively, at 35°C and 16% relative humidity. Concurrent measurements of metabolic heat production (indirect calorimetry) allowed for the direct calculation of change in body heat content (ΔHb). After accounting for an increase in net dry heat gain, increases in whole-body evaporative heat loss were evident for Ex2 and Ex3 on day 7 (Ex2, 4.9 ± 5.6%; Ex3, 9.0 ± 6.0%; both P ≤ 0.05) and all heat loads on day 14 (Ex1, 7.6 ± 8.3%; Ex2, 7.7 ± 5.5%; Ex3, 11.2 ± 4.6%; all P ≤ 0.05) relative to day 0 (Ex1, 494 ± 27 W; Ex2, 583 ± 21 W; Ex3, 622 ± 36 W). As a result, a lower cumulative ΔHb was measured on day 7 (-18 ± 8%, P ≤ 0.001) and day 14 (-26 ± 10%, P ≤ 0.001) compared with that measured on day 0 (1062 ± 123 kJ). Most of these improvements were retained after 2 wk of nonexposure to the heat. This is the first study to quantify how much 14 d of heat acclimation can increase whole-body evaporative heat loss, which can improve by as much as approximately 11%.

  14. Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances.

    PubMed

    Gietler, Marta; Nykiel, Małgorzata; Orzechowski, Sławomir; Fettke, Joerg; Zagdańska, Barbara

    2016-11-01

    A loss of dehydration tolerance in wheat seedlings on the fifth day following imbibition is associated with a disturbance in cellular redox homeostasis, as documented by a shift of the reduced/oxidized glutathione ratio to a more oxidized state and a significant increase in the ratio of protein thiols to the total thiol group content. Therefore, the identification and characterization of redox-sensitive proteins are important steps toward understanding the molecular mechanisms of the loss of dehydration tolerance. In the present study, proteins that were differentially expressed between fully turgid (control), dehydrated tolerant (four-day-old) and dehydrated sensitive (six-day-old) wheat seedlings were analysed. Protein spots having at least a significant (p < 0.05) two-fold change in protein abundance were selected by Delta2D as differentially expressed, identified by MALDI-TOF and LC-MS/MS, and classified according to their function. The observed changes in the proteomic patterns of the differentially S-nitrosylated and S-glutathionylated proteins were highly specific in dehydration-tolerant and -sensitive wheat seedlings. The metabolic function of these proteins indicates that dehydration tolerance is mainly related to nucleic acids, protein metabolism, and energy metabolism. It has been proven that leaf-specific thionins BTH6 and DB4, chloroplastic 50S ribosomal protein L16, phospholipase A1-II delta, and chloroplastic thioredoxin M2 are both S-nitrosylated and S-glutathionylated upon water deficiency. Our results revealed the existence of interplay between S-nitrosylation and S-glutathionylation, two redox-regulated protein posttranslational modifications that could enhance plant defence mechanisms and/or facilitate the acclimation of plants to unfavourable environmental conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    PubMed

    Horowitz, Michal

    2017-01-01

    The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce "ON CALL" molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance-HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower "doses" of the stressor, which induce adaptation to higher "doses" of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca +2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the

  16. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J

    2017-05-08

    Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the

  17. Acclimation of Photosynthesis to Low Leaf Water Potentials 1

    PubMed Central

    Matthews, Mark A.; Boyer, John S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. PMID:16663372

  18. Interaction of Soil Moisture and Seedling Shelters on Water Relations of Baldcypress Seedlings

    Treesearch

    Ty Swirin; Hans Williams; Bob Keeland

    1999-01-01

    Stomata1 conductance, transpiration, and leaf water potential were measured during the 1996 growing season on baldcypress (Taxodium disfichum (L.) Rich.) seedlings. Seedlings were hand-planted from 1-O bareroot stock in mesic and permanently Rooded soil conditions. One-half of all seedlings were fitted with 122-cm tall polyethylene tree...

  19. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  20. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice

    PubMed Central

    Lau, Daphne S.; Connaty, Alex D.; Mahalingam, Sajeni; Wall, Nastashya; Cheviron, Zachary A.; Storz, Jay F.; Scott, Graham R.

    2017-01-01

    The low O2 experienced at high altitude is a significant challenge to effective aerobic locomotion, as it requires sustained tissue O2 delivery in addition to the appropriate allocation of metabolic substrates. Here, we tested whether high- and low-altitude deer mice (Peromyscus maniculatus) have evolved different acclimation responses to hypoxia with respect to muscle metabolism and fuel use during submaximal exercise. Using F1 generation high- and low-altitude deer mice that were born and raised in common conditions, we assessed 1) fuel use during exercise, 2) metabolic enzyme activities, and 3) gene expression for key transporters and enzymes in the gastrocnemius. After hypoxia acclimation, highland mice showed a significant increase in carbohydrate oxidation and higher relative reliance on this fuel during exercise at 75% maximal O2 consumption. Compared with lowland mice, highland mice had consistently higher activities of oxidative and fatty acid oxidation enzymes in the gastrocnemius. In contrast, only after hypoxia acclimation did activities of hexokinase increase significantly in the muscle of highland mice to levels greater than lowland mice. Highland mice also responded to acclimation with increases in muscle gene expression for hexokinase 1 and 2 genes, whereas both populations increased mRNA expression for glucose transporters. Changes in skeletal muscle with acclimation suggest that highland mice had an increased capacity for the uptake and oxidation of circulatory glucose. Our results demonstrate that highland mice have evolved a distinct mode of hypoxia acclimation that involves an increase in carbohydrate use during exercise. PMID:28077391

  1. Fall field crickets did not acclimate to simulated seasonal changes in temperature.

    PubMed

    Niehaus, Amanda C; Wilson, Robbie S; Storm, Jonathan J; Angilletta, Michael J

    2012-02-01

    In nature, many organisms alter their developmental trajectory in response to environmental variation. However, studies of thermal acclimation have historically involved stable, unrealistic thermal treatments. In our study, we incorporated ecologically relevant treatments to examine the effects of environmental stochasticity on the thermal acclimation of the fall field cricket (Gryllus pennsylvanicus). We raised crickets for 5 weeks at either a constant temperature (25°C) or at one of three thermal regimes mimicking a seasonal decline in temperature (from 25 to 12°C). The latter three treatments differed in their level of thermal stochasticity: crickets experienced either no diel cycle, a predictable diel cycle, or an unpredictable diel cycle. Following these treatments, we measured several traits considered relevant to survival or reproduction, including growth rate, jumping velocity, feeding rate, metabolic rate, and cold tolerance. Contrary to our predictions, the acclimatory responses of crickets were unrelated to the magnitude or type of thermal variation. Furthermore, acclimation of performance was not ubiquitous among traits. We recommend additional studies of acclimation in fluctuating environments to assess the generality of these findings.

  2. Acclimation to low level exposure of copper in Bufo arenarum embryos: linkage of effects to tissue residues.

    PubMed

    Herkovits, Jorge; Pérez-Coll, Cristina Silvia

    2007-06-01

    The acclimation possibilities to copper in Bufo arenarum embryos was evaluated by means of three different low level copper exposure conditions during 14 days. By the end of the acclimation period the copper content in control embryos was 1.04 +/- 0.09 microg g(-1) (wet weight) while in all the acclimated embryos a reduction of about 25% of copper was found. Thus copper content could be considered as a biomarker of low level exposure conditions. Batches of 10 embryos (by triplicate) from each acclimation condition were challenged with three different toxic concentrations of copper. As a general pattern, the acclimation protocol to copper exerted a transient beneficial effect on the survival of the Bufo arenarum embryos. The acclimation phenomenon could be related to the selection of pollution tolerant organisms within an adaptive process and therefore the persistence of information within an ecological system following a toxicological stressor.

  3. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry--functional relationships between short-term and long-term light quality acclimation in plants.

    PubMed

    Dietzel, Lars; Bräutigam, Katharina; Pfannschmidt, Thomas

    2008-03-01

    In dense plant populations, individuals shade each other resulting in a low-light habitat that is enriched in far-red light. This light quality gradient decreases the efficiency of the photosynthetic light reaction as a result of imbalanced excitation of the two photosystems. Plants counteract such conditions by performing acclimation reactions. Two major mechanisms are known to assure efficient photosynthesis: state transitions, which act on a short-term timescale; and a long-term response, which enables the plant to re-adjust photosystem stoichiometry in favour of the rate-limiting photosystem. Both processes start with the perception of the imbalanced photosystem excitation via reduction/oxidation (redox) signals from the photosynthetic electron transport chain. Recent data in Arabidopsis indicate that initialization of the molecular processes in both cases involve the activity of the thylakoid membrane-associated kinase, STN7. Thus, redox-controlled phosphorylation events may not only adjust photosystem antenna structure but may also affect plastid, as well as nuclear, gene expression. Both state transitions and the long-term response have been described mainly in molecular terms, while the physiological relevance concerning plant survival and reproduction has been poorly investigated. Recent studies have shed more light on this topic. Here, we give an overview on the long-term response, its physiological effects, possible mechanisms and its relationship to state transitions as well as to nonphotochemical quenching, another important short-term mechanism that mediates high-light acclimation. Special emphasis is given to the functional roles and potential interactions between the different light acclimation strategies. A working model displays the various responses as an integrated molecular system that helps plants to acclimate to the changing light environment.

  4. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater

    USGS Publications Warehouse

    Christensen, A.K.; Hiroi, J.; Schultz, E.T.; McCormick, S.D.

    2012-01-01

    The alewife (Alosa pseudoharengus) is a clupeid that undergoes larval and juvenile development in freshwater preceding marine habitation. The purpose of this study was to investigate osmoregulatory mechanisms in alewives that permit homeostasis in different salinities. To this end, we measured physiological, branchial biochemical and cellular responses in juvenile alewives acclimated to freshwater (0.5p.p.t.) or seawater (35.0p.p.t.). Plasma chloride concentration was higher in seawater-acclimated than freshwater-acclimated individuals (141mmoll -1 vs 134mmoll -1), but the hematocrit remained unchanged. In seawateracclimated individuals, branchial Na +/K +-ATPase (NKA) activity was higher by 75%. Western blot analysis indicated that the abundance of the NKA subunit and a Na+/K+/2Cl- cotransporter (NKCC1) were greater in seawater-acclimated individuals by 40% and 200%, respectively. NKA and NKCC1 were localized on the basolateral surface and tubular network of ionocytes in both acclimation groups. Immunohistochemical labeling for the cystic fibrosis transmembrane conductance regulator (CFTR) was restricted to the apical crypt of ionocytes in seawater-acclimated individuals, whereas sodium/hydrogen exchanger 3 (NHE3) labeling was present on the apical surface of ionocytes in both acclimation groups. Ionocytes were concentrated on the trailing edge of the gill filament, evenly distributed along the proximal 75% of the filamental axis and reduced distally. Ionocyte size and number on the gill filament were not affected by salinity; however, the number of lamellar ionocytes was significantly lower in seawater-acclimated fish. Confocal z-series reconstructions revealed that mature ionocytes in seawater-acclimated alewives occurred in multicellular complexes. These complexes might reduce paracellular Na + resistance, hence facilitating Na+ extrusion in hypo-osmoregulating juvenile alewives after seaward migration. ?? 2012. Published by The Company of Biologists Ltd.

  5. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Atlantic salmon show capability for cardiac acclimation to warm temperatures.

    PubMed

    Anttila, Katja; Couturier, Christine S; Overli, Oyvind; Johnsen, Arild; Marthinsen, Gunnhild; Nilsson, Göran E; Farrell, Anthony P

    2014-06-24

    Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.

  7. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.

    PubMed

    Teigen, Laura E; Orczewska, Julieanna I; McLaughlin, Jessica; O'Brien, Kristin M

    2015-10-01

    Molecular chaperones [heat shock proteins (HSPs)] increase in response to rapid changes in temperatures, but long-term acclimation to cold temperature may also warrant elevations in HSPs. In fishes, cold acclimation increases mitochondrial density and oxidative stress in some tissues, which may increase demand for HSPs. We hypothesized that levels of HSPs, as well as sirtuins (SIRTs), NAD-dependent deacetylases that mediate changes in metabolism and responses to oxidative stress (including increases in HSPs), would increase during cold acclimation of threespine stickleback (Gasterosteus aculeatus). Transcript levels of hsp70, hsc70, hsp60 and hsp90-α, sirts1-4, as well as protein levels of HSP60, HSP90 and HSC70 were quantified in liver and pectoral adductor muscle of stickleback during cold acclimation from 20 °C to 8 °C. In liver, cold acclimation stimulated a transient increase in mRNA levels of hsp60 and hsc70. Transcript levels of sirt1 and sirt2 also increased in response to cold acclimation and remained elevated. In pectoral muscle, mRNA levels of hsp60, hsp90-α, hsc70 and sirt1 all transiently increased in response to cold acclimation, while levels of sirts2-4 remained constant or declined. Similar to transcript levels, protein levels of HSC70 increased in both liver and pectoral muscle. Levels of HSP90 also increased in liver after 4 weeks at 8 °C. HSP60 remained unchanged in both tissues, as did HSP90 in pectoral muscle. Our results indicate that while both HSPs and SIRTs increase in response to cold acclimation in stickleback, the response is tissue and isoform specific, likely reflecting differences in metabolism and oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  9. Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation.

    PubMed

    Egginton, Stuart; Campbell, Hamish A

    2016-05-01

    Polar fishes are at high risk from increasing seawater temperatures. Characterising the physiological responses to such changes may both clarify mechanisms that permit life under extreme conditions and identify limitations in the response to continued global warming. We hypothesised that Notothenia coriiceps would show physiological compensation after an acute exposure to 5°C, and following 6 weeks warm acclimation, compared with ambient temperature (0°C). However, initial tachycardia (22.4±2.8 versus 12.8±1.1 min(-1); P<0.01) was not reversed by acclimation (21.0±1.9 min(-1)). Hyperventilation (45.5±3.1 versus 21.4±2.4 breaths min(-1); P<0.001) showed a modest reduction following acclimation (38.0±2.9 min(-1); P<0.05), while resting oxygen consumption (0.52±0.08 mmol kg(-1) h(-1)) was acutely increased at 5°C (1.07±0.10 mmol kg(-1) h(-1); P<0.001) but unchanged with acclimation. Autonomic blockade showed initial responses were mainly of vagal origin, with little subsequent withdrawal or recovery in long-term heart rate variability after 6 weeks. Given the limited cardiorespiratory capacity to withstand sustained warming, effective physiological compensation probably requires a more prolonged acclimation period. © 2016. Published by The Company of Biologists Ltd.

  10. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukowiecki, L.J.; Geloeen, A.; Collet, A.J.

    1986-06-01

    The mechanisms of brown adipocyte proliferation and differentiation during cold acclimation (and/or adaptation to hyperphagia) have been studied by quantitative photonic radioautography. (/sup 3/H)thymidine was injected to warm-acclimated (25/sup 0/C) rats and to animals exposed to 5/sup 0/C for 2 days. Samples of interscapular brown adipose tissue were collected for quantitative analysis of mitotic frequencies at various periods of time (4 h-15 days) after the injection of (/sup 3/H)thymidine, the rats being maintained at the temperatures to which they were initially exposed. It was found that cold exposure for 2 days markedly enhanced mitotic activity in endothelial cells, interstitial cells,more » and brown preadipocytes rather than in fully differentiated brown adipocytes. The total tissue labeling index (percent of labeled nuclei) increased approx.70 times over control values. The authors now report that cellular labeling progressively increased in mature brown adipocytes during cold acclimation, whereas it correspondingly decreased in interstitial cells and brown preadipocytes. This indicates that the sequence of events for cellular differentiation is interstitial cells ..-->.. brown preadipocytes ..-->.. mature brown adipocytes. Remarkable, labeling frequency did not change in endothelial cells during cold acclimation demonstrating that these cells cannot be considered as progenitors of brown adipocytes. It is suggested that brown adipocyte proliferation and differentiation from interstitial cells represent the fundamental phenomena explaining the enhanced capacity of cold-acclimated and/or hyperphagic rats to respond calorigenically to catecholamines.« less

  11. Reducing Seed and Seedlings Pathogens Improves Longleaf Pine Seedlings Production

    Treesearch

    James P. Barnett; John M. McGilvray

    2002-01-01

    The demand for container longleaf pine (Pinus palustris Mill.) planting stock is increasing across the Lower Gulf Coastal Plain. Poor-quality seeds and seedling losses during nursery culture further constrain a limited seed supply. Improved seed efficiency will be necessary to meet the need for increased seedling production. We evaluated seed...

  12. Acclimation to Low Level Exposure of Copper in Bufo arenarum Embryos: Linkage of Effects to Tissue Residues

    PubMed Central

    Herkovits, Jorge; Pérez-Coll, Cristina Silvia

    2007-01-01

    The acclimation possibilities to copper in Bufo arenarum embryos was evaluated by means of three different low level copper exposure conditions during 14 days. By the end of the acclimation period the copper content in control embryos was 1.04 ± 0.09 μg.g−1 (wet weight) while in all the acclimated embryos a reduction of about 25% of copper was found. Thus copper content could be considered as a biomarker of low level exposure conditions. Batches of 10 embryos (by triplicate) from each acclimation condition were challenged with three different toxic concentrations of copper. As a general pattern, the acclimation protocol to copper exerted a transient beneficial effect on the survival of the Bufo arenarum embryos. The acclimation phenomenon could be related to the selection of pollution tolerant organisms within an adaptive process and therefore the persistence of information within an ecological system following a toxicological stressor. PMID:17617681

  13. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

    PubMed

    MacMillan, Heath A; Yerushalmi, Gil Y; Jonusaite, Sima; Kelly, Scott P; Donini, Andrew

    2017-08-18

    Chill susceptible insects suffer tissue damage and die at low temperatures. The mechanisms that cause chilling injury are not well understood but a growing body of evidence suggests that a cold-induced loss of ion and water homeostasis leads to hemolymph hyperkalemia that depolarizes cells, leading to cell death. The apparent root of this cascade is the net leak of osmolytes down their concentration gradients in the cold. Many insects, however, are capable of adjusting their thermal physiology, and cold-acclimated Drosophila can maintain homeostasis and avoid injury better than warm-acclimated flies. Here, we test whether chilling causes a loss of epithelial barrier function in female adult Drosophila, and provide the first evidence of cold-induced epithelial barrier failure in an invertebrate. Flies had increased rates of paracellular leak through the gut epithelia at 0 °C, but cold acclimation reduced paracellular permeability and improved cold tolerance. Improved barrier function was associated with changes in the abundance of select septate junction proteins and the appearance of a tortuous ultrastructure in subapical intercellular regions of contact between adjacent midgut epithelial cells. Thus, cold causes paracellular leak in a chill susceptible insect and cold acclimation can mitigate this effect through changes in the composition and structure of transepithelial barriers.

  14. Efficient high light acclimation involves rapid processes at multiple mechanistic levels.

    PubMed

    Dietz, Karl-Josef

    2015-05-01

    Like no other chemical or physical parameter, the natural light environment of plants changes with high speed and jumps of enormous intensity. To cope with this variability, photosynthetic organisms have evolved sensing and response mechanisms that allow efficient acclimation. Most signals originate from the chloroplast itself. In addition to very fast photochemical regulation, intensive molecular communication is realized within the photosynthesizing cell, optimizing the acclimation process. Current research has opened up new perspectives on plausible but mostly unexpected complexity in signalling events, crosstalk, and process adjustments. Within seconds and minutes, redox states, levels of reactive oxygen species, metabolites, and hormones change and transmit information to the cytosol, modifying metabolic activity, gene expression, translation activity, and alternative splicing events. Signalling pathways on an intermediate time scale of several minutes to a few hours pave the way for long-term acclimation. Thereby, a new steady state of the transcriptome, proteome, and metabolism is realized within rather short time periods irrespective of the previous acclimation history to shade or sun conditions. This review provides a time line of events during six hours in the 'stressful' life of a plant. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level.

  16. Heat Acclimation and Water-Immersion Deconditioning: Fluid Electrolyte Shifts with Tilting

    NASA Technical Reports Server (NTRS)

    Conertino, V. A.; Shvartz, E.; Haines, R. F.; Bhattacharya, A.; Superinde, S. J.; Keil, L. C.; Greenlean, J. E.

    1977-01-01

    One of the major problems encountered by astronauts exposed to space flight is a reduction of orthostatic tolerance on return to earth. Many studies have been performed in an attempt to define the physiologic mechanism of orthostatic intolerance and to develop some remedial treatment. Exercise training does not appear to enhance orthostatic tolerance . In contrast, heat acclimation (i.e., exercise training in the heat) has been reported to enhance orthostatic tolerance. Since plasma volume increases with both exercise training and heat acclimation, it is not clear what role fluid and electrolytes play in determining tolerance to hydrostatic pressure. The purpose of this study was to compare the effects of exercise training in a cool environment and heat acclimation on resting plasma volume (PV) and the ensuing fluid and electrolyte shifts which occur during head-up tilting before and after water immersion deconditioning.

  17. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    PubMed

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle.

    PubMed

    Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L

    2016-06-01

    Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Implications of plant acclimation for future climate-carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Kattge, Jens; Cox, Peter; Sitch, Stephen; Knorr, Wolfgang; Lloyd, Jon; Huntingford, Chris

    2010-05-01

    The response of land ecosystems to climate change and associated feedbacks are a key uncertainty in future climate prediction (Friedlingstein et al. 2006). However global models generally do not account for the acclimation of plant physiological processes to increased temperatures. Here we conduct a first global sensitivity study whereby we modify the Joint UK land Environment Simulator (JULES) to account for temperature acclimation of two main photosynthetic parameters, Vcmax and Jmax (Kattge and Knorr 2007) and plant respiration (Atkin and Tjoelker 2003). The model is then applied over the 21st Century within the IMOGEN framework (Huntingford et al. 2004). Model simulations will provide new and improved projections of biogeochemical cycling, forest resilience, and thus more accurate projections of climate-carbon cycle feedbacks and the future evolution of the Earth System. Friedlingstein P, Cox PM, Betts R et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. Kattge J and Knorr W (2007): Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30, 1176-1190 Atkin O.K and Tjoelker, M. G. (2003): Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8 (7), 343-351 Huntingford C, et al. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177-185.

  20. Norepinephrine turnover in heart and spleen of 7-, 22-, and 34 C-acclimated hamsters

    NASA Technical Reports Server (NTRS)

    Jones, S. B.; Musacchia, X. J.

    1976-01-01

    The relationship of norepinephrine (NE) concentration and endogenous turnover rates in both myocardial and spleen tissues in the golden hamster is examined as a function of chronic exposure to either high or low ambient temperatures. Changes in myocardial and spleen NE turnover values are discussed in terms of functional alterations in sympathetic nerve activity and the importance of such changes in temperature acclimation. It is found that acclimation of hamsters to 7 C for 7-10 weeks results in decreased myocardial NE concentration and an apparent increase in myocardial NE turnover. In contrast, exposure to 34 C for 6-8 weeks results in increased myocardial NE concentration and an apparent decrease in NE turnover in both myocardial and spleen tissues. The implication of altered NE synthesis is that sympathetic nerve activity is reduced with heat acclimation and is enhanced with cold acclimation.

  1. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).

    PubMed

    Vo, Pacific; Gridi-Papp, Marcos

    2017-05-01

    Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5°C. Pre-metamorphic tadpoles hardened by 1.18°C, while metamorphic tadpoles hardened by 0.36°C. When raised at 21°C, tadpoles acclimated expanding their cold tolerance by 1.3°C in relation to larvae raised at 28°C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Arbuscular mycorrhiza fungi facilitate rapid adaptation of Elsholtzia splendens to copper.

    PubMed

    Li, Junmin; Liang, Huijuan; Yan, Ming; Chen, Luxi; Zhang, Huating; Liu, Jie; Wang, Suizi; Jin, Zexin

    2017-12-01

    Closely associated microbes have been shown to drive local adaptation of plants. However, few studies provide direct evidence, disclosing the role of arbuscular mycorrhiza fungi (AMF) in their rapid adaptation of plants toward heavy metal tolerance. Elsholtzia splendens is a Cu-tolerant plant that was used as a model plant to study seed morphological traits as well as traits related to seed germination and seedling growth. This was achieved after acclimation for two generations with 1000mg/kg CuSO 4 in either absence or presence of AMF. In the absence of AMF, acclimation to Cu for two generations significantly decreased surface area, perimeter length, and perimeter width of E. splendens seeds, as well as seedling survival rate and fresh weight of the radicle of seedlings. However, in the presence of AMF, both the germination rate and the germination index of E. splendens seeds as well as the fresh weights of hypocotyl and radicle significantly increased. These results revealed that after Cu acclimation treatment, seeds and seedlings that had been inoculated with AMF outperformed those without AMF inoculation under Cu addition, indicating that AMF can facilitate rapid adaptation of E. splendens to Cu stress. In addition, two generations of Cu acclimation under AMF absence significantly increased radicle length, while amplitude increased under AMF presence, indicating that the direct adaptive plasticity response of radicle length to Cu stress helps with the Cu stress adaptation of E. splendens. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).

    PubMed

    Lachenicht, M W; Clusella-Trullas, S; Boardman, L; Le Roux, C; Terblanche, J S

    2010-07-01

    The effects of acclimation temperature on insect thermal performance curves are generally poorly understood but significant for understanding responses to future climate variation and the evolution of these reaction norms. Here, in Acheta domesticus, we examine the physiological effects of 7-9 days acclimation to temperatures 4 degrees C above and below optimum growth temperature of 29 degrees C (i.e. 25, 29, 33 degrees C) for traits of resistance to thermal extremes, temperature-dependence of locomotion performance (jumping distance and running speed) and temperature-dependence of respiratory metabolism. We also examine the effects of acclimation on mitochondrial cytochrome c oxidase (CCO) enzyme activity. Chill coma recovery time (CRRT) was significantly reduced from 38 to 13min with acclimation at 33-25 degrees C, respectively. Heat knockdown resistance was less responsive than CCRT to acclimation, with no significant effects of acclimation detected for heat knockdown times (25 degrees C: 18.25, 29 degrees C: 18.07, 33 degrees C: 25.5min). Thermal optima for running speed were higher (39.4-40.6 degrees C) than those for jumping performance (25.6-30.9 degrees C). Acclimation temperature affected jumping distance but not running speed (general linear model, p=0.0075) although maximum performance (U(MAX)) and optimum temperature (T(OPT)) of the performance curves showed small or insignificant effects of acclimation temperature. However, these effects were sensitive to the method of analysis since analyses of T(OPT), U(MAX) and the temperature breadth (T(BR)) derived from non-linear curve-fitting approaches produced high inter-individual variation within acclimation groups and reduced variation between acclimation groups. Standard metabolic rate (SMR) was positively related to body mass and test temperature. Acclimation temperature significantly influenced the slope of the SMR-temperature reaction norms, whereas no variation in the intercept was found. The CCO

  4. Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation

    PubMed Central

    Nunn, Brook L.; Faux, Jessica F.; Hippmann, Anna A.; Maldonado, Maria T.; Harvey, H. Rodger; Goodlett, David R.; Boyd, Philip W.; Strzepek, Robert F.

    2013-01-01

    Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i

  5. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics?

    PubMed Central

    Horowitz, Michal

    2017-01-01

    The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence

  6. Study on tissue culture for Gelidium seedling

    NASA Astrophysics Data System (ADS)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  7. Hardwood Seedling Nutrition

    Treesearch

    C. B. Davey

    2005-01-01

    Hardwood seedling production presents several challenges that differ considerably from pine seedling production. Because of a nearly double water requirement, hardwoods need to be planted where they can be irrigated separately from pines. Nutrient requirements are generally higher for hardwoods, including especially nitrogen (N), phosphorus (P), calcium (Ca), and...

  8. Acclimation of Plant Populations to Shade: Photosynthesis, Respiration, and Carbon Use Efficiency

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2005-01-01

    Cloudy days cause an abrupt reduction in daily photosynthetic photon flux (PPF), but we have a poor understanding of how plants acclimate to this change. We used a unique lo-chamber, steady-state, gas-exchange system to continuously measure daily photosynthesis and night respiration of populations of a starch accumulator [tomato (Lycopersicone scukntum Mill. cv. Micro-Tina)] and a sucrose accumulator [lettuce (Latuca sativa L ev. Grand Rapids)] over 42 days. AI1 measurements were done at elevated CO2, (1200micr-/mol) avoid any CO2 limitations and included both shoots and roots. We integrated photosynthesis and respiration measurements separately to determine daily net carbon gain and carbon use efficiency (CUE) as the ratio of daily net C gain to total day-time C fixed over the 42-day period. After 16 to 20 days of growth in constant PPF, plants in some chambers were subjected to an abrupt PPF reduction to simulate shade or a series of cloudy days. The immediate effect and the long term acclimation rate w'ere assessed from canopy quantum yield and carbon use efficiency. The effect of shade on carbon use efficiency and acclimation was much slower than predicted by widely used growth models. It took 12 days for tomato populations to recover their original CUE and lettuce CUE never completely acclimated. Tomatoes, the starch accumulator, acclimated to low light more rapidly than lettuce, the sucrose accumulator. Plant growth models should be modified to include the photosynthesis/respiration imbalance and resulting inefficiency of carbon gain associated with changing PIT conditions on cloudy days.

  9. The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures

    PubMed Central

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Liu, Quan-Sheng; Zheng, Wei-Hong; Liu, Jin-Song; Wang, De-Hua

    2014-01-01

    Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta. PMID:24400087

  10. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance.

    PubMed

    LaBarge, Nicole; Yilmazel, Yasemin Dilsad; Hong, Pei-Ying; Logan, Bruce E

    2017-02-01

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm -3 d -1 ), methanol (25±9.7nmolcm -3 d -1 ), and a volatile fatty acid (VFA) mix (22±11nmolcm -3 d -1 ). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm -3 d -1 ), and MECs without GAC had the lowest rates (0.7±0.8nmolcm -3 d -1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  12. Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment.

    PubMed

    Park, Younghyun; Cho, Hyunwoo; Yu, Jaechul; Min, Booki; Kim, Hong Suck; Kim, Byung Goon; Lee, Taeho

    2017-06-01

    Microbial community structures and performance of air-cathode microbial fuel cells (MFCs) inoculated with activated sludge from domestic wastewater were investigated to evaluate the effects of three substrate pre-acclimation strategies: 1, serial pre-acclimation with acetate and glucose before supplying domestic wastewater; 2, one step pre-acclimation with acetate before supplying domestic wastewater; and 3, direct supply of domestic wastewater without any pre-acclimation. Strategy 1 showed much higher current generation (1.4mA) and Coulombic efficiency (33.5%) than strategies 2 (0.7mA and 9.4%) and 3 (0.9mA and 10.3%). Pyrosequencing showed that microbial communities were significantly affected by pre-acclimation strategy. Although Proteobacteria was the dominant phylum with all strategies, Actinobacteria was abundant when MFCs were pre-acclimated with glucose after acetate. Not only anode-respiring bacteria (ARB) in the genus Geobacter but also non-ARB belonging to the family Anaerolinaceae seemed to play important roles in air-cathode MFCs to produce electricity from domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All

  14. Changes in heart rate variability during the induction and decay of heat acclimation.

    PubMed

    Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P

    2014-10-01

    We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p < 0.001); esophageal (χ (2) = 1069.88, p < 0.001)] and heart rate (χ (2) = 1230.17, p < 0.001). Following the decay phase, 26, 40, and 60 % of the heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p < 0.001), compared to only 47 of the 102 at the end of the decay phase. Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.

  15. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria.

    PubMed

    Montgomery, Beronda L

    2016-07-01

    Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Light acclimation, retrograde signalling, cell death and immune defences in plants.

    PubMed

    Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł

    2013-04-01

    This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA). © 2012 Blackwell Publishing Ltd.

  17. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports.

    PubMed

    Périard, J D; Racinais, S; Sawka, M N

    2015-06-01

    Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Stoichiometric Network Analysis of Cyanobacterial Acclimation to Photosynthesis-Associated Stresses Identifies Heterotrophic Niches

    DOE PAGES

    Beck, Ashley; Bernstein, Hans; Carlson, Ross

    2017-06-19

    Metabolic acclimation to photosynthesis-associated stresses was examined in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 using integrated computational and photobioreactor analyses. A genome-enabled metabolic model, complete with measured biomass composition, was analyzed using ecological resource allocation theory to predict and interpret metabolic acclimation to irradiance, O 2, and nutrient stresses. Reduced growth efficiency, shifts in photosystem utilization, changes in photorespiration strategies, and differing byproduct secretion patterns were predicted to occur along culturing stress gradients. These predictions were compared with photobioreactor physiological data and previously published transcriptomic data and found to be highly consistent with observations, providing a systems-based rationale for themore » culture phenotypes. The analysis also indicated that cyanobacterial stress acclimation strategies created niches for heterotrophic organisms and that heterotrophic activity could enhance cyanobacterial stress tolerance by removing inhibitory metabolic byproducts. This study provides mechanistic insight into stress acclimation strategies in photoautotrophs and establishes a framework for predicting, designing, and engineering both axenic and photoautotrophic-heterotrophic systems as a function of controllable parameters.« less

  19. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways.

