Sample records for bacillus coagulans-based product

  1. Bacillus Coagulans

    MedlinePlus

    ... It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for ... intestine. Early evidence shows that using a specific probiotic product (Lactol, Bioplus Life Sciences Pvt. Ltd., India) ...

  2. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    PubMed Central

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses. PMID:24956474

  3. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    PubMed

    Xu, Ke; Xu, Ping

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  4. A brief dataset on the model-based evaluation of the growth performance of Bacillus coagulans and l-lactic acid production in a lignin-supplemented medium.

    PubMed

    Glaser, Robert; Venus, Joachim

    2017-04-01

    The data presented in this article are related to the research article entitled "Model-based characterization of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium (R. Glaser and J. Venus, 2016) [1]". This data survey provides the information on characterization of three Bacillus coagulans strains. Information on cofermentation of lignocellulose-related sugars in lignin-containing media is given. Basic characterization data are supported by optical-density high-throughput screening and parameter adjustment to logistic growth models. Lab scale fermentation procedures are examined by model adjustment of a Monod kinetics-based growth model. Lignin consumption is analyzed using the data on decolorization of a lignin-supplemented minimal medium.

  5. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    PubMed

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  6. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    PubMed Central

    Su, Fei; Tao, Fei; Tang, Hongzhi

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans. PMID:23105047

  7. Immunotropic aspect of the Bacillus coagulans probiotic action.

    PubMed

    Bomko, Tatiana V; Nosalskaya, Tatiana N; Kabluchko, Tatiana V; Lisnyak, Yury V; Martynov, Artur V

    2017-08-01

    Currently, probiotics are increasingly used as the alternative to antibiotics as well as the preventive measures in humans. In particular, probiotics occupy a key position in the treatment of antibiotics-associated intestinal dysbiosis. A spore-forming microorganism lactobacillus Bacillus coagulans is one of the most promising probiotics. However, some of its pharmacological effects remain poorly understood. This study was aimed at investigation of the effect of B. coagulans (Laktovit Forte) on the intestinal dysbiosis syndrome in mice caused by streptomycin against the background of cyclophosphamide-induced cellular immunodeficiency. Pharmacological method: mouse model in vivo with immunodeficiency caused by cyclophosphamide. In mice with colitis caused by streptomycin treatment, the administration of B. coagulans (Laktovit Forte medicinal product) resulted in an antidiarrhoeal effect, normalisation of gastrointestinal motility and prevention of the animals' weight loss. Given the cyclophosphamide-induced immunosuppression and streptomycin-associated diarrhoea, the immunity was completely restored only under the action of B. coagulans. According to all parameters, B. coagulans has been proved to be more effective as compared to the Linex Forte reference product containing lacto- and bifidobacteria. © 2017 Royal Pharmaceutical Society.

  8. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    PubMed

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  9. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    PubMed Central

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  10. Engineering of thermotolerant Bacillus coagulans for production of D(-)-lactic acid

    DOEpatents

    Wang, Qingzhao; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2014-12-02

    Genetically modified microorganisms having the ability to produce D(-)-lactic acid at temperatures between 30.degree. C. and 55.degree. C. are provided. In various embodiments, the microorganisms may have the chromosomal lactate dehydrogenase (ldh) gene and/or the chromosomal acetolactate synthase (alsS) gene inactivated. Exemplary microorganisms for use in the disclosed methods are Bacillus spp., such as Bacillus coagulans.

  11. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans.

    PubMed

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-11-25

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer.

  12. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    PubMed

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage

  13. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.

    PubMed

    Walton, Sara L; Bischoff, Kenneth M; van Heiningen, Adriaan R P; van Walsum, G Peter

    2010-08-01

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose-utilizing capabilities. It was found to have high tolerance for inhibitors such as acetic acid and sodium, which are present in pre-pulping hemicellulose extracts. Fermentation of 20 g/l xylose in the presence of 30 g/l acetic acid required a longer lag phase but overall lactic acid yield was not diminished. Similarly, fermentation of xylose in the presence of 20 g/l sodium increased the lag time but did not affect overall product yield, though 30 g/l sodium proved completely inhibitory. Fermentation of hot water-extracted Siberian larch containing 45 g/l total monosaccharides, mainly galactose and arabinose, produced 33 g/l lactic acid in 60 h and completely consumed all sugars. Small amounts of co-products were formed, including acetic acid, formic acid, and ethanol. Hemicellulose extract formed during autohydrolysis of mixed hardwoods contained mainly xylose and was converted into lactic acid with a 94% yield. Green liquor-extracted hardwood hemicellulose containing 10 g/l acetic acid and 6 g/l sodium was also completely converted into lactic acid at a 72% yield. The Bacillus coagulans MXL-9 strain was found to be well suited to production of lactic acid from lignocellulosic biomass due to its compatibility with conditions favorable to industrial enzymes and its ability to withstand inhibitors while rapidly consuming all pentose and hexose sugars of interest at high product yields.

  14. Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

    PubMed Central

    Sun, Lifan; Zhang, Caili; Lyu, Pengcheng; Wang, Yanping; Wang, Limin; Yu, Bo

    2016-01-01

    Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1 transcription level was much higher than that of ldhD at all growth phases. Deletion of the ldhL2 gene revealed no difference in fermentation profile compared to the wild-type strain, while ldhL1 single deletion or ldhL1ldhL2 double deletion completely blocked L-lactic acid production. Complementation of ldhL1 in the above knockout strains restored fermentation profiles to those observed in the wild-type strain. This study demonstrates ldhL1 is crucial for L-lactic acid production and NADH balance in B. coagulans DSM1 and lays the fundamental for engineering the thermotolerant B. coagulans strain as a platform chemicals producer. PMID:27885267

  15. Functional Analysis of the ComK Protein of Bacillus coagulans

    PubMed Central

    Kovács, Ákos T.; Eckhardt, Tom H.; van Kranenburg, Richard; Kuipers, Oscar P.

    2013-01-01

    The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B. subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis. PMID:23301076

  16. Functional analysis of the ComK protein of Bacillus coagulans.

    PubMed

    Kovács, Ákos T; Eckhardt, Tom H; van Hartskamp, Mariska; van Kranenburg, Richard; Kuipers, Oscar P

    2013-01-01

    The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.

  17. Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK-02 vis-à-vis other Bacilli.

    PubMed

    Das, Subhasish; Sen, Ramkrishna

    2011-10-01

    A logistic kinetic model was derived and validated to characterize the dynamics of a sporogenous bacterium in stationary phase with respect to sporulation and product formation. The kinetic constants as determined using this model are particularly important for describing intrinsic properties of a sporogenous bacterial culture in stationary phase. Non-linear curve fitting of the experimental data into the mathematical model showed very good correlation with the predicted values for sporulation and lipase production by Bacillus coagulans RK-02 culture in minimal media. Model fitting of literature data of sporulation and product (protease and amylase) formation in the stationary phase by some other Bacilli and comparison of the results of model fitting with those of Bacillus coagulans helped validate the significance and robustness of the developed kinetic model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    PubMed

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  19. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

    PubMed Central

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  20. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9

    USDA-ARS?s Scientific Manuscript database

    Bacillus coagulans MXL-9 was found capable of growing on pre-pulping hemicellulose extracts, utilizing all of the principle monosugars found in woody biomass. This organism is a moderate thermophile isolated from compost for its pentose utilizing capabilities. It was found to have high tolerance f...

  1. Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans.

    PubMed

    Zheng, Zhaojuan; Cai, Cong; Jiang, Ting; Zhao, Mingyue; Ouyang, Jia

    2014-08-01

    Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1)  L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1)  L-lactic acid was obtained in 36 h and the yield was 83.09 %.

  2. Genome sequence of the thermophilic strain Bacillus coagulans 2-6, an efficient producer of high-optical-purity L-lactic acid.

    PubMed

    Su, Fei; Yu, Bo; Sun, Jibin; Ou, Hong-Yu; Zhao, Bo; Wang, Limin; Qin, Jiayang; Tang, Hongzhi; Tao, Fei; Jarek, Michael; Scharfe, Maren; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2011-09-01

    Bacillus coagulans 2-6 is an efficient producer of lactic acid. The genome of B. coagulans 2-6 has the smallest genome among the members of the genus Bacillus known to date. The frameshift mutation at the start of the d-lactate dehydrogenase sequence might be responsible for the production of high-optical-purity l-lactic acid.

  3. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain.

    PubMed

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Eshuis-de Ruiter, Talitha; Booij-Veurink, Janine; de Vries, Ynte P; Ali, Furqan

    2016-04-01

    Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.

  4. Production of high concentration of L-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4.

    PubMed

    Ong, Shufen Angeline; Ng, Zhi Jian; Wu, Jin Chuan

    2016-07-01

    Thermophilic Bacillus coagulans WCP10-4 is found to be able to convert cellobiose to optically pure L-lactic acid. Its β-glucosidase activity is detected in whole cells (7.3 U/g dry cells) but not in culture medium, indicating the intracellular location of the enzyme. Its β-glucosidase activity is observed only when cultured using cellobiose as the sole carbon source, indicating that the expression of this enzyme is tightly regulated in cells. The enzyme is most active at 50 °C and pH 7.0. The supplement of external β-glucosidase during fermentation of cellobiose (106 g/l) by B. coagulans WCP10-4 increased the fermentation time from 21 to 23 h and decreased the lactic acid yield from 96.1 to 92.9 % compared to the control without β-glucosidase supplementation. B. coagulans WCP10-4 converted 200 g/l of cellobiose to 196.3 g/l of L-lactic acid at a yield of 97.8 % and a productivity of 7.01 g/l/h. This result shows that B. coagulans WCP10-4 is a highly efficient strain for converting cellobiose to L-lactic acid without the need of supplementing external β-glucosidases.

  5. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    PubMed

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  6. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.

    PubMed

    Ou, Mark S; Ingram, Lonnie O; Shanmugam, K T

    2011-05-01

    Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150-180 g l(-1)) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l(-1) and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to L: (+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.

  7. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    PubMed

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  8. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    PubMed

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  9. Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

    PubMed

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  10. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  11. Probiotic Bacillus coagulans GBI-30, 6086 Improves Protein Absorption and Utilization.

    PubMed

    Jäger, Ralf; Purpura, Martin; Farmer, Sean; Cash, Howard A; Keller, David

    2017-12-01

    Probiotics offer numerous health benefits, including digestive and immune health. Improved digestive health is linked to a more efficient absorption of important nutrients from our diet. This review focused on the rationale of using the probiotic Bacillus coagulans GBI-30, 6086 to aid protein absorption and utilization. B. coagulans GBI-30, 6086 can withstand the acidic environment of the stomach to reach the intestine where it germinates. Once active in the small intestine after germination, it has been shown to aid the digestion of carbohydrates and proteins. Co-administration of B. coagulans GBI-30, 6086 with protein has been shown to increase protein absorption and to maximize the health benefits associated with protein supplementation.

  12. Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM.

    PubMed

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-04-20

    Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l(-1)) and high productivity (2.3 g l(-1) h(-1)) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering.

  13. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  14. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.

    PubMed

    Gowthami, Palanisamy; Muthukumar, Karuppan; Velan, Manickam

    2015-01-01

    The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.

  15. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    PubMed

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  16. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  17. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  18. A prospective, randomized, double-blind, placebo-controlled parallel-group dual site trial to evaluate the effects of a Bacillus coagulans-based product on functional intestinal gas symptoms.

    PubMed

    Kalman, Douglas S; Schwartz, Howard I; Alvarez, Patricia; Feldman, Samantha; Pezzullo, John C; Krieger, Diane R

    2009-11-18

    This randomized double blind placebo controlled dual site clinical trial compared a probiotic dietary supplement to placebo regarding effects on gastrointestinal symptoms in adults with post-prandial intestinal gas-related symptoms (abdominal pain, distention, flatulence) but no gastrointestinal (GI) diagnoses to explain the symptoms. Sixty-one adults were enrolled (age 36.5 +/- 12.6 years; height 165.1 +/- 9.2 cm; weight 75.4 +/- 17.3 kg) and randomized to either Digestive Advantage Gas Defense Formula - (GanedenBC30 Bacillus coagulans GBI-30, 6086): n = 30; or Placebo: n = 31. Study subjects were evaluated every two weeks over a four-week period using validated questionnaires and standard biochemical safety testing. Outcome criteria of interest included change from baseline in Gastrointestinal Symptom Rating Scale (GSRS) abdominal pain, abdominal distention, flatus, and the Severity of Dyspepsia Assessment (SODA) bloating and gas subscores over four weeks of product use. Measured against the placebo, subjects in the probiotic group achieved significant improvements in GSRS abdominal pain subscore (p = 0.046) and the GSRS total score (p = 0.048), with a strong trend for improvement on the GSRS abdominal distension subscore (p = 0.061). A strong placebo effect was evident which could explain the lack of statistical significant differences between the groups for many of the efficacy variables. In conclusion, the Bacillus coagulans-based product was effective in improving the quality of life and reducing gastrointestinal symptoms in adults with post prandial intestinal gas-related symptoms and no GI diagnoses. ClinicalTrials.gov Identifier: NCT00881322.

  19. A prospective, randomized, double-blind, placebo-controlled parallel-group dual site trial to evaluate the effects of a Bacillus coagulans-based product on functional intestinal gas symptoms

    PubMed Central

    2009-01-01

    Background This randomized double blind placebo controlled dual site clinical trial compared a probiotic dietary supplement to placebo regarding effects on gastrointestinal symptoms in adults with post-prandial intestinal gas-related symptoms (abdominal pain, distention, flatulence) but no gastrointestinal (GI) diagnoses to explain the symptoms. Methods Sixty-one adults were enrolled (age 36.5 ± 12.6 years; height 165.1 ± 9.2 cm; weight 75.4 ± 17.3 kg) and randomized to either Digestive Advantage™ Gas Defense Formula - (GanedenBC30 Bacillus coagulans GBI-30, 6086): n = 30; or Placebo: n = 31. Study subjects were evaluated every two weeks over a four-week period using validated questionnaires and standard biochemical safety testing. Outcome criteria of interest included change from baseline in Gastrointestinal Symptom Rating Scale (GSRS) abdominal pain, abdominal distention, flatus, and the Severity of Dyspepsia Assessment (SODA) bloating and gas subscores over four weeks of product use. Results Measured against the placebo, subjects in the probiotic group achieved significant improvements in GSRS abdominal pain subscore (p = 0.046) and the GSRS total score (p = 0.048), with a strong trend for improvement on the GSRS abdominal distension subscore (p = 0.061). A strong placebo effect was evident which could explain the lack of statistical significant differences between the groups for many of the efficacy variables. Conclusion In conclusion, the Bacillus coagulans-based product was effective in improving the quality of life and reducing gastrointestinal symptoms in adults with post prandial intestinal gas-related symptoms and no GI diagnoses. Trial Registration ClinicalTrials.gov Identifier: NCT00881322 PMID:19922649

  20. Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM

    PubMed Central

    Zheng, Zhaojuan; Ma, Cuiqing; Gao, Chao; Li, Fengsong; Qin, Jiayang; Zhang, Haiwei; Wang, Kai; Xu, Ping

    2011-01-01

    Background Phenyllactic acid (PLA), a novel antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi, can be produced by many microorganisms, especially lactic acid bacteria. However, the concentration and productivity of PLA have been low in previous studies. The enzymes responsible for conversion of phenylpyruvic acid (PPA) into PLA are equivocal. Methodology/Principal Findings A novel thermophilic strain, Bacillus coagulans SDM, was isolated for production of PLA. When the solubility and dissolution rate of PPA were enhanced at a high temperature, whole cells of B. coagulans SDM could effectively convert PPA into PLA at a high concentration (37.3 g l−1) and high productivity (2.3 g l−1 h−1) under optimal conditions. Enzyme activity staining and kinetic studies identified NAD-dependent lactate dehydrogenases as the key enzymes that reduced PPA to PLA. Conclusions/Significance Taking advantage of the thermophilic character of B. coagulans SDM, a high yield and productivity of PLA were obtained. The enzymes involved in PLA production were identified and characterized, which makes possible the rational design and construction of microorganisms suitable for PLA production with metabolic engineering. PMID:21533054

  1. A comparative proteomic analysis of Bacillus coagulans in response to lactate stress during the production of L-lactic acid.

    PubMed

    Wang, Xiuwen; Qin, Jiayang; Wang, Landong; Xu, Ping

    2014-12-01

    The growth rate and maximum biomass of Bacillus coagulans 2-6 were inhibited by lactate; inhibition by sodium lactate was stronger than by calcium lactate. The differences of protein expressions by B. coagulans 2-6 under the lactate stress were determined using two-dimensional electrophoresis coupled with mass spectrometric identification. Under the non-stress condition, calcium lactate stress and sodium lactate stress, the number of detected protein spots was 1,571 ± 117, 1,281 ± 231 and 904 ± 127, respectively. Four proteins with high expression under lactate stress were identified: lactate dehydrogenase, cysteine synthase A, aldo/keto reductase and ribosomal protein L7/L12. These proteins are thus potential targets for the reconstruction of B. coagulans to promote its resistance to lactate stress.

  2. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial.

    PubMed

    Mandel, David R; Eichas, Katy; Holmes, Judith

    2010-01-12

    Lactic acid-producing bacteria (LAB) probiotics demonstrate immunomodulating and anti-inflammatory effects and the ability to lessen the symptoms of arthritis in both animals and humans. This randomized, double-blind, placebo-controlled, parallel-design, clinical pilot trial was conducted to evaluate the effects of the LAB probiotic preparation, Bacillus coagulans GBI-30, 6086, on symptoms and measures of functional capacity in patients with rheumatoid arthritis (RA) in combination with pharmacological anti-arthritic medications. Forty-five adult men and women with symptoms of RA were randomly assigned to receive Bacillus coagulans GBI-30, 6086 or placebo once a day in a double-blind fashion for 60 days in addition to their standard anti-arthritic medications. Arthritis activity was evaluated by clinical examination, the American College of Rheumatology (ACR) criteria, the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI), and laboratory tests for erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Subjects who received Bacillus coagulans GBI-30, 6086 experienced borderline statistically significant improvement in the Patient Pain Assessment score (P = .052) and statistically significant improvement in Pain Scale (P = .046) vs placebo. Compared with placebo, Bacillus coagulans GBI-30, 6086 treatment resulted in greater improvement in patient global assessment and self-assessed disability; reduction in CRP; as well as the ability to walk 2 miles, reach, and participate in daily activities. There were no treatment-related adverse events reported throughout this study. Results of this pilot study suggest that adjunctive treatment with Bacillus coagulans GBI-30, 6086 LAB probiotic appeared to be a safe and effective for patients suffering from RA. Because of the low study population size, larger trials are needed to verify these results. ACTRN12609000435280.

  3. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Dalin, Eileen; Tice, Hope

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  4. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    PubMed

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass. © 2013 American Institute of Chemical Engineers.

  5. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    PubMed

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  6. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial

    PubMed Central

    2010-01-01

    Background Lactic acid-producing bacteria (LAB) probiotics demonstrate immunomodulating and anti-inflammatory effects and the ability to lessen the symptoms of arthritis in both animals and humans. This randomized, double-blind, placebo-controlled, parallel-design, clinical pilot trial was conducted to evaluate the effects of the LAB probiotic preparation, Bacillus coagulans GBI-30, 6086, on symptoms and measures of functional capacity in patients with rheumatoid arthritis (RA) in combination with pharmacological anti-arthritic medications. Methods Forty-five adult men and women with symptoms of RA were randomly assigned to receive Bacillus coagulans GBI-30, 6086 or placebo once a day in a double-blind fashion for 60 days in addition to their standard anti-arthritic medications. Arthritis activity was evaluated by clinical examination, the American College of Rheumatology (ACR) criteria, the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI), and laboratory tests for erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Results Subjects who received Bacillus coagulans GBI-30, 6086 experienced borderline statistically significant improvement in the Patient Pain Assessment score (P = .052) and statistically significant improvement in Pain Scale (P = .046) vs placebo. Compared with placebo, Bacillus coagulans GBI-30, 6086 treatment resulted in greater improvement in patient global assessment and self-assessed disability; reduction in CRP; as well as the ability to walk 2 miles, reach, and participate in daily activities. There were no treatment-related adverse events reported throughout this study. Conclusions Results of this pilot study suggest that adjunctive treatment with Bacillus coagulans GBI-30, 6086 LAB probiotic appeared to be a safe and effective for patients suffering from RA. Because of the low study population size, larger trials are needed to verify these results. Trial registration ACTRN12609000435280 PMID:20067641

  7. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strainmore » 36D1, is presented and discussed.« less

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  9. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

    PubMed

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan; Qi, Benkun; Wan, Yinhua

    2014-04-01

    A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22.

    PubMed

    Wang, Yujue; Cao, Weifeng; Luo, Jianquan; Wan, Yinhua

    2018-08-01

    The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and almost the same concentration of LA (50 g/L) was obtained regardless of the differences of H:P values. Finally, LA production from corn cob hydrolysates (CCH) contained 60 g/L mixed sugar verified the mechanisms found in the fermentations with simulated sugar mixture. Comparing with single glucose utilization, CCH utilization was faster and the yield of LA was not significantly affected. Therefore, the great potential of producing LA with lignocellulosic materials by B. coagulans was proved. Copyright © 2018. Published by Elsevier Ltd.

  11. Genome sequence of the thermophilic strain Bacillus coagulans XZL4, an efficient pentose-utilizing producer of chemicals.

    PubMed

    Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2011-11-01

    Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels.

  12. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer.

    PubMed

    Yao, Guoqiang; Gao, Pengfei; Zhang, Wenyi

    2016-06-20

    Bacillus coagulans HM-08 is a commercialized probiotic strain in China. Its genome contains a 3.62Mb circular chromosome with an average GC content of 46.3%. In silico analysis revealed the presence of one xyl operon as well as several other genes that are correlated to xylose utilization. The genetic information provided here may help to expand its future biotechnology potential in lactic acid production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.

    PubMed

    Ou, Mark S; Mohammed, Nazimuddin; Ingram, L O; Shanmugam, K T

    2009-05-01

    Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

  14. Characterization of an L-arabinose isomerase from Bacillus coagulans NL01 and its application for D-tagatose production.

    PubMed

    Mei, Wending; Wang, Lu; Zang, Ying; Zheng, Zhaojuan; Ouyang, Jia

    2016-06-30

    L-arabinose isomerase (AI) is a crucial catalyst for the biotransformation of D-galactose to D-tagatose. In previous reports, AIs from thermophilic bacterial strains had been wildly researched, but the browning reaction and by-products formed at high temperatures restricted their applications. By contrast, AIs from mesophilic Bacillus strains have some different features including lower optimal temperatures and lower requirements of metallic cofactors. These characters will be beneficial to the development of a more energy-efficient and safer production process. However, the relevant data about the kinetics and reaction properties of Bacillus AIs in D-tagatose production are still insufficient. Thus, in order to support further applications of these AIs, a comprehensive characterization of a Bacillus AI is needed. The coding gene (1422 bp) of Bacillus coagulans NL01 AI (BCAI) was cloned and overexpressed in the Escherichia coli BL21 (DE3) strain. The enzymatic property test showed that the optimal temperature and pH of BCAI were 60 °C and 7.5 respectively. The raw purified BCAI originally showed high activity in absence of outsourcing metallic ions and its thermostability did not change in a low concentration (0.5 mM) of Mn(2+) at temperatures from 70 °C to 90 °C. Besides these, the catalytic efficiencies (k cat/K m) for L-arabinose and D-galactose were 8.7 mM(-1) min(-1) and 1.0 mM(-1) min(-1) respectively. Under optimal conditions, the recombinant E. coli cell containing BCAI could convert 150 g L(-1) and 250 g L(-1) D-galactose to D-tagatose with attractive conversion rates of 32 % (32 h) and 27 % (48 h). In this study, a novel AI from B. coagulans NL01was cloned, purified and characterized. Compared with other reported AIs, this AI could retain high proportions of activity at a broader range of temperatures and was less dependent on metallic cofactors such as Mn(2+). Its substrate specificity was understood deeply by carrying out molecular

  15. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.

    PubMed

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.

  16. Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres

    PubMed Central

    Alli, Sk Md Athar

    2011-01-01

    Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f1), the similarity factor (f2), and the Rescigno index (ξ1 and ξ2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations. PMID:21674019

  17. Genome Sequence of the Thermophilic Strain Bacillus coagulans XZL4, an Efficient Pentose-Utilizing Producer of Chemicals

    PubMed Central

    Su, Fei; Xu, Ke; Zhao, Bo; Tai, Cui; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2011-01-01

    Bacillus coagulans XZL4 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid, 2,3-butanediol, and acetoin. Here we present a 2.8-Mb assembly of its genome. Simple and efficient carbohydrate metabolism systems, especially the transketolase/transaldolase pathway, make it possible to convert pentose sugars to products at high levels. PMID:22038963

  18. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans.

    PubMed

    Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong

    2016-11-01

    A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity.

    PubMed

    Belapurkar, Pranoti; Goyal, Pragya; Kar, Anand

    2016-01-01

    The bioaccumulation of heavy metals including chromium (VI) (Cr (VI)) and lead (II) (Pb (II)) causes fatal toxicity in humans. Some naturally occurring bacterial genera such as Bacillus and Pseudomonas help in bioremediation of these heavy metals and some of the species of Bacillus are proven probiotics. However, no study has been conducted on Bacillus coagulans , which is a proven probiotic species of genus Bacillus . The primary objective of the present study was to assess the potential of a proven probiotic, B. coagulans , marketed as "Sporlac-DS," to survive in the presence of Cr (VI) and Pb (II) and its ability to reduce its concentration in vitro . The Minimum inhibitory concentration (MIC) of the organism for Cr (VI) and Pb (II) was determined followed by its biochemical and morphological characterization. Its antibiotic sensitivity and probiotic efficacy were assessed. Further, its bioremediation capacity was observed in vitro by determining the residual Cr (VI) and Pb (II) concentration after 72 h. B. coagulans could tolerate up to 512 ppm concentration of Cr (VI) and had an MIC of 128 ppm for Pb (II). After 72 h, the organism reduced 32 ppm Cr (VI) and 64 ppm Pb (II) by 93% and 89%, respectively. When B. coagulans was studied before and after growing on Cr (VI) and Pb (II) for 24 h, an increase was seen in sensitivity toward the tested antibiotics whereas no change was observed in morphological and biochemical characters. It also showed no change in their bile and acid tolerance, indicating that it retains its probiotic efficacy. The tested probiotic B. coagulans may have a potential role in bioremediation of Cr (VI) and Pb (II), in vivo .

  20. Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01.

    PubMed

    Ouyang, Jia; Cai, Cong; Chen, Hai; Jiang, Ting; Zheng, Zhaojuan

    2012-12-01

    Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

  1. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans.

    PubMed

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian; Yu, Bo

    2014-12-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    PubMed

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  3. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106.

    PubMed

    Ye, Lidan; Zhou, Xingding; Hudari, Mohammad Sufian Bin; Li, Zhi; Wu, Jin Chuan

    2013-03-01

    Cost-effective production of optically pure lactic acid from lignocellulose sugars is commercially attractive but challenging. Bacillus coagulans C106 was isolated from environment and used to produce l-lactic acid from xylose at 50°C and pH 6.0 in mineral salts medium containing 1-2% (w/v) of yeast extract without sterilizing the medium before fermentation. In batch fermentation with 85g/L of xylose, lactic acid titer and productivity reached 83.6g/L and 7.5g/Lh, respectively. When fed-batch (120+80+60g/L) fermentation was applied, they reached 215.7g/L and 4.0g/Lh, respectively. In both cases, the lactic acid yield and optical purity reached 95% and 99.6%, respectively. The lactic acid titer and productivity on xylose are the highest among those ever reported. Ca(OH)2 was found to be a better neutralizing agent than NaOH in terms of its giving higher lactic acid titer (1.2-fold) and productivity (1.8-fold) under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    PubMed

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  5. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity

    PubMed Central

    Belapurkar, Pranoti; Goyal, Pragya; Kar, Anand

    2016-01-01

    Introduction: The bioaccumulation of heavy metals including chromium (VI) (Cr (VI)) and lead (II) (Pb (II)) causes fatal toxicity in humans. Some naturally occurring bacterial genera such as Bacillus and Pseudomonas help in bioremediation of these heavy metals and some of the species of Bacillus are proven probiotics. However, no study has been conducted on Bacillus coagulans, which is a proven probiotic species of genus Bacillus. Objectives: The primary objective of the present study was to assess the potential of a proven probiotic, B. coagulans, marketed as “Sporlac-DS,” to survive in the presence of Cr (VI) and Pb (II) and its ability to reduce its concentration in vitro. Materials and Methods: The Minimum inhibitory concentration (MIC) of the organism for Cr (VI) and Pb (II) was determined followed by its biochemical and morphological characterization. Its antibiotic sensitivity and probiotic efficacy were assessed. Further, its bioremediation capacity was observed in vitro by determining the residual Cr (VI) and Pb (II) concentration after 72 h. Results: B. coagulans could tolerate up to 512 ppm concentration of Cr (VI) and had an MIC of 128 ppm for Pb (II). After 72 h, the organism reduced 32 ppm Cr (VI) and 64 ppm Pb (II) by 93% and 89%, respectively. When B. coagulans was studied before and after growing on Cr (VI) and Pb (II) for 24 h, an increase was seen in sensitivity toward the tested antibiotics whereas no change was observed in morphological and biochemical characters. It also showed no change in their bile and acid tolerance, indicating that it retains its probiotic efficacy. Conclusion: The tested probiotic B. coagulans may have a potential role in bioremediation of Cr (VI) and Pb (II), in vivo. PMID:28216949

  6. Diammonium phosphate stimulates transcription of L-lactate dehydrogenase leading to increased L-lactate production in the thermotolerant Bacillus coagulans strain.

    PubMed

    Sun, Lifan; Li, Yanfeng; Wang, Limin; Wang, Yanping; Yu, Bo

    2016-08-01

    Exploration of cost-effective fermentation substrates for efficient lactate production is an important economic objective. Although some organic nitrogen sources are also cheaper, inorganic nitrogen salts for lactate fermentation have additional advantages in facilitating downstream procedures and significantly improving the commercial competitiveness of lactate production. In this study, we first established an application of diammonium phosphate to replace yeast extract with a reduced 90 % nitrogen cost for a thermotolerant Bacillus coagulans strain. In vivo enzymatic and transcriptional analyses demonstrated that diammonium phosphate stimulates the gene expression of L-lactate dehydrogenase, thus providing higher specific enzyme activity in vivo and increasing L-lactic acid production. This new information provides a foundation for establishing a cost-effective process for polymer-grade L-lactic acid production in an industrial setting.

  7. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  8. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    PubMed

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  9. Fermentation of Corn Fiber Hydrolysate to Lactic Acid by the Moderate Thermophile Bacillus coagulans

    USDA-ARS?s Scientific Manuscript database

    Composted manure from a dairy farm in Texas was examined for thermophilic microorganisms by enrichment in xylose broth medium. Forty randomly picked isolates were identified as strains of Bacillus coagulans by sequence analysis of rRNA genes. One strain, designated as MXL-9, could convert mixed su...

  10. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.

    PubMed

    Zhou, Xingding; Ye, Lidan; Wu, Jin Chuan

    2013-05-01

    A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure L-lactic acid from glucose and starch. In batch fermentation at pH 6.0, 240 g/L of glucose was completely consumed giving 210 g/L of L-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of L-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.

  11. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans

    PubMed Central

    Wang, Limin; Cai, Yumeng; Zhu, Lingfeng; Guo, Honglian

    2014-01-01

    Bacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production—NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)—were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid. Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (a d-lactic acid producer) and Lactobacillus plantarum subsp. plantarum DSM 20174 (a dl-lactic acid producer) were also examined in this study as comparative strains, in addition to B. coagulans. The specific activities of key enzymes for lactic acid production in the three strains were characterized in vivo and in vitro, and the levels of transcription of the ldhL, ldhD, and GOX genes during fermentation were also analyzed. The catalytic activities of l-nLDH and d-nLDH were different in l-, d-, and dl-lactic acid producers. Only l-nLDH activity was detected in B. coagulans 2-6 under native conditions, and the level of transcription of ldhL in B. coagulans 2-6 was much higher than that of ldhD or the GOX gene at all growth phases. However, for the two Lactobacillus strains used in this study, ldhD transcription levels were higher than those of ldhL. The high catalytic efficiency of l-nLDH toward pyruvate and the high transcription ratios of ldhL to ldhD and ldhL to the GOX gene provide the key explanations for the high optical purity of l-lactic acid produced by B. coagulans 2-6. PMID:25217009

  12. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    PubMed Central

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  13. Precultivation of Bacillus coagulans DSM2314 in the presence of furfural decreases inhibitory effects of lignocellulosic by-products during L(+)-lactic acid fermentation.

    PubMed

    van der Pol, Edwin; Springer, Jan; Vriesendorp, Bastienne; Weusthuis, Ruud; Eggink, Gerrit

    2016-12-01

    By-products resulting from thermo-chemical pretreatment of lignocellulose can inhibit fermentation of lignocellulosic sugars to lactic acid. Furfural is such a by-product, which is formed during acid pretreatment of lignocellulose. pH-controlled fermentations with 1 L starting volume, containing YP medium and a mixture of lignocellulosic by-products, were inoculated with precultures of Bacillus coagulans DSM2314 to which 1 g/L furfural was added. The addition of furfural to precultures resulted in an increase in L(+)-lactic acid productivity by a factor 2 to 1.39 g/L/h, an increase in lactic acid production from 54 to 71 g and an increase in conversion yields of sugar to lactic acid from 68 to 88 % W/W in subsequent fermentations. The improved performance was not caused by furfural consumption or conversion, indicating that the cells acquired a higher tolerance towards this by-product. The improvement coincided with a significant elongation of B. coagulans cells. Via RNA-Seq analysis, an upregulation of pathways involved in the synthesis of cell wall components such as bacillosamine, peptidoglycan and spermidine was observed in elongated cells. Furthermore, the gene SigB and genes promoted by SigB, such as NhaX and YsnF, were upregulated in the presence of furfural. These genes are involved in stress responses in bacilli.

  14. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    PubMed

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  15. High-titer and productivity of l-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain.

    PubMed

    Coelho, Luciana Fontes; Beitel, Susan Michelz; Sass, Daiane Cristina; Neto, Paulo Marcelo Avila; Contiero, Jonas

    2018-04-01

    Bacillus coagulans arr4 is a thermotolerant microorganism with great biotechnological potential for l-(+)-lactic acid production from granulated sugar and yeast extract. The highest l-(+)-lactic acid production was obtained with Ca(OH) 2 . The maximum production of l-(+)-lactic acid (206.81 g/L) was observed in exponential feeding using granulated sugar solution (900 g/L) and yeast extract (1%) at 50 °C, pH 6.5, and initial granulated sugar concentration of 100 g/L at 39 h. 5.3 g/L h productivity and 97% yield were observed, and no sugar remained. Comparing the simple batch with exponential fed-batch fermentation, the l(+) lactic acid production was improved in 133.22% and dry cell weight was improved in 83.29%, using granulated sugar and yeast extract. This study presents the highest productivity of lactic acid ever observed in the literature, on the fermentation of thermotolerant Bacillus sp. as well as an innovative and high-efficiency purification technology, using low-cost substances as Celite and charcoal. The recovery of lactic acid was 86%, with 100% protein removal, and the fermentation medium (brown color) became a colorless solution.

  16. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.

    PubMed

    Pleissner, Daniel; Neu, Anna-Katrin; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-10-01

    In this study, the lignocellulosic residue coffee pulp was used as carbon source in fermentative l(+)-lactic acid production using Bacillus coagulans. After thermo-chemical treatment at 121°C for 30min in presence of 0.18molL(-1) H2SO4 and following an enzymatic digestion using Accellerase 1500 carbon-rich hydrolysates were obtained. Two different coffee pulp materials with comparable biomass composition were used, but sugar concentrations in hydrolysates showed variations. The primary sugars were (gL(-1)) glucose (20-30), xylose (15-25), sucrose (5-11) and arabinose (0.7-10). Fermentations were carried out at laboratory (2L) and pilot (50L) scales in presence of 10gL(-1) yeast extract. At pilot scale carbon utilization and lactic acid yield per gram of sugar consumed were 94.65% and 0.78gg(-1), respectively. The productivity was 4.02gL(-1)h(-1). Downstream processing resulted in a pure formulation containing 937gL(-1)l(+)-lactic acid with an optical purity of 99.7%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    PubMed

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  18. Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain

    PubMed Central

    Orrù, Luigi; Salvetti, Elisa; Cattivelli, Luigi; Lamontanara, Antonella; Michelotti, Vania; Capozzi, Vittorio; Spano, Giuseppe; Keller, David; Cash, Howard; Martina, Alessia; Felis, Giovanna E.

    2014-01-01

    Bacillus coagulans GBI-30, 6086 is a safe strain, already available on the market, and characterized by certified beneficial effects. The draft genome sequence presented here constitutes the first pillar toward the identification of the molecular mechanisms responsible for its positive features and safety. PMID:25377698

  19. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium.

    PubMed

    Glaser, Robert; Venus, Joachim

    2017-07-25

    Three Bacillus coagulans strains were characterised in terms of their ability to grow in lignin-containing fermentation media and to consume the lignocellulose-related sugars glucose, xylose, and arabinose. An optical-density high-throughput screening was used for precharacterisation by means of different mathematical models for comparison (Logistic, Gompertz, Baranyi, Richards & Stannard, and Schnute). The growth response was characterised by the maximum growth rate and lag time. For a comparison of the screening and fermentation results, an unstructured mathematical model was proposed to characterise the lactate production, bacterial growth and substrate consumption. The growth model was then applied to fermentation procedures using wheat straw hydrolysates. The results indicated that the unstructured growth model can be used to evaluate lactate producing fermentation. Under the experimental fermentation conditions, one strain showed the ability to tolerate a high lignin concentration (2.5g/L) but lacked the capacity for sufficient pentose uptake. The lactate yield of the strains that were able to consume all sugar fractions of glucose, xylose and arabinose was ∼83.4%. A photometric measurement at 280nm revealed a dynamic change in alkali-lignin concentrations during lactate producing fermentation. A test of decolourisation of vanillin, ferulic acid, and alkali-lignin samples also showed the decolourisation performance of the B. coagulans strains under study. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient.

    PubMed

    Ma, Kedong; Maeda, Toshinari; You, Huiyan; Shirai, Yoshihito

    2014-01-01

    The development of a low-cost polymer-grade L-lactic acid production process was achieved in this study. Excess sludge hydrolyzate (ESH) was chosen as nutrient source for the objective of reducing nutrient cost in lactic acid production. 1% of ESH had high performance in lactic acid production relative to 2g/l yeast extract (YE) while the production cost of ESH was much lower than that of YE, indicating ESH was a promising substitute of YE. By employing a thermophilic strain of Bacillus coagulans (NBRC 12583), non-sterilized batch and repeated batch L-lactic acid fermentation was successfully performed, and the optical purity of L-lactic acid accumulated was more than 99%. Moreover, the factors associated with cell growth and lactic acid fermentation was investigated through a two-stage lactic acid production strategy. Oxygen played an important role in cell growth, and the optimal condition for cell growth and fermentation was pH 7.0 and 50°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota

    PubMed Central

    Abhari, Kh; Shekarforoush, S. S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 109/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect. PMID:27175187

  2. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota.

    PubMed

    Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.

  3. Clinical Study of Bacillus coagulans Unique IS-2 (ATCC PTA-11748) in the Treatment of Patients with Bacterial Vaginosis.

