Sample records for bacilliform badnavirus scbv

  1. Badnaviruses: The Current Global Scenario

    PubMed Central

    Bhat, Alangar Ishwara; Hohn, Thomas; Selvarajan, Ramasamy

    2016-01-01

    Badnaviruses (Family: Caulimoviridae; Genus: Badnavirus) are non-enveloped bacilliform DNA viruses with a monopartite genome containing about 7.2 to 9.2 kb of dsDNA with three to seven open reading frames. They are transmitted by mealybugs and a few species by aphids in a semi-persistent manner. They are one of the most important plant virus groups and have emerged as serious pathogens affecting the cultivation of several horticultural crops in the tropics, especially banana, black pepper, cocoa, citrus, sugarcane, taro, and yam. Some badnaviruses are also known as endogenous viruses integrated into their host genomes and a few such endogenous viruses can be awakened, e.g., through abiotic stress, giving rise to infective episomal forms. The presence of endogenous badnaviruses poses a new challenge for the fool-proof diagnosis, taxonomy, and management of the diseases. The present review aims to highlight emerging disease problems, virus characteristics, transmission, and diagnosis of badnaviruses. PMID:27338451

  2. Badnaviruses: The Current Global Scenario.

    PubMed

    Bhat, Alangar Ishwara; Hohn, Thomas; Selvarajan, Ramasamy

    2016-06-22

    Badnaviruses (Family: Caulimoviridae; Genus: Badnavirus) are non-enveloped bacilliform DNA viruses with a monopartite genome containing about 7.2 to 9.2 kb of dsDNA with three to seven open reading frames. They are transmitted by mealybugs and a few species by aphids in a semi-persistent manner. They are one of the most important plant virus groups and have emerged as serious pathogens affecting the cultivation of several horticultural crops in the tropics, especially banana, black pepper, cocoa, citrus, sugarcane, taro, and yam. Some badnaviruses are also known as endogenous viruses integrated into their host genomes and a few such endogenous viruses can be awakened, e.g., through abiotic stress, giving rise to infective episomal forms. The presence of endogenous badnaviruses poses a new challenge for the fool-proof diagnosis, taxonomy, and management of the diseases. The present review aims to highlight emerging disease problems, virus characteristics, transmission, and diagnosis of badnaviruses.

  3. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group.

    PubMed

    Borah, Basanta K; Sharma, Shweta; Kant, Ravi; Johnson, A M Anthony; Saigopal, Divi Venkata Ramana; Dasgupta, Indranil

    2013-10-01

    Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. http://www.dpvweb.net. 2013 BSPP and JOHN WILEY & SONS LTD

  4. Identification of viral and non-viral reverse transcribing elements in pineapple (Ananas comosus), including members of two new badnavirus species.

    PubMed

    Gambley, C F; Geering, A D W; Steele, V; Thomas, J E

    2008-01-01

    A previously published partial sequence of pineapple bacilliform virus was shown to be from a retrotransposon (family Metaviridae) and not from a badnavirus as previously thought. Two newly discovered sequence groups isolated from pineapple were associated with bacilliform virions and were transmitted by mealybugs. Phylogenetic analyses indicated that they were members of new badnavirus species. A third caulimovirid sequence was also amplified from pineapple, but available evidence suggests that this DNA is not encapsidated, but more likely derived from an endogenous virus.

  5. Sequence diversity among badnavirus isolates infecting yam (Dioscorea spp.) in Ghana, Togo, Benin and Nigeria.

    PubMed

    Eni, A O; Hughes, J d'A; Asiedu, R; Rey, M E C

    2008-01-01

    We analysed the sequence diversity in the reverse transcriptase (RT)/ribonuclease H (RNaseH) coding region of 19 badnavirus isolates infecting yam (Dioscorea spp.) in Ghana, Togo, Benin, and Nigeria. Phylogenetic analysis of the deduced amino acid sequences revealed that the isolates are broadly divided into two distinct species, each clustering with Dioscorea alata bacilliform virus (DaBV) and Dioscorea sansibarensis bacilliform virus (DsBV). Fourteen isolates had 90-96% amino acid identity with DaBV, while four isolates had 83-84% amino acid identity with DsBV. One isolate from Benin, BN4Dr, was distinct and had 77 and 75% amino acid identity with DaBV and DsBV, respectively, and may be a member of a new badnavirus species infecting yam in West Africa. Viruses of the two main species were present in Ghana, Togo and Benin and were observed to infect both D. alata and D. rotundata indiscriminately. This is the first confirmed report of DsBV infection in yam in Ghana and Togo. The results of this study demonstrate that members of two distinct species of badnaviruses infect yam in the West African yam zone and suggest a putative new species, BN4Dr. We also conclude that these species are not confined to limited geographic regions or specific for yam host species. However, the three badnavirus species are serologically related. The sequence information obtained from this study can be used to develop PCR-based diagnostics to detect members of the various species and/or strains of badnaviruses infecting yam in West Africa.

  6. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World.