    PubMed

    Windisch, Heidrun Sigrid; Kathöver, Raphaela; Pörtner, Hans-Otto; Frickenhaus, Stephan; Lucassen, Magnus

    2011-11-01

    It is widely accepted that adaptation to the extreme cold has evolved at the expense of high thermal sensitivity. However, recent studies have demonstrated significant capacities for warm acclimation in Antarctic fishes. Here, we report on hepatic metabolic reorganization and its putative molecular background in the Antarctic eelpout (Pachycara brachycephalum) during warm acclimation to 5°C over 6 wk. Elevated capacities of cytochrome c oxidase suggest the use of warm acclimation pathways different from those in temperate fish. The capacity of this enzyme rose by 90%, while citrate synthase (CS) activity fell by 20% from the very beginning. The capacity of lipid oxidation by hydroxyacyl-CoA dehydrogenase remained constant, whereas phosphoenolpyruvate carboxykinase as a marker for gluconeogenesis displayed 40% higher activities. These capacities in relation to CS indicate a metabolic shift from lipid to carbohydrate metabolism. The finding was supported by large rearrangements of the related transcriptome, both functional genes and potential transcription factors. A multivariate analysis (canonical correspondence analyses) of various transcripts subdivided the incubated animals in three groups, one control group and two responding on short and long timescales, respectively. A strong dichotomy in the expression of peroxisome proliferator-activated receptors-1α and -β receptors was most striking and has not previously been reported. Altogether, we identified a molecular network, which responds sensitively to warming beyond the realized ecological niche. The shift from lipid to carbohydrate stores and usage may support warm hardiness, as the latter sustain anaerobic metabolism and may prepare for hypoxemic conditions that would develop upon warming beyond the present acclimation temperature.

  20. Improving Longleaf Pine Seedling Production By Controlling Seed and Seedling Pathogens

    Treesearch

    James P. Barnett; John M. McGilvray

    2002-01-01

    The demand for container longleaf pine (Pinus palustris Mill.) planting stock is increasing across the Lower Gulf Coastal Plain. Poor-quality seeds and seedling losses during nursery culture further constrain a limited seed supply. Improved seed efficiency will be necessary to meet the need for increased seedling production. Seed presowing treatments...

  1. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics.

    PubMed

    Sentis, Arnaud; Morisson, Julie; Boukal, David S

    2015-09-01

    Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran-dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food-chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm-acclimated larvae have a higher maximum predation rate than cold-acclimated ones, and (3) long-term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food-web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food-web stability. © 2015 John Wiley & Sons Ltd.

  2. The epigenetic landscape of transgenerational acclimation to ocean warming

    NASA Astrophysics Data System (ADS)

    Ryu, Taewoo; Veilleux, Heather D.; Donelson, Jennifer M.; Munday, Philip L.; Ravasi, Timothy

    2018-06-01

    Epigenetic inheritance is a potential mechanism by which the environment in one generation can influence the performance of future generations1. Rapid climate change threatens the survival of many organisms; however, recent studies show that some species can adjust to climate-related stress when both parents and their offspring experience the same environmental change2,3. Whether such transgenerational acclimation could have an epigenetic basis is unknown. Here, by sequencing the liver genome, methylomes and transcriptomes of the coral reef fish, Acanthochromis polyacanthus, exposed to current day (+0 °C) or future ocean temperatures (+3 °C) for one generation, two generations and incrementally across generations, we identified 2,467 differentially methylated regions (DMRs) and 1,870 associated genes that respond to higher temperatures within and between generations. Of these genes, 193 were significantly correlated to the transgenerationally acclimating phenotypic trait, aerobic scope, with functions in insulin response, energy homeostasis, mitochondrial activity, oxygen consumption and angiogenesis. These genes may therefore play a key role in restoring performance across generations in fish exposed to increased temperatures associated with climate change. Our study is the first to demonstrate a possible association between DNA methylation and transgenerational acclimation to climate change in a vertebrate.

  3. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.

    PubMed

    Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao

    2018-03-01

    Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physiological and morphological acclimation to height in cupressoid leaves of 100-year-old Chamaecyparis obtusa.

    PubMed

    Shiraki, Ayumi; Azuma, Wakana; Kuroda, Keiko; Ishii, H Roaki

    2017-10-01

    Cupressoid (scale-like) leaves are morphologically and functionally intermediate between stems and leaves. While past studies on height acclimation of cupressoid leaves have focused on acclimation to the vertical light gradient, the relationship between morphology and hydraulic function remains unexplored. Here, we compared physiological and morphological characteristics between treetop and lower-crown leaves of 100-year-old Chamaecyparis obtusa Endl. trees (~27 m tall) to investigate whether height-acclimation compensates for hydraulic constraints. We found that physiological acclimation of leaves was determined by light, which drove the vertical gradient of evaporative demand, while leaf morphology and anatomy were determined by height. Compared with lower-crown leaves, treetop leaves were physiologically acclimated to water stress. Leaf hydraulic conductance was not affected by height, and this contributed to higher photosynthetic rates of treetop leaves. Treetop leaves had higher leaf area density and greater leaf mass per area, which increase light interception but could also decrease hydraulic efficiency. We inferred that transfusion tissue flanking the leaf vein, which was more developed in the treetop leaves, contributes to water-stress acclimation and maintenance of leaf hydraulic conductance by facilitating osmotic adjustment of leaf water potential and efficient water transport from xylem to mesophyll. Our findings may represent anatomical adaptation that compensates for hydraulic constraints on physiological function with increasing height. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome.

    PubMed

    Jayasundara, Nishad; Gardner, Luke D; Block, Barbara A

    2013-11-01

    Little is known about the mechanisms underpinning thermal plasticity of vertebrate hearts. Bluefin tuna hearts offer a unique model to investigate processes underlying thermal acclimation. Their hearts, while supporting an endothermic physiology, operate at ambient temperature, and are presented with a thermal challenge when migrating to different thermal regimes. Here, we examined the molecular responses in atrial and ventricular tissues of Pacific bluefin tuna acclimated to 14°C, 20°C, and 25°C. Quantitative PCR studies showed an increase in sarcoplasmic reticulum Ca(2+) ATPase gene expression with cold acclimation and an induction of Na(+)/Ca(2+)-exchanger gene at both cold and warm temperatures. These data provide evidence for thermal plasticity of excitation-contraction coupling gene expression in bluefin tunas and indicate an increased capacity for internal Ca(2+) storage in cardiac myocytes at 14°C. Transcriptomic analysis showed profound changes in cardiac tissues with acclimation. A principal component analysis revealed that temperature effect was greatest on gene expression in warm-acclimated atrium. Overall data showed an increase in cardiac energy metabolism at 14°C, potentially compensating for cold temperature to optimize bluefin tuna performance in colder oceans. In contrast, metabolic enzyme activity and gene expression data suggest a decrease in ATP production at 25°C. Expression of genes involved in protein turnover and molecular chaperones was also decreased at 25°C. Expression of genes involved in oxidative stress response and programmed cell death suggest an increase in oxidative damage and apoptosis at 25°C, particularly in the atrium. These findings provide insights into molecular processes that may characterize cardiac phenotypes at upper thermal limits of teleosts.

  6. Changes in mixed-function oxidase system in the perfused liver of the cold-acclimated rat

    NASA Astrophysics Data System (ADS)

    Takano, T.; Miyazaki, Y.; Motohashi, Y.; Yamada, K.

    1986-09-01

    Changes in the hepatic cytochrome P-450-dependent drug-metabolizing system were studied in perfused livers obtained from cold-acclimated male Wistar rats after 30 days of cold exposure (4‡C) when using hexobarbital as a substrate. In fasted animals the cold-acclimated rats showed higher levels of hexobarbital metabolic rates compared to control rats, but there was no significant difference in fed animals. The maximum rates of hexobarbital metabolism produced by xylitol perfusion were also significantly higher in the perfused liver of cold-acclimated rats. It was concluded that the function of the cytochrome P-450 system for hexobarbital in cold-acclimated rats changed due to both an increase in the activity of the cytochrome P-450 system and to changes in regulation of the cytochrome P-450 system by the supply of reducing equivalents.

  7. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  8. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio).

    PubMed

    Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-09-01

    Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature

  9. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares).

    PubMed

    Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A

    2015-03-01

    Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of seedling size, El Niño drought, seedling density, and distance to nearest conspecific adult on 6-year survival of Ocotea whitei seedlings in Panamá.

    PubMed

    Gilbert, Gregory S; Harms, Kyle E; Hamill, David N; Hubbell, Stephen P

    2001-05-01

    We present an analysis of the long-term survival of two cohorts of seedlings of the tropical canopy tree Ocotea whitei (Lauraceae) on a 1-ha plot of mature, lowland moist forest on Barro Colorado Island, Panamá. In 1980, we counted an even-aged cohort of seedlings that germinated in 1979, then measured and tagged survivors in 1981. We also measured and tagged a second, smaller cohort of seedlings that germinated in 1981. We followed the subsequent survival of all seedlings through 1985. Seedling mortality was phenotypically, temporally, and spatially non-random. Important correlates of non-random mortality included: (1) seedling size and age, (2) an El Niño drought, and (3) biotic neighborhood. Larger and older seedlings survived better than smaller and younger seedlings, respectively, and the El Niño-related drought of 1982-1983 was associated with elevated mortality rates. Seedling density, which was strongly correlated with the proximity to the nearest conspecific adult, increased mortality. The observed mortality patterns suggest that processes consistent with the Janzen-Connell hypothesis operate during the recruitment phase of O. whitei population dynamics. However, the processes causing the observed density- and distance-dependent mortality may vary with factors such as total seed number, seedling size, and climatic variation, making it difficult to determine whether time-integrated seedling-to-adult spacing mechanisms other than self-thinning operate on a given plant population. After 6 years in the hectare studied, survivors remained densest and most numerous underneath the adult trees. We conclude that only long-term demographic data, collected at a variety of scales on a variety of species, will ultimately answer the question: do Janzen-Connell effects contribute substantially to structuring tropical forests?

  11. Lifting Pine Seedlings

    Treesearch

    C. B. Briscoe

    1960-01-01

    One of the factors preventing more widespread planting of the true pines (Pinus spp.) in the tropics is the present necessity of using potted stock instead of barerooted seedlings, such as are used throughout the temperate regions. Potted seedlings require more space, more equipment, more labor, and more money, both to produce in the nursery and to plant in the field...

  12. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  13. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans

    PubMed Central

    Amorim, Fabiano Trigueiro; Fonseca, Ivana T; Machado-Moreira, Christiano A; Magalhães, Flávio de Castro

    2015-01-01

    Abstract Heat acclimation results in systemic and cellular adaptions that reduce the negative effect of heat and, consequently, the risk of heat illness. Although the classical changes observed with heat acclimation lead to increased tolerance to exercise in the heat by reducing heat storage (reflected in reduced core and skin temperatures) and increasing whole-body capacity for heat dissipation (greater plasma volume, sweat output, and skin blood flow), it appears that heat acclimation also induces changes at the cellular level that might increase tolerance of the whole organism to a higher core temperature for the development of fatigue. Thermotolerance is a process that involves increased resilience to an otherwise lethal heat stress that follows a sublethal exposure to heat. Thermotolerance is believed to be the result of increased content of heat shock proteins (Hsp), specially a member of the 70 kDa family, Hsp72 kDa. In humans, we and others have reported that heat acclimation increases intracellular Hsp72 levels. This increase in intracellular Hsp72 could improve whole-body organism thermotolerance by maintaining intestinal epithelial tight junction barriers, by increasing resistance to gut-associated endotoxin translocation, or by reducing the inflammatory response. In this review, we will initially provide an overview of the physiological adaptations induced by heat acclimation and emphasize the main cellular changes that occur with heat acclimation associated with intracellular accumulation of Hsp72. Finally, we will present an argument for a role of whole-body heat acclimation in augmenting cellular thermotolerance, which may protect vital organs from deleterious effects of heat stress in humans. PMID:27227070

  14. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    NASA Technical Reports Server (NTRS)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  15. Cold-water acclimation does not modify whole-body fluid regulation during subsequent cold-water immersion.

    PubMed

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-06-01

    We investigated the impact of cold-water acclimation on whole-body fluid regulation using tracer-dilution methods to differentiate between the intracellular and extracellular fluid compartments. Seven euhydrated males [age 24.7 (8.7) years, mass 74.4 (6.4) kg, height 176.8 (7.8) cm, sum of eight skinfolds 107.4 (20.4) mm; mean (SD)] participated in a 14-day cold-water acclimation protocol, with 60-min resting cold-water stress tests [CWST; 18.1 (0.1) degrees C] on days 1, 8 and 15, and 90-min resting cold-water immersions [18.4 (0.4) degrees C] on intervening days. Subjects were immersed to the 4th intercostal space. Intracellular and extracellular fluid compartments, and plasma protein, electrolyte and hormone concentrations were investigated. During the first CWST, the intracellular fluid (5.5%) and plasma volumes were reduced (6.1%), while the interstitial fluid volume was simultaneously expanded (5.4%). This pattern was replicated on days 8 and 15, but did not differ significantly among test days. Acclimation did not produce significant changes in the pre-immersion distribution of total body water, or changes in plasma osmolality, total protein, electrolyte, atrial natriuretic peptide or aldosterone concentrations. Furthermore, a 14-day cold-water acclimation regimen did not elicit significant changes in body-fluid distribution, urine production, or the concentrations of plasma protein, electrolytes or the fluid-regulatory hormones. While acclimation trends were not evident, we have confirmed that fluid from extravascular cells is displaced into the interstitium during acute cold-water immersion, both before and after cold acclimation.

  16. Cardiorespiratory upregulation during seawater acclimation in rainbow trout: effects on gastrointestinal perfusion and postprandial responses.

    PubMed

    Brijs, Jeroen; Gräns, Albin; Ekström, Andreas; Olsson, Catharina; Axelsson, Michael; Sandblom, Erik

    2016-05-01

    Increased gastrointestinal blood flow is essential for euryhaline fishes to maintain osmotic homeostasis during the initial phase of a transition from freshwater to seawater. However, the cardiorespiratory responses and hemodynamic changes required for a successful long-term transition to seawater remain largely unknown. In the present study, we simultaneously measured oxygen consumption rate (ṀO2), cardiac output (CO), heart rate (HR), and gastrointestinal blood flow (GBF) in rainbow trout (Oncorhynchus mykiss) acclimated to either freshwater or seawater for at least 6 wk. Seawater-acclimated trout displayed significantly elevated ṀO2 (day: 18%, night: 19%), CO (day: 22%, night: 48%), and GBF (day: 96%, night: 147%), demonstrating that an overall cardiorespiratory upregulation occurs during seawater acclimation. The elevated GBF was achieved via a combination of increased CO, mediated through elevated stroke volume (SV), and a redistribution of blood flow to the gastrointestinal tract. Interestingly, virtually all of the increase in CO of seawater-acclimated trout was directed to the gastrointestinal tract. Although unfed seawater-acclimated trout displayed substantially elevated cardiorespiratory activity, the ingestion of a meal resulted in a similar specific dynamic action (SDA) and postprandial GBF response as in freshwater-acclimated fish. This indicates that the capacity for the transportation of absorbed nutrients, gastrointestinal tissue oxygen delivery, and acid-base regulation is maintained during digestion in seawater. The novel findings presented in this study clearly demonstrate that euryhaline fish upregulate cardiovascular function when in seawater, while retaining sufficient capacity for the metabolic and cardiovascular changes associated with the postprandial response. Copyright © 2016 the American Physiological Society.

  17. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster.

    PubMed

    Aggarwal, Dau Dayal; Ranga, Poonam; Kalra, Bhawna; Parkash, Ravi; Rashkovetsky, Eugenia; Bantis, Leonidas E

    2013-09-01

    We tested the hypothesis whether developmental acclimation at ecologically relevant humidity regimes (40% and 75% RH) affects desiccation resistance of pre-adults (3rd instar larvae) and adults of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Additionally, we untangled whether drought (40% RH) acclimation affects cold-tolerance in the adults of D. melanogaster. We observed that low humidity (40% RH) acclimated individuals survived significantly longer (1.6-fold) under lethal levels of desiccation stress (0-5% RH) than their counter-replicates acclimated at 75% RH. In contrast to a faster duration of development of 1st and 2nd instar larvae, 3rd instar larvae showed a delayed development at 40% RH as compared to their counterparts grown at 75% RH. Rearing to low humidity conferred an increase in bulk water, hemolymph content and dehydration tolerance, consistent with increase in desiccation resistance for replicates grown at 40% as compared to their counterparts at 75% RH. Further, we found a trade-off between the levels of carbohydrates and body lipid reserves at 40% and 75% RH. Higher levels of carbohydrates sustained longer survival under desiccation stress for individuals developed at 40% RH than their congeners at 75% RH. However, the rate of carbohydrate utilization did not differ between the individuals reared at these contrasting humidity regimes. Interestingly, our results of accelerated failure time (AFT) models showed substantial decreased death rates at a series of low temperatures (0, -2, or -4°C) for replicates acclimated at 40% RH as compared to their counter-parts at 75% RH. Therefore, our findings indicate that development to low humidity conditions constrained on multiple physiological mechanisms of water-balance, and conferred cross-tolerance towards desiccation and cold stress in D. melanogaster. Finally, we suggest that the ability of generalist Drosophila species to tolerate fluctuations in humidity might aid in their existence and

  18. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Abstract Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  19. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Background Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3′-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. Results We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. Conclusions The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy. PMID:23531055

  20. Thyroid hormone actions are temperature-specific and regulate thermal acclimation in zebrafish (Danio rerio).

    PubMed

    Little, Alexander G; Kunisue, Tatsuya; Kannan, Kurunthachalam; Seebacher, Frank

    2013-03-26

    Thyroid hormone (TH) is best known for its role in development in animals, and for its control of metabolic heat production (thermogenesis) during cold acclimation in mammals. It is unknown whether the regulatory role of TH in thermogenesis is derived in mammals, or whether TH also mediates thermal responses in earlier vertebrates. Ectothermic vertebrates show complex responses to temperature variation, but the mechanisms mediating these are poorly understood. The molecular mechanisms underpinning TH action are very similar across vertebrates, suggesting that TH may also regulate thermal responses in ectotherms. We therefore aimed to determine whether TH regulates thermal acclimation in the zebrafish (Danio rerio). We induced hypothyroidism, followed by supplementation with 3,5-diiodothyronine (T2) or 3,5,3'-triiodothyronine (T3) in zebrafish exposed to different chronic temperatures. We measured whole-animal responses (swimming performance and metabolic rates), tissue-specific regulatory enzyme activities, gene expression, and free levels of T2 and T3. We found that both T3 and the lesser-known T2, regulate thermal acclimation in an ectotherm. To our knowledge, this is the first such study to show this. Hypothyroid treatment impaired performance measures in cold-acclimated but not warm-acclimated individuals, whereas supplementation with both TH metabolites restored performance. TH could either induce or repress responses, depending on the actual temperature and thermal history of the animal. The low sensitivity to TH at warm temperatures could mean that increasing temperatures (that is, global warming) will reduce the capacity of animals to regulate their physiologies to match demands. We suggest that the properties that underlie the role of TH in thermal acclimation (temperature sensitivity and metabolic control) may have predisposed this hormone for a regulatory role in the evolution of endothermy.

  1. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  2. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls

    PubMed Central

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2018-01-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, the declining characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis, and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area was primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. PMID:25158785

  3. Combined effects of temperature acclimation and cadmium exposure on mitochondrial function in eastern oysters Crassostrea virginica gmelin (Bivalvia: Ostreidae).

    PubMed

    Cherkasov, Anton S; Ringwood, Amy H; Sokolova, Inna M

    2006-09-01

    Cadmium and temperature have strong impacts on the metabolic physiology of aquatic organisms. To analyze the combined impact of these two stressors on aerobic capacity, effects of Cd exposure (50 microg/L) on mitochondrial function were studied in oysters (Crassostrea virginica) acclimated to 12 and 20 degrees C in winter and to 20 and 28 degrees C in fall. Cadmium exposure had different effects on mitochondrial bioenergetics of oysters depending on the acclimation temperature. In oysters acclimated to 12 degrees C, Cd exposure resulted in elevated intrinsic rates of mitochondrial oxidation, whereas at 28 degrees C, a rapid and pronounced decrease of mitochondrial oxidative capacity was found in Cd-exposed oysters. At the intermediate acclimation temperature (20 degrees C), effects of Cd exposure on intrinsic rates of mitochondrial oxidation were negligible. Degree of coupling significantly decreased in mitochondria from 28 degrees C-acclimated oysters but not in that from 12 degrees C- or 20 degrees C-acclimated oysters. Acclimation at elevated temperatures also increased sensitivity of oyster mitochondria to extramitochondrial Cd. Variation in mitochondrial membrane potential explained 41% of the observed variation in mitochondrial adenosine triphosphate synthesis and proton leak between different acclimation groups of oysters. Temperature-dependent sensitivity of metabolic physiology to Cd has significant implications for toxicity testing and for extrapolation of laboratory studies to field populations of aquatic poikilotherms, indicating the importance of taking into account the thermal regime of the environment.

  4. Global Transcriptome Analysis Reveals Acclimation-Primed Processes Involved in the Acquisition of Desiccation Tolerance in Boea hygrometrica.

    PubMed

    Zhu, Yan; Wang, Bo; Phillips, Jonathan; Zhang, Zhen-Nan; Du, Hong; Xu, Tao; Huang, Lian-Cheng; Zhang, Xiao-Fei; Xu, Guang-Hui; Li, Wen-Long; Wang, Zhi; Wang, Ling; Liu, Yong-Xiu; Deng, Xin

    2015-07-01

    Boea hygrometrica resurrection plants require a period of acclimation by slow soil-drying in order to survive a subsequent period of rapid desiccation. The molecular basis of this observation was investigated by comparing gene expression profiles under different degrees of water deprivation. Transcripts were clustered according to the expression profiles in plants that were air-dried (rapid desiccation), soil-dried (gradual desiccation), rehydrated (acclimated) and air-dried after acclimation. Although phenotypically indistinguishable, it was shown by principal component analysis that the gene expression profiles in rehydrated, acclimated plants resemble those of desiccated plants more closely than those of hydrated acclimated plants. Enrichment analysis based on gene ontology was performed to deconvolute the processes that accompanied desiccation tolerance. Transcripts associated with autophagy and α-tocopherol accumulation were found to be activated in both air-dried, acclimated plants and soil-dried non-acclimated plants. Furthermore, transcripts associated with biosynthesis of ascorbic acid, cell wall catabolism, chaperone-assisted protein folding, respiration and macromolecule catabolism were activated and maintained during soil-drying and rehydration. Based on these findings, we hypothesize that activation of these processes leads to the establishment of an optimal physiological and cellular state that enables tolerance during rapid air-drying. Our study provides a novel insight into the transcriptional regulation of critical priming responses to enable survival following rapid dehydration in B. hygrometrica. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Morphological and physiological evaluations of seedling quality

    Treesearch

    Diane L. Haase

    2007-01-01

    Seedling quality and subsequent field performance can be influenced by various stress factors. Measuring seedling quality can help to identify possible crop problems in order to make informed decisions for culturing, lifting, storing, and planting. In addition, seedling quality data can help seedling growers and users to better understand annual patterns among species...

  6. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    NASA Astrophysics Data System (ADS)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  7. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons.

    PubMed

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and

  8. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.

    PubMed

    Costa E Silva, F; Shvaleva, A; Broetto, F; Ortuño, M F; Rodrigues, M L; Almeida, M H; Chaves, M M; Pereira, J S

    2009-01-01

    We tested the hypothesis that Eucalyptus globulus Labill. genotypes that are more resistant to dry environments might also exhibit higher cold tolerances than drought-sensitive plants. The effect of low temperatures was evaluated in acclimated and unacclimated ramets of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of E. globulus. We studied the plants' response via leaf gas exchanges, leaf water and osmotic potentials, concentrations of soluble sugars, several antioxidant enzymes and leaf electrolyte leakage. Progressively lowering air temperatures (from 24/16 to 10/-2 degrees C, day/night) led to acclimation of both clones. Acclimated ramets exhibited higher photosynthetic rates, stomatal conductances and lower membrane relative injuries when compared to unacclimated ramets. Moreover, low temperatures led to significant increases of soluble sugars and antioxidant enzymes activity (glutathione reductase, ascorbate peroxidase and superoxide dismutases) of both clones in comparison to plants grown at control temperature (24/16 degrees C). On the other hand, none of the clones, either acclimated or not, exhibited signs of photoinhibition under low temperatures and moderate light. The main differences in the responses to low temperatures between the two clones resulted mainly from differences in carbon metabolism, including a higher accumulation of soluble sugars in the drought-resistant clone CN5 as well as a higher capacity for osmotic regulation, as compared to the drought-sensitive clone ST51. Although membrane injury data suggested that both clones had the same inherent freezing tolerance before and after cold acclimation, the results also support the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a short period can allow a clone to maintain an undamaged leaf surface area along sudden frost events, increasing

  9. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    PubMed Central

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  10. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene

  11. Effectiveness of exercise-heat acclimation for preventing heat illness in the workplace.

    PubMed

    Yamazaki, Fumio

    2013-09-01

    The incidence of heat-related illness in the workplace is linked to whether or not workers have acclimated to a hot environment. Heat acclimation improves endurance work performance in the heat and thermal comfort at a given work rate. These improvements are achieved by increased sweating and skin blood flow responses, better fluid balance and cardiovascular stability. As a practical means of acclimatizing the body to heat stress, daily aerobic exercise training is recommended since thermoregulatory capacity and blood volume increase with physical fitness. In workers wearing personal protective suits in hot environments, however, little psychophysiological benefit is received from short-term exercise training and/or heat acclimation because of the ineffectiveness of sweating for heat dissipation and the aggravation of thermal discomfort with the accumulation of sweat within the suit. For a manual laborer who works under uncompensable heat stress, better management of the work rate, the work environment and health is required.

  12. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.

    PubMed

    Cho, Hyeyoung; Ra, Chae-Hun; Kim, Sung-Koo

    2014-02-28

    For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

  13. Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish

    PubMed Central

    Scott, Graham R.; Johnston, Ian A.

    2012-01-01

    Global warming is intensifying interest in the mechanisms enabling ectothermic animals to adjust physiological performance and cope with temperature change. Here we show that embryonic temperature can have dramatic and persistent effects on thermal acclimation capacity at multiple levels of biological organization. Zebrafish embryos were incubated until hatching at control temperature (TE = 27 °C) or near the extremes for normal development (TE = 22 °C or 32 °C) and were then raised to adulthood under common conditions at 27 °C. Short-term temperature challenge affected aerobic exercise performance (Ucrit), but each TE group had reduced thermal sensitivity at its respective TE. In contrast, unexpected differences arose after long-term acclimation to 16 °C, when performance in the cold was ∼20% higher in both 32 °C and 22 °C TE groups compared with 27 °C TE controls. Differences in performance after acclimation to cold or warm (34 °C) temperatures were partially explained by variation in fiber type composition in the swimming muscle. Cold acclimation changed the abundance of 3,452 of 19,712 unique and unambiguously identified transcripts detected in the fast muscle using RNA-Seq. Principal components analysis differentiated the general transcriptional responses to cold of the 27 °C and 32 °C TE groups. Differences in expression were observed for individual genes involved in energy metabolism, angiogenesis, cell stress, muscle contraction and remodeling, and apoptosis. Therefore, thermal acclimation capacity is not fixed and can be modified by temperature during early development. Developmental plasticity may thus help some ectothermic organisms cope with the more variable temperatures that are expected under future climate-change scenarios. PMID:22891320

  14. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial?

    PubMed

    Gibbs, A G; Louie, A K; Ayala, J A

    1998-01-01

    The desert fruit fly Drosophila mojavensis experiences environmental conditions of high temperature and low humidity. To understand the physiological mechanisms allowing these small insects to survive in such stressful conditions, we studied the effects of thermal acclimation on cuticular lipids and rates of water loss of adult D. mojavensis. Mean hydrocarbon chain length increased at higher temperatures, but cuticular lipid melting temperature (Tm) did not. Lipid quantity doubled in the first 14 days of adult life, but was unaffected by acclimation temperature. Despite these changes in cuticular properties, organismal rates of water loss were unaffected by either acclimation temperature or age. Owing to the smaller body size of warm-acclimated flies, D. mojavensis reared for 14 days at 33 degrees C lost water more rapidly on a mass-specific basis than flies acclimated to 25 degrees C or 17 degrees C. Thus, apparently adaptive changes in cuticular lipids do not necessarily result in reduced rates of water loss. Avoidance of high temperatures and desiccating conditions is more likely to contribute to survival in nature than changes in water balance mediated by surface lipids.

  15. Acclimation of isoprene emission and photosynthesis to growth temperature in hybrid aspen: resolving structural and physiological controls.

    PubMed

    Rasulov, Bahtijor; Bichele, Irina; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2015-04-01

    Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area-based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications. © 2014 John Wiley & Sons Ltd.

  16. Effects of prolonged acclimation to cold on the extra--and intracellular acid-base status in the land snail Helix lucorum (L.).

    PubMed

    Staikou, A; Stiakakis, M; Michaelidis, B

    2001-01-01

    The aim of this study was to examine the effect of prolonged acclimation to cold on the acid-base status of extra- and intracellular fluids in the land snail Helix lucorum. For this purpose, acid-base parameters in the hemolymph and tissues were determined. In addition, the buffer values of hemolymph and tissues were determined in order to examine whether they change in the snails during acclimation to cold. According to the results presented, there is an inverse pH-temperature relationship in the hemolymph within the first day of acclimation, which is consistent with alphastat regulation. The Pco2 decreased, and pH in the hemolymph (pH(e)) increased by 0.32 U within the first day of acclimation to cold, which corresponds to a change of 0.013 U degrees C(-1). After the first day of acclimation, Pco2 increased in the hemolymph, resulting in a significant drop in pH(e) by 90 d of acclimation to cold. Acclimation of snails to low temperatures did not change the buffer value of the hemolymph. Also, intracellular pH (pH(i)) and intracellular buffer values remained stable during acclimation to cold for prolonged periods. The latter results in conjunction with those obtained by the in vitro determination of the passive component of intracellular fluids indicate an active regulation of pH(i) in H. lucorum during acclimation to cold.

  17. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome

    PubMed Central

    MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  18. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    PubMed

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Container hardwood seedling production

    Treesearch

    John McRae

    2005-01-01

    Container production of hardwood seedlings requires larger cavities, more space, and the ability to easily sort seedlings (as compared to conifers) very early during the germination phase of production. This presentation demonstrates the most productive system, based upon past experience, to commercially produce container hardwoods. The container system of choice is...

  20. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.

    PubMed

    Aspinwall, Michael J; Drake, John E; Campany, Courtney; Vårhammar, Angelica; Ghannoum, Oula; Tissue, David T; Reich, Peter B; Tjoelker, Mark G

    2016-10-01

    Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9-m tall whole-tree chambers tracking ambient air temperature (Tair ) or ambient Tair  + 3°C (i.e. 'warmed'). We measured light- and CO2 -saturated net photosynthesis (Amax ) and night-time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient-grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source-sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Growing Longleaf Pine Seedlings in Containers

    Treesearch

    James P. Barnett; John M. McGilvray

    2000-01-01

    We provide basic guidelines for nursery production of longleaf pine ( Pinus palustris P. Mill. [Pinaceae]) seedlings in containers. The best seedlings are spring sown, grown outdoors in full sun in cavities with a 100-ml (6 in3) volume, 11-cm (4.5 in) depth, and a density around 535 seedlings per m2 (...

  2. The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.

    PubMed

    Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L

    2013-02-01

    Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. How to handle 'poor' foodstuffs: Acclimation of the common cockle (Cerastoderma edule) to detrital diets

    NASA Astrophysics Data System (ADS)

    Arambalza, Udane; Ibarrola, Irrintzi; Navarro, Enrique; Urrutxurtu, Iñaki; Urrutia, Miren B.

    2018-04-01

    As an approach to elucidating the "value" of detritus as a food source for bivalves, we analysed the capability of the common cockle (Cerastoderma edule) to modulate feeding and digestive rates during acclimation to low and high food rations of detrital diets with either low (Juncus maritimus) or high digestibility (Enteromorpha spp.). On acclimation day 3, feeding rates were similar in cockles fed different detrita; however, the absorption rate was higher in cockles fed Enteromorpha spp. With J. maritimus, rising food rations promoted an exponential decrease in absorption efficiency, whereas with Enteromorpha spp., absorption efficiency was only marginally reduced. During acclimation, cockles improved the rate at which both detritus were assimilated by means of increasing ingestion rates while maintaining absorption efficiency. When the time-course of digestive carbohydrase activities was monitored during acclimation to either detritus or phytoplankton (Isochrysis galbana), we found that only phytoplankton promoted the induction of cellulase activity in the digestive glands of cockles. This response in cockles fed phytoplankton promoted an increase in the digestibility of Enteromorpha spp., but had no effect on the digestibility of J. maritimus.

  4. Forest trees filter chronic wind-signals to acclimate to high winds.

    PubMed

    Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem

    2016-05-01

    Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Micro-topographic hydrologic variability due to vegetation acclimation under climate change

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2012-12-01

    Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.