    PubMed

    Ratna Sudha, M; Yelikar, Kanan A; Deshpande, Sonali

    2012-09-01

    Bacterial vaginosis (BV) is the most prevalent vaginal infection worldwide and is characterized by reduction of native lactobacilli. Antimicrobial therapy used to cure the disease is often found to be ineffective. We postulate that Bacillus coagulans Unique IS-2 (Unique Biotech Limited, India) might provide an appendage to antimicrobial treatment and improve curing rate. In the present study 40 Indian women diagnosed with BV by the presence of symptoms including white discharge, pH greater than 4.7, burning micturation, itching, soreness and redness at vulva. The subjects were divided in 2 groups probiotic (n = 20) and control (n = 20) based on age (control group, 33 ± 3 years and probiotic group, 32.5 ± 3 years), history of previous vaginosis (control group, 75% or 15/20 and probiotic group, 75% or 15/20) and severity of current vaginosis infection (burning micturation and itching, 35% in each group). Probiotic group subjects were assigned to receive a dose of antibiotic therapy [Ofloxacin-Ornidazole with strength of 200-500 mg per capsule/day for 5 days along with vaginal peccaries (co-kimaxazol) for 3 days] simultaneously with two probiotic capsules (10(9) CFUs of Bacillus coagulans Unique IS-2 per capsule). The control group received only antibiotic therapy. At the end of the treatment the 80% of probiotic group subjects showed significant positive response as revealed by reduction of vaginosis symptoms compared to the control group which exhibited reduction in 45% subjects only. Thus, the results of present study indicate that strain Bacillus coagulans Unique IS-2 can provide benefits to women being treated with antibiotics to cure an infectious condition.

  4. Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements.

    PubMed

    Glaser, Robert; Venus, Joachim

    2014-12-01

    The aim of this study was to extend the options for screening and characterization of microorganism through kinetic growth parameters. In order to obtain data, automated turbidimetric measurements were accomplished to observe the response of strains of Bacillus coagulans . For the characterization, it was decided to examine the influence of varying concentrations of lignin with respect to bacterial growth. Different mathematical models are used for comparison: logistic, Gompertz, Baranyi and Richards and Stannard. The growth response was characterized by parameters like maximum growth rate, maximum population, and the lag time. In this short analysis we present a mathematical approach towards a comparison of different microorganisms. Furthermore, it can be demonstrated that lignin in low concentrations can have a positive influence on the growth of B. coagulans .

  5. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2018-03-01

    Thermophilic Bacillus coagulans JI12 was used to ferment hemicellulose hydrolysate obtained by acid hydrolysis of oil palm empty fruit bunch at 50 °C and pH 6, producing 105.4 g/L of l-lactic acid with a productivity of 9.3 g/L/H by fed-batch fermentation under unsterilized conditions. Simultaneous saccharification and fermentation (SSF) was performed at pH 5.5 and 50 °C to convert both hemicellulose hydrolysate and cellulose-lignin complex in the presence of Cellic Ctec2 cellulases using yeast extract (20 g/L) as the nitrogen source, giving 114.0 g/L of l-lactic acid with a productivity of 5.7 g/L/H. The SSF was also conducted by replacing yeast extract with equal amount of dry Bakers' yeast, achieving 120.0 g/L of l-lactic acid with a productivity of 4.3 g/L/H. To the best of our knowledge, these lactic acid titers and productivities are the highest ever reported from lignocellulose hydrolysates. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.

    PubMed

    Zheng, Zhaojuan; Lin, Xi; Jiang, Ting; Ye, Weihua; Ouyang, Jia

    2016-08-01

    To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.

  7. Statistical optimization for enhanced yields of probiotic Bacillus coagulans and its phage resistant mutants followed by kinetic modelling of the process.

    PubMed

    Pandey, Kavita R; Joshi, Chetan; Vakil, Babu V

    2016-01-01

    Probiotics are microorganisms which when administered in adequate amounts confer health benefits to the host. A leading pharmaceutical company producing Bacillus coagulans as a probiotic was facing the problem of recurring phage attacks. Two mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture were characterized at functional and molecular level and were noted to have undergone interesting genetic changes. The non-specific genetic alterations induced by mutagenesis can also lead to alterations in cell performance. Hence, in the current study the parental strain and the two mutants were selected for shake flask optimization. Plackett-Burman design was used to select the significant culture variables affecting biomass production. Evolutionary operation method was applied for further optimization. The study showed wide variations in the nutritional requirements of phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 152 % was observed in the biomass productions of B. coagulans (parental type) and mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-a-time technique. Using Logistic and modified Leudeking-Piret equations, biomass accumulation and substrate utilization efficiency of the bioprocess were determined. The experimental data was in agreement with the results predicted by statistical analysis and modelling. The developed model may be useful for controlling the growth and substrate consumption kinetics in large scale fermentation using B. coagulans .

  8. Effects of a proprietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome.

    PubMed

    Dolin, B J

    2009-12-01

    Symptoms of irritable bowel syndrome (IBS) have a profound impact on quality of life for many patients and current treatments are sometimes unsatisfactory. This controlled pilot study was conducted to evaluate effects of the proprietary GanedenBC(30) (Bacillus coagulans GBI-30, 6086) probiotic on IBS symptoms, in a randomized, double-blind, placebo-controlled clinical trial including patients with diarrhea-predominant IBS (IBS-D). Patients were randomized to receive either B. coagulans GBI-30, 6086 or placebo once a day for 8 weeks. Patients filled out a quality-of-life questionnaire, and self-assessment diaries were provided to record stool count and consistency, symptom severity, and medication consumption. Of the 61 patients enrolled, six did not meet the inclusion criteria and three were lost to follow-up. Of the remaining 52 patients with IBS-D, the average number of bowel movements per day was significantly reduced for patients treated with B. coagulans GBI-30, 6086 when compared to placebo (P = 0.042). Large variability in baseline scores prevented the assessment of severity scores and quality of life. This small pilot study provides evidence that the proprietary B. coagulans GBI-30, 6086 probiotic is safe and effective for reducing daily bowel movements in patients with IBS-D. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.

  9. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    PubMed Central

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls

  10. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    PubMed

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086

  11. Linamarase activities in Bacillus spp. responsible for thermophilic aerobic digestion of agricultural wastes for animal nutrition.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2007-01-01

    Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.

  12. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study.

    PubMed

    Salvetti, Elisa; Orrù, Luigi; Capozzi, Vittorio; Martina, Alessia; Lamontanara, Antonella; Keller, David; Cash, Howard; Felis, Giovanna E; Cattivelli, Luigi; Torriani, Sandra; Spano, Giuseppe

    2016-05-01

    Probiotics are microorganisms that confer beneficial effects on the host; nevertheless, before being allowed for human consumption, their safety must be verified with accurate protocols. In the genomic era, such procedures should take into account the genomic-based approaches. This study aims at assessing the safety traits of Bacillus coagulans GBI-30, 6086 integrating the most updated genomics-based procedures and conventional phenotypic assays. Special attention was paid to putative virulence factors (VF), antibiotic resistance (AR) genes and genes encoding enzymes responsible for harmful metabolites (i.e. biogenic amines, BAs). This probiotic strain was phenotypically resistant to streptomycin and kanamycin, although the genome analysis suggested that the AR-related genes were not easily transferrable to other bacteria, and no other genes with potential safety risks, such as those related to VF or BA production, were retrieved. Furthermore, no unstable elements that could potentially lead to genomic rearrangements were detected. Moreover, a workflow is proposed to allow the proper taxonomic identification of a microbial strain and the accurate evaluation of risk-related gene traits, combining whole genome sequencing analysis with updated bioinformatics tools and standard phenotypic assays. The workflow presented can be generalized as a guideline for the safety investigation of novel probiotic strains to help stakeholders (from scientists to manufacturers and consumers) to meet regulatory requirements and avoid misleading information.

  13. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    PubMed

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  14. The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and Lactobacillus rhamnosus under unsterile conditions.

    PubMed

    Wang, Yong; Chen, Changjing; Cai, Di; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2016-10-01

    The cost reduction of raw material and sterilization could increase the economic feasibility of l-lactic acid fermentation, and the development of an cost-effective and efficient process is highly desired. To improve the efficiency of open fermentation by Lactobacillus rhamnosus based on sweet sorghum juice (SSJ) and to overcome sucrose utilization deficiency of Bacillus coagulans, a mixed fermentation was developed. Besides, the optimization of pH, sugar concentration and fermentation medium were also studied. Under the condition of mixed fermentation and controlled pH, a higher yield of 96.3% was achieved, compared to that (68.8%) in sole Lactobacillus rhamnosus fermentation. With an optimized sugar concentration and a stepwise-controlled pH, the l-lactic acid titer, yield and productivity reached 121gL(-1), 94.6% and 2.18gL(-1)h(-1), respectively. Furthermore, corn steep powder (CSP) as a cheap source of nitrogen and salts was proved to be an efficient supplement to SSJ in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods.

    PubMed

    Lucas, R; Grande, M A J; Abriouel, H; Maqueda, M; Ben Omar, N; Valdivia, E; Martínez-Cañamero, M; Gálvez, A

    2006-10-01

    The enterococcal bacteriocin (enterocin) AS-48 is a broad-spectrum cyclic peptide. Enterocin AS-48 was tested against Bacillus coagulans in three vegetable canned foods: tomato paste (pH 4.64), syrup from canned peaches (pH 3.97), and juice from canned pineapple (pH 3.65). When vegetative cells of B. coagulans CECT (Spanish Type Culture Collection) 12 were inoculated in tomato paste supplemented with 6 microg/ml AS-48 and stored at different temperatures, viable cell counts were reduced by approximately 2.37 (4 degrees C), 4.3 (22 degrees C) and 3.0 (37 degrees C) log units within 24 h storage. After 15-days storage, no viable cells were detected in any sample. Strain B. coagulans CECT 561 showed a poor survival in tomato paste, but surviving cells were also killed by AS-48. The bacteriocin was also very active against B. coagulans CECT 12 vegetative cells in juice from canned pineapple stored at 22 degrees C, and slightly less active in syrup from canned peaches. In food samples supplemented with 1.5% lactic acid, enterocin AS-48 (6 microg/ml) rapidly reduced viable counts of vegetative cells below detection limits within 24 h storage. Addition of glucose and sucrose (10% and 20%) significantly increased bacteriocin activity against vegetative cells of B. coagulans CECT 12. Enterocin AS-48 had no significant effect on B. coagulans CECT 12 spores. However, the combined application of AS-48 and heat (80-95 degrees C for 5 min) significantly increased the effect of thermal treatments on spores.

  16. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12.

    PubMed

    Ye, Lidan; Hudari, Mohammad Sufian Bin; Zhou, Xingding; Zhang, Dongxu; Li, Zhi; Wu, Jin Chuan

    2013-06-01

    Cost-effective conversion of lignocellulose hydrolysate to optically pure lactic acid is commercially attractive but very challenging. Bacillus coagulans JI12 was isolated from natural environment and used to produce L-lactic acid (optical purity > 99.5 %) from lignocellulose sugars and acid hydrolysate of oil palm empty fruit bunch (EFB) at 50 °C and pH 6.0 without sterilization of the medium. In fed-batch fermentation with 85 g/L initial xylose and 55 g/L xylose added after 7.5 h, 137.5 g/L lactic acid was produced with a yield of 98 % and a productivity of 4.4 g/L h. In batch fermentation of a sugar mixture containing 8.5 % xylose, 1 % glucose, and 1 % L-arabinose, the lactic acid yield and productivity reached 98 % and 4.8 g/L h, respectively. When EFB hydrolysate was used, 59.2 g/L of lactic acid was produced within 9.5 h at a yield of 97 % and a productivity of 6.2 g/L h, which are the highest among those ever reported from lignocellulose hydrolysates. These results indicate that B. coagulans JI12 is a promising strain for industrial production of L-lactic acid from lignocellulose hydrolysate.

  17. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats

    PubMed Central

    Abhari, Khadijeh; Shekarforoush, Seyed Shahram; Hosseinzadeh, Saeid; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2016-01-01

    Background Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. Objective In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model. Design Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 109 spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively. Results Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN groups (P

  18. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats.

    PubMed

    Abhari, Khadijeh; Shekarforoush, Seyed Shahram; Hosseinzadeh, Saeid; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2016-01-01

    Probiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. In the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model. Forty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 10(9) spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 10(9) spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively. Pretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN groups (P < 0.001), which was similar to

  19. Potential probiotic attributes of a new strain of Bacillus coagulans CGMCC 9951 isolated from healthy piglet feces.

    PubMed

    Gu, Shao-Bin; Zhao, Li-Na; Wu, Ying; Li, Shi-Chang; Sun, Jian-Rui; Huang, Jing-Fang; Li, Dan-Dan

    2015-06-01

    A new strain of Bacillus coagulans CGMCC 9551, which has a broad range of antibacterial activities against six main pathogenic bacteria including Escherichia coli O8, Staphylococcus aureus, Salmonella enterica subsp. enterica serovar enteritidis, Streptococcus suis, Listeria monocytogenes and Pasteurella multocida, was isolated from healthy piglet feces. In adhesion assay, the isolate exhibited a stronger adhesion to pig intestinal mucus than that of B. subtilis JT143 and L. acidophilus LY24 respectively isolated from BioPlus(®)2B and FloraFIT(®) Probiotics (P < 0.05). The adhesion activity reached 44.5 ± 3.2, 48.9 ± 2.6, 42.6 ± 3.3 and 37.6 ± 2.4% to jejunum, ileum, transverse colon and sigmoid colon, separately. The survival rate of B. coagulans CGMCC 9551 was reduced by only 20% at 4 h exposure under 0.9% w/v bile salt. The strain was fully resistant to pH 2 for 2 h with 90.1 ± 3.5% survival and susceptible to 15 antibiotics commonly used in veterinary medicine. Additionally, the bacteria showed amylase, protease and cellulase activities. The safety assessment demonstrated the lack of toxicity potential in B. coagulans CGMCC 9551 by ligated rabbit ileal loop assay, acute and subchronic toxicity test. These results implied that that the new strain of B. coagulans CGMCC 9951 isolated from healthy piglet feces has promising probiotic characteristics and offers desirable opportunities for its successful commercialization as one excellent candidate probiotic.

  20. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.

    PubMed

    Neu, Anna-Katrin; Pleissner, Daniel; Mehlmann, Kerstin; Schneider, Roland; Puerta-Quintero, Gloria Inés; Venus, Joachim

    2016-07-01

    In this study, mucilage, a residue from coffee production, was investigated as substrate in fermentative l(+)-lactic acid production. Mucilage was provided as liquid suspension consisting glucose, galactose, fructose, xylose and sucrose as free sugars (up to 60gL(-1)), and used directly as medium in Bacillus coagulans batch fermentations carried out at 2 and 50L scales. Using mucilage and 5gL(-1) yeast extract as additional nitrogen source, more than 40gL(-1) lactic acid was obtained. Productivity and yield were 4-5gL(-1)h(-1) and 0.70-0.77g lactic acid per g of free sugars, respectively, irrespective the scale. Similar yield was found when no yeast extract was supplied, the productivity, however, was 1.5gL(-1)h(-1). Down-stream processing of culture broth, including filtration, electrodialysis, ion exchange chromatography and distillation, resulted in a pure lactic acid formulation containing 930gL(-1)l(+)-lactic acid. Optical purity was 99.8%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rational Design of Bacillus coagulans NL01 l-Arabinose Isomerase and Use of Its F279I Variant in d-Tagatose Production.

    PubMed

    Zheng, Zhaojuan; Mei, Wending; Xia, Meijuan; He, Qin; Ouyang, Jia

    2017-06-14

    d-Tagatose is a prospective functional sweetener that can be produced by l-arabinose isomerase (AI) from d-galactose. To improve the activity of AI toward d-galactose, the AI of Bacillus coagulans was rationally designed on the basis of molecular modeling and docking. After alanine scanning and site-saturation mutagenesis, variant F279I that exhibited improved activity toward d-galactose was obtained. The optimal temperature and pH of F279I were determined to be 50 °C and 8.0, respectively. This variant possessed 1.4-fold catalytic efficiency compared with the wild-type (WT) enzyme. The recombinant Escherichia coli overexpressing F279I also showed obvious advantages over the WT in biotransformation. Under optimal conditions, 67.5 and 88.4 g L -1 d-tagatose could be produced from 150 and 250 g L -1 d-galactose, respectively, in 15 h. The biocatalyst constructed in this study presents a promising alternative for large-scale d-tagatose production.

  2. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  3. Analysis of the interaction between Bacillus coagulans and Bacillus thuringiensis S-layers and calcium ions by XRD, light microscopy, and FTIR.

    PubMed

    Babolmorad, Ghazal; Emtiazi, Giti; Emamzadeh, Rahman

    2014-05-01

    S-layer is a self-assemble regularly crystalline surface that covers major cell wall component of many bacteria and archaea and exhibits a high metal-binding capacity. We have studied the effect of the calcium ions and type of solid support (glass or mica) on the structure of the S-layers from Bacillus coagulans HN-68 and Bacillus thuringiensis MH14 upon simple methods based on light microscopy and AFM. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study is indicated that the calcium-S-layer interaction occurred mainly through the carboxylate groups of the side chains of aspartic acid (Asp) and glutamic acid (Glu) and nitrogen atoms of Lys, Asn, and histidine (His) amino acids and N-H groups of the peptide backbone. Studied FTIR revealed that inner faces of S-layer are mainly negative, and outer faces of S-layer are mainly positive. Probably, calcium ions with positive charges bound to the carboxyl groups of Glu and Asp. Accordingly, calcium ions are anchored in the space between the inner faces of S-layer with negative charge and the surface of mica with negative charge. This leads to regular arrangement of the S-layer subunits.

  4. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    PubMed

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  5. Bacillus coagulans MTCC 5856 supplementation in the management of diarrhea predominant Irritable Bowel Syndrome: a double blind randomized placebo controlled pilot clinical study.

    PubMed

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Ali, Furqan; Pande, Anurag; Majeed, Shaheen; Karri, Suresh Kumar

    2016-02-27

    Bacillus coagulans MTCC 5856 has been marketed as a dietary ingredient, but its efficacy in diarrhea predominant irritable bowel syndrome (IBS) condition has not been clinically elucidated till date. Thus, a double blind placebo controlled multi-centered trial was planned to evaluate the safety and efficacy of B. coagulans MTCC 5856 in diarrhea predominant IBS patients. Thirty six newly diagnosed diarrhea predominant IBS patients were enrolled in three clinical centres. Along with standard care of treatment, 18 patients in group one received placebo while in group two 18 patients received B. coagulans MTCC 5856 tablet containing 2 × 10(9) cfu/day as active for 90 days. Clinical symptoms of IBS were considered as primary end point measures and were evaluated through questionnaires. The visual analog scale (VAS) was used for abdominal pain. Physician's global assessment and IBS quality of life were considered as secondary efficacy measures and were monitored through questionnaires. Laboratory parameters, anthropometric and vital signs were within the normal clinical range during the 90 days of supplementation in placebo and B. coagulans MTCC 5856 group. There was a significant decrease in the clinical symptoms like bloating, vomiting, diarrhea, abdominal pain and stool frequency in a patient group receiving B. coagulans MTCC 5856 when compared to placebo group (p < 0.01). Similarly, disease severity also decreased and the quality of life increased in the patient group receiving B. coagulans MTCC 5856 when compared to placebo group. The study concluded that the B. coagulans MTCC 5856 at a dose of 2 × 10(9) cfu/day along with standard care of treatment was found to be safe and effective in diarrhea predominant IBS patients for 90 days of supplementation. Hence, B. coagulans MTCC 5856 could be a potential agent in the management of diarrhea predominant IBS patients.

  6. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari.

    PubMed

    Abdhul, Kaja; Ganesh, Mohan; Shanmughapriya, Santhanam; Vanithamani, Shanmugam; Kanagavel, Murugesan; Anbarasu, Kumarasamy; Natarajaseenivasan, Kalimuthusamy

    2015-08-01

    Bacteriocin producing strain BDU3 was isolated from a traditional fermented fish of Manipur Ngari. The strain BDU3 was identified as Bacillus coagulans by phenotypic and genotypic characterization. The BDU3 produced novel bacteriocin, which showed an antimicrobial spectrum toward a wide spectrum of food borne, and closely related pathogens with a MIC that ranged between 0.5 and 2.5 μg/mL. The isolate was able to tolerate pH as low as 2.0 and up to 0.2% bile salt concentration. Three step purification was employed to increase the specific activity of the antimicrobial compound. The fractions were further chromatographed by Rp-HPLC C-18 column and the purified bacteriocin had a specific activity of ∼8500 AU/mg. However, the potency of bacteriocin was susceptible to digestion with Proteinase K, Pepsin, SDS, EDTA and Urea. Molecular mass of purified bacteriocin was found to be 1.4 kDa using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). The functional group was revealed by FTIR analysis. The cytotoxicity assay (MTT) using purified bacteriocin showed 2 times lower EC50 values compared to SDS. This is the smaller bacteriocin ever reported before from B. coagulans with greater antimicrobial potency with lower cytotoxicity. This bacteriocin raises the possibilities to be used as a biopreservative in food industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. [Inhibition of Bacillus coagulans growth in laboratory media and in fruit purees].

    PubMed

    Cerrutti, P; Alzamora, S M; de Huergo, M S

    2000-01-01

    The growth of two strains of B. coagulans was inhibited in laboratory media at pH < or = 4.5, and at water activity (aw) levels of 0.96 for B. coagulans NRS 609 and 0.95 for B. coagulans ATCC 803. The growth of both strains was also inhibited in apple and strawberry purees (pH = 3.5) stored at 37 degrees C for over two months. B. coagulans was able to grow in banana puree (pH approximately equal to 5.0) but acidification of the puree at pH = 3.5 was enough to prevent growth. The addition of up to 3,000 ppm vainillin ("natural" preservative) or 1,000 ppm potassium sorbate (traditional preservative) at pH higher than the inhibitory level previously determined could not prevent growth of B. coagulans in laboratory or in fruits, but 100 ppm lysozyme retarded growth in laboratory media at different pH levels (from 4.5 to 6.7) and in banana puree. As lysozyme showed to be effective at pH < or = 6.7, it might be used to prevent growth of B. coagulans at an eventual increment of pH during storage.

  8. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis.

    PubMed

    Zhen, Wenrui; Shao, Yujing; Gong, Xiuyan; Wu, Yuanyuan; Geng, Yanqiang; Wang, Zhong; Guo, Yuming

    2018-04-11

    This study was conducted to evaluate the protective efficacy of dietary Bacillus coagulans (B. coagulans) supplementation in birds receiving Salmonella enteritidis (SE). Two hundred and forty 1-day-old Cobb broilers were randomly assigned to 2 × 2 factorial arrangements of treatments with 2 levels of dietary B. coagulans (0 or 400 mg/kg) and 2 levels of SE challenge (0 or 1 × 109 SE between d 9 to 11). Results showed that SE infection did not affect growth performance, but caused intestinal inflammation and barrier function impairment by reducing intestinal goblet cells and beneficial bacteria numbers, increasing cecal Salmonella colonization and liver Salmonella invasion, downregulating jejunal mucin-2 (at 7 and 17 d post-infection, DPI), TLR2 (at 7 and 17 DPI), TLR4 (at 17 DPI), TNFSF15 (at 7 and 17 DPI) gene mRNA levels, and upregulating jejunal IFN-γ mRNA levels (at 17 DPI) compared to uninfected birds. Moreover, SE infection also elevated the concentration of jejunal anti-Salmonella IgA and sera anti-Salmonella IgG compared to uninfected birds. However, chickens received B. coagulans diets showed significant increase in body weight gain and weight gain to feed intake ratio from d 15 to 21, alkaline phosphatase activity (at 7 DPI), cecal Lactobacilli and Bifidobacterium numbers (at 7 DPI; at 17 DPI), villous height: crypt ratio (at 17 DPI), and goblet cell numbers (at 7 and 17 DPI), whereas exhibiting reduced jejunal crypt depth (at 17 DPI), cecal Escherichia coli (at 7, 17, and 31 DPI), and Salmonella (at 7 and 17 DPI) levels compared with the non-supplemented birds, regardless of SE infection. In addition, B. coagulans supplement upregulated lysozyme mRNA levels (at 17 DPI), downregulated IFN-γ mRNA levels (at 7 and 17 DPI), showed an increased trend in Fowlicidin-2 mRNA levels (at 7 DPI) and a reduced trend in liver Salmonella load compared to the non-supplemented control. These data indicated that B. coagulans has a protective effect in SE infected

  9. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet.

    PubMed

    Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi

    2016-08-01

    Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.

  10. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    PubMed

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry.

    PubMed

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena; Mundkur, Lakshmi

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856.

  13. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry

    PubMed Central

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856. PMID:29474436

  14. Comparison of the Effects of pH-Dependent Peppermint Oil and Synbiotic Lactol (Bacillus coagulans + Fructooligosaccharides) on Childhood Functional Abdominal Pain: A Randomized Placebo-Controlled Study.

    PubMed

    Asgarshirazi, Masoumeh; Shariat, Mamak; Dalili, Hosein

    2015-04-01

    Still there is no consensus on the best treatment for abdominal pain-related functional Gastrointestinal Disorders (FGIDs). The purpose of this study was to compare the effects of a synbiotic Lactol (Bacillus coagulans + fructooligosaccharide (FOS)), peppermint oil (Colpermin) and placebo (folic acid) on abdominal pain-related FGIDs except for abdominal migraine. This placebo-controlled study was conducted on 120 children aged 4 - 13 years to compare the efficacy of pH-dependent peppermint oil (Colpermin) versus synbiotic Lactol (Bacillus coagulans + fructooligosaccharids (FOS)) in decreasing duration, severity and frequency of functional abdominal pain. The patients were randomly allocated into three equal groups (n = 40 in each group) and each group received Colpermin or Lactol or placebo. Eighty-eight out of 120 enrolled patients completed a one-month protocol and analyses were performed on 88 patients' data. Analyses showed that improvement in pain duration, frequency and severity in the Colpermin group was better than the placebo group (P = 0.0001, P = 0.0001 and P = 0.001, respectively). Moreover, pain duration and frequency were decreased in the Lactol group more than the placebo (P = 0.012 and P = 0.0001, respectively), but changes in pain severity were not significant (P = 0.373). Colpermin was superior to Lactol in decreasing pain duration and severity (P = 0.040 and P = 0.013, respectively). No known side effects or intolerance were seen with Colpermin or Lactol. The pH-dependent peppermint oil capsule and Lactol tablet (Bacillus coagulans+ FOS) as synbiotics seem to be superior to placebo in decreasing the severity, duration and frequency of pain in abdominal pain-related functional GI disorders.

  15. Efficacy of Bacillus coagulans Unique IS2 in treatment of irritable bowel syndrome in children: a double blind, randomised placebo controlled study.

    PubMed

    Sudha, M Ratna; Jayanthi, N; Aasin, M; Dhanashri, R D; Anirudh, T

    2018-06-15

    The efficacy of the probiotic strain, Bacillus coagulans Unique IS2 in the treatment of Irritable Bowel Syndrome (IBS) was evaluated in children. A total of 141 children of either sex in the age group 4-12 years, diagnosed with IBS according to the Rome III criteria, participated in the double-blind randomised controlled trial. Children received either B. coagulans Unique IS2 chewable tablets or placebo once daily for eight weeks followed by a two week follow-up period. Reduction in pain intensity as well as other symptoms associated with Irritable Bowel Syndrome like abdominal discomfort, bloating, distension, sense of incomplete evacuation, straining at stool, urgency of bowel movement, passage of gas and mucus, and bowel habit satisfaction were assessed. B. coagulans Unique IS2 treated group showed a greater reduction in pain scores as evaluated by a weekly pain intensity scale. There was a significant reduction (P<0.0001) in pain intensity in the probiotic treated group (7.6±0.98) as compared to the placebo group (4.2±1.41) by the end of the treatment period (8 weeks). There was also a significant improvement in stool consistency as well as reduction in abdominal discomfort, bloating, staining, urgency, incomplete evacuation and passage of gas. Bowel habit satisfaction and global assessment of relief was also observed in the B. coagulans Unique IS2 treated group as compared to the placebo group. This study demonstrates the efficacy of B. coagulans Unique IS2 in reducing the symptoms of Irritable Bowel Syndrome in children in the age group of 4-12 years.

  16. A patented strain of Bacillus coagulans increased immune response to viral challenge.

    PubMed

    Baron, Mira

    2009-03-01

    Viral respiratory tract infection is the most common illness among humans. Probiotics have been known to enhance the immune system and, therefore, may represent a significant therapeutic advancement for treating viral respiratory tract infections. A controlled study was conducted to evaluate the effects of the patented GanedenBC30 probiotic (Bacillus coagulans GBI-30, 6086, marketed as Sustenex [Ganeden Biotech, Inc., Mayfield Heights, OH]) on the immune system when exposed to adenovirus and influenza in otherwise healthy adults. Ten healthy men and women (average age, 44 years) were instructed to consume 1 capsule of GanedenBC30 with water once a day for 30 days. At baseline and after completion of the 30-day treatment, blood levels of cytokines were measured in vitro after T-cell exposure to adenovirus and influenza A. Each participant served as his/her own control with baseline blood draw. The use of GanedenBC30 significantly increased T-cell production of TNF-alpha in response to adenovirus exposure (P = 0.027) and influenza A (H3N2 Texas strain) exposure (P = 0.004), but it did not have a significant effect on the response to other strains of influenza. No serious adverse events were reported throughout the study. The patented GanedenBC30 probiotic may be a safe and effective therapeutic option for enhancing T-cell response to certain viral respiratory tract infections.

  17. The effect of Bacillus coagulans-fermented and nonfermented Ginkgo biloba on the immunity status of broiler chickens.

    PubMed

    Liu, Xiaoyan; Cao, Guanjun; Wang, Qin; Yao, Xuan; Fang, Binghu

    2015-07-01

    To evaluate and compare the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and nonfermented Ginkgo biloba (NFG) on the immunity status of broiler chickens, 180 1-d-old female Arbor Acres chicks were divided into 3 groups and fed either a basal diet, a basal diet supplemented with 0.3% NFG, or a basal diet supplemented with 0.3% FG. Blood samples were taken on the seventh (before vaccination), 14th, 21st, 28th and 35th day for the assessment of serum IL-18 and interferon γ (IFN-γ) levels by ELISA. In addition, Newcastle disease antibody titer analysis was made via hemagglutination and hemagglutination inhibition test methods. On d 35, 6 chickens from each group were sacrificed and the thymus, liver, spleen, small intestine (jejunum segment), cecum, and bursa of Fabricius from each chicken were removed for analysis. RNA was isolated for defensin expression detection by real-time PCR (q-PCR). The results showed that serum IL-18 and IFN-γ levels decreased after treatment with NFG and FG compared with untreated control chickens. The ND antibody titers did not differ significantly between the 3 groups on the seventh, 14th, 21st and 28th day; however, on the 35th day, the ND antibody titers of the NFG and FG chickens were both significantly higher than those of control group chickens. Defensin RNA expression levels were inhibited by NFG; however, they were induced by FG. In conclusion, fermentation of Ginkgo biloba with Bacillus coagulans can promote the beneficial effect of Gingko biloba on the immunity status of broiler chickens.

  18. Bacillus coagulans GBI-30, 6086 Modulates Faecalibacterium prausnitzii in Older Men and Women.

    PubMed

    Nyangale, Edna P; Farmer, Sean; Cash, Howard A; Keller, David; Chernoff, David; Gibson, Glenn R

    2015-07-01

    Advancing age is linked to a decrease in beneficial bacteria such as Bifidobacterium spp. and reduced aspects of innate immune function. We investigated whether daily consumption of a probiotic [Bacillus coagulans GBI-30, 6086 (BC30); GanedenBC(30)] could improve immune function and gut function in men and women aged 65-80 y, using a double-blind, placebo-controlled crossover design. Thirty-six volunteers were recruited and randomly assigned to receive either a placebo (microcrystalline cellulose) or the probiotic BC30 (1 × 10(9) colony-forming units/capsule). Volunteers consumed 1 treatment capsule per day for 28 d, followed by a 21-d washout period before switching to the other treatment. Blood and fecal samples were collected at the beginning and end of each treatment period. Fecal samples were used to enumerate bacterial groups and concentrations of calprotectin. Peripheral blood mononuclear cells (PBMCs) were extracted from whole blood to assess natural killer cell activity and lipopolysaccharide (LPS)-stimulated cytokine production. C-reactive protein concentrations were measured in plasma. Consumption of BC30 significantly increased populations of Faecalibacterium prausnitzii by 0.1 log10 cells/mL more than during consumption of the placebo (P = 0.03), whereas populations of Bacillus spp. increased significantly by 0.5 log10 cells/mL from baseline in volunteers who consumed BC30 (P = 0.007). LPS-stimulated PBMCs showed a 0.2 ng/mL increase in the anti-inflammatory cytokine IL-10 28 d after consumption of BC30 (P < 0.05), whereas the placebo did not affect IL-10, and no overall difference was found in the effect of the treatments. Daily consumption of BC30 by adults aged 65-80 y can increase beneficial groups of bacteria in the human gut and potentially increase production of anti-inflammatory cytokines. This study shows the potential benefits of a probiotic to improve dysbiosis via modulation of the microbiota in older persons. © 2015 American Society for

  19. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    PubMed

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this

  20. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243.

    PubMed

    Kapse, N G; Engineer, A S; Gowdaman, V; Wagh, S; Dhakephalkar, P K

    2018-05-30

    Spore forming Bacillus species are widely used as probiotics for human dietary supplements and in animal feeds. However, information on genetic basis of their probiotic action is obscure. Therefore, the present investigation was undertaken to elucidate probiotic traits of B. coagulans HS243 through its genome analysis. Genome mining revealed the presence of an arsenal of marker genes attributed to genuine probiotic traits. In silico analysis of HS243 genome revealed the presence of multi subunit ATPases, ADI pathway genes, chologlycine hydrolase, adhesion proteins for surviving and colonizing harsh gastric transit. HS243 genome harbored vitamin and essential amino acid biosynthetic genes, suggesting the use of HS243 as a nutrient supplement. Bacteriocin producing genes highlighted the disease preventing potential of HS243. Thus, this work established that HS243 possessed the genetic repertoire required for surviving harsh gastric transit and conferring health benefits to the host which were further validated by wet lab evidences. Copyright © 2018. Published by Elsevier Inc.

  1. Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain.

    PubMed

    Wang, Limin; Xue, Zhangwei; Zhao, Bo; Yu, Bo; Xu, Ping; Ma, Yanhe

    2013-02-01

    Jerusalem artichoke is a low-requirement crop, which does not interfere with food chain, and is a promising carbon source for industrial fermentation. Microbial conversion of such a renewable raw material to useful products, such as lactic acid, is an important objective in industrial biotechnology. In this study, high-optical-purity l-lactate was efficiently produced from the hydrolysates of Jerusalem artichoke powder by a thermophilic bacterium, Bacillus coagulans XZL4. High l-lactate production (134gl(-1)) was obtained using 267gl(-1) Jerusalem artichoke powder (total reducing sugars of 140gl(-1)) and 10gl(-1) of corn steep powder in fed-batch fermentation, with an average productivity of 2.5gl(-1)h(-1) and a yield of 0.96gg(-1) reducing sugars. The final product optical purity is 99%, which meets the requirement of lactic acid polymerization. Our study represents a cost-effective and promising method for polymer-grade l-lactate production using a cheap raw bio-resource. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis.

    PubMed

    Wu, Yuanyuan; Shao, Yujing; Song, Bochen; Zhen, Wenrui; Wang, Zhong; Guo, Yuming; Shahid, Muhammad Suhaib; Nie, Wei

    2018-01-01

    The poultry industry is in need of effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) due to Clostridium perfringens . This study was conducted to investigate the effects of feeding Bacillus coagulans on the growth performance and gut health of broiler chickens with C. perfringens -induced NE. Two hundred and forty 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two dietary B. coagulans levels (0 or 4 × 10 9  CFU/kg of diet) and two disease challenge statuses (control or NE challenged). NE-induced reduction in body weight gain was relieved by the addition of B. coagulans into broiler diets compared with the NE-infected birds. NE infection damaged intestinal morphological structure, promoted intestinal C. perfringens growth and liver invasion, and enhanced anti- C. perfringens specific sIgA concentrations in the gut and specific IgG levels in serum compared with the uninfected birds. NE infection significantly ( P  < 0.05) decreased mucin-2 (at 14 d post-infection (DPI), toll -like receptor 2 ( TLR2 , at 7 and 14 DPI), TLR4 (at 7 and 14 DPI), tumor necrosis factor super family 15 ( TNFSF15 , at 7 and 14 DPI), lysozyme ( LYZ , at 14 DPI) and fowlicidin-2 (at 7 and 14 DPI) mRNA levels, whereas it dramatically ( P  = 0.001) increased IFN-γ mRNA levels at 7 DPI. However, challenged birds fed diets supplemented with B. coagulans showed a significant ( P  < 0.01) decrease in gut lesion scores, decreased C. perfringens numbers in the cecum and liver, and an increase in fowlicidin-2 mRNA levels in compared with the uninfected birds. In addition, compared with the non-supplemented group, dietary inclusion of B. coagulans improved intestinal barrier structure, further increased specific sIgA levels and alkaline phosphatase (IAP) activity in the jejunum, enhanced the expression of jejunum lysozyme mRNA, and inhibited the growth, colonization, and invasion of C. perfringens ; in

  3. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086.

    PubMed

    Nyangale, Edna P; Farmer, Sean; Keller, David; Chernoff, David; Gibson, Glenn R

    2014-12-01

    In advancing age, gut populations of beneficial microbes, notably Bifidobacterium spp., show a marked decline. This contributes to an environment less capable of maintaining homoeostasis. This in vitro investigation studied the possible synergistic effects of probiotic supplementation in modulating the gut microbiota enabling prebiotic therapy to in elderly persons. Single stage batch culture anaerobic fermenters were used and inoculated with fecal microbiota obtained from volunteers after taking a 28 day treatment of Bacillus coagulans GBI-30, 6086 (GanedenBC30 (BC30)) or a placebo. The response to prebiotic supplements fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in the fermenters was assessed. Bacterial enumeration was carried out using fluorescent in situ hybridisation and organic acids measured by gas chromatography. Baseline populations of Faecalibacterium prausnitzii, Clostridium lituseburense and Bacillus spp. were significantly higher in those having consumed BC30 compared to the placebo. Both prebiotics increased populations of several purportedly beneficial bacterial groups in both sets of volunteers. Samples from volunteers having ingested the BC30 also increased populations of C. lituseburense, Eubacterium rectale and F. prausnitzii more so than in persons who had consumed the placebo, this also resulted in significantly higher concentrations of butyrate, acetate and propionate. This shows that consumption of BC30 and subsequent use of prebiotics resulted in elevated populations of beneficial genres of bacteria as well as organic acid production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    PubMed

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  5. A stereospecific carboxyl esterase from Bacillus coagulans hosting nonlipase activity within a lipase-like fold.