    PubMed

    Chingandu, Nomatter; Zia-Ur-Rehman, Muhammad; Sreenivasan, Thyail N; Surujdeo-Maharaj, Surendra; Umaharan, Pathmanathan; Gutierrez, Osman A; Brown, Judith K

    2017-05-01

    Suspected virus-like symptoms were observed in cacao plants in Trinidad during 1943, and the viruses associated with these symptoms were designated as strains A and B of cacao Trinidad virus (CTV). However, viral etiology has not been demonstrated for either phenotype. Total DNA was isolated from symptomatic cacao leaves exhibiting the CTV A and B phenotypes and subjected to Illumina HiSeq and Sanger DNA sequencing. Based on de novo assembly, two apparently full-length badnavirus genomes of 7,533 and 7,454 nucleotides (nt) were associated with CTV strain A and B, respectively. The Trinidad badnaviral genomes contained four open reading frames, three of which are characteristic of other known badnaviruses, and a fourth that is present in only some badnaviruses. Both badnaviral genomes harbored hallmark caulimovirus-like features, including a tRNA Met priming site, a TATA box, and a polyadenylation-like signal. Pairwise comparisons of the RT-RNase H region indicated that the Trinidad isolates share 57-71% nt sequence identity with other known badnaviruses. Based on the system for badnavirus species demarcation in which viruses with less than 80% nt sequence identity in the RT-RNase gene are considered members of separate species, these isolates represent two previously unidentified badnaviruses, herein named cacao mild mosaic virus and cacao yellow vein banding virus, making them the first cacao-infecting badnaviruses identified thus far in the Western Hemisphere.

  7. Sequence diversity among badnavirus isolates infecting black pepper and related species in India.

    PubMed

    Bhat, A I; Sasi, Shina; Revathy, K A; Deeshma, K P; Saji, K V

    2014-01-01

    The badnavirus, piper yellow mottle virus (PYMoV) is known to infect black pepper (Piper nigrum), betelvine (P. betle) and Indian long pepper (P. longum) in India and other parts of the world. Occurrence of PYMoV or other badnaviruses in other species of Piper and its variability is not reported so far. We have analysed sequence variability in the conserved putative reverse transcriptase (RT)/ribonuclease H (RNase H) coding region of the virus using specific badnavirus primers from 13 virus isolates of black pepper collected from different cultivars and regions and one isolate each from 23 other species of Piper. Of these, four species failed to produce expected amplicon while amplicon from four other species showed more similarities to plant sequences than to badnaviruses. Of the remaining, isolates from black pepper, P. argyrophyllum, P. attenuatum, P. barberi, P. betle, P. colubrinum, P. galeatum, P. longum, P. ornatum, P. sarmentosum and P. trichostachyon showed an identity of >85 % at the nucleotide and >90 % at the amino acid level with PYMoV indicating that they are isolates of PYMoV. On the other hand high sequence variability of 21-43 % at nucleotide and 17-46 % at amino acid level compared to PYMoV was found among isolates infecting P. bababudani, P. chaba, P. peepuloides, P. mullesua and P. thomsonii suggesting the presence of new badnaviruses. Phylogenetic analyses showed close clustering of all PYMoV isolates that were well separated from other known badnaviruses. This is the first report of occurrence of PYMoV in eight Piper spp and likely occurrence of four new species in five Piper spp.

  8. Next generation sequencing elucidates cacao badnavirus diversity and reveals the existence of more than ten viral species.

    PubMed

    Muller, E; Ravel, S; Agret, C; Abrokwah, F; Dzahini-Obiatey, H; Galyuon, I; Kouakou, K; Jeyaseelan, E C; Allainguillaume, J; Wetten, A

    2018-01-15

    Cacao swollen shoot virus is a member of the family Caulimoviridae, genus Badnavirus and is naturally transmitted to Theobroma cacao (L.) by several mealybug species. CSSV populations in West African countries are highly variable and genetically structured into several different groups based on the diversity in the first part of ORF3 which encodes the movement protein. To unravel the extent of isolate diversity and address the problems of low titer and mixed viral sequences in samples, we used Illumina MiSeq and HiSeq technology. We were able to reconstruct de novo 20 new complete genomes from cacao samples collected in the Cocoa Research Institute of Ghana (CRIG) Museum and from the field samples collected in Côte d'Ivoire or Ghana. Based on the 20% threshold of nucleotide divergence in the reverse transcriptase/ribonuclease H (RT/RNase H) region which denotes species demarcation, we conclude there exist seven new species associated with the cacao swollen shoot disease. These new species along with the three already described leads to ten, the total number of the complex of viral species associated with the disease. A sample from Sri Lanka exhibiting similar leaf symptomology to West African CSSD-affected plants was also included in the study and the corresponding sequence represents the genome of a new virus named cacao bacilliform SriLanka virus (CBSLV). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A new bacilliform fathead minnow rhabdovirus that produces syncytia in tissue culture.