  6. The effects of a heat acclimation protocol in persons with spinal cord injury.

    PubMed

    Trbovich, Michelle B; Kiratli, Jenny B; Price, Mike J

    2016-12-01

    Persons without spinal cord injury (SCI) physiologically acclimate between seven to fourteen consecutive days of exercise in the heat. Decreased resting and exercise core temperature, decreased heart rate, increased plasma volume and increased thermal comfort during exercise are changes consistent with heat acclimation. Autonomic dysfunction after SCI impairs heat dissipation through sweating and vasodilation. The purpose of this study is to determine if seven consecutive days of exercise in the heat would result in physiologic changes consistent with heat acclimation in persons with SCI. Ten persons with SCI divided into two groups: tetraplegia (n=5) and paraplegia (n=5) exercised in 35°C using an arm ergometer at 50% W peak for 30min followed by 15min rest. This protocol was repeated over seven consecutive days. Heart rate (HR), skin temperature, aural temperature (T aur ), rate of perceived exertion (RPE), rate of perceived thermal strain (RPTS), and plasma volume (PV) were measured throughout the protocol. There were no significant differences in resting T aur exercise T aur , mean skin temperature, HR, PV, RPE or RPTS over the 7 days for either the tetraplegic or paraplegic group. Participants with SCI did not demonstrate the ability to dissipate heat more efficiently over 7 days of exercise at 35°C. The lack of heat acclimation seen in persons with SCI has implications for the athlete and non-athlete alike. For the SCI athlete, inability to acclimate will impair performance and endurance especially in warm environments, compared to the person without SCI. For the SCI non-athlete, there is a greater risk of heat-related illness in warm environments that can negatively affect participation in outdoor activities and thus quality of life. Published by Elsevier Ltd.

  7. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  8. Acclimation of mechanical and hydraulic functions in trees: impact of the thigmomorphogenetic process

    PubMed Central

    Badel, Eric; Ewers, Frank W.; Cochard, Hervé; Telewski, Frank W.

    2015-01-01

    The secondary xylem (wood) of trees mediates several functions including water transport and storage, mechanical support and storage of photosynthates. The optimal structures for each of these functions will most likely differ. The complex structure and function of xylem could lead to trade-offs between conductive efficiency, resistance to embolism, and mechanical strength needed to count for mechanical loading due to gravity and wind. This has been referred to as the trade-off triangle, with the different optimal solutions to the structure/function problems depending on the environmental constraints as well as taxonomic histories. Thus, the optimisation of each function will lead to drastically different anatomical structures. Trees are able to acclimate the internal structure of their trunk and branches according to the stress they experience. These acclimations lead to specific structures that favor the efficiency or the safety of one function but can be antagonistic with other functions. Currently, there are no means to predict the way a tree will acclimate or optimize its internal structure in support of its various functions under differing environmental conditions. In this review, we will focus on the acclimation of xylem anatomy and its resulting mechanical and hydraulic functions to recurrent mechanical strain that usually result from wind-induced thigmomorphogenesis with a special focus on the construction cost and the possible trade-off between wood functions. PMID:25954292

  9. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  10. Thermal acclimation of interactions: differential responses to temperature change alter predator–prey relationship

    PubMed Central

    Grigaltchik, Veronica S.; Ward, Ashley J. W.; Seebacher, Frank

    2012-01-01

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator–prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10–30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator–prey interactions can be a mechanism by which global warming affects ecological communities. PMID:22859598

  11. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavado, Ramon; Rimoldi, John M.; Schlenk, Daniel

    2009-03-01

    Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but onlymore » NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation.« less

  12. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures.

    PubMed

    Dalvi, Rishikesh S; Das, Tilak; Debnath, Dipesh; Yengkokpam, Sona; Baruah, Kartik; Tiwari, Lalchand R; Pal, Asim K

    2017-04-01

    We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen1

    PubMed Central

    Welling, Annikki; Moritz, Thomas; Palva, E. Tapio; Junttila, Olavi

    2002-01-01

    Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula × Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation. PMID:12177476

  14. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    PubMed

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  16. High-altitude ancestry and hypoxia acclimation have distinct effects on exercise capacity and muscle phenotype in deer mice

    PubMed Central

    Lui, Mikaela A.; Mahalingam, Sajeni; Patel, Paras; Connaty, Alex D.; Ivy, Catherine M.; Cheviron, Zachary A.; Storz, Jay F.; McClelland, Grant B.

    2015-01-01

    The hypoxic and cold environment at high altitudes requires that small mammals sustain high rates of O2 transport for exercise and thermogenesis while facing a diminished O2 availability. We used laboratory-born and -raised deer mice (Peromyscus maniculatus) from highland and lowland populations to determine the interactive effects of ancestry and hypoxia acclimation on exercise performance. Maximal O2 consumption (V̇o2max) during exercise in hypoxia increased after hypoxia acclimation (equivalent to the hypoxia at ∼4,300 m elevation for 6–8 wk) and was consistently greater in highlanders than in lowlanders. V̇o2max during exercise in normoxia was not affected by ancestry or acclimation. Highlanders also had consistently greater capillarity, oxidative fiber density, and maximal activities of oxidative enzymes (cytochrome c oxidase and citrate synthase) in the gastrocnemius muscle, lower lactate dehydrogenase activity in the gastrocnemius, and greater cytochrome c oxidase activity in the diaphragm. Hypoxia acclimation did not affect any of these muscle traits. The unique gastrocnemius phenotype of highlanders was associated with higher mRNA and protein abundances of peroxisome proliferator-activated receptor γ (PPARγ). Vascular endothelial growth factor (VEGFA) transcript abundance was lower in highlanders, and hypoxia acclimation reduced the expression of numerous genes that regulate angiogenesis and energy metabolism, in contrast to the observed population differences in muscle phenotype. Lowlanders exhibited greater increases in blood hemoglobin content, hematocrit, and wet lung mass (but not dry lung mass) than highlanders after hypoxia acclimation. Genotypic adaptation to high altitude, therefore, improves exercise performance in hypoxia by mechanisms that are at least partially distinct from those underlying hypoxia acclimation. PMID:25695288

  17. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus

    PubMed Central

    Seale, Lucia A.; Gilman, Christy L.; Moorman, Benjamin P.; Berry, Marla J.; Grau, E. Gordon; Seale, Andre P.

    2014-01-01

    Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity. PMID:24854764

  18. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zak, Megan A.; Regish, Amy M.; McCormick, Stephen; Manzon, Richard G.

    2017-01-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19 °C) or below (8 °C) the thermal optimum (13 °C) and exposure to exogenous thyroid hormone (60 µg T4/g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation.

  19. Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warm- but not cold-acclimated lake whitefish (Coregonus clupeaformis).

    PubMed

    Zak, Megan A; Regish, Amy M; McCormick, Stephen D; Manzon, Richard G

    2017-06-01

    Thermal acclimation is known to elicit metabolic adjustments in ectotherms, but the cellular mechanisms and endocrine control of these shifts have not been fully elucidated. Here we examined the relationship between thermal acclimation, thyroid hormones and oxidative metabolism in juvenile lake whitefish. Impacts of thermal acclimation above (19°C) or below (8°C) the thermal optimum (13°C) and exposure to exogenous thyroid hormone (60µg T 4 /g body weight) were assessed by quantifying citrate synthase and cytochrome c oxidase activities in liver, red muscle, white muscle and heart. Warm acclimation decreased citrate synthase activity in liver and elevated both citrate synthase and cytochrome c oxidase activities in red muscle. In contrast, induction of hyperthyroidism in warm-acclimated fish stimulated a significant increase in liver citrate synthase and heart cytochrome c oxidase activities, and a decrease in the activity of both enzymes in red muscle. No change in citrate synthase or cytochrome c oxidase activities was observed following cold acclimation in either the presence or absence of exogenous thyroid hormones. Collectively, our results indicate that thyroid hormones influence the activity of oxidative enzymes more strongly in warm-acclimated than in cold-acclimated lake whitefish, and they may play a role in mediating metabolic adjustments observed during thermal acclimation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. [Seedling index of Salvia miltiorrhiza and its simulation model].

    PubMed

    Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan

    2012-10-01

    Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.

  1. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    PubMed Central

    Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.

    2013-01-01

    Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089

  2. Increased Brown Adipose Tissue Oxidative Capacity in Cold-Acclimated Humans

    PubMed Central

    Blondin, Denis P.; Labbé, Sébastien M.; Tingelstad, Hans C.; Noll, Christophe; Kunach, Margaret; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E.; Carpentier, André C.

    2014-01-01

    Context: Recent studies examining brown adipose tissue (BAT) metabolism in adult humans have provided convincing evidence of its thermogenic potential and role in clearing circulating glucose and fatty acids under acute mild cold exposure. In contrast, early indications suggest that BAT metabolism is defective in obesity and type 2 diabetes, which may have important pathological and therapeutic implications. Although many mammalian models have demonstrated the phenotypic flexibility of this tissue through chronic cold exposure, little is known about the metabolic plasticity of BAT in humans. Objective: Our objective was to determine whether 4 weeks of daily cold exposure could increase both the volume of metabolically active BAT and its oxidative capacity. Design: Six nonacclimated men were exposed to 10°C for 2 hours daily for 4 weeks (5 d/wk), using a liquid-conditioned suit. Using electromyography combined with positron emission tomography with [11C]acetate and [18F]fluorodeoxyglucose, shivering intensity and BAT oxidative metabolism, glucose uptake, and volume before and after 4 weeks of cold acclimation were examined under controlled acute cold-exposure conditions. Results: The 4-week acclimation protocol elicited a 45% increase in BAT volume of activity (from 66 ± 30 to 95 ± 28 mL, P < .05) and a 2.2-fold increase in cold-induced total BAT oxidative metabolism (from 0.725 ± 0.300 to 1.591 ± 0.326 mL·s−1, P < .05). Shivering intensity was not significantly different before compared with after acclimation (2.1% ± 0.7% vs 2.0% ± 0.5% maximal voluntary contraction, respectively). Fractional glucose uptake in BAT increased after acclimation (from 0.035 ± 0.014 to 0.048 ± 0.012 min−1), and net glucose uptake also trended toward an increase (from 163 ± 60 to 209 ± 50 nmol·g−1·min−1). Conclusions: These findings demonstrate that daily cold exposure not only increases the volume of metabolically active BAT but also increases its oxidative

  3. Effects of Lifting Method, Seedling Size, and Herbaceous Weed Control on First-Year Growth of Loblolly Pine Seedlings

    Treesearch

    Jason P. Reynolds; Thomas A. Greene; John R. Britt

    2002-01-01

    In fall, 1999, an experiment was installed to measure the effects and interactions of lifting method, seedling size, and weed competition on growth of loblolly pine (P. teada) seedlings during the first two growing seasons. Loblolly pine seedlings grown at two bed densities and lifted either by hand or machine were planted in southwestern Georgia...

  4. Spring Burn Aids Longleaf Pine Seedling Height Growth

    Treesearch

    William R. Maple

    1977-01-01

    Prescribed burning in midspring may stimulate height growth of longleaf pine seedlings. Seedlings were planted on sandy and clayey sites that were prescribed burned 2 years later. Treatments were cool, moderate, and hot burns and an unburned control. The hot, May burn significantly increased height growth of seedlings on the sandy site. The number of seedlings with 50...

  5. Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine.

    PubMed

    Cecconi, Daniela; Milli, Alberto; Rinalducci, Sara; Zolla, Lello; Zapparoli, Giacomo

    2009-09-01

    Cultures of Oenococcus oeni, the most important malolactic bacterium, are used to induce malolactic fermentation in wine. Survival assays in two different wines confirmed that cells acclimated for 24 h in half-strength wine-like medium (acclimation medium) enhanced the malolactic performances. To investigate the effect of the pre-incubation phase on cell physiology, a proteomic study was carried out. Total protein extracts of acclimated and non-acclimated cell cultures (control) were analyzed by 2-D-PAGE. A total of 20 out of approximately 400 spots varied significantly. All the spots were identified by MS analysis and most of them were proteins involved in metabolism, transcription/translation processes and stress response. The results revealed the different physiological status between non-acclimated and acclimated cells explaining, in part, their different behavior in wine. Regulation of stress proteins such as heat and cold shock proteins was involved. Moreover, the availability of sugars and amino acids (even if at low concentration) in acclimation medium determined a modulation of energy metabolism enhancing the resistance to stressful conditions (as those that cells find in wine when inoculated). Finally, this proteomic study increased knowledge concerning the physiological changes in freeze-dried culture occurring with pre-inoculation procedures.

  6. Fertilization Tests With Potted Red Oak Seedlings

    Treesearch

    Robert E. Phares

    1971-01-01

    Soil-pot tests with red oak seedlings indicated that forest soils supplied more N and P and produced better seedling growth than old-field soils. Growth was closely correlated with content of N and P in the foliage. K fertilization did not improve seedling growth on any of the soils studied.

  7. Tolerance of loblolly pine seedlings to glyphosate

    Treesearch

    James D. Haywood; Thomas W. Melder

    1990-01-01

    Broadcasting glyphosate herbicide over loblolly pine (Pinus taeda L.) may provide enough early-season weed control to allow seedlings to establish themselves more rapidly, but glyphosate can, injure young trees. To examine the question of seedling injury, four rates of glyphosate were broadcast evenly over planted loblolly pine seedlings, competing...

  8. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species

    PubMed Central

    Zhou, Shuang-Xi; Medlyn, Belinda E.; Prentice, Iain Colin

    2016-01-01

    Background and Aims Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Methods Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent ‘drying-down’, continuing until stomata were closed. Key Results Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (Vcmax′) and maximum electron transport rate (Jmax′). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in Vcmax′ and Jmax′; however, after 4 months, Vcmax′ and Jmax′ had recovered. Species differed in their degree of Vcmax′ acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the Vcmax′ and ‘true’ Vcmax (accounting for mesophyll conductance) declined most steeply during drying-down. Conclusions The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V′cmax reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V

  9. Seedling Disease Survey in Michigan

    USDA-ARS?s Scientific Manuscript database

    Stand establishment and persistence continue to be problems for Michigan growers. To determine the extent and severity of the problem, a survey of diseased seedlings from Michigan fields was initiated in 2008. Samples were collected of diseased seedlings for two years. In 2008, samples were collecte...

  10. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum

    PubMed Central

    Khanal, Nityananda; Bray, Geoffrey E.; Grisnich, Anna; Moffatt, Barbara A.; Gray, Gordon R.

    2017-01-01

    Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing

  11. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana.

    PubMed

    Hectors, Kathleen; Van Oevelen, Sandra; Geuns, Jan; Guisez, Yves; Jansen, Marcel A K; Prinsen, Els

    2014-10-01

    Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a highly dynamic environmental parameter and therefore we hypothesized that plants are continuously readjusting levels of secondary metabolites. Our data show distinct kinetic profiles for accumulation of tocopherols, polyamines and flavonoids upon UV acclimation. The lipid-soluble antioxidant α-tocopherol accumulated fast and remained elevated. Polyamines accumulated fast and transiently. This fast response implies a role for α-tocopherol and polyamines in short-term UV response. In contrast, an additional sustained accumulation of flavonols took place. The distinct accumulation patterns of these secondary metabolites confirm that the UV acclimation process is a dynamic process, and indicates that commonly used single time-point analyses do not reveal the full extent of UV acclimation. We demonstrate that UV stimulates the accumulation of specific flavonol glycosides, i.e. kaempferol and (to a lesser extent) quercetin di- and triglycosides, all specifically rhamnosylated at position seven. All metabolites were identified by Ultra Performance Liquid Chromatography (UPLC)-coupled tandem mass spectrometry. Some of these flavonol glycosides reached steady-state levels in 3-4 days, while concentrations of others are still increasing after 12  days of UV exposure. A biochemical pathway for these glycosides is postulated involving 7-O-rhamnosylation for the synthesis of all eight metabolites identified. We postulate that this 7-O-rhamnosylation has an important function in UV acclimation. © 2014 Scandinavian Plant Physiology Society.

  12. Effects of heat acclimation on hand cooling efficacy following exercise in the heat.

    PubMed

    Adams, Elizabeth L; Vandermark, Lesley W; Pryor, J Luke; Pryor, Riana R; VanScoy, Rachel M; Denegar, Craig R; Huggins, Robert A; Casa, Douglas J

    2017-05-01

    This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO 2 max], 54.1 ± 1.3 ml·kg -1 ·min -1 ) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO 2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90-240 min of treadmill or stationary bike exercise (60-80% VO 2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min -1 ) had a greater cooling rate than NC (0.013 ± 0.003°C·min -1 ) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min -1 ) was similar to NC (0.025 ± 0.002°C·min -1 ) (0.004°C [-0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min -1 ) was similar to when NHA (0.020 ± 0.003°C·min -1 ) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.

  13. Genetically improved ponderosa pine seedlings outgrow nursery-run seedlings with and without competition -- Early findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, P.M.; Fiddler, G.O.; Kitzmiller, J.H.

    1994-04-01

    Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Range District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlingsmore » when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)--29,490 plants per acre; herbaceous vegetation--11,500; hardwood sprouts--233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings--100] ensure that future pine development will be tested rigorously.« less

  14. The Effect of Acclimation to Sublethal Temperature on Subsequent Susceptibility of Sitophilus zeamais Mostchulsky (Coleoptera: Curculionidae) to High Temperatures

    PubMed Central

    Lü, Jianhua; Zhang, Huina

    2016-01-01

    Heat treatment is a popular alternative to synthetic pesticides in disinfesting food-processing facilities and empty grain storages. Sitophilus zeamais Mostchulsky is one of the most cosmopolitan and destructive insects found in empty grain storage facilities and processing facilities. The effect of acclimation in S. zeamais adults to sublethal high temperature on their subsequent susceptibility to high temperatures was investigated. S. zeamais adults were acclimated to 36°C for 0 (as a control), 1, 3, and 5 h, and then were exposed at 43, 47, 51, and 55°C for different time intervals respectively. Acclimation to sublethal high temperature significantly reduced subsequent susceptibility of S. zeamais adults to lethal high temperatures of 43, 47, 51, and 55°C, although the mortality of S. zeamais adults significantly increased with increasing exposure time at lethal high temperatures. The mortality of S. zeamais adults with 1, 3, and 5 h of acclimation to 36°C was significantly lower than that of S. zeamais adults without acclimation when exposed to the same lethal high temperatures. The present results suggest that the whole facility should be heated to target lethal high temperature as soon as possible, avoiding decreasing the control effectiveness of heat treatment due to the acclimation in stored product insects to sublethal temperature. PMID:27462906

  15. The metabolic, locomotor and sex-dependent effects of elevated temperature on Trinidadian guppies: limited capacity for acclimation.

    PubMed

    Muñoz, Nicolas J; Breckels, Ross D; Neff, Bryan D

    2012-10-01

    Global warming poses a threat to many ectothermic organisms because of the harmful effects that elevated temperatures can have on resting metabolic rate (RMR) and body size. This study evaluated the thermal sensitivity of Trinidadian guppies (Poecilia reticulata) by describing the effects of developmental temperature on mass, burst speed and RMR, and investigated whether these tropical fish can developmentally acclimate to their thermal conditions. These traits were measured following exposure to one of three treatments: 70 days at 23, 25, 28 or 30°C (acclimated groups); 6 h at 23, 28 or 30°C following 70 days at 25°C (unacclimated groups); or 6 h at 25°C following 70 days in another 25°C tank (control group). Body mass was lower in warmer temperatures, particularly amongst females and individuals reared at 30°C. The burst speed of fish acclimated to each temperature did not differ and was marginally higher than that of unacclimated fish, indicative of complete compensation. Conversely, acclimated and unacclimated fish did not differ in their RMR at each temperature. Amongst the acclimated groups, RMR was significantly higher at 30°C, indicating that guppies may become thermally limited at this temperature as a result of less energy being available for growth, reproduction and locomotion. Like other tropical ectotherms, guppies appear to be unable to adjust their RMR through physiological acclimation and may consequently be susceptible to rising temperatures. Also, because larger females have higher fecundity, our data suggest that fecundity will be reduced in a warmer climate, potentially decreasing the viability of guppy populations.

  16. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria.

    PubMed

    Nyboer, Elizabeth A; Chapman, Lauren J

    2017-10-15

    Increasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch ( Lates niloticus ), a commercially harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CT max ) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CT max increased with acclimation temperature; however, 3-week-acclimated fish had higher overall CT max than acutely exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range; however, acclimated Nile perch had lower AS compared with acutely exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental because of limitations in AS. © 2017. Published by The Company of Biologists Ltd.

  17. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    PubMed

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  19. Grass seedling demography and sagebrush steppe restoration

    Treesearch

    J. J. James; M. J. Rinella; T. Svejcar

    2012-01-01

    Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study inWyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related...

  20. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings

    Treesearch

    Shu-Lan Bai; Guo-Lei Li; Yong Liu; R. Kasten Dumroese; Rui-Heng Lv

    2009-01-01

    Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become...

  1. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  2. CO 2 elevation improves photosynthetic performance in progressive warming environment in white birch seedlings.

    PubMed

    Zhang, Shouren; Dang, Qing-Lai

    2013-01-01

    White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.

  3. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress

    PubMed Central

    Schumann, Tobias; Paul, Suman; Melzer, Michael; Dörmann, Peter; Jahns, Peter

    2017-01-01

    Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m−2 s−1; NL: 100 μmol photons m−2 s−1; HL: 500 μmol photons m−2 s−1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities. PMID:28515734

  4. The influence of acclimation temperature on the lipid composition of the larval lamprey, Petromyzon marinus, depends on tissue and lipid class.

    PubMed

    Kao, Yung-Hsi; Sheridan, Mark A; Holmes, John A; Youson, John H

    2010-11-01

    This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.

  5. [Final thermal preference in parthenogenetic females of Daphnia magna Straus (Crustacea: Cladocera) acclimated to various temperatures].

    PubMed

    Verbitskiĭ, V B; Verbitskaia, T I

    2011-01-01

    The final thermal preference (FTP) range in parthenogenetic females of cladoceran Daphnia magna was assessed by "acute" and "chronic" methods. The first method included 4-month acclimation to different temperatures in the range of 14.2 +/- 0.7 to 27.1 +/- 0.3 degrees C; the "chronic" method was characterized by long-term acclimation to +20 degrees C. Two ranges of FTP were found for D. magna, 13.3-15.4 degrees C and 20.2-26.2 degrees C. The thermal preference ofdaphnids and the temperature of acclimation were correspondingly linearly. The range of FTP was independent of the season. The food-searching activity of D. magna rose in April, when the FTP range increased, and the FTP was less pronounced.

  6. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  7. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species.

    PubMed

    Zhou, Shuang-Xi; Medlyn, Belinda E; Prentice, Iain Colin

    2016-01-01

    Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent 'drying-down', continuing until stomata were closed. Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (V'(cmax)) and maximum electron transport rate (J'(max)). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in V'(cmax) and J'(max); however, after 4 months, V'(cmax) and J'(max) had recovered. Species differed in their degree of V'(cmax) acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the V'(cmax) and 'true' V(cmax) (accounting for mesophyll conductance) declined most steeply during drying-down. The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V'(cmax) reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V'(cmax) reduction was mitigated; (3) xeric species showed a

  8. Extracorporeal life support and digoxin-specific Fab fragments for successful management of Taxus baccata intoxication with low output and ventricular arrhythmia.

    PubMed

    Farag, Mina; Badowski, Dominika; Koschny, Ronald; Skopp, Gisela; Brcic, Andreas; Szabo, Gabor B

    2017-12-01

    Yew plants are evergreen shrubs which are widely spread throughout the northern hemisphere. Taxane alkaloid derivatives, mainly taxine B, represent the main toxins of Taxus baccata and are highly cardiotoxic. Due to the lack of randomized clinical trials, case reports on accidental or suicidal yew intoxications build the only source of knowledge of clinical treatment options. We report the case of a suicidal yew ingestion admitted to our hospital under prolonged cardiopulmonary resuscitation due to pulseless electrical activity. Extra-corporeal life support (ECLS) was established to maintain adequate organ perfusion. Repeated administration of digoxin-specific Fab antibody fragments, which cross-react with taxine, was associated with an immediate conversion from asystole to broad-complex bradycardia and a gradual normalization of the electrocardiogram (ECG). This was paralleled by a recovery of the cardiac function and weaning from the ECLS. The taxine metabolite 3,5-dimethoxyphenol could be detected by mass spectrometry before but not after the first Fab-fragment treatment. In contrast, the total amount of taxine (including the neutralized, Fab fragment-bound fraction) was increased after each Fab fragment administration, suggesting an accumulation of neutralized, since antibody-bound taxine in the blood by anti-digoxin Fab fragments. In conclusion, the successful clinical course of this case suggests a benefit of an early anti-digoxin Fab-fragment administration for the treatment of yew intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of thermal acclimation on organ mass, tissue respiration, and allometry in Leichhardtian river prawns Macrobrachium tolmerum (Riek, 1951).

    PubMed

    Crispin, Taryn S; White, Craig R

    2013-01-01

    Changes to an animal's abiotic environment-and consequent changes in the allometry of metabolic rate in the whole animal and its constituent parts-has considerable potential to reveal important patterns in both intraspecific and interindividual variation of metabolic rates. This study demonstrates that, after 6 wk of thermal acclimation at replicate treatments of 16°, 21°, and 25°C, standard metabolic rate (SMR) scales allometrically in Leichhardtian river prawns Macrobrachium tolmerum ([Formula: see text]) and that the scaling exponent and normalization constant of the relationship between SMR and body mass is not significantly different among acclimation treatments when measured at 21°C. There is, however, significant variation among individuals in whole-animal metabolic rate. We hypothesized that these observations may arise because of changes in the metabolic rate and allometry of metabolic rate or mass of organ tissues within the animal. To investigate this hypothesis, rates of oxygen consumption in a range of tissues (gills, gonads, hepatopancreas, chelae muscle, tail muscle) were measured at 21°C and related to the body mass (M) and whole-animal SMR of individual prawns. We demonstrate that thermal acclimation had no effect on organ and tissue mass, that most organ and tissue (gills, gonads, hepatopancreas) respiration rates do not change with acclimation temperature, and that residual variation in the allometry of M. tolmerum SMR is not explained by differences in organ and tissue mass and respiration rates. These results suggest that body size and ambient temperature may independently affect metabolic rate in this species. Both chelae and tail muscle, however, exhibited a reduction in respiration rate in animals acclimated to 25° relative to those acclimated to 16° and 21°C. This reduction in respiration rates of muscle at higher temperatures is evidence of a tissue-specific acclimation response that was not detectable at the whole-animal level.

  10. Contributions of PIP(2)-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves.

    PubMed

    Liu, Hong-Tao; Huang, Wei-Dong; Pan, Qiu-Hong; Weng, Fang-Hua; Zhan, Ji-Cheng; Liu, Yan; Wan, Si-Bao; Liu, Yan-Yan

    2006-03-01

    The relationship between the accumulation in endogenous free salicylic acid (SA) induced by heat acclimation (37 degrees C) and the activity of PIP(2)-phospholipase C (PIP(2)-PLC; EC 3.1.4.3) in the plasma membrane fraction was investigated in pea (Pisum sativum L.) leaves. We focused our attention on the hypothesis that positive SA signals induced by heat acclimation may be relayed by PIP(2)-PLC. Heat acclimation induced an abrupt elevation of free SA preceding the activation of PLC toward PIP(2). Immunoblotting indicated a molecular mass with 66.5kDa PLC plays key role in the development of thermotolerance in pea leaves. In addition, some characterizations of PLC toward PIP(2) isolated from pea leaves with two-phase purification containing calcium concentration, pH and a protein concentration were also studied. Neomycin sulfate, a well-known PIP(2)-PLC inhibitor, was employed to access the involvement of PIP(2)-PLC in the acquisition of heat acclimation induced-thermotolerance. We were able to identify a PIP(2)-PLC, which was similar to a conventional PIP(2)-PLC in higher plants, from pea leaves suggesting that PIP(2)-PLC was involved in the signal pathway that leads to the acquisition of heat acclimation induced-thermotolerance. On the basis of these results, we conclude that the involvement of free SA may function as the upstream event in the stimulation of PIP(2)-PLC in response to heat acclimation treatment.

  11. Limited effectiveness of heat acclimation to soldiers wearing US Army and US Air Force chemical protective clothing. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.K.; Gonzalez, R.R.

    1995-11-01

    Heat acclilmation-induced sweating responses have the potential of reducing heat strain for soldiers wearing chemical protective garment. However, this potential benefit is strongly affected by the properties of the garment. If the clothing ensemble permits sufficient evaporative heat dissipation, then heat acclimation becomes helpful in reducing heat strain. On the other hand, if the garment creates an impenetrable barrier to moisture, no benefit can be gained from heat acclimation as the additional sweating cannot be evaporated. We studied 10 subjects exercising on a treadmill while wearing two different U.S. military chemical protective ensembles. Skin heat flux, skin temperature, core temperature,more » metabolic heat production, and heart rate were measured. We found that the benefit of heat acclimation is strongly dependent on an unimpeded ability of evaporative heat loss from skin areas. The evaporative potential (EP), a measure of thermal insulation modified by moisture permeability, of the clothing ensemble offers a quantitative index useful to determine whether heat acclimation is helpful while protective clothing system. Our data show that when EP is less than 15%, heat acclimation affords no benefit. An evaporative potential graph is created to aid in this determination.« less

  12. Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation.

    PubMed

    Marlin, D J; Scott, C M; Schroter, R C; Harris, R C; Harris, P A; Roberts, C A; Mills, P C

    1999-01-01

    To investigate whether horses were able to acclimate to conditions of high temperature and humidity, 5 horses of different breeds were trained for 80 min on 15 consecutive days on a treadmill at 30 degrees C and 80%RH. Training consisted of a combination of long duration low-intensity exercise, medium duration medium intensity exercise and short duration high intensity exercise. Between training sessions the horses were maintained at 11+/-3 degrees C and 74+/-2%RH. Before (PRE-ACC) and after acclimation (POST-ACC) the horses undertook a simulated Competition Exercise Test (CET), designed to represent the Speed and Endurance Test of a 3-day event, at 30 degrees C/80%RH. Maximal oxygen uptake (VO2PEAK) was not changed following acclimation (PRE-ACC 141+/-8 ml/min/kg bwt vs. POST-ACC 145+/-9 ml/min/kg bwt [STPD], P>0.05). Following acclimation, 4 of the 5 horses were able to complete a significantly greater amount of Phase D in the CET (PRE-ACC 6.3+/-0.3 min vs. POST-ACC 7.3+/-0.3 min, P<0.05; target time = 8 min). Resting body temperatures (pulmonary artery [TPA], rectal [TREC] and tail-skin [TTSK] temperatures) were all significantly lower following acclimation. During exercise, metabolic heat production (M) and heat dissipation (HD), for the same exercise duration, were both significantly lower following acclimation (P<0.05), although heat storage (HS) was significantly higher (P<0.05). The higher heat storage following acclimation was associated with a lower TTSK for a given TPA and a decreased total fluid loss (% bodyweight, P<0.05). Plasma volume was not changed following acclimation. The relationship of sweating rate (SR) to TPA or TTSK on either the neck or the gluteal region was not significantly altered by acclimation, although the onset of sweating occurred at a lower TPA or TTSK following acclimation (P<0.05). The horses in the present study showed a number of physiological adaptations to a period of 15 days of exposure to high heat and humidity consistent

  13. Dynamic changes in scope for heart rate and cardiac autonomic control during warm acclimation in rainbow trout.

    PubMed

    Ekström, Andreas; Hellgren, Kim; Gräns, Albin; Pichaud, Nicolas; Sandblom, Erik

    2016-04-15

    Time course studies are critical for understanding regulatory mechanisms and temporal constraints in ectothermic animals acclimating to warmer temperatures. Therefore, we investigated the dynamics of heart rate and its neuro-humoral control in rainbow trout ( ITALIC! Onchorhynchus mykissL.) acclimating to 16°C for 39 days after being acutely warmed from 9°C. Resting heart rate was 39 beats min(-1)at 9°C, and increased significantly when fish were acutely warmed to 16°C ( ITALIC! Q10=1.9), but then declined during acclimation ( ITALIC! Q10=1.2 at day 39), mainly due to increased cholinergic inhibition while the intrinsic heart rate and adrenergic tone were little affected. Maximum heart rate also increased with warming, although a partial modest decrease occurred during the acclimation period. Consequently, heart rate scope exhibited a complex pattern with an initial increase with acute warming, followed by a steep decline and then a subsequent increase, which was primarily explained by cholinergic inhibition of resting heart rate. © 2016. Published by The Company of Biologists Ltd.

  14. Precooling With Crushed Ice: As Effective as Heat Acclimation at Improving Cycling Time-Trial Performance in the Heat.

