Sample records for bacillus licheniformis laccase

  1. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512.

    PubMed

    Shobharani, Papanna; Padmaja, Radhakrishnan J; Halami, Prakash M

    2015-01-01

    The aim of the present study was to investigate the characteristic diversity and stability of antimicrobial compounds produced by two probiotic strains of Bacillus licheniformis (MCC2514 and MCC2512). Antimicrobial compounds from the two strains notably varied, related to stability and potency. The inhibitory spectrum of B. licheniformis MCC2512 was higher than MCC2514, but, related to the effect on Micrococcus luteus ATCC9341, MCC2514 (LD50 = 450 AU ml(-1)) was more potent than MCC2512 (LD50 = 750 AU ml(-1)). The compounds were thermo-resistant and stable at a wide range of pH and exhibited considerable resistance to digestive enzymes and bile salts (anionic biological detergents), contributing to their appropriate application in various food systems. The isolate B. licheniformis MCC2512 gave a positive response to Bacillus subtilis-based biosensors BSF2470 and BS168.BS2, confirming the mode of action on the cell wall and subtilin-type, respectively. For B. licheniformis MCC2514, the mode of action was characterized by constructing B. subtilis reporters that interfered in five major biosynthetic pathways, i.e., biosynthesis of DNA, RNA, protein, the cell wall and fatty acids. B. licheniformis MCC2514 responded to the yvgS reporter, indicating it as an RNA synthesis inhibitor. Overall, the investigation reveals variability of the antimicrobial compounds from B. licheniformis of different origins and for their possible application as biopreservative agents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    PubMed

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  3. Toxigenic Strains of Bacillus licheniformis Related to Food Poisoning

    PubMed Central

    Salkinoja-Salonen, M. S.; Vuorio, R.; Andersson, M. A.; Kämpfer, P.; Andersson, M. C.; Honkanen-Buzalski, T.; Scoging, A. C.

    1999-01-01

    Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol−1. The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688T, but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55°C but not at 10°C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13T, by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 ± 0.2, 4.9 ± 0.3, and 11.7 ± 0.5 or 13.1 ± 0.8 kb. PMID:10508100

  4. Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48.

    PubMed

    Grande, M J; Lucas, R; Abriouel, H; Valdivia, E; Ben Omar, N; Maqueda, M; Martínez-Cañamero, M; Gálvez, A

    2006-08-01

    To determine the activity of enterocin AS-48 against ropy-forming Bacillus licheniformis from cider. Enterocin AS-48 was tested on B. licheniformis LMG 19409 from ropy cider in MRS-G broth, fresh-made apple juice and in two commercial apple ciders (A and B). Bacillus licheniformis was rapidly inactivated in MRS-G by 0.5 microg ml(-1)AS-48 and in fresh-made apple juice by 3 microg ml(-1). Concentration-dependent inactivation of this bacterium in two commercial apple ciders (A and B) stored at 4, 15 and 30 degrees C for 15 days was also demonstrated. Counts from heat-activated endospores in cider A plus AS-48 decreased very slowly. Application of combined treatments of heat (95 degrees C) and enterocin AS-48 reduced the time required to achieved complete inactivation of intact spores in cider A to 4 min for 6 microg ml(-1) and to 1 min for 12 microg ml(-1). D and z values also decreased as the bacteriocin concentration increased. Enterocin AS-48 can inhibit ropy-forming B. licheniformis in apple cider and increase the heat sensitivity of spores. Results from this study support the potential use of enterocin AS-48 to control B. licheniformis in apple cider.

  5. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    PubMed

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter < 10 µm (PM 10 ) is the component of air pollution that is commonly associated with the exacerbation of respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with

  6. CotA of Bacillus subtilis Is a Copper-Dependent Laccase

    PubMed Central

    Hullo, Marie-Françoise; Moszer, Ivan; Danchin, Antoine; Martin-Verstraete, Isabelle

    2001-01-01

    The spore coat protein CotA of Bacillus subtilis displays similarities with multicopper oxidases, including manganese oxidases and laccases. B. subtilis is able to oxidize manganese, but neither CotA nor other sporulation proteins are involved. We demonstrate that CotA is a laccase. Syringaldazine, a specific substrate of laccases, reacted with wild-type spores but not with ΔcotA spores. CotA may participate in the biosynthesis of the brown spore pigment, which appears to be a melanin-like product and to protect against UV light. PMID:11514528

  7. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Wan, Dong-Yu; Lv, Hang; Cao, Zhi-Ran; Wu, Sheng-Mei