    PubMed

    Iwanowicz, L R; Goodwin, A E

    2002-05-01

    A pathogenic bacilliform virus 130-180 nm in length and 31-47 nm in diameter was isolated from moribund fathead minnows (Pimephales promelas) exhibiting hemorrhages in their eyes and skin. A cytopathic effect of multifocal syncytia was observed in the epithelioma papulosum cyprini cell line after a 48 h incubation at 20 degrees C. A similar cytopathic effect was also observed in other cell lines tested, but not in bluegill fry, koi fin, or Chinook salmon embryo cells. The filterable agent was inactivated by exposure to 50 degrees C for 10 min, 20% ether, 2 and 50% chloroform, pH 3, and pH 10, was unaffected by 5'-iodo-2 deoxyuridine, and appeared bacilliform and occasionally bullet-shaped by electron microscopy. These results are consistent with those of rhabdoviruses. Immunodot blots performed with antisera against selected fish rhabdoviruses, an aquareovirus, and a birnavirus were all negative. River's postulates were fulfilled in fathead minnows, but the agent did not replicate or cause disease in other cyprinids or salmonids during challenge experiments. Hepatic, splenic, and renal lesions were observed during histological analysis of diseased fish from viral challenges and from the original case. Structural proteins resolved via SDS-PAGE had molecular weights similar to those reported in lyssaviruses of the family Rhabdoviridae; however, syncytia formation is not a typical cytopathic effect of rhabdoviruses. This virus, has tentatively been named the fathead minnow rhabdovirus (FHMRV) and is most similar to the members of the family Rhabdoviridae, but atypical properties like syncytia formation may justify the assignment to a novel taxon.

  10. The Rice Tungro Bacilliform Virus Gene II Product Interacts with the Coat Protein Domain of the Viral Gene III Polyprotein

    PubMed Central

    Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas

    2000-01-01

    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237

  11. Analysis of full-length sequences of two Citrus yellow mosaic badnavirus isolates infecting Citrus jambhiri (Rough Lemon) and Citrus sinensis L. Osbeck (Sweet Orange) from a nursery in India.

    PubMed

    Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I

    2012-12-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.

  12. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species.

    PubMed

    Anthony Johnson, A M; Dasgupta, I; Sai Gopal, D V R

    2014-07-01

    Citrus yellow mosaic badnavirus (CMBV) is an important pathogen in southern India spread by infected citrus propagules. One of the measures to arrest the spread of CMBV is to develop methods to screen and certify citrus propagules as CMBV-free. The methods loop-mediated isothermal amplification (LAMP) and SYBR green real-time PCR (SGRTPCR) have been developed for the efficient detection of CMBV in citrus propagules. This paper compares the sensitivities of LAMP and SGRTPCR with polymerase chain reaction (PCR) for the detection of CMBV. Whereas PCR and LAMP were able to detect CMBV from a minimum of 10 ng of total DNA of infected leaf samples, SGRTPCR could detect the same from 1 ng of total DNA. Using SGRTPCR, the viral titres were estimated to be the highest in rough lemon and lowest in Nagpur Mandarin of the five naturally infected citrus species tested. The results will help in designing suitable strategies for the sensitive detection of CMBV from citrus propagules. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Evaluation of virus resistance and agronomic performance of rice cultivar ASD 16 after transfer of transgene against Rice tungro bacilliform virus by backcross breeding.

    PubMed

    Valarmathi, P; Kumar, G; Robin, S; Manonmani, S; Dasgupta, I; Rabindran, R

    2016-08-01

    Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease.

  14. Unexpected Genome Variability at Multiple Loci Suggests Cacao Swollen Shoot Virus Comprises Multiple, Divergent Molecular Variants.

    USDA-ARS?s Scientific Manuscript database

    Cacao swollen shoot virus (CSSV) [Badnavirus, Caulimoviridae] causes swollen shoot disease of Theobroma cacao L. in West Africa. Since ~2000, various diagnostic tests have failed to detect CSSV in ~50-70% of symptomatic cacao plants, suggesting the possible emergence of new, previously uncharacteriz...

  15. Characterization of Canna yellow mottle virus in a New Host, Alpinia purpurata, in Hawaii.

    PubMed

    Zhang, Jingxin; Dey, Kishore K; Lin, Birun; Borth, Wayne B; Melzer, Michael J; Sether, Diane; Wang, Yanan; Wang, I-Chin; Shen, Huifang; Pu, Xiaoming; Sun, Dayuan; Hu, John S

    2017-06-01

    Canna yellow mottle virus (CaYMV) is an important badnavirus infecting Canna spp. worldwide. This is the first report of CaYMV in flowering ginger (Alpinia purpurata) in Hawaii, where it is associated with yellow mottling and necrosis of leaves, vein streaking, and stunted plants. We have sequenced CaYMV in A. purpurata (CaYMV-Ap) using a combination of next-generation sequencing and traditional Sanger sequencing techniques. The complete genome of CaYMV-Ap was 7,120 bp with an organization typical of other Badnavirus species. Our results indicated that CaYMV-Ap was present in the episomal form in infected flowering ginger. We determined that this virus disease is prevalent in Hawaii and could potentially have significant economic impact on the marketing of A. purpurata as cut flowers. There is a potential concern that the host range of CaYMV-Ap may expand to include other important tropical plants.