    PubMed

    Zimmermann, Matthew; Landers, Grant; Wallman, Karen; Kent, Georgina

    2018-02-01

    This study compared the effects of precooling (ice ingestion) and heat-acclimation training on cycling time-trial (CTT) performance in the heat. Fifteen male cyclists/triathletes completed two 800-kJ CTTs in the heat, with a 12-d training program in between. Initially, all participants consumed 7 g/kg of water (22°C) in 30 min before completing an 800-kJ CTT in hot, humid conditions (pre-CTT) (35°C, 50% relative humidity [RH]). Participants were then split into 2 groups, with the precooling group (n = 7) training in thermoneutral conditions and then undergoing precooling with ice ingestion (7 g/kg, 1°C) prior to the final CTT (post-CTT) and the heat-acclimation group (n = 8) training in hot conditions (35°C, 50% RH) and consuming water (7 g/kg) prior to post-CTT. After training in both conditions, improvement in CTT time was deemed a likely positive benefit (precooling -166 ± 133 s, heat acclimation -105 ± 62 s), with this result being similar between conditions (d = 0.22, -0.68-1.08 90% confidence interval [CI]). Core temperature for post-CTT was lower in precooling than in heat acclimation from 20 min into the precooling period until the 100-kJ mark of the CTT (d > 0.98). Sweat onset occurred later in precooling (250 ± 100 s) than in heat acclimation (180 ± 80 s) for post-CTT (d = 0.65, -0.30-1.50 90% CI). Thermal sensation was lower at the end of the precooling period prior to post-CTT for the precooling trial than with heat acclimation (d = 1.24, 0.90-1.58 90% CI). Precooling with ice ingestion offers an alternative method of improving endurance-cycling performance in hot conditions if heat acclimation cannot be attained.

  15. Influence of acclimation to sublethal temperature on heat tolerance of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed to 50°C.

    PubMed

    Lü, Jianhua; Liu, Shuli

    2017-01-01

    Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is a serious pest of stored agricultural products and one of the most common insects found in grain storage and food processing facilities. Heat treatment has been revisited to control stored-product insects as a potential alternative to methyl bromide for disinfesting mills and food-processing facilities. The influence of acclimation of T. castaneum adults, pupae, larvae, and eggs to sublethal temperatures of 36, and 42°C on their subsequent susceptibility to lethal temperature of 50°C was respectively investigated. The acclimation of T. castaneum eggs, larvae, pupae, and adults to 36, and 42°C significantly decreased their subsequent susceptibility to lethal high temperature of 50°C. The influence of acclimation to 42°C was significantly greater than that of acclimation to 36°C. The most influential acclimation times at 42°C for mortality of T. castaneum eggs, larvae, pupae, and adults were 15, 5, 5, and 5 h, respectively, and their corresponding mortality were 41.24, 5.59, 20.19, and 4.48%, compared to 100% mortality of T. castaneum eggs, larvae, pupae, and adults without acclimation when exposed to 50°C for 35 min, respectively. The present results have important implications for developing successful heat treatment protocols to control T. castaneum, improving disinfestation effectiveness of heat treatment and understanding insect response to high temperatures.

  16. [Effect of ectomycorrhizae on the growth of Picea koraiensis seedlings].

    PubMed

    Song, Rui-Qing; Wu, Ke

    2005-12-01

    Basidioscarps of Agaricales in different Picea koraiensis forest plantations were collected during August-October, 2000. 36 isolaters of species of Agaricales were obtained by isolating and culturing to the basidioscarps. Through indoor inoculation test on seedlings of Picea koraiensis, 6 ectomycorrhizae fungi cultures were obtained from 36 isolaters. The inoculation results show that the period for ectomycorrhizae inoculation to 1-year seedlings of Picea koraiensis should be about 30 days after seedlings emerging, the suitable temperature for ectomycorrhizae forming is about 20 degrees C. 6 ectomycorrhizae strains all have growth-promoting effect to the seedlings of Picea koraiensis. The contents of chlorophyll a of the seedlings inoculated strains of Agaricus silvaticus, 031 and L15 were significantly higher than other strains and control. The contents of chlorophyll b in the seedlings inoculated strains 009, 004, Agaricus silvaticus and L15 were significantly higher than other strains and control. The weights of seedlings which inoculated strains 009, 025, 031, Agaricus silvaticus and L15 were significantly different to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 19.23% and 23.08% more than control; The heights of the seedlings inoculated 6 strains all have significant difference to control, the weight of seedlings inoculated strains of Agaricus silvaticus and L15 are 17.83% and 16.37% more than control. The results of outdoor inoculation show that the seedlings inoculated Agaricus silvaticus grow best on height, 9.25% more than control after inoculated 70 days; the seedlings inoculated strain L15 grow best on collar diameter, 9.92% more than control after inoculated 70 days; the lateral root numbers of seedlings inoculated strain 009 is largest, 51.91% more than control after inoculated 70 days; the main roots of seedlings inoculated strain 009 are longest, 3.36% more than control after inoculated 70 days; the

  17. The effects of pruning treatments and initial seedling morphology on northern red oak seedling growth

    Treesearch

    Donald J. Kaczmarek; Phillip E. Pope

    1993-01-01

    Northern red oak (Quercus rubra L.) seedlings exhibit relatively high survival rates following planting, but their growth rates are often slow and extensive stem dieback can occur. This study was designed to investigate the growth responses of northern red oak seedlings planted with or without root-pruning or shoot-pruning. One-year-old (1-0) northern red oak nursery...

  18. Resting energy expenditure of rats acclimated to hypergravity

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro

    2002-01-01

    BACKGROUND: The use of centrifugation at 1 G has been advocated as a control condition during spaceflight and as a countermeasure to compensate for the adverse effects of spaceflight. Rodents are the primary animal model for the study of the effects of spaceflight and will be used in the evaluation of centrifugation as a countermeasure and means of control at 1 G during flight. HYPOTHESIS: The present study was designed to assess whether resting energy expenditure (EER) of male rats was increased in relation to the magnitude of the level of gravity to which the animals were exposed. The influence of body mass and age on resting energy expenditure (EER) of male rats (n = 42, age 40-400 d) was determined following 2 wk of acclimation to 1, 2.3, or 4.1 G. Hypergravity environments were created by centrifugation. Measurements were made at the gravity level to which the animal was acclimated and during the lights-on period. RESULTS: In rats matched for body mass (approximately 400 g), mean O2 consumption and CO2 production were higher (18% and 27%, respectively) in the 2.3- and 4.1 -G groups than controls. Mean respiratory exchange ratio (RER) increased from 0.80 to 0.87. EER was increased from 47 +/- 0.1 kcal x d(-1) at 1 G, to 57 +/- 1.5 and 58 +/- 2.2 kcal x d(-1) at 2.3 and 4.1 G, respectively. There was no difference in EER between the hypergravity groups. When age differences were considered, EER (kcal x kg(-1) x d(-1)) with increased gravity was 40% higher than at 1 G. The increase in EER was not proportional over gravity levels. CONCLUSION: Acclimation of rats to hypergravity increases their EER, dependent on body mass and age, and may alter substrate metabolism. The increase in EER was not related to the level of gravity increase.

  19. Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance1[OPEN

    PubMed Central

    Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele

    2014-01-01

    Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828

  20. A proteomic approach to cold acclimation of Staphylococcus aureus CECT 976 grown at room and human body temperatures.

    PubMed

    Sánchez, B; Cabo, M L; Margolles, A; Herrera, J J R

    2010-11-15

    Staphylococcus aureus is an important pathogenic microorganism that has been associated with serious infection problems in different fields, from food to clinic. In the present study, we have taken into account that the main reservoirs of this microorganism are the human body and some parts of food processing plants, which have normal temperatures of around 37 and 25°C, respectively. It can be expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food matrices. Since temperature abuse for foods occurs at approximately 12°C, it is expected that S. aureus must acclimate its metabolism to colder temperatures before growing in food. For this reason, we have performed a proteomic comparison between exponential- and stationary-phase cultures of S. aureus CECT 976 acclimated to 12°C after growing at 25°C or 37°C. The analysis led to the identification of two different protein patterns associated with cold acclimation, denominated pattern A and pattern B. The first was characteristic of cultures at stationary phase of growth, grown at 25°C and acclimated to 12°C. The second appeared in the rest of experimental cases. Pattern A was distinguished by the presence of glycolytic proteins, whereas pattern B was differentiated by the presence of general stress and regulatory proteins. Pattern A was related through physiological experiments with a cross-resistance to acid pH, whereas pattern B conferred resistance to nisin. This prompted us to conclude that both molecular strategies could be valid, in vivo, for the process of acclimation of S. aureus to cold temperatures. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    PubMed Central

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution. PMID:27698451

  2. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey.

    PubMed

    Irigoyen, J J; Goicoechea, N; Antolín, M C; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Morales, F

    2014-09-01

    Continued emissions of CO2, derived from human activities, increase atmospheric CO2 concentration. The CO2 rise stimulates plant growth and affects yield quality. Effects of elevated CO2 on legume quality depend on interactions with N2-fixing bacteria and mycorrhizal fungi. Growth at elevated CO2 increases photosynthesis under short-term exposures in C3 species. Under long-term exposures, however, plants generally acclimate to elevated CO2 decreasing their photosynthetic capacity. An updated survey of the literature indicates that a key factor, perhaps the most important, that characteristically influences this phenomenon, its occurrence and extent, is the plant source-sink balance. In legumes, the ability of exchanging C for N at nodule level with the N2-fixing symbionts creates an extra C sink that avoids the occurrence of photosynthetic acclimation. Arbuscular mycorrhizal fungi colonizing roots may also result in increased C sink, preventing photosynthetic acclimation. Defoliation (Anthyllis vulneraria, simulated grazing) or shoot cutting (alfalfa, usual management as forage) largely increases root/shoot ratio. During re-growth at elevated CO2, new shoots growth and nodule respiration function as strong C sinks that counteracts photosynthetic acclimation. In the presence of some limiting factor, the legumes response to elevated CO2 is weakened showing photosynthetic acclimation. This survey has identified limiting factors that include an insufficient N supply from bacterial strains, nutrient-poor soils, low P supply, excess temperature affecting photosynthesis and/or nodule activity, a genetically determined low nodulation capacity, an inability of species or varieties to increase growth (and therefore C sink) at elevated CO2 and a plant phenological state or season when plant growth is stopped. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Interim Guidelines for Growing Longleaf Seedlings in Containers

    Treesearch

    James P. Barnett; Mark J. Hainds; George A. Hernandez

    2002-01-01

    The demand for container longleaf pine (Pinus palustris Mill.) planting stock continues to increase each year. A problem facing both producers and users of container seedlings is the lack of target seedling specifications. Outplanting and evaluating performance of seedlings with a range of physiological and morphological characteristics, over a...

  4. Forest seedling production in Israel

    Treesearch

    Nir Atzmon; David Brand

    2002-01-01

    Afforestation and reforestation in Israel are done on marginal lands, which consist of poor and shallow soils, with precipitation ranging from 650 mm in the north down to 200 mm in the south. Therefore, seedling quality is of great concern. All forest seedlings planted in Israel are produced by three forest nurseries which belong to the Forest Authority of Israel....

  5. Seedling quality tests: chlorophyll fluoresence

    Treesearch

    Gary Ritchie; Thomas D. Landis

    2005-01-01

    So far in this series we have discussed the most commonly -used seedling quality tests: root growth potential, cold hardiness, and stress resistance. In this issue, we're going to talk about one of the newest test-chlorophyll fluorescence (CF). The technology for measuring CF has been in place for over 50 years but has been applied to tr?e seedling physiology only...

  6. Resting Energy Expenditure of Rats Acclimated to Hyper-Gravity

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro; Schwenke, David; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    To determine the influence of body mass and age on resting energy expenditure (EE) following acclimation to hyper-gravity, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured to calculate resting energy expenditure (EE), in male rats, ages 40 to 400 days, acclimated to 1.23 or 4.1 G for a minimum of two weeks. Animals were maintained on a centrifuge to produce the hyper-gravity environment. Measurements were made over three hours in hyper-gravity during the period when the lights were on, the inactive period of rats. In rats matched for body mass (approximately 400 g) hyper-gravity increased VO2 by 18% and VCO2 by 27% compared to controls, resulting in an increase in RER, 0.80 to 0.87. There were increases in resting EE with an increase in gravity. This increase was greater when the mass of the rat was larger. Rating EE for 400g animals were increased from 47 +/- 1 kcal/kg/day at 1 G, to 57 +/- 1.5 and 5.8 +/- 2.2 kcal/kg/day at 2,3 and 4.1 G, respectively. There was no difference between the two hyper-gravity environments. When differences in age of the animals were accounted for, the increase in resting EE adjusted for body mass was increased by over 36% in older animals due to exposure to hyper-gravity. Acclimation to hyper-gravity increases the resting EE of rats, dependent upon body mass and age, and appears to alter substrate metabolism. Increasing the level of hyper-gravity, from 2.3 to 4.1 G, produced no further changes raising questions as to a dose effect of gravity level on resting metabolism.

  7. Pre-acclimation to low ammonia improves ammonia handling in common carp (Cyprinus carpio) when exposed subsequently to high environmental ammonia.

    PubMed

    Shrivastava, Jyotsna; Sinha, Amit Kumar; Datta, Surjya Narayan; Blust, Ronny; De Boeck, Gudrun

    2016-11-01

    We tested whether exposing fish to low ammonia concentrations induced acclimation processes and helped fish to tolerate subsequent (sub)lethal ammonia exposure by activating ammonia excretory pathways. Common carp (Cyprinus carpio) were pre-exposed to 0.27mM ammonia (∼10% 96h LC 50 ) for 3, 7 and 14days. Thereafter, each of these pre-exposed and parallel naïve groups were exposed to 1.35mM high environmental ammonia (HEA, ∼50% 96h LC 50 ) for 12h and 48h to assess the occurrence of ammonia acclimation based on sub-lethal end-points, and to lethal ammonia concentrations (2.7mM, 96h LC 50 ) in order to assess improved survival time. Results show that fish pre-exposed to ammonia for 3 and 7days had a longer survival time than the ammonia naïve fish. However, this effect disappeared after prolonged (14days) pre-exposure. Ammonia excretion rate (J amm ) was strongly inhibited (or even reversed) in the unacclimated groups during HEA. On the contrary, after 3days the pre-exposure fish maintained J amm while after 7days these pre-acclimated fish were able to increase J amm efficiently. Again, this effect disappeared after 14days of pre-acclimation. The efficient ammonia efflux in pre-acclimated fish was associated with the up-regulation of branchial mRNA expression of ammonia transporters and exchangers. Pre-exposure with ammonia for 3-7days stimulated an increment in the transcript level of gill Rhcg-a and Rhcg-b mRNA relative to the naïve control group and the up-regulation of these two Rhcg homologs was reinforced during subsequent HEA exposure. No effect of pre-exposure was noted for Rhbg. Relative to unacclimated fish, the transcript level of Na + /H + exchangers (NHE-3) was raised in 3-7days pre-acclimated fish and remained higher during the subsequent HEA exposure while gill H + -ATPase activities and mRNA levels were not affected by pre-acclimation episodes. Likewise, ammonia pre-acclimated fish with or without HEA exposure displayed pronounced up

  8. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.

    PubMed

    Slot, Martijn; Rey-Sánchez, Camilo; Gerber, Stefan; Lichstein, Jeremy W; Winter, Klaus; Kitajima, Kaoru

    2014-09-01

    Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25 ) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5-3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S-24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no-acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle. © 2014 John Wiley & Sons Ltd.

  9. Thermoregulatory adaptations associated with training and heat acclimation.

    PubMed

    Geor, R J; McCutcheon, L J

    1998-04-01

    The large metabolic heat load generated as a consequence of muscular work requires activation of thermoregulatory mechanisms in order to prevent an excessive and potentially dangerous rise in body temperature during exercise. Although the horse has highly efficient heat dissipatory mechanisms, there are a number of circumstances in which the thermoregulatory system may be overwhelmed, resulting in the development of critical hyperthermia. The risk for development of life-threatening hyperthermia is greatest when (1) the horse is inadequately conditioned for the required level of physical performance; (2) exercise is undertaken in hot and particularly, in hot and humid ambient conditions; and (3) there is an impairment to thermoregulatory mechanisms (e.g., severe dehydration, anhidrosis). Both exercise training under cool to moderate ambient conditions and a period of repeated exposure to, and exercise in, hot ambient conditions (heat acclimation) will result in a number of physiologic adaptations conferring improved thermoregulatory ability. These adaptations include an expanded plasma volume, greater stability of cardiovascular function during exercise, and an improved efficiency of evaporative heat loss as a result of alterations in the sweating response. Collectively, these adjustments serve to attenuate the rise in core body temperature in response to a given intensity of exercise. The magnitude of the physiologic adaptations occurring during exercise training and heat acclimation is a reflection of the thermal load imposed on the horse. Therefore, when compared with a period of training in cool conditions, the larger thermal stimulus associated with repeated exercise in hot ambient conditions will invoke proportionally greater thermoregulatory adaptations. Although it is not possible to eliminate the effects of adverse environmental conditions on exercise performance, it is clear that a thorough exercise training program together with a subsequent period of

  10. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    PubMed

    Aasamaa, Krõõt; Aphalo, Pedro José

    2017-02-01

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published

  11. Acclimation strategies in gilts to control Mycoplasma hyopneumoniae infection.

    PubMed

    Garza-Moreno, Laura; Segalés, Joaquim; Pieters, Maria; Romagosa, Anna; Sibila, Marina

    2018-06-01

    Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary causative agent of enzootic pneumonia (EP), one of the most economically important infectious disease for the swine industry worldwide. M. hyopneumoniae transmission occurs mainly by direct contact (nose-to-nose) between infected to susceptible pigs as well as from infected dams to their offspring (sow-to-piglet). Since disease severity has been correlated with M. hyopneumoniae prevalence at weaning in some studies, and gilts are considered the main bacterial shedders, an effective gilt acclimation program should help controlling M. hyopneumoniae in swine farms. The present review summarizes the different M. hyopneumoniae monitoring strategies of incoming gilts and recipient herd and proposes a farm classification according to their health statuses. The medication and vaccination programs against M. hyopneumoniae most used in replacement gilts are reviewed as well. Gilt replacement acclimation against M. hyopneumoniae in Europe and North America indicates that vaccination is the main strategy used, but there is a current trend in US to deliberately expose gilts to the pathogen. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Will photosynthetic capacity of aspen trees acclimate after long term exposure to elevated CO2 and O3?

    Treesearch

    Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Katre Kets; Johanna Riikonen; Anu Sober; Lisa Rouse; David F. Karnosky

    2010-01-01

    Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site...

  13. Grazing on Regeneration Sites Encourages Pine Seedling Growth

    Treesearch

    Raymond D. Ratliff; Renee G. Denton

    1995-01-01

    Effects of season-long, deferred-rotation, and rest-rotation grazing, on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedling growth and herbaceous vegetation control were studied in regeneration sites at Boyd Hill, Modoc National Forest, California. Seedlings were planted in 1989. Pine seedling survival and damage did not differ, but the...

  14. Evaluation of magnetic- and carbon-based nano-adsorbents application in pre-purification of paclitaxel from needles of Taxus baccata

    NASA Astrophysics Data System (ADS)

    Naghavi, M. R.; Motamedi, E.; Nasiri, J.; Alizadeh, H.; Fattahi Moghadam, M. R.; Mashouf, A.

    2015-01-01

    In this investigation, the proficiency of a number of magnetic carbon-based nano-adsorbents is evaluated in pre-purification process of the crude paclitaxel extract obtained from fresh needles of yew tree ( Taxus baccata L.). The effectiveness and removal ability of color and impurities from crude extracts, for three novel candidate nano-adsorbents (i.e., Fe3O4 nanoparticles (Fe3O4Nps), graphite oxide (GO), and their hybrids Fe3O4Nps/GO) are compared with commercial graphite in three different solvents. In general, both HPLC and UV-Vis spectroscopy results demonstrate that in less polar solvent (i.e., dichloromethane), the adsorption is greatly affected by the electrostatic attractions, while in more polar solvents (i.e., acetone and ethanol) π-π electron interactions taking place between adsorbent and adsorbate are the most dominant factors in sorption. Considering decolorization efficiency, purity of taxol, recovery and reusability of adsorbents, Fe3O4Nps/GO (50 g/L) in dichloromethane is selected as the best medium for pre-purification of paclitaxel. Additionally, in kinetic studies the sorption equilibrium can be reached within 120 min, and the experimental data are well fitted by the pseudo-second-order model. The Langmuir sorption isotherm model correlates well with the sorption equilibrium data for the crude extract concentration (500-2,000 mg/L). Our findings display promising applications of Fe3O4Nps/GO, as a cost-effective nano-adsorbent, to provide a suitable vehicle toward improvement of paclitaxel pre-purification.

  15. Seedling identification guide for northeast pastures

    USDA-ARS?s Scientific Manuscript database

    During the course of seed bank experiments on pastures across the northeastern United States, we identified and photographed seedlings of over fifty common pasture species. Photographs of the seeds, seedlings, and basic species information from the USDA PLANTS database are provided for each. This gu...

  16. Cold-induced ependymin expression in zebrafish and carp brain: implications for cold acclimation.

    PubMed

    Tang, S J; Sun, K H; Sun, G H; Lin, G; Lin, W W; Chuang, M J

    1999-10-01

    Cold acclimation has been suggested to be mediated by alternations in the gene expression pattern in the cold-adapted fish. To investigate the mechanism of cold acclimation in fish brain at the molecular level, relevant subsets of differentially expressed genes of interest were identified and cloned by the PCR-based subtraction suppression hybridization. Characterization of the selected cold-induced cDNA clones revealed one encoding ependymin. This gene was shown to be brain-specific. The expression of ependymin was induced by a temperature shift from 25 degrees C to 6 degrees C in Cyprinus carpio or 12 degrees C in Danio rerio. Activation of ependymin was detected 2 h after cold exposure and peaked at more than 10-fold at 12 h. This peak level remains unchanged until the temperature returns to 25 degrees C. Although the amount of soluble ependymin protein in brain was not changed by cold treatment, its level in the fibrous insoluble polymers increased 2-fold after exposure to low temperature. These findings indicate that the increase in ependymin expression is an early event that may play an important role in the cold acclimation of fish.

  17. Lime-amended growing medium causes seedling growth distortions

    Treesearch

    R. Kasten Dumroese; Gale Thompson; David L. Wenny

    1990-01-01

    Although a commercial growing medium with incorporated agricultural lime had been successfully used for years, it caused growth distortion of coniferous and deciduous seedlings during 1988. Seedlings grown in the amended medium were stunted and chlorotic, often with disfigured needles and multiple tops. Seedlings grown in the same medium without incorporated lime grew...

  18. Effect of manganese on endomycorrhizal sugar maple seedlings

    Treesearch

    George A. Schier; Carolyn J. McQuattie

    2002-01-01

    Manganese (Mn) toxicity may play an important role in the poor survival of seedlings in declining sugar maple (Acer saccharum Marsh.) stands in northern Pennsylvania. To determine the effect of Mn on the growth of sugar maple seedlings, 1-year-old seedlings inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi and growing in sand-vermiculite-...

  19. Hardening fertilization and nutrient loading of conifer seedlings

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Continuing to fertilize bareroot and container seedlings during the hardening process (from cessation of height growth until lifting) can improve seedling viability. The process of fertilizing during hardening has many names, but in the last decade a new term, nutrient loading, has come into use. The process of nutrient loading seedlings leads to luxury consumption...

  20. Effect of heat acclimation on sitting orthostatic tolerance in the heat after 48 and 96 hour bed rest in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Matter, M., Jr.

    1995-01-01

    The purpose of this pilot study was to investigate sitting orthostatic tolerance and determine potentially adverse signs and symptoms that would incapacitate subjects in a hot environment (Gemini reentry cabin temperature profile) after 48 hr and 96 hr of horizontal bed rest (BR), which simulated microgravity deconditioning. Six college men (23-29 yr) were allocated into two groups: heat acclimated (three subjects: No. 1- control, No. 2- 48 hr BR, and No. 3- 96 hr BR) and nonheat acclimated (three subjects: No. 4- control, No. 5- 48 hr BR, and No. 6- 96 hr BR). After BR they sat in an ambient temperature of 57 C (135 F) for 30 min which then was decreased to 49 C (120 F) for up to 480 min. Tolerance time in the heat with seated orthostatic stress was 480 min (subject No. 1) and 180 min (subject No. 4) in the two ambulatory men, but was reduced to 22-150 min in the four bed-rested men irrespective of their heat acclimation status. Although heat acclimation appeared to enhance tolerance and attenuate accompanying physiological responses, as well as ameliorate the frequency and intensity of adverse signs and symptoms at termination of exposure, tolerance was reduced in the bed-rest deconditioned subjects regardless of their acclimation level. Thus, these few collective findings do not indicate an unequivocal positive effect of acute heat acclimation on sitting orthostatic tolerance in acute bed-rest deconditioned subjects.

  1. Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil

    Treesearch

    Donald H. Marx

    1979-01-01

    Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...

  2. Assessing Posidonia oceanica seedling substrate preference: an experimental determination of seedling anchorage success in rocky vs. sandy substrates.

    PubMed

    Alagna, Adriana; Fernández, Tomás Vega; Anna, Giovanni D; Magliola, Carlo; Mazzola, Salvatore; Badalamenti, Fabio

    2015-01-01

    In the last decades the growing awareness of the ecological importance of seagrass meadows has prompted increasing efforts to protect existing beds and restore degraded habitats. An in-depth knowledge of factors acting as major drivers of propagule settlement and recruitment is required in order to understand patterns of seagrass colonization and recovery and to inform appropriate management and conservation strategies. In this work Posidonia oceanica seedlings were reared for five months in a land-based culture facility under simulated natural hydrodynamic conditions to identify suitable substrates for seedling anchorage. Two main substrate features were investigated: firmness (i.e., sand vs. rock) and complexity (i.e., size of interstitial spaces between rocks). Seedlings were successfully grown in culture tanks, obtaining overall seedling survival of 93%. Anchorage was strongly influenced by substrate firmness and took place only on rocks, where it was as high as 89%. Anchorage occurred through adhesion by sticky root hairs. The minimum force required to dislodge plantlets attached to rocky substrates reached 23.830 N (equivalent to 2.43 kg), which would potentially allow many plantlets to overcome winter storms in the field. The ability of rocky substrates to retain seedlings increased with their complexity. The interstitial spaces between rocks provided appropriate microsites for seedling settlement, as seeds were successfully retained, and a suitable substrate for anchorage was available. In conclusion P. oceanica juveniles showed a clear-cut preference for hard substrates over the sandy one, due to the root system adhesive properties. In particular, firm and complex substrates allowed for propagule early and strong anchorage, enhancing persistence and establishment probabilities. Seedling substrate preference documented here leads to expect a more successful sexual recruitment on hard bottoms compared with soft ones. This feature could have influenced P

  3. Enhanced heme protein expression by ammonia-oxidizing communities acclimated to low dissolved oxygen conditions.

    PubMed

    Arnaldos, Marina; Kunkel, Stephanie A; Stark, Benjamin C; Pagilla, Krishna R

    2013-12-01

    This study has investigated the acclimation of ammonia-oxidizing communities (AOC) to low dissolved oxygen (DO) concentrations. Under controlled laboratory conditions, two sequencing batch reactors seeded with activated sludge from the same source were operated at high DO (near saturation) and low DO (0.1 mg O₂/L) concentrations for a period of 220 days. The results demonstrated stable and complete nitrification at low DO conditions after an acclimation period of approximately 140 days. Acclimation brought about increased specific oxygen uptake rates and enhanced expression of a particular heme protein in the soluble fraction of the cells in the low DO reactor as compared to the high DO reactor. The induced protein was determined not to be any of the enzymes or electron carriers present in the conventional account of ammonia oxidation in ammonia-oxidizing bacteria (AOB). Further research is required to determine the specific nature of the heme protein detected; a preliminary assessment suggests either a type of hemoglobin protein or a lesser-known component of the energy-transducing pathways of AOB. The effect of DO on AOC dynamics was evaluated using the 16S rRNA gene as the basis for phylogenetic comparisons and organism quantification. Ammonium consumption by ammonia-oxidizing archaea and anaerobic ammonia-oxidizing bacteria was ruled out by fluorescent in situ hybridization in both reactors. Even though Nitrosomonas europaea was the dominant AOB lineage in both high and low DO sequencing batch reactors at the end of operation, this enrichment could not be linked in the low DO reactor to acclimation to oxygen-limited conditions.

  4. Bioactive Compounds in Wild, In vitro Obtained, Ex vitro Adapted, and Acclimated Plants of Centaurea davidovii (Asteraceae).

    PubMed

    Trendafilova, Antoaneta; Jadranin, Milka; Gorgorov, Rossen; Stanilova, Marina

    2015-06-01

    In vitro cultures were initiated from a single seed of Centaurea davidovii. Whole plantlets were regenerated and cultivated for several months on agar-solidified nutrient media differing by their composition: basal MS medium, MS medium supplemented with plant growth regulators, and liquid MS medium. Plantlets were ex vitro adapted and successfully acclimated to open-air conditions; flowering was observed in some individuals in the first summer, and mass flowering during the second summer. The contents of the total flavonoids and the total phenolic compounds were determined spectrophotometrically in the leaves of the in vitro plantlets cultured on different media, and then compared with those in the leaves of the wild plants and in the leaves of the acclimated plants of the field plot. The sesquiterpene lactone 8α-(5'-hydroxyangeloyl)-salonitenolide was determined by HPLC in leaf samples of C. davidovii wild plants, in vitro obtained plantlets and ex vitro acclimated plants in the greenhouse and on the experimental field plot. The composition of the nutrient medium influenced the contents of all studied bioactive substances. The highest concentrations of all tested secondary metabolites were detected in the leaves of the acclimated plants during mass flowering, the content of the lactone reaching 56.2 mg/g DW, which was several times more than in the other leaf samples. The obtained results revealed both the effectiveness of biotechnological methods for propagation and conservation of rare and endangered plant species, and the possibility to use C. davidovii plants ex vitro acclimated to field conditions as a source of secondary metabolites with potential biological activity.

  5. Gibberellin Biosynthesis in Developing Pumpkin Seedlings12

    PubMed Central

    Lange, Theo; Kappler, Jeannette; Fischer, Andreas; Frisse, Andrea; Padeffke, Tania; Schmidtke, Sabine; Lange, Maria João Pimenta

    2005-01-01

    A gibberellin (GA) biosynthetic pathway was discovered operating in root tips of 7-d-old pumpkin (Cucurbita maxima) seedlings. Stepwise analysis of GA metabolism in cell-free systems revealed the conversion of GA12-aldehyde to bioactive GA4 and inactive GA34. Highest levels of endogenous GA4 and GA34 were found in hypocotyls and root tips of 3-d-old seedlings. cDNA molecules encoding two GA oxidases, CmGA20ox3 and CmGA3ox3, were isolated from root tips of 7-d-old LAB150978-treated seedlings. Recombinant CmGA20ox3 fusion protein converted GA12 to GA9, GA24 to GA9, GA14 to GA4, and, less efficiently, GA53 to GA20, and recombinant CmGA3ox3 protein oxidized GA9 to GA4. Transcript profiles were determined for four GA oxidase genes from pumpkin revealing relatively high transcript levels for CmGA7ox in shoot tips and cotyledons, for CmGA20ox3 in shoot tips and hypocotyls, and for CmGA3ox3 in hypocotyls and roots of 3-d-old seedlings. Transcripts of CmGA2ox1 were mainly found in roots of 7-d-old seedlings. In roots of 7-d-old seedlings, transcripts of CmGA7ox, CmGA20ox3, and CmGA3ox3 were localized in the cap and the rhizodermis by in situ hybridization. We conclude that hypocotyls and root tips are important sites of GA biosynthesis in the developing pumpkin seedling. PMID:16126862

  6. A cost–benefit analysis of acclimation to low irradiance in tropical rainforest tree seedlings: leaf life span and payback time for leaf deployment

    PubMed Central

    Coste, Sabrina; Roggy, Jean-Christophe; Schimann, Heidy; Epron, Daniel; Dreyer, Erwin

    2011-01-01

    The maintenance in the long run of a positive carbon balance under very low irradiance is a prerequisite for survival of tree seedlings below the canopy or in small gaps in a tropical rainforest. To provide a quantitative basis for this assumption, experiments were carried out to determine whether construction cost (CC) and payback time for leaves and support structures, as well as leaf life span (i) differ among species and (ii) display an irradiance-elicited plasticity. Experiments were also conducted to determine whether leaf life span correlates to CC and payback time and is close to the optimal longevity derived from an optimization model. Saplings from 13 tropical tree species were grown under three levels of irradiance. Specific-CC was computed, as well as CC scaled to leaf area at the metamer level. Photosynthesis was recorded over the leaf life span. Payback time was derived from CC and a simple photosynthesis model. Specific-CC displayed only little interspecific variability and irradiance-elicited plasticity, in contrast to CC scaled to leaf area. Leaf life span ranged from 4 months to >26 months among species, and was longest in seedlings grown under lowest irradiance. It was always much longer than payback time, even under the lowest irradiance. Leaves were shed when their photosynthesis had reached very low values, in contrast to what was predicted by an optimality model. The species ranking for the different traits was stable across irradiance treatments. The two pioneer species always displayed the smallest CC, leaf life span, and payback time. All species displayed a similar large irradiance-elicited plasticity. PMID:21511904

  7. Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales.