    2017-12-01

    Quantum dots (QDs) are semiconductor nanoparticles (NPs) that offer valuable functionality for cellular labeling, drug delivery, solar cells and quantum computation. In this study, we reported that CdSe QDs could be bio-synthesized in Bacillus licheniformis. After optimization, the obtained CdSe QDs exhibited a uniform particle size of 3.71±0.04nm with a maximum fluorescence emission wavelength at 550nm and the synthetical positive ratio can reach up to 87%. Spectral properties, constitution, particle sizes and crystalline phases of the CdSe QDs were systematically and integrally investigated. The CdSe QD-containing Bacillus licheniformis cells were further used as whole fluorescent bio-probes to detect copper (II) (Cu 2+ ) in water, which demonstrated a low limit of detection (0.91μM). The assay also showed a good selectivity for Cu 2+ over other ions including Al 3+ , Cd 2+ , Mg 2+ , K + , Na + , NH 4 + , Zn 2+ , CH 3 COO + , Pb 2+ and I - . Our study suggests the fluorescent CdSe QDs-containing Bacillus licheniformis bio-probes as a promising approach for detection of Cu 2+ in complex solution environment. Copyright © 2017. Published by Elsevier Inc.

  8. Proteomics study of extracellular fibrinolytic proteases from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from Indonesian fermented food

    NASA Astrophysics Data System (ADS)

    Nur Afifah, Diana; Rustanti, Ninik; Anjani, Gemala; Syah, Dahrul; Yanti; Suhartono, Maggy T.

    2017-02-01

    This paper presents the proteomics study which includes separation, identification and characterization of proteins. The experiment on Indonesian fermented food such as extracellular fibrinolytic protease from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from red oncom and tempeh gembus was conducted. The experimental works comprise the following steps: (1) a combination of one- and two-dimensional electrophoresis analysis, (2) mass spectrometry analysis using MALDI-TOF-MS and (3) investigation using protein database. The result suggested that there were new two protein fractions of B. licheniformis RO3 and three protein fractions of B. pumilus 2.g. These result has not been previously reported.

  9. [Maxillary sinus infection by Bacillus licheniformis: a case report from Djibouti].

    PubMed

    Garcia Hejl, C; Sanmartin, N; Samson, T; Soler, C; Koeck, J-L

    2015-01-01

    Aerobic, spore-forming gram-positive Bacillus spp infections are rare and reported mainly in immunocompromised hosts. We report a case of acute unilateral maxillary sinusitis, caused by Bacillus licheniformis, in a 35-year-old French soldier stationed in Djibouti. It was easily identifiable due to its typical culture and resistance profile. This case is interesting for two reasons: first, it is, to our knowledge, the first case of sinusitis attributed to this microbe, and second, it has rarely been described in immunocompetent patients without altered skin or mucous membranes.

  10. Stress Responses of the Industrial Workhorse Bacillus licheniformis to Osmotic Challenges

    PubMed Central

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. PMID:24348917

  11. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

    PubMed

    Li, Kaifeng; Cai, Dongbo; Wang, Zhangqian; He, Zhili; Chen, Shouwen

    2018-03-15

    Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to

  12. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation

    PubMed Central

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril

    2017-01-01

    ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions

  13. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.

    PubMed

    Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko

    2013-10-01

    The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.

  14. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    PubMed Central

    Berendsen, Erwin M.; Koning, Rosella A.; Boekhorst, Jos; de Jong, Anne; Kuipers, Oscar P.; Wells-Bennik, Marjon H. J.

    2016-01-01

    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain. PMID:27994575

  15. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    PubMed

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  16. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    PubMed

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  17. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Separation and determination of peptide metabolite of Bacillus licheniformis in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography.

    PubMed

    Wang, Wei; Bai, Ruiguang; Cai, Xiaoyu; Lin, Ping; Ma, Lihong

    2017-11-01

    A method using high-speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis. Two peptides, l-carnosine and l-alanyl-l-glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home-made spontaneous injection device was applied to perform high-speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10 -5 M. The results demonstrated that Bacillus licheniformis could convert l-carnosine and l-alanyl-l-glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways.

    PubMed

    Liang, Chengwen; Huo, Yanli; Qi, Gaofu; Wei, Xuetuan; Wang, Qin; Chen, Shouwen

    2015-06-01

    Bacillus licheniformis WX-02 is used for the production of many valuable chemicals. Here, we have sought to improve L-valine production by blocking the metabolic pathways related to branched-chain amino acids. The synthesis genes of L-leucine (leuA) and L-isoleucine (ilvA) were deleted to obtain mutant strains. L-Valine yields of WX-02ΔleuA and WX-02ΔilvA reached 33.2 and 21.1 mmol/l, respectively, which are 22 and 14 times higher than the wild-type WX-02 (1.53 mmol/l). After further deletion of L-lactate dehydrogenase gene (ldh) from WX-02ΔleuA, the productivity reached 0.47 mmol/l h, an increase of 19 %. We provide a possibility to over-produce L-valine using genetically-modified B. licheniformis using remodeling of the biosynthetic pathway to L-valine.

  20. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sungchyr; Sharma, M.M.; Georgiou, G.