  16. Molecular characterization of Banana streak virus isolate from Musa Acuminata in China.

    PubMed

    Zhuang, Jun; Wang, Jian-Hua; Zhang, Xin; Liu, Zhi-Xin

    2011-12-01

    Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.

  17. Rf2a and rf2b transcription factors

    DOEpatents

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  18. Genetic analysis of a novel nidovirus from fathead minnows

    USGS Publications Warehouse

    Batts, William N.; Goodwin, Andrew E.; Winton, James R.

    2012-01-01

    A bacilliform virus was isolated from diseased fathead minnows (Pimephales promelas). Analysis of the complete genome coding for the polyprotein (pp1ab), spike (S), membrane (M) and nucleocapsid (N) proteins revealed that the virus was most like white bream virus (WBV), another bacilliform virus isolated from white bream (Blicca bjoerkna L.) and the type species of the genus Bafinivirus within the order Nidovirales. In addition to similar gene order and size, alignment of deduced amino acid sequences of the pp1ab, M, N and S proteins of the fathead minnow nidovirus (FHMNV) with those of WBV showed 46, 44, 39 and 15 % identities, respectively. Phylogenetic analysis using the conserved helicase domain of the replicase showed FHMNV was distinct from WBV, yet the closest relative identified to date. Thus, FHMNV appears to represent a second species in the genus Bafinivirus. A PCR assay was developed for the identification of future FHMNV-like isolates.

  19. Phylogeny of Banana Streak Virus reveals recent and repetitive endogenization in the genome of its banana host (Musa sp.).

    PubMed

    Gayral, Philippe; Iskra-Caruana, Marie-Line

    2009-07-01

    Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (d(N)/d(S) ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.

  20. An isothermal based recombinase polymerase amplification assay for rapid, sensitive and robust indexing of citrus yellow mosaic virus.

    PubMed

    Kumar, P V; Sharma, S K; Rishi, N; Ghosh, D K; Baranwal, V K

    Management of viral diseases relies on definite and sensitive detection methods. Citrus yellow mosaic virus (CYMV), a double stranded DNA virus of the genus Badnavirus, causes yellow mosaic disease in citrus plants. CYMV is transmitted through budwood and requires a robust and simplified indexing protocol for budwood certification programme. The present study reports development and standardization of an isothermal based recombinase polymerase amplification (RPA) assay for a sensitive, rapid, easy, and cost-effective method for detection and diagnosis of CYMV. Two different oligonucleotide primer sets were designed from ORF III (coding for polyprotein) and ORF II (coding for virion associated protein) regions of CYMV to perform amplification assays. Comparative evaluation of RPA, PCR and immuno-capture recombinase polymerase amplification (IC-RPA) based assays were done using purified DNA and plant crude sap. CYMV infection was efficiently detected from the crude sap in RPA and IC-RPA assays. The primer set used in RPA was specific and did not show any cross-amplification with banana streak MY virus (BSMYV), another Badnavirus species. The results from the present study indicated that RPA assay can be used easily in routine indexing of citrus planting material. To the best of our knowledge, this is the first report on development of a rapid and simplified isothermal detection assay for CYMV and can be utilized as an effective technique in quarantine and budwood certification process.

  1. [Changes of lastids in virus-infected cells of the attraction-zone from Sarracenia purpurea L].

    PubMed

    Barckhaus, R H; Weinert, H

    1975-01-01

    Viruslike particles 300-350 nm long and 70 nm in diameter were found in ultrathin sections of attraction-zone from Sarracenia purpurea. Epidermal- and mesophyll cells contained the bacilliform particles. The membrane-bound particles-most virions occured within ER-like membranes-consisted of an outer coat 70-90 A thick, an inner membrane and an axial core. The plastids of infected cells in which virus particles were localized show morphologicals changes of the organells.

  2. ICTV Virus Taxonomy Profile: Rhabdoviridae.

    PubMed

    Walker, Peter J; Blasdell, Kim R; Calisher, Charles H; Dietzgen, Ralf G; Kondo, Hideki; Kurath, Gael; Longdon, Ben; Stone, David M; Tesh, Robert B; Tordo, Noël; Vasilakis, Nikos; Whitfield, Anna E; Nbsp Ictv Report Consortium

    2018-04-01

    The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.

  3. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    USGS Publications Warehouse

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2017-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.

  4. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins.

    PubMed

    Dietzgen, Ralf G; Kondo, Hideki; Goodin, Michael M; Kurath, Gael; Vasilakis, Nikos

    2017-01-02

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Immunosensor development for rice tungro bacilliform virus (RTBV) detection using antibody nano-gold conjugate

    NASA Astrophysics Data System (ADS)

    Uda, M. N. A.; Hasfalina, C. M.; Samsuzana, A. A.; Hashim, U.; Ariffin, Shahrul A. B.; Zamri, I.; Nur Sabrina, W.; B. Siti Noraini, B.; Faridah, S.; Mazidah, M.; Gopinath, Subash C. B.