    PubMed

    Gibson, Oliver R; Mee, Jessica A; Tuttle, James A; Taylor, Lee; Watt, Peter W; Maxwell, Neil S

    2015-01-01

    Heat acclimation requires the interaction between hot environments and exercise to elicit thermoregulatory adaptations. Optimal synergism between these parameters is unknown. Common practise involves utilising a fixed workload model where exercise prescription is controlled and core temperature is uncontrolled, or an isothermic model where core temperature is controlled and work rate is manipulated to control core temperature. Following a baseline heat stress test; 24 males performed a between groups experimental design performing short term heat acclimation (STHA; five 90 min sessions) and long term heat acclimation (LTHA; STHA plus further five 90 min sessions) utilising either fixed intensity (50% VO2peak), continuous isothermic (target rectal temperature 38.5 °C for STHA and LTHA), or progressive isothermic heat acclimation (target rectal temperature 38.5 °C for STHA, and 39.0 °C for LTHA). Identical heat stress tests followed STHA and LTHA to determine the magnitude of adaptation. All methods induced equal adaptation from baseline however isothermic methods induced adaptation and reduced exercise durations (STHA = -66% and LTHA = -72%) and mean session intensity (STHA = -13% VO2peak and LTHA = -9% VO2peak) in comparison to fixed (p < 0.05). STHA decreased exercising heart rate (-10 b min(-1)), core (-0.2 °C) and skin temperature (-0.51 °C), with sweat losses increasing (+0.36 Lh(-1)) (p<0.05). No difference between heat acclimation methods, and no further benefit of LTHA was observed (p > 0.05). Only thermal sensation improved from baseline to STHA (-0.2), and then between STHA and LTHA (-0.5) (p<0.05). Both the continuous and progressive isothermic methods elicited exercise duration, mean session intensity, and mean T(rec) analogous to more efficient administration for maximising adaptation. Short term isothermic methods are therefore optimal for individuals aiming to achieve heat adaptation most economically, i.e. when integrating heat acclimation into

  8. Acclimation of Juglans mandshurica Maxim. and Phellodendron amurense Rupr. in the Middle Volga region

    NASA Astrophysics Data System (ADS)

    Tishin, D.; Fardeeva, M.; Chizhikova, N.; Rizatdinov, R.

    2018-01-01

    This research is the first attempt to analyze the results of acclimation of J. mandshurica and P. amurense in coniferous-deciduous forests under the conditions of the temperate continental climate of the Middle Volga Region. The study has been performed in the Volga-Kama Nature Reserve (Republic of Tatarstan, Russia) and demonstrated that J. mandshurica is a successfully acclimated species. This species naturalized in the forests of the Reserve, being distinguished by a rapid biomass production, high germination capacity of seeds and high number of pre-generative specimens. P. amurense can be characterized by the opposite features.

  9. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. © 2015 The Fisheries Society of the British Isles.

  10. Longleaf pine bud development: influence of seedling nutrition

    Treesearch

    J. P. Barnett; D. P. Jackson; R. K. Dumroese

    2010-01-01

    A subset of seedlings from a larger study (Jackson and others 2006, 2007) were selected and evaluated for two growing seasons to relate bud development, and root-collar diameter (RCD), and height growth with three nursery fertilization rates. We chose seedlings in the 0.5 (lowest), 2.0 (mid-range), and 4.0 (highest) mg of nitrogen per seedling treatments. Buds moved...

  11. Effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females.

    PubMed

    Cooke, R F; Bohnert, D W; Cappellozza, B I; Mueller, C J; Delcurto, T

    2012-10-01

    Two experiments evaluated the effects of temperament and acclimation to handling on reproductive performance of Bos taurus beef females. In Exp. 1, 433 multiparous, lactating Angus × Hereford cows were sampled for blood and evaluated for temperament before the breeding season. Cow temperament was assessed by chute score and exit velocity. Chute score was assessed on a 5-point scale according to behavioral responses during chute restraining. Exit score was calculated by dividing exit velocity into quintiles and assigning cows with a score from 1 to 5 (1 = slowest, 5 = fastest cows). Temperament score was calculated by averaging chute and exit scores. Cows were classified for temperament type according to temperament score (≤ 3 = adequate, > 3 = aggressive). Plasma cortisol concentrations were greater (P < 0.01) in cows with aggressive vs. adequate temperament. Cows with aggressive temperament had reduced (P ≤ 0.05) pregnancy and calving rate and tended to have reduced (P = 0.09) weaning rate compared with cows with adequate temperament. Hence, kilogram of calf born per cow was reduced (P = 0.05) and kilogram of calf weaned per cow tended to be reduced (P = 0.08) in aggressive cows. In Exp. 2, 88 Angus × Hereford heifers (initial age = 206 ± 2 d) were weighed (d 0 and 10) and evaluated for temperament score (d 10). On d 11, heifers were ranked by these variables and assigned to receive or not (control) an acclimation treatment. Acclimated heifers were processed through a handling facility 3 times weekly for 4 wk (d 11 to 39; Mondays, Wednesdays, and Fridays), whereas control heifers remained undisturbed on pasture. Heifer puberty status, evaluated via plasma progesterone concentrations, was assessed on d 0 and 10, d 40 and 50, 70 and 80, 100 and 110, 130 and 140, 160 and 170, and 190 and 200. Blood samples collected on d 10 and 40 were also analyzed for plasma concentrations of cortisol and haptoglobin. Temperament score was assessed again on d 40 and d 200

  12. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    PubMed

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures.

    PubMed

    Noyola, Javier; Caamal-Monsreal, Claudia; Díaz, Fernando; Re, Denisse; Sánchez, Adolfo; Rosas, Carlos

    2013-01-01

    Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38-0.78g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30°C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4°C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18-30°C resulted in a calculated area of 210.0°C(2). The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30°C. Maximum and minimum temperature quotients (Q10) were observed between 26-30°C and 22-26°C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  15. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  16. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  17. Eleven days of moderate exercise and heat exposure induces acclimation without significant HSP70 and apoptosis responses of lymphocytes in college-aged males.

    PubMed

    Hom, Lindsay L; Lee, Elaine Choung-Hee; Apicella, Jenna M; Wallace, Sean D; Emmanuel, Holly; Klau, Jennifer F; Poh, Paula Y S; Marzano, Stefania; Armstrong, Lawrence E; Casa, Douglas J; Maresh, Carl M

    2012-01-01

    The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.

  18. Linkage of cold acclimation and disease resistance through plant-pathogen interaction pathway in Vitis amurensis grapevine.

    PubMed

    Wu, Jiao; Zhang, Yali; Yin, Ling; Qu, Junjie; Lu, Jiang

    2014-12-01

    Low temperatures cause severe damage to none cold hardy grapevines. A preliminary survey with Solexa sequencing technology was used to analyze gene expression profiles of cold hardy Vitis amurensis 'Zuoshan-1' after cold acclimation at 4 °C for 48 h. A total of 16,750 and 18,068 putative genes were annotated for 4 °C-treated and control library, respectively. Among them, 393 genes were upregulated for at least 20-fold, while 69 genes were downregulated for at least 20-fold under the 4 °C treatment for 48 h. A subset of 101 genes from this survey was investigated further using reverse transcription polymerase chain reaction (RT-PCR). Genes associated with signaling events in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), including generation of calcium signals (CNGC, CMLs), jasmonic acid signal (JAZ1), oxidative burst (Rboh), and phosphorylation (FLS2, BAK, MEKK1, MKKs) cascades, were upregulated after cold acclimation. Disease resistance genes (RPM1, RPS5, RIN4, PBS1) in the process of effector-triggered immunity (ETI) were also upregulated in the current condition. Defense-related genes (WRKYs, PR1, MIN7) involved in both PTI and ETI processes were abundantly expressed after cold acclimation. Our results indicated that plant-pathogen interaction pathways were linked to the cold acclimation in V. amurensis grapevine. Other biotic- and abiotic-related genes, such as defense (protein phosphatase 2C, U-box domain proteins, NCED1, stilbene synthase), transcription (DREBs, MYBs, ERFs, ZFPs), signal transduction (kinase, calcium, and auxin signaling), transport (ATP-binding cassette (ABC) transporters, auxin:hydrogen symporter), and various metabolism, were also abundantly expressed in the cold acclimation of V. Amurensis 'Zuoshan-1' grapevine. This study revealed a series of critical genes and pathways to delineate important biological processes affected by low temperature in 'Zuoshan-1'.

  19. Controlled release fertilizer improves quality of container longleaf pine seedlings

    Treesearch

    R. Kasten Dumroese; Jeff Parkhurst; James P. Barnett

    2005-01-01

    In an operational trial, increasing the amount of nitrogen (N) applied to container longleaf pine seedlings by incorporating controlled release fertilizer (CRF) into the media improved seedling growth and quality. Compared with control seedlings that received 40 mg N, seedlings receiving 66 mg N through CRF supplemented with liquid fertilizer had needles that were 4 in...

  20. Protecting red oak seedlings with tree shelters in northwestern Pennsylvania

    Treesearch

    Russell S. Walters; Russell S. Walters

    1993-01-01

    Examines the growth and survival of planted and natural red oak seedlings and seedlings from planted acorns within translucent tan tree shelters, fences, and unprotected controls under a shelterwood seed-cut stand. Seedlings planted within tree shelters and fences were inside tree shelters. Natural seedlings grew very little and their height inside and outside of tree...

  1. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    PubMed

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Container-Grown Longleaf Pine Seedling Quality

    Treesearch

    Mark J. Hainds; James P. Barnett

    2004-01-01

    This study examines the comparative hardiness of various classes or grades of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Most container longleaf seedlings are grown in small ribbed containers averaging 5 to 7 cubic inches in volume and 3 to 6 inches in depth. Great variability is often exhibited in typical lots of container-...

  3. Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.

    2009-12-01

    Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our

  4. Seedling growth and development on space shuttle

    NASA Astrophysics Data System (ADS)

    Cowles, J.; Lemay, R.; Jahns, G.

    1994-11-01

    Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

  5. Seedling growth and development on space shuttle

    NASA Technical Reports Server (NTRS)

    Cowles, J.; Lemay, R.; Jahns, G.

    1994-01-01

    Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

  6. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part II. Seedling emergence timing

    USDA-ARS?s Scientific Manuscript database

    Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...

  7. Respiratory response of grass carp Ctenopharyngodon idellus to dissolved oxygen changes at three acclimation temperatures.

    PubMed

    Zhao, Zhigang; Dong, Shuanglin; Xu, Qiyou

    2018-02-01

    Respiratory parameters of grass carp were studied during dissolved oxygen (DO) changes from normal DO to hypoxia, then return to normal DO at 15, 25, and 30 °C acclimation, respectively. The results showed that with increases of acclimation temperature at normoxia the respiratory frequency (f R ), oxygen consumption rate (VO 2 ), respiratory stroke volume (V S.R ), gill ventilation (V G ), and V G /VO 2 of grass carp increased significantly, but the oxygen extraction efficiency (EO 2 ) of fish decreased significantly (P < 0.05). With declines of DO levels, the f R , V S.R , V G , and V G /VO 2 of fish increased significantly at different acclimation temperatures (P < 0.05). A slight increase was found in VO 2 , and the EO 2 of fish remained almost constant above DO levels of 3.09, 2.91, and 2.54 mg l -1 at 15, 25, and 30 °C, while the VO 2 and EO 2 began to decrease significantly with further reductions in DO levels (P < 0.05). After 0.5 h of recovery to normoxia from hypoxia at three acclimation, the f R , V S.R , V G , and V G /VO 2 of the fish decreased sharply; meanwhile, the VO 2 and EO 2 increased sharply (P < 0.05). The respiratory parameters of fish gradually approached initial values with prolonged recovery time to normoxia, and reached their initial values in 2.5 h at 25 and 30 °C acclimation. The critical oxygen concentrations (C c ) of fish for VO 2 were 2.42 mg l -1 at 15 °C, 2.02 mg l -1 at 25 °C, and 1.84 mg l -1 at 30 °C, respectively. The results suggest that grass carp are highly adapted to varied DO and short-term hypoxia environments.

  8. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation

    PubMed Central

    Keen, Adam N.; Crossley, Dane A.

    2016-01-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  9. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    PubMed

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H 2 -producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Seedling quality tests: plant moisture stress

    Treesearch

    Gary Ritchie; Thomas D. Landis

    2005-01-01

    This is the fifth installment in our review of seedling quality tests. Here we focus on what is commonly known as "plant moisture stress" or PMS. Although PMS is not routinely used for seedling quality testing per se, it is nevertheless the most common physiological measurement made on reforestation stock. This is because the measurement itself is simple and...

  11. Implications of large oak seedlings on problematic deer herbivory

    Treesearch

    Christopher M. Oswalt; Wayne K. Clatterbuck; Allan E. Houston; Scott E. Schlarbaum

    2006-01-01

    Seedling herbivory by whitetail deer [Odocoileus virginianus (Boddaert)] can be a significant problem where artificial regeneration is attempted. We examined the relationship between deer herbivory and morphological traits of northern red oak (Quercus rubra L.) seedlings for two growing seasons for both browsed and non-browsed seedlings. Logistic...

  12. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future

    PubMed Central

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-01-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. PMID:25232133

  13. [Double mulching application for Panax notoginseng growing seedlings].

    PubMed

    Ou, Xiao-Hong; Fang, Yan; Shi, Ya-Na; Guo, Lan-Ping; Wang, Li; Yang, Yan; Jin, Hang; Liu, Da-Hui

    2014-02-01

    In order to improve the irrigation for Panax notginseng growing seedlings, different mulching ways were carried out to investigate the effects of double mulching. Field experiment was applied to study soil moisture, soil temperature and bulk density of different mulching ways while the germination rate and seedlings growth also were investigated. Compared with the traditional single mulching with pine leaves or straw, double mulching using plastic film combined with pine leaves or straw could reduce 2/3 volumes of irrigation at the early seedling time Double mulching treatments didn't need to irrigate for 40 days from seeding to germination, and kept soil moisture and temperature steady at whole seedling time about 30% and 9.0-16.6 degrees C, respectively. The steady soil moisture and temperature benefited to resist late spring cold and germinate earlier while kept germination regularly, higher rate and seedlings quality. In contrast, single mulching using pine leaves or straw had poor soil moisture and temperature preserving, needed to irrigate every 12-day, meanwhile dropped the germination and booming time 14 days and 24-26 days, respectively, reduced germination rate about 11.3%-8.7%. However, single pine leaves mulching was better than straw mulching. In addition, though better effects of soil moisture and temperature preserving as well as earlier and higher rate of germination with single plastic films mulching had, some disadvantages had also been observed, such as daily soil temperature changed greatly, seedling bed soil hardened easily, more moss and weeds resulted difficulty in later management. To the purpose of saving water and labor as well as getting higher germination rate and seedlings quality, double mulching using plastic films combined pine leaves at the early time and single mulching removing plastic films at the later time is suggested to apply in the growing seedlings of P. notoginseng.

  14. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations

    PubMed Central

    Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646

  15. Propagation and planting of containerized Eucalyptus seedlings in Hawaii

    Treesearch

    Gerald A. Walters

    1983-01-01

    A container reforestation system has been researched and developed in Hawaii which results in consistently high survival and growth rates for eucalyptus seedlings. Mean survival of containerized saligna eucalyptus (Eucalyptus saligna Smith) seedlings is 90 percent with a standard deviation of 4. Because transplant shock is minimal, seedlings begin to...

  16. The effects of a wildfire on pine seedling recruitment

    Treesearch

    Paula C. Gnehm; Brad Hadley

    2007-01-01

    We investigated the effects of a single arson wildfire by comparing its impact on pine seedling recruitment with that of both prescribed fire and unburned compartments. Although a t-test detected no significant difference in pine seedling recruitment (p = 0.38), the "wildfire" treatment produced 127 more seedlings than the unburned...

  17. Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Orbovic, V.; Poff, K. L.

    1991-01-01

    An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16 degrees about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6 degrees during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics.

  18. Proceedings of the Southern Containerized Forest Tree Seedling Conference

    Treesearch

    James P. Barnett; [Editors

    1982-01-01

    Research findings provide benefits to society when they are communicated to and implemented by users. This principle was the rationale for the Southern Containerized Forest Tree Seedling Conference. In the 8 years since the North American Containerized Forest Tree Seedling Symposium in August 1974, southern foresters have developed container seedling nurseries and...

  19. Body size as a latent variable in a structural equation model: thermal acclimation and energetics of the leaf-eared mouse.

    PubMed

    Nespolo, Roberto F; Arim, Matías; Bozinovic, Francisco

    2003-07-01

    Body size is one of the most important determinants of energy metabolism in mammals. However, the usual physiological variables measured to characterize energy metabolism and heat dissipation in endotherms are strongly affected by thermal acclimation, and are also correlated among themselves. In addition to choosing the appropriate measurement of body size, these problems create additional complications when analyzing the relationships among physiological variables such as basal metabolism, non-shivering thermogenesis, thermoregulatory maximum metabolic rate and minimum thermal conductance, body size dependence, and the effect of thermal acclimation on them. We measured these variables in Phyllotis darwini, a murid rodent from central Chile, under conditions of warm and cold acclimation. In addition to standard statistical analyses to determine the effect of thermal acclimation on each variable and the body-mass-controlled correlation among them, we performed a Structural Equation Modeling analysis to evaluate the effects of three different measurements of body size (body mass, m(b); body length, L(b) and foot length, L(f)) on energy metabolism and thermal conductance. We found that thermal acclimation changed the correlation among physiological variables. Only cold-acclimated animals supported our a priori path models, and m(b) appeared to be the best descriptor of body size (compared with L(b) and L(f)) when dealing with energy metabolism and thermal conductance. However, while m(b) appeared to be the strongest determinant of energy metabolism, there was an important and significant contribution of L(b) (but not L(f)) to thermal conductance. This study demonstrates how additional information can be drawn from physiological ecology and general organismal studies by applying Structural Equation Modeling when multiple variables are measured in the same individuals.

  20. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae)

    PubMed Central

    Terblanche, John S.; Chown, Steven L.

    2006-01-01

    Summary Recent reviews of the adaptive hypotheses for animal responses to acclimation have highlighted the importance of distinguishing between developmental and adult (non-developmental) phenotypic plasticity. However, little work has been undertaken separating the effects of developmental plasticity from adult acclimation in physiological traits. Therefore, we investigate the relative contributions of these two distinct forms of plasticity to the environmental physiology of adult tsetse flies by exposing developing pupae or adult flies to different temperatures and comparing their responses. We also exposed flies to different temperatures during development and re-exposed them as adults to the same temperatures to investigate possible cumulative effects. Critical thermal maxima were relatively inflexible in response to acclimation temperatures (21, 25, 29 °C) with plasticity type accounting for the majority of the variation (49-67 %, nested ANOVA). By contrast, acclimation had a larger effect on critical thermal minima with treatment temperature accounting for most of the variance (84-92 %). Surprisingly little of the variance in desiccation rate could be explained by plasticity type (30-47 %). The only significant effect of acclimation on standard (resting) metabolic rate of adult flies occurred in response to 21 °C, resulting in treatment temperature, rather than plasticity type, accounting for the majority of the variance (30-76 %). This study demonstrates that the stage at which acclimation takes place has significant, though often different effects on several adult physiological traits in G. pallidipes, and therefore that it is not only important to consider the form of plasticity but also the direction of the response and its significance from a life-history perspective. PMID:16513933

  1. Effects of copper, hypoxia and acute temperature shifts on mitochondrial oxidation in rainbow trout (Oncorhynchus mykiss) acclimated to warm temperature.

    PubMed

    Sappal, Ravinder; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-12-01

    Temperature fluctuations, hypoxia and metals pollution frequently occur simultaneously or sequentially in aquatic systems and their interactions may confound interpretation of their biological impacts. With a focus on energy homeostasis, the present study examined how warm acclimation influences the responses and interactions of acute temperature shift, hypoxia and copper (Cu) exposure in fish. Rainbow trout (Oncorhynchus mykiss) were acclimated to cold (11°C; control) and warm (20°C) temperature for 3 weeks followed by exposure to environmentally realistic levels of Cu and hypoxia for 24h. Subsequently, mitochondrial electron transport system (ETS) respiratory activity supported by complexes I-IV (CI-IV), plasma metabolites and condition indices were measured. Warm acclimation reduced fish condition, induced aerobic metabolism and altered the responses of fish to acute temperature shift, hypoxia and Cu. Whereas warm acclimation decelerated the ETS and increased the sensitivity of maximal oxidation rates of the proximal (CI and II) complexes to acute temperature shift, it reduced the thermal sensitivity of state 4 (proton leak). Effects of Cu with and without hypoxia were variable depending on the acclimation status and functional index. Notably, Cu stimulated respiratory activity in the proximal ETS segments, while hypoxia was mostly inhibitory and minimized the stimulatory effect of Cu. The effects of Cu and hypoxia were modified by temperature and showed reciprocal antagonistic interaction on the ETS and plasma metabolites, with modest additive actions limited to CII and IV state 4. Overall, our results indicate that warm acclimation came at a cost of reduced ETS efficiency and increased sensitivity to added stressors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine.

    PubMed

    Pillans, Richard D; Good, Jonathan P; Anderson, W Gary; Hazon, Neil; Franklin, Craig E

    2005-01-01

    This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l(-1) kg(-1)) were acclimated to SW (980-1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na(+), Cl(-), K(+), Mg(2+), Ca(2+), urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na(+)/K(+)-ATPase activity. Na(+)/K(+)-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na(+)/K(+)-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na(+)/K(+)-ATPase activity was 5.6+/-0.8 and 9.2+/-0.6 mmol Pi mg(-1) protein h(-1), respectively. Na(+)/K(+)-ATPase activity in the kidney of FW and SW acclimated animals was 8.4+/-1.1 and 3.3+/-1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.

  3. Physiological plasticity, long term resistance or acclimation to temperature, in the Antarctic bivalve, Laternula elliptica.

    PubMed

    Morley, Simon A; Hirse, Timo; Thorne, Michael A S; Pörtner, Hans O; Peck, Lloyd S

    2012-05-01

    To further investigate the previously reported limited acclimation capacities of Antarctic marine stenotherms, the Antarctic mud clam, Laternula elliptica (King and Broderip, 1830-1831), was incubated at 3.0°C for 89days. The thermal windows of a suite of biochemical and physiological metrics that characterise tissue aerobic status, were then measured in response to acute temperature elevation (2-2.5°C increase per week). To test if acclimation had occurred at the higher temperature, results were compared with published data, from the preceding year, for L. elliptica which had been incubated at ambient temperature (0.0°C) and then subjected to the same acute temperature treatments. Incubation to 3.0°C led to a temperature induced increase of tissue aerobic status (reduced intracellular cCO(2) with increased O(2) consumption, PLA (phospho-L-arginine) and ATP). At the highest acute temperature (7.5°C) the increase in anaerobic pathways (summed acetate/succinate and propionate) was less after 3.0°C than 0.0°C incubation. No other metric shifted its reaction norm in response to acute temperature elevation and so whole animal acclimation had not occurred, even after 3months at 3.0°C. Combined with the constant mortality throughout the 3.0°C incubation period, these data suggest that the recorded physiological changes were either the early stages of acclimation or, more likely, time limited resistance mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking naturalmore » temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.« less

  5. Growth and consumption of L-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains.

    PubMed

    Bravo-Ferrada, Bárbara Mercedes; Hollmann, Axel; Brizuela, Natalia; La Hens, Danay Valdés; Tymczyszyn, Elizabeth; Semorile, Liliana

    2016-09-01

    Five Oenococcus oeni strains, selected from spontaneous malolactic fermentation (MLF) of Patagonic Pinot noir wine, were assessed for their use as MLF starter cultures. After the individual evaluation of tolerance to some stress conditions, usually found in wine (pH, ethanol, SO2, and lysozyme), the behavior of the strains was analyzed in MLO broth with 14 % ethanol and pH 3.5 in order to test for the synergistic effect of high ethanol level and low pH and, finally, in a wine-like medium. Although the five strains were able to grow in MLO broth under low pH and/or high ethanol, they must be acclimated to grow in a wine-like medium. Additionally, glycosidase and tannase activities were evaluated, showing differences among the strains. The potential of the strains to ferment citrate was tested and two of the five strains showed the ability to metabolize this substrate. We did not detect the presence of genes encoding histidine, tyrosine descarboxylase, and putrescine carbamoyltransferase. All the strains tested exhibited good growth capacity and ability to consume L-malic acid in a wine-like medium after cell acclimation, and each of them showed a particular enzyme profile, which might confer different organoleptic properties to the wine.

  6. Why Seedlings Die: Linking Carbon and Water Limitations to Mechanisms of Mortality During Establishment in Conifer Seedlings

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Germino, M. J.; Kueppers, L. M.; Mitton, J.; Castanha, C.

    2012-12-01

    BACKGROUND Recent ecophysiological studies aimed at explaining adult tree mortality during drought have examined the carbon (C)-exhaustion compared to the hydraulic-failure hypotheses for death. Prolonged drought leads to durations of stomatal closure (and thus limited C gain), which could result in long periods of negative C balance and fatal reductions in whole-plant C reserves (i.e., available non-structural carbohydrates ["NSC"]). Alternatively, C reserves may not decrease much but could become increasingly inaccessible to sink tissues in long dry-periods due to impediments to translocation of photosynthate (e.g., through disruption of hydrostatic pressure flow in phloem). As C reserves decline or become inaccessible, continued maintenance respiration has been hypothesized to lead to exhaustion of NSC after extended durations of drought, especially in isohydric plant species. On the other hand, hydraulic failure (e.g., catastrophic xylem embolisms) during drought may be the proximate cause of death, occurring before true C starvation occurs. Few studies have investigated specifically the mechanism(s) of tree death, and no published studies that we know of have quantified changes in NSC during mortality. EXPERIMENTAL DESIGN AND HYPOTHESES We conducted two studies that investigated whole-tree and tissue-specific C relations (photosynthetic C gain, respiration, dry-mass gain, and NSC pools) in Pinus flexilis seedlings during the initial establishment phase, which is characterized by progressive drought during summer. We measured survival, growth and biomass allocation, and C-balance physiology (photosynthetic C-gain and chlorophyll fluorescence, respiration C-use, and NSC concentrations) from germination to mortality. We hypothesized that 1) stomatal and biochemical limitations to C gain would constrain seedling survival (through inadequate seasonal C-balance), as has been shown for conifer seedlings near alpine treeline; 2) hydraulic constraints (embolisms and

  7. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.

    PubMed

    D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena

    2016-05-01

    Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive

  8. Heat acclimation responses of an ultra-endurance running group preparing for hot desert-based competition.

    PubMed

    Costa, Ricardo J S; Crockford, Michael J; Moore, Jonathan P; Walsh, Neil P

    2014-01-01

    Heat acclimation induces adaptations that improve exercise tolerance in hot conditions. Here we report novel findings into the effects of ultra-marathon specific exercise load in increasing hot ambient conditions on indices of heat acclimation. Six male ultra-endurance runners completed a standard pre-acclimation protocol at 20°C ambient temperature (T amb), followed by a heat acclimation protocol consisting of six 2 h running exercise-heat exposures (EH) at 60% VO2max on a motorised treadmill in an environmental chamber. Three EH were performed at 30°C T amb, followed by another three EH at 35°C T amb. EH were separated by 48 h within T amb and 72 h between T amb. Nude body mass (NBM), blood and urine samples were collected pre-exercise; while NBM and urine were collected post-exercise. Rectal temperature (T re), heart rate (HR), thermal comfort rating (TCR) and rating of perceived exertion were measured pre-exercise and monitored every 5 min during exercise. Water was provided ad libitum during exercise. Data were analysed using a repeated measures and one-way analysis of variance (ANOVA), with post hoc Tukey's HSD. Significance was accepted as P< 0.05. Overall mean T re was significantly lower during 30°C EH3 and 35°C EH3 compared with their respective EH1 (-0.20 and-0.23°C, respectively; P<0.05). Similarly, overall mean HR was significantly lower during 30°C EH3 and 35°C EH3 compared with their respective EH1 (8 and 7 bpm respectively; P<0.05). A significant decrease in overall mean TCR was observed during 35°C EH3, compared with 35°C EH1 (P< 0.05). Significant increases in resting pre-exercise plasma volume (estimated from Hb and Hct) were observed by 30°C EH3 (7.9%; P< 0.05). Thereafter, plasma volume remained above baseline throughout the experimental protocol. Two EH of 2 h at 60% VO2max at 30°C T amb was sufficient to initiate heat acclimation in all ultra-endurance runners. Further, heat acclimation responses occurred with increasing EH to 35

  9. H2O2_COD_EPA; MEC_acclimation

    EPA Pesticide Factsheets

    H2O2_COD_EPA: Measurements of hydrogen peroxide and COD concentrations for water samples from the MEC reactors.MEC_acclimation: raw data for current and voltage of the anode in the MEC reactor.This dataset is associated with the following publication:Sim, J., J. An, E. Elbeshbishy, R. Hodon, and H. Lee. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. Bioresource Technology. Elsevier Online, New York, NY, USA, 195: 31-36, (2015).

  10. Daily Acclimation Handling Does Not Affect Hippocampal Long-Term Potentiation or Cause Chronic Sleep Deprivation in Mice

    PubMed Central

    Vecsey, Christopher G.; Wimmer, Mathieu E. J.; Havekes, Robbert; Park, Alan J.; Perron, Isaac J.; Meerlo, Peter; Abel, Ted

    2013-01-01

    Study Objectives: Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Design: Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6th day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Results: Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6th day, stress hormone levels are unaltered by handling. Conclusion: It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation. Citation: Vecsey CG; Wimmer MEJ; Havekes R; Park AJ; Perron IJ; Meerlo P; Abel T. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice. SLEEP 2013

  11. Rice mutants deficient in ω-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures.

    PubMed

    Tovuu, Altanzaya; Zulfugarov, Ismayil S; Wu, Guangxi; Kang, In Soon; Kim, Choongrak; Moon, Byoung Yong; An, Gynheung; Lee, Choon-Hwan

    2016-12-01

    To investigate the role of ω-3 fatty acid (FA) desaturase (FAD8) during cold acclimation in higher plants, we characterized three independent T-DNA insertional knock-out mutants of OsFAD8 from rice (Oryza sativa L.). At room temperature (28 °C), osfad8 plants exhibited significant alterations in fatty acid (FA) unsaturation for all four investigated plastidic lipid classes. During a 5-d acclimation period at 4 °C, further changes in FA unsaturation in both wild-type (WT) and mutant plants varied according to the type of lipid. We also monitored the fluidity of the thylakoid membrane using a threshold temperature to represent the change in fluorescence. The values were altered significantly by both FAD8 mutation and cold acclimation, suggesting that factors other than FAD8 are involved in C18 FA unsaturation and fluctuations in membrane fluidity. Similarly, significant changes were noted for both the mutant and WT samples in terms of their FA compositions as well as activities related to photosystem (PS) I, PSII, and photoprotection. This included the development of non-photochemical quenching and increased zeaxanthin accumulation. Despite the relatively small changes in FA composition during cold acclimation, cold-inducible FAD8 knock-out mutants displayed strong differences in photoprotective activities and a further drop in membrane fluidity. The mutants were more sensitive than WT to short-term low-temperature stress that resulted in increased production of reactive oxygen species after 5 d of chilling. Taken together, our findings suggest that FA unsaturation by OsFAD8 is crucial for the acclimation of higher plants to low-temperature stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation

    PubMed Central

    Ali, Farman; Wharton, David A.

    2015-01-01

    Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance. PMID:26509788

  13. The effect of heat acclimation on sweat microminerals: Artifact of surface contamination

    USDA-ARS?s Scientific Manuscript database

    Heat acclimation (HA) reportedly conveys conservation in sweat micromineral concentrations when sampled from arm sweat, but time course is unknown. The observation that comprehensive cleaning of the skin surface negates sweat micromineral reductions during prolonged sweating raises the question of w...

  14. Chlorophyll, Carotenoid and Anthocyanin Accumulation in Mung Bean Seedling Under Clinorotation

    NASA Astrophysics Data System (ADS)

    Nakajima, Shusaku; Shiraga, Keiichiro; Suzuki, Tetsuhito; Kondo, Naoshi; Ogawa, Yuichi

    2017-12-01

    The accumulation of plant pigments in mung bean ( Vigna radiata L.) seedlings was measured after clinorotation (2 rpm for 2-4 days), and compared to a stationary control. The pigments measured included chlorophyll and carotenoid in primary leaves, and the anthocyanin in seedlings. While significant changes in chlorophyll and carotenoid accumulation were not observed during the initial 2 to 4 days of cultivation, by day 4 the seedlings grown on the clinostat had lower levels of anthocyanin, compared to those in the control seedlings. To further detail the cause for the observed reduction in anthocyanin accumulation under altered gravity conditions, seedlings were grown in the presence of silver nitrate, a known ethylene inhibitor, for 4 days, since it is known ethylene has a negative impact on anthocyanin accumulation. Silver nitrate promoted anthocyanin accumulation in the clinostat seedlings, and as a result there was no significant difference between the control and clinostat seedlings in anthocyanin accumulation. The results suggest that slow clinorotation negatively impacts anthocyanin pigmentation in mung bean seedlings, with endogenous ethylene suspected to be involved in this.