    PubMed

    De Vitis, Valerio; Nakhnoukh, Cristina; Pinto, Andrea; Contente, Martina L; Barbiroli, Alberto; Milani, Mario; Bolognesi, Martino; Molinari, Francesco; Gourlay, Louise J; Romano, Diego

    2018-03-01

    Microbial carboxylesterases are important biocatalysts that selectively hydrolyze an extensive range of esters. Here, we report the biochemical and structural characterization of an atypical carboxylesterase from Bacillus coagulans (BCE), endowed with high enantioselectivity toward different 1,2-O-isopropylideneglycerol (IPG or solketal) esters. BCE efficiently catalyzes the production of enantiopure (S)-IPG, a chiral building block for the synthesis of β-blockers, glycerophospholipids, and prostaglandins; efficient hydrolysis was observed up to 65 °C. To gain insight into the mechanistic bases of such enantioselectivity, we solved the crystal structures of BCE in apo- and glycerol-bound forms at resolutions of 1.9 and 1.8 Å, respectively. In silico docking studies on the BCE structure confirmed that IPG esters with small acyl chains (≤ C6) were easily accommodated in the active site pocket, indicating that small conformational changes are necessary to accept longer substrates. Furthermore, docking studies suggested that enantioselectivity may be due to an improved stabilization of the tetrahedral reaction intermediate for the S-enantiomer. Contrary to the above functional data implying nonlipolytic functions, BCE displays a lipase-like 3D structure that hosts a "lid" domain capping the main entrance to the active site. In lipases the lid mediates catalysis through interfacial activation, a process that we did not observe for BCE. Overall, we present the functional-structural properties of an atypical carboxyl esterase that has nonlipase-like functions, yet possesses a lipase-like 3D fold. Our data provide original enzymatic information in view of BCE applications as an inexpensive, efficient biocatalyst for the production of enantiopure (S)-IPG. Coordinates and structure factors have been deposited in the Protein Data Bank (www.rcsb.org) under accession numbers 5O7G (apo-BCE) and 5OLU (glycerol-bound BCE). © 2017 Federation of European Biochemical

  6. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Efficient calcium lactate production by fermentation coupled with crystallization-based in situ product removal.

    PubMed

    Xu, Ke; Xu, Ping

    2014-07-01

    Lactic acid is a platform chemical with various industrial applications, and its derivative, calcium lactate, is an important food additive. Fermentation coupled with in situ product removal (ISPR) can provide more outputs with high productivity. The method used in this study was based on calcium lactate crystallization. Three cycles of crystallization were performed during the fermentation course using a Bacillus coagulans strain H-1. As compared to fed-batch fermentation, this method showed 1.7 times higher average productivity considering seed culture, with 74.4% more L-lactic acid produced in the fermentation with ISPR. Thus, fermentation coupled with crystallization-based ISPR may be a biotechnological alternative that provides an efficient system for production of calcium lactate or lactic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of various feeding patterns of Bacillus coagulans on growth performance, antioxidant response and Nrf2-Keap1 signaling pathway in juvenile gibel carp (Carassius auratus gibelio).

    PubMed

    Yu, Yebing; Wang, Changhai; Wang, Aimin; Yang, Wenping; Lv, Fu; Liu, Fei; Liu, Bo; Sun, Cunxin

    2018-02-01

    The present study was conducted to evaluate the effects of various Bacillus coagulans feeding patterns on growth, antioxidant parameter and Nrf2 pathway in juvenile gibel carp. The similar size of gibel carp (initial weight: 14.33 ± 0.15 g) were subjected to three levels of B. coagulans supplementation (0, 500, and 1000 mg/kg) and two feeding modes (supplementing B. coagulans continuously or for two days of B. coagulans after 5 days of a basal diet) according to a 3 × 2 factorial design. The fish that were continuously fed 500 mg/kg B. coagulans (P2) and those fed the first basal diet for 5 days followed by 500 mg/kg or 1000 mg/kg B.coagulans for 2 days (P4 or P5) showed higher weight gain rate and specific growth rate than the other groups. Blood respiratory burst (RB), myeloperoxidase (MPO), and anti-superoxide anion free radical (AFASER) activities in the P4 group were higher than those of the control. White blood cell count (WBC), RB activity, MPO activity, and glutathione (GSH) content in the P5 group were also higher than those of the control. A similar higher trend was observed in the gene expressions of NADPH oxidase 2 (NOX2), NFE2-related factor (Nrf2), Kelch-like-ECH-associated protein(Keap1) in the P4 and NOX2, NRF2, CNC homolog 1 (Bach1), peroxiredoxin 2 (Prx2) in the P5 group compared with the control. Additionally, we observed a significantly lower level of plasma aspartate aminotransferase (AST), lower activity of alanine aminotransferase (ALT), a higher level of MPO, higher GPX activity, and increased NRF2 and Prx2 expression were all observed in the P2 treatment group compared with the control. Furthermore, the malondialdehyde (MDA) content in the P2, P3, and P4 groups was lower than that of the control. These results indicate that a diet supplemented with appropriate levels of B.coagulans could improve the growth, immune response, and antioxidant capability of gibel carp. We concluded that the pattern of two days of 500 or 1000 mg/kg B

  9. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02.

    PubMed

    Kodali, Vidya P; Perali, Ramu S; Sen, R

    2011-08-26

    An exopolysaccharide (EPS) was isolated from Bacillus coagulans RK-02 and purified by size exclusion chromatography. The purified, homogeneous EPS had an average molecular weight of ∼3 × 10⁴ Da by comparison with FITC-labeled dextran standards. In vivo evaluations showed that, like other reported polysaccharides, this EPS displayed significant antioxidant activity. FTIR spectroscopy analysis showed the presence of hydroxy, carboxy, and α-glycosidic linkages and a mannose residue. GC analysis indicated that the EPS was a heteropolymer composed of glucose, mannose, galactose, glucosamine, and fucose as monomeric constituent units. Partial elucidation of the structure of the carbohydrate biopolymer based on GC-MS and NMR analysis showed the presence of two unique sets of tetrasaccharide repeating units that have 1→3 and 1→6 glycosidic linkages. This is also the first report of a Gram-positive bacterial polysaccharide with both fucose as a sugar monomer and 1→3 and 1→6 glycosidic linkages in the molecular backbone.

  10. Enhanced thermostability of silica-immobilized lipase from Bacillus coagulans BTS-3 and synthesis of ethyl propionate.

    PubMed

    Kumar, Satyendra; Pahujani, Shweta; Ola, R P; Kanwar, S S; Gupta, Reena

    2006-06-01

    A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.

  11. Applications of β-gal-III isozyme from Bacillus coagulans RCS3, in lactose hydrolysis.

    PubMed

    Batra, Navneet; Singh, Jagtar; Joshi, Amit; Bhatia, Sonu

    2011-12-01

    Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65°C. It preferred nitro-aryl-β-d-galactoside as substrate having K(m) of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55°C and 50°C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50°C. These results marked the applications of β-gal III in processing of milk/whey industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    PubMed

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  13. Safety assessment of the use of Bacillus-based cleaning products.

    PubMed

    Berg, Ninna W; Evans, Matthew R; Sedivy, John; Testman, Robert; Acedo, Kimon; Paone, Domenic; Long, David; Osimitz, Thomas G

    2018-06-01

    Non-pathogenic Bacillus species used in cleaning products produce the appropriate enzymes to degrade stains and soils. However, there is little scientific data regarding the human exposure by inhalation of Bacillus spores during or after use of microbial-based cleaning products. Herein, air samples were collected at various locations in a ventilated, carpeted, residential room to determine the air concentration of viable bacteria and spores during and after the application of microbial-based carpet cleaning products containing Bacillus spores. The influence of human activities and vacuuming was investigated. Bioaerosol levels associated with use and post-application activities of whole room carpet treatments were elevated during post-application activity, but quickly returned to the indoor background range. Use of trigger spray spot applications generated aerosolized spores in the immediate vicinity, however, their use pattern and the generation of mostly non-respirable particles suggest minimal risks for pulmonary exposure from their use. The aerosol counts associated with use of these microbial-based cleaners were below the recommendation for safe exposure levels to non-pathogenic and non-toxigenic microorganisms except during application of the spot cleaner. The data presented suggest that carpet cleaning products, containing non-pathogenic Bacillus spores present a low potential for inhalation exposure and consequently minimal risk of adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training.

    PubMed

    Gepner, Yftach; Hoffman, Jay R; Shemesh, Elad; Stout, Jeffrey R; Church, David D; Varanoske, Alyssa N; Zelicha, Hila; Shelef, Ilan; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay

    2017-07-01

    The purpose of this study was to compare the coadministration of the probiotic Bacillus coagulans GBI-30, 6086 (BC30) with β-hydroxy-β-methylbutyrate (HMB) calcium (CaHMB) to CaHMB alone on inflammatory response and muscle integrity during 40 days of intense military training. Soldiers were randomly assigned to one of two groups: CaHMB with BC30 (CaHMBBC30; n = 9) or CaHMB with placebo (CaHMBPL, n = 9). A third group of participants served as a control (CTL; n = 8). During the first 28 days soldiers were garrisoned on base and participated in the same training tasks. During the final 2 wk soldiers navigated 25-30 km per night in difficult terrain carrying ~35 kg of equipment. All assessments (blood draws and diffusion tensor imaging to assess muscle integrity) were conducted before and ~12 h after final supplement consumption. Analysis of covariance was used to analyze all blood and muscle measures. Significant attenuations were noted in IL-1β, IL-2, IL-6, CX3CL1, and TNF-α for both CaHMBBC30 and CaHMBPL compared with CTL. Plasma IL-10 concentrations were significantly attenuated for CaHMBBC30 compared with CTL only. A significant decrease in apparent diffusion coefficients was also observed for CaHMBBC30 compared with CaHMBPL. Results provide further evidence that HMB supplementation may attenuate the inflammatory response to intense training and that the combination of the probiotic BC30 with CaHMB may be more beneficial than CaHMB alone in maintaining muscle integrity during intense military training. NEW & NOTEWORTHY β-Hydroxy-β-methylbutyrate (HMB) in its free acid form was reported to attenuate inflammation and maintain muscle integrity during military training. However, this formulation was difficult to maintain in the field. In this investigation, soldiers ingested HMB calcium (CaHMB) with Bacillus coagulans (BC30) or CaHMB alone during 40 days of training. Results indicated that CaHMB attenuated the inflammatory response and that BC30 combined with

  15. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6

    PubMed Central

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-01-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P212121, with unit-cell parameters a = 88.35, b = 128.73, c = 131.03 Å. PMID:24100567

  16. Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6.

    PubMed

    Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui

    2013-10-01

    (2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.

  17. Effect of Probiotic Bacillus Coagulans and Lactobacillus Plantarum on Alleviation of Mercury Toxicity in Rat.

    PubMed

    Majlesi, Majid; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2017-09-01

    The objective of this study was to evaluate the efficiency of probiotics (Lactobacillus plantarum and Bacillus coagulans) against mercury-induced toxicity using a rat model. Mercury (Hg) is a widespread heavy metal and was shown to be associated with various diseases. Forty-eight adult male Wistar rats were randomly divided into six groups (control, mercury-only, each probiotic-only, and mercury plus each probiotic group). Hg-treated groups received 10 ppm mercuric chloride, and probiotic groups were administrated 1 × 10 9  CFU of probiotics daily for 48 days. Levels of mercury were determined using cold vapor technique, and some biochemical factors (list like glutathione peroxidase (GPx), superoxide dismutase (SOD), creatinine, urea, bilirubin, alanine transaminase (ALT), and aspartate transaminase (AST)) were measured to evaluate changes in oxidative stress. Oral administration of either probiotic was found to provide significant protection against mercury toxicity by decreasing the mercury level in the liver and kidney and preventing alterations in the levels of GPx and SOD. Probiotic treatment generated marked reduction in the levels of creatinine, urea, bilirubin, ALT, and AST indicating the positive influence of the probiotics on the adverse effects of Hg in the body.

  18. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans▿ †

    PubMed Central

    Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    2010-01-01

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555

  19. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  20. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans

    PubMed Central

    Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype. PMID:29020109

  1. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats.

    PubMed

    Jafarpour, Dornoush; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeed; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2017-06-05

    Cadmium is a heavy metal that causes oxidative stress and has toxic effects in humans. The aim of this study was to investigate the influence of two probiotics along with a prebiotic in preventing the toxic effects of cadmium in rats. Twenty-four male Wistar rats were randomly divided into four groups namely control, cadmium only, cadmium along with Lactobacillus plantarum (1 × 109 CFU/day) and inulin (5% of feedstuff) and cadmium along with Bacillus coagulans (1 × 109 spore/day) and inulin (5% of feedstuff). Cadmium treated groups received 200 μg/rat/day CdCl2 administered by gavage. During the 42-day experimental period, they were weighed weekly. For evaluation of changes in oxidative stress, the levels of some biochemicals and enzymes of serum including SOD, GPX, MDA, AST, ALT, total bilirubin, BUN and creatinine, and also SOD level of livers were measured at day 21 and 42 of treatment. The cadmium content of kidney and liver was determined by using atomic absorption mass spectrophotometry. Data were analyzed using analysis of variance (ANOVA) followed by Duncan's post hoc test. Treatment of cadmium induced rats with synbiotic diets significantly improved the liver enzymes and biochemical parameters that decreased AST, ALT, total bilirubin, BUN and metal accumulation in the liver and kidney and increased body weight, serum and liver SOD values in comparison with the cadmium-treated group. No significant differences were observed with MDA and GP X values between all groups (p > 0.05). This study showed that synbiotic diets containing probiotics (L. plantarum and B. coagulans) in combination with the prebiotic (inulin) can reduce the level of cadmium in the liver and kidney, preventing their damage and recover antioxidant enzymes in acute cadmium poisoning in rat.

  2. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity

    PubMed Central

    Zhao, Ruili; Zhao, Rui; Tu, Yishuai; Zhang, Xiaoming; Deng, Liping

    2018-01-01

    A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0–10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing. PMID:29738566

  3. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films.

    PubMed Central

    Pum, D; Weinhandl, M; Hödl, C; Sleytr, U B

    1993-01-01

    S-layer protein isolated from Bacillus coagulans E38-66 could be recrystallized into large-scale coherent monolayers at an air/water interface and on phospholipid films spread on a Langmuir-Blodgett trough. Because of the asymmetry in the physiochemical surface properties of the S-layer protein, the subunits were associated with their more hydrophobic outer face with the air/water interface and oriented with their negatively charged inner face to the zwitterionic head groups of the dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylethanolamine (DPPE) monolayer films. The dynamic crystal growth at both types of interfaces was first initiated at several distant nucleation points. The individual monocrystalline areas grew isotropically in all directions until the front edge of neighboring crystals was met. The recrystallized S-layer protein and the S-layer-DPPE layer could be chemically cross-linked from the subphase with glutaraldehyde. Images PMID:8478338

  4. A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome.

    PubMed

    Urgesi, R; Casale, C; Pistelli, R; Rapaccini, G L; de Vitis, I

    2014-01-01

    Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder that affects 15-20% of the Western population. There are currently few therapeutic options available for the treatment of IBS. The aim of this study is to evaluate the efficacy and the safety of a medical device containing a combination of Simethicone and Bacillus coagulans in the treatment of IBS. This is a monocentric double-blind, placebo-controlled parallel group clinical trial. Adult subjects suffering from IBS as defined by Rome III criteria were enrolled. Bloating, discomfort, abdominal pain were assessed as primary end point. Subjects received the active treatment or placebo 3 time a day after each meal for 4 weeks of study period. Subjects were submitted to visit at Day 0 (T1), at Days 14 (T2) and 29 (T3). Fifty-two patients were included into the study. Intragroup analysis showed a significant reduction of the bloating, discomfort and pain in Colinox® group (CG) compared to placebo group (PG). Between group analysis confirmed, at T1-T3, significant differences between CG and PG in bloating and discomfort. Simethicone is an inert antifoaming able to reduce bloating, abdominal discomfort. Literature offers increasing evidence linking alterations in the gastrointestinal microbiota and IBS and it is well known that probiotics are important to restore the native gut microbiota. The Colinox medical device is specifically targeted against most intrusive symptom of IBS (bloating) and it is also able to counteract the most accredited ethiopathogenetic factor in IBS (alterations of intestinal microbiota). This is the first randomized double-blind placebo-controlled clinical trial demonstrating the efficacy and safety of a combination of simethicone and Bacillus coagulans in treatment of IBS.

  5. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    PubMed

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  6. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    PubMed Central

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  7. Mode of action and safety of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050

    PubMed Central

    Riazi, Shadi; Dover, Sara E.; Chikindas, Michael L.

    2012-01-01

    Aims To determine the mechanism of action of antimicrobial protein, lactosporin, against Gardnerella vaginalis and to evaluate its safety in-vitro. Methods and Results Bacillus coagulans ATCC 7050 was grown at 37 °C for 18 hours. The cell free supernatant was concentrated 10-fold and screened for antimicrobial activity against indicator strain Micrococcus luteus. The mode of action of lactosporin was determined by measuring the potassium release and monitoring the changes in transmembrane potential (Δψ) and transmembrane pH (ΔpH) of the sensitive cells. Lactosporin caused efflux of potassium ions from M. luteus cells and dissipation of ΔpH in G. vaginalis while it had no effect on the Δψ. The safety of lactosporin was evaluated by using EpiVaginal™ ectocervical (VEC-100) tissue model. Over 80% of the cells in the vaginal tissue remained viable after exposure to lactosporin for 24 hours. Conclusions Lactosporin potentially exerts its antimicrobial activity by selective dissipation of ΔpH and/or by causing leakage of ions from the sensitive cells. Safety studies suggest that lactosporin is a non-cytotoxix antimicrobial for vaginal application. Significance and Impact of the Study This study revealed that lactosporin is an effective and safe antimicrobial preparation with potential application for control of bacterial vaginosis. PMID:22737982

  8. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  9. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.

    PubMed

    Awasthi, Deepika; Wang, Liang; Rhee, Mun S; Wang, Qingzhao; Chauliac, Diane; Ingram, Lonnie O; Shanmugam, Keelnatham T

    2018-02-01

    Poly lactic acid (PLA) based plastics is renewable, bio-based, and biodegradable. Although present day PLA is composed of mainly L-LA, an L- and D- LA copolymer is expected to improve the quality of PLA and expand its use. To increase the number of thermotolerant microbial biocatalysts that produce D-LA, a derivative of Bacillus subtilis strain 168 that grows at 50°C was metabolically engineered. Since B. subtilis lacks a gene encoding D-lactate dehydrogenase (ldhA), five heterologous ldhA genes (B. coagulans ldhA and gldA101, and ldhA from three Lactobacillus delbrueckii) were evaluated. Corresponding D-LDHs were purified and biochemically characterized. Among these, D-LDH from L. delbrueckii subspecies bulgaricus supported the highest D-LA titer (about 1M) and productivity (2 g h -1  g cells -1 ) at 37°C (B. subtilis strain DA12). The D-LA titer at 48°C was about 0.6 M at a yield of 0.99 (g D-LA g -1 glucose consumed). Strain DA12 also fermented glucose at 48°C in mineral salts medium to lactate at a yield of 0.89 g g -1 glucose and the D-lactate titer was 180 ± 4.5 mM. These results demonstrate the potential of B. subtilis as a platform organism for metabolic engineering for production of chemicals at 48°C that could minimize process cost. © 2017 Wiley Periodicals, Inc.

  10. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208.

    PubMed

    Fu, Linglin; Wang, Chong; Ruan, Xinming; Li, Gang; Zhao, Yu; Wang, Yanbo

    2018-02-02

    Large yellow croaker (Pseudosciaena crocea) is a cultivated fish of great economic importance and abundant nutritional value. However, due to its high protein and water contents, it is susceptible to decomposition, leading to considerable economic loss and adverse effects on consumer health. Here, we assessed the function of the bacterial strain Bacillus coagulans L1208 (Bcoa) in preserving large yellow croaker during storage at 4°C and found that Bcoa elongates the shelf-life significantly. Further investigations showed that Bcoa prolongs the storage time mainly by suppressing the growth of spoilage bacteria. Moreover, a novel bacteriocin, designated as Coagulin L1208 and produced by Bcoa, was purified and identified by N-terminal sequencing. Finally, the activity of Coagulin L1208 for suppressing spoilage bacteria during the preservation of large yellow croaker was assessed. Our results reveal the mechanism by which Bcoa aids the preservation of large yellow croaker and identify Coagulin L1208 as a potential novel antiseptic. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Study of the Bacillus flora of Nigerian spices.

    PubMed

    Antai, S P

    1988-05-01

    Bacteriological examination of 230 samples of five different unprocessed spices (aligator pepper, red pepper, black pepper, thyme and curry powder) collected randomly from Port Harcourt main markets revealed that the spices were highly contaminated, with bacterial counts ranging from 1.8 x 10(4) to 1.1 x 10(8) per gram. Bacillus cereus was isolated in high numbers in the majority of the 230 samples examined. It was also observed that other Bacillus spp. including B. subtilis, B. polymyxa and B. coagulans occurred in significant numbers.

  12. Effects of dietary fiber with Bacillus coagulans lilac-01 on bowel movement and fecal properties of healthy volunteers with a tendency for constipation.

    PubMed

    Minamida, Kimiko; Nishimura, Mie; Miwa, Kazunori; Nishihira, Jun

    2015-01-01

    To elucidate the effects of Lilac LAB (Bacillus coagulans lilac-01 and okara [soy pulp] powder) on bowel movements/fecal properties, we conducted a double-blind placebo-controlled randomized trial with healthy Japanese volunteers with a tendency for constipation (n = 297). The subjects ingested 2 g/d placebo (okara powder) or test food (Lilac LAB, 1 × 10(8) CFU) once a day for 2 weeks. In the test group of functionally constipated subjects, the changes in the average scores of self-reported fecal size, sensation of incomplete evacuation, and defecation frequency were significantly improved compared to the placebo group (p < 0.05), and fecal color and odor tended to improve (p = 0.07). In the test food group of all subjects and among the non-functionally constipated subjects, the fecal size tended to improve compared to the placebo group (p = 0.06, p = 0.07, respectively). Lilac LAB was effective in improving bowel movements and fecal properties in functionally constipated persons.

  13. Biochemical and Genetic Characterization of Coagulin, a New Antilisterial Bacteriocin in the Pediocin Family of Bacteriocins, Produced by Bacillus coagulans I4

    PubMed Central

    Le Marrec, Claire; Hyronimus, Bertrand; Bressollier, Philippe; Verneuil, Bernard; Urdaci, Maria C.

    2000-01-01

    A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus. PMID:11097892

  14. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    NASA Astrophysics Data System (ADS)

    Qi, Hong; Na, Ri; Xin, Jiletu; Jie Xie, Ya; Guo, Jiu Feng

    2013-03-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  15. Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine (TIM-1).

    PubMed

    Keller, D; Van Dinter, R; Cash, H; Farmer, S; Venema, K

    2017-05-30

    The aim of this study was to assess the potential of the probiotic Bacillus coagulans GBI-30, 6086 [GanedenBC 30 ] (BC30) to aid in protein digestion of alimentary plant proteins. To test this, three plant proteins, from pea, soy and rice, were digested in a validated in vitro model of the stomach and small intestine (TIM-1) in the absence and in the presence of BC30. Samples were taken from the TIM-1 fractions that mimic uptake of amino acids by the host and analysed for α-amino nitrogen (AAN) and total nitrogen (TN). Both were increased by BC30 for all three plant proteins sources. The ratio of TN/AAN indicated that for pea protein digestion was increased by BC30, but the degree of polymerisation of the liberated small peptides and free amino acids was not changed. For soy and rice, however, BC30 showed a 2-fold reduction in the TN/AAN ratio, indicating that the liberated digestion products formed during digestion in the presence of BC30 were shorter peptides and more free amino acids, than those liberated in the absence of BC30. As BC30 increased protein digestion and uptake in the upper gastrointestinal (GI) tract, it consequently also reduced the amount of protein that would be delivered to the colon, which could there be fermented into toxic metabolites by the gut microbiota. Thus, the enhanced protein digestion by BC30 showed a dual benefit: enhanced amino acid bioavailability from plant proteins in the upper GI tract, and a healthier environment in the colon.

  16. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery

    PubMed Central

    Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin

    2016-01-01

    Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery

  17. Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. by high pressure and heat compared with inactivation by heat alone.

    PubMed

    Olivier, S A; Bull, M K; Stone, G; van Diepenbeek, R J; Kormelink, F; Jacops, L; Chapman, B

    2011-04-01

    The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (F(z)(121.1)(°)(C, 0.1 MPa or 600 MPa)) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the different spoilage microorganisms to HPT processing were compared. Processing was performed and inactivation was compared in both laboratory and pilot scale systems and in model (diluted) and actual food products. Where statistical comparisons could be made, at least 4 times and up to around 190 times more inactivation (log(10) reduction/minute at F(T)(z)(121.1)(°)(C)) of spores of Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Geobacillus stearothermophilus was achieved using HPT, indicating a strong synergistic effect of high pressure and heat. Bacillus coagulans spores were also synergistically inactivated in diluted and undiluted Bolognese sauce but were protected by pressure against thermal inactivation in undiluted cream sauce. Irrespective of the response characterization, B. coagulans and B. sporothermodurans were identified as the most HPT-resistant isolates in the pilot scale and laboratory scale studies, respectively, and G. stearothermophilus as the least in both studies and all products. This is the first study to comprehensively quantitatively characterize the responses of a range of spores of spoilage microorganisms as synergistic (or otherwise) using an integrated thermal-lethality approach (F(T)(z)). The use of the F(T)(z) approach is ultimately important for the translation of commercial minimum microbiologically safe and stable thermal processes to HPT processes.

  18. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    PubMed Central

    Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S

    2012-01-01

    AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167

  19. Surface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application

    DTIC Science & Technology

    2011-09-01

    the spore and the active areas on the Klarite surface. For these experiments an aliquot of the common bacillus spore B. coagulans was drop...suspension B. coagulans (ATCC SUS-CG) was purchased from Raven Biologicals and used at a log 4 or 6 population per 0.1 mL of solution. For experiments...Klarite substrates were evaluated with the spore sample B. coagulans . In these experiments different substrates and the changes in overall band

  20. Strong and Consistently Synergistic Inactivation of Spores of Spoilage-Associated Bacillus and Geobacillus spp. by High Pressure and Heat Compared with Inactivation by Heat Alone ▿ †

    PubMed Central

    Olivier, S. A.; Bull, M. K.; Stone, G.; van Diepenbeek, R. J.; Kormelink, F.; Jacops, L.; Chapman, B.

    2011-01-01

    The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (Fz121.1°C, 0.1 MPa or 600 MPa) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the different spoilage microorganisms to HPT processing were compared. Processing was performed and inactivation was compared in both laboratory and pilot scale systems and in model (diluted) and actual food products. Where statistical comparisons could be made, at least 4 times and up to around 190 times more inactivation (log10 reduction/minute at FTz121.1°C) of spores of Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Geobacillus stearothermophilus was achieved using HPT, indicating a strong synergistic effect of high pressure and heat. Bacillus coagulans spores were also synergistically inactivated in diluted and undiluted Bolognese sauce but were protected by pressure against thermal inactivation in undiluted cream sauce. Irrespective of the response characterization, B. coagulans and B. sporothermodurans were identified as the most HPT-resistant isolates in the pilot scale and laboratory scale studies, respectively, and G. stearothermophilus as the least in both studies and all products. This is the first study to comprehensively quantitatively characterize the responses of a range of spores of spoilage microorganisms as synergistic (or otherwise) using an integrated thermal-lethality approach (FTz). The use of the FTz approach is ultimately important for the translation of commercial minimum microbiologically safe and stable thermal processes to HPT processes. PMID:21278265

  1. Bacterial Growth in Tray Pack Acidified Rice

    DTIC Science & Technology

    1987-01-01

    Bacillus coagulans , which were able to survive the pasteurization processing temperature. Because of the potential for spoilage that was indicated...Inoculum A miKed inoculum consisting o-f Bacillus sphaericus, Bacillus circulans and iour strains of Bacillus coagulans was prepared. All cultures...ineffective in preventing growth of sporeforming bacillus species. Moreover, there was nonuniform distribution of the acidulant, which resulted in

  2. Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice

    PubMed Central

    2011-01-01

    Background Probiotics have beneficial effects in rodent models of Clostridium difficile (C. diffiicle)-induced colitis. The spore forming probiotic strain Bacillus Coagulans GBI-30, 6086 (BC30) has demonstrated anti-inflammatory and immune-modulating effects in vitro. Our goal was to determine if BC30 improved C. difficile-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline) or BC30 (2 × 109 CFU per day). Mice in the C. difficile groups received an antibiotic mixture (study days 5 to 8 in the drinking water), and clindamycin (10 mg/kg, i.p., on study day 10). The C. difficile strain VPI 10463 was given by gavage at 104 CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses. Results All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002) in the percentage of mice with normal stools (66.7%) was found in the BC30/C. difficile group, as compared to the vehicle/C. diffcile group (13.0%). On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187). On this day, the stool consistency score for the BC30/C. difficile group (1.1 ± 0.2) was significantly lower (p < 0.05) than for the vehicle/C. difficile cohort (1.9 ± 0.2). BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx) that was present following C. difficile infection. Colonic MIP-2 chemokine contents (pg/2 cm colon) were: 10.2 ± 0.5 (vehicle/no C. difficile), 24.6 ± 9.5 (vehicle/C. difficile) and 16.3 ± 4.3 (BC30/C. difficle). Conclusion The probiotic BC30 improved some parameters of C. difficile-induced colitis in mice. BC30 prolonged the survival of C. diffiicle infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model. PMID

  3. Acid and bile tolerance of spore-forming lactic acid bacteria.

    PubMed

    Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A

    2000-11-01

    Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).

  4. Characterization and Potential Application of Next Generation Commercial Surface Enhanced Raman Scattering Substrates

    DTIC Science & Technology

    2011-11-01

    were evaluated. For these experiments, an aliquot of the common bacillus spore B. coagulans was drop-dried onto the SERS substrate active surface...the Klarite surface. Spectra for bacillus spore B. coagulans on different substrate types. 3.5 Energetic Sample Evaluation Hazard detection...substrate types (a–f). Notice the dramatic difference in size between the spore and the active areas on the Klarite surface. Spectra for bacillus

  5. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    PubMed

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  6. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    NASA Astrophysics Data System (ADS)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  7. Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Zheng, Zhaojuan; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2010-10-01

    A sodium lactate tolerant mutant strain named Bacillus sp. Na-2 was obtained and applied to sodium hydroxide-based L-lactic acid (LA) production process. The influences of aeration and pH were investigated to further improve the resistance of strain Na-2 against sodium lactate stress and to obtain the most efficient L-LA production process. Although mild aeration was favorable for cell growth and L-LA production, vigorous aeration resulted in a metabolic shift from homolactic to mixed-acid/acetoin fermentation. Therefore, a two-stage aeration control strategy was employed. Optimum pH was found to be 6.0. A total of 106.0 g/l L-LA was produced in 30 h by Bacillus sp. Na-2 using sodium hydroxide as neutralizing agent. Productivity, conversion rate and optical purity were 3.53 g/l/h, 94% and 99.5%, respectively. The remarkable fermentation traits of Bacillus sp. Na-2 and the environment-friendly characteristics of NaOH-based process represent new insight for industrial scale production of L-LA. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice.

    PubMed

    Fitzpatrick, Leo R; Small, Jeffrey S; Greene, Wallace H; Karpa, Kelly D; Farmer, Sean; Keller, David

    2012-10-22

    Recently, we found that the probiotic strain Bacillus coagulans GBI-30, 6086 (GanedenBC30) improved indices of Clostridium difficile (C. difficile)-induced colitis in mice (Fitzpatrick et al., Gut Pathogens, 2011). Our goal was to determine if BC30 could also prevent the recurrence of C. difficile-induced colitis in mice, following initial treatment with vancomycin. During study days 0 through 5, mice were treated with antibiotics. On day 6, the C. difficile strain VPI 10463 was given by oro-gastric gavage at ≈ 5x104 CFU to induce colitis. Mice were treated on study days 6 to 10 with vancomycin (50 mg/kg) (vanco) or vehicle (saline) by gavage. On days 10 to16, mice were dosed by gavage with saline vehicle or BC30 (2 x 109 CFU per day). Mice were monitored for mortality, weight loss and diarrhea. On study days 14, 16 and 17, stools and colons were collected for analyzing other parameters of colitis. The mean stool consistency score in Vehicle/C.difficile/Vanco mice increased from 0.4 (day 10) to a range of 1.1 to 1.4 (days 14 to 17), indicating the recurrence of colitis. On days 13 through 17, the stool consistency scores for the vancomycin/BC30 mice were significantly lower (p< 0.05) than for the vancomycin/vehicle cohort of animals. On day 17, 88.9% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0004). Colonic myeloperoxidase (Units/2 cm colon) was significantly (p < 0.05) reduced from 4.3 ± 0.7 (Vehicle/C.difficile/Vanco) to 2.6 ± 0.2 (BC30/C. Difficle/Vanco). The colonic histology score and Keratinocyte derived-chemokine level in the colon were also lower in BC30 treated mice. In BC30-treated mice, there was evidence of better stool consistency, as well as improved biochemical and histological indices of colitis, following initial treatment of animals with vancomycin. BC30 limited the recurrence of CD-induced colitis following vancomycin withdrawal in mice.

  9. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice

    PubMed Central

    2012-01-01

    Background Recently, we found that the probiotic strain Bacillus coagulans GBI-30, 6086 (GanedenBC30) improved indices of Clostridium difficile (C. difficile)-induced colitis in mice (Fitzpatrick et al., Gut Pathogens, 2011). Our goal was to determine if BC30 could also prevent the recurrence of C. difficile-induced colitis in mice, following initial treatment with vancomycin. During study days 0 through 5, mice were treated with antibiotics. On day 6, the C. difficile strain VPI 10463 was given by oro-gastric gavage at ≈ 5x104 CFU to induce colitis. Mice were treated on study days 6 to 10 with vancomycin (50 mg/kg) (vanco) or vehicle (saline) by gavage. On days 10 to16, mice were dosed by gavage with saline vehicle or BC30 (2 x 109 CFU per day). Mice were monitored for mortality, weight loss and diarrhea. On study days 14, 16 and 17, stools and colons were collected for analyzing other parameters of colitis. Results The mean stool consistency score in Vehicle/C.difficile/Vanco mice increased from 0.4 (day 10) to a range of 1.1 to 1.4 (days 14 to 17), indicating the recurrence of colitis. On days 13 through 17, the stool consistency scores for the vancomycin/BC30 mice were significantly lower (p< 0.05) than for the vancomycin/vehicle cohort of animals. On day 17, 88.9% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0004). Colonic myeloperoxidase (Units/2 cm colon) was significantly (p < 0.05) reduced from 4.3 ± 0.7 (Vehicle/C.difficile/Vanco) to 2.6 ± 0.2 (BC30/C. Difficle/Vanco). The colonic histology score and Keratinocyte derived-chemokine level in the colon were also lower in BC30 treated mice. Summary In BC30-treated mice, there was evidence of better stool consistency, as well as improved biochemical and histological indices of colitis, following initial treatment of animals with vancomycin. Conclusion BC30 limited the recurrence of CD-induced colitis following vancomycin withdrawal in mice. PMID

  10. Production and characterization of poly-3-hydroxybutyrate from Bacillus cereus PS 10.

    PubMed

    Sharma, Priyanka; Bajaj, Bijender Kumar

    2015-11-01

    Usage of renewable raw materials for production of fully degradable bioplastics (bacterial poly-3-hydroxybutyrate, PHB) has gained immense research impetus considering recalcitrant nature of petroleum based plastics, dwindling fossil fuel feed stocks, and associated green house gas emissions. However, high production cost of PHB is the major bottleneck for its wide range industrial applications. In current study, Bacillus cereus PS 10, a recent isolate, efficiently utilized molasses, an abundantly available by-product from sugar industries as sole carbon source for growth and PHB production. Most influential bioprocess variables i.e. molasses, pH and NH4Cl were identified based on Plackett-Burman-designed experiments. Design of experiment approach (response surface methodology) was further employed for optimization of these bioprocess variables, and an enhanced PHB yield (57.5%) was obtained. PHB produced by Bacillus cereus PS 10 was investigated using various physico-chemical approaches viz. thermogravimetric analysis, proton and carbon NMR ((1)H and (13)C) spectroscopy, melting point, elemental analysis and polarimetry for its detail characterization, and assessment for industrial application potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    DTIC Science & Technology

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  12. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  13. Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine.

    PubMed

    Maathuis, A J H; Keller, D; Farmer, S

    2010-03-01

    We have investigated the survival and activity of GanedenBC(30) during passage through the upper gastro-intestinal tract. GanedenBC(30) was tested in a dynamic, validated, in vitro model of the stomach and small intestine (TIM-1) on survival and its potential to aid in digestion of milk protein, lactose and fructose. The survival of GanedenBC(30) was high (70%), although germination of the spores was minimal (<10%) under the conditions tested. Survival of the strain in the presence of lactose and fructose was markedly lower (56-59%) than in the absence of the sugars. The amount of digested milk protein available for absorption was somewhat higher (+0.2 g) when GanedenBC(30) was added to the milk. When GanedenBC(30) was tested with lactose or fructose added to the meal, the cumulative amount of lactate produced was slightly higher (+0.12-0.18 mmol) compared to the GanedenBC(30) alone. In conclusion, although the differences in survival of GanedenBC(30) are small, these results show the potential of GanedenBC(30) to aid in protein digestion and in the digestion of lactose and fructose. If a larger fraction of the Bacillus coagulans cells had germinated, the influence on protein and carbohydrate digestion would probably have been much greater. Importance of the findings: the potential of GanedenBC(30) to aid in the digestion of lactose and fructose could be used to prevent occurrence of intestinal symptoms in individuals sensitive to these carbohydrates.

  14. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  15. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  16. The effects of Bacillus coagulans-fermented and non-fermented Ginkgo biloba on abdominal fat deposition and meat quality of Peking duck.

    PubMed

    Liu, Xiaoyan; Cao, Guanjun; Zhou, Jinglong; Yao, Xuan; Fang, Binghu

    2017-07-01

    In order to evaluate the effects of Bacillus coagulans-fermented Ginkgo biloba (FG) and non-fermented G. biloba (NFG) on abdominal fat deposition and meat quality, 270 female Peking ducks were randomly assigned to the following experimental groups: a control group (fed a basal diet), an NFG group (fed a basal diet + 0.3% NFG), and an FG group (fed a basal diet + 0.3% FG). Body weight and feed intake were recorded weekly, and feed conversion ratio was calculated to assess growth performance. After 6 wk, 18 ducks from each group were killed. Abdominal fat ratio and pH (at 45 min and 24 h postmortem), color parameters (lightness, redness, and yellowness), water-holding capacity, cooking loss, shear force, and intramuscular fat and fatty acid contents were measured. Six more ducks were killed to isolate RNA from their abdominal fat tissue for measurements of peroxisome proliferator-activated receptor-γ (PPARγ), obese (leptin), and adiponectin (ADP) expression using real-time polymerase chain reaction. The results revealed that body weight gain was higher in the FG group than in the control and NFG groups, whereas feed conversion ratio was lower (P < 0.05). The abdominal fat contents were lower in the NFG and FG groups than in the control group (P < 0.05). The NFG and FG groups had lower levels of saturated fatty acids (mainly palmitic acid) and higher levels of polyunsaturated fatty acids (mainly linoleic acid and arachidonic acid) than the control group. The mRNA expressions of PPARγ, leptin, and ADP in abdominal fat tissue were significantly increased in the NFG and FG groups, and the mRNA expression of PPARγ was higher in the FG group than in the NFG group (P < 0.05). These results suggest that fermenting G. biloba reduces the deposition of abdominal fat and improves the fatty acid profile of Peking duck meat. © 2017 Poultry Science Association Inc.