    2017-03-01

    Rice tungro disease (RTD) causes major losses to rice crop plantation. Hence, a highly sensitive tools need to be developed for the detection of RTD which can be employed in both laboratory and field. An electrochemical immunosensor system for the detection of RTD, based on immobilized specific antibodies conjugated with gold nanoparticle was developed for this purpose. However, this paper focus for RTBV interaction using the conjugated antibodies which is added with polymer and deposited on carbon screen printed working electrodes.

  6. A mathematical model of transmission of rice tungro disease by Nephotettix Virescens

    NASA Astrophysics Data System (ADS)

    Blas, Nikki T.; Addawe, Joel M.; David, Guido

    2016-11-01

    One of the major threats in rice agriculture is the Tungro virus, which is transmitted semi-persistently to rice plants via green rice leafhoppers called Nephotettix Virescens. Tungro is polycyclic and complex disease of rice associated by dual infection with Rice Tungro Bacilliform Virus (RTBV) and Rice Tungro Spherical Virus (RTSV). Interaction of the two viruses results in the degeneration of the host. In this paper, we used a plant-vector system of ordinary differential equations to model the spread of the disease in a model rice field. Parameter values were obtained from studies on the entomology of Nephotettix Virescens and infection rates of RTSV and RTBV. The system was analyzed for equilibrium solutions, and solved numerically for susceptible rice varieties (Taichung Native 1).

  7. Molecular characterization of previously elusive badnaviruses associated with symptomatic cacao in the New World.

    USDA-ARS?s Scientific Manuscript database

    ABSTRACT Cacao (Theobroma cacao L.) is a tropical tree cultivated for beans used to make chocolate. Distinct virus-like symptoms, referred to as the putative Cacao Trinidad virus (CTV) strains A and B, have been observed in Trinidad and Tobago since 1944, however, viral etiology had not been demon...

  8. Molecular variability analysis of five new complete cacao swollen shoot virus genomic sequences.

    PubMed

    Muller, E; Sackey, S

    2005-01-01

    Cacao swollen shoot virus (CSSV), a member of the family Caulimovi-ridae, genus Badnavirus occurs in all the main cacao-growing areas of West Africa. We amplified, cloned and sequenced complete genomes of five new isolates, two originating from Togo and three originating from Ghana. The genome of these five newly sequenced isolates all contain the five putative open reading frames I, II, III, X and Y described for the first sequenced CSSV isolate, Agou1 originating from Togo. Their genomes have been aligned with the genome of Agou1. The nucleotide and amino acid sequence identities between isolates have been calculated and a phylogenetic analysis has been made including other pararetroviruses. Maximum nucleotide sequence variability between complete genomes of CSSV isolates was 29.4%. Geographical differentiation between isolates appears more important than differentiation between mild and severe isolates. ORF X differs greatly in size and sequence between the Togolese isolates Nyongbo2 and Agou1, and the four other isolates, its functional role is therefore clearly questionable.

  9. Characterization of viral proteins of Oryctes baculovirus and comparison between two geographical isolates.

    PubMed

    Mohan, K S; Gopinathan, K P

    1989-01-01

    Bacilliform Oryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infected Oryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reported Oryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.

  10. High-resolution melt and morphological analyses of mealybugs (Hemiptera: Pseudococcidae) from cacao: tools for the control of Cacao swollen shoot virus spread.

    PubMed

    Wetten, Andy; Campbell, Colin; Allainguillaume, Joël

    2016-03-01

    Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao swollen shoot virus (CSSV), the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent, and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work, the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. Morphologically similar adult females were characterised by scanning electron microscopy, and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes, including those accessions from distinct geographical regions. This has allowed the design of a high-resolution melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. HRM analysis readily differentiated between mealybug pests of cacao that cannot necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug-transmitted diseases. © 2015 Society of Chemical Industry.

  11. PCR analysis of the viral complex associated with La France disease of Agaricus bisporus.

    PubMed Central

    Romaine, C P; Schlagnhaufer, B

    1995-01-01

    Reverse transcription PCR analysis was used to investigate the involvement of two RNA-genome viruses, La France isometric virus (LIV) and mushroom bacilliform virus (MBV), in the etiology of La France disease of the cultivated mushroom Agaricus bisporus. Reverse transcription PCR amplification of sequences targeted to the genomes of LIV and MBV, with a sensitivity of detection of < 10 fg of viral RNA, showed diseased mushrooms to be either singly infected by LIV or doubly infected by LIV and MBV. Of 70 geographically diverse diseased mushroom isolates, 100% were infected by LIV, whereas almost 60% of these isolates were coinfected by MBV. Of 58 mushroom isolates determined to be free of infection by LIV, 3 were found to be infected by MBV. This represents the first documented report of the independent replication of these two viruses. Our data support the hypothesis that La France disease is associated with infection by two autonomously replicating viruses in which LIV is the primary causal agent and MBV, although possibly pathogenic and capable of modulating symptoms, is not required for pathogenesis. PMID:7793952