  15. Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation1

    PubMed Central

    Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.

    2000-01-01

    We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899

  16. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-07

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. "Super" Spruce Seedlings Continue Superior Growth for 18 Years

    Treesearch

    Hans Nienstaedt

    1981-01-01

    White spruce seedlings--20, 19, 18, and 17 inches tall--were selected among 2-2 transplants; controls from the same beds averaged 7.7 inches tall. After 18 years in the field, the selected seedlings continued to have a 30 percent height growth advantage over the controls. This note discusses how to incorporate super spruce seedlings into a tree breeding program....

  18. Growing media trials at the Montana Conservation Seedling Nursery

    Treesearch

    John Justin

    2009-01-01

    The Montana Conservation Seedling Nursery (MCSN) in Missoula produces 750,000 container seedlings annually in containers ranging in size from 66 cm3 (4 in3) up to 61 L (16 gal) pots. The MCSN is a production facility with no research funding. When we encounter a promising idea for improving our seedlings or the efficiency of nursery operations, we rarely perform...

  19. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  20. Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities

    PubMed Central

    2013-01-01

    Background Prolactin (PRL) is a key hormone for osmoregulation in fish. Levels of PRL in the pituitary gland and plasma ion composition of clownfish seem to change to regulate their hydromineral balance during adaptation to waters of different salinities. In order to understand osmoregulatory mechanism and its association with growth performance and PRL in fish, the gene encoding PRL and its expression level in cinnamon clownfish Amphiprion melanopus upon acclimation to low salinity was analyzed. Results The PRL gene of A. melanopus encoded a protein of 212 amino acid residues comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. Analysis of growth performance under different salinities of 34, 25, 15, and 10 ppt indicated that cinnamon clownfish could survive under salinities as low as 10 ppt. A higher rate of growth was observed at the lower salinities as compared to that of 34 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased to reach the peak level until 24 h of acclimation at 15 ppt, but decreased back as adaptation continued to 144 h. In contrast, levels of plasma Na+, Cl-, and osmolality decreased at the initial stage (4–8 h) of acclimation at 15 pt but increased back as adaptation continued till 144 h. Conclusion Cinnamon clownfish could survive under salinities as low as 10 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased during the initial stage of acclimation but decreased back to the normal level as adaptation continued. An opposite pattern of changes - decrease at the beginning followed by an increase - in the levels of plasma Na+, Cl-, and osmolality was found upon acclimation to low salinity. The results suggest an involvement of PRL in the processes of osmoregulation and homeostasis in A. melanopus. PMID:23276106

  1. Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities.

    PubMed

    Noh, Gyeong Eon; Rho, Sum; Chang, Yong Jin; Min, Byung Hwa; Kim, Jong-Myoung

    2013-01-01

    Prolactin (PRL) is a key hormone for osmoregulation in fish. Levels of PRL in the pituitary gland and plasma ion composition of clownfish seem to change to regulate their hydromineral balance during adaptation to waters of different salinities. In order to understand osmoregulatory mechanism and its association with growth performance and PRL in fish, the gene encoding PRL and its expression level in cinnamon clownfish Amphiprion melanopus upon acclimation to low salinity was analyzed. The PRL gene of A. melanopus encoded a protein of 212 amino acid residues comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. Analysis of growth performance under different salinities of 34, 25, 15, and 10 ppt indicated that cinnamon clownfish could survive under salinities as low as 10 ppt. A higher rate of growth was observed at the lower salinities as compared to that of 34 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased to reach the peak level until 24 h of acclimation at 15 ppt, but decreased back as adaptation continued to 144 h. In contrast, levels of plasma Na+, Cl-, and osmolality decreased at the initial stage (4-8 h) of acclimation at 15 pt but increased back as adaptation continued till 144 h. Cinnamon clownfish could survive under salinities as low as 10 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased during the initial stage of acclimation but decreased back to the normal level as adaptation continued. An opposite pattern of changes - decrease at the beginning followed by an increase - in the levels of plasma Na+, Cl-, and osmolality was found upon acclimation to low salinity. The results suggest an involvement of PRL in the processes of osmoregulation and homeostasis in A. melanopus.

  2. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    PubMed

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P < 0.05), but the intracellular compartments did not change (P > 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P < 0.05] and 48.9 mL kg(-1) [±3.0 (day 22); P < 0.05]. During progressive dehydration, plasma reductions of 9.0% (±0.9: day 1), 12.4% (±1.6: day 8) and 13.6% (±1.2: day 22) were observed, with day 8 and 22 losses significantly exceeding day 1 (P < 0.05). During recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. The ontogeny of tolerance curves: habitat quality vs. acclimation in a stressful environment.

    PubMed

    Nougué, Odrade; Svendsen, Nils; Jabbour-Zahab, Roula; Lenormand, Thomas; Chevin, Luis-Miguel

    2016-11-01

    Stressful environments affect life-history components of fitness through (i) instantaneous detrimental effects, (ii) historical (carry-over) effects and (iii) history-by-environment interactions, including acclimation effects. The relative contributions of these different responses to environmental stress are likely to change along life, but such ontogenic perspective is often overlooked in studies of tolerance curves, precluding a better understanding of the causes of costs of acclimation, and more generally of fitness in temporally fine-grained environments. We performed an experiment in the brine shrimp Artemia to disentangle these different contributions to environmental tolerance, and investigate how they unfold along life. We placed individuals from three clones of A. parthenogenetica over a range of salinities during a week, before transferring them to a (possibly) different salinity for the rest of their lives. We monitored individual survival at repeated intervals throughout life, instead of measuring survival or performance at a given point in time, as commonly done in acclimation experiments. We then designed a modified survival analysis model to estimate phase-specific hazard rates, accounting for the fact that individuals may share the same treatment for only part of their lives. Our approach allowed us to distinguish effects of salinity on (i) instantaneous mortality in each phase (habitat quality effects), (ii) mortality later in life (history effects) and (iii) their interaction. We showed clear effects of early salinity on late survival and interactions between effects of past and current environments on survival. Importantly, analysis of the ontogenetic dynamics of the tolerance curve reveals that acclimation affects different parts of the curve at different ages. Adopting a dynamical view of the ontogeny of tolerance curve should prove useful for understanding niche limits in temporally changing environments, where the full sequence of

  4. Copper-Treated Containers Influence Root Development of Longleaf Pine Seedlings

    Treesearch

    James P. Barnett; John M. McGilvray

    2002-01-01

    Development of longleaf pine (Pinus palustris Mill.) seedlings grown in CopperblockTM containers and BC/ CFC First ChoiceTM Styrofoam blocks, with applications of Spin Out® root growth regulator, were compared to control seedlings. The copper treatments significantly changed seedling morphology; at...

  5. Cooler butterflies lay larger eggs: developmental plasticity versus acclimation.

    PubMed Central

    Fischer, Klaus; Eenhoorn, Evelien; Bot, Adriane N M; Brakefield, Paul M; Zwaan, Bas J

    2003-01-01

    We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints. PMID:14561294

  6. Effects of "short" photoperiods on seedling growth of Pinus brutia.

    PubMed

    Iakovoglou, V; Radoglou, K; Kostopoulou, P; Dini-Papanastasi, O

    2012-03-01

    This study investigated how nurseries could benefit by inducing "short" photoperiods as low as 4 hr to produce "better" seedlings characterized by more vigorous roots; a substantial feature to overcome transplanting stress. The carryover effect of the photoperiod was also investigated on seedlings that grew for 30 days more underthe consistent 14 hr photoperiod. Seedlings of Pinus brutia were subjected to 4, 6, 8 and 14 hr photoperiod for 3 week. Fifteen seedlings were used to evaluate the leaf area, the root and shoot dry weight and their ratio. Six and sixteen seedlings were used to evaluate the shoot electrolyte leakage and the root growth potential, respectively. Based on the results, the 6 and 8 hr photoperiod indicated greater root allocation (4.8 and 4.9 mg, respectively) and chlorophyll content (3.7 and 4.4, respectively). They also indicated greater leaf area values (3.3 and 3.5 cm2, respectively) along with the 14 hr (3.4 cm2). The photoperiod effect continued even after seedlings were subjected at consistent photoperiod. Overall, "short" photoperiods could provide "better" P. brutia seedlings to accommodate immediate massive reforestation and afforestation needs.

  7. Growth of Douglas-fir seedlings after slash burning.

    Treesearch

    Robert F. Tarrant; Ernest. Wright

    1955-01-01

    An understanding of the ways slash burning may affect seedling growth is important in evaluating present slash-disposal practices. Some observations of early seedling development after slash burning are now available from a recent exploratory study.

  8. Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.--Improved taxane isolation by accelerated quality control and process surveillance.

    PubMed

    Gudi, Gennadi; Krähmer, Andrea; Koudous, Iraj; Strube, Jochen; Schulz, Hartwig

    2015-10-01

    Different yew species contain poisonous taxane alkaloids which serve as resources for semi-synthesis of anticancer drugs. The highly variable amounts of taxanes demand new methods for fast characterization of the raw plant material and the isolation of the target structures during phyto extraction. For that purpose, applicability of different vibrational spectroscopy methods in goods receipt of raw plant material and in process control was investigated and demonstrated in online tracking isolation and purification of the target taxane 10-deacetylbaccatin III (10-DAB) during solvent extraction. Applying near (NIRS) and mid infrared spectroscopy (IRS) the amount of botanical impurities in mixed samples of two different yew species (R(2)=0.993), the leave-to-wood ratio for Taxus baccata material (R(2)=0.94) and moisture in dried yew needles (R(2)=0.997) can be quantified. By partial least square analysis (PCA) needles of different Coniferales species were successfully discriminated by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FT-IR). The analytical potential of ATR-FT-IR and Fourier Transform-Raman Spectroscopy (FT-RS) in process control of extraction and purification of taxanes is demonstrated for determination of the water content in methanolic yew extracts (R(2)=0.999) and for quantification of 10-DAB (R(2)=0.98) on a highly sophisticated level. The decrease of 10-DAB in the plant tissue during extraction was successfully visualized by FT-IR imaging of thin cross sections providing new perspectives for process control and design. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Thermal acclimation and nutritional history affect the oxidation of different classes of exogenous nutrients in Siberian hamsters, Phodopus sungorus.

    PubMed

    McCue, Marshall D; Voigt, Christian C; Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-11-01

    During acclimatization to winter, changes in morphology and physiology combined with changes in diet may affect how animals use the nutrients they ingest. To study (a) how thermal acclimation and (b) nutritional history affect the rates at which Siberian hamsters (Phodopus sungorus) oxidize different classes of dietary nutrients, we conducted two trials in which we fed hamsters one of three (13) C-labeled compounds, that is, glucose, leucine, or palmitic acid. We predicted that under acute cold stress (3 hr at 2°C) hamsters previously acclimated to cold temperatures (10°C) for 3 weeks would have higher resting metabolic rate (RMR) and would oxidize a greater proportion of dietary fatty acids than animals acclimated to 21°C. We also investigated how chronic nutritional stress affects how hamsters use dietary nutrients. To examine this, hamsters were fed four different diets (control, low protein, low lipid, and low-glycemic index) for 2 weeks. During cold challenges, hamsters previously acclimated to cold exhibited higher thermal conductance and RMR, and also oxidized more exogenous palmitic acid during the postprandial phase than animals acclimated to 21°C. In the nutritional stress trial, hamsters fed the low protein diet oxidized more exogenous glucose, but not more exogenous palmitic acid than the control group. The use of (13) C-labeled metabolic tracers combined with breath testing demonstrated that both thermal and nutritional history results in significant changes in the extent to which animals oxidize dietary nutrients during the postprandial period. © 2014 Wiley Periodicals, Inc.

  10. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation

    PubMed Central

    Semones, Molly C.; Kuhn, Donald E.; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L.

    2014-01-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. PMID:25519739

  11. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    PubMed

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  12. Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len

    2014-01-01

    Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899

  13. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation

    PubMed Central

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2018-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  14. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    PubMed

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  15. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.

    PubMed

    Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara

    2017-11-01

    This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.

  16. Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    PubMed Central

    Koštál, Vladimír; Korbelová, Jaroslava; Rozsypal, Jan; Zahradníčková, Helena; Cimlová, Jana; Tomčala, Aleš; Šimek, Petr

    2011-01-01

    Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately −5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472

  17. Insights into big sagebrush seedling storage practices

    Treesearch

    Emily C. Overton; Jeremiah R. Pinto; Anthony S. Davis

    2013-01-01

    Big sagebrush (Artemisia tridentata Nutt. [Asteraceae]) is an essential component of shrub-steppe ecosystems in the Great Basin of the US, where degradation due to altered fire regimes, invasive species, and land use changes have led to increased interest in the production of high-quality big sagebrush seedlings for conservation and restoration projects. Seedling...

  18. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  19. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    PubMed

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  20. Innovative cold tolerance test for conifer seedlings

    Treesearch

    Peter A. Balk; Peter Bronnum; Mike Perks; Eva Stattin; Lonneke H. M. van der Geest; Monique F. van Wordragen

    2007-01-01

    Forest tree nurseries rely on tight scheduling of operations to deliver vital seedlings to the planting site. Cold storage is required to: (1) prevent winter damage, especially in container seedlings; (2) to maintain planting stock in an inactive condition; and (3) to ensure plant supply for geographically distinct planting sites, a definite requirement for large-scale...

  1. Effect of seedling stock on the early stand development and physiology of improved loblolly pine (Pinus taeda L.) seedlings

    Treesearch

    Shakuntala Sharma; Joshua P. Adams; Jamie L. Schuler; Robert L. Ficklin; Don C. Bragg

    2016-01-01

    This study assessed the effects of spacing and genotype on the growth and physiology of improved loblolly pine (Pinus taeda L.) seedlings from three distinct genotypes planted in Drew County, Arkansas (USA). Genotype had a significant effect on survival and height. Clone CF Var 1 showed greater height and survival compared to other seedlings....

  2. Size Matters — Physiological Temperature Acclimation and Metabolic Scaling of Respiration for Eucalyptus Trees in a Warmer World

    NASA Astrophysics Data System (ADS)

    Drake, J. E.; Toelker, M. G.; Reich, P. B.

    2016-12-01

    Respiration drives the metabolism and growth of trees and represents a large and uncertain component of land surface feedbacks to climate change. A fixed scaling relationship between body mass and respiration has been described as a fundamental law across plants and animals, but this has been controversial. There is now ample evidence that trees adjust their respiration rates in response to temperature variation in their growth environment through physiological acclimation. Is acclimation sufficiently large to alter the scaling relationship between respiration and mass? Here, we make continuous measurements of in-situ­ respiration rates complemented with repeated measurements at a defined set temperature of 15°C for leaves and the entire aboveground component of Eucalyptus parramattensis and E. tereticornis trees growing in the field in warming experiments (ambient vs. +3°C) using 12 whole tree chambers in Australia. We report thousands of repeated measurements as trees grew from 1 to 9-m-tall, allowing a concurrent evaluation of physiological acclimation and metabolic scaling. Trees adjusted the respiration rates of leaves and whole-crowns in relation to the air temperature of the preceding three days, such that: (1) respiration rate per unit mass was reduced by warming when measured at a common temperature, and (2) in-situ whole-crown respiration rates per unit mass were equivalent across ambient and warmed trees (i.e., homeostatic respiration). Acclimation appeared to modify the scaling between respiration and mass, as the slope and intercept of this relationship were affected by recent air temperature. This suggests that metabolic scaling is not fixed, although the overall allometric scaling slope was consistent with the theoretical value of 0.75 (95% CI of 0.5 to 0.78). We suggest that considering acclimation and tree mass together provides new insight into a dynamic scaling of tree respiration, with implications for land surface feedbacks under climate

  3. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  4. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.

    PubMed

    Jankovic, Aleksandra; Golic, Igor; Markelic, Milica; Stancic, Ana; Otasevic, Vesna; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2015-08-01

    White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold

  5. Time Course of Physiological and Psychological Responses in Humans during a 20-Day Severe-Cold–Acclimation Programme

    PubMed Central

    Brazaitis, Marius; Eimantas, Nerijus; Daniuseviciute, Laura; Baranauskiene, Neringa; Skrodeniene, Erika; Skurvydas, Albertas

    2014-01-01

    The time course of physiological and psychological markers during cold acclimation (CA) was explored. The experiment included 17 controlled (i.e., until the rectal temperature reached 35.5°C or 170 min had elapsed; for the CA-17 session, the subjects (n = 14) were immersed in water for the same amount of time as that used in the CA-1 session) head-out water immersions at a temperature of 14°C over 20 days. The data obtained in this study suggest that the subjects exhibited a thermoregulatory shift from peripheral-to-central to solely central input thermoregulation, as well as from shivering to non-shivering thermogenesis throughout the CA. In the first six CA sessions, a hypothermic type of acclimation was found; further CA (CA-7 to CA-16) led to a transitional shift to a hypothermic–insulative type of acclimation. Interestingly, when the subjects were immersed in water for the same time as that used in the CA-1 session (CA-17), the CA led to a hypothermic type of acclimation. The presence of a metabolic type of thermogenesis was evident only under thermoneutral conditions. Cold-water immersion decreased the concentration of cold-stress markers, reduced the activity of the innate immune system, suppressed specific immunity to a lesser degree and yielded less discomfort and cold sensation. We found a negative correlation between body mass index and Δ metabolic heat production before and after CA. PMID:24722189

  6. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.

    PubMed

    Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos

    2017-06-01

    Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.

  7. Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak

    USGS Publications Warehouse

    Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H.

    2005-01-01

    Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split-plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5-year period of this study. The three types of 1-0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 ?? 21a??cm plastic seedling cones), and container-grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal-inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container-grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock

  8. Photosynthate distribution patterns in cherrybark oak seedling sprouts

    Treesearch

    Brian Roy Lockhart; John D. Hodges; Emile S. Gardiner; Andrew W. Ezell

    2003-01-01

    Summary We used 14C tracers to determine photosynthate distribution in cherrybark oak (Quercus pagoda Raf.) seedling sprouts following release from competing mid-story vegetation. Fall acquisition of labeled photosynthates by seedlings followed expected source--sink patterns, with root and basal stem tissues...

  9. A comparison of bareroot and containerized seedling production

    Treesearch

    John McRae; Tom Starkey

    2002-01-01

    Most nursery managers and culturists are comfortable growing bareroot seedlings. A few have become comfortable growing containerized seedlings. This discussion will compare the two systems, with a focus on SYP production, and will include a discussion on capital, equipment, space, and personnel requirements.

  10. Impact of silvicultural treatment on chestnut seedling growth and survival

    Treesearch

    C.C. Pinchot; S.E. Schlarbaum; S.L. Clark; C.J. Schweitzer; A.M. Saxton; F. V. Hebard

    2014-01-01

    Putatively blight-resistant advanced backcross chestnut seedlings will soon be available for outplanting on a regional scale. Few studies have examined the importance of silvicultural treatment or seedling quality to chestnut reintroduction in the U.S. This paper examines results from a silvicultural study of high-quality chestnut seedlings on the Cumberland Plateau of...

  11. Tree seedling response to LED spectra: Implications for forest restoration

    Treesearch

    Antonio Montagnoli; R. Kasten Dumroese; Mattia Terzaghi; Jeremiah R. Pinto; Nicoletta Fulgaro; Gabriella Stefania Scippa; Donato Chiatante

    2018-01-01

    We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (≤40 days), more...

  12. Can auger planting improve survival of Douglas-fir seedlings? Res

    Treesearch

    Richard E. Miller

    1969-01-01

    Survival and apparent vigor of Douglas-fir seedlings were compared after: (1) hoe planting of root-trimmed seedlings; (2) as above plus manual site preparation; (3) auger planting of untrimmed seedlings. After two growing seasons, surviving with method (3) but not (2) was significantly greater than survival with method (1). After the third season, survival...

  13. Fall versus spring transplanting of container seedlings: A comparison of seedling morphology

    Treesearch

    David Steinfeld; David Davis; Steve Feigner; Karen House

    2002-01-01

    Containerized seedlings of Engelmann spruce (Picea engelmannii), sugar pine (Pinus lambertiana), Douglas-fir (Pseudotsuga menziesii), western redcedar (Thuja plicata), and western hemlock (Tsuga heterphylla) transplanted in the early fall and later in the early spring were...

  14. Physiological acclimation dampens initial effects of elevated temperature and atmospheric CO2 concentration in mature boreal Norway spruce.

    PubMed

    Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran

    2018-02-01

    Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.

  15. Acclimation of Foliar Respiration and Photosynthesis in Response to Experimental Warming in a Temperate Steppe in Northern China

    PubMed Central

    Chi, Yonggang; Xu, Ming; Shen, Ruichang; Yang, Qingpeng; Huang, Bingru; Wan, Shiqiang

    2013-01-01

    Background Thermal acclimation of foliar respiration and photosynthesis is critical for projection of changes in carbon exchange of terrestrial ecosystems under global warming. Methodology/Principal Findings A field manipulative experiment was conducted to elevate foliar temperature (T leaf) by 2.07°C in a temperate steppe in northern China. R d/T leaf curves (responses of dark respiration to T leaf), A n/T leaf curves (responses of light-saturated net CO2 assimilation rates to T leaf), responses of biochemical limitations and diffusion limitations in gross CO2 assimilation rates (A g) to T leaf, and foliar nitrogen (N) concentration in Stipa krylovii Roshev. were measured in 2010 (a dry year) and 2011 (a wet year). Significant thermal acclimation of R d to 6-year experimental warming was found. However, A n had a limited ability to acclimate to a warmer climate regime. Thermal acclimation of R d was associated with not only the direct effects of warming, but also the changes in foliar N concentration induced by warming. Conclusions/Significance Warming decreased the temperature sensitivity (Q 10) of the response of R d/A g ratio to T leaf. Our findings may have important implications for improving ecosystem models in simulating carbon cycles and advancing understanding on the interactions between climate change and ecosystem functions. PMID:23457574

  16. Amphibious fish jump better on land after acclimation to a terrestrial environment.

    PubMed

    Brunt, Emily M; Turko, Andy J; Scott, Graham R; Wright, Patricia A

    2016-10-15

    Air and water differ dramatically in density and viscosity, posing different biomechanical challenges for animal locomotion. We asked how terrestrial acclimation influences locomotion in amphibious fish, specifically testing the hypothesis that terrestrial tail flip performance is improved by plastic changes in the skeletal muscle. Mangrove rivulus Kryptolebias marmoratus, which remain largely inactive out of water, were exposed to water or air for 14 days and a subgroup of air-exposed fish was also recovered in water. Tail flip jumping performance on land improved dramatically in air-acclimated fish, they had lower lactate levels compared with control fish, and these effects were mostly reversible. Muscle plasticity significantly increased oxidative muscle cross-sectional area and fibre size, as well as the number of capillaries per fibre. Our results show that reversible changes to the oxidative skeletal muscle of K. marmoratus out of water enhance terrestrial locomotory performance, even in the absence of exercise training. © 2016. Published by The Company of Biologists Ltd.

  17. Products of lipid peroxidation, but not membrane susceptibility to oxidative damage, are conserved in skeletal muscle following temperature acclimation.

    PubMed

    Grim, Jeffrey M; Semones, Molly C; Kuhn, Donald E; Kriska, Tamas; Keszler, Agnes; Crockett, Elizabeth L

    2015-03-01

    Changes in oxidative capacities and phospholipid remodeling accompany temperature acclimation in ectothermic animals. Both responses may alter redox status and membrane susceptibility to lipid peroxidation (LPO). We tested the hypothesis that phospholipid remodeling is sufficient to offset temperature-driven rates of LPO and, thus, membrane susceptibility to LPO is conserved. We also predicted that the content of LPO products is maintained over a range of physiological temperatures. To assess LPO susceptibility, rates of LPO were quantified with the fluorescent probe C11-BODIPY in mitochondria and sarcoplasmic reticulum from oxidative and glycolytic muscle of striped bass (Morone saxatilis) acclimated to 7°C and 25°C. We also measured phospholipid compositions, contents of LPO products [i.e., individual classes of phospholipid hydroperoxides (PLOOH)], and two membrane antioxidants. Despite phospholipid headgroup and acyl chain remodeling, these alterations do not counter the effect of temperature on LPO rates (i.e., LPO rates are generally not different among acclimation groups when normalized to phospholipid content and compared at a common temperature). Although absolute levels of PLOOH are higher in muscles from cold- than warm-acclimated fish, this difference is lost when PLOOH levels are normalized to total phospholipid. Contents of vitamin E and two homologs of ubiquinone are more than four times higher in mitochondria prepared from oxidative muscle of warm- than cold-acclimated fish. Collectively, our data demonstrate that although phospholipid remodeling does not provide a means for offsetting thermal effects on rates of LPO, differences in phospholipid quantity ensure a constant proportion of LPO products with temperature variation. Copyright © 2015 the American Physiological Society.

  18. Salinity acclimation enhances salinity tolerance in tadpoles living in brackish water through increased Na⁺ , K⁺ -ATPase expression.

    PubMed

    Wu, Chi-Shiun; Yang, Wen-Kai; Lee, Tsung-Han; Gomez-Mestre, Ivan; Kam, Yeong-Choy

    2014-01-01

    Amphibians are highly susceptible to osmotic stress but, nonetheless, some species can adapt locally to withstand moderately high levels of salinity. Maintaining the homeostasis of body fluids by efficient osmoregulation is thus critical for larval survival in saline environments. We studied the role of acclimation in increased physiological tolerance to elevated water salinity in the Indian rice frog (Fejervarya limnocharis) tadpoles exposed to brackish water. We quantified the effects of salinity acclimation on tadpole survival, osmolality, water content, and gill Na⁺ , K⁺ -ATPase (NKA) expression. Tadpoles did not survive over 12 hr if directly transferred to 11 ppt (parts per thousand) whereas tadpoles previously acclimated for 48 hr in 7  ppt survived at least 48 hr. We reared tadpoles in 3 ppt and then we transferred them to one of (a) 3 ppt, (b) 11  ppt, and (c) 7  ppt for 48 hr and then 11 ppt. In the first 6 hr after transfer to 11 ppt, tadpole osmolality sharply increased and tadpole water content decreased. Tadpoles pre-acclimated for 48 hr in 7 ppt were able to maintain lower and more stable osmolality within the first 3 hr after transfer. These tadpoles initially lost water content, but over the next 6 hr gradually regained water and stabilized. In addition, they had a higher relative abundance of NKA proteins than tadpoles in other treatments. Pre-acclimation to 7 ppt for 48 hr was hence sufficient to activate NKA expression, resulting in increased survivorship and reduced dehydration upon later transfer to 11 ppt. J © 2013 Wiley Periodicals, Inc.

  19. Machine vision system for measuring conifer seedling morphology

    NASA Astrophysics Data System (ADS)

    Rigney, Michael P.; Kranzler, Glenn A.

    1995-01-01

    A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.

  20. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation.

    PubMed

    Carmody, Melanie; Crisp, Peter A; d'Alessandro, Stefano; Ganguly, Diep; Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica; Pogson, Barry J

    2016-07-01

    Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Measuring the response of conifer seedlings to soil compaction stress

    Treesearch

    Howard G. Halverson; Robert P. Zisa

    1982-01-01

    A test of seedling growth response to several levels of soil compaction showed that root penetration depth was best correlated with soil compaction. Shoot biomass, root biomass, root elongation, and seedling height were not well correlated with compaction. The results reveal that most measurements of growth do not give a good indication of seedling response to stresses...

  2. Response of paper birch seedlings to nitrogen, phosphorus, and potassium

    Treesearch

    John C. Bjorkbom

    1973-01-01

    The effects of N, P, and K on the growth of paper birch seedlings were tested in sand culture tests. Each element was tested singly at different supplies while holding constant the supply of all other elements. Seedling growth increased with increasing amounts of nitrogen. Three to 4 percent in the foliage indicated an adequate supply. Seedlings were relatively...

  3. Seedling production and pest problems at a South Georgia nursery

    Treesearch

    Stephen W. Fraedrich; L. David Dwinell; Michelle M. Cram

    2002-01-01

    Pine seedling production and pest problems were evaluated in methyl bromide-fumigated and nonfumigated plots in two fields at a South Georgia nursery. In one field, fumigation increased loblolly pine seedling bed density in only 1 of 4 years. Seedlings were often significantly larger in fumigated than nonfumigated plots. In the other field, no differences were observed...

  4. Density and Age Affect Performance of Containerized Loblolly Pine Seedlings

    Treesearch

    James P. Barnett

    1980-01-01

    Loblolly pine seedlings were grown in 1 x 5 inch biodegradable plastic tubes for 10, 12, and 14 weeks at densities of 42, 84, 126, and 168 per square foot. Seedling density and age significantly affected seedling development at time of outplanting, and density became more important as greenhouse growing times increased. All morphological characteristics measured when...

  5. The impact of strip clearcutting on red oak seedling development

    Treesearch

    Jamie L. Schuler; Michael Boyce; Gary W. Miller

    2017-01-01

    A mature upland yellow-poplar/red oak stand was harvested using an alternating strip clearcut method. Red oak seedlings were planted across a light gradient between the cut and residual strips to assess the potential ability of the residual strips to foster the development of competitive oak seedlings over time. After one growing season, no differences in seedling...

  6. Fusarium species-a British Columbia perspective in forest seedling production

    Treesearch

    Michael Peterson

    2008-01-01

    This review provides a brief biological outline of some species in the genus Fusarium and how these can be implicated as seedborne organisms leading to conifer seed and seedling losses in British Columbia. Fusarium spp. are implicated with pre- and post-emergence damping-off, seedling wilt, late damping-off, root rot, and seedling mortality after outplanting. Current...

  7. Interactive effects of ambient acidity and salinity on thyroid function during acidic and post-acidic acclimation of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, M C Subhash; Rejitha, V

    2011-11-01

    The interactive effects of ambient acidity and salinity on thyroid function are less understood in fish particularly in air-breathing fish. We, therefore, examined the thyroid function particularly the osmotic and metabolic competences of freshwater (FW) and salinity-adapted (SA; 20 ppt) air-breathing fish (Anabas testudineus) during acidic and post-acidic acclimation, i.e., during the exposure of fish to either acidified water (pH 4.2 and 5.2) for 48 h or clean water for 96 h after pre-exposure. A substantial rise in plasma T(4) occurred after acidic exposure of both FW and SA fish. Similarly, increased plasma T(3) and T(4) were found in FW fish kept for post-acidic acclimation and these suggest an involvement of THs in short-term acidic and post-acidic acclimation. Water acidification produced significant hyperglycaemia and hyperuremia in FW fish but not in SA fish. The SA fish when kept for post-acclimation, however, produced a significant hypouremia. In both FW and SA fish, gill Na(+), K(+)-ATPase activity decreased but kidney Na(+), K(+)-ATPase activity increased upon acidic acclimation. During post-acidic acclimation, gill Na(+), K(+)-ATPase activity of the FW fish showed a rise while decreasing its activity in the SA fish. Similarly, post-acidic acclimation reduced the Na(+), K(+)-ATPase activity of intestine but elevated its activity in the liver of SA fish. A higher tolerance of the SA fish to water acidification was evident in these fish as they showed tight plasma and tissue mineral status due to the ability of this fish to counteract the ion loss. In contrast, FW fish showed more sensitivity to water acidification as they loose more ions in that medium. The positive correlations of plasma THs with many tested metabolic and hydromineral indices of both FW and SA fish and also with water pH further confirm the involvement of THs in acidic and post-acidic acclimation in these fish. We conclude that thyroid function of this fish is more sensitive to

  8. Winter injury among white fir seedlings...unusual pattern in seed source study

    Treesearch

    M. Thompson Conkle; W. J. Libby; J. L. Hamrick

    1967-01-01

    White fir seeds collected from 43 sources were sown at the Institute of Forest Genetics, Placerville, Calif. in 1963. Observations made 3 years later showed that seedlings from northern sources sustained more winter injury than did southern origin seedlings. Seedlings from low elevations were less severely damaged than seedlings from higher elevations in the same...

  9. Factors Affecting Survival of Longleaf Pine Seedlings

    Treesearch

    John S. Kush; Ralph S. Meldahl; William D. Boyer

    2004-01-01

    Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...

  10. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Virulence of Three Cylindrocladium Species to Yellow-Poplar Seedlings

    Treesearch

    T. H. Filer

    1970-01-01

    Cylindrocladium crotalariae and C. scoparium caused severe root rot on potted yellow-poplar seedlings. They appeared to be equally virulent. C. floridanum caused necrosis only on feeder roots of the seedlings.

  12. Response of Pinus ponderosa Seedlings to Stylet-Bearing Nematodes

    PubMed Central

    Viglierchio, D. R.