  17. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains

    PubMed Central

    Nærdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F

    2015-01-01

    Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol. PMID:25644214

  18. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized

  19. Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis

    DTIC Science & Technology

    2002-01-01

    Based Preservation Systems and Probiotic Bacteria. In Food Microbiology: Fundamentals and Frontiers. M. P. Doyle, L.R. Beuchat and T.J. Montville...Microarray Bactericidal Testing of Natural Products Against Yersinia intermedia and Bacillus anthracis I.J. Fry1, F.K. Lee2, A. Turetsky2 and J.J...effective protection against biological warfare agents (BWA’s), natural products with a historical record of bactericidal efficacy such as

  20. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry

    PubMed Central

    Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2016-01-01

    Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility

  1. Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage.

    PubMed

    Valerio, Francesca; De Bellis, Palmira; Lonigro, Stella L; Visconti, Angelo; Lavermicocca, Paola

    2008-03-20

    Four fermentation products (FPs) of the lactic acid bacterium Lactobacillus plantarum ITM21B were screened for their anti-Bacillus activity in vitro and in bread-making trials. Results of the storage tests performed with loaves prepared with an FP or calcium propionate demonstrated that after 3 days at 30 degrees C, gross spoilage was evident in only the control loaves, which contained Bacillus subtilis at numbers of about 10(9) cfu/g. The highest inhibitory activity was shown by DM-FP obtained by growing L. plantarum in a defined medium (DM). Significantly, this medium contained an amino acceptor of the aminoacid transamination, namely alpha-ketoglutaric acid, and an aminoacid pool. With loaves prepared using the DM-acid mixture which simulated the DM-FP composition, the same reduction of ropy spoilage as with DM-FP was obtained after 3 days, while the efficacy of the mixture decreased after 7 days. This result suggests the potential involvement of some unknown metabolites in the inhibitory activity of DM-FP. In baked products made with flour based media (M1-FP, M2-FP, M3-FP), no ropy symptoms were noticeable after 3 days storage although a considerable Bacillus count was detected. DM-FP was as effective as calcium propionate (0.3% w/w, based on flour mass) in prolonging the Bacillus free-shelf life of yeast-leavened bread for 7 days.

  2. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains.

    PubMed

    Naerdal, Ingemar; Pfeifenschneider, Johannes; Brautaset, Trygve; Wendisch, Volker F

    2015-03-01

    Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l(-1) during shake flask conditions. A volume-corrected concentration of 11.3 g l(-1) of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety.

    PubMed

    Shanty, Angamaly Antony; Philip, Jessica Elizabeth; Sneha, Eeettinilkunnathil Jose; Prathapachandra Kurup, Maliyeckal R; Balachandran, Sreedharannair; Mohanan, Puzhavoorparambil Velayudhan

    2017-02-01

    Some new Schiff bases (H 1 -H 7 ) have been synthesized by the condensation of 2-aminophenol, 2-amino-4-nitrophenol, 2-amino-4-methylphenol, 2-amino benzimidazole with thiophene-2-carboxaldehyde and pyrrole-2-carboxaldehyde. The structures of newly synthesized compounds were characterized by elemental analysis, FT-IR, 1 H NMR, UV-VIS, and single crystal X-ray crystallography. The in vitro antibacterial activity of the synthesized compounds has been tested against Salmonella typhi, Bacillus coagulans, Bacillus pumills, Escherichia coli, Bacillus circulans, Pseudomonas, Clostridium and Klebsilla pneumonia by disk diffusion method. The quantitative antimicrobial activity of the test compounds was evaluated using Resazurin based Microtiter Dilution Assay. Ampicillin was used as standard antibiotics. Schiff bases individually exhibited varying degrees of inhibitory effects on the growth of the tested bacterial species. The antioxidant activity of the synthesized compounds was determined by the 1,1-diphenyl-2-picrylhydrazyl(DPPH) method. IC 50 value of synthesized Schiff bases were calculated and compared with standard BHA. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Withania coagulans Fruit Extract Reduces Oxidative Stress and Inflammation in Kidneys of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Ojha, Shreesh; Alkaabi, Juma; Amir, Naheed; Sheikh, Azimullah; Agil, Ahmad; Fahim, Mohamed Abdelmonem; Adem, Abdu

    2014-01-01

    The present study was carried out to investigate the changes in oxidative and inflammatory status in streptozotocin-induced diabetic rat's kidneys and serum following treatment with Withania coagulans, a popular herb of ethnomedicinal significance. The key markers of oxidative stress and inflammation such as inflammatory cytokines (IL-1β, IL-6, and TNF-α) and immunoregulatory cytokines (IL-4 and IFN-γ) were increased in kidneys along with significant hyperglycemia. However, treatment of four-month diabetic rats with Withania coagulans (10 mg/kg) for 3 weeks significantly attenuated hyperglycemia and reduced the levels of proinflammatory cytokines in kidneys. In addition, Withania coagulans treatment restored the glutathione levels and inhibited lipid peroxidation along with marked reduction in kidney hypertrophy. The present study demonstrates that Withania coagulans corrects hyperglycemia and maintained antioxidant status and reduced the proinflammatory markers in kidneys, which may subsequently reduce the development and progression of renal injury in diabetes. The results of the present study are encouraging for its potential use to delay the onset and progression of diabetic renal complications. However, the translation of therapeutic efficacy in humans requires further studies. PMID:25295146

  5. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  6. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Real-Time PCR Diagnostics for Detecting and Identifying Potential Bioweapons

    DTIC Science & Technology

    2003-11-18

    pestis Bacillus cereus Salmonella enteritidis Yersinia pestis Bacillus thurigiensis Serratia odorifera Yersinia pestis Bacillus coagulans Shigella...10fg NTC 100pg-opt 10pg-opt 1pg-opt 100fg-opt 10fg-opt NTC-opt USAMRIID Specificity Organism Organism Organism Acineobacter baumanni Bacillus subtilis...var niger Staphylococcus saprophyticus Bacillus anthracis BA0068 Bacillus bronchiseptica Staphylococcus epidermidis Bacillus anthracis Clostridium

  8. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  9. Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to evaluate the function of Bacillus subtilis-based direct-fed microbials (DFMs) on macrophage functions, i.e., nitric oxide (NO) production and phagocytosis in broiler chickens. DFMs used in this study were eight single strains designated as Bs2084, LSSAO1, 3AP4, Bs1...

  10. Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A.

    PubMed

    Sánchez, Marta; Prim, Núria; Rández-Gil, Francisca; Pastor, F I Javier; Diaz, Pilar

    2002-05-05

    Lipases are versatile biocatalists showing multiple applications in a wide range of biotechnological processes. The gene lipA coding for Lipase A from Bacillus subtilis was isolated by PCR amplification, cloned and expressed in Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis strains, using pBR322, YEplac112 and pUB110-derived vectors, respectively. Lipase activity analysis of the recombinant strains showed that the gene can be properly expressed in all hosts assayed, this being the first time a lipase from bacterial origin can be expressed in baker's S. cerevisiae strains. An important increase of lipase production was obtained in heterologous hosts with respect to that of parental strains, indicating that the described systems can represent a useful tool to enhance productivity of the enzyme for biotechnological applications, including the use of the lipase in bread making, or as a technological additive. Copyright 2002 Wiley Periodicals, Inc.

  11. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  12. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  13. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.

    PubMed

    Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko

    2013-10-01

    The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.

  14. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.

    PubMed

    Dietz, Donna; Schneider, Roland; Papendiek, Franka; Venus, Joachim

    2016-10-20

    Lactic acid is one of the most important building blocks for the production of bioplastic. Many investigations have been conducted to reduce the lactic acid production costs. In this work, the focus was put on the application of legume pressed juice or green juice as nutrient source. The pressed juice was utilized directly without prior pre-treatment and sterilization. Using two different alfalfa green juices and a clover green juice from two different harvest years as sole nutrients, non-sterile fermentations were performed at 52°C and pH 6.0 with a thermotolerant strain Bacillus coagulans AT107. The results showed that alfalfa green juices generally were more suitable for high lactic acid production than clover green juices, presumably due to the higher nitrogen content. A final titer of 98.8g/L after 30h with l(+)-lactic acid purity of >99% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.

    PubMed

    Yan, Panpan; Wu, Yuanqing; Yang, Li; Wang, Zhiwen; Chen, Tao

    2018-02-01

    To investigate the capacity of a genome-reduced Bacillus subtilis strain as chassis cell for acetoin production from xylose. To endow the genome-reduced Bacillus subtilis strain BSK814 with the ability to utilize xylose, we inserted a native xyl operon into its genome and deleted the araR gene. The resulting strain BSK814A2 produced 2.94 g acetoin/l from 10 g xylose/l, which was 39% higher than control strain BSK19A2. The deletion of the bdhA and acoA genes further improved xylose utilization efficiency and increased acetoin production to 3.71 g/l in BSK814A4. Finally, BSK814A4 produced up to 23.3 g acetoin/l from 50 g xylose/l, with a yield of 0.46 g/g xylose. Both the titer and yield were 39% higher than those of control strain BSK19A4. As a chassis cell, genome-reduced B. subtilis showed significantly improved capacity for the production of the overflow product acetoin from xylose compared with wild-type strain.

  16. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives.

    PubMed

    Lakowitz, Antonia; Godard, Thibault; Biedendieck, Rebekka; Krull, Rainer

    2018-05-01

    Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production. Copyright © 2017. Published by Elsevier B.V.

  17. Services provided in support of the planetary quarantine requirements of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Favero, M. S.

    1973-01-01

    The project to evaluate thermal sterilization for unmanned landers is reported. A temperature controlled oven with a nitrogen gas supply containing a known concentration of water is discussed. The studies show that bacillus lentus, bacillus brevis, bacillus coagulans, atypical bacillus spp., and actinomycete are isolated heat survivors. The thermal resistance is given for naturally occurring airborne bacterial spores collected on exposed teflon ribbons.

  18. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Ogbonnaya, Nwokoro; Odiase, Anthonia

    2012-01-01

    -amylase activity of 758 U/mL after 48 h. Peptone was the best nitrogen source for enzyme production with α-amylase activity of 680 U/mL after 48 h. Metal ions including Ca (2+), Mn(2+) and Mg(2+) stimulated enzyme production while Hg(2+) and Ag(+) repressed enzyme production. The best enzyme yields were observed in basal media containing agro-based substrates. This work reports the production of alkaline α-amylase by Bacillus subtlis CB-18 in different media. Enzyme production was highest when agro-based media were used to formulate the media.

  19. Production of Bacillus amyloliquefaciens OG and its metabolites in renewable media: valorisation for biodiesel production and p-xylene decontamination.

    PubMed

    Etchegaray, Augusto; Coutte, François; Chataigné, Gabrielle; Béchet, Max; Dos Santos, Ramon H Z; Leclère, Valérie; Jacques, Philippe

    2017-01-01

    Biosurfactants are important in many areas; however, costs impede large-scale production. This work aimed to develop a global sustainable strategy for the production of biosurfactants by a novel strain of Bacillus amyloliquefaciens. Initially, Bacillus sp. strain 0G was renamed B. amyloliquefaciens subsp. plantarum (syn. Bacillus velezensis) after analysis of the gyrA and gyrB DNA sequences. Growth in modified Landy's medium produced 3 main recoverable metabolites: surfactin, fengycin, and acetoin, which promote plant growth. Cultivation was studied in the presence of renewable carbon (as glycerol) and nitrogen (as arginine) sources. While diverse kinetics of acetoin production were observed in different media, similar yields (6-8 g·L -1 ) were obtained after 72 h of growth. Glycerol increased surfactin-specific production, while arginine increased the yields of surfactin and fengycin and increased biomass significantly. The specific production of fengycin increased ∼10 times, possibly due to a connecting pathway involving arginine and ornithine. Adding value to crude extracts and biomass, both were shown to be useful, respectively, for the removal of p-xylene from contaminated water and for biodiesel production, yielding ∼70 mg·g -1 cells and glycerol, which could be recycled in novel media. This is the first study considering circular bioeconomy to lower the production costs of biosurfactants by valorisation of both microbial cells and their primary and secondary metabolites.

  20. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    PubMed

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  1. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    PubMed Central

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in < 48 h. The new source of D-lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min-1 (mg protein)-1. By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  2. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  3. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    PubMed

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Combined pressure-thermal inactivation effect on spores in lu-wei beef--a traditional Chinese meat product.

    PubMed

    Wang, B-S; Li, B-S; Du, J-Z; Zeng, Q-X

    2015-08-01

    This study investigated the inactivation effect and kinetics of Bacillus coagulans and Geobacillus stearothermophilus spores suspended in lu-wei beef by combining high pressure (500 and 600 MPa) and moderate heat (70 and 80 °C or 80 and 90 °C). During pressurization, the temperature of pressure-transmitting fluid was tested with a K-type thermocouple, and the number of surviving cells was determined by a plate count method. The pressure come-up time and corresponding inactivation of Bacillus coagulans and G. stearothermophilus spores were considered during the pressure-thermal treatment. For the two types of spores, the results showed a higher inactivation effect in phosphate buffer solution than that in lu-wei beef. Among the bacteria evaluated, G. stearothermophilus spores had a higher resistance than B. coagulans spores during the pressure-thermal processing. One linear model and two nonlinear models (i.e. the Weibull and log-logistic models) were fitted to the survivor data to obtain relevant kinetic parameters, and the performance of these models was compared. The results suggested that the survival curve of the spores could be accurately described utilizing the log-logistic model, which produced the best fit for all inactivation data. The compression heating characteristics of different pressure-transmitting fluids should be considered when using high pressure to sterilize spores, particularly while the pressure is increasing. Spores can be inactivated by combining high pressure and moderate heat. The study demonstrates the synergistic inactivation effect of moderate heat in combination with high pressure in real-life food. The use of mathematical models to predict the inactivation for spores could help the food industry further to develop optimum process conditions. © 2015 The Society for Applied Microbiology.

  5. Inactivation of Bacillus spores by the supercritical carbon dioxide micro-bubble method.

    PubMed

    Ishikawa, H; Shimoda, M; Tamaya, K; Yonekura, A; Kawano, T; Osajima, Y

    1997-06-01

    Bacillus spores were effectively inactivated by the supercritical (SC) CO2 micro-bubble method. The micro-bubble SC CO2 treatment of B. cereus, B. subtilis, B. megaterium, B. polymyxa, and B. coagulans at 40 degrees C and 30 MPa for 30 min produced greater reduction (about 3 log cycles of reduction) than a similar treatment without a filter. The SC CO2 treatment of B. polymyxa, B. cereus, and B. subtilis spores at 45 degrees C, 50 degrees C, respectively, and 30 MPa for 60 min resulted in a 6-log cycle reduction of survival. The SC CO2 treatment under the foregoing conditions should offer higher efficiency than that of heat treatment at 100 degrees C for 60 min. In addition, the SC CO2 treatment (30 MPa, 60 degrees C, 30 min) of B. polymyxa and B. cereus spores also produced a 6-log cycle reduction.

  6. Strain Screening from Traditional Fermented Soybean Foods and Induction of Nattokinase Production in Bacillus subtilis MX-6.

    PubMed

    Man, Li-Li; Xiang, Dian-Jun; Zhang, Chun-Lan

    2018-02-06

    The plasminogen-free fibrin plate assay method was used to isolate Bacillus subtilis MX-6, a strain with high production of nattokinase from Chinese douchi. The presence of aprN, a gene-encoding nattokinase, was verified with PCR method. The predicted amino acid sequence was aligned with homologous sequences, and a phylogenetic tree was constructed. Nattokinase was sublimated with ammonium sulfate, using a DEAE-Sepharose Fast Flow column, a CM-Sepharose Fast Flow column and a Sephadex G-75 gel filtration column. SDS-PAGE analysis indicated that the molecular weight of the purified nattokinase from Bacillus subtilis MX-6 was about 28 kDa. Fermentation of Bacillus subtilis MX-6 nattokinase showed that nattokinase production was maximized after 72 h; the diameter of clear zone reached 21.60 mm on the plasminogen-free fibrin plate. Nattokinase production by Bacillus subtilis MX-6 increased significantly after supplementation with supernatant I, supernatant II and soy peptone but decreased substantially after the addition of amino acids. This result indicated that the nattokinase production by B. subtilis MX-6 might be induced by soybean polypeptides. The addition of MgSO 4 and CaCl 2 increased B. subtilis MX-6 nattokinase production.

  7. Gramicidin S production by Bacillus brevis in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.

  8. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures.

    PubMed

    Tashiro, Yukihiro; Matsumoto, Hiroko; Miyamoto, Hirokuni; Okugawa, Yuki; Pramod, Poudel; Miyamoto, Hisashi; Sakai, Kenji

    2013-10-01

    We investigated L-lactic acid production in static batch fermentation of kitchen refuse using a bacterial consortium from marine-animal-resource (MAR) composts at temperatures ranging from 30 to 65 °C. At relatively low temperatures butyric acid accumulated, whereas at higher temperatures L-lactic acid was produced. In particular, fermentation at 50 °C produced 34.5 g L(-1) L-lactic acid with 90% lactic acid selectivity and 100% optical purity. Denaturing gradient gel electrophoresis indicated that dominant bacteria present in the original MAR composts diminished rapidly and Bacillus coagulans strains became the dominant contributors to L-lactic acid production at 45, 50 and 55 °C. This is the first report of the achievement of 100% optical purity of L-lactic acid using a bacterial consortium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of Culture Conditions on the Production of an Extracellular Protease by Bacillus sp. Isolated from Soil Sample of Lavizan Jungle Park

    PubMed Central

    Akhavan Sepahy, Abbas; Jabalameli, Leila

    2011-01-01

    Soil samples of Tehran jungle parks were screened for proteolytic Bacilli. Among eighteen protease producers one of the isolates obtained from Lavizan park, in north east of Tehran, was selected for further experimental studies. This isolate was identified as Bacillus sp. strain CR-179 based on partial sequencing of 16S rRNA. Various nutritional and environmental parameters affected protease production by Bacillus sp. strain CR-179. Protease production by this Bacillus cultivated in liquid cultures reached a maximum at 24 h, with levels of 340.908 U/mL. Starch and maltose were the best substrates for enzyme production while some pure sugars such as fructose, glucose, and sucrose could not influence production of protease. Among various organic nitrogen sources corn steep liquor, which is commercial, was found as the best substrate followed by yeast extract, whey protein, and beef extract. The optimal pH and optimal temperature of enzyme production were 8.0 and 45°C, respectively. Studies on enzymatic characterization revealed that crude protease showed maximum activity at pH 9.0 and 60°C, which is indicating the enzyme to be thermoalkaline protease. PMID:22191016

  10. Secreted production of Renilla luciferase in Bacillus subtilis.

    PubMed

    Chiang, Chung-Jen; Chen, Po Ting; Chao, Yun-Peng

    2010-01-01

    Luciferase (Rluc) from the soft coral Renilla reniformis has been widely used as a bioluminescent reporter, and its secreted production has been solely performed in mammalian cells thus far. To make the production more efficient, a series of approaches was attempted to overproduce Rluc extracellularly in Bacillus subtilis. First, Cys124 in the Rluc gene was substituted with Ala. The mutant gene was subsequently incorporated into a pUB110/R6K-based plasmid, consequently, fusing with the P43 promoter and the sacB signal peptide. With the nitrogen-rich medium, B. subtilis strain bearing the plasmid became able to secret a detectable amount of Rluc. Moreover, the secretion signal for the Rluc gene was replaced by the aprN leader peptide with or without the propeptide. The result led to a more than twofold increase in the secreted Rluc. Finally, by enhancing the transcription of the Rluc gene implementing the P43 and spac tandem promoter, it resulted in the secreted Rluc with a yield of 100 mg/L. Overall, this study illustrates a potential strategy for improving the secretion efficiency of heterologous proteins in B. subtilis.

  11. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.

    PubMed

    Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing

    2018-02-10

    Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genetic map of the Bacillus stearothermophilus NUB36 chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallier, H.; Welker, N.E.

    1990-02-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes inmore » Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.« less

  13. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  14. Endoglucanase and xylanase production by Bacillus sp. AR03 in co-culture.

    PubMed

    Hero, Johan S; Pisa, José H; Perotti, Nora I; Romero, Cintia M; Martínez, María A

    2017-07-03

    The behavior of three isolates retrieved from different cellulolytic consortia, Bacillus sp. AR03, Paenibacillus sp. AR247 and Achromobacter sp. AR476-2, were examined individually and as co-cultures in order to evaluate their ability to produce extracellular cellulases and xylanases. Utilizing a peptone-based medium supplemented with carboxymethyl cellulose (CMC), an increase estimation of 1.30 and 1.50 times was obtained by the co-culture containing the strains AR03 and AR247, with respect to enzyme titles registered by their individual cultivation. On the contrary, the extracellular enzymatic production decreased during the co-cultivation of strain AR03 with the non-cellulolytic Achromobacter sp. AR476-2. The synergistic behavior observed through the combined cultivation of the strains AR03 and AR247 might be a consequence of the consumption by Paenibacillus sp. AR247 of the products of the CMC hydrolysis (i.e., cellobiose and/or cello-oligosaccharides), which were mostly generated by the cellulase producer Bacillus sp. AR03. The effect observed could be driven by the requirement to fulfill the nutritional supply from both strains on the substrate evaluated. These results would contribute to a better description of the degradation of the cellulose fraction of the plant cell walls in nature, expected to an efficient utilization of renewable sources.

  15. Decontamination of fluid milk containing Bacillus spores using commercial household products.

    PubMed

    Black, D G; Taylor, T M; Kerr, H J; Padhi, S; Montville, T J; Davidson, P M

    2008-03-01

    Although commercial sanitizers can inactivate bacterial spores in food processing environments, relatively little data exist as to the decontamination of products and surfaces by consumers using commercial household products. Should a large scale bioterrorism incident occur in which consumer food products were contaminated with a pathogenic sporeformer such as Bacillus anthracis, there may be a need to decontaminate these products before disposal as liquid or solid waste. Studies were conducted to test the efficacy of commercial household products for inactivating spores of Bacillus cereus (used as a surrogate for B. anthracis) in vitro and in fluid milk. Validation of the resistance of the B. cereus spores was confirmed with B. anthracis spores. Fifteen commercial products, designed as either disinfectants or sanitizers or as potential sanitizers, were purchased from retail markets. Products selected had one of the following active compounds: NaOCl, HCl, H2O2, acetic acid, quaternary ammonium compounds, ammonium hydroxide, citric acid, isopropanol, NaOH, or pine oil. Compounds were diluted in water (in vitro) or in 2% fat fluid milk, and spores were exposed for up to 6 h. Products containing hypochlorite were most effective against B. cereus spores. Products containing HCl or H2O2 also reduced significant numbers of spores but at a slower rate. The resistance of spores of surrogate B. cereus strains to chlorine-containing compounds was similar to that of B. anthracis spores. Therefore, several household products on the market may be used to decontaminate fluid milk or similar food products contaminated by spores of B. anthracis.

  16. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    PubMed

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  17. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  18. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India.

    PubMed

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste.

  19. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India

    PubMed Central

    Anisha, Anvar Hussain Noorul; Anandham, Rangasamy; Kwon, Soon Woo; Gandhi, Pandiyan Indira; Gopal, Nellaiappan Olaganathan

    2015-01-01

    Abstract Adhirasam is a cereal based, doughnut shaped, deep fried dessert consumed in the southern regions of India. The dough used to prepare adhirasam is fermented and contains rice flour and jaggery. The aim of the present study was to characterize the cultivable bacteria associated with this fermented dough and to identify a suitable starter culture for the production of quality adhirasam. In total, one hundred and seventy bacterial isolates were recovered from de Man Rogosa Sharp (MRS) agar, nutrient agar, lysogeny agar and tryptic soy agar media. Out of the 170 bacterial isolates, sixteen isolates were selected based on their ability to tolerate glucose and sucrose. All the bacterial isolates tolerated 15% glucose and 30% sucrose. Analyses of 16S rDNA gene sequences of the bacterial isolates showed that the dominant cultivable bacteria were members of the genus Bacillus. These strains were further used as starters and tested for their ability to ferment rice flour with jaggery to produce adhirasam dough. Organoleptic evaluation was carried out to choose the best starter strain. Adhirasam prepared from Bacillus subtilis isolates S4-P11, S2-G2-A1 and S1-G15, Bacillus tequilensis isolates S2-H16, S3-P9, S3-G10 and Bacillus siamensis isolate S2-G13 were highly acceptable to consumers. Adhirasam prepared using these starter cultures had superior product characteristics such as softness in texture, flavor and enhanced aroma and sweet taste. PMID:26691480

  20. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneouslymore » acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.« less

  1. Polyhydroxyalkanoate Production and Degradation Patterns in Bacillus Species.

    PubMed

    Ray, Subhasree; Kalia, Vipin Chandra

    2017-12-01

    Bacteria under stress conditions of excess of carbon (C) and limitations of nutrients divert its metabolism towards C storage as energy reservoir-polyhydroxyalkanoate (PHA). Different Bacillus species- B. cereus and B. thuringiensis , were monitored to produce PHA from different C sources-glucose, crude glycerol and their combination at 37 °C for period up to 192 h. PHA production and its composition was found to vary with feed and bacterial strains. PHA production on crude glycerol continued to increase up to 120 h, reaching a maximum of 2725 mg/L with an effective yield of 71% of the dry cell mass. Depolymerization of PHA was observe to initiate after 96 h of incubation up to 192 h. PHA degradation products have been envisaged to be applied in medical field: tissue engineering, drug carriers, memory enhancers, antiosteoporosis, biodegradable implants. The PHA production and degradation cycle for 192 h has not been reported previously in literature.

  2. Magnesium and iron nanoparticles production using microorganisms and various salts

    NASA Astrophysics Data System (ADS)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  3. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers.

    PubMed

    Yeh, Ruei Han; Hsieh, Chia Wen; Chen, Kuo Lung

    2018-01-01

    Bacillus subtilis var. natto N21 (BS) and different lactic acid bacteria were applied to produce two-stage fermented feeds. Broilers were fed these feeds to select the best fermented feed. The selected fermented feed was pelleted and investigated for its effects on growth performance, carcass traits, intestinal microflora, serum biochemical constituents, and apparent ileal nutrient digestibility. Trial 1 involved three hundred thirty-six 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BS + Bacillus coagulans L12 (BBC), BS + Lactobacillus casei (BLC), BS + Lactobacillus acidophilus (BLA), BS + Lactobacillus acidophilus L15 (BLA15), BS + Lactobacillus delbruekckii (BLD), and BS + Lactobacillus reuteri P24 (BLR24) groups with 3 replicates per group. Trial 2 involved two hundred forty 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BBC, and pelleted BS + Bacillus coagulans L12 fermented feed (PBBC) groups with 4 replicates per group. Trial 3 involved sixteen 21-d-old male broilers randomly assigned into control and PBBC groups with 4 replicates per group for a nutrient digestibility trial. The feed conversion ratio (FCR) in the BBC group was better than the control (P < 0.05), and the production efficiency factor (PEF) was the best. However, weight gain (WG), feed intake (FI), and PEF were the lowest in the BLD group (P < 0.05). The WG during 0 to 21 d and 0 to 35 d in the PBBC groups were higher than the control (P < 0.05). The relative weight of the proventriculus + gizzard in the BBC and PBBC groups were higher than the control (P < 0.05). The digestible amino acid content in the PBBC group increased significantly (P < 0.05). Bacillus coagulans L12 is the best lactic acid bacteria for second stage fermentation. PBBC improved broiler growth performance, which may be due to the higher digestible amino acid content, it has the potential to become a commercial feed. © The Author 2017. Published by

  4. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers

    PubMed Central

    Yeh, Ruei Han; Hsieh, Chia Wen; Chen, Kuo Lung

    2018-01-01

    Abstract Bacillus subtilis var. natto N21 (BS) and different lactic acid bacteria were applied to produce two-stage fermented feeds. Broilers were fed these feeds to select the best fermented feed. The selected fermented feed was pelleted and investigated for its effects on growth performance, carcass traits, intestinal microflora, serum biochemical constituents, and apparent ileal nutrient digestibility. Trial 1 involved three hundred thirty-six 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BS + Bacillus coagulans L12 (BBC), BS + Lactobacillus casei (BLC), BS + Lactobacillus acidophilus (BLA), BS + Lactobacillus acidophilus L15 (BLA15), BS + Lactobacillus delbruekckii (BLD), and BS + Lactobacillus reuteri P24 (BLR24) groups with 3 replicates per group. Trial 2 involved two hundred forty 1-d-old broilers with equal numbers of each sex, randomly assigned into control, BBC, and pelleted BS + Bacillus coagulans L12 fermented feed (PBBC) groups with 4 replicates per group. Trial 3 involved sixteen 21-d-old male broilers randomly assigned into control and PBBC groups with 4 replicates per group for a nutrient digestibility trial. The feed conversion ratio (FCR) in the BBC group was better than the control (P < 0.05), and the production efficiency factor (PEF) was the best. However, weight gain (WG), feed intake (FI), and PEF were the lowest in the BLD group (P < 0.05). The WG during 0 to 21 d and 0 to 35 d in the PBBC groups were higher than the control (P < 0.05). The relative weight of the proventriculus + gizzard in the BBC and PBBC groups were higher than the control (P < 0.05). The digestible amino acid content in the PBBC group increased significantly (P < 0.05). Bacillus coagulans L12 is the best lactic acid bacteria for second stage fermentation. PBBC improved broiler growth performance, which may be due to the higher digestible amino acid content, it has the potential to become a commercial feed. PMID:29126320

  5. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  6. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    PubMed Central

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  7. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations

    PubMed Central

    Tojo, Shigeo; Tanaka, Yukinori

    2015-01-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). PMID:26369962

  8. Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol.

    PubMed

    Song, Chan Woo; Rathnasingh, Chelladurai; Park, Jong Myoung; Lee, Julia; Song, Hyohak

    2018-03-28

    Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis , which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.

  9. Growth of Bacillus methanolicus in seawater-based media.

    PubMed

    Komives, Claire F; Cheung, Louis Yip-Yan; Pluschkell, Stefanie B; Flickinger, Michael C

    2005-02-01

    Bacillus methanolicus has been proposed as a biocatalyst for the low cost production of commodity chemicals. The organism can use methanol as sole carbon and energy source, and it grows aerobically at elevated temperatures. Methanol can be made available from off-shore conversion of natural gas to methanol, through gas-to-liquid technology. Growth of the organism in seawater-based medium would further reduce the costs of chemical production performed near an off-shore natural gas source. The growth of strain PB1 (ATCC 51375) in shake flask experiments with trypticase soy broth medium showed minimal salt-inhibition at the concentration of NaCl in seawater. The ability of B. methanolicus PB1 to grow in Pacific Ocean water using methanol as a carbon and energy source was also tested. Following a simple adaptation procedure, PB1 was able to grow on methanol in semi-defined medium with 100% seawater with good growth yields and similar growth rates compared with those achieved on media prepared in deionized water.

  10. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    PubMed

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  11. Evaluation of Different Culture Media for Improvement in Bioinsecticides Production by Indigenous Bacillus thuringiensis and Their Application against Larvae of Aedes aegypti

    PubMed Central

    Devidas, Patil Chandrashekhar; Pandit, Borase Hemant; Vitthalrao, Patil Satish

    2014-01-01

    Production of indigenous isolate Bacillus thuringiensis sv2 (Bt sv2) was checked on conventional and nonconventional carbon and nitrogen sources in shake flasks. The effects on the production of biomass, toxin production, and spore formation capability of mosquito toxic strain were determined. Toxicity differs within the same strain depending on the growth medium. Bt sv2 produced with pigeon pea and soya bean flour were found highly effective with LC50 < 4 ppm against larvae of Aedes aegypti. These results were comparable with bacteria produced from Luria broth as a reference medium. Cost-effective analyses have revealed that production of biopesticide from test media is highly economical. The cost of production of Bt sv2 with soya bean flour was significantly reduced by 23-fold. The use of nonconventional sources has yielded a new knowledge in this area as the process development aspects of biomass production have been neglected as an area of research. These studies are very important from the point of media optimization for economic production of Bacillus thuringiensis based insecticides in mosquito control programmes. PMID:24592157

  12. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium.

    PubMed

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L(-1) starch, 30 g L(-1) soya bean and 9 g L(-1) sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view.

  13. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium

    PubMed Central

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L−1 starch, 30 g L−1 soya bean and 9 g L−1 sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view. PMID:24516462

  14. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis.

    PubMed

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Bacillus subtilis (B. subtilis) is widely accepted as an excellent host cell for the secretory production of recombinant proteins. In this study, a shuttle vector was constructed by fusion of Staphylococcus aureus (S. aureus) plasmid pUB110 with Escherichia coli (E. coli) plasmid pUC18 and used for the expression of nattokinase in B. subtilis. The pUB110/pUC-based plasmid was found to exhibit high structural instability with the identification of a DNA deletion between two repeated regions. An initial attempt was made to eliminate the homologous site in the plasmid, whereas the stability of the resulting plasmid was not improved. In an alternative way, the pUC18-derived region in this hybrid vector was replaced by the suicidal R6K plasmid origin of E. coli. As a consequence, the pUB110/R6K-based plasmid displayed full structural stability, leading to a high-level production of recombinant nattokinase in the culture broth. This was mirrored by the detection of a very low level of high molecular weight DNAs generated by the plasmid. Moreover, 2-fold higher nattokinase production was obtained by B. subtilis strain carrying the pUB110/R6K-based plasmid as compared to the cell with the pAMbeta1-derived vector, a plasmid known to have high structural stability. Overall, it indicates the feasibility of the approach by fusing two compatible plasmid origins for stable and efficient production of recombinant nattokinase in B. subtilis.

  15. Activation of Antibiotic Production in Bacillus spp. by Cumulative Drug Resistance Mutations.

    PubMed

    Tojo, Shigeo; Tanaka, Yukinori; Ochi, Kozo

    2015-12-01

    Bacillus subtilis strains produce a wide range of antibiotics, including ribosomal and nonribosomal peptide antibiotics, as well as bacilysocin and neotrehalosadiamine. Mutations in B. subtilis strain 168 that conferred resistance to drugs such as streptomycin and rifampin resulted in overproduction of the dipeptide antibiotic bacilysin. Cumulative drug resistance mutations, such as mutations in the mthA and rpsL genes, which confer low- and high-level resistance, respectively, to streptomycin, and mutations in rpoB, which confer resistance to rifampin, resulted in cells that overproduced bacilysin. Transcriptional analysis demonstrated that the enhanced transcription of biosynthesis genes was responsible for the overproduction of bacilysin. This approach was effective also in activating the cryptic genes of Bacillus amyloliquefaciens, leading to actual production of antibiotic(s). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling.

    PubMed

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  17. Occurrence of Natural Bacillus thuringiensis Contaminants and Residues of Bacillus thuringiensis-Based Insecticides on Fresh Fruits and Vegetables

    PubMed Central

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea

    2006-01-01

    A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488

  18. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine.

    PubMed

    Wang, Meizhou; Xu, Meijuan; Rao, Zhiming; Yang, Taowei; Zhang, Xian

    2015-11-01

    L-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of L-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of L-arginine to L-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn(2+) preference. When using whole-cell biocatalyst-based bioconversion, a hyper L-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for L-ornithine production in industry.

  19. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data.

    PubMed

    Nishito, Yukari; Osana, Yasunori; Hachiya, Tsuyoshi; Popendorf, Kris; Toyoda, Atsushi; Fujiyama, Asao; Itaya, Mitsuhiro; Sakakibara, Yasubumi

    2010-04-16

    Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and functions as a starter for the production of the traditional Japanese food "natto" made from soybeans. Although re-sequencing whole genomes of several laboratory domesticated B. subtilis 168 derivatives has already been attempted using short read sequencing data, the assembly of the whole genome sequence of a closely related strain, B. subtilis natto, from very short read data is more challenging, particularly with our aim to assemble one fully connected scaffold from short reads around 35 bp in length. We applied a comparative genome assembly method, which combines de novo assembly and reference guided assembly, to one of the B. subtilis natto strains. We successfully assembled 28 scaffolds and managed to avoid substantial fragmentation. Completion of the assembly through long PCR experiments resulted in one connected scaffold for B. subtilis natto. Based on the assembled genome sequence, our orthologous gene analysis between natto BEST195 and Marburg 168 revealed that 82.4% of 4375 predicted genes in BEST195 are one-to-one orthologous to genes in 168, with two genes in-paralog, 3.2% are deleted in 168, 14.3% are inserted in BEST195, and 5.9% of genes present in 168 are deleted in BEST195. The natto genome contains the same alleles in the promoter region of degQ and the coding region of swrAA as the wild strain, RO-FF-1. These are specific for gamma-PGA production ability, which is related to natto production. Further, the B. subtilis natto strain completely lacked a polyketide synthesis operon, disrupted the plipastatin production operon, and possesses previously unidentified transposases. The determination of the whole genome sequence of Bacillus subtilis natto provided detailed analyses of a set of genes related to natto production, demonstrating the number and locations of insertion sequences that B. subtilis natto harbors but B. subtilis 168 lacks

  20. Bacillus “next generation” diagnostics: moving from detection toward subtyping and risk-related strain profiling

    PubMed Central

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains. PMID:23440299

  1. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  2. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    PubMed

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  3. Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors.

    PubMed

    Chen, Po Ting; Chao, Yun-Peng

    2006-10-01

    By systematic investigation, glutamate and a mixture of metal ions were identified as factors limiting the production of nattokinase in Bacillus subtilis. Consequently, in medium supplemented with these materials, the recombinant strain secreted 4 times more nattokinase (260 mg l(-1)) than when grown in the unsupplemented medium.

  4. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  5. Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-01-01

    We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.

  6. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase

    PubMed Central

    Dash, Biplab Kumar; Rahman, M. Mizanur; Sarker, Palash Kumar

    2015-01-01

    A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37°C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50°C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time. PMID:26180814

  7. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth

    PubMed Central

    Walker-York-Moore, Laura; Moore, Sean C.; Fox, Edward M.

    2017-01-01

    Bacillus cereus sensu lato species, as well as Staphylococcus aureus, are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA, hblA and entFM toxin genes, with lower prevalence of bceT and hlyII. When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log10(CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices. PMID:28714887

  8. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth.

    PubMed

    Walker-York-Moore, Laura; Moore, Sean C; Fox, Edward M

    2017-07-15

    Bacillus cereus sensu lato species, as well as Staphylococcus aureus , are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA , hblA and entFM toxin genes, with lower prevalence of bceT and hlyII . When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log 10 (CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices.

  9. In Situ Biosurfactant Production by Bacillus Strains Injected into a Limestone Petroleum Reservoir▿

    PubMed Central

    Youssef, N.; Simpson, D. R.; Duncan, K. E.; McInerney, M. J.; Folmsbee, M.; Fincher, T.; Knapp, R. M.

    2007-01-01

    Biosurfactant-mediated oil recovery may be an economic approach for recovery of significant amounts of oil entrapped in reservoirs, but evidence that biosurfactants can be produced in situ at concentrations needed to mobilize oil is lacking. We tested whether two Bacillus strains that produce lipopeptide biosurfactants can metabolize and produce their biosurfactants in an oil reservoir. Five wells that produce from the same Viola limestone formation were used. Two wells received an inoculum (a mixture of Bacillus strain RS-1 and Bacillus subtilis subsp. spizizenii NRRL B-23049) and nutrients (glucose, sodium nitrate, and trace metals), two wells received just nutrients, and one well received only formation water. Results showed in situ metabolism and biosurfactant production. The average concentration of lipopeptide biosurfactant in the produced fluids of the inoculated wells was about 90 mg/liter. This concentration is approximately nine times the minimum concentration required to mobilize entrapped oil from sandstone cores. Carbon dioxide, acetate, lactate, ethanol, and 2,3-butanediol were detected in the produced fluids of the inoculated wells. Only CO2 and ethanol were detected in the produced fluids of the nutrient-only-treated wells. Microbiological and molecular data showed that the microorganisms injected into the formation were retrieved in the produced fluids of the inoculated wells. We provide essential data for modeling microbial oil recovery processes in situ, including growth rates (0.06 ± 0.01 h−1), carbon balances (107% ± 34%), biosurfactant production rates (0.02 ± 0.001 h−1), and biosurfactant yields (0.015 ± 0.001 mol biosurfactant/mol glucose). The data demonstrate the technical feasibility of microbial processes for oil recovery. PMID:17172458

  10. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Microbial production of lactic acid: the latest development.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2016-12-01

    Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.