  12. Keratoconjunctivitis infectiosa ovis (KIO), 'pink eye' or 'zere oogjes' (a survey).

    PubMed

    König, C D

    1983-07-01

    The occurrence of keratoconjunctivitis infectiosa ovis (KIO) in the Netherlands was reported by Hofland et al. in 1969 for the first time. At present the disease is well known in the Netherlands. Nevertheless there are still questions about the causative agent and the most effective and easiest therapy. Most authors suppose that the disease is caused by Colesiota conjunctivae, although others mention infections by other chlamydia, Mycoplasma conjunctivae, Mycoplasma ovipneumoniae, Acholeplasma oculi and a wide variety of bacteria. The diagnosis can be made on the basis of the symptoms and the detection of the agent in conjunctival scrapings. The bacilliform bodies can be found in conjunctival smears in the cytoplasm (Giemsa, Stamp). Many therapies are used topically, parenterally or orally. Locally used eye-ointments must be effective against Colesiota; antimicrobial drugs administered by injection must be effective against the latter and also provide a sufficient cell tissue penetration with excretion into the lacrimal fluids. Injections have proved to be easier to administer, especially in serious outbreaks, but such outbreaks are exceptional (18). Some therapies have been evaluated in small scale experiments (28) as well as in field trials (17).

  13. Sequence analysis of ORF IV RTBV isolated from tungro infected Oryza sativa L. cv Ciherang

    NASA Astrophysics Data System (ADS)

    Hastilestari, Bernadetta Rina; Astuti, Dwi; Estiati, Amy; Nugroho, Satya

    2015-09-01

    The Effort to increase rice production is often constrained by pest and disease such as Tungro. The Tungro disease is caused by the joint infection with two dissimilar viruses; a bacil-form-DNA virus, the Rice tungro bacilliform virus(RTBV) and the spherical RNA virus, Rice tungro spherical virus (RTSV) and transmitted by Green leafhopper (Nephotettix virescens). The symptom of disease is caused by the presence of RTBV. The genome of RTBV consists of four Open reading frames (ORFs) which encode functional proteins. Of the four, ORF IV is unique because it exists only in RTBV. The most efficient method of generating disease resistance plants is to look for natural sources of resistance genes in wild or germplasm and then transfer the gene and the accompanying resistance in cultivated crop varieties. The aim of this study is, therefore, to isolate and analyze of 1170 bp gene of ORF 4 of Tungro virus isolated from an Indonesian rice cultivar, Ciherang (Oryza sativa L. cv Indica). DNA sequencing analysis using BLAST showed 94% similarity with the reference sequence gen bank Acc.M65026.1. The comparisons and mutation analysis of DNA sequences were discussed in this research.

  14. A variant of Rubus yellow net virus with altered genomic organization.

    PubMed

    Diaz-Lara, Alfredo; Mosier, Nola J; Keller, Karen E; Martin, Robert R

    2015-02-01

    Rubus yellow net virus (RYNV) is a member of the genus Badnavirus (family: Caulimoviridae). RYNV infects Rubus species causing chlorosis of the tissue along the leaf veins, giving an unevenly distributed netted symptom in some cultivars of red and black raspberry. Recently, a strain of RYNV was sequenced from a Rubus idaeus plant in Alberta, Canada, exhibiting such symptoms. The viral genome contained seven open reading frames (ORFs) with five of them in the sense-strand, including a large polyprotein. Here we describe a graft-transmissible strain of RYNV from Europe infecting cultivar 'Baumforth's Seedling A' (named RYNV-BS), which was sequenced using rolling circle amplification, enzymatic digestion, cloning and primer walking, and it was resequenced at a 5X coverage. This sequence was then compared with the RYNV-Ca genome and significant differences were observed. Genomic analysis identified differences in the arrangement of coding regions, promoter elements, and presence of motifs. The genomic organization of RYNV-BS consisted of five ORFs (four ORFs in the sense-strand and one ORF in the antisense-strand). ORFs 1, 2, and 3 showed a high degree of homology to RYNV-Ca, while ORFs 4 and 6 of RYNV-BS were quite distinct. Also, the predicted ORFs 5 and 7 in the RYNV-Ca were absent in the RYNV-BS sequence. These differences may account for the lack of aphid transmissibility of RYNV-BS.

  15. Genetic variation of coat protein gene among the isolates of Rice tungro spherical virus from tungro-endemic states of the India.