    1979-01-01

    Of 12 stylet-bearing nematodes used for inoculations, Pratylenchus penetrans, P. brachyurus, P. vulnus, Ditylenchus destructor, Meloidogyne incognita, M. javanica, and M. hapla reproduced on Pinus ponderosa, while Xiphinema index, Aphelenchus avenae, Paratylenehus neoamblycephalus, Tylenchulus semipenetrans, and Macroposthonia xenoplax did not. P. vulnus, P. brachyurus, P. penetrans, A. avenae, D. destructor, T. semipenetrans, and P. neoamblycephalus significantly suppressed both the shoot and root wet weights of ponderosa pine seedlings obtained from stands in five different locations. X. index significantly suppressed root wet weights, M. xenoplax siguificantly suppressed shoot wet weight, and M. incognita, M. javanica, and M. hapla suppressed neither at the inoculation levels used. Injurious nematodes tended to suppress root growth more than shoot growth. Seedlings from two locations produced greater shoot growth wet weight than did seedlings from the other three locations. The more injurious nematodes tended to cause an increase in the water content of shoots. Frequency analyses of seedling population shoot-root ratios indicated that ponderosa pine seedlings could be selected for better shoot-root ratios as well as for resistance to several pathogenic nematodes. PMID:19300659

  13. [Effects of different endophytic fungi on seedling growth of Dendrobium devonianum].

    PubMed

    Huang, Hui; Shao, Shi-Cheng; Gao, Jiang-Yun

    2016-06-01

    To obtain seedling growth-promoting fungi is a key step in restoration-friendly cultivation of medicinal Dendrobium species, since there are a large number of functionally-unknown endophytic fungi in the roots of Dendrobium plants.In this study, six functionally-unknown endophytic fungal strains were isolated from roots of D.devonianum using single peleton isolation technology, and used in inoculation experiments to test their effectiveness for seedling growth in D.devonianum.After 90 days of inoculation, comparing with the control treatment, FDdS-1, FDdS-2 and FDdS-4 showed strong pathogenic or fatal effects on seedlings; while, FDdS-12, FDdS-9 and FDdS-5 had different effects on seedling growth.FDdS-5 had significant promoting effects on height, fresh and dry weight, stem diameter and root numbers, while FDdS-9 only had significant promoting effect on seedling height, and FDdS-12 had a negative effect on seedling growth.According to the anatomical features of the inoculated roots, FDdS-5 fungi could infect the velamina of seedlings and the existence of symbiosis pelotons in the cortex cells, suggesting that FDdS-5 is a mycorrhiza fungi of D.devonianum.FDdS-5 and FDdS-9 were identified as Sebacina vermifera and Sebacina sp.by molecular technologies.By using FDdS-5 in the restoration-friendly cultivation of D.devonianum, it could effectively promote seedling growth and shorten the seedling growth periods.The results will aid in reintroduction and cultivation of D.devonianum. Copyright© by the Chinese Pharmaceutical Association.

  14. Cutaneous vasoregulation during short- and long-term aerial acclimation in the amphibious mangrove rivulus, Kryptolebias marmoratus.

    PubMed

    Cooper, C A; Litwiller, S L; Murrant, C L; Wright, P A

    2012-03-01

    The mangrove rivulus (Kryptolebias marmoratus) is an amphibious fish and evidence suggests that the cutaneous surface is the primary site of gas exchange during emersion. The aim of this study was to determine whether cutaneous blood vessels were regulated in the caudal fin during the initial transition from water to aerial exposure, and after 10 days of aerial acclimation. Acute changes (first 3 min following emersion) in the cutaneous vessels diameter were measured in real-time on live fish using light microscopy. The data show that under control conditions, only arterioles in the caudal fin were vasoactive. During the first 20s of aerial acclimation the arterioles significantly constricted (-2.1 ± 0.4 μm), which was followed immediately by a relaxation (from 40 to 180 s). This vasoconstriction was eliminated with the addition of phentolamine (50 μmoll(-1)), which indicates that the vasoconstriction was mediated by α-adrenoreceptors. Longer-term changes in the cutaneous surface vasculature were determined using fluorescent immunohistochemistry and antibodies for the endothelial marker, CD31. Fish aerially acclimated for 10 days exhibited significantly higher levels of endothelial fluorescence in the caudal fin when compared to control fish in water, indicating endothelial cell production (i.e. angiogenesis). These data combined show that for every emersion episode, there is an initial α-adrenergic mediated vasoconstriction, which is most likely, a stress response. This is then followed by a long-term acclimation involving an upregulation in endothelial cell production, which would subsequently enhance blood perfusion to the cutaneous surface and potentially increase the capacity for gas exchange with the external environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Amino acid and glucose uptake by rat brown adipose tissue. Effect of cold-exposure and acclimation.

    PubMed Central

    López-Soriano, F J; Fernández-López, J A; Mampel, T; Villarroya, F; Iglesias, R; Alemany, M

    1988-01-01

    The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids. PMID:3421924

  16. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish

    PubMed Central

    Tian, Fei; Zhao, Kai

    2017-01-01

    Environmental acclimation is important episode in wildlife occupation of the high-altitude Tibetan Plateau (TP). Transcriptome-wide studies on thermal acclimation mechanism in fish species are rarely revealed in Tibetan Plateau fish at high altitude. Thus, we used mRNA and miRNA transcriptome sequencing to investigate regulation of thermal acclimation in larval Tibetan naked carp, Gymnocypris przewalskii. We first remodeled the regulation network of mRNA and miRNA in thermal acclimation, and then identified differential expression of miRNAs and target mRNAs enriched in metabolic and digestive pathways. Interestingly, we identified two candidate genes contributed to normal skeletal development. The altered expression of these gene groups could potentially be associated with the developmental issues of deformity and induced larval death. Our results have three important implications: first, these findings provide strong evidences to support our hypothesis that G. przewalskii possess ability to build heat-tolerance against the controversial issue. Second, this study shows that transcriptional and post-transcriptional regulations are extensively involved in thermal acclimation. Third, the integrated mRNA and microRNA transcriptome analyses provide a large number of valuable genetic resources for future studies on environmental stress response in G. przewalskii and as a case study in Tibetan Schizothoracine fish. PMID:29045433

  17. Nature and time course of acclimation to aluminum in juvenile brook trout (Salvelinus fontinalis): II. Gill histology

    USGS Publications Warehouse

    Mueller, M.E.; Sanchez, D.A.; Bergman, H.L.; McDonald, D.G.; Rhem, R.G.; Wood, C.M.

    1991-01-01

    Gill samples from juvenile brook trout (Salvelinus fontinalis) acclimated to low-level aluminum at pH 5.2 showed severe damage by day 4, with necrosis and fusion of secondary lamellae and hyperplasia and hypertrophy of mucous cells. Over the following 20 d, there was a continual process of repair with proliferation and hypertrophy of mucous cells. Qualitative analysis of gill samples plus physiology and mortality data collected in a companion study indicated progressive development (by day 10 onward) of increasing acclimation to Al. Quantitative analysis of gill samples on day 13 showed that mucous cell volume density had tripled and mucous cell area had doubled in Al-exposed fish compared with control fish. A lamellar fusion index showed evidence of fusion in Al-exposed fish by day 4 with recovery to nearly control levels by day 13. Physiological disturbances appear to be directly related to the histological changes observed in the gill epithelium. At the cellular level, changes in either mucous cell production and secretion or changes in mucus chemistry contribute, in part, to acclimation to Al.

  18. Salinity- and population-dependent genome regulatory response during osmotic acclimation in the killifish (Fundulus heteroclitus) gill.

    PubMed

    Whitehead, Andrew; Roach, Jennifer L; Zhang, Shujun; Galvez, Fernando

    2012-04-15

    The killifish Fundulus heteroclitus is abundant in osmotically dynamic estuaries and it can quickly adjust to extremes in environmental salinity. We performed a comparative osmotic challenge experiment to track the transcriptomic and physiological responses to two salinities throughout a time course of acclimation, and to explore the genome regulatory mechanisms that enable extreme osmotic acclimation. One southern and one northern coastal population, known to differ in their tolerance to hypo-osmotic exposure, were used as our comparative model. Both populations could maintain osmotic homeostasis when transferred from 32 to 0.4 p.p.t., but diverged in their compensatory abilities when challenged down to 0.1 p.p.t., in parallel with divergent transformation of gill morphology. Genes involved in cell volume regulation, nucleosome maintenance, ion transport, energetics, mitochondrion function, transcriptional regulation and apoptosis showed population- and salinity-dependent patterns of expression during acclimation. Network analysis confirmed the role of cytokine and kinase signaling pathways in coordinating the genome regulatory response to osmotic challenge, and also posited the importance of signaling coordinated through the transcription factor HNF-4α. These genome responses support hypotheses of which regulatory mechanisms are particularly relevant for enabling extreme physiological flexibility.

  19. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature.

    PubMed

    Lange, Otto L; Green, T G Allan

    2005-01-01

    Five species of lichens, the majority members of a soil-crust community ( Cladonia convoluta, Diploschistes muscorum, Fulgensia fulgens, Lecanora muralis, Squamarina lentigera) showed seasonal changes of temperature sensitivity of their dark respiration (DR) to such an extent that several substantially met the definition of full acclimation, i.e. near identical DR under different nocturnal temperature conditions during the course of the year. C. convoluta, for example, had maximal DR at 5 degrees C of -0.42, -1.11 and -0.09 nmol CO(2) g(-1) s(-1) in autumn, winter, and summer, respectively, a tenfold range. However, at the mean night temperatures for the same three seasons, 9.7 degrees C, 4.2 degrees C and 13.6 degrees C, maximal DR were almost identical at -1.11, -0.93, and -1.45 nmol CO(2) g(-1) s(-1). The information was extracted from measurements using automatic cuvettes that continuously recorded a sample lichen's gas exchange every 30 min under near-natural conditions. The longest period (for L. muralis) covered 15 months and 22,000 data sets whilst, for the other species studied, data blocks were available throughout the calendar year. The acclimation of DR means that maximal net carbon fixation rates remain substantially similar throughout the year and are not depressed by increased carbon loss by respiration in warmer seasons. This is especially important for lichens because of their normally high rate of DR compared to net photosynthesis. We suggest that lichens, especially soil-crust species, could be a suitable model for fungi generally, a group of organisms for which little is known about temperature acclimation because of the great difficulty in separating the organism from its growth medium. Fungi, whether saprophytic, symbiotic or parasitic, including soil lichens, are important components of soil ecosystems and contribute much of the respired CO(2) from these systems. Temperature acclimation by fungi would mean that expected increases in carbon

  20. Chemical root pruning of conifer seedlings in Mexico

    Treesearch

    Arnulfo Aldrete; John G. Mexal

    2002-01-01

    Many countries grow seedlings for reforestation in polybags where root spiraling and root egression can decrease seedling survival and growth following outplanting. The overall objectives of this study were to investigate the effect of chemical root pruning on root spiraling, root egression, and nursery performance of Pinus pseudostrobus, P...

  1. Establishment of Swamp Tupelo Seedlings After Regeneration Cuts

    Treesearch

    Dean S. DeBell; J. Dennis Auld

    1971-01-01

    Environmental factors influencing natural regeneration of swamp tupelo were examined in a study involving five harvest treatments replicated in 3 successive years. Initial seedling establishment was related to seed production, but other factors probably are more limiting in most years. Abundance of established seedlings differed significantly with harvest cuttings,...

  2. Evolutionary history and distance dependence control survival of dipterocarp seedlings.

    PubMed

    Bagchi, Robert; Press, Malcolm C; Scholes, Julie D

    2010-01-01

    One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.

  3. REFORESTATION AND SEEDLING SYMBIONTS

    EPA Science Inventory

    Tree seedlings are dependent on symbiotic associations with microorganisms including bacteria, fungi, and actinomycetes for normal growth and development. itrogen fixing leguminous and non-leguminous trees form symbiotic relationships with Rhizobium (bacteria) and Frankia (actino...

  4. Rocket seedling production on the international space station: Growth and nutritional properties

    NASA Astrophysics Data System (ADS)

    Colla, Giuseppe; Battistelli, Alberto; Proietti, Simona; Moscatello, Stefano; Rouphael, Youssef; Cardarelli, Mariateresa; Casucci, Marco

    2007-09-01

    Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value

  5. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil

    PubMed Central

    Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.

    2014-01-01

    Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968

  6. Effects of heat acclimation on photosynthesis, antioxidant enzyme activities, and gene expression in orchardgrass under heat stress.

    PubMed

    Zhao, Xin Xin; Huang, Lin Kai; Zhang, Xin Quan; Li, Zhou; Peng, Yan

    2014-09-01

    The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L.).The stomatal conductance (Gs), net photosynthetic rate (Pn), and transpiration rates (Tr) of both heat-acclimated (HA) and non-acclimated (NA) plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night) followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night), in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times) versus the NA (1.8 times) plants, and the intercellular CO2 concentration decreased gently in NA (10.9%) and HA (25.3%) plants after 20 d of treatments compared to 0 days'. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD), catalase (CAT), guaiacol peroxidase (POD), and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  7. Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice.

    PubMed

    Vecsey, Christopher G; Wimmer, Mathieu E J; Havekes, Robbert; Park, Alan J; Perron, Isaac J; Meerlo, Peter; Abel, Ted

    2013-04-01

    Gentle handling is commonly used to perform brief sleep deprivation in rodents. It was recently reported that daily acclimation handling, which is often used before behavioral assays, causes alterations in sleep, stress, and levels of N-methyl-D-aspartate receptor subunits prior to the actual period of sleep deprivation. It was therefore suggested that acclimation handling could mediate some of the observed effects of subsequent sleep deprivation. Here, we examine whether acclimation handling, performed as in our sleep deprivation studies, alters sleep/wake behavior, stress, or forms of hippocampal synaptic plasticity that are impaired by sleep deprivation. Adult C57BL/6J mice were either handled daily for 6 days or were left undisturbed in their home cages. On the day after the 6(th) day of handling, long-term potentiation (LTP) was induced in hippocampal slices with spaced four-train stimulation, which we previously demonstrated to be impaired by brief sleep deprivation. Basal synaptic properties were also assessed. In three other sets of animals, activity monitoring, polysomnography, and stress hormone measurements were performed during the 6 days of handling. Daily gentle handling alone does not alter LTP, rest/activity patterns, or sleep/wake architecture. Handling initially induces a minimal stress response, but by the 6(th) day, stress hormone levels are unaltered by handling. It is possible to handle mice daily to accustom them to the researcher without causing alterations in sleep, stress, or synaptic plasticity in the hippocampus. Therefore, effects of acclimation handling cannot explain the impairments in signaling mechanisms, synaptic plasticity, and memory that result from brief sleep deprivation.

  8. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cerebral Oxygenation in Awake Rats during Acclimation and Deacclimation to Hypoxia: An In Vivo Electron Paramagnetic Resonance Study

    PubMed Central

    Khan, Mohammad N.; Hou, Huagang G.; Merlis, Jennifer; Abajian, Michelle A.; Demidenko, Eugene; Grinberg, Oleg Y.; Swartz, Harold M.

    2011-01-01

    Abstract Dunn, J. F., N. Khan, H. G. Hou, J. Merlis, M. A. Abajian, E. Demidenko, O.Y. Grinberg, and H. M. Swartz. Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo EPR study. High Alt. Med. Biol. 12:71–77, 2011.— Exposure to high altitude or hypobaric hypoxia results in a series of metabolic, physiologic, and genetic changes that serve to acclimate the brain to hypoxia. Tissue Po2 (Pto2) is a sensitive index of the balance between oxygen delivery and utilization and can be considered to represent the summation of such factors as cerebral blood flow, capillary density, hematocrit, arterial Po2, and metabolic rate. As such, it can be used as a marker of the extent of acclimation. We developed a method using electron paramagnetic resonance (EPR) to measure Pto2 in unanesthetized subjects with a chronically implanted sensor. EPR was used to measure rat cortical tissue Pto2 in awake rats during acute hypoxia and over a time course of acclimation and deacclimation to hypobaric hypoxia. This was done to simulate the effects on brain Pto2 of traveling to altitude for a limited period. Acute reduction of inspired O2 to 10% caused a decline from 26.7 ± 2.2 to 13.0 ± 1.5 mmHg (mean ± SD). Addition of 10% CO2 to animals breathing 10% O2 returned Pto2 to values measured while breathing 21% O2, indicating that hypercapnia can reverse the effects of acute hypoxia. Pto2 in animals acclimated to 10% O2 was similar to that measured preacclimation when breathing 21% O2. Using a novel, individualized statistical model, it was shown that the T1/2 of the Pto2 response during exposure to chronic hypoxia was approximately 2 days. This indicates a capacity for rapid adaptation to hypoxia. When subjects were returned to normoxia, there was a transient hyperoxygenation, followed by a return to lower values with a T1/2 of deacclimation of 1.5 to 3 days. These data indicate that exposure to hypoxia results in significant

  10. Foliar mineral content of forest and nursery-grown Douglas-fir seedlings.

    Treesearch

    Kenneth W. Krueger

    1967-01-01

    High-vigor seedlings are required for consistently successful reforestation, and mineral nutrition undoubtedly plays a large role in determining seedling vigor. Though no serious mineral deficiencies were known to exist in Northwest forest nurseries, assurance of adequate seedling nutrition would eliminate this factor as a possible cause of plantation failures....

  11. Limited evolutionary divergence of seedlings after the domestication of plant species.

    PubMed

    Milla, R; Morente-López, J

    2015-01-01

    The most vulnerable stage in the life of plants is the seedling. The transition from wild to agricultural land that plants experienced during and after domestication implied a noticeable change in the seedlings' environment. Building on current knowledge of seedling ecology, and on previous studies of cassava, we hypothesise that cultivation should have promoted epigeal germination of seedlings, and more exposed and photosynthetic cotyledons. To test this hypothesis, we phenotyped seedling morpho-functional traits in a set of domesticated and wild progenitor accessions of 20 Eudicot herbaceous crop species. Qualitative traits like epi- versus hypogeal germination, leafy versus storage type of cotyledons, or crypto- versus phanerocotyledonar germination, remained conserved during the domestication of all 20 species. Lengths of hypocotyls and epicotyls, of cotyledon petioles, and indices of cotyledon exposure to the aboveground environment changed during evolution under cultivation. However, those changes occurred in diverse directions, depending on the crop species. No common seedling phenotypic convergence in response to domestication was thus detected among the group of species studied here. Also, none of the 20 crops evolved in accordance with our initial hypothesis. Our results reject the idea that strong selective filters exerted unconsciously by artificial selection should have resulted in generalised channelling of seedling morphology towards more productive and more herbivore risky phenotypes. This result opens up unexplored opportunities for directional breeding of seedling traits. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    PubMed

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  13. Wrenching Douglas-fir seedlings in August: immediate but no lasting effects.

    Treesearch

    William I. Stein

    1984-01-01

    Effects of wrenching Douglas-fir seedlings in August of their second season in the D. L. Phipps State Forest Nursery, Elkton, Oregon, were determined by periodic samplings to learn of changes in phenological, morphological, and growth characteristics. Initial effects of wrenching moderated by January when seedlings were lifted; both wrenched and unwrenched seedlings...

  14. Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms?

    PubMed

    Morley, S A; Nguyen, K D; Peck, L S; Lai, C-H; Tan, K S

    2017-08-01

    Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F 1 and F 2 generations reared at a subset of the same incubation temperatures. The increase in CT max (measured through loss of key behavioural metrics) of F 0 adults across the incubation temperature range 25.4-33.4°C was low: 0.00°C (V. cochlidium), 0.05°C (S. amaryllis) and 0.06°C (A. amphitrite) per 1°C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4-33.4°C, the increase in CT max in the F 1 (0.30°C) and F 2 (0.15°C) generations of A. amphitrite was greater than in the F 0 (0.10°C). These correspond to ARR's of 0.03°C (F 0 ), 0.08°C (F 1 ) and 0.04°C (F 2 ), respectively. The variability in CT max between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential survival of chaparral seedlings during the first summer drought after wildfire.

    PubMed

    Frazer, J M; Davis, S D

    1988-07-01

    Big Pod Ceanothus (Ceanothus megacarpus) is an obligate seeder after fire; Laurel Sumac (Rhus laurina) is primarily a resprouter after fire. Both species commonly occur together in mixed stands and are dominant members of the coastal chaparral of southern California. We compared the mean survival of post-fire seedlings of each species during the first summer drought after fire and found C. megacarpus to have a mean survival of 54% while R. laurina had a mean survival of only 0.1%. Rooting dephs were similar between species but predawn water potentials and leaf temperatures were higher for R. laurina seedlings. Leaf temperatures for R. laurina reached a mean value of 46.8° C on hot, summer days, about 5° C higher than seedlings of C. megacarpus. By the end of the first growing season, 92% of all C. megacarpus seedlings had suffered herbivory compared to only 17% of all R. laurina seedlings. Herbivory did not appear to be the immediate cause of seedling mortality. Transect data indicated that full recovery of prefire species composition and density at our study site was likely but the mode of recovery was different for the species examined. R. laurina recovered primarily by sprouting, C. megacarpus totally by seedling establishment and a third species, Adenostoma fasciculatum (chamise), by a combination of sprouting and seedling establishment. We attribute the higher mortality of R. laurina seedlings to the greater sensitivity of its tissue to water stress. It may be that differential survival of shrub seedlings and differential modes of reestablishment after fire play an important role in maintaining species diversity in the chaparral communities of coastal, southern California.

  16. Early field performance of Acacia koa seedlings grown under subirrigation and overhead irrigation

    Treesearch

    Anthony S. Davis; Jeremiah R. Pinto; Douglass F. Jacobs

    2011-01-01

    Koa (Acacia koa A. Gray [Fabaceae]) seedlings were grown with subirrigation and overhead irrigation systems in an effort to characterize post-nursery field performance. One year following outplanting, we found no differences in seedling height or survival, but root-collar diameter was significantly larger for subirrigated seedlings. This indicates that koa seedlings,...

  17. Seedling mineral nutrition, the root of the matter

    Treesearch

    Barbara J. Hawkins

    2011-01-01

    Plants have the marvelous ability to take up inorganic mineral nutrients as atoms or simple molecules and process them into proteins, enzymes, and other organic forms. This paper reviews the 14 essential mineral nutrients, their roles within the plant, their target concentrations in tree seedling nursery culture, and their effects on seedling growth and performance...

  18. Red Pine Seedling Establishment after Shelterwood-Strip Harvesting

    Treesearch

    John W. Benzie; Alvin A. Alm

    1977-01-01

    Shelterwood-strip harvesting in a mature red pine stand provided favorable growing conditions for red pine seedlings established by planting nursery stock, by planting 10-week-old to 1-year-old tubelings, and by direct seeding. How long the shelterwood-strips can be left standing before they seriously affect seedling development to be determined

  19. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons

    PubMed Central

    Barry, Karen M.; Janos, David P.; Nichols, Scott; Bowman, David M. J. S.

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650

  20. Macronutrient deficiency symptoms in seedlings of four northern hardwoods.

    Treesearch

    Gayne G. Erdmann; Frederick T. Metzger; Robert R. Oberg

    1979-01-01

    Illustrates and describes the visual deficiency symptoms for N, P, K, Ca, Mg, and S in sugar maple, red maple, white ash, and paper birch seedlings. Effects of these deficiencies on the development and nutrient composition of seedlings are also examined.

  1. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    PubMed

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  2. Can hydraulically redistributed water assist surrounding seedlings during summer drought?

    PubMed

    Muler, A L; van Etten, E J B; Stock, W D; Howard, K; Froend, R H

    2018-05-12

    Plant interaction studies provide a good understanding of the roles of key species, which can assist restoration of natural ecosystems. Among the interactions, facilitation and competition are known to affect ecosystem structure and function. We investigated whether a deep-rooted species could positively affect surrounding seedlings through hydraulic redistribution during dry months. We conducted two experiments in which seedlings from two species were growing together or isolated from source plants (field experiment) and where plants were isolated from source plants that were connected to or separated from a water table (glasshouse experiment). Survival, growth, water relations and soil water content were measured. We also applied δ 2 H enriched water adjacent to, or into, the roots of source plants to track water movement between plants. Soil water content was higher in shallow layers where source plants could interact with seedlings (field) and when accessing water tables (glasshouse). Seedlings from all treatments had an increase in leaf δ 2 H. Seedlings of Banksia attenuata that were isolated from source plants had the highest survival, growth and stomatal conductance rates. Seedlings of Gompholobium tomentosum presented higher stomatal conductance rates when growing with source plants than when isolated from them during the first months, but this relationship reversed towards the end of summer. These results suggest that source plants and seedlings competed, but the influence of facilitation and competition might change during the year, at least for the shallow-rooted species. Therefore, competition for water and/or other limiting factors must be considered when planning ecological restoration in such areas.

  3. The effects of Vexar® seedling protectors on the growth and development of lodgepole pine roots

    USGS Publications Warehouse

    Engeman, Richard M.; Anthony, R. Michael; Krupa, Heather W.; Evans, James

    1997-01-01

    The effects on the growth and development of lodgepole pine roots from the Vexar® tubes used to protect seedlings from pocket gopher damage were studied in the Targhee National Forest, Idaho and the Deschutes National Forest, Oregon. At each site, Vexar-protected and unprotected seedlings, with and without above-ground gopher damage were examined after six growing seasons for root deformities and growth. Undamaged seedlings exhibited greater growth, reflecting the importance of non-lethal gopher damage as a deterrent to tree growth. Protected seedlings with similar damage history as unprotected seedlings had greater root depth than unprotected seedlings, although unprotected seedlings with no above-ground damage generally had the greatest root weight. In general, the percent of seedlings with root deformities was greater for the unprotected seedlings than for the Vexar-protectd seedlings, although this could be largely due to the greater care required to plant protected seedlings. Acute deformities were more common for unprotected seedlings, whereas root deformities with less severe bending were more common for protected seedlings. The incidence of crossed roots was similar for protected and unprotected seedlings on the Deschutes site, where enough occurrences of this deformity permitted analyses. Protected seedlings were similar in root abundance, root distribution, root size and vigor to the unprotected seedlings, with some indication from the Deshutes study site that root distribution was improved with Vexar protection.

  4. Naturally developed seedling roots of five western conifers.

    Treesearch

    William I. Stein

    1978-01-01

    Two-year-old seedlings grown from seed outdoors in three southwestern Oregon soils were excavated to determine their root development. Roots of Douglas-fir, ponderosa pine, sugar pine, grand fir, and incense-cedar seedlings differed substantially in total extent, form, and balance in relation to tops. Information on the natural development of roots provides a benchmark...

  5. Germination and seedling development

    USDA-ARS?s Scientific Manuscript database

    Cottonseed germination and seedling development are highly sensitive to the environment at planting and for several weeks after that. Major factors that affect germination and development are temperature, water availability, soil conditions such as compaction, rhizosphere gases, and seed and seedlin...

  6. Effect of advance seedling size and vigor on survival after clearcutting

    Treesearch

    David A. Marquis

    1982-01-01

    In several separate experiments, it was found that survival of advance seedlings after clearcutting in Allegheny hardwood stands is a function of initial seedling size-larger seedlings survive best. Age, number of leaves, and leaf size also were important determinants of survival. In Allegheny hardwood stands, where advance regeneration is typically less than 1 foot in...

  7. Air lateral root pruning affects longleaf pine seedling root system morphology

    Treesearch

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  8. Seedlings of subtropical rainforest species from similar successional guild show different photosynthetic and morphological responses to varying light levels.

    PubMed

    Lestari, D Puji; Nichols, J Doland

    2017-02-01

    Restoration using rainforest species in Australia and elsewhere has been limited to a small number of widely known species, mainly pioneer or early successional species, Using the presumed successional status as a guideline for species selection in reforestation should be taken with a caveat since a species' capacity to adjust to light gradients is not easily predicted. This study examined the photosynthetic and growth responses of four Australian subtropical rainforest species in the context of using late successional species in restoration programs. Since the selected species [Sloanea australis ((Benth.) F. Muell.), Cinnamomum oliveri (F. M. Bailey),Caldcluvia paniculosa ((F. Muell.) Hoogland) and Geissois benthamiana (F. Muell.)] are considered late-successional species, this study also discussed the possibility of separating these species according to their acclimation level towards light gradients. Seedlings of four species were grown under four light treatments using neutral density shade cloth (5, 33, 64 and 80% irradiance) during summer November 2014 to February 2015. All species demonstrated a narrow range of photosynthetic acclimation to different light levels, experienced photoinhibition and photodamage in 80% irradiance and allocated more biomass to leaves in 5% irradiance, supporting their classification as late successional species. Cinnamomum oliveri was the only species able to utilize higher irradiance, with a higher light saturated rate of photosynthesis than the other species. Canonical analysis of principal coordinates revealed that the degree of plasticity of each species in response to contrasting irradiance levels varied. This analysis separated the species into three light tolerance classes: obligate shade-adapted species (S. australis and G. benthamiana), high light-adapted species (C. paniculosa) and the generalist (C. oliveri). Overall, this study suggests that the four species can be planted and will grow well under 33-64% irradiance

  9. Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process.

    PubMed

    Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko

    2016-06-01

    Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation is a safe and cost-effective tool for the long-term storage of plant germplasm. Successful cryopreservation depends on suitable cryoprotection protocol. In Arabidopsis seedlings cryopreservation, the growth ability could be partly restored in 60-h seedlings, whereas 72-h seedlings d...

  11. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation1[OPEN

    PubMed Central

    Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica

    2016-01-01

    Distinct ROS signaling pathways initiated by singlet oxygen (1O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the 1O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of 1O2 using the conditional flu mutant. A qPCR time course of 1O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent 1O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  12. Natural Genetic Variation for Acclimation of Photosynthetic Light Use Efficiency to Growth Irradiance in Arabidopsis1[OPEN

    PubMed Central

    Harbinson, Jeremy

    2015-01-01

    Plants are known to be able to acclimate their photosynthesis to the level of irradiance. Here, we present the analysis of natural genetic variation for photosynthetic light use efficiency (ΦPSII) in response to five light environments among 12 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions. We measured the acclimation of ΦPSII to constant growth irradiances of four different levels (100, 200, 400, and 600 µmol m−2 s−1) by imaging chlorophyll fluorescence after 24 d of growth and compared these results with acclimation of ΦPSII to a step-wise change in irradiance where the growth irradiance was increased from 100 to 600 µmol m−2 s−1 after 24 d of growth. Genotypic variation for ΦPSII is shown by calculating heritability for the short-term ΦPSII response to different irradiance levels as well as for the relation of ΦPSII measured at light saturation (a measure of photosynthetic capacity) to growth irradiance level and for the kinetics of the response to a step-wise increase in irradiance from 100 to 600 µmol m−2 s−1. A genome-wide association study for ΦPSII measured 1 h after a step-wise increase in irradiance identified several new candidate genes controlling this trait. In conclusion, the different photosynthetic responses to a changing light environment displayed by different Arabidopsis accessions are due to genetic differences, and we have identified candidate genes for the photosynthetic response to an irradiance change. The genetic variation for photosynthetic acclimation to irradiance found in this study will allow future identification and analysis of the causal genes for the regulation of ΦPSII in plants. PMID:25670817

  13. Adjusting to climate: acclimation, adaptation, and developmental plasticity in physiological traits of a tropical rainforest lizard.

    PubMed

    Llewelyn, John; Macdonald, Stewart L; Moritz, Craig; Martins, Felipe; Hatcher, Amberlee; Phillips, Ben L

    2018-01-09

    The impact of climate change may be felt most keenly by tropical ectotherms. In these taxa, it is argued, thermal specialisation means a given shift in temperature will have a larger effect on fitness. For species with limited dispersal ability, the impact of climate change depends on the capacity for their climate-relevant traits to shift. Such shifts can occur through genetic adaptation, various forms of plasticity, or a combination of these processes. Here we assess the extent and causes of shifts in seven physiological traits in a tropical lizard, the rainforest sunskink (Lampropholis coggeri). Two populations were sampled that differ from each other in both climate and physiological traits. We compared trait values in each animal soon after field collection versus following acclimation to laboratory conditions. We also compared trait values between populations in: (1) recently field-collected animals, (2) the same animals following laboratory acclimation, and (3) the laboratory-reared offspring of these animals. Our results reveal high trait lability, driven primarily by acclimation and local adaptation. By contrast, developmental plasticity, resulting from incubation temperature, had little-to-no effect on most traits. These results suggest that, while specialised, tropical ectotherms may be capable of rapid shifts in climate-relevant traits. This article is protected by copyright. All rights reserved.

  14. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana1[OPEN

    PubMed Central

    Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.

    2016-01-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755

  15. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa

    PubMed Central

    Chen, Jing; Han, Guiqing; Shang, Chen; Li, Jikai; Zhang, Hailing; Liu, Fengqi; Wang, Jianli; Liu, Huiying; Zhang, Yuexue

    2015-01-01

    Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa. PMID:25774161

  16. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.

    Treesearch

    David B. South; Sandy W. Harrisa; James P. Barnett; Mark J. Haindsa; Dean H. Gjerstada

    2005-01-01

    Three hardwall container types, one styroblock container type, and two mesh-covered plugs were used to grow longleaf pine (Pinus palustris Mill.) seedlings at a nursery in Louisiana. In 2001, these container types, along with bare-root seedlings (from a different seed source), were outplanted on two old-field sites and two cutover sites. There were...