  12. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  13. Purification and characterization of a milk-clotting aspartic protease from Withania coagulans fruit.

    PubMed

    Salehi, Mahmoud; Aghamaali, Mahmoud Reza; Sajedi, Reza H; Asghari, S Mohsen; Jorjani, Eisa

    2017-05-01

    Withania coagulans fruit has traditionally been used as milk coagulant. The present study reports the purification and characterization of an aspartic protease from W. coagulans fruit. The enzyme was purified via fractional ammonium sulfate precipitation and cation exchange chromatography. SDS-PAGE analysis revealed the presence of a monomeric protein with molecular weight of 31kDa. Proteolytic activity (PA) of the protease was evaluated using casein, and the milk-clotting activity (MCA) was analyzed by skim milk. The K m and V max values of the enzyme for casein were obtained to be 1.29mg/ml and 0.035μmol Tyr/min, respectively. Optimal temperature and pH were 65°C and 5.5, respectively. After incubation of enzyme at 65°C for 1h, 73% of PA was remained which demonstrated high thermal stability of the enzyme. Mass spectrometry analysis of the purified protease and enzyme assays in the presence of protease inhibitors indicated that aspartic protease was the only responsible enzyme in milk coagulation. Furthermore, by investigating the effect of salts on enzyme activity, it was observed that both NaCl and CaCl 2 reduced enzyme activity. These characteristics of the protease suggest that the enzyme may be suitable for producing low salt content cheeses. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High yield production of extracellular recombinant levansucrase by Bacillus megaterium.

    PubMed

    Korneli, Claudia; Biedendieck, Rebekka; David, Florian; Jahn, Dieter; Wittmann, Christoph

    2013-04-01

    In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH 6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg L(-1)) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U mL(-1) on fructose and 17.2 U mL(-1) on glycerol). This was further increased in high cell density fed-batch processes up to 55 U mL(-1), reflecting a levansucrase concentration of 0.52 g L(-1). This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.

  15. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers

    USDA-ARS?s Scientific Manuscript database

    Bacillus subtilis consists of a large collection of strains from which several cryptic species have been delineated, and most of these along with strains within the species are important biocontrol agents. Bacillus mojavensis, a species recently distinguished from this broad Bacillus subtilis grou...

  16. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality.

    PubMed

    Kritas, S K; Govaris, A; Christodoulopoulos, G; Burriel, A R

    2006-05-01

    The purpose of this pilot study was to evaluate under field conditions the effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis on young lamb mortality and sheep milk production when administered in the late pregnancy and lactation feed of ewes. In a sheep farm, two groups of milking ewes with identical genetic material, management, nutrition, health status and similar production characteristics were formed. One group (46 ewes) served as control, while the other one (48 ewes) served as a probiotic-treated group. Both groups of ewes received a similar feeding regiment, but the ewes of the second group were additionally offered a probiotic product containing B. licheniformis and B. subtilis (BioPlus 2B, Chr. Hansen, Denmark) at the approximate dose of 2.56 x 10(9) viable spores per ewe per day. Lamb mortality during the 1.5 months suckling period, and milk yield during the 2 months of milk collection for commercial purposes have been recorded. In the non-treated control group, 13.1% mortality was observed versus 7.8% in the probiotic-treated group (P = 0.33), with mortality being mainly due to diarrhoea. Microbiological examination of diarrhoeic faeces from some of the dead lambs in both groups revealed the presence of Escherichia coli. The average daily milk yield per ewe was significantly lower in the control group (0.80 l) than that in the probiotic-treated group (0.93 l) (P < 0.05). Fat and protein content of milk in ewes that received probiotics was significantly (P < 0.05) increased compared with untreated ewes. It was concluded that supplementing ewe's feed with probiotics may have beneficial effect on subsequent milk yields, fat and protein content.

  17. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive.

    PubMed

    Ramakrishna Reddy, M; Sathi Reddy, K; Ranjita Chouhan, Y; Bee, Hameeda; Reddy, Gopal

    2017-11-01

    An effecient feather-degrading bacterium was isolated from poultry dumping yard and identified as Bacillus pumilus GRK based on 16S rRNA sequencing. Complete feather degradation (98.3±1.52%) with high keratinase production (373±4 U/ml) was observed in 24h under optimized conditions (substrate 1% (w/w); inoculum size 4% (v/v); pH 10; 200rpm at 37°C) with feathers as sole carbon and nitrogen source in tap water. The fermented broth was enriched with amino acids like tryptophan (221.44µg/ml), isoleucine (15.0µg/ml), lysine (10.81µg/ml) and methionine (7.24µg/ml) suggesting its potential use as feed supplement. The keratinase produced was a detergent stable serine protease and its activity was further enhanced by Ca +2 and Mg +2 . Bacillus pumilus GRK keratinase was successfully utilised as bioadditive in detergent formulations for removing the blood stains from cloth without affecting its fiber and texture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid.

    PubMed

    Kunasundari, Balakrishnan; Arai, Takamitsu; Sudesh, Kumar; Hashim, Rokiah; Sulaiman, Othman; Stalin, Natra Joseph; Kosugi, Akihiko

    2017-09-01

    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.

  19. Inhibitory effects of spice essential oils on the growth of Bacillus species.

    PubMed

    Ozcan, Mehmet Musa; Sağdiç, Osman; Ozkan, Gülcan

    2006-01-01

    A series of essential oils of 11 Turkish plant spices [black thyme, cumin, fennel (sweet), laurel, marjoram, mint, oregano, pickling herb, sage, savory, and thyme], used in foods mainly for their flavor, aromas, and preservation, in herbal tea, in alternative medicines, and in natural therapies, were screened for antibacterial effects at 1:50, 1:100, 1:250, and 1:500 dilutions by the paper disc diffusion method against six Bacillus species (Bacillus amyloliquefaciens ATCC 3842, Bacillus brevis FMC 3, Bacillus cereus FMC 19, Bacillus megaterium DSM 32, Bacillus subtilis IMG 22, and B. subtilis var. niger ATCC 10). All of the tested essential oils (except for cumin) showed antibacterial activity against one or more of the Bacillus species used in this study. Generally, the essential oils at 1:50 and 1:100 levels were more effective. Only one essential oil (laurel) was not found effective against the tested bacteria. The bacterium most sensitive to all of the spice essential oils was B. amyloliquefaciens ATCC 3842. Based on the results of this study, it is likely that essential oils of some spices may be used as antimicrobial agents to prevent the spoilage of food products.

  20. Utilization of Industrial Waste for the Production of Bio-Preservative from Bacillus licheniformis Me1 and Its Application in Milk and Milk-Based Food Products.

    PubMed

    Nithya, Vadakedath; Prakash, Maya; Halami, Prakash M

    2018-06-01

    The bio-preservative efficacy of a partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 in an economical medium developed using agro-industry waste was evaluated by direct application in milk and milk-based food products. The addition of ppABP in milk samples stored at 4 ± 2 °C and 28 ± 2 °C resulted in the growth inhibition of pathogens Listeria monocytogenes Scott A, Micrococcus luteus ATCC 9341, and Staphylococcus aureus FRI 722. The shelf life of milk samples with added ppABP increased to 4 days at 28 ± 2 °C, whereas curdling and off-odor were noticed in samples without ppABP. Furthermore, the milk samples with ppABP were sensorily acceptable. Antilisterial effect was also observed in cheese and paneer samples treated with ppABP. These results clearly indicate that the ppABP of B. licheniformis Me1 can be utilized as a bio-preservative to control the growth of spoilage and pathogenic bacteria, thereby reducing the risk of food-borne diseases.

  1. Bacillus cereus in personal care products: risk to consumers.

    PubMed

    Pitt, T L; McClure, J; Parker, M D; Amézquita, A; McClure, P J

    2015-04-01

    Bacillus cereus is ubiquitous in nature and thus occurs naturally in a wide range of raw materials and foodstuffs. B. cereus spores are resistant to desiccation and heat and able to survive dry storage and cooking. Vegetative cells produce several toxins which on ingestion in sufficient numbers can cause vomiting and/or diarrhoea depending on the toxins produced. Gastrointestinal disease is commonly associated with reheated or inadequately cooked foods. In addition to being a rare cause of several acute infections (e.g. pneumonia and septicaemia), B. cereus can also cause localized infection of post-surgical or trauma wounds and is a rare but significant pathogen of the eye where it may result in severe endophthalmitis often leading to loss of vision. Key risk factors in such cases are trauma to the eye and retained contaminated intraocular foreign bodies. In addition, rare cases of B. cereus-associated keratitis (inflammation of the cornea) have been linked to contact lens use. Bacillus cereus is therefore a microbial contaminant that could adversely affect product safety of cosmetic and facial toiletries and pose a threat to the user if other key risk factors are also present. The infective dose in the human eye is unknown, but as few as 100 cfu has been reported to initiate infection in a susceptible animal model. However, we are not aware of any reports in the literature of B. cereus infections in any body site linked with use of personal care products. Low levels of B. cereus spores may on occasion be present in near-eye cosmetics, and these products have been used by consumers for many years. In addition, exposure to B. cereus is more likely to occur through other routes (e.g. dustborne contamination) due to its ubiquity and resistance properties of spores. The organism has been recovered from the eyes of healthy individuals. Therefore, although there may be a perceived hazard, the risk of severe eye infections as a consequence of exposure through

  2. A clinical study on the effect of Rishyagandha (Withania coagulans) in the management of Prameha (Type II Diabetes Mellitus)

    PubMed Central

    Upadhyay, B. N.; Gupta, Vandana

    2011-01-01

    The study was conducted with an objective of evaluating the role of Rishyagandha (Withania coagulans) powder in clinically diagnosed cases of Prameha. 53 Registered cases were divided into 3 groups; Group A (Rishyagandha fruits powder), Group B (Oral Hypoglycaemic Agent i.e. OHA), and Group C (Rishyagandha fruits powder and OHA both). Statistically significant improvement was observed in objective and subjective parameters in all 3 groups after completion of the course of treatment. Based on the results, it has been concluded that, Rishyagandha fruits powder is an effective therapeutic regimen in the management of uncomplicated cases of Prameha. PMID:22661845

  3. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    PubMed Central

    Elshaghabee, Fouad M. F.; Rokana, Namita; Gulhane, Rohini D.; Sharma, Chetan; Panwar, Harsh

    2017-01-01

    Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration. PMID:28848511

  4. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve

    2017-02-20

    Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE MGA3 . Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE PB1 and lysE2 PB1 . The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE Cg from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE Cg while overexpression of lysE MGA3 , lysE PB1 and lysE2 PB1 had no measurable effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04

    PubMed Central

    Rahimzadeh, Mahsa; Poodat, Manijeh; Javadpour, Sedigheh; Qeshmi, Fatemeh Izadpanah; Shamsipour, Fereshteh

    2016-01-01

    Background: L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. Methods: L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. Results: Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. Conclusion: The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications. PMID:27999622

  6. Surfactin production by strains of Bacillus mojavensis

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  7. Evaluation of in situ valine production by Bacillus subtilis in young pigs.

    PubMed

    Nørgaard, J V; Canibe, N; Soumeh, E A; Jensen, B B; Nielsen, B; Derkx, P; Cantor, M D; Blaabjerg, K; Poulsen, H D

    2016-11-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild type. Average daily feed intake, daily weight gain and feed conversion ratio were measured on days 7, 14 and 21. On day 17, blood samples were taken and analyzed for AAs. On days 24 to 26, six pigs from each dietary treatment were fitted with a permanent jugular vein catheter, and blood samples were taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (P<0.10) to increase the plasma levels of Val at 2 and 3 h post-feeding, but this was not confirmed in Experiment 2. In Experiment 2, Bacillus subtilis mutant 2 and the wild type did not result in a growth performance different from the negative and positive controls. In conclusion, results obtained with the mutant strains of Bacillus subtilis were not better than results obtained with the wild-type strain, and for both strains, the results were not different than the negative control.

  8. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Brenner, Michael P.; Weitz, David A.; Angelini, Thomas E.

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.

  9. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    PubMed

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  10. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    PubMed

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications.

  11. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity.

    PubMed

    Park, Jang Min; Oh, Baek-Rock; Kang, In Yeong; Heo, Sun-Yeon; Seo, Jeong-Woo; Park, Seung-Moon; Hong, Won-Kyung; Kim, Chul Ho

    2017-07-01

    A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L -1 . Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L -1 , showing a high theoretical yield of 92.3%.

  12. Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of L-Lactate from Xylose.

    PubMed

    Jiang, Ting; Zhang, Chen; He, Qin; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    The efficient utilization of xylose is regarded as a technical barrier to the commercial production of bulk chemicals from biomass. Due to the desirable mechanical properties of polylactic acid (PLA) depending on the isomeric composition of lactate, biotechnological production of lactate with high optical pure has been increasingly focused in recent years. The main objective of this work was to construct an engineered Escherichia coli for the optically pure L-lactate production from xylose. Six chromosomal deletions (pflB, ldhA, ackA, pta, frdA, adhE) and a chromosomal integration of L-lactate dehydrogenase-encoding gene (ldhL) from Bacillus coagulans was involved in construction of E. coli KSJ316. The recombinant strain could produce L-lactate from xylose resulting in a yield of 0.91 g/g xylose. The chemical purity of L-lactate was 95.52%, and the optical purity was greater than 99%. Moreover, three strategies, including overexpression of L-lactate dehydrogenase, intensification of xylose catabolism, and addition of additives to medium, were designed to enhance the production. The results showed that they could increase the concentration of L-lactate by 32.90, 20.13, and 233.88% relative to the control, respectively. This was the first report that adding formate not only could increase the xylose utilization but also led to the fewer by-product levels.

  13. Exo-polygalacturonase production by Bacillus subtilis CM5 in solid state fermentation using cassava bagasse

    PubMed Central

    Swain, Manas R.; Kar, Shaktimay; Ray, Ramesh C.

    2009-01-01

    The purpose of this investigation was to study the effect of Bacillus subtilis CM5 in solid state fermentation using cassava bagasse for production of exo-polygalacturonase (exo-PG). Response surface methodology was used to evaluate the effect of four main variables, i.e. incubation period, initial medium pH, moisture holding capacity (MHC) and incubation temperature on enzyme production. A full factorial Central Composite Design was applied to study these main factors that affected exo-PG production. The experimental results showed that the optimum incubation period, pH, MHC and temperature were 6 days, 7.0, 70% and 50°C, respectively for optimum exo-PG production. PMID:24031409

  14. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    PubMed

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  15. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  16. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium

    PubMed Central

    Gudiña, Eduardo J.; Fernandes, Elisabete C.; Rodrigues, Ana I.; Teixeira, José A.; Rodrigues, Lígia R.

    2015-01-01

    In this work, biosurfactant production by Bacillus subtilis #573 was evaluated using corn steep liquor (CSL) as culture medium. The best results were obtained in a culture medium consisting of 10% (v/v) of CSL, with a biosurfactant production of about 1.3 g/l. To the best of our knowledge, this is the first report describing biosurfactant production by B. subtilis using CSL as culture medium. Subsequently, the effect of different metals (iron, manganese, and magnesium) on biosurfactant production was evaluated using the medium CSL 10%. It was found that for all the metals tested, the biosurfactant production was increased (up to 4.1, 4.4, and 3.5 g/l for iron, manganese, and magnesium, respectively). When the culture medium was supplemented with the optimum concentration of the three metals simultaneously, the biosurfactant production was increased up to 4.8 g/l. Furthermore, the biosurfactant exhibited a good performance in oil recovery assays when compared with chemical surfactants, which suggests its possible application in microbial enhanced oil recovery or bioremediation. PMID:25705209

  17. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789.

    PubMed

    Rebecchi, Stefano; Pinelli, Davide; Zanaroli, Giulio; Fava, Fabio; Frascari, Dario

    2018-01-01

    2,3-Butanediol (BD) is a largely used fossil-based platform chemical. The yield and productivity of bio-based BD fermentative production must be increased and cheaper substrates need to be identified, to make bio-based BD production more competitive. As BD bioproduction occurs under microaerobic conditions, a fine tuning and control of the oxygen transfer rate (OTR) is crucial to maximize BD yield and productivity. Very few studies on BD bioproduction focused on the use of non-pathogenic microorganisms and of byproducts as substrate. The goal of this work was to optimize BD bioproduction by the non-pathogenic strain Bacillus licheniformis ATCC9789 by (i) identifying the ranges of volumetric and biomass-specific OTR that maximize BD yield and productivity using standard sugar and protein sources, and (ii) performing a preliminary evaluation of the variation in process performances and cost resulting from the replacement of glucose with molasses, and beef extract/peptone with chicken meat and bone meal, a byproduct of the meat production industry. OTR optimization with an expensive, standard medium containing glucose, beef extract and peptone revealed that OTRs in the 7-15 mmol/L/h range lead to an optimal BD yield (0.43 ± 0.03 g/g) and productivity (0.91 ± 0.05 g/L/h). The corresponding optimal range of biomass-specific OTR was equal to 1.4-7.9 [Formula: see text], whereas the respiratory quotient ranged from 1.8 to 2.5. The switch to an agro-industrial byproduct-based medium containing chicken meat and bone meal and molasses led to a 50% decrease in both BD yield and productivity. A preliminary economic analysis indicated that the use of the byproduct-based medium can reduce by about 45% the BD production cost. A procedure for OTR optimization was developed and implemented, leading to the identification of a range of biomass-specific OTR and respiratory quotient to be used for the scale-up and control of BD bioproduction by Bacillus licheniformis

  18. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  19. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.

    PubMed

    Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G

    2008-11-01

    Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.

  20. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

    PubMed

    Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

  1. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    PubMed Central

    Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731

  2. A probability model for enterotoxin production of Bacillus cereus as a function of pH and temperature

    USDA-ARS?s Scientific Manuscript database

    Bacillus cereus is frequently isolated from a variety of foods including vegetables, dairy products, meat, and other raw and processed foods. The bacterium is capable of producing enterotoxin and emetic toxin that can cause severe nausea, vomiting and diarrhea. The objectives of this study were to a...

  3. Homogeneity and heterogeneity in amylase production by Bacillus subtilis under different growth conditions.

    PubMed

    Ploss, Tina N; Reilman, Ewoud; Monteferrante, Carmine G; Denham, Emma L; Piersma, Sjouke; Lingner, Anja; Vehmaanperä, Jari; Lorenz, Patrick; van Dijl, Jan Maarten

    2016-03-29

    Bacillus subtilis is an important cell factory for the biotechnological industry due to its ability to secrete commercially relevant proteins in large amounts directly into the growth medium. However, hyper-secretion of proteins, such as α-amylases, leads to induction of the secretion stress-responsive CssR-CssS regulatory system, resulting in up-regulation of the HtrA and HtrB proteases. These proteases degrade misfolded proteins secreted via the Sec pathway, resulting in a loss of product. The aim of this study was to investigate the secretion stress response in B. subtilis 168 cells overproducing the industrially relevant α-amylase AmyM from Geobacillus stearothermophilus, which was expressed from the strong promoter P(amyQ)-M. Here we show that activity of the htrB promoter as induced by overproduction of AmyM was "noisy", which is indicative for heterogeneous activation of the secretion stress pathway. Plasmids were constructed to allow real-time analysis of P(amyQ)-M promoter activity and AmyM production by, respectively, transcriptional and out-of-frame translationally coupled fusions with gfpmut3. Our results show the emergence of distinct sub-populations of high- and low-level AmyM-producing cells, reflecting heterogeneity in the activity of P(amyQ)-M. This most likely explains the heterogeneous secretion stress response. Importantly, more homogenous cell populations with regard to P(amyQ)-M activity were observed for the B. subtilis mutant strain 168degUhy32, and the wild-type strain 168 under optimized growth conditions. Expression heterogeneity of secretory proteins in B. subtilis can be suppressed by degU mutation and optimized growth conditions. Further, the out-of-frame translational fusion of a gene for a secreted target protein and gfp represents a versatile tool for real-time monitoring of protein production and opens novel avenues for Bacillus production strain improvement.

  4. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  5. Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis.

    PubMed Central

    Borchert, S; Stachelhaus, T; Marahiel, M A

    1994-01-01

    The deduced amino acid sequence of the gsp gene, located upstream of the 5' end of the gramicidin S operon (grs operon) in Bacillus brevis, showed a high degree of similarity to the sfp gene product, which is located downstream of the srfA operon in B. subtilis. The gsp gene complemented in trans a defect in the sfp gene (sfpO) and promoted production of the lipopeptide antibiotic surfactin. The functional homology of Gsp and Sfp and the sequence similarity of these two proteins to EntD suggest that the three proteins represent a new class of proteins involved in peptide secretion, in support of a hypothesis published previously (T. H. Grossman, M. Tuckman, S. Ellestad, and M. S. Osburne, J. Bacteriol. 175:6203-6211, 1993). Images PMID:7512553

  6. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Human cell exposure assays of Bacillus thuringiensis commercial insecticides: production of Bacillus cereus-like cytolytic effects from outgrowth of spores.

    PubMed Central

    Tayabali, A F; Seligy, V L

    2000-01-01

    Most contemporary bioinsecticides are derived from scaled-up cultures of Bacillus thuringiensis subspecies israelensis (Bti) and kurstaki (Btk), whose particulate fractions contain mostly B. thuringiensis spores (> 10(12)/L) and proteinaceous aggregates, including crystal-like parasporal inclusion bodies (PIB). Based on concerns over relatedness to B. cereus-group pathogens, we conducted extensive testing of B. thuringiensis (BT) products and their subfractions using seven human cell types. The Bti/Btk products generated nonspecific cytotoxicities involving loss in bioreduction, cell rounding, blebbing and detachment, degradation of immunodetectable proteins, and cytolysis. Their threshold dose (Dt approximately equal.5 times 10(-14)% BT product/target cell) equated to a single spore and a target cell half-life (tLD(50)) of approximately 16 hr. At Dts > 10(4), the tLD(50) rapidly shifted to < 4 hr; with antibiotic present, no component, including PIB-related [delta]-endotoxins, was cytolytic up to an equivalent of approximately 10(9 )Dt. The cytolytic agent(s) within the Bti/Btk-vegetative cell exoprotein (VCP) pool is an early spore outgrowth product identical to that of B. cereus and acting possibly by arresting protein synthesis. No cytolytic effects were seen with VCP from B. subtilis and Escherichia coli. These data, including recent epidemiologic work indicate that spore-containing BT products have an inherent capacity to lyse human cells in free and interactive forms and may also act as immune sensitizers. To critically impact at the whole body level, the exposure outcome would have to be an uncontrolled infection arising from intake of Btk/Bti spores. For humans, such a condition would be rare, arising possibly in equally rare exposure scenarios involving large doses of spores and individuals with weak or impaired microbe-clearance capacities and/or immune response systems. PMID:11049810

  8. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    PubMed

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material.

    PubMed

    Ndao, Adama; Sellamuthu, Balasubramanian; Gnepe, Jean R; Tyagi, Rajeshwar D; Valero, Jose R

    2017-09-02

    Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (K L a) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.

  10. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    PubMed

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  11. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  12. Gangrenous mastitis caused by Bacillus species in six goats.

    PubMed

    Mavangira, Vengai; Angelos, John A; Samitz, Eileen M; Rowe, Joan D; Byrne, Barbara A

    2013-03-15

    6 lactating dairy goats were examined because of acute mastitis. Goats were considered to have endotoxemia on the basis of physical examination and clinicopathologic findings. The affected udder halves had gangrenous discolored distal portions with sharp demarcations from grossly normal tissue proximally. Udder secretions from the affected sides were serosanguineous in all cases. A Bacillus sp was isolated in pure cultures in all cases. In 1 case, the Bacillus sp was identified as Bacillus cereus. Goats were treated for mastitis and endotoxemia with polyionic IV fluid therapy, systemic and intramammary antimicrobial administration, anti-inflammatory drug administration, and other supportive treatment. All goats survived to discharge. All except 1 goat had follow-up information available. The affected udder halves sloughed in 1 to 2 months following discharge. In subsequent lactations after the mastitis episodes, milk production in 2 of 5 goats was above the mean, as determined on the basis of Dairy Herd Improvement records, and 3 of 5 goats were voluntarily withdrawn from lactation. All 5 goats had successful kiddings after the Bacillus mastitis episode. Bacillus sp should be considered as a causative agent in goats with gangrenous mastitis, especially when the Bacillus sp is isolated in a pure culture. Antimicrobial sensitivity testing is recommended for selection of an appropriate antimicrobial for treatment. Prognosis for survival appears to be good, although milk production may be decreased.

  13. Withania coagulans Extract Induces Cell Apoptosis and Inhibits COX-2 Expression in a Rat Model of Benign Prostatic Hyperplasia

    PubMed Central

    Sarbishegi, Maryam; Khajavi, Ozra; Arab, Mohammad Reza

    2016-01-01

    Background Phytotherapy is a popular treatment option in cases of benign prostatic hyperplasia (BPH), with many different herbal products being used for the treatment of this condition. Withania coagulans (WC) is an herbal medicine that has shown anti-tumoral, anti-inflammatory, and antioxidant effects. Objectives This study examined the effect of Withania coagulans extract (WCE) on prostatic cell apoptosis and cyclooxygenase-2 (COX-2) expression in cases of benign prostatic hyperplasia (BPH) in rats. Methods Forty Wistar rats were equally divided into five groups: control, sham, BPH, BPH + WCE, and BPH + CLX (celecoxib) as a positive control group. The induction of BPH was achieved via the subcutaneous injection of 3 mg/kg of testosterone propionate (TP) daily for 28 days. The animals received WCE, celecoxib, or distilled water by oral gavage accompanied by the TP injection. After four weeks, the prostate glands of the rats were weighed to measure the prostatic index (PI). The ventral lobes of the prostates were dissected and processed with paraffin blocks in order to study the number of mast cells. A TUNEL analysis was performed to evaluate the cell apoptosis, while the expression of COX-2 was examined using immunohistochemistry. Results BPH was obvious in the ventral lobe of the prostate, and the administration of WCE markedly decreased the PI and the number of mast cells (P < 0.001) in the BPH rats. Additionally, the WCE treatment induced prostatic cell apoptosis when compared to the BPH group. Furthermore, following the WCE treatment, the expression of COX-2 in the prostatic tissues was significantly decreased when compared to the BPH groups. Conclusions According to the results of this study, WCE was effective in the treatment of BPH in rats. It may therefore have beneficial effects in the treatment of patients with BPH. PMID:27878112

  14. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  15. Polygalacturonase: production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21.

    PubMed

    Rehman, Haneef Ur; Qader, Shah Ali Ul; Aman, Afsheen

    2012-09-01

    Polygalacturonase is an enzyme that hydrolyzes external and internal α (1-4) glycosidic bonds of pectin to decrease the viscosity of fruits juices and vegetable purees. Several bacterial strains were isolated from soil and rotten vegetables and screened for polygalacturonase production. The strain which produced maximum polygalacturonase was identified Bacillus licheniformis on the basis of taxonomic studies and 16S rDNA analysis. The isolated bacterial strain produced maximum polygalacturonase at 37 °C after 48 h of fermentation. Among various carbon sources apple pectin (1.0%) showed maximum enzyme production. Different agro industrial wastes were also used as substrate in batch fermentation and it was found that wheat bran is capable of producing high yield of enzyme. Maximum polygalacturonase production was obtained by using yeast extract (0.3%) as a nitrogen source. It was observed that B. licheniformis KIBGE IB-21 is capable of producing 1015 U/mg of polygalacturonase at neutral pH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways.

    PubMed

    Liang, Chengwen; Huo, Yanli; Qi, Gaofu; Wei, Xuetuan; Wang, Qin; Chen, Shouwen

    2015-06-01

    Bacillus licheniformis WX-02 is used for the production of many valuable chemicals. Here, we have sought to improve L-valine production by blocking the metabolic pathways related to branched-chain amino acids. The synthesis genes of L-leucine (leuA) and L-isoleucine (ilvA) were deleted to obtain mutant strains. L-Valine yields of WX-02ΔleuA and WX-02ΔilvA reached 33.2 and 21.1 mmol/l, respectively, which are 22 and 14 times higher than the wild-type WX-02 (1.53 mmol/l). After further deletion of L-lactate dehydrogenase gene (ldh) from WX-02ΔleuA, the productivity reached 0.47 mmol/l h, an increase of 19 %. We provide a possibility to over-produce L-valine using genetically-modified B. licheniformis using remodeling of the biosynthetic pathway to L-valine.

  17. Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation

    PubMed Central

    Mazotto, Ana Maria; Coelho, Rosalie Reed Rodrigues; Cedrola, Sabrina Martins Lage; de Lima, Marcos Fábio; Couri, Sonia; Paraguai de Souza, Edilma; Vermelho, Alane Beatriz

    2011-01-01

    Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity. PMID:21822479

  18. Response of selected microorganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1981-01-01

    Anaerobic and aerobic sporeformers and non-sporeformers were cultivated anaerobically in nutrient media under various pressures (up to 1800 psi) of pure H2, CH4, NH3, and H2S. Viability assays were performed periodically to determine growth, survival, or spore survival. Hydrogen up to 1800 psi demonstrated little or no suppression of growth with the possible exception of Bacillus coagulans at 1800 psi. The obligate anaerobes grew very well. Under CH4 the obligate anaerobes again exhibited the most prolific growth, whereas the facultative anaerobes grew well except under higher pressures. Ammonia at low pressure was extremely toxic to all test organisms. At 100 psi all populations were killed within 24 hours except Staphylococcus aureus which survived for 72 hours and the Bacillus spp. which produced a surviving population of approximately 10,000 spores/ml. All populations in H2S were killed within 24 to 48 hours except Proteus mirabilis which decreased to 100 cells/ml and the Bacillus spp. Spore survival studies of two months duration demonstrated that B. coagulans and B. pumilus survived under all experimental conditions. Clostridium novyi type B and C. sporogenes were killed rapidly in NH3 and H2S and demonstrated no sporulation.

  19. Bacillus subtilis genome diversity.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  20. Selective heterogeneity in exoprotease production by Bacillus subtilis.

    PubMed

    Davidson, Fordyce A; Seon-Yi, Chung; Stanley-Wall, Nicola R

    2012-01-01

    Bacteria have elaborate signalling mechanisms to ensure a behavioural response that is most likely to enhance survival in a changing environment. It is becoming increasingly apparent that as part of this response, bacteria are capable of cell differentiation and can generate multiple, mutually exclusive co-existing cell states. These cell states are often associated with multicellular processes that bring benefit to the community as a whole but which may be, paradoxically, disadvantageous to an individual subpopulation. How this process of cell differentiation is controlled is intriguing and remains a largely open question. In this paper, we consider an important aspect of cell differentiation that is known to occur in the gram-positive bacterium Bacillus subtilis: we investigate the role of two master regulators DegU and Spo0A in the control of extra-cellular protease production. Recent work in this area focussed the on role of DegU in this process and suggested that transient effects in protein production were the drivers of cell-response heterogeneity. Here, using a combination of mathematical modelling, analysis and stochastic simulations, we provide a complementary analysis of this regulatory system that investigates the roles of both DegU and Spo0A in extra-cellular protease production. In doing so, we present a mechanism for bimodality, or system heterogeneity, without the need for a bistable switch in the underlying regulatory network. Moreover, our analysis leads us to conclude that this heterogeneity is in fact a persistent, stable feature. Our results suggest that system response is divided into three zones: low and high signal levels induce a unimodal or undifferentiated response from the cell population with all cells OFF and ON, respectively for exoprotease production. However, for intermediate levels of signal, a heterogeneous response is predicted with a spread of activity levels, representing typical "bet-hedging" behaviour.

  1. Selective Heterogeneity in Exoprotease Production by Bacillus subtilis

    PubMed Central

    Davidson, Fordyce A.; Seon-Yi, Chung; Stanley-Wall, Nicola R.

    2012-01-01

    Bacteria have elaborate signalling mechanisms to ensure a behavioural response that is most likely to enhance survival in a changing environment. It is becoming increasingly apparent that as part of this response, bacteria are capable of cell differentiation and can generate multiple, mutually exclusive co-existing cell states. These cell states are often associated with multicellular processes that bring benefit to the community as a whole but which may be, paradoxically, disadvantageous to an individual subpopulation. How this process of cell differentiation is controlled is intriguing and remains a largely open question. In this paper, we consider an important aspect of cell differentiation that is known to occur in the Gram-positive bacterium Bacillus subtilis: we investigate the role of two master regulators DegU and Spo0A in the control of extra-cellular protease production. Recent work in this area focussed the on role of DegU in this process and suggested that transient effects in protein production were the drivers of cell-response heterogeneity. Here, using a combination of mathematical modelling, analysis and stochastic simulations, we provide a complementary analysis of this regulatory system that investigates the roles of both DegU and Spo0A in extra-cellular protease production. In doing so, we present a mechanism for bimodality, or system heterogeneity, without the need for a bistable switch in the underlying regulatory network. Moreover, our analysis leads us to conclude that this heterogeneity is in fact a persistent, stable feature. Our results suggest that system response is divided into three zones: low and high signal levels induce a unimodal or undifferentiated response from the cell population with all cells OFF and ON, respectively for exoprotease production. However, for intermediate levels of signal, a heterogeneous response is predicted with a spread of activity levels, representing typical “bet-hedging” behaviour. PMID:22745669

  2. The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products.

    PubMed

    Samapundo, S; Everaert, H; Wandutu, J N; Rajkovic, A; Uyttendaele, M; Devlieghere, F

    2011-04-01

    The major objective of this study was to determine the influence of the initial headspace and dissolved O(2) level and vacuum packaging on growth and diarrhoeal enterotoxin production by Bacillus weihenstephanensis on potato based ready-to-eat food products. In general, the lower the initial headspace or dissolved O(2) level the slower the maximum growth rate (μ(max), log(10) CFU g(-1) d(-1)), the longer the lag phase duration (λ, d) and the smaller the maximum population density (N(max), log(10) CFU g(-1)) became. The slowest μ(max), the longest λ and the smallest N(max) were generally found for growth under vacuum packaging. This implies shorter shelf-lives will occur at higher initial headspace or dissolved O(2) levels as the growth of B. weihenstephanensis to the infective dose of 10(5) CFU g(-1) in such atmospheres takes a shorter time. Significant consumption of dissolved O(2) only occurred when growth shifted from the lag to the exponential phase and growth generally transitioned from the exponential to the stationary phase when the dissolved O(2) levels fell below ca. 75 ppb. Diarrhoeal enterotoxin production (determined via detection of the L2 component of haemolytic BL) was similar for growth under initial headspace O(2) levels of 1-20.9%, and was only reduced when growth took place under vacuum packaging. The reduction in L2 production when growth took place under vacuum was most probably related to the low final cell densities observed under this condition. Both growth and L2 production were inhibited over a 32-day incubation period at 7 °C by 40% CO(2) irrespective of the headspace or dissolved O(2) levels. The results illustrate the importance of residual O(2) and CO(2) on the shelf-stability and safety of modified atmosphere packaged potato based ready-to-eat food products with regards to B. weihenstephanensis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source.

    PubMed

    Vijayendra, S V N; Rastogi, N K; Shamala, T R; Anil Kumar, P K; Kshama, L; Joshi, G J

    2007-06-01

    Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5-25 g l(-1)), Na(2)HPO(4) 2H(2)O (2.2-6.2 g l(-1)), KH(2)PO(4) (0.5-2.5 g l(-1)), sucrose (5-55 g l(-1)) and inoculum concentration (1-25 ml l(-1)). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables.The optimum conditions for maximum PHB production were (g l(-1)): CSL-25, Na(2)HPO(4) 2H(2)O-2.2, KH(2)PO(4) - 0.5, sucrose - 55 and inoculum - 10 (ml l(-1)). After 72 h of fermentation, the amount of PHA produced was 8.20 g l(-1) (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.

  4. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48.

    PubMed

    Grande, Maria J; Lucas, Rosario; Abriouel, Hikmate; Valdivia, Eva; Omar, Nabil Ben; Maqueda, Mercedes; Martínez-Bueno, Manuel; Martínez-Cañamero, Magdalena; Gálvez, Antonio

    2006-02-01

    The antimicrobial effect of the broad-spectrum bacteriocin enterocin AS-48 against the toxicogenic psychrotrophic strain Bacillus cereus LWL1 has been investigated in a model food system consisting of boiled rice and in a commercial infant rice-based gruel dissolved in whole milk stored at temperatures of 37 degrees C, 15 degrees C and 6 degrees C. In food samples supplemented with enterocin AS-48 (in a concentration range of 20-35 mug/ml), viable cell counts decreased rapidly over incubation time, depending on the bacteriocin concentration, the temperature of incubation and the food sample. Enterotoxin production at 37 degrees C was also inhibited. Heat sensitivity of endospores increased markedly in food samples supplemented with enterocin AS-48: inactivation of endospores was achieved by heating for 1 min at 90 degrees C in boiled rice or at 95 degrees C in rice-based gruel. Activity of enterocin AS-48 in rice gruel was potentiated by sodium lactate in a concentration-dependent way.

  5. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst.

    PubMed

    Kiss, Flora M; Lundemo, Marie T; Zapp, Josef; Woodley, John M; Bernhardt, Rita

    2015-03-05

    CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15β-hydroxylase of 3-oxo-∆4-steroids. Recently, it was shown that besides 3-oxo-∆4-steroids, 3-hydroxy-∆5-steroids as well as di- and triterpenes can also serve as substrates for this biocatalyst. It is highly selective towards the 15β position, but the 6β, 7α/β, 9α, 11α and 15α positions have also been described as targets for hydroxylation. Based on the broad substrate spectrum and hydroxylating capacity, it is an excellent candidate for the production of human drug metabolites and drug precursors. In this work, we demonstrate the conversion of a synthetic testosterone derivative, cyproterone acetate, by CYP106A2 under in vitro and in vivo conditions. Using a Bacillus megaterium whole-cell system overexpressing CYP106A2, sufficient amounts of product for structure elucidation by nuclear magnetic resonance spectroscopy were obtained. The product was characterized as 15β-hydroxycyproterone acetate, the main human metabolite. Since the product is of pharmaceutical interest, our aim was to intensify the process by increasing the substrate concentration and to scale-up the reaction from shake flasks to bioreactors to demonstrate an efficient, yet green and cost-effective production. Using a bench-top bioreactor and the recombinant Bacillus megaterium system, both a fermentation and a transformation process were successfully implemented. To improve the yield and product titers for future industrial application, the main bottlenecks of the reaction were addressed. Using 2-hydroxypropyl-β-cyclodextrin, an effective bioconversion of 98% was achieved using 1 mM substrate concentration, corresponding to a product formation of 0.43 g/L, at a 400 mL scale. Here we describe the successful scale-up of cyproterone acetate conversion from shake flasks to bioreactors, using the CYP106A2 enzyme in a whole-cell system. The substrate was converted to its main human

  6. Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers

    PubMed Central

    McFarlin, Brian K; Henning, Andrea L; Bowman, Erin M; Gary, Melody A; Carbajal, Kimberly M

    2017-01-01

    AIM To determine if 30-d of oral spore-based probiotic supplementation could reduce dietary endotoxemia. METHODS Apparently healthy men and women (n = 75) were screened for post-prandial dietary endotoxemia. Subjects whose serum endotoxin concentration increased by at least 5-fold from pre-meal levels at 5-h post-prandial were considered “responders” and were randomized to receive either placebo (rice flour) or a commercial spore-based probiotic supplement [Bacillus indicus (HU36), Bacillus subtilis (HU58), Bacillus coagulans, and Bacillus licheniformis, and Bacillus clausii] for 30-d. The dietary endotoxemia test was repeated at the conclusion of the supplementation period. Dietary endotoxin (LAL) and triglycerides (enzymatic) were measured using an automated chemistry analyzer. Serum disease risk biomarkers were measured using bead-based multiplex assays (Luminex and Milliplex) as secondary, exploratory measures. RESULTS Data were statistically analyzed using repeated measures ANOVA and a P < 0.05. We found that spore-based probiotic supplementation was associated with a 42% reduction in endotoxin (12.9 ± 3.5 vs 6.1 ± 2.6, P = 0.011) and 24% reduction in triglyceride (212 ± 28 vs 138 ± 12, P = 0.004) in the post-prandial period Placebo subjects presented with a 36% increase in endotoxin (10.3 ± 3.4 vs 15.4 ± 4.1, P = 0.011) and 5% decrease in triglycerides (191 ± 24 vs 186 ± 28, P = 0.004) over the same post-prandial period. We also found that spore-based probiotic supplementation was associated with significant post-prandial reductions in IL-12p70 (24.3 ± 2.2 vs 21.5 ± 1.7, P = 0.017) and IL-1β (1.9 ± 0.2 vs 1.6 ± 0.1, P = 0.020). Compared to placebo post supplementation, probiotic subject had less ghrelin (6.8 ± 0.4 vs 8.3 ± 1.1, P = 0.017) compared to placebo subjects. CONCLUSION The key findings of the present study is that oral spore-based probiotic supplementation reduced symptoms indicative of “leaky gut syndrome”. PMID:28868181

  7. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  8. Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis.