    PubMed

    Mangrauthia, Satendra K; Malathi, P; Agarwal, Surekha; Ramkumar, G; Krishnaveni, D; Neeraja, C N; Madhav, M Sheshu; Ladhalakshmi, D; Balachandran, S M; Viraktamath, B C

    2012-06-01

    Rice tungro disease, one of the major constraints to rice production in South and Southeast Asia, is caused by a combination of two viruses: Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV). The present study was undertaken to determine the genetic variation of RTSV population present in tungro endemic states of Indian subcontinent. Phylogenetic analysis based on coat protein sequences showed distinct divergence of Indian RTSV isolates into two groups; one consisted isolates from Hyderabad (Andhra Pradesh), Cuttack (Orissa), and Puducherry and another from West Bengal, Coimbatore (Tamil Nadu), and Kanyakumari (Tamil Nadu). The results obtained from phylogenetic study were further supported with the SNPs (single nucleotide polymorphism), INDELs (insertion and deletion) and evolutionary distance analysis. In addition, sequence difference count matrix revealed 2-68 nucleotides differences among all the Indian RTSV isolates taken in this study. However, at the protein level these differences were not significant as revealed by Ka/Ks ratio calculation. Sequence identity at nucleotide and amino acid level was 92-100% and 97-100%, respectively, among Indian isolates of RTSV. Understanding of the population structure of RTSV from tungro endemic regions of India would potentially provide insights into the molecular diversification of this virus.

  16. Blood count and C-reactive protein evolution in gastric cancer patients with total gastrectomy surgery

    PubMed Central

    CSENDES J., Attila; MUÑOZ Ch., Andrea; BURGOS L., Ana María

    2014-01-01

    Background The complete blood count (CBC) and C-reactive protein (CRP) are useful inflammatory parameters for ruling out acute postoperative inflammatory complications. Aim To determine their changes in gastric cancer patients submitted to total gastrectomy. Methods This is a prospective study, with 36 patients with gastric cancer who were submitted to elective total gastrectomy. On the first, third and fifth postoperative day (POD), blood count and CRP changes were assessed. Patients with postoperative complications were excluded. Results Twenty-one (58%) were men and 15 (42%) women. The mean age was 65 years. The leukocytes peaked on the 1st POD with a mean of 13,826 u/mm³, and decreased to 8,266 u/mm³ by the 5th POD. The bacilliforms peaked on the 1st POD with a maximum value of 1.48%. CRP reached its maximum level on the 3rd POD with a mean of 144.64 mg/l±44.84. Preoperative hematocrit (HCT) was 35% and 33.67% by the 5th POD. Hemoglobin, showed similar values. Conclusions Leukocytes increased during the 1st POD but reached normal values by the 5th POD. CRP peaked on the 3rd POD but did not reach normal values by the 5th POD. PMID:25626929

  17. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    PubMed

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cross-Species Functionality of Pararetroviral Elements Driving Ribosome Shunting

    PubMed Central

    Pooggin, Mikhail M.; Fütterer, Johannes; Hohn, Thomas

    2008-01-01

    Background Cauliflower mosaic virus (CaMV) and Rice tungro bacilliform virus (RTBV) belong to distinct genera of pararetroviruses infecting dicot and monocot plants, respectively. In both viruses, polycistronic translation of pregenomic (pg) RNA is initiated by shunting ribosomes that bypass a large region of the pgRNA leader with several short (s)ORFs and a stable stem-loop structure. The shunt requires translation of a 5′-proximal sORF terminating near the stem. In CaMV, mutations knocking out this sORF nearly abolish shunting and virus viability. Methodology/Principal Findings Here we show that two distant regions of the CaMV leader that form a minimal shunt configuration comprising the sORF, a bottom part of the stem, and a shunt landing sequence can be replaced by heterologous sequences that form a structurally similar configuration in RTBV without any dramatic effect on shunt-mediated translation and CaMV infectivity. The CaMV-RTBV chimeric leader sequence was largely stable over five viral passages in turnip plants: a few alterations that did eventually occur in the virus progenies are indicative of fine tuning of the chimeric sequence during adaptation to a new host. Conclusions/Significance Our findings demonstrate cross-species functionality of pararetroviral cis-elements driving ribosome shunting and evolutionary conservation of the shunt mechanism. We are grateful to Matthias Müller and Sandra Pauli for technical assistance. This work was initiated at Friedrich Miescher Institute (Basel, Switzerland). We thank Prof. Thomas Boller for hosting the group at the Institute of Botany. PMID:18286203

  19. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.

    PubMed

    Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji

    2012-12-01

    In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  20. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route.

    PubMed

    Bojko, Jamie; Stebbing, Paul D; Dunn, Alison M; Bateman, Kelly S; Clark, Fraser; Kerr, Rose C; Stewart-Clark, Sarah; Johannesen, Ása; Stentiford, Grant D

    2018-05-07

    The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyte-infecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and 'rod-shaped virus' (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus).

  1. [Application of Warthin-Starry stain, immunohistochemistry and transmission electron microscopy in diagnosis of cat scratch disease].