  17. Divergence of water balance mechanisms and acclimation potential in body color morphs of Drosophila ananassae.

    PubMed

    Parkash, Ravi; Aggarwal, Dau Dayal; Lambhod, Chanderkala; Singh, Divya

    2014-01-01

    Drosophila ananassae is a desiccation sensitive species, but the physiological basis of its abundance in the drier subtropical areas is largely unknown. We tested the hypothesis whether body color morphs of D. ananassae differ in the mechanistic basis of water conservation as well as desiccation acclimation potential, consistent with their distribution under dry or wet habitats. We observed reduced rate of water loss consistent with the greater desiccation potential of dark morph as compared with light morph, despite lack of quantitative differences in cuticular lipid mass between them. Dark morph evidenced greater wet and dry mass (∼1.17-fold) as well as higher hemolymph content (∼1.70-fold) and (∼17%) dehydration tolerance to sustain longer survival under desiccation stress (LT50 17.5 hr) as compared with light morph (LT50 4.3 hr). We found significant differences in the storage of energy metabolites in the body color morphs of D. ananassae, that is, carbohydrate content was significantly higher (∼0.18 mg/mg dry mass) in the dark morph as compared to light morph, but greater (∼0.05 mg/mg dry mass) body lipid content was evident in the light morph. Under desiccation stress, dark and light morphs utilized mainly carbohydrates but also lipids to a lesser extent. However, the rate of utilization of energy metabolites did not vary between dark and light morphs. Further, the dark morph consumed higher energy content derived from carbohydrates under desiccation stress as compared with the light morph. Finally, we found contrasting patterns of acclimation to desiccation stress in the two body color morphs, that is, increase in desiccation survival (4.7 hr), as well as in dehydration tolerance (∼6%) due to acclimation of the dark morph but no such effects were observed in the light morph. Thus, divergence in water balance mechanisms as well as acclimation potential reflects evolved physiological adaptations of the dark morph under drier but of the

  18. Transcriptional and posttranscriptional regulation of the glycolate oxidase gene in tobacco seedlings.

    PubMed

    Barak, S; Nejidat, A; Heimer, Y; Volokita, M

    2001-03-01

    The roles of light and of the putative plastid signal in glycolate oxidase (GLO) gene expression were investigated in tobacco (Nicotiana tabacum cv. Samsun NN) seedlings during their shift from skotomorphogenic to photomorphogenic development. GLO transcript and enzyme activities were detected in etiolated seedlings. Their respective levels increased three- and six-fold during 96 h of exposure to light. The GLO transcript was almost undetectable in seedlings in which chloroplast development was impaired by photooxidation with the herbicide norflurazon. In transgenic tobacco seedlings, photooxidation inhibited the light-dependent increase in GUS activity when it was placed under the regulation of the GLO promoter P(GLO). However, even under these photooxidative conditions, a continuous increase in GUS activity was observed as compared to etiolated seedlings. When GUS expression was driven by the CaMV 35S promoter (P35S), no apparent difference was observed between etiolated, deetiolated and photooxidized seedlings. These observations indicate that the effects of the putative plastid development signal and light on GUS expression can be separated. Translational yield analysis indicated that the translation of the GUS transcript in P(GLO)::GUS seedlings was enhanced 30-fold over that of the GUS transcript in P35S::GUS seedlings. The overall picture emerging from these results is that in etiolated seedlings GLO transcript, though present at a substantial level, is translated at a low rate. Increased GLO transcription is enhanced, however, in response to signals originating from the developing plastids. GLO gene expression is further enhanced at the translational level by a yet undefined light-dependent mechanism.

  19. Effect of temperature on thermal acclimation in growing pigs estimated using a nonlinear function.

    PubMed

    Renaudeau, D; Anais, C; Tel, L; Gourdine, J L

    2010-11-01

    Ninety-six Large White growing barrows were used to determine the effect of temperature on thermoregulatory responses during acclimation to increased ambient temperature. Pigs were exposed to 24°C for 10 d and thereafter to a constant temperature of 24, 28, 32, or 36°C for 20 d. The study was conducted in a climate-controlled room at the INRA experimental facilities in Guadeloupe, French West Indies. Relative humidity was kept constant at 80% throughout the experimental period. Rectal temperature, cutaneous temperature, and respiratory rate were measured [breaths per minute (bpm)] 3 times daily (0700, 1200, and 1800 h) every 2 or 3 d during the experiment. The thermal circulation index (TCI) was determined from rectal, cutaneous, and ambient temperature measurements. Changes in rectal temperature, respiratory rate, TCI, and ADFI over the duration of exposure to hot temperatures were modeled using nonlinear responses curves. Within 1 h of exposure to increased temperature, rectal temperature and respiratory rate increased by 0.46°C/d and +29.3 bpm/d, respectively, and ADFI and TCI decreased linearly by 44.7 g•d(-2)•kg(-0.60) and 1.32°C/d, respectively until a first breakpoint time (td(1)). This point marked the end of the short-term heat acclimation phase and the beginning of the long-term heat acclimation period. The td(1) value for ADFI was greater at 28°C than at 32 and 36°C (2.33 vs. 0.31 and 0.26 d, respectively, P < 0.05), whereas td(1) for the TCI increase was greater at 36°C than at 28 and 32°C (1.02 vs. 0.78 and 0.67 d, respectively; P < 0.05). For rectal temperature and respiratory rate responses, td(1) was not influenced by temperature (P > 0.05) and averaged 1.1 and 0.89 d, respectively. For respiratory rate and rectal temperature, the long-term heat acclimation period was divided in 2 phases, with a rapid decline for both variables followed by a slight decrease (P < 0.05). These 2 phases were separated by a second threshold day (td(2)). For

  20. Mangrove microclimates alter seedling dynamics at the range edge.

    PubMed

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  1. Why are there few seedlings beneath the myrmecophyte Triplaris americana?

    NASA Astrophysics Data System (ADS)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.

    2007-07-01

    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  2. Naturally seeded versus planted ponderosa pine seedlings in group-selection openings

    Treesearch

    Philip M. McDonald; Gary Fiddler; Martin Ritchie; Paula Anderson

    2009-01-01

    The purpose of this article was to determine whether natural regeneration or planted seedlings should be used in group-selection openings. The answer dependson the survival and growth rate of both types of seedlings, and that could depend on the size of the openings and the effect of trees on their edge. In thisside-by-side study, the natural pine seedlings originated...

  3. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    NASA Astrophysics Data System (ADS)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-08-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P < 0.05) on day 1 (ISHA) as compared to control, remained consistent during STHSA, again increased during LTHSA, and finally reduced to basal level during recovery period. The protein expression of HSP90, iNOS, and eNOS were akin to their transcript pattern. PBMC culture study was conducted to study transcriptional abundance of HSP90, iNOS, and eNOS at different temperature-time combinations. The present findings indicate that HSP90, iNOS, and eNOS could possibly play an important role in mitigating thermal insults and confer thermotolerance during long-term heat stress exposure in Tharparkar cattle.

  4. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming

    PubMed Central

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S.; Agusti, Susana; Duarte, Carlos M.; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia–Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16–30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius’ model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change. PMID:26630025

  5. Sensitivity and Acclimation of Three Canopy-Forming Seaweeds to UVB Radiation and Warming.

    PubMed

    Xiao, Xi; de Bettignies, Thibaut; Olsen, Ylva S; Agusti, Susana; Duarte, Carlos M; Wernberg, Thomas

    2015-01-01

    Canopy-forming seaweeds, as primary producers and foundation species, provide key ecological services. Their responses to multiple stressors associated with climate change could therefore have important knock-on effects on the functioning of coastal ecosystems. We examined interactive effects of UVB radiation and warming on juveniles of three habitat-forming subtidal seaweeds from Western Australia-Ecklonia radiata, Scytothalia dorycarpa and Sargassum sp. Fronds were incubated for 14 days at 16-30°C with or without UVB radiation and growth, health status, photosynthetic performance, and light absorbance measured. Furthermore, we used empirical models from the metabolic theory of ecology to evaluate the sensitivity of these important seaweeds to ocean warming. Results indicated that responses to UVB and warming were species specific, with Sargassum showing highest tolerance to a broad range of temperatures. Scytothalia was most sensitive to elevated temperature based on the reduced maximum quantum yields of PSII; however, Ecklonia was most sensitive, according to the comparison of activation energy calculated from Arrhenius' model. UVB radiation caused reduction in the growth, physiological responses and thallus health in all three species. Our findings indicate that Scytothalia was capable of acclimating in response to UVB and increasing its light absorption efficiency in the UV bands, probably by up-regulating synthesis of photoprotective compounds. The other two species did not acclimate over the two weeks of exposure to UVB. Overall, UVB and warming would severely inhibit the growth and photosynthesis of these canopy-forming seaweeds and decrease their coverage. Differences in the sensitivity and acclimation of major seaweed species to temperature and UVB may alter the balance between species in future seaweed communities under climate change.

  6. Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings

    PubMed Central

    Li, Juanqi; Li, Yang; Tian, Yongqiang; Qu, Mei; Zhang, Wenna; Gao, Lihong

    2017-01-01

    Cinnamic acid (CA), which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT) has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk. PMID:28751899

  7. Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae)

    USGS Publications Warehouse

    Bowers, Janice E.; Pierson, E.A.

    2001-01-01

    Larger seeds have been shown to convey benefits for seedling survival but the mechanisms of this process are not well understood. In this study, seed size and seedling survival were compared for 2 sympatric cactus species, Carnegiea gigantea (Engelm.) Britt. & Rose and Ferocactus wislizeni (Engelm.) Britt. & Rose, in laboratory and field experiments in the northern Sonoran Desert. Both species have small seeds, but Ferocactus seeds are nearly twice as long and 3 times as heavy as those of Carnegiea. The difference in size is perpetuated after germination: new Ferocactus seedlings have 4 times the estimated volume of new Carnegiea seedlings. In an outdoor experiment, annual survivorship of both species was low but was 6 times higher for Ferocactus (6 seedlings, 8.1%) than Carnegiea (1 seedling, 1.4%). The pattern of seedling mortality in relation to temperature and rain suggests that, after the initial flush of seed and seedling predation, drought and heat took a greater toll on Carnegiea than Ferocactus seedlings, probably because the larger seedling volume of Ferocactus conferred greater drought tolerance. In addition, F. wislizeni could become established without benefit of nurse plants whereas C. gigantea could not; this might reflect differential tolerance to high soil temperatures.

  8. Auger planting of oak seedlings in northern Arkansas

    Treesearch

    Eric Heitzman; Adrian Grell

    2003-01-01

    Planting oak seedlings to regenerate upland oak forests is a promising but untested silvicultural practice in the Ozark Mountains of northern Arkansas. The stony (cherty) soils of the region make it difficult to dig deep planting holes using conventional hand planting tools. In 2001, we planted 1-0 northern red oak and white oak seedlings in 0.5 to 1 acre group...

  9. Irrigating and fertilizing to grow better nursery seedlings

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik

    1994-01-01

    In this paper we describe a system for producing excellent loblolly pine seedling for planting in southern forests. The system, which has taken years to develop, appears to be working well. Proof of that will depend upon results of outplanting tests, but there are strong indications that the seedlings we are producing will be better than those coming from most...

  10. Development of Longleaf Pine Seedlings Under Parent Trees

    Treesearch

    William D. Boyer

    1963-01-01

    In southwest Alabama, unburned seedlings under overstories ranging up to 90 square feet of basal area per acre survived as well as those with no tree competition. After 7 years, milacre stocking averaged 99 percent and survival 72 percent. Growth, but not survival, improved with distance from parent trees. Seedlings under tree crowns had less brown spot than those in...

  11. Evaluations of plastic mesh tubes for protecting conifer seedling from pocket gophers in three western states

    USGS Publications Warehouse

    Engeman, Richard M.; Anthony, Richard M.; Barnes, Victor G.; Krupa, Heather W.; Evans, James

    1999-01-01

    The efficacy of plastic mesh tubes for protecting conifer seedlings from pocket gopher damage was evaluated on three national forest lands in three states. In each area, cohorts of 640 protected seedlings and 640 unprotected seedlings (3,840 total) were individually monitored for damage, survival, and growth twice each summer for 5 yr after planting. Substantial differences were found between protected and unprotected seedlings for time until occurrence of damage, survival time, proportion damaged and proportion surviving, as well as differences in growth. Over the three forest study sites, the proportion of unprotected seedlings damaged ranged from 60-89%, whereas the proportion of protected seedlings damaged after 5 yr ranged from 18-27%. The proportion of unprotected seedlings that died of gopher damage over 5 yr ranged from 46-64%, versus 1-19% for protected seedlings. Height growth was 25% greater for protected seedlings. Even when only undamaged seedlings were considered, protected seedlings exhibited superior height growth, possibly due to a more favorable microclimate provided by the tubes. These results were reflected in the higher and more uniform stocking rates for protected seedlings.

  12. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants.

    PubMed

    Merrild, Marie P; Ambus, Per; Rosendahl, Søren; Jakobsen, Iver

    2013-10-01

    Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of (32)P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre-established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed improved growth. Solitary seedlings growing in a network patch that had been severed from the CMN also grew much better than seedlings of the corresponding CMN. Interspecific and size-asymmetric competition between plants may be amplified rather than relaxed by CMNs that transfer P to large plants providing most carbon and render small plants P deficient. It is likely that grazing or senescence of the large plants will alleviate the network-induced suppression of seedling growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2016-10-01

    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.

  14. NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development.

    PubMed

    Ojeda, Valle; Pérez-Ruiz, Juan Manuel; González, Maricruz; Nájera, Victoria A; Sahrawy, Mariam; Serrato, Antonio J; Geigenberger, Peter; Cejudo, Francisco Javier

    2017-07-01

    Thiol-dependent redox regulation of enzyme activity plays a central role in the rapid acclimation of chloroplast metabolism to ever-fluctuating light availability. This regulatory mechanism relies on ferredoxin reduced by the photosynthetic electron transport chain, which fuels reducing power to thioredoxins (Trxs) via a ferredoxin-dependent Trx reductase. In addition, chloroplasts harbor an NADPH-dependent Trx reductase, which has a joint Trx domain at the carboxyl terminus, termed NTRC. Thus, a relevant issue concerning chloroplast function is to establish the relationship between these two redox systems and its impact on plant development. To address this issue, we generated Arabidopsis ( Arabidopsis thaliana ) mutants combining the deficiency of NTRC with those of Trxs f , which participate in metabolic redox regulation, and that of Trx x , which has antioxidant function. The ntrc-trxf1f2 and, to a lower extent, ntrc-trxx mutants showed severe growth-retarded phenotypes, decreased photosynthesis performance, and almost abolished light-dependent reduction of fructose-1,6-bisphosphatase. Moreover, the combined deficiency of both redox systems provokes aberrant chloroplast ultrastructure. Remarkably, both the ntrc-trxf1f2 and ntrc-trxx mutants showed high mortality at the seedling stage, which was overcome by the addition of an exogenous carbon source. Based on these results, we propose that NTRC plays a pivotal role in chloroplast redox regulation, being necessary for the activity of diverse Trxs with unrelated functions. The interaction between the two thiol redox systems is indispensable to sustain photosynthesis performed by cotyledons chloroplasts, which is essential for early plant development. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Carlactone-independent seedling morphogenesis in Arabidopsis.

    PubMed

    Scaffidi, Adrian; Waters, Mark T; Ghisalberti, Emilio L; Dixon, Kingsley W; Flematti, Gavin R; Smith, Steven M

    2013-10-01

    Strigolactone hormones are derived from carotenoids via carlactone, and act through the α/β-hydrolase D14 and the F-box protein D3/MAX2 to repress plant shoot branching. While MAX2 is also necessary for normal seedling development, D14 and the known strigolactone biosynthesis genes are not, raising the question of whether endogenous, canonical strigolactones derived from carlactone have a role in seedling morphogenesis. Here, we report the chemical synthesis of the strigolactone precursor carlactone, and show that it represses Arabidopsis shoot branching and influences leaf morphogenesis via a mechanism that is dependent on the cytochrome P450 MAX1. In contrast, both physiologically active Z-carlactone and the non-physiological E isomer exhibit similar weak activity in seedlings, and predominantly signal through D14 rather than its paralogue KAI2, in a MAX2-dependent but MAX1-independent manner. KAI2 is essential for seedling morphogenesis, and hence this early-stage development employs carlactone-independent morphogens for which karrikins from wildfire smoke are specific surrogates. While the commonly employed synthetic strigolactone GR24 acts non-specifically through both D14 and KAI2, carlactone is a specific effector of strigolactone signalling that acts through MAX1 and D14. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  17. Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions.

    PubMed

    Yang, Jing; Sun, Yan-Yan; An, Hong; Ji, Xiang

    2008-03-01

    We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for approximately 5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35 degrees C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1 degrees C, CTMin from 4.9 to 8.0 degrees C, and CTMax from 42.0 to 44.5 degrees C at the change-over of acclimation temperature from 20 to 35 degrees C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25 degrees C treatment (38.1 degrees C) and narrowest in the 35 degrees C treatment (36.5 degrees C), with the 20 degrees C treatment in between (37.2 degrees C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.

  18. Mycorrhizas on nursery and field seedlings of Quercus garryana

    Treesearch

    Dariene Southworth; Elizabeth M. Carrington; Jonathan L. Frank; Peter Gould; Connie A. Harrington; Warren D. Devine

    2009-01-01

    Oak woodland regeneration and restoration requires that seedlings develop mycorrhizas, yet the need for this mutualistic association is often overlooked. In this study, we asked whether Quercus garryana seedlings in nursery beds acquire mycorrhizas without artificial inoculation or access to a mycorrhizal network of other ectomycorrhizal hosts. We...

  19. Valley Oak Seedling Growth Associated with Selected Grass Species

    Treesearch

    Karen C. Danielsen; William L. Halvorson

    1991-01-01

    Valley oak (Quercus lobata Née) has exhibited inadequate regeneration since the last century. Seedlings become established, but few develop into saplings. We hypothesized that the invasion of alien annual grasses into native perennial grasslands has increased oak seedling mortality by decreasing soil moisture availability. We conducted greenhouse...

  20. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  1. Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Maryoung, Lindley A.; Schlenk, Daniel

    2012-01-01

    Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (<0.5 g/L salinity) and 32 g/L salinity. The observed 96-h LC50 in freshwater fish (67.34 ± 3.41 μg/L) was significantly reduced to 2.07 ± 0.16 μg/L in hypersaline-acclimated fish. Because organophosphates often require bioactivation to elicit toxicity through acetylcholinesterase (AChE) inhibition, the in vitro biotransformation of phorate was evaluated in coho salmon maintained in different salinities in liver, gills, and olfactory tissues. Phorate sulfoxide was the predominant metabolite in each tissue but rates of formation diminished in a salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides. PMID:21488666

  2. Establishing Longleaf Pine Seedlings on Agricultural Fields and Pastures

    Treesearch

    Mark J. Hainds

    2004-01-01

    Acres planted to longleaf pine (Pinus palustris) increased annually through the 1990s until 2000 with peak plantings exceeding 110 million seedlings annually. Many of these longleaf seedlings were planted on agricultural crop fields and pastures. Agricultural areas have unique characteristics that can make them more challenging to successfully plant...

  3. Sucrose metabolism and growth in transplanted loblolly pine seedlings

    Treesearch

    Shi-Jean S. Sung; C.C. Black; Paul P. Kormanik

    1993-01-01

    Loblolly pine (Pinus taeda L.) seedling height, root collar diameter, and the specific activities of three sucrose metabolizing enzymes, namely, sucrose synthase (SS), acid invertase, and neutral invertase, were measured to assess seedling responses to transplant stress. It was concluded that i) SS was the dominant enzyme for sucrose metabolism in...

  4. Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.

    PubMed

    Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou

    2015-08-10

    Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Disease and thermal acclimation in a more variable and unpredictable climate

    NASA Astrophysics Data System (ADS)

    Raffel, Thomas R.; Romansic, John M.; Halstead, Neal T.; McMahon, Taegan A.; Venesky, Matthew D.; Rohr, Jason R.

    2013-02-01

    Global climate change is shifting the distribution of infectious diseases of humans and wildlife with potential adverse consequences for disease control. As well as increasing mean temperatures, climate change is expected to increase climate variability, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments conducted in 80 independent incubators, and field data on disease-associated frog declines in Latin America, support the framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was opposite to the pattern of growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. If similar acclimation responses influence other host-parasite systems, as seems likely, then present models, which generally ignore small-scale temporal variability in climate, might provide poor predictions for climate effects on disease.

  6. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures

    PubMed Central

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions. PMID:26114888

  7. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Sappal, Ravinder; MacDougald, Michelle; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-08-01

    Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of

  8. Development of machine-vision system for gap inspection of muskmelon grafted seedlings.

    PubMed

    Liu, Siyao; Xing, Zuochang; Wang, Zifan; Tian, Subo; Jahun, Falalu Rabiu

    2017-01-01

    Grafting robots have been developed in the world, but some auxiliary works such as gap-inspecting for grafted seedlings still need to be done by human. An machine-vision system of gap inspection for grafted muskmelon seedlings was developed in this study. The image acquiring system consists of a CCD camera, a lens and a front white lighting source. The image of inspected gap was processed and analyzed by software of HALCON 12.0. The recognition algorithm for the system is based on principle of deformable template matching. A template should be created from an image of qualified grafted seedling gap. Then the gap image of the grafted seedling will be compared with the created template to determine their matching degree. Based on the similarity between the gap image of grafted seedling and the template, the matching degree will be 0 to 1. The less similar for the grafted seedling gap with the template the smaller of matching degree. Thirdly, the gap will be output as qualified or unqualified. If the matching degree of grafted seedling gap and the template is less than 0.58, or there is no match is found, the gap will be judged as unqualified; otherwise the gap will be qualified. Finally, 100 muskmelon seedlings were grafted and inspected to test the gap inspection system. Results showed that the gap inspection machine-vision system could recognize the gap qualification correctly as 98% of human vision. And the inspection speed of this system can reach 15 seedlings·min-1. The gap inspection process in grafting can be fully automated with this developed machine-vision system, and the gap inspection system will be a key step of a fully-automatic grafting robots.

  9. Sucrose metabolism, growth and transplanting stress in sweetgum seedling taproots and stems

    Treesearch

    Shi-Jean S. Sung; Paul P Kormanik

    2000-01-01

    One-year-old nursery-grown bare-root sweetgum (Liquidambar styraciflua L.) seedlings were lifted and transplanted into a nearby nursery bed or a cleared forest field in January 1994. Seedlings remaining in the same bed for the second year were the nontransplanted controls. Seedlings growing in beds were watered regularly and those in field received...

  10. Within-population variability influences early seedling establishment in four Mediterranean oaks

    NASA Astrophysics Data System (ADS)

    González-Rodríguez, Victoria; Barrio, Isabel C.; Villar, Rafael

    2012-05-01

    Regeneration of Mediterranean forests is severely limited. Multiple abiotic factors are known to constrain the establishment of woody seedlings at its first phases, such as summer drought or excessive incident radiation, but less attention has been paid to the role of intra-specific variation in seedling performance. In this study we investigate the relative influence of environment (light availability, soil moisture and summer irrigation) and intrinsic factors (seed mass and maternal origin) as determinants of within-population variability in the early establishment of four coexisting Mediterranean oaks (Quercus ilex, Quercus suber, Quercus faginea and Quercus pyrenaica), from emergence and early growth to second-year survival in a field experiment. Seed size was a poor predictor of seed and seedling success. Instead, mother identity showed a stronger effect on seedling performance. Time and percentage of emergence, establishment success and morphological traits varied among seedlings from different maternal trees but main drivers for each variable were different for each species. In addition to a direct effect, in many cases mother-related intrinsic traits and seed mass influenced the effects of environmental conditions on seedling performance. The role of intrinsic factors was masked under ameliorated conditions (i.e. summer irrigation), indicating the relevant role of within-population variability to cope with highly heterogeneous and unpredictable Mediterranean environments.

  11. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    PubMed

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  12. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  13. Heat Acclimation by Post-Exercise Hot Water Immersion in the Morning Reduces Thermal Strain During Morning and Afternoon Exercise-Heat-Stress.

    PubMed

    Zurawlew, Michael J; Mee, Jessica A; Walsh, Neil P

    2018-05-10

    Recommendations state that to acquire the greatest benefit from heat acclimation the clock-time of heat acclimation sessions should match the clock-time of expected exercise-heat stress. It remains unknown if adaptations by post-exercise hot water immersion (HWI) demonstrate time of day dependent adaptations. Thus, we examined whether adaptations following post-exercise HWI completed in the morning were present during morning and afternoon exercise-heat stress. Ten males completed an exercise-heat stress test commencing in the morning (0945-h: AM) and afternoon (1445-h: PM; 40 min; 65% V̇O 2max treadmill run) before (PRE) and after (POST) heat acclimation. The 6-day heat acclimation intervention involved a daily, 40 min treadmill-run (65% V̇O 2max ) in temperate conditions followed by ≤ 40 min HWI (40°C; 0630-1100-h). Adaptations by 6-day post-exercise HWI in the morning were similar in the morning and afternoon. Reductions in resting rectal temperature (T re ; AM; -0.34 ± 0.24°C, PM; -0.27 ± 0.23°C; P = 0.002), T re at sweating onset (AM; -0.34 ± 0.24°C, PM; -0.31 ± 0.25°C; P = 0.001), and end-exercise T re (AM; -0.47 ± 0.33°C, PM; -0.43 ± 0.29°C; P = 0.001), heart rate (AM; -14 ± 7 beats∙min -1 , PM; -13 ± 6 beats∙min -1 ; P < 0.01), rating of perceived exertion (P = 0.01), and thermal sensation (P = 0.005) were not different in the morning compared to the afternoon. Morning heat acclimation by post-exercise hot water immersion induced adaptions at rest and during exercise-heat stress in the morning and mid-afternoon.

  14. Effect of acclimation to caging on nephrotoxic response of rats to uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damon, E.G.; Eidson, A.F.; Hobbs, C.H.

    1986-02-01

    Animal studies of the toxicity and metabolism of radionuclides and chemicals often require housing of rats in metabolism cages for excreta collection. Response of rats to toxic substances may be affected by environmental factors such as the type of cage used. Dose-response studies were conducted to assess the effects of two types of cages on the nephrotoxic response of rats to uranium from implanted refined uranium ore (yellowcake). The LD50/21 days was 6 mg of uranium ore per kilogram body weight (6 mg U/kg). The 95% confidence limit (C.L.) was 3-8 mg U/kg for rats housed in metabolism cages beginningmore » on the day of implantation (naive rats). However, for rats housed in metabolism cages for 21 days before implantation (acclimated rats) the LD50/21 days was 360 mg U/kg (95% C.L. = 220-650 mg U/kg), which was the same value obtained for rats housed continuously in polycarbonate cages. This significant difference (P less than 0.01) in response of naive rats compared to response of acclimated rats appeared related to a significantly lower water consumption by the naive rats.« less

  15. Effect of acclimation to caging on nephrotoxic response of rats to uranium.

    PubMed

    Damon, E G; Eidson, A F; Hobbs, C H; Hahn, F F

    1986-02-01

    Animal studies of the toxicity and metabolism of radionuclides and chemicals often require housing of rats in metabolism cages for excreta collection. Response of rats to toxic substances may be affected by environmental factors such as the type of cage used. Dose-response studies were conducted to assess the effects of two types of cages on the nephrotoxic response of rats to uranium from implanted refined uranium ore (yellowcake). The LD50/21 days was 6 mg of uranium ore per kilogram body weight (6 mg U/kg). The 95% confidence limit (C.L.) was 3-8 mg U/kg for rats housed in metabolism cages beginning on the day of implantation (naive rats). However, for rats housed in metabolism cages for 21 days before implantation (acclimated rats) the LD50/21 days was 360 mg U/kg (95% C.L. = 220-650 mg U/kg), which was the same value obtained for rats housed continuously in polycarbonate cages. This significant difference (P less than 0.01) in response of naive rats compared to response of acclimated rats appeared related to a significantly lower water consumption by the naive rats.

  16. Planting and care of fine hardwood seedlings: Nursery production of hardwood seedlings

    Treesearch

    Douglass F. Jacobs

    2003-01-01

    Access to quality tree seedlings is an essential component of a successful hardwood reforestation project. Hardwood plantations may be established by sowing seed directly to a field site, but the success of direct seeding operations has been inconsistent for many species, which indicates that more research is needed before this practice can be recommended. For...

  17. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis

    PubMed Central

    Favory, Jean-Jacques; Stec, Agnieszka; Gruber, Henriette; Rizzini, Luca; Oravecz, Attila; Funk, Markus; Albert, Andreas; Cloix, Catherine; Jenkins, Gareth I; Oakeley, Edward J; Seidlitz, Harald K; Nagy, Ferenc; Ulm, Roman

    2009-01-01

    The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment. PMID:19165148

  18. Influence of temperature acclimation and gut content on the supercooling ability of the land snail Cornu aspersum.

    PubMed

    Ansart, Armelle; Aulne, Pierre-Aymeric; Madec, Luc; Vernon, Philippe

    2008-05-01

    The invasive land snail Cornu aspersum possesses a low ability to supercool (c. -5 degrees C in winter) and survives only minimal ice formation in its body fluids, what may limit its expansion to colder environments. In the present study, we investigated the influence of acclimation and starvation on its supercooling ability. During eight weeks, individuals were maintained at 20 degrees C, fed or starved, or placed at 5 degrees C, directly or with progressive acclimation to cold and shorter photoperiod. Temperature of crystallisation of whole individual (Tc(I)) and hemolymph (Tc(H)), mass data and gut content were recorded every two weeks. Hemolymphatic glucose and glycerol were measured at the end of experiment and occurrence of intestinal ice-nucleating agents (INA) was researched. Acclimation had no effect on Tc(I) but stimulated purging of the gut. Starvation induced a slight decrease of Tc(I) whereas a high quantity of alimentary particles in the digestive tract limited the supercooling ability. Glucose and glycerol were not synthesized in cold conditions. Mean Tc(H) was low (c. -17 degrees C), some INA being present in hemolymph of fed animals. Intestinal content of starved individuals exhibited a mean Tc of c. -6 degrees C, decreasing to c. -12 degrees after heating, suggesting the presence of organic INA.

  19. Effect of acclimation and nutrient supply on 5-tolyltriazole biodegradation with activated sludge communities.

    PubMed

    Herzog, Bastian; Yuan, Heyang; Lemmer, Hilde; Horn, Harald; Müller, Elisabeth

    2014-07-01

    The corrosion inhibitor 5-tolyltriazole (5-TTri) can have a detrimental impact on aquatic systems thus implying an acute need to reduce the effluent concentrations of 5-TTri. In this study, 5-TTri biodegradation was enhanced through acclimation and nutrient supply. Activated sludge communities (ASC) were setup in nine subsequent ASC generations. While generation two showed a lag phase of five days without biodegradation, generations four to nine utilized 5-TTri right after inoculation, with biodegradation rates from 3.3 to 5.2 mg L(-1)d(-1). Additionally, centrifuged AS supernatant was used to simulate the nutrient conditions in wastewater. This sludge supernatant (SS) significantly enhanced biodegradation, resulting in removal rates ranging from 3.2 to 5.0 mg L(-1)d(-1) without acclimation while the control groups without SS observed lower rates of ⩽ 2.2 mg L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Regeneration characteristics of woody plant seedlings in typical secondary forests in Qinling Mountains].

    PubMed

    Kang, Bing; Liu, Shi-Rong; Wang, De-Xiang; Zhang, Ying; Liu, Hong-Ru; Du, Yan-Ling

    2011-12-01

    By using sampling plot method, an investigation was conducted on the regeneration characteristics of woody plant seedlings in five kinds of typical secondary forests (Pinus tabulaeformis, Quercus valiena var. acuteserrata, Betula albo-sinensis, Picea asperata, and Pinus armandii) in Qinling Mountains. There was an obvious species differentiation of woody plant seedlings and saplings in the forests. Except for Q. valiena var. acuteserrata and P. armandii forests, the similarity coefficient of the seedlings and saplings species in the forests was lower. The seedlings and saplings quantity, species richness index, Simpson dominance index, and evenness index were higher in P. tabulaeformis and Q. valiena var. acuteserrata forests, the lowest in B. albo-sinensis forest, and basically the same in P. asperata and P. armandii forests. The percentages of the seedlings and saplings in the five forests had significant differences (P < 0.05). Except in B. albo-sinensis forest where the percentage of the saplings was higher, the percentage of the seedlings in the other stands was larger, and in the order of P. asperata forest > P. tabulaeformis forest > Q. valiena var. acuteserrata forest > P. armandii forest, respectively. The sprouting percentage of the seedlings in different forests had significant difference (P < 0.05), and was in the sequence of P. armandii forest > P. asperata forest > B. albo-sinensis forest > Q. valiena var. acuteserrata forest > P. tabulaeformis forest. In Q. valiena var. acuteserrata and P. tabulaeformis forests, the percentage of tree seedlings was the highest, occupying 68% and 51.4% of the total number of woody seedlings, respectively, and their communities were in the medium succession period, with a stronger persistent regeneration capability; in P. asperata and P. armandii forests, the percentage of tree seedlings was 40% and 15%, respectively, and their communities were in the late succession period, with a rather poor regeneration capability