    PubMed

    Kwon, Eun-Yeong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Beom Soo

    2011-09-01

    Bacillus subtilis was cultivated to high cell density for nattokinase production by pH-stat fed-batch culture. A concentrated mixture solution of glucose and peptone was automatically added by acid-supplying pump when culture pH rose above high limit. Effect of the ratio of glucose to peptone in feeding solution was investigated on cell growth and nattokinase production by changing the ratio from 0.2 to 5 g glucose/g peptone. The highest cell concentration was 77 g/L when the ratio was 0.2 g glucose/g peptone. Cell concentration decreased with increasing the ratio of glucose to peptone in feeding solution, while the optimum condition existed for nattokinase production. The highest nattokinase activity was 14,500 unit/mL at a ratio of 0.33 g glucose/g peptone, which was 4.3 times higher than that in batch culture.

  9. Influence of Bacillus spp. isolated from maize agroecosystem on growth and aflatoxin B(1) production by Aspergillus section Flavi.

    PubMed

    Bluma, Romina V; Etcheverry, Miriam G

    2006-03-01

    A total of 59 bacteria of the Bacillus genus were isolated from different components of a maize agroecosystem and their antifungal activity against Aspergillus section Flavi was evaluated. Thirty-three and 46% of these bacteria were able to inhibit Aspergillus flavus Link and A. parasiticus Speare respectively at water activity (a(w)) 0.982; however, when a(w) was 0.955, these percentages were decreased and only three isolates were able to inhibit Aspergillus section Flavi. The majority of bacilli acted as contact antagonists, while a small number of isolates were able to form inhibition zones. In maize meal extract agar, Aspergillus section Flavi growth rate and aflatoxin B(1) (AFB(1)) production were significantly reduced when these strains were paired at a(w) 0.982 with bacilli at all inoculum levels studied. However, two bacilli isolated were able to reduce growth rate and aflatoxin production when a(w) was 0.955. Lag phase increase followed the same general pattern as growth rate reduction. When Aspergillus section Flavi was grown in sterile maize in the presence of three Bacillus strains at a(w) 0.982, the reduction in count (colony-forming units (cfu) g(-1) maize) was less than 30%, except when Aspergillus section Flavi grew with Bacillus amyloliquefaciens UNRCLR. However, levels of detectable AFB(1) were significantly reduced in these interactions at a(w) 0.982.

  10. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sungchyr; Sharma, M.M.; Georgiou, G.

    Bacillus licheniformis JF-2 produces a lipopeptide surfactant with excellent interfacial properties (Lin et al., 1990, 1992). An HPLC assay was developed to monitor the concentration of the lipopeptide in the fermentation broth and was employed to determine the effect of the composition of the growth medium on biosurfactant production. A maximum concentration of 110 mg/L lipopeptide was obtained in optimized media with 1.0% (w/v) glucose as the carbon source. The maximum amount of surfactant was obtained in early stationary-phase cultures, but subsequently decreased rapidly and disappeared completely from the fermentation broth within 8 h. It was shown that the surfactantmore » is chemically stable in the culture supernatant but becomes internalized by stationary-phase cells. The apparent rate of surfactant internalization was not inhibited by carbonyl cyanide (m-chlorophenyl)hydrazone (CCCP), an uncoupler of oxidative phosphorylation, suggesting that it is not dependent on the availability of ATP and/or a charged membrane. A variety of physical and chemical treatments failed to release the surfactant from the cells. In minimal media the rate of surfactant internalization could be reduced by optimizing the concentration of phosphate and by increasing the amount of magnesium, whereas the nitrogen source, calcium, and trace salts had no effect. Since a related lipopeptide has been shown to be responsible for DNA transformation competence in certain Bacillus subtilis strains, it is possible that the internalization of the B. licheniformis JF-2 surfactant may be a developmentally important process related to the ability of the cells to take up extraneous DNA. 21 refs., 8 figs.« less

  11. Phylogenetic distribution of phenotypic traits in bacillus thuringiensis analyzed by multilocus sequence typing

    USDA-ARS?s Scientific Manuscript database

    Strains from a collection of 3,639 diverse Bacillus thuringiensis isolates were classified based on phenotypic profiles resulting from six biochemical tests, including production of amylase (T), lecithinase (L), urease (U), acid from sucrose (S) and salicin (A), and the hydrolysis of esculin (E). St...

  12. A COMPARATIVE STUDY OF THE BIOLOGICAL CHARACTERS AND PATHOGENESIS OF BACILLUS X (STERNBERG), BACILLUS ICTEROIDES (SANARELLI), AND THE HOG-CHOLERA BACILLUS (SALMON AND SMITH)

    PubMed Central

    Reed, Walter; Carroll, James

    1900-01-01

    1. Bacillus X (Sternberg) belongs to the colon group. 2. Bacillus icteroides (Sanarelli) is a member of the hog-cholera group. 3. The various channels of infection, the duration of the disease and the gross and microscopical lesions in mice, guinea-pigs and rabbits are the same for Bacillus icteroides and the hog-cholera bacillus. 4. The clinical symptoms and the lesions observed in dogs inoculated intravenously with Bacillus icteroides, are reproduced in these animals by infection with the hog-cholera bacillus. 5. Bacillus icteroides when fed to the domestic pig causes fatal infection, accompanied by diphtheritic, necrotic and ulcerative lesions in the digestive tract, such as are seen in hogs when infected with the hog-cholera bacillus. 6. This disease may be acquired by exposing swine in pens already infected with Bacillus icteroides, or by feeding them with the viscera of infected pigs. 7. Guinea-pigs may be immunized with sterilized cultures ofBacillus icteroides from a fatal dose of the hog-cholera bacillus and vice versa. 8. Rabbits may be rendered immune by gradually increasing doses of a living culture of Bacillus icteroides of weak virulence from a fatal dose of a virulent culture of the hog-cholera bacillus 9. The sera of animals immunized with Bacillus icteroides and with the hog-cholera bacillus, respectively, show a marked reciprocal agglutinative reaction. 10. While the blood of yellow fever practically does not exercise an agglutinative reaction upon Bacillus icteroides, the blood of hog-cholera agglutinates this bacillus in a much more marked degree, thus pointing, we think, to the closer etiological relationship of this bacillus to hog-cholera than to yellow fever. PMID:19866945

  13. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.

    PubMed

    Müller, Jonas E N; Heggeset, Tonje M B; Wendisch, Volker F; Vorholt, Julia A; Brautaset, Trygve

    2015-01-01

    Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.

  14. Production of extracellular polysaccharide by Bacillus megaterium RB-05 using jute as substrate.

    PubMed

    Chowdhury, Sougata Roy; Basak, Ratan Kumar; Sen, Ramkrishna; Adhikari, Basudam

    2011-06-01

    Bacillus megaterium RB-05 was grown on glucose and on "tossa-daisee" (Corchorus olitorius)-derived jute, and production and composition of extracellular polysaccharide (EPS) were monitored. An EPS yield of 0.065 ± 0.013 and of 0.297 g ± 0.054 g(-1) substrate after 72 h was obtained for glucose and jute, respectively. EPS production in the presence of jute paralleled bacterial cellulase activity. High performance liquid chromatography (HPLC), matrix assisted LASER desorption/ionization-time of flight (MALDI-ToF) mass spectroscopy, and fourier transform infrared (FT-IR) spectroscopy demonstrated that the EPS synthesized in jute culture (JC) differed from that synthesized in glucose mineral salts medium (GMSM). While fucose was only a minor constituent (4.9 wt.%) of EPS from GMSM, it a major component (41.9 wt.%) of EPS synthesized in JC. This study establishes jute as an effective fermentation substrate for EPS production by a cellulase-producing bacterium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    PubMed

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  16. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    PubMed

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (<3-kDa) with MALDI-TOF mass spectrometry. Caseicin A (IKHQGLPQE) and caseicin B (VLNENLLR), two previously characterized antimicrobial peptides, were identified in the fermentates of both Bacillus cereus and Bacillus thuringiensis isolates. The caseicin peptides were subsequently purified by RP-HPLC and antimicrobial assays indicated that the peptides maintained the previously identified inhibitory activity against the infant formula pathogen Cronobacter sakazakii. We report a new method using Bacillus sp. to generate two previously characterized antimicrobial peptides from casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  17. Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach.

    PubMed

    Muhammadi; Afzal, Muhammad

    2014-01-01

    Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.

  18. [Ecological safety of mosquitocidal biocides based on Bacillus thuringiensis israelensis].

    PubMed

    Rydzanicz, Katarzyna; Lonc, Elzbieta

    2010-01-01

    Bacillus thuringiensis israelensis (Bti) has been developed into many products for the biological control of dipteran larvae, including mosquitoes (Culicidae), black flies (Simuliidae), and midges (Chironomidae) in various parts of the World. Bti appears to pose significantly less of a risk than other chemical pesticides used for mosquito control and eradication programs. Bioproducts based on Bti are highly selective with short environmental persistence, and thus they have very little potential to cause damage to populations of non-target organisms. So far, no example of an unexpected pathogenic organism being developed in the field as well as no examples of resistance to Bti both laboratory and field populations of mosquitoes have been documented. There are some indications that large declines in insect biomass can occur after long-term use of Bti in freshwater wetlands. However, no evidence for permanent damage to ecosystem function has been found. Organisms that utilized insects for food, adapted to the declines and either switched to other food sources or migrate (birds) outside of the treated zones to acquire insects. Even though over 40 tons of Bti have been applied in West Africa alone, no indications of human health or non-target effects have been reported.

  19. Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis.

    PubMed

    Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua

    2014-01-01

    In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P < 0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P < 0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.

  20. Keratinase from newly isolated strain of thermophilic Bacillus for chicken feed modification

    NASA Astrophysics Data System (ADS)

    Larasati, Ditya; Tsurayya, Nur; Koentjoro, Maharani Pertiwi; Prasetyo, Endry Nugroho

    2017-06-01

    Keratinase producing bacteria were isolated from Dieng crater and Mojokerto chicken farm. The screening was done by clear zone method. The strains were selected as they produced clear zones suggesting the presence of keratinolytic activity. The clear zone on FM media depended on both the source and activity of keratinase produced by keratinolytic bacteria. Based on keratinase production and activity, Bacillus sp. SLII-1 was selected for further studies. Keratinase produced by Bacillus sp. SLII-1 capable of producing crude keratinase with 2.08 (mg/second)/ml enzyme activity which able to increase digestibility of feather meal until 22.06% based on soluble protein level. Broiler chicken (Gallus domesticus) that consumed feed containing 5% feather meal indicated production performance of 1194.8 gram/head of feed consumption, 567 gram/head of addition of weight, and 2.1 of feed conversion ratio. An enzymatic engineered chicken feathers waste showed the performance of broiler chicken that is better than soybean meal as conventional sources of protein but could not yet substitute the use of conventional protein sources of fishmeal.

  1. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    DTIC Science & Technology

    2016-09-01

    The Bacillus-inoculated NSM agar plates were incubated at 35°C for at least 48 h until Gram stains revealed the presence of > 90% Bacillus spores in...longer visible in Gram stained samples. Finally, centrifugation was used to remove soluble debris from the preparation and spore concentrations were...minutes post treatment. Gram Stains . Gram stains were used to track the emergence of vegetative Bacillus cells from spores. In this assay, bacterial

  2. Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures.

    PubMed

    Guérin, Alizée; Rønning, Helene Thorsen; Dargaignaratz, Claire; Clavel, Thierry; Broussolle, Véronique; Mahillon, Jacques; Granum, Per Einar; Nguyen-The, Christophe

    2017-08-01

    Besides Bacillus cereus, some strains of the psychrotolerant, potentially foodborne pathogen Bacillus weihenstephanensis can produce the emetic toxine (cereulide). This toxin is a heat- and acid-stable cyclic dodecadepsipeptide that causes food intoxication with vomiting. However, some severe clinical cases with lethal outcomes have been described. If cereulide can be produced during refrigerated storage, it will not be inactivated by reheating food, representing an important risk of food intoxication for consumers. In this paper, we determined the capacity of the B. weihenstephanensis strains BtB2-4 and MC67 to grow and produce cereulide on agar media at temperatures from 8 °C to 25 °C and at a pH from 5.4 to 7.0. At 8 °C, strain BtB2-4 produced quantifiable amounts of cereulide, whereas the limit of detection was reached for strain MC67. For BtB2-4, cereulide production increased 5-fold between 8 °C and 10-15 °C and by more than 100-fold between 15 °C and 25 °C. At temperatures of 10 °C and higher, cereulide concentrations were within the range of those reported by previous works in foods implicated in emetic poisoning. At 25 °C, decreasing the pH to 5.4 reduced cereulide production by strain BtB2-4 by at least 20-fold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  4. Production of nattokinase by batch and fed-batch culture of Bacillus subtilis.

    PubMed

    Cho, Young-Han; Song, Jae Yong; Kim, Kyung Mi; Kim, Mi Kyoung; Lee, In Young; Kim, Sang Bum; Kim, Hyeon Shup; Han, Nam Soo; Lee, Bong Hee; Kim, Beom Soo

    2010-09-30

    Nattokinase was produced by batch and fed-batch culture of Bacillus subtilis in flask and fermentor. Effect of supplementing complex media (peptone, yeast extract, or tryptone) was investigated on the production of nattokinase. In flask culture, the highest cell growth and nattokinase activity were obtained with 50 g/L of peptone supplementation. In this condition, nattokinase activity was 630 unit/ml at 12 h. In batch culture of B. subtilis in fermentor, the highest nattokinase activity of 3400 unit/ml was obtained at 10h with 50 g/L of peptone supplementation. From the batch kinetics data, it was shown that nattokinase production was growth-associated and culture should be harvested before stationary phase for maximum nattokinase production. In fed-batch culture of B. subtilis using pH-stat feeding strategy, cell growth (optical density monitored at 600 nm) increased to ca. 100 at 22 h, which was 2.5 times higher than that in batch culture. The highest nattokinase activity was 7100 unit/ml at 19 h, which was also 2.1 times higher than that in batch culture. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Production of Cry11A and Cry11Ba Toxins in Bacillus sphaericus Confers Toxicity towards Aedes aegypti and Resistant Culex Populations

    PubMed Central

    Servant, Pascale; Rosso, Marie-Laure; Hamon, Sylviane; Poncet, Sandrine; Delécluse, Armelle; Rapoport, Georges

    1999-01-01

    Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297. PMID:10388698

  6. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis

    PubMed Central

    Sørensen, Kim I.; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S.; Nielsen, Dennis S.; Derkx, Patrick M. F.; Jespersen, Lene

    2012-01-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis. PMID:22941078

  7. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis.

    PubMed

    Adimpong, David B; Sørensen, Kim I; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S; Nielsen, Dennis S; Derkx, Patrick M F; Jespersen, Lene

    2012-11-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis.

  8. L-asparaginase production by mangrove derived Bacillus cereus MAB5: Optimization by response surface methodology.

    PubMed

    Thenmozhi, C; Sankar, R; Karuppiah, V; Sampathkumar, P

    2011-06-01

    To isolate marine bacteria, statistically optimize them for maximum asparaginase production. In the present study, statistically based experimental designs were applied to maximize the production of L-asparaginase from bacterial strain of Bacillus cereus (B. cereus) MAB5 (HQ675025) isolated and identified by 16S rDNA sequencing from mangroves rhizosphere sediment. Plackett-Barman design was used to identify the interactive effect of the eight variables viz. yeast extract, soyabean meal, glucose, magnesium sulphate, KH(2)PO(4), wood chips, aspargine and sodium chloride. All the variables are denoted as numerical factors and investigated at two widely spaced intervals designated as -1 (low level) and +1 (high level). The effect of individual parameters on L-asparaginase production was calculated. Soyabean meal, aspargine, wood chips and sodium chloride were found to be the significant among eight variables. The maximum amount of L-asparaginase produced (51.54 IU/mL) from the optimized medium containing soyabean meal (6.282 8 g/L), aspargine (5.5 g/L), wood chips (1.383 8 g/L) and NaCl (4.535 4 g/L). The study revealed that, it is useful to produce the maximum amount of L-asparaginase from B. cereus MAB5 for the treatment of various infections and diseases. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  9. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  10. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    PubMed Central

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  11. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.

    PubMed

    Leguérinel, I; Couvert, O; Mafart, P

    2007-02-28

    Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.

  12. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov.

    PubMed

    Heyrman, Jeroen; Logan, Niall A; Rodríguez-Díaz, Marina; Scheldeman, Patsy; Lebbe, Liesbeth; Swings, Jean; Heyndrickx, Marc; De Vos, Paul

    2005-01-01

    A group of 24 strains was isolated from deteriorated mural paintings situated in Spain (necropolis of Carmona) and Germany (church of Greene-Kreiensen). (GTG)5-PCR genomic fingerprinting was performed on these strains to assess their genomic variability and the strains were delineated into four groups. Representatives were studied by 16S rRNA gene sequencing and were found to be closely related to Bacillus simplex and the species 'Bacillus macroides' (strain NCIMB 8796) and 'Bacillus maroccanus' (names not validly published) according to a fasta search. The close similarity between B. simplex, 'B. macroides' NCIMB 8796, 'B. maroccanus' and the mural painting isolates was confirmed by additional (GTG)5-PCR, ARDRA, FAME and SDS-PAGE analyses. Furthermore, these techniques revealed that strains of 'Bacillus carotarum', another name that has not been validly published, also showed high similarity to this group of organisms. On the other hand, it was shown that the strains labelled 'B. macroides' in different collections do not all belong to the same species. Strain NCIMB 8796 can be allocated to B. simplex, while strain DSM 54 (=ATCC 12905) shares the highest 16S rRNA gene sequence similarity with Bacillus sphaericus and Bacillus fusiformis (both around 98.6 %). On the basis of further DNA-DNA hybridization data and the study of phenotypic characteristics, one group of five mural painting strains was attributed to a novel species in the genus Bacillus, for which the name Bacillus muralis sp. nov. is proposed. Finally, the remaining mural painting strains, one (LMG 18508=NCIMB 8796) of two strains belonging to 'B. macroides' and strains belonging to 'B. maroccanus' and 'B. carotarum' are allocated to the species B. simplex and an emended description of B. simplex is given.

  13. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  14. X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal.

    PubMed

    Chaikaew, Siriporn; Kanpiengjai, Apinun; Intatep, Jenjira; Unban, Kridsada; Wongputtisin, Pairote; Takata, Goro; Khanongnuch, Chartchai

    2017-04-21

    The present study demonstrates the effectiveness of X-ray radiation in strain improvement for defective lipase production by Bacillus sp. MR10 for further application in the fermentative production of manno-oligosaccharides (MOS) from agricultural by-product, defatted copra meal (DCM). The mutants obtained were screened based on their defective lipase activity together with their β-mannanase production performance. Among 10 selected mutants, the strain M7 was the highest promising mutant regarding the smallest lipase activity (0.05 U/ml) and the retained β-mannanase activity similar to the parental strain (22 U/ml) were detected. The mutant M7 effectively hydrolyzed DCM to MOS with low-degree of polymerization (DP) oligomers including mannotriose (M3), mannotetraose (M4), and mannopentose (M5) as the main products. Although the pattern of DCM hydrolysis products of mutant M7 was distinctly different from wild type, the biochemical and catalytic properties of purified β-mannanase of mutant were similar to those of wild type. Both purified β-mannanases with apparent molecular mass of 38 kDa displayed optimal activity at pH 5-7 and 45-55°C. Co 2+ and Hg 2+ nearly completely inhibited activities of both enzymes, whereas Ba 2+ , Fe 3+ , and 2-mercaptoethanol obviously activated enzyme activities. Both enzymes showed high specificity for locust bean gum, konjac mannan, DCM, and guar gum. Thus, the mutant M7 has a potential for commercial production of high-quality MOS from low-cost DCM for further application in the feed industry.

  15. Classification of Bacillus beneficial substances related to plants, humans and animals.

    PubMed

    Mongkolthanaruk, Wiyada

    2012-12-01

    Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

  16. Boosting isoprene production via heterologous expression of the Kudzu isoprene synthase gene (kIspS) into Bacillus spp. cell factory.

    PubMed

    Gomaa, Lamis; Loscar, Michael E; Zein, Haggag S; Abdel-Ghaffar, Nahed; Abdelhadi, Abdelhadi A; Abdelaal, Ali S; Abdallah, Naglaa A

    2017-08-08

    Isoprene represents a key building block for the production of valuable materials such as latex, synthetic rubber or pharmaceutical precursors and serves as basis for advanced biofuel production. To enhance the production of the volatile natural hydrocarbon isoprene, released by plants, animals and bacteria, the Kudzu isoprene synthase (kIspS) gene has been heterologously expressed in Bacillus subtilis DSM 402 and Bacillus licheniformis DSM 13 using the pHT01 vector. As control, the heterologous expression of KIspS in E. coli BL21 (DE3) with the pET28b vector was used. Isoprene production was analyzed using Gas Chromatography Flame Ionization Detector. The highest isoprene production was observed by recombinant B. subtilis harboring the pHT01-kIspS plasmid which produced 1434.3 μg/L (1275 µg/L/OD) isoprene. This is threefold higher than the wild type which produced 388 μg/L (370 μg/L/OD) isoprene, when both incubated at 30 °C for 48 h and induced with 0.1 mM IPTG. Additionally, recombinant B. subtilis produced fivefold higher than the recombinant B. licheniformis, which produced 437.2 μg/L (249 μg/L/OD) isoprene when incubated at 37 °C for 48 h induced with 0.1 mM IPTG. This is the first report of optimized isoprene production in B. licheniformis. However, recombinant B. licheniformis showed less isoprene production. Therefore, recombinant B. subtilis is considered as a versatile host for heterologous production of isoprene.

  17. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  18. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Staphylococcus pseudintermedius and Staphylococcus schleiferi Subspecies coagulans from Canine Pyoderma Cases in Grenada, West Indies, and Their Susceptibility to Beta-Lactam Drugs

    PubMed Central

    Gibson, Kathryn; Frankie, Matthew; Matthew, Vanessa; Daniels, Joshua; Martin, Nancy A.; Andrews, Linton; Paterson, Tara; Sharma, Ravindra N.

    2014-01-01

    Over a 2-year period 66 cases of canine pyoderma in Grenada, West Indies, were examined by aerobic culture in order to ascertain the bacteria involved and their antimicrobial resistance patterns. Of the 116 total bacterial isolates obtained, the majority belonged to Gram-positive species, and the most common organism identified through biochemical and molecular methods was Staphylococcus pseudintermedius. Additionally, identification of a Staphylococcus schleiferi subspecies coagulans isolate was confirmed by molecular methods. All isolates of staphylococci were susceptible to beta-lactam drugs: amoxicillin-clavulanic acid, cefovecin, cefoxitin, cefpodoxime, and cephalothin. They were also susceptible to chloramphenicol and enrofloxacin. Resistance was highest to tetracycline. Methicillin resistance was not detected in any isolate of S. pseudintermedius or in S. schleiferi. Among the Gram-negative bacteria, the most common species was Klebsiella pneumoniae, followed by Acinetobacter baumannii/calcoaceticus. The only drug to which all Gram-negative isolates were susceptible was enrofloxacin. This report is the first to confirm the presence of S. pseudintermedius and S. schleiferi subspecies coagulans, in dogs with pyoderma in Grenada, and the susceptibility of staphylococcal isolates to the majority of beta-lactam drugs used in veterinary practice. PMID:24592351

  20. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    PubMed

    Saggu, Sandeep Kaur; Mishra, Prakash Chandra

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  1. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil

    PubMed Central

    Saggu, Sandeep Kaur

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production. PMID:29190780

  2. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    PubMed Central

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and

  3. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments.

    PubMed

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas . Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus -induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus -induced physiological changes, including the regulation of water transport, nutrient up-take and

  4. Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology.

    PubMed

    Hymavathi, M; Sathish, T; Subba Rao, Ch; Prakasham, R S

    2009-10-01

    L-asparaginase production was optimized using isolated Bacillus circulans (MTCC 8574) under solid-state fermentation (SSF) using locally available agricultural waste materials. Among different agricultural materials (red gram husk, bengal gram husk, coconut, and groundnut cake), red gram husk gave the maximum enzyme production. A wide range of SSF parameters were optimized for maximize the production of L-asparaginase. Preliminary studies revealed that incubation temperature, moisture content, inoculum level, glucose, and L-asparagine play a vital role in enzyme yield. The interactive behavior of each of these parameters along with their significance on enzyme yield was analyzed using fractional factorial central composite design (FFCCD). The observed correlation coefficient (R(2)) was 0.9714. Only L-asparagine and incubation temperature, were significant in linear and quadratic terms. L-asparaginase yield improved from 780 to 2,322 U/gds which is more than 300% using FFCCD as a means of optimizing conditions.

  5. Polyphenols content of spent coffee grounds subjected to physico-chemical pretreatments influences lignocellulolytic enzymes production by Bacillus sp. R2.

    PubMed

    Khelil, Omar; Choubane, Slimane; Cheba, Ben Amar

    2016-07-01

    The objective of this study was to investigate the impact of polyphenols content changes issued after physico-chemical treatments of spent coffee grounds on lignocellulolytic enzymes production by Bacillus sp. R2. Total polyphenols of the collected substrates were extracted with water under autoclaving conditions. Results showed that polyphenols content of spent coffee grounds decreased with continued treatments. Untreated spent coffee grounds were the best substrate for cellulase and pectinase (1.33±0.06μ/ml and 0.32±0.02μ/ml respectively). A strong positive correlation was noticed between polyphenols content and cellulase and pectinase activities. However, xylanase and peroxidase correlated moderately with polyphenols content and their highest activities were registered with spent coffee grounds treated with boiling water and 1% EDTA (0.31±0.002μ/ml and 15.56±0.56μ/ml respectively). The obtained results indicate that polyphenols content of the pretreated substrates influences the production of lignocellulolytic enzymes by Bacillus sp. R2. Copyright © 2016. Published by Elsevier Ltd.

  6. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization.

    PubMed

    Božić, Nataša; Slavić, Marinela Šokarda; Gavrilović, Anja; Vujčić, Zoran

    2014-07-01

    α-Amylase production by solid-state fermentation of different Bacillus sp. was studied previously on different fermentation media. However, no study has been reported on the influence of selected media on expression of desired amylase isoforms such as raw-starch-digesting amylase (RSDA). In this paper, the influence of different inexpensive and available agro-resources as solid media (corn, wheat and triticale) on α-amylase isoform induction from three wild-type Bacillus sp., selected among one hundred strains tested, namely 9B, 12B and 24A was investigated. For all three strains, tested amylases were detected in the multiple forms; however, number and intensity of each form differed depending on the solid media used for growth. To determine which isoform from Bacillus sp. 12B was RSDA, the suspected isoform was purified. The optimum pH for the purified α-amylase isoform was 6.0-8.0, while the optimum temperature was 60-90 °C. Isoform was considerably thermostable and Ca(2+)-independent, and actually the only α-amylase active towards raw starch. Purification and characterization of RSDA showed that not all of the solid media tested induced RSDA. From an economic point of view, it might be significant to obtain pure isoenzyme for potential use in the raw-starch hydrolysis, since it was 5 times more efficient in raw corn starch hydrolysis than the crude amylase preparation.

  7. Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes.

    PubMed

    Zhang, Z; Ding, Z T; Zhong, J; Zhou, J Y; Shu, D; Luo, D; Yang, J; Tan, H

    2017-06-01

    Bacillus subtilis ZK0, which was isolated from cotton, produces a type of lipopeptide antibiotic iturin A that inhibits the growth of pathogenic fungi on agricultural crops. However, the low level of iturin A production by B. subtilis ZK0 does not support its large-scale application. In this study, B. subtilis ZK0 was subjected to genetic manipulation to improve iturin A production. By the independent or simultaneous overexpression of two regulatory genes (comA and sigA), iturin A production by B. subtilis ZK0 was significantly increased. When both genes were simultaneously overexpressed under optimal conditions, iturin A production increased up to 215 mg l -1 (an approximate 43-fold increase compared with B. subtilis ZK0). Moreover, overexpression of both genes was unexpectedly found to inhibit biofilm formation by B. subtilis ZK0, indicating that the phenomenon of 'stuck fermentation' would be avoided during B. subtilis ZK0 fermentation. In conclusion, a genetic manipulation method that improves iturin A production and inhibits biofilm formation in B. subtilis ZK0 is reported for the first time and this method has the potential to be widely applied in B. subtilis ZK0 commercial fermentation. This study provides new perspectives on improving iturin A production by Bacillus subtilis. Our newly engineered strains could be applied to commercial fermentation by enhancing yields of iturin A and reducing the rate of 'stuck fermentation'. Increased production would facilitate more widespread application of this powerful antibiotic. © 2017 The Society for Applied Microbiology.

  8. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    PubMed

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  9. Probiotic Bacillus spp. in Soy-Curd: Nutritional, Rheological, Sensory, and Antioxidant Properties.

    PubMed

    Shobharani, P; Prakash, Maya; Halami, Prakash M

    2015-10-01

    The focus of this study was to coculture probiotic Bacillus spp. with dairy starter cultures namely, Streptococcus thermophilus and Lactobacillus bulgaricus for enhanced nutritional properties of soy-curd. Subsequently, rheological, sensory, and antioxidant properties of soy-curd along with mineral as well as fatty acid composition were analyzed. Data revealed an increase in the cell viability of probiotic Bacillus spp. on coculturing rather than as mono-culture. Proximate analysis showed higher nutritional value along with increased trace elements. UFA/SFA ratio, rheology, and sensory properties of probiotic soy-curd were in the acceptable range. Probiotic soy-curd showed higher antioxidant activity as measured by the ability to scavenge free radicals. No significant difference in the overall quality within the probiotic products was observed. However, B. flexus MCC2427 cocultured product displayed slightly better attributes than other samples. In general, the results suggest that soy-curd can be a suitable carrier for probiotic Bacillus spp. and the enhanced nutritional and antioxidant properties could be of additional advantage to combat malnutrition problem. In order to supply consumers with intriguing probiotic products for improving health benefits, several criteria including technological and functional properties should be considered as a quality control measures. Further, a meaningful level of probiotics has to be viable to exhibit beneficial effect. Hence, present work has been carried out to improve the quality of soy-curd by supplementation of probiotic Bacillus spp. These Bacillus spp. are well characterized native probiotic cultures with potential functional attributes including antimicrobial, antioxidant, anticholesterol activity (Shobharani and Halami 2014). Hence, the application of these cultures will encourage for development of food product with wider health benefits. © 2015 Institute of Food Technologists®

  10. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri.

    PubMed

    Jasim, B; Sreelakshmi, K S; Mathew, Jyothis; Radhakrishnan, E K

    2016-07-01

    Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).

  11. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    PubMed

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bacillus subtilis based-formulation for the control of postbloom fruit drop of citrus.

    PubMed

    Klein, Mariana Nadjara; da Silva, Aline Caroline; Kupper, Katia Cristina

    2016-12-01

    Postbloom fruit drop (PFD) caused by Colletotrichum acutatum affects flowers and causes early fruit drop in all commercial varieties of citrus. Biological control with the isolate ACB-69 of Bacillus subtilis has been considered as a potential method for controlling this disease. This study aimed to develop and optimize a B. subtilis based-formulation with a potential for large-scale applications and evaluate its effect on C. acutatum in vitro and in vivo. Bacillus subtilis based-formulations were developed using different carrier materials, and their ability to control PFD was evaluated. The results of the assays led to the selection of the B. subtilis based-formulation with talc + urea (0.02 %) and talc + ammonium molybdate (1 mM), which inhibited mycelial growth and germination of C. acutatum. Studies with detached citrus flowers showed that the formulations were effective in controlling the pathogen. In field conditions, talc + urea (0.02 %) provided 73 % asymptomatic citrus flowers and 56 % of the average number of effective fruit (ANEF), equating with fungicide treatment. On the contrary, non-treated trees had 8.8 % of asymptomatic citrus flowers and 0.83 % ANEF. The results suggest that B. subtilis based-formulations with talc as the carrier supplemented with a nitrogen source had a high potential for PFD control.

  13. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process.

    PubMed

    Mohapatra, S; Sarkar, B; Samantaray, D P; Daware, A; Maity, S; Pattnaik, S; Bhattacharjee, S

    2017-12-01

    Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.

  14. Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system.

    PubMed

    Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S

    1997-10-01

    The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.

  15. Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition.

    PubMed

    Ghribi, D; Zouari, N; Jaoua, S

    2005-01-01

    The present work aimed to increase yields of delta-endotoxin production through adaptation of Bacillus thuringiensis cells to heat shock and sodium chloride and to investigate their involvements in bioinsecticides production improvement. Growing B. thuringiensis cells were heat treated after different incubation times to study the response of the adaptative surviving cells in terms of delta-endotoxin synthesis. Similarly, adaptation of B. thuringiensis cells to sodium chloride was investigated. Adaptation to combined stressors was also evaluated. When applied separately in the glucose-based medium, 20-min heat treatment of 6-h-old cultures and addition of 7 g l(-1) NaCl at the beginning of the incubation gave respectively 38 and 27% delta-endotoxin production improvements. Heat shock improved toxin synthesis yields, while NaCl addition improved delta-endotoxin production by increasing the spore titres without significant effect on toxin synthesis yields. Cumulative improvements (66%) were obtained by combination of the two stressors at the conditions previously established for each one. Interestingly, when the similar approach was conducted by using the large scale production medium based on gruel and fish meal, 17, 8 and 29% delta-endotoxin production improvements were respectively, obtained with heat shock, NaCl and combined stressors. Heat treatment of vegetative B. thuringiensis cells and NaCl addition to the culture media improved bioinsecticides production. Heat treatment increased toxin synthesis yields, while addition of NaCl increased biomass production yields. Cumulative improvements of 66 and 29% were obtained in glucose and economic production media, respectively. Overproduction of bioinsecticides by B. thuringiensis could be obtained by the combination of heat treatment of vegetative cells and addition of NaCl to the culture medium. This should contribute to a significant reduction of the cost of B. thuringiensis bioinsecticides production and

  16. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.

    PubMed

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter.

  17. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  18. Identification of Isopentenol Biosynthetic Genes from Bacillus subtilis by a Screening Method Based on Isoprenoid Precursor Toxicity▿

    PubMed Central

    Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.

    2007-01-01

    We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564

  19. Distribution of phenotypes among Bacillus thuringiensis strains

    USDA-ARS?s Scientific Manuscript database

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis...

  20. Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems.

    PubMed

    Li, Mengxi; Seo, Sooyoun; Karboune, Salwa

    2015-11-20

    Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (10products (>80%). In maple syrup 66°Bx, the most abundant products were oligolevans at 30°C and levans (DP≥30) at 8°C. The acceptor specificity study revealed the ability of B. amyloliquefaciens levansucrase to synthesize a variety of hetero-fructooligosaccharides (FOSs) in maple syrups 15°Bx and 30°Bx enriched with various disaccharides, with lactose being the preferred fructosyl acceptor. The current study is the first to investigate maple-syrup-based reaction systems for the synthesis of FOSs/oligolevans/levans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant.

    PubMed

    Zouari, Raida; Moalla-Rekik, Dorsaf; Sahnoun, Zouheir; Rebai, Tarek; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2016-12-01

    Lipopeptide microbial surfactants are endowed with unique surface properties as well as antimicrobial, anti-wrinkle, moisturizing and free radical scavenging activities. They were introduced safely in dermatological products, as long as they present low cytotoxicity against human cells. The present study was undertaken to evaluate the in vitro antioxidant activities and the wound healing potential of Bacillus subtilis SPB1 lipopeptide biosurfactant on excision wounds induced in experimental rats. The scavenging effect of Bacillus subtilis SPB1 biosurfactant on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical at 1mg/mL was 70.4% (IC 50 =0.55mg/mL). The biosurfactant produced by Bacillus subtilis SPB1 also showed good reducing power and significant effects in terms of the β-carotene test (IC 50 =2.26mg/mL) when compared to BHA as a reference standard. Moreover, an interesting ferrous ion chelating activity (80.32%) was found for SPB1 biosurfactant at 1mg/mL. Furthermore, the topical application of Bacillus subtilis SPB1 biosurfactant based gel on the wound site in a rat model every two days, increased significantly the percentage of wound closure over a period of 13days, when compared to the untreated and CICAFLORA™-treated groups. Wound healing effect of SPB1 biosurfactant based gel was confirmed by histological study. Biopsies treated with SPB1 lipopeptides showed wholly re-epithelialized wound with a perfect epidermal regeneration. The present study provides justification for the use of Bacillus subtilis SPB1 lipopeptide biosurfactant based gel for the treatment of normal and complicated wounds as well as skin diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Lysine production from methanol at 50 degrees C using Bacillus methanolicus: Modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation.

    PubMed

    Lee, G H; Hur, W; Bremmon, C E; Flickinger, M C

    1996-03-20

    A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified

  3. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root.