    PubMed

    Huang, Juan; Dai, Lin; Lei, Song; Liao, Dian-ying; Wang, Xiao-qing; Luo, Tian-you; Chen, Yu; Hang, Zhen-biao; Li, Gan-di; Dong, Dan-dan; Xu, Gang; Gu, Zheng-ce; Hao, Ji-ling; Hua, Ping; He, Lei; Duan, Fang-lei

    2010-04-01

    To evaluate the diagnostic utility of Warthin-Starry silver stain, immunohistochemistry and transmission electron microscopy in the detection of human Bartonella henselae infection and pathologic diagnosis of cat scratch disease (CSD). The paraffin-embedded lymph node tissues of 77 histologically-defined cases of cat scratch disease collected during the period from January, 1998 to December, 2008 were retrieved and studied using Warthin-Starry silver stain (WS stain) and mouse monoclonal antibody against Bartonella henselae (BhmAB stain). Five cases rich in bacteria were selected for transmission electron microscopy. Under electron microscope, the organisms Bartonella henselae appeared polymorphic, round, elliptical, short rod or bacilliform shapes, ranged from 0.489 to 1.110 microm by 0.333 to 0.534 microm and often clustered together. Black short rod-shaped bacilli arranged in chains or clumps were demonstrated in 61.0% (47/77) of CSD by WS stain. The organisms were located outside the cells and lie mainly in the necrotic debris, especially near the nodal capsule. In 72.7% (56/77) of the cases, dot-like, granular as well as few linear positive signals were observed using BhmAB immunostain and showed similar localization. Positive results for both stains were identified in 59.7% (46/77) of the cases. When applying both stains together, Bartonella henselae was observed in 74.0% (57/77) of the case. The difference between the results obtained by WS stain and BhmAB immunostain was of statistical significance (P < 0.05). Bartonella henselae is the causative pathogen of cat scratch disease. WS stain, BhmAB immunostain and transmission electron microscopy are helpful in confirming the histologic diagnosis. Immunostaining using BhmAB can be a better alternative than WS stain in demonstrating the organisms.

  2. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    PubMed

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  3. Crystal Structures of Major Envelope Proteins VP26 and VP28 from White Spot Syndrome Virus Shed Light on Their Evolutionary Relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang,X.; Wu, J.; Sivaraman, J.

    2007-01-01

    White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 {angstrom}, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelopemore » proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt {beta}-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core {beta}-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.« less

  4. Short ORF-Dependent Ribosome Shunting Operates in an RNA Picorna-Like Virus and a DNA Pararetrovirus that Cause Rice Tungro Disease

    PubMed Central

    Pooggin, Mikhail M.; Rajeswaran, Rajendran; Schepetilnikov, Mikhail V.; Ryabova, Lyubov A.

    2012-01-01

    Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence. PMID:22396650

  5. Suppression of cell wall-related genes associated with stunting of Oryza glaberrima infected with Rice tungro spherical virus

    PubMed Central

    Budot, Bernard O.; Encabo, Jaymee R.; Ambita, Israel Dave V.; Atienza-Grande, Genelou A.; Satoh, Kouji; Kondoh, Hiroaki; Ulat, Victor J.; Mauleon, Ramil; Kikuchi, Shoshi; Choi, Il-Ryong

    2014-01-01

    Rice tungro disease is a complex disease caused by the interaction between Rice tungro bacilliform virus and Rice tungro spherical virus (RTSV). RTSV alone does not cause recognizable symptoms in most Asian rice (Oryza sativa) plants, whereas some African rice (O. glaberrima) plants were found to become stunted by RTSV. Stunting of rice plants by virus infections usually accompanies the suppression of various cell wall-related genes. The expression of cell wall-related genes was examined in O. glaberrima and O. sativa infected with RTSV to see the relationship between the severity of stunting and the suppression of cell wall-related genes by RTSV. The heights of four accessions of O. glaberrima were found to decline by 14–34% at 28 days post-inoculation (dpi) with RTSV, whereas the height reduction of O. sativa plants by RTSV was not significant. RTSV accumulated more in O. glaberrima plants than in O. sativa plants, but the level of RTSV accumulation was not correlated with the degree of height reduction among the four accessions of O. glaberrima. Examination for expression of genes for cellulose synthase A5 (CESA5) and A6 (CESA6), cellulose synthase-like A9 (CSLA9) and C7, and α-expansin 1 (expansin 1) and 15 precursors in O. glaberrima and O. sativa plants between 7 and 28 dpi with RTSV showed that the genes such as those for CESA5, CESA6, CSLA9, and expansin 1were more significantly suppressed in stunted plants of O. glaberrima at 14 dpi with RTSV than in O. sativa, suggesting that stunting of O. glaberrima might be associated with these cell wall-related genes suppressed by RTSV. Examination for expression of these genes in O. sativa plants infected with other rice viruses in previous studies indicated that the suppression of the expansin 1 gene is likely to be a signature response commonly associated with virus-induced stunting of Oryza species. These results suggest that stunting of O. glaberrima by RTSV infection might be associated with the suppression

  6. Profil épidémiologique et clinique de la tuberculose dans la zone de santé de Lubumbashi (RD Congo)

    PubMed Central

    Ngama, Christian Kakisingi; Muteya, Michel Manika; Lukusha, Yves Isango Idi; Kapend, Serge Matanda; Tshamba, Henri Mundongo; Makinko, Paul Ilunga; Mulumba, Claude Mwamba; Kalala, Liévin Kapend a

    2014-01-01

    tuberculeux dans les démarches diagnostique, le suivi des patients bacilliformes et encourager l'adhérence au traitement. PMID:25018820