    PubMed

    Qiu, Fubin; Zhang, Xiaoxia; Liu, Lin; Sun, Lei; Schumann, Peter; Song, Wei

    2009-04-01

    Four alkaligenous, moderately halotolerant strains, designated ge09, ge10(T), ge14(T) and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10(T) formed one cluster and strains ge14(T) and ge15 formed another separate cluster within the genus Bacillus. 16S rRNA gene sequence similarities with type strains of other Bacillus species were less than 97 %. Levels of DNA-DNA relatedness among the four strains showed that strains ge09 and ge10(T) and strains ge14(T) and ge15 belonged to two separate species; the mean level of DNA-DNA relatedness between ge10(T) and ge14(T) was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus Bacillus. The DNA G+C contents of strains ge10(T) and ge14(T) were 49.9 and 49.6 mol%, respectively. Strains ge10(T) and ge14(T) showed the peptidoglycan type A4alpha l-Lys-d-Glu. The lipids present in strains ge10(T) and ge14(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C(15 : 0) (42.5 %), anteiso-C(15 : 0) (22.2 %), anteiso-C(17 : 0) (7.3 %) and C(16 : 1)omega7c alcohol (5.7 %) in ge10(T) and iso-C(15 : 0) (50.7 %) and anteiso-C(15 : 0) (20.1 %) in ge14(T). On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus Bacillus are proposed, Bacillus beijingensis sp. nov. (type strain ge10(T) =DSM 19037(T) =CGMCC 1.6762(T)) and Bacillus ginsengi sp. nov. (type strain ge14

  4. Development of a systematic feedback isolation approach for targeted strains from mixed culture systems.

    PubMed

    Poudel, Pramod; Tashiro, Yukihiro; Miyamoto, Hirokuni; Miyamoto, Hisashi; Okugawa, Yuki; Sakai, Kenji

    2017-01-01

    Elucidation of functions of bacteria in a mixed culture system (MCS) such as composting, activated sludge system is difficult, since the system is complicating with many unisolated bacteria. Here, we developed a systematic feedback isolation strategy for the isolation and rapid screening of multiple targeted strains from MCS. Six major strains (Corynebacterium sphenisci, Bacillus thermocloacae, Bacillus thermoamylovorans, Bacillus smithii, Bacillus humi, and Bacillus coagulans), which are detected by denaturing gradient gel electrophoresis (DGGE) analysis in our previous study on MCS for l-lactic acid production, were targeted for isolation. Based on information of suitable cultivation conditions (e.g., media, pH, temperature) from the literature, feedback isolation was performed to form 136 colonies. The following direct colony matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was optimised as the second screening to narrow down 20 candidate colonies from similar spectra patterns with six closest type strains. This step could distinguish bacteria at the species level with distance similarity scores ≥0.55 corresponding to 16S rRNA gene sequence similarity ≥98.2%, suggesting that this is an effective technique to minimize isolates close to targeted type strains. Analysis of 16S rRNA gene sequences indicated that two targeted strains and one strain related to the target had successfully been isolated, showing high similarities (99.5-100%) with the sequences from the DGGE bands, and that the other candidates were affiliated with three strains that were closely related to the target species. This study proposes a new method for systematic feedback isolation that may be useful for isolating targeted strains from MCS for further investigation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production.

    PubMed

    Kubo, Yuji; Rooney, Alejandro P; Tsukakoshi, Yoshiki; Nakagawa, Rikio; Hasegawa, Hiromasa; Kimura, Keitarou

    2011-09-01

    Spore-forming Bacillus strains that produce extracellular poly-γ-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 424 strains, including Bacillus subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting natto. Biotin auxotrophism was tightly linked to natto fermentation. A multilocus nucleotide sequence of six genes (rpoB, purH, gyrA, groEL, polC, and 16S rRNA) was used for phylogenetic analysis, and amplified fragment length polymorphism (AFLP) analysis was also conducted on the natto-fermenting strains. The ability to ferment natto was inferred from the two principal components of the AFLP banding pattern, and natto-fermenting strains formed a tight cluster within the B. subtilis subsp. subtilis group.

  6. Increased dipicolinic acid production with an enhanced spoVF operon in Bacillus subtilis and medium optimization.

    PubMed

    Takahashi, Fumikazu; Sumitomo, Nobuyuki; Hagihara, Hiroshi; Ozaki, Katsuya

    2015-01-01

    Dipicolinic acid (DPA) is a multi-functional agent for cosmetics, antimicrobial products, detergents, and functional polymers. The aim of this study was to design a new method for producing DPA from renewable material. The Bacillus subtilis spoVF operon encodes enzymes for DPA synthase and the part of lysine biosynthetic pathway. However, DPA is only synthesized in the sporulation phase, so the productivity of DPA is low level. Here, we report that DPA synthase was expressed in vegetative cells, and DPA was produced in the culture medium by replacement of the spoVFA promoter with other highly expressed promoter in B. subtilis vegetative cells, such as spoVG promoter. DPA levels were increased in the culture medium of genetically modified strains. DPA productivity was significantly improved up to 29.14 g/L in 72 h culture by improving the medium composition using a two-step optimization technique with the Taguchi methodology.

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  8. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.

    PubMed

    Lin, Johnson; Madida, Bafana B

    2015-10-01

    The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r =  0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  10. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-08-01

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm’s shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  11. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model.

    PubMed

    Zhang, Xianlong; Wang, Xiaoling; Nie, Kai; Li, Mingpeng; Sun, Qingping

    2016-07-19

    Various species of bacteria form highly organized spatially-structured aggregates known as biofilms. To understand how microenvironments impact biofilm growth dynamics, we propose a diffusion-reaction continuum model to simulate the formation of Bacillus subtilis biofilm on an agar plate. The extended finite element method combined with level set method are employed to perform the simulation, numerical results show the quantitative relationship between colony morphologies and nutrient depletion over time. Considering that the production of polysaccharide in wild-type cells may enhance biofilm spreading on the agar plate, we inoculate mutant colony incapable of producing polysaccharide to verify our results. Predictions of the glutamate source biofilm's shape parameters agree with the experimental mutant colony better than that of glycerol source biofilm, suggesting that glutamate is rate limiting nutrient for Bacillus subtilis biofilm growth on agar plate, and the diffusion-limited is a better description to the experiment. In addition, we find that the diffusion time scale is of the same magnitude as growth process, and the common-employed quasi-steady approximation is not applicable here.

  12. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  13. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    PubMed

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  14. Differentiation of Bacillus Anthracis and Other Bacillus Species by Use of Lectins

    DTIC Science & Technology

    1983-07-18

    TITL9 fAnd Subtfitle) S.TypeO REPORT gi PZRCC rvt 4 DIFFERENTIATION OF BACIL-LUSg’ ANTHRAtgACIS D OTHER BACILLUS , SPECIES BY-USE OYLECTINS" Inter[im...Ricinus communis. Some strains of Bacillus cer-eus var. m-ycoides (B. Mycoides) were strongly reactive with the lectin from Helbi pomtia and weakly reacti...ve with the Glycine max lectin. The differential iCnteractions between Bacillus species and lectins af forded a means of distinguishing B. anthracis

  15. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

    PubMed

    Khowal, Sapna; Siddiqui, Md Zulquarnain; Ali, Shadab; Khan, Mohd Taha; Khan, Mather Ali; Naqvi, Samar Husain; Wajid, Saima

    2017-02-01

    The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    PubMed

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  17. Severe hepatotoxicity following ingestion of Herbalife nutritional supplements contaminated with Bacillus subtilis.

    PubMed

    Stickel, Felix; Droz, Sara; Patsenker, Eleonora; Bögli-Stuber, Katja; Aebi, Beat; Leib, Stephen L

    2009-01-01

    Nutritional supplements are widely used. Recently, liver injury after consumption of Herbalife preparations was reported but the underlying pathogenesis remained cryptic. Two patients presented with cholestatic hepatitis and pruritus, and cirrhosis, respectively. Viral, alcoholic, metabolic, autoimmune, neoplastic, vascular liver diseases and synthetic drugs as the precipitating causes of liver injury were excluded. However, both patients reported long-term consumption of Herbalife products. All Herbalife products were tested for contamination with drugs, pesticides, heavy metals, and softeners, and examined for microbial contamination according to standard laboratory procedures. Bacteria isolated from the samples were identified as Bacillus subtilis by sequencing the 16S rRNA and gyrB genes. Causality between consumption of Herbalife products and disease according to CIOMS was scored "probable" in both cases. Histology showed cholestatic and lobular/portal hepatitis with cirrhosis in one patient, and biliary fibrosis with ductopenia in the other. No contamination with chemicals or heavy metals was detected, and immunological testing showed no drug hypersensitivity. However, samples of Herbalife products ingested by both patients showed growth of Bacillus subtilis of which culture supernatants showed dose- and time-dependent hepatotoxicity. Two novel incidents of severe hepatic injury following intake of Herbalife products contaminated with Bacillus subtilis emphasize its potential hepatotoxicity.

  18. Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant.

    PubMed

    Prakash, S; Rajeswari, K; Divya, P; Ferlin, M; Rajeshwari, C T; Vanavil, B

    2018-05-28

    Curdlan gum is a neutral water-insoluble bacterial exopolysaccharide composed primarily of linear β-(1,3) glycosidic linkages. Recently, there has been increasing interest in the applications of curdlan and its derivatives. Curdlan is found to inhibit tumors and its sulfated derivative possess anti-HIV activity. Curdlan is biodegradable, non-toxic towards human, environment and edible which makes it suitable as drug-delivery vehicles for sustained drug release. The increasing demand for the growing applications of curdlan requires an efficient high yield fermentation production process so as to satisfy the industrial needs. In this perspective, the present work is aimed to screen and isolate an efficient curdlan gum producing bacteria from rhizosphere of ground nut plant using aniline-blue agar. High yielding isolate was selected based on curdlan yield and identified as Bacillus cereus using gas-chromatography fatty acid methyl ester analysis. B. cereus PR3 curdlan gum was characterized using FT-IR spectroscopy, SEM, XRD and TGA. Fermentation time for curdlan production using B. cereus PR3 was optimized. Media constituents like carbon, nitrogen and mineral sources were screened using Plackett-Burman design. Subsequent statistical analysis revealed that Starch, NH 4 NO 3 , K 2 HPO 4 , Na 2 SO 4 , KH 2 SO 4 and CaCl 2 were significant media constituents and these concentrations were optimized for enhancement of curdlan production up to 20.88 g/l.

  19. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance.

    PubMed

    Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony

    2011-11-01

    PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting.

    PubMed

    Otlewska, Anna; Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800

    PubMed Central

    2013-01-01

    Background Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. Results A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65°C and pH 9. The nattokinase was stable at temperature up to 50°C and in pH range of 5–11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity

  2. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800.

    PubMed

    Nguyen, Thao Thi; Quyen, Thi Dinh; Le, Hoang Thanh

    2013-09-10

    Nattokinases/Subtilisins (EC 3.4.21.62) belong to the second large family of serine proteases, which gain significant attention and play important role in many biotechnology processes. Thus, a number of nattokinases/subtilisins from various Bacillus species, especially from B. subtilis strains, extensively have been investigated to understand their biochemical and physical properties as well as to improve the production for industrial application. The purpose of this study was to clone a nattokinase gene from Bacillus subtilis strain VTCC-DVN-12-01, enhance its production in B. subtilis WB800, which is deficient in eight extracellular proteases and characterize its physicochemical properties for potential application in organic synthesis and detergent production. A gene coding for the nattokinase (Nk) from B. subtilis strain VTCC-DVN-12-01 consisted of an ORF of 1146 nucleotides, encoding a pre-pro-protein enzyme (30-aa pre-signal peptide, 76-aa pro-peptide and 275-aa mature protein with a predicted molecular mass of 27.7 kDa and pI 6.6). The nattokinase showed 98-99% identity with other nattokinases/subtilisins from B. subtilis strains in GenBank. Nk was expressed in B. subtilis WB800 under the control of acoA promoter at a high level of 600 mg protein per liter culture medium which is highest yield of proteins expressed in any extracellular-protease-deficient B. subtilis system till date. Nk was purified to homogeneity with 3.25 fold purification, a specific activity of 12.7 U/mg, and a recovery of 54.17%. The purified Nk was identified by MALDI-TOF mass spectrometry through three peptides, which showed 100% identity to corresponding peptides of the B. subtilis nattokinase (CAC41625). An optimal activity for Nk was observed at 65 °C and pH 9. The nattokinase was stable at temperature up to 50 °C and in pH range of 5-11 and retained more than 85% of its initial activity after incubation for 1 h. Mg2+ activated Nk up to 162% of its activity. The addition of

  3. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  4. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Lee, Mi Young; Lee, Jang Ho; Lee, Hyuck; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-11-01

    Two Gram-positive bacilli, designated as strains SMC 4352-1T and SMC 4352-2T, were isolated sequentially from the blood of a newborn child with sepsis. They could not be identified by using conventional clinical microbiological methods. 16S rRNA gene sequencing and phylogenetic analysis revealed that both strains belonged to the genus Bacillus but clearly diverged from known Bacillus species. Strain SMC 4352-1T and strain SMC 4352-2T were found to be closely related to Bacillus firmus NCIMB 9366T (98.2% sequence similarity) and Bacillus cibi JG-30T (97.1% sequence similarity), respectively. They also displayed low DNA-DNA reassociation values (less than 40%) with respect to the most closely related Bacillus species. On the basis of their polyphasic characteristics, strain SMC 4352-1T and strain SMC 4352-2T represent two novel species of the genus Bacillus, for which the names Bacillus infantis sp. nov. (type strain SMC 4352-1T=KCCM 90025T=JCM 13438T) and Bacillus idriensis sp. nov. (type strain SMC 4352-2T=KCCM 90024T=JCM 13437T) are proposed.

  5. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements.

    PubMed

    Gu, Yanyan; Zheng, Jiayi; Feng, Jun; Cao, Mingfeng; Gao, Weixia; Quan, Yufen; Dang, Yulei; Wang, Yi; Wang, Shufang; Song, Cunjiang

    2017-05-01

    Levan is a functional homopolymer of fructose with considerable applications in food, pharmaceutical and cosmetic industries. To improve the levan production in Bacillus amyloliquefaciens, the regulatory elements of sacB (encoding levansucrase) expression and levansucrase secretion were optimized. Four heterologous promoters were evaluated for sacB expression, and the Pgrac promoter led to the highest level for both sacB transcription and levansucrase enzyme activity. The levan production in the corresponding recombinant strain ΔLP-pHTPgrac reached 30.5 g/L, which was 114% higher than that of the control strain NK-ΔLP. In a further step, eight signal peptides were investigated (with Pgrac as the promoter for sacB expression) for their effects on the levansucrase secretion and levan production. The signal peptide yncM was identified as the optimal one, with a secretion efficiency of approximately 90%, and the levan production in the corresponding recombinant strain ΔLP-Y reached 37.4 g/L, which was 161% higher when compared with the control strains NK-ΔLP. Finally, fed-batch fermentation was carried out in 5-L bioreactors for levan production using the recombinant strain ΔLP-Y. A final levan concentration of 102 g/L was achieved, which is very close to the ever reported highest levan production level from the literature. To our best knowledge, this is the first report of the improvement of levan production through metabolic optimization for sacB expression and levansucrase secretion. The results from this study provided essential insights for systematically metabolic engineering of microbial cell factories for enhanced biochemical production.

  6. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio.

    PubMed

    Siahmoshteh, Fatemeh; Siciliano, Ilenia; Banani, Houda; Hamidi-Esfahani, Zohreh; Razzaghi-Abyaneh, Mehdi; Gullino, Maria Lodovica; Spadaro, Davide

    2017-08-02

    Pistachio (Pistacia vera) is an important nut for its economic, nutritional and health aspects but it can be contaminated by aflatoxigenic fungi in the field and during storage. Biological control could be considered as an alternative to chemical treatment. In this study, we evaluated the antifungal and anti-mycotoxigenic capability of two Bacillus spp. both in vitro and on pistachio kernels. In in vitro conditions, both strains were able to reduce the mycelial growth and they were able to degrade the four aflatoxins during the first three days after inoculation. AFG 1 and AFG 2 were rapidly degraded within two days of incubation with the bacterial strains. No aflatoxin was found in the bacterial cell walls, permitting exclusion of mycotoxin adsorption and hypothesis of an in vitro biodegradation as a mode of action. The cultivar of pistachio most susceptible to fungal colonization was 'Ahmad-Aghaei', selected among four main Iranian cultivars. A. parasiticus was able to grow and produce aflatoxins on pistachios, but at longer inoculation periods, a natural decrease of aflatoxins was registered. Both strains were able to reduce the fungal incidence and number of spores on pistachio with a stronger effect during the first 5dpi. The effect on aflatoxin content in vivo was less pronounced than in vitro, with a maximum effect at 8dpi. At longer times, there was a contrasting effect due to the lower activity of Bacillus spp. in stationary phase and higher growth of Aspergillus species. This consideration could explain the lack of aflatoxin reduction at 12dpi. Both bacterial strains showed good antifungal activity and aflatoxin reduction in in vitro conditions and on pistachio kernels. Altogether, these results indicate that Bacillus species could be considered as potential biocontrol agents to combat toxigenic fungal growth and subsequent aflatoxin contamination of nuts and agricultural crops in practice. Copyright © 2017. Published by Elsevier B.V.

  7. Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis.

    PubMed

    Barboza-Corona, J Eleazar; Vázquez-Acosta, Herminia; Bideshi, Dennis K; Salcedo-Hernández, Rubén

    2007-02-01

    Bacteriocins are antimicrobial peptides synthesized and secreted by bacteria and could potentially be used as natural food preservatives. Here, we report the production of bacteriocin-like inhibitor substances (Bt-BLIS) by five Mexican strains of Bacillus thuringiensis. Bacillus thuringiensis subsp. morrisoni (LBIT 269), B. thuringiensis subsp. kurstaki (LBIT 287), B. thuringiensis subsp kenyae (LBIT 404), B. thuringiensis subsp. entomocidus (LBIT 420) and B. thuringiensis subsp. tolworthi (LBIT 524) produced proteinaceous Bt-BLIS with high levels of activity against Bacillus cereus and other gram-positive bacteria. Although none was active against the gram-negative bacteria, Escherichia coli, Shigella species and Pseudomonas aeruginosa, the five Bt-BLIS demonstrated antimicrobial activity against Vibrio cholerae, the etiologic agent of cholera. Biochemical and biophysical studies demonstrated that the five Bt-BLIS could be categorized into two groups, those produced by LBIT 269 and 287 (Group A) and LBIT 404, 420, 524 (Group B), based on relative time of peptide synthesis, distinctive bacterial target specificity and stability in a wide range of temperatures and pH. Because of their stability and bactericidal activities against B. cereus and V. cholerae agents of emetic, diarrheal and lethal syndromes in humans, these Bt-BLIS could potentially be used as biodegradable preservatives in the food industry.

  8. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM).

    PubMed

    Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira

    2016-12-01

    In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization

    PubMed Central

    Patil, Ulhas; Chaudhari, Ambalal

    2013-01-01

    In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412 U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100 rpm. The competence of strain to grow in various organic solvents—n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. PMID:25937965

  10. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  11. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  12. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-07-01

    Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    PubMed

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P < 0.01), MCP production (P < 0.01), and tended to elevate total VFA (P = 0.07), but decreased the ratio of acetate and propionate (P < 0.01). Autoclaved Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  14. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07.

    PubMed

    Gaur, Rajeeva; Tiwari, Soni

    2015-03-19

    The rising concerns about the scarcity of fossil fuels, the emission of green house gasses and air pollution by incomplete combustion of fossil fuel have also resulted in an increasing focus on the use of cellulases to perform enzymatic hydrolysis of the lignocellulosic materials for the generation of bioethanol. The aim of this study was to isolate a potential thermo-solvent tolerant cellulase producing bacterium from natural resources, and then applied for purification and characterization. The purified enzyme was to be accessible for the bioethanol production as well as industrial exploitation (discuss in our next study). It is the first instance when thermo-solvent tolerant cellulase producing bacterium was isolated from soil sample. The culture was identified as Bacillus vallismortis RG-07 by 16S rDNA sequence analysis. Bacillus vallismortis RG-07 reported maximum cellulase production from sugarcane baggase (4105 U ml(-1)) used as agro-waste carbon source. The cellulase enzyme produced by the Bacillus sp. was purified by (NH4)2SO4 precipitation, ion exchange and gel filtration chromatography, with overall recovery of 28.8%. The molecular weight of purified cellulase was 80 kDa as revealed by SDS-PAGE and activity gel analysis. The optimum temperature and pH for enzyme activity was determined as 65°C and 7.0 and it retained 95 and 75% of activity even at 95°C, and 9.0 respectively. The enzyme activity was enhanced in the presence of organic solvents (30%) n-dodecane, iso-octane, n-decane, xylene, toluene, n-haxane, n-butanol, and cyclohexane, after prolonged incubation (7 days). The enzyme activity was also stimulated by Ca(2+), mercaptoethanol, Tween-60, and Sodium hypochloride whereas strongly inhibited by Hg. Kinetic analysis of purified enzyme showed the Km and Vmax to be 1.923 mg ml(-1) and 769.230 μg ml(-1) min(-1), respectively. The unique property of solvent-thermostable-alkalophilic, nature proves the potential candidature of this isolate for

  15. STUDIES ON EXPERIMENTAL PNEUMONIA : IX. PRODUCTION IN MONKEYS OF AN ACUTE RESPIRATORY DISEASE RESEMBLING INFLUENZA BY INOCULATION WITH BACILLUS INFLUENZAE.

    PubMed

    Blake, F G; Cecil, R L

    1920-11-30

    , bronchiolitis, and a characteristic type of bronchopneumonia confirms by animal experiment the etiologic relation of Bacillus influenzae to these complications of influenza, which hitherto has rested solely upon the frequent association of the influenza bacillus with these lesions in man. The production of tracheobronchitis and the same type of bronchopneumonia by the intratracheal injection of Bacillus influenzae in the second series of experiments serves as additional confirmation of this, but has no direct bearing on the etiologic relation of Bacillus influenzae to uncomplicated influenzae.

  16. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants

    PubMed Central

    Wu, Liming; Wu, Hui-Jun; Qiao, Junqing; Gao, Xuewen; Borriss, Rainer

    2015-01-01

    Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents. PMID:26696998

  17. Differences in the roles of a glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase between Bacillus circulans and Bacillus subtilis.

    PubMed

    Itagaki, Shiori; Haga, Minami; Oikawa, Yuji; Sakoda, Ayaka; Ohke, Yoshie; Sawada, Hiroshi; Eguchi, Tadashi; Tamegai, Hideyuki

    2013-01-01

    BtrC2 of the butirosin producer Bacillus circulans is a non-catalytic subunit of 2-deoxy-scyllo-inosose (DOI) synthase that is involved in butirosin biosynthesis, and also a homolog of glutamine amidotransferase subunit (PdxT) of pyridoxal 5'-phosphate (PLP) synthase of Bacillus subtilis. BtrC2 has been found to have functions in B. circulans both in primary and secondary metabolism. In this study, we investigated the properties of PdxT of B. subtilis in order to determine whether the property of enzyme stabilization is universal among PdxT homologs. Complementation with PdxT in the btrC2 disruptant of B. circulans restored the growth and short-term production of antibiotics, but long-term production of antibiotics cannot be restored. Additionally, PdxT did not bind physically with or stabilize BtrC. Our results indicate that the function of BtrC2 in secondary metabolism is specific properties, not universal among PdxT homologs.

  18. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  19. Enhanced Production and Characterization of a Solvent Stable Amylase from Solvent Tolerant Bacillus tequilensis RG-01: Thermostable and Surfactant Resistant

    PubMed Central

    Tiwari, Soni; Shukla, Neha; Mishra, Pooja; Gaur, Rajeeva

    2014-01-01

    Ten bacterial strains isolated from the soil samples in the presence of cyclohexane were screened for amylase production. Among them, culture RG-01 was adjudged as the best amylase producer and was identified as Bacillus tequilensis from MTCC, Chandigarh. The isolate showed maximum amylase production (8100 U/mL) in the presence of starch, peptone, and Ca2+ ions at 55°C pH 7.0 within 24 h of incubation. The enzyme was stable in the presence of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the amylase stability, respectively. The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively. The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1%) and was found stimulatory effect, respectively. Only Triton-X-100 showed a moderate inhibitory effect (5%) on amylase activity. This isolate (Bacillus tequilensis RG-01) may be useful in several industrial applications owing to its thermotolerant and organic solvents and surfactants resistance characteristics. PMID:25401163

  20. Non-sterilized fermentative co-production of poly(γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28.

    PubMed

    Zeng, Wei; Li, Wei; Shu, Lin; Yi, Juyang; Chen, Guiguang; Liang, Zhiqun

    2013-08-01

    Poly(γ-glutamic acid), as a naturally occurring homopolymer, is widely used in industry, agriculture, food and medicine. Fibrinolytic enzyme has a great potential for the prevention and/or treatment of vascular diseases caused by fibrin clots. Co-production of γ-PGA and fibrinolytic enzyme by Bacillus subtilis GXA-28 (CCTCC M 2012347) from soybean residue using cane molasses and monosodium glutamate waste liquor under sterilized and non-sterilized condition were investigated. It was observed that total sugar from cane molasses of 3% (w/w) and glutamate from monosodium glutamate waste liquor of 2% (w/w) were favorable for γ-PGA and fibrinolytic enzyme co-production at pH 7.0 and 45°C. Based on the optimal medium, the γ-PGA and fibrinolytic activity reached 103.5 g/kg-substrates at 22 h and 986 U/g-substrates at 24h under non-sterilized condition, respectively. To our knowledge, the yield of γ-PGA was highest in all reported literatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    NASA Astrophysics Data System (ADS)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  2. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308.

    PubMed

    Sikora, Barbara; Kubik, Celina; Kalinowska, Halina; Gromek, Ewa; Białkowska, Aneta; Jędrzejczak-Krzepkowska, Marzena; Schüett, Fokko; Turkiewicz, Marianna

    2016-08-17

    A nonpathogenic bacterial strain Bacillus amyloliquefaciens TUL 308 synthesized minor 2,3-butanediol (2,3-BD) amounts from glucose, fructose, sucrose, and glycerol, and efficiently produced the diol from molasses and hydrolysates of food processing residues. Batch fermentations yielded 16.53, 10.72, and 5 g/L 2,3-BD from enzymatic hydrolysates of apple pomace, dried sugar beet pulp, and potato pulp (at initial concentrations equivalent to 45, 20, and 30 g/L glucose, respectively), and 25.3 g/L 2,3-BD from molasses (at its initial concentration equivalent to 60 g/L saccharose). Fed-batch fermentations in the molasses-based medium with four feedings with either glucose or sucrose (in doses increasing their concentration by 25 g/L) resulted in around twice higher maximum 2,3-BD concentration (of about 60 and 50 g/L, respectively). The GRAS Bacillus strain is an efficient 2,3-BD producer from food industry byproducts.

  3. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Song, Fei; Fang, Caiyuan; Xin, Yuhua; Zhang, Yabo

    2011-05-01

    A Gram-stain-positive, rod-shaped bacterium, designated strain NH3(T), was isolated from a sediment sample from the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew optimally at 37 °C and pH 9. Strain NH3(T) had cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The cellular fatty acid profile included significant amounts of iso-C(15 : 0) and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NH3(T) was 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NH3(T) was a member of rRNA group 6 of the genus Bacillus, which includes alkalitolerant, alkaliphilic and halotolerant species. The closest phylogenetic relatives were Bacillus akibai 1139(T) (96.82 % 16S rRNA gene sequence similarity), B. pseudofirmus DSM 8715(T) (96.76 %), B. okhensis Kh10-101(T) (96.76 %) and B. alkalidiazotrophicus MS 6(T) (96.47 %). Strain NH3(T) could be distinguished from these phylogenetically close neighbours based on a number of phenotypic properties. On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, we conclude that strain NH3(T) ( = CGMCC 1.10116(T)  = JCM 16507(T)) merits classification as the type strain of a novel species, for which the name Bacillus nanhaiisediminis sp. nov. is proposed.

  4. HtrC Is Involved in Proteolysis of YpeB during Germination of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Bernhards, Casey B.; Chen, Yan; Toutkoushian, Hannah

    2014-01-01

    Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn2+ or Ca2+ ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation. PMID:25384476

  5. Evaluation of cashew apple juice for surfactin production by Bacillus subtilis LAMI008.

    PubMed

    Ponte Rocha, Maria Valderez; Gomes Barreto, Raphaela V; Melo, Vânia Maria M; Barros Gonçalves, Luciana Rocha

    2009-05-01

    Bacillus subtilis LAMI008 strain isolated from the tank of Chlorination at the Wastewater Treatment Plant on Campus do Pici in Federal University of Ceará, Brazil has been screened for surfactin production in mineral medium containing clarified cashew apple juice (MM-CAJC). Results were compared with the ones obtained using mineral medium with glucose PA as carbon source. The influence on growth and surfactin production of culture medium supplementation with yeast extract was also studied. The substrate concentration analysis indicated that B. subtilis LAMI008 was able to degrade all carbon sources studied and produce biosurfactant. The highest reduction in surface tension was achieved with the fermentation of MM-CAJC, supplemented with yeast extract, which decreased from 58.95 +/- 0.10 to 38.10 +/- 0.81 dyn cm(-1). The biosurfactant produced was capable of emulsifying kerosene, achieving an emulsification index of 65%. Surfactin concentration of 3.5 mg L(-1) was obtained when MM-CAJC, supplemented with yeast extract, was used, thus indicating that it is feasible to produce surfactin from clarified cashew apple juice, a renewable and low-cost carbon source.

  6. Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis

    PubMed Central

    Flickinger, M. C.; Perlman, D.

    1979-01-01

    The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361

  7. Characterization of Bacillus megaterium, Bacillus pumilus, and Paenibacillus polymyxa isolated from a Pinot noir wine from Western Washington State.

    PubMed

    von Cosmos, Nicolas H; Watson, Bruce A; Fellman, J K; Mattinson, D S; Edwards, Charles G

    2017-10-01

    This report provides the first confirmed evidence of Bacillus-like bacteria present in a wine from Washington State. These bacteria were isolated from a 2013 Pinot noir wine whose aroma was sensorially described as being 'dirty' or 'pond scum.' Based on physiological traits and genetic sequencing, three bacterial isolates were identified as Bacillus megaterium (strain NHO-1), Bacillus pumilus (strain NHO-2), and Paenibacillus polymyxa (strain NHO-3). These bacteria grew in synthetic media of low pH (pH 3.5) while some survived ethanol concentrations up to 15% v/v. However, none tolerated molecular SO 2 concentrations ≥0.4 mg/l. Growth of strains NHO-1 and NHO-3 in a Merlot grape juice resulted in increases of titratable and volatile acidities while decreases in titratable acidity were noted for NHO-2. Copyright © 2017. Published by Elsevier Ltd.

  8. Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01.

    PubMed

    Kamijo, Takashi; Saito, Akihiro; Ema, Sadaharu; Yoh, Inchi; Hayashi, Hiroko; Nagata, Ryo; Nagata, Yoshiho; Ando, Akikazu

    2011-02-01

    An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4-11 and up to 30°C, and its optimum pH and temperature were 8-9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl(2), in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.

  9. Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water.

    PubMed

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h(-1) L(-1), using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management.

  10. Poly β-Hydroxybutyrate Production by Bacillus subtilis NG220 Using Sugar Industry Waste Water

    PubMed Central

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K.

    2013-01-01

    The production of poly β-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14 g h−1 L−1, using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297 g/L of poly β-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management. PMID:24027767

  11. Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response.

    PubMed

    Zhou, Xuxia; Tian, Ziqiang; Wang, Yanbo; Li, Weifen

    2010-09-01

    A feeding trial was conducted for 40 days to delineate the effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. About 360 juveniles were randomly distributed into four treatment groups, each with three replicates. Different probiotics (T-1, Bacillus subtilis B10; T-2, Bacillus coagulans B16; T-3, Rhodopseudomonas palustris G06) were added to the water of tanks at final concentration of 1 x 10(7) cfu ml(-1) every 2 days, with no probiotic added to control tanks. At the end of the feeding trial, fish treated with B. coagulans B16 (T-2) and R. palustris G06 (T-3) had significantly (P < 0.05) higher final weight, daily weight gain, and specific growth rate compared with those treated with B. subtilis B10 (T-1) and those without probiotics (control). The highest (P < 0.05) content of total serum protein was found in T-2 compared with that in T-1, T-3, and the control. However, albumin concentration and albumin/globulin ratio were not affected by the probiotics treatments. Compared with the control, probiotic supplementation remarkably improved activities of superoxide dismutase and catalase (P < 0.05). T-2 fish exhibited higher average myeloperoxidase activity than the control, T-1, and T-3 groups. Regarding serum lysozyme content in tilapia, assays showed no difference (P > 0.05) among the treatment groups. Furthermore, probiotics treatments remarkably increased respiratory burst activity compared with control, with T-2 showing higher values than T-1 and T-3. This indicated that treatment with probiotics, B. coagulans B16 and R. palustris G06, as water additives could be used to enhance immune and health status, thereby improving growth performance of O. niloticus.

  12. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production

    USDA-ARS?s Scientific Manuscript database

    Spore-forming Bacillus strains that produce extracellular poly-'-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 365 strains, including B. subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting n...

  13. Cultivation of an L-lactate dehydrogenase mutant of Bacillus stearothermophilus in continuous culture with cell recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.S.; Bushell, D.; Leak, D.J.

    1994-06-05

    Continuous fermentation with cell recycle proved very effective in increasing the ethanol volumetric productivity of the thermophilic facultative anaerobe, Bacillus stearothermophilus strain LLD-15, on sucrose at 70 C. When complete cell recycle was used, cell viability decreased after a few residence times and sucrose consumption was reduced. Operation using a constant bleed rate resulted in greater stability and higher ethanol volumetric productivities. A mathematical model based on maintenance energy requirements provided an adequate description of the system.

  14. Bacillus cereus Biofilms—Same, Only Different

    PubMed Central

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  15. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    PubMed

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  16. A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities.

    PubMed

    Hmani, Houda; Daoud, Lobna; Jlidi, Mouna; Jalleli, Karim; Ben Ali, Manel; Hadj Brahim, Adel; Bargui, Mansour; Dammak, Alaeddine; Ben Ali, Mamdouh

    2017-08-01

    We have proposed and validate an in vitro probiotic selection, based on enzymatic potentialities associated to well-established probiotic functional properties. A new Bacillus subtilis HB2 isolate, selected based on its high extracellular enzyme production, was chosen as a probiotic candidate for application as animal feed supplement. The HB2 strain showed an excellent acid and bile salts tolerance, a strong adhesion to chick enterocytes and produced antimicrobials against pathogens. An in vivo trial in poultry farming was conducted to evaluate the HB2 probiotic performance. After 35 days, HB2 achieved the higher growth performance than the control groups. The mortality and the feed conversion ratio were significantly decreased. Finally, the HB2 treated group showed wet litter and less severe ammonia odor in the atmosphere. Our study provides new insights into the importance of enzymatic potentialities, associated with the common functional properties, as a novel approach for probiotic selection.

  17. DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; M. Folmsbee; D. Nagle

    2004-05-31

    required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.« less

  18. Concomitant production of detergent compatible enzymes by Bacillus flexus XJU-1.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-01-01

    A soil screened Bacillus flexus XJU-1 was induced to simultaneously produce alkaline amylase, alkaline lipase and alkaline protease at their optimum levels on a common medium under submerged fermentation. The basal cultivation medium consisted of 0.5% casein, 0.5% starch and 0.5% cottonseed oil as an inducer for protease, amylase, and lipase, respectively. The casein also served as nitrogen source for all 3 enzymes. The starch was also found to act as carbon source additive for both lipase and protease. Maximum enzyme production occurred on fermentation medium with 1.5% casein, 1.5% soluble starch, 2% cottonseed oil, 2% inoculum size, initial pH of 11.0, incubation temperature of 37 °C and 1% soybean meal as a nitrogen source supplement. The analysis of time course study showed that 24 h was optimum incubation time for amylase whereas 48 h was the best time for both lipase and protease. After optimization, a 3.36-, 18.64-, and 27.33-fold increase in protease, amylase and lipase, respectively was recorded. The lipase was produced in higher amounts (37.72 U/mL) than amylase and protease about 1.27 and 5.85 times, respectively. As the 3 enzymes are used in detergent formulations, the bacterium can be commercially exploited to secrete the alkaline enzymes for use in detergent industry. This is the first report for concomitant production of 3 alkaline enzymes by a bacterium.

  19. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    PubMed

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  20. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    La Duc, Myron Thomas (Inventor); Venkateswaran, Kasthuri (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  1. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    PubMed

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  2. Optimization of fermentation conditions for green pigment production from Bacillus cereus M¹ 16 (MTCC 5521) and its pharmacological application.

    PubMed

    Banerjee, D; Mondal, A; Gupta, M; Guha, A K; Ray, L

    2014-01-01

    Optimal culture conditions for the production of green pigment was investigated. The optimal culture condition for the production of an extracellular green pigment by growing Bacillus cereus M(1) 16 (MTCC 5521) in a complex medium containing (g l(-1) ) Peptone-4.0, Beef Extract-9.0, NaCl-7.0, MgSO4 .7H2 O-1.0 and KH2 PO4 -5.0 was as follows pH-7.0 at 30°C for 72 h in a 5 l fermenter. Aeration rate and agitator speed had no effect on the pigment production. Thin layer chromatogram of the pigment extracted from the fermented broth with chloroform on silica gel GF254 using ethyl acetate and hexane (1 : 1) as solvent showed three fractions. The major fraction (C3 ) was separated out and identified as 9-methyl-1, 4, 5, 8-tetra-azaphenanthrene. Acute toxicity test revealed the nontoxic nature upto a dose of 2000 mg kg(-1) , b.wt., of mice. MTT assay showed the cytotoxic nature in HL60 cells having an IC50 of 2.47 mmol. So, this biopigment may have application in food, textile colorant and pharmaceutical industry. This study demonstrated the optimum production of a biopigment (9-methyl-1, 4, 5, 8-tetra-azaphenanthrene) by fermentation of a complex medium with Bacillus cereus M(1) 16 (MTCC 5521) in submerged fermentation. This is the first investigation of toxicity and cytotoxicity activities of this biopigment. The study showed that the purified pigment had no toxicity to healthy albino mice but a high cytotoxicity activity in HL60 cancer cell line in vitro. The biopigment had further displayed dyeing capability to both solidified agar and cotton cloth. Therefore, it may represent a nontoxic and natural alternative to chemical dyes and pigments. © 2013 The Society for Applied Microbiology.

  3. Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423.

    PubMed

    Gurjar, Jigar; Sengupta, Bina

    2015-08-01

    Rice mill polishing residue (RMPR), an abundant and cheap agro residue, was used as substrate for microbial growth of Bacillus subtilis MTCC 2423 by submerged fermentation process to produce surfactin. Nutrients present in the residue were sufficient to sustain the growth of the microorganism. Multi stage foam fractionation followed by acid precipitation was used to concentrate and recover the product. Recoverable yield of surfactin was 4.17 g/kg residue. Product recovered in the foamate accounted for 69% of the total yield. The residual broth containing ∼ 30% surfactin exhibited biological oxygen demand and chemical oxygen demand values of 23 and 69 mg/L respectively. The microbial growth data was correlated using three parameter sigmoid models. Surfactin synthesized had a predominance of molecular weight 1076 Da. Foam separation of copper using surfactin resulted in a maximum removal of 72.5%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies.

    PubMed

    Mahajan, Richi V; Saran, Saurabh; Kameswaran, Karthikeya; Kumar, Vinod; Saxena, R K

    2012-12-01

    L-Asparaginase has potential as an anti-cancer drug and for prevention of acrylamide formation in fried and baked foods. Production of the enzyme by Bacillus licheniformis (RAM-8) was optimized by process engineering using a statistical modeling approach and a maximum yield of 32.26 IU/ml was achieved. The L-asparaginase exhibited glutaminase activity of only 0.8 IU/ml and would therefore be less prone to cause the side effects associated with asparaginase therapy compared to enzyme preparations with higher glutaminase activities. When production was carried out in a 30-L bioreactor, enzyme production reached 29.94 IU/ml in 15 h. The enzyme inhibited poly-acrylamide formation in 10% acrylamide solution and reduced acrylamide formation in fried potatoes by 80%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation.

    PubMed

    Mukhtar, Hamid; Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72(EMS8). During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.

  6. Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

    PubMed Central

    Haq, Ikramul

    2013-01-01

    The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain of Bacillus subtilis IH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease by Bacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions. PMID:24294129

  7. Phylogenetic Analysis of Bacillus subtilis Strains Applicable to Natto (Fermented Soybean) Production

    PubMed Central

    Kubo, Yuji; Rooney, Alejandro P.; Tsukakoshi, Yoshiki; Nakagawa, Rikio; Hasegawa, Hiromasa; Kimura, Keitarou

    2011-01-01

    Spore-forming Bacillus strains that produce extracellular poly-γ-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 424 strains, including Bacillus subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting natto. Biotin auxotrophism was tightly linked to natto fermentation. A multilocus nucleotide sequence of six genes (rpoB, purH, gyrA, groEL, polC, and 16S rRNA) was used for phylogenetic analysis, and amplified fragment length polymorphism (AFLP) analysis was also conducted on the natto-fermenting strains. The ability to ferment natto was inferred from the two principal components of the AFLP banding pattern, and natto-fermenting strains formed a tight cluster within the B. subtilis subsp. subtilis group. PMID:21764950

  8. Identification and Classification of bcl Genes and Proteins of Bacillus cereus Group Organisms and Their Application in Bacillus anthracis Detection and Fingerprinting▿ †

    PubMed Central

    Leski, Tomasz A.; Caswell, Clayton C.; Pawlowski, Marcin; Klinke, David J.; Bujnicki, Janusz M.; Hart, Sean J.; Lukomski, Slawomir

    2009-01-01

    The Bacillus cereus group includes three closely related species, B. anthracis, B. cereus, and B. thuringiensis, which form a highly homogeneous subdivision of the genus Bacillus. One of these species, B. anthracis, has been identified as one of the most probable bacterial biowarfare agents. Here, we evaluate the sequence and length polymorphisms of the Bacillus collagen-like protein bcl genes as a basis for B. anthracis detection and fingerprinting. Five genes, designated bclA to bclE, are present in B. anthracis strains. Examination of bclABCDE sequences identified polymorphisms in bclB alleles of the B. cereus group organisms. These sequence polymorphisms allowed specific detection of B. anthracis strains by PCR using both genomic DNA and purified Bacillus spores in reactions. By exploiting the length variation of the bcl alleles it was demonstrated that the combined bclABCDE PCR products generate markedly different fingerprints for the B. anthracis Ames and Sterne strains. Moreover, we predict that bclABCDE length polymorphism creates unique signatures for B. anthracis strains, which facilitates identification of strains with specificity and confidence. Thus, we present a new diagnostic concept for B. anthracis detection and fingerprinting, which can be used alone or in combination with previously established typing platforms. PMID:19767469

  9. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice.

    PubMed

    de Oliveira, Darlane Wellen Freitas; França, Italo Waldimiro Lima; Félix, Anne Kamilly Nogueira; Martins, João Jeferson Lima; Giro, Maria Estela Aparecida; Melo, Vânia Maria M; Gonçalves, Luciana Rocha Barros

    2013-01-01

    In this work a low cost medium for the production of a biosurfactant by Bacillus subtilis LAMI005 and the kinetics of surfactin production considering the effect of initial substrate concentration were investigated. First, cashew apple juice supplementation for optimal production of biosurfactant by B. subtilis LAMI005 was studied. The medium formulated with clarified cashew apple juice and distilled water, supplemented with 1.0 g/L of (NH(4))(2)SO(4), proved to be the best among the nutrients evaluated. The crude biosurfactant had the ability to decrease the surface tension of water to 30 dyne/cm, with a critical micelle concentration (CMC) of 63.0 mg/L. Emulsification experiments indicated that this biosurfactant effectively emulsified kerosene (IE(24)=67%) and soybean oil (IE(24)=64%). Furthermore, the emulsion stability was always very high. It was shown by biochemical analysis, IR spectra, that there is no qualitative differences in the composition of the crude biosurfactant from a standard sample of surfactin from B. subtilis. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine.

    PubMed

    Wu, Jia; Xu, Guoqiang; Jin, Yangyang; Sun, Cong; Zhou, Li; Lin, Guodong; Xu, Rong; Wei, Ling; Fei, Hui; Wang, Dan; Chen, Jianqing; Lv, Zhengbing; Liu, Kuancheng

    2018-05-22

    The abuse of antibiotics and following rapidly increasing of antibiotic-resistant pathogens is the serious threat to our society. Natural products from microorganism are regarded as the important substitution antimicrobial agents of antibiotics. We isolated a new strain, Bacillus sp. GFP-2, from the Chiloscyllium plagiosum (Whitespotted bamboo shark) intestine, which showed great inhibitory effects on the growth of both Gram-positive and Gram-negative bacteria. Additionally, the growth of salmon was effectively promoted when fed with inactivated strain GFP-2 as the inhibition agent of pathogenic bacteria. The genes encoding antimicrobial peptides like LCI, YFGAP and hGAPDH and gene clusters for secondary metabolites and bacteriocins, such as difficidin, bacillibactin, bacilysin, surfactin, butirosin, macrolactin, bacillaene, fengycin, lanthipeptides and LCI, were predicted in the genome of Bacillus sp. GFP-2, which might be expressed and contribute to the antimicrobial activities of this strain. The gene encoding β-1,3-1,4-glucanase was successfully cloned from the genome and this protein was detected in the culture supernatant of Bacillus sp. GFP-2 by the antibody produced in rabbit immunized with the recombinant β-1,3-1,4-glucanase, indicating that this strain could express β-1,3-1,4-glucanase, which might partially contribute to its antimicrobial activities. This study can enhance a better understanding of the mechanism of antimicrobial activities in genus Bacillus and provide a useful material for the biotechnology study in antimicrobial agent development.

  11. Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China

    PubMed Central

    Zhu, Kui; Hölzel, Christina S.; Cui, Yifang; Mayer, Ricarda; Wang, Yang; Dietrich, Richard; Didier, Andrea; Bassitta, Rupert; Märtlbauer, Erwin; Ding, Shuangyang

    2016-01-01

    Bacillus cereus is an important cause of foodborne infectious disease and food poisoning. However, B. cereus has also been used as a probiotic in human medicine and livestock production, with low standards of safety assessment. In this study, we evaluated the safety of 15 commercial probiotic B. cereus preparations from China in terms of mislabeling, toxin production, and transferable antimicrobial resistance. Most preparations were incorrectly labeled, as they contained additional bacterial species; one product did not contain viable B. cereus at all. In total, 18 B. cereus group strains—specifically B. cereus and Bacillus thuringiensis—were isolated. Enterotoxin genes nhe, hbl, and cytK1, as well as the ces-gene were assessed by PCR. Enterotoxin production and cytotoxicity were confirmed by ELISA and cell culture assays, respectively. All isolated B. cereus group strains produced the enterotoxin Nhe; 15 strains additionally produced Hbl. Antimicrobial resistance was assessed by microdilution; resistance genes were detected by PCR and further characterized by sequencing, transformation and conjugation assays. Nearly half of the strains harbored the antimicrobial resistance gene tet(45). In one strain, tet(45) was situated on a mobile genetic element—encoding a site-specific recombination mechanism—and was transferable to Staphylococcus aureus and Bacillus subtilis by electro-transformation. In view of the wide and uncontrolled use of these products, stricter regulations for safety assessment, including determination of virulence factors and transferable antimicrobial resistance genes, are urgently needed. PMID:27242738

  12. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  13. Characterization of Bacillus thuringiensis l-Isoleucine Dioxygenase for Production of Useful Amino Acids▿†

    PubMed Central

    Hibi, Makoto; Kawashima, Takashi; Kodera, Tomohiro; Smirnov, Sergey V.; Sokolov, Pavel M.; Sugiyama, Masakazu; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2011-01-01

    We determined the enzymatic characteristics of an industrially important biocatalyst, α-ketoglutarate-dependent l-isoleucine dioxygenase (IDO), which was found to be the enzyme responsible for the generation of (2S,3R,4S)-4-hydroxyisoleucine in Bacillus thuringiensis 2e2. Depending on the amino acid used as the substrate, IDO catalyzed three different types of oxidation reactions: hydroxylation, dehydrogenation, and sulfoxidation. IDO stereoselectively hydroxylated several hydrophobic aliphatic l-amino acids, as well as l-isoleucine, and produced (S)-3-hydroxy-l-allo-isoleucine, 4-hydroxy-l-leucine, (S)-4-hydroxy-l-norvaline, 4-hydroxy-l-norleucine, and 5-hydroxy-l-norleucine. The IDO reaction product of l-isoleucine, (2S,3R,4S)-4-hydroxyisoleucine, was again reacted with IDO and dehydrogenated into (2S,3R)-2-amino-3-methyl-4-ketopentanoate, which is also a metabolite found in B. thuringiensis 2e2. Interestingly, IDO catalyzed the sulfoxidation of some sulfur-containing l-amino acids and generated l-methionine sulfoxide and l-ethionine sulfoxide. Consequently, the effective production of various modified amino acids would be possible using IDO as the biocatalyst. PMID:21821743

  14. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  15. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  16. Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy-d-Xylulose-5-Phosphate Pathway in Bacillus subtilis▿ †

    PubMed Central

    Xue, Junfeng; Ahring, Birgitte K.

    2011-01-01

    To enhance the production of isoprene, a volatile 5-carbon hydrocarbon, in the Gram-positive spore-forming rod-shaped bacterium Bacillus subtilis, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr) were overexpressed in B. subtilis DSM 10. For the strain that overexpresses Dxs, the yield of isoprene was increased 40% over that by the wild-type strain. In the Dxr overexpression strain, the level of isoprene production was unchanged. Overexpression of Dxr together with Dxs showed an isoprene production level similar to that of the Dxs overproduction strain. The effects of external factors, such as stress factors including heat (48°C), salt (0.3 M NaCl), ethanol (1%), and oxidative (0.005% H2O2) stress, on isoprene production were further examined. Heat, salt, and H2O2 induced isoprene production; ethanol inhibited isoprene production. In addition, induction and repression effects are independent of SigB, which is the general stress-responsive alternative sigma factor of Gram-positive bacteria. PMID:21296950

  17. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.

    PubMed

    Mumtaz, Muhammad Zahid; Ahmad, Maqshoof; Jamil, Moazzam; Hussain, Tanveer

    2017-09-01

    Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.

    PubMed

    Drejer, Eivind B; Hakvåg, Sigrid; Irla, Marta; Brautaset, Trygve

    2018-05-10

    Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus , B. coagulans , B. smithii , B. licheniformis , Geobacillus thermoglucosidasius , G. kaustophilus , and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.

  19. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive.

    PubMed

    Paracchini, Valentina; Petrillo, Mauro; Reiting, Ralf; Angers-Loustau, Alexandre; Wahler, Daniela; Stolz, Andrea; Schönig, Birgit; Matthies, Anastasia; Bendiek, Joachim; Meinel, Dominik M; Pecoraro, Sven; Busch, Ulrich; Patak, Alex; Kreysa, Joachim; Grohmann, Lutz

    2017-09-01

    Many food and feed additives result from fermentation of genetically modified (GM) microorganisms. For vitamin B2 (riboflavin), GM Bacillus subtilis production strains have been developed and are often used. The presence of neither the GM strain nor its recombinant DNA is allowed for fermentation products placed on the EU market as food or feed additive. A vitamin B 2 product (80% feed grade) imported from China was analysed. Viable B. subtilis cells were identified and DNAs of two bacterial isolates (LHL and LGL) were subjected to three whole genome sequencing (WGS) runs with different devices (MiSeq, 454 or HiSeq system). WGS data revealed the integration of a chloramphenicol resistance gene, the deletion of the endogenous riboflavin (rib) operon and presence of four putative plasmids harbouring rib operons. Event- and construct-specific real-time PCR methods for detection of the GM strain and its putative plasmids in food and feed products have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry-Effects of Culture Conditions.

    PubMed

    Shu, Lin-Jie; Yang, Yu-Liang

    2017-11-14

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.

  1. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  2. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization.

    PubMed

    Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav

    2016-09-01

    Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

  3. Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov.

    PubMed

    Arahal, D R; Márquez, M C; Volcani, B E; Schleifer, K H; Ventosa, A

    2000-07-01

    Recently, the features of a group of strains isolated from Dead Sea enrichments obtained in 1936 by one of us (B. E. Volcani) were described. They were gram-positive, moderately halophilic, spore-forming rods, and were placed in a new species, Bacillus marismortui. At the same time, the new genus Salibacillus was proposed for the halophilic species Bacillus salexigens. B. marismortui and Salibacillus salexigens have similar phenotypic characteristics and the same peptidoglycan type. Phylogenetic analysis based on 16S rRNA sequence comparisons showed that they are sufficiently closely related (96.6% similarity) as to warrant placement in the same genus. However, DNA-DNA hybridization experiments showed that they constitute two separate species (41% DNA similarity). Therefore the reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. is proposed.

  4. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities.

    PubMed

    Chauhan, Ankit Kumar; Maheshwari, Dinesh Kumar; Kim, Kangmin; Bajpai, Vivek K

    2016-10-01

    Bacillus strains were isolated from termitarium soil and screened for their antifungal activity through the production of diffusible and volatile metabolites. Further, the bacterial strains that showed antifungal activity were evaluated for their biocontrol potential on the basis of their plant-growth-promoting attributes. Termitarium-inhabiting Bacillus strains TSH42 and TSH77 significantly reduced the growth of pathogenic fungus Fusarium solani, controlled the symptoms of rhizome rot in turmeric (Curcuma longa L.), and demonstrated various plant-growth-promoting traits in different in vitro assays. On the basis of morphological, physiological, biochemical, and 16S rDNA characteristics, isolates TSH42 and TSH77 were identified as Bacillus endophyticus (KT379993) and Bacillus cereus (KT379994), respectively. Through liquid chromatography - mass spectrometry analysis, acidified cell-free culture filtrate (CFCF) of B. cereus TSH77 was shown to contain surfactin and fengycin, while CFCF of B. endophyticus TSH42 contained iturin in addition to surfactin and fengycin. Treatment of the turmeric (C. longa L.) plants with TSH42 and TSH77 significantly reduced the percentage incidence of rhizome rot disease caused by F. solani. The same treatment also increased the fresh rhizome biomass and plant growth in greenhouse conditions.

  5. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    PubMed

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  6. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments

    PubMed Central

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-01-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  7. Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18.

    PubMed

    Vijayaraghavan, P; Prakash Vincent, S G; Dhillon, G S

    2016-02-01

    The production of carboxymethyl cellulase (CMCase) by Bacillus halodurans IND18 under solid substrate fermentation (SSF) using cow dung was optimized through two level full factorial design and second order response surface methodology (RSM). The central composite design (CCD) was employed to optimize the vital fermentation parameters, such as pH of the substrate, concentration of nitrogen source (peptone) and ion (sodium dihydrogen phosphate) sources in medium for achieving higher enzyme production. The optimum medium composition was found to be 1.46% (w/w) peptone, 0.095% (w/w) sodium dihydrogen phosphate and pH 8.0. The model prediction of 4210IU/g enzyme activity at optimum conditions was verified experimentally as 4140IU/g. The enzyme was active over a broad temperature range (40-60±1°C) and pH (7.0-9.0) with maximal activity at 60±1°C and pH 8.0. This study demonstrated the potential of cow dung as novel substrate for CMCase production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics.

    PubMed

    Gu, Fenglin; Chen, Yonggan; Fang, Yiming; Wu, Guiping; Tan, Lehe

    2015-10-09

    Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58%±0.05% and 3.48%±0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09%±0.14% and 3.21%±0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

  9. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  10. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  11. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  12. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gasmore » produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.« less

  13. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    PubMed

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  14. [Characteristics of Bacillus cereus dissociants].

    PubMed

    Doroshenko, E V; Loĭko, N G; Il'inskaia, O N; Kolpakov, A I; Gornova, I B; Klimanova, E V; El'-Registan, G I

    2001-01-01

    The autoregulation of the phenotypic (populational) variability of the Bacillus cereus strain 504 was studied. The isolated colonial morphotypes of this bacterium were found to differ in their growth characteristics and the synthesis of extracellular proteases. The phenotypic variabilities of vegetative proliferating cells and those germinated from endospores and cystlike refractory cells were different. Bacterial variants also differed in the production of the d1 and d2 factors (the autoinducers of dormancy and autolysis, respectively) and sensitivity to them. The possible role of these factors in the dissociation of microorganisms is discussed.

  15. Enhancement of ε-poly-L-lysine (ε-PL) production by a novel producer Bacillus cereus using metabolic precursors and glucose feeding.

    PubMed

    Chheda, Anuj H; Vernekar, Madhavi R

    2015-10-01

    Epsilon poly-L-lysine (ε-PL) is a homo-biopolymer with approximately 25-30 L-lysine residues. It is a promising natural biopolymer widely used in food and pharmaceutical industry. The present work reports enhanced production of ε-PL with a novel producer Bacillus cereus using amino acids and TCA cycle intermediates in the fermentation medium. Among the various amino acids and TCA cycle intermediates tested 2 mM L-aspartic acid and 5 mM citric acid gave ε-PL yield of 145.5 and 230 mg/L, respectively. A combination of citric acid after 24 h and L-aspartic acid after 36 h improved ε-PL yield from 85 mg/L (control) to 335 mg/L. Glucose feeding strategy along with metabolic precursors was employed which further enhanced ε-PL yield to 565 mg/L. Thus, more than sixfold increase in ε-PL yield was achieved suggesting the potential of Bacillus cereus as a novel ε-PL producer.

  16. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays.

    PubMed

    Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan

    2014-12-01

    Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.

  17. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    Treesearch

    Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and...

  18. Fungal Competitors Affect Production of Antimicrobial Lipopeptides in Bacillus subtilis Strain B9-5.

    PubMed

    DeFilippi, Stefanie; Groulx, Emma; Megalla, Merna; Mohamed, Rowida; Avis, Tyler J

    2018-04-01

    Bacillus subtilis has shown success in antagonizing plant pathogens where strains of the bacterium produce antimicrobial cyclic lipopeptides (CLPs) in response to microbial competitors in their ecological niche. To gain insight into the inhibitory role of these CLPs, B. subtilis strain B9-5 was co-cultured with three pathogenic fungi. Inhibition of mycelial growth and spore germination was assessed and CLPs produced by B. subtilis B9-5 were quantified over the entire period of microbial interaction. B. subtilis B9-5 significantly inhibited mycelial growth and spore germination of Fusarium sambucinum and Verticillium dahliae, but not Rhizopus stolonifer. LC-MS analysis revealed that B. subtilis differentially produced fengycin and surfactin homologs depending on the competitor. CLP quantification suggested that the presence of Verticillium dahliae, a fungus highly sensitive to the compounds, caused an increase followed by a decrease in CLP production by the bacterium. In co-cultures with Fusarium sambucinum, a moderately sensitive fungus, CLP production increased more gradually, possibly because of its slower rate of spore germination. With co-cultures of the tolerant fungus Rhizopus stolonifer, B. subtilis produced high amounts of CLPs (per bacterial cell) for the duration of the interaction. Variations in CLP production could be explained, in part, by the pathogens' overall sensitivities to the bacterial lipopeptides and/or the relative growth rates between the plant pathogen and B. subtilis. CLP production varied substantially temporally depending on the targeted fungus, which provides valuable insight concerning the effectiveness of B. subtilis B9-5 protecting its ecological niche against the ingress of these pathogens.

  19. Activity of Bacillus thuringiensis against Pryeria sinica(Lepidoptera: Zygaenidae), an invasive pest of Euonymus

    USDA-ARS?s Scientific Manuscript database

    Pryeria sinica Moore (Lepidoptera: Zygaenidae), an invasive pest of Euonymus, is susceptible in the second instar to the Bacillus thuringiensis Berliner product Thuricide®, and to several strains isolated from other B. thuringiensis products. Third instars are also susceptible, while susceptibility...

  20. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Measurement of Metabolic Activity in Dormant Spores of Bacillus Species Report Title Spores of Bacillus megaterium and Bacillus subtilis were...ribosomal RNA when newly harvested Bacillus subtilis spores are incubated at physiological temperatures, as well as some evidence for transcription in

  1. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry.

    PubMed

    Anjum, Farhan; Gautam, Gunjan; Edgard, Gnansounou; Negi, Sangeeta

    2016-08-01

    In this study Bacillus sp. MTCC5877 was explored for the production of biosurfactant (BSs) and various carbon sources 1% (w/v), 0.5% (w/v) nitrogen sources were tested at different pH, and temperature. Yield was measured in terms of Emulsification index (EI), Oil Displacement Area (ODA) and Drop Collapse Area (DCA) and maximum emulsification activities of BSs were found (E24) 50%, 76% and 46%, respectively, and maximum ODA of 5.0, 6.2 and 4.7cm, were shown respectively. The BS was able to reduce the surface tension of water from 72 to 30mN/m and 72 to 32mN/m. Structural compositions of BS were confirmed by FTIR, GC-MS and NMR. Anti-adhesive property of BS was determined and found effective against biofilm formation. It could remove 73% Cd from vegetable which confirms its application in food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Amylase production potentials of bacterial isolates obtained from the gut of Oryctes rhinoceros larvae

    NASA Astrophysics Data System (ADS)

    Aryati, P. C.; Pangastuti, A.; Sari, S. L. A.

    2017-04-01

    Amylase is one of the main enzymes used in industry, such as food, detergent, textile, and pharmaceutical industry. Amylase can be produced by plants, animals, and microorganisms. However, bacterial and fungal amylases have dominated application in industries. This research was aimed to determine amylolytic activity of bacteria isolated from the gut of Oryctes rhinoceros larvae. Based on clear zone formation, 9 from 11 isolates showed amylolytic activity. Isolates with the widest clear zone, i.e Bacillus subtilis GOR1, Bacillus cereus GOR3, and Bacillus pumilus GOR2, were screened for amylolytic activity based on reduction sugar production. The result showed that Bacillus subtilis GOR1 was the most potential as amylase producer, showed by the widest clear zone 5.224 cm2 and highest reduction sugar production 0.0235 mg/ml. Highest amylase specific activity (0.1447 U/mg protein) was obtained at 60°C and pH 7. Amylase activity was stable for 3 hours at 60°C with residual activity respectively was 59.7%.

  3. Bacterial and fungal composition profiling of microbial based cleaning products.

    PubMed

    Subasinghe, R M; Samarajeewa, A D; Meier, M; Coleman, G; Clouthier, H; Crosthwait, J; Tayabali, A F; Scroggins, R; Shwed, P S; Beaudette, L A

    2018-06-01

    Microbial based cleaning products (MBCPs) are a new generation of cleaning products that are gaining greater use in household, institutional, and industrial settings. Little is known about the exact microbial composition of these products because they are not identified in detail on product labels and formulations are often proprietary. To gain a better understanding of their microbial and fungal composition towards risk assessment, the cultivable microorganisms and rDNA was surveyed for microbial content in five different MBCPs manufactured and sold in North America. Individual bacterial and fungal colonies were identified by ribosequencing and fatty acid methyl ester (FAME) gas chromatography. Metagenomic DNA (mDNA) corresponding to each of the products was subjected to amplification and short read sequencing of seven of the variable regions of the bacterial 16S ribosomal DNA. Taken together, the cultivable microorganism and rDNA survey analyses showed that three of the products were simple mixtures of Bacillus species. The two other products featured a mixture of cultivable fungi with Bacilli, and by rDNA survey analysis, they featured greater microbial complexity. This study improves our understanding of the microbial composition of several MBCPs towards a more comprehensive risk assessment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effects of Bacillus subtilis-based direct-fed microbials on growth performance, immune characteristics and resistance against experimental coccidiosis in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    The present experiment was conducted to study the effects of dietary Bacillus-based direct-fed microbials (DFMs) on cytokine expression patterns, intestinal intraepithelial lymphocyte (IEL) subpopulation, splenocyte proliferation, macrophage functions and resistance against experimental coccidiosis ...

  6. Effect of garlic solution to Bacillus sp. removal

    NASA Astrophysics Data System (ADS)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  7. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material.

    PubMed

    Ouyang, Jia; Ma, Rui; Zheng, Zhaojuan; Cai, Cong; Zhang, Min; Jiang, Ting

    2013-05-01

    Highly efficient L-lactate production by a thermophilic strain Bacillus sp. NL01 was demonstrated in this study. Lignocellulosic hydrolyzates containing a high content of glucose, which was prepared from corn stover, was used as substrate for L-lactic acid production. The fermentation was carried out under open condition without sterilization and used NaOH as alkaline neutralizing reagent. In batch fermentation, 56.37 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates which contained the solid residues produced in enzymatic saccharification. In fed-batch fermentation, 75.03 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates supernatant. The yield was 74.5% and the average productivity was 1.04 g l(-1) h(-1). Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine.

    PubMed

    Li, Yang; Zhu, Xujun; Zhang, Xueyu; Fu, Jing; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2016-06-03

    Genome streamlining has emerged as an effective strategy to boost the production efficiency of bio-based products. Many efforts have been made to construct desirable chassis cells by reducing the genome size of microbes. It has been reported that the genome-reduced Bacillus subtilis strain MBG874 showed clear advantages for the production of several heterologous enzymes including alkaline cellulase and protease. In addition to enzymes, B. subtilis is also used for the production of chemicals. To our best knowledge, it is still unknown whether genome reduction could be used to optimize the production of chemicals such as nucleoside products. In this study, we constructed a series of genome-reduced strains by deleting non-essential regions in the chromosome of B. subtilis 168. These strains with genome reductions ranging in size from 581.9 to 814.4 kb displayed markedly decreased growth rates, sporulation ratios, transformation efficiencies and maintenance coefficients, as well as increased cell yields. We re-engineered the genome-reduced strains to produce guanosine and thymidine, respectively. The strain BSK814G2, in which purA was knocked out, and prs, purF and guaB were co-overexpressed, produced 115.2 mg/L of guanosine, which was 4.4-fold higher compared to the control strain constructed by introducing the same gene modifications into the parental strain. We also constructed a thymidine producer by deleting the tdk gene and overexpressing the prs, ushA, thyA, dut, and ndk genes from Escherichia coli in strain BSK756, and the resulting strain BSK756T3 accumulated 151.2 mg/L thymidine, showing a 5.2-fold increase compared to the corresponding control strain. Genome-scale genetic manipulation has a variety of effects on the physiological characteristics and cell metabolism of B. subtilis. By introducing specific gene modifications related to guanosine and thymidine accumulation, respectively, we demonstrated that genome-reduced strains had greatly improved

  9. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    NASA Astrophysics Data System (ADS)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  11. Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards.

    PubMed

    Öztopuz, Özlem; Pekin, Gülseren; Park, Ro Dong; Eltem, Rengin

    2018-05-03

    Bacillus is an antagonistic bacteria that shows high effectiveness against different phytopathogenic fungi and produces various lytic enzymes, such as chitosanase, chitinase, protease, and gluconase. The aim of this study is to determine Bacillus spp. for lytic enzyme production and to evaluate the antifungal effects of the selected strains for biocontrol of mycotoxigenic and phytopathogenic fungi. A total of 92 endospore-forming bacterial isolates from the 24 fig orchard soil samples were screened for chitosanase production, and six best chitosanolytic isolates were selected to determine chitinase, protease, and N-acetyl-β-hexosaminidase activity and molecularly identified. The antagonistic activities of six Bacillus strains against Aspergillus niger EGE-K-213, Aspergillus foetidus EGE-K-211, Aspergillus ochraceus EGE-K-217, and Fusarium solani KCTC 6328 were evaluated. Fungal spore germination inhibition and biomass inhibition activities were also measured against A. niger EGE-K-213. The results demonstrated that Bacillus mojavensis EGE-B-5.2i and Bacillus thuringiensis EGE-B-14.1i were more efficient antifungal agents against A. niger EGE-K-213. B. mojavensis EGE-B-5.2i has shown maximum inhibition of the biomass (30.4%), and B. thuringiensis EGE-B-14.1i has shown maximum inhibition of spore germination (33.1%) at 12 h. This is the first study reporting the potential of antagonist Bacillus strains as biocontrol agents against mycotoxigenic fungi of fig orchads.

  12. Survival strategies of Bacillus spores in food.

    PubMed

    Stecchini, Mara Lucia; Del Torre, Manuela; Polese, Pierluigi

    2013-11-01

    Control of bacterial spores is one of the major problem in the food preservation. Spores of Bacillus genus are commonly present in different environments, including soil and the gut of insects and animals and, as a result, they can be spread to all kind of foods. Due to their high resistance properties, their complete inactivation in food is often impossible without changing the product characteristics. Surviving spores can germinate and grow out to vegetative cells, with the consequent great risk of food spoilage and food poisoning after consumption. Spores have evolved various mechanisms, including phenotypic variability, to protect themselves from a wide range of damage resulting from food preservation treatments. Even if the phenotypic heterogeneity contributes to increase the chances of survival of Bacillus spore to conventional preservation treatments, in some specific instances, an homogeneous response could be the result of a strategy adopted by the spores to increase resistance to those treatments.

  13. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  14. Bacillus subtilis as potential producer for polyhydroxyalkanoates.

    PubMed

    Singh, Mamtesh; Patel, Sanjay Ks; Kalia, Vipin C

    2009-07-20

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process - for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  15. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    PubMed Central

    Singh, Mamtesh; Patel, Sanjay KS; Kalia, Vipin C

    2009-01-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB), the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA. PMID:19619289

  16. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    PubMed

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  17. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK.

    PubMed

    Kiran, Kondepudi Kanthi; Chandra, T S

    2008-01-01

    A moderately halophilic alkalitolerant Bacillus sp. Strain TSCVKK, with an ability to produce extracellular halophilic, alkalitolerant, surfactant, and detergent-stable alpha-amylase was isolated from soil samples obtained from a salt-manufacturing industry in Chennai. The culture conditions for higher amylase production were optimized with respect to NaCl, substrate, pH, and temperature. Maximum amylase production of 592 mU/ml was achieved in the medium at 48 h with 10% NaCl, 1% dextrin, 0.4% yeast extract, 0.2% tryptone, and 0.2% CaCl(2) at pH 8.0 at 30 degrees C. The enzyme activity in the culture supernatant was highest with 10% NaCl at pH 7.5 and 55 degrees C. The amylase that was partially purified by acetone precipitation was highly stable in various surfactants and detergents. Glucose, maltose, and maltooligosaccharides were the main end products of starch hydrolysis indicating that it is an alpha-amylase.

  18. Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia.

    PubMed

    Belyaev, Anatoly A; Shternshis, Margarita V; Chechenina, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2017-03-01

    In geographical locations with a short vegetative season and continental climate that include Western Siberia, growing primocane fruiting raspberry varieties becomes very important. However, it is necessary to help the plants to overcome the environmental stress factors. This study aimed to evaluate the impact of the pre-planting treatment of primocane fruiting raspberry root system with Bacillus strains on the following plant development under variable environmental conditions. In 2012, Bacillus subtilis RCAM В-10641, Bacillus amyloliquefaciens RCAM В-10642, and Bacillus licheniformis RCAM В-10562 were used for inoculating the root system of primocane fruiting raspberry cultivar Nedosyagaemaya before planting. The test suspensions were 10 5  CFU/ml for each bacterial strains. The effects of this treatment on plant growth and crop productivity were estimated in 2012-2015 growing seasons differed by environmental conditions. The pre-planting treatment by the bacterial strains increased the number of new raspberry canes and the number of plant generative organs as well as crop productivity compared to control. In addition, these bacilli acted as the standard humic fertilizer. Variable environmental factors such as air temperature, relative humidity, and winter and spring frosts seriously influenced the plant biological parameters and crop productivity of control plants. At the same time, the pre-planting primocane fruiting root treatment by Bacillus strains decreased the negative effects of abiotic stresses on plants in all years of the research. Of the three strains studied, B. subtilis was shown to reveal the best results in adaptation of primocane fruiting raspberry plants to environmental factors in Western Siberia. For the first time, the role of Bacillus strains in enhancing frost resistance in primocane fruiting raspberry plants was shown. These bacilli are capable of being the basis of multifunctional biological formulations for effective plant and

  19. Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance* #

    PubMed Central

    Xu, Jian-zhong; Zhang, Wei-guo

    2017-01-01

    A menaquinone-7 (MK-7) high-producing strain needs to be isolated to increase MK-7 production, in order to meet a requirement of MK-7 given the low MK-7 content in food products. This article focuses on developing MK-7 high-producing strains via screening and mutagenesis by an atmospheric and room temperature plasma (ARTP) mutation breeding system. We isolated an MK-7-producing strain Y-2 and identified it as Bacillus amyloliquefaciens, which produced (7.1±0.5) mg/L of MK-7 with maize meal hydrolysate as carbon source. Then, an MK-7 high-producing strain B. amyloliquefaciens H.β.D.R.-5 with resistance to 1-hydroxy-2-naphthoic acid, β-2-thienylalanine, and diphenylamine was obtained from the mutation of the strain Y-2 using an ARTP mutation breeding system. Using strain H.β.D.R.-5, efficient production of MK-7 was achieved ((30.2±2.7) mg/L). In addition, the effects of nitrogen sources, prenyl alcohols, and MgSO4 on MK-7 production were investigated, suggesting that soymeal extract combined with yeast extract, isopentenol, and MgSO4 was beneficial. Under the optimized condition, the MK-7 production and biomass-specific yield reached (61.3±5.2) mg/L and 2.59 mg/L per OD600 unit respectively in a 7-L fermenter. These results demonstrated that strain H.β.D.R.-5 has the capacity to produce MK-7 from maize meal hydrolysate, which could reduce the substrate cost. PMID:28585422

  20. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe0 process for safe water production.

    PubMed

    Yousefzadeh, Samira; Matin, Atiyeh Rajabi; Ahmadi, Ehsan; Sabeti, Zahra; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-01

    One of the most important aspects of environmental issues is the demand for clean and safe water. Meanwhile, disinfection process is one of the most important steps in safe water production. The present study aims at estimating the performance of UV, nano Zero-Valent Iron particles (nZVI, nano-Fe 0 ), and UV treatment with the addition of nZVI (combined process) for Bacillus subtilis spores inactivation. Effects of different factors on inactivation including contact time, initial nZVI concentration, UV irradiance and various aerations conditions were investigated. Response surface methodology, based on a five-level, two variable central composite design, was used to optimize target microorganism reduction and the experimental parameters. The results indicated that the disinfection time had the greatest positive impact on disinfection ability among the different selected independent variables. According to the results, it can be concluded that microbial reduction by UV alone was more effective than nZVI while the combined UV/nZVI process demonstrated the maximum log reduction. The optimum reduction of about 4 logs was observed at 491 mg/L of nZVI and 60 min of contact time when spores were exposed to UV radiation under deaerated condition. Therefore, UV/nZVI process can be suggested as a reliable method for Bacillus subtilis spores inactivation. Copyright © 2018. Published by Elsevier Ltd.

  1. Disinfection of Vegetative Cells of Bacillus anthracis

    DTIC Science & Technology

    2016-03-01

    1. INTRODUCTION Disinfection of Bacillus anthracis spores in drinking water is well documented in peer-reviewed literature (Adcock et al., 2004... Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  2. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    PubMed Central

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  3. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    PubMed

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic

  4. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  5. Glycerol-based sterilization bioindicator system from Bacillus atrophaeus: development, performance evaluation, and cost analysis.

    PubMed

    Sella, Sandra R B R; Gouvea, Patricia Milla; Gomes, Vanessa F; Vandenberghe, Luciana P S; Minozzo, João Carlos; Soccol, Carlos Ricardo

    2013-02-01

    The development of new value-added applications for glycerol is of worldwide interest because of the environmental and economic problems that may be caused by an excess of glycerol generated from biodiesel production. A novel use of glycerol as a major substrate for production of a low-cost sterilization biological indicator system (BIS; spores on a carrier plus a recovery medium) was investigated. A sequential experimental design strategy was applied for product development and optimization. The proposed recovery medium enables germination and outgrowth of heat-damaged spores, promoting a D (160 °C) value of 6.6 ± 0.1 min. Bacillus atrophaeus spores production by solid-state fermentation reached a 2.3 ± 1.2 × 10(8) CFU/g dry matter. Sporulation kinetics results allowed this process to be restricted in 48 h. Germination kinetics demonstrated the visual identification of nonsterile BIS within 24 h. Performance evaluation of the proposed BIS against dry-heat and ethylene oxide sterilization showed compliance with the regulatory requirements. Cost breakdowns were from 41.8 (quality control) up to 72.8 % (feedstock). This is the first report on sterilization BIS production that uses glycerol as a sole carbon source, with significant cost reduction and the profitable use of a biodiesel byproduct.

  6. Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis▿†

    PubMed Central

    Wilks, Jessica C.; Kitko, Ryan D.; Cleeton, Sarah H.; Lee, Grace E.; Ugwu, Chinagozi S.; Jones, Brian D.; BonDurant, Sandra S.; Slonczewski, Joan L.

    2009-01-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K+/H+ antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids. PMID:19114526

  7. Composite Sampling of a Bacillus anthracis Surrogate with ...

    EPA Pesticide Factsheets

    Journal Article A series of experiments were conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a stainless steel surface.

  8. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.

    PubMed

    Hess, Becky M; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C; Wiley, H Steven; Ahring, Birgitte K; Linggi, Bryan

    2013-01-01

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  9. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics

    PubMed Central

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. Steven; Ahring, Birgitte K.; Linggi, Bryan

    2013-01-01

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions. PMID:23840410

  10. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  11. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed Central

    Tanaka, T; Kawata, M

    1988-01-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU. Images PMID:3136143

  12. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed

    Tanaka, T; Kawata, M

    1988-08-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU.

  13. Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain.

    PubMed

    Moreno, Paalo; Yañez, Camilo; Cardozo, Nilo Sérgio Medeiros; Escalante, Humberto; Combariza, Marianny Y; Guzman, Carolina

    2015-12-25

    Biodegradable polymers are currently viable alternatives to traditional synthetic polymers. For instance, polyhydroxybutyrate (PHB) is intracellularly produced and accumulated by Bacillus species, among others. This study reports several wild-type Bacillus strains with the ability to accumulate PHB using raw glycerol from biodiesel production as the sole carbon source. Out of 15 strains from different sources, B. megaterium B2 was selected as the most promising strain for further statistical optimization of the medium composition. Plackett-Burman and central composite designs were used to establish key variables and optimal culture conditions for PHB production using both 250-mL shake flasks and a 7.5-L bioreactor. Temperature and concentrations of glycerol and Na2HPO4 are the experimental variables with the most significant influence on PHB production by B2. After 14 hours of fermentation in shake flasks with optimized medium, B2 produced 0.43 g/L of PHB with a 34% accumulation in the cells. In contrast, under the same conditions, a maximum PHB concentration of 1.20 g/L in the bioreactor was reached at 11 hours. These values correspond to a 48% and 314% increase in PHB production compared to the initial culture conditions. These results suggest the potential of B2 as a PHB producer using raw glycerol, which is an inexpensive, abundant and readily available carbon source. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration.

    PubMed

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.

  15. Efficient production of artificially designed gelatins with a Bacillus brevis system.

    PubMed

    Kajino, T; Takahashi, H; Hirai, M; Yamada, Y

    2000-01-01

    Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.

  16. Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

    PubMed Central

    Lei, Xinjian; Piao, Xiangshu; Ru, Yingjun; Zhang, Hongyu; Péron, Alexandre; Zhang, Huifang

    2015-01-01

    The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group

  17. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  18. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  19. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

    PubMed

    Li, Kaifeng; Cai, Dongbo; Wang, Zhangqian; He, Zhili; Chen, Shouwen

    2018-03-15

    Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to

  20. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.

    PubMed

    Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan

    2018-06-12

    In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.