    Bacillus licheniformis JF-2 produces a lipopeptide surfactant with excellent interfacial properties (Lin et al., 1990, 1992). An HPLC assay was developed to monitor the concentration of the lipopeptide in the fermentation broth and was employed to determine the effect of the composition of the growth medium on biosurfactant production. A maximum concentration of 110 mg/L lipopeptide was obtained in optimized media with 1.0% (w/v) glucose as the carbon source. The maximum amount of surfactant was obtained in early stationary-phase cultures, but subsequently decreased rapidly and disappeared completely from the fermentation broth within 8 h. It was shown that the surfactantmore » is chemically stable in the culture supernatant but becomes internalized by stationary-phase cells. The apparent rate of surfactant internalization was not inhibited by carbonyl cyanide (m-chlorophenyl)hydrazone (CCCP), an uncoupler of oxidative phosphorylation, suggesting that it is not dependent on the availability of ATP and/or a charged membrane. A variety of physical and chemical treatments failed to release the surfactant from the cells. In minimal media the rate of surfactant internalization could be reduced by optimizing the concentration of phosphate and by increasing the amount of magnesium, whereas the nitrogen source, calcium, and trace salts had no effect. Since a related lipopeptide has been shown to be responsible for DNA transformation competence in certain Bacillus subtilis strains, it is possible that the internalization of the B. licheniformis JF-2 surfactant may be a developmentally important process related to the ability of the cells to take up extraneous DNA. 21 refs., 8 figs.« less

  1. Polygalacturonase: production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21.

    PubMed

    Rehman, Haneef Ur; Qader, Shah Ali Ul; Aman, Afsheen

    2012-09-01

    Polygalacturonase is an enzyme that hydrolyzes external and internal α (1-4) glycosidic bonds of pectin to decrease the viscosity of fruits juices and vegetable purees. Several bacterial strains were isolated from soil and rotten vegetables and screened for polygalacturonase production. The strain which produced maximum polygalacturonase was identified Bacillus licheniformis on the basis of taxonomic studies and 16S rDNA analysis. The isolated bacterial strain produced maximum polygalacturonase at 37 °C after 48 h of fermentation. Among various carbon sources apple pectin (1.0%) showed maximum enzyme production. Different agro industrial wastes were also used as substrate in batch fermentation and it was found that wheat bran is capable of producing high yield of enzyme. Maximum polygalacturonase production was obtained by using yeast extract (0.3%) as a nitrogen source. It was observed that B. licheniformis KIBGE IB-21 is capable of producing 1015 U/mg of polygalacturonase at neutral pH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Spore cells from BPA degrading bacteria Bacillus sp. GZB displaying high laccase activity and stability for BPA degradation.

    PubMed

    Das, Ranjit; Li, Guiying; Mai, Bixian; An, Taicheng

    2018-06-04

    Laccase has been applied extensively as a biocatalyst to remove different organic pollutants. This study characterized a spore-laccase from the bisphenol A (BPA)-degrading strain Bacillus sp. GZB. The spore-laccase was encoded with 513 amino acids, containing spore coat protein A (CotA). It showed optimal activity at 70 °C and pH = 7.2 in presence of 2, 6-dimethoxyphenol. At 60 °C, optimal activity was also seen at pH = 3.0 and pH = 6.8 with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. The spore-laccase was stable at high temperature, at acidic to alkaline pH values, and in the presence of different organic solvents. Spore-laccase activity was increased by introducing Cu 2+ , Mg 2+ , and Na + , but was strongly inhibited by Fe 2+ , Ag + , l-cysteine, dithiothreitol, and NaN 3 . The cotA gene was cloned and expressed in E. coli BL21 (DE3); the purified protein was estimated as having a molecular weight of ~63 kDa. Different synthetic dyes and BPA were effectively decolorized or degraded both by the spore laccase and recombinant laccase. When BPA oxidation was catalyzed using laccase, there was an initial formation of phenoxy radicals and further oxidation or CC bond cleavage of the radicals produced different organic acids. Detailed reaction pathways were developed based on nine identified intermediates. The acute toxicity decreased gradually during BPA degradation by laccase. This study is the first report about a genus of Bacillus that can produce a highly active and stable laccase to degrade BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    PubMed

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  4. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    PubMed

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.

    PubMed

    Abinaya, Muthukumar; Vaseeharan, Baskaralingam; Divya, Mani; Vijayakumar, Sekar; Govindarajan, Marimuthu; Alharbi, Naiyf S; Khaled, Jamal M; Al-Anbr, Mohammed N; Benelli, Giovanni

    2018-04-27

    Microbial polysaccharides produced by marine species play a key role in food and cosmetic industry, as they are nontoxic and biodegradable polymers. This investigation reports the isolation of exopolysaccharide from Bacillus licheniformis Dahb1 and its biomedical applications. Bacillus licheniformis Dahb1 exopolysaccharide (Bl-EPS) was extracted using the ethanol precipitation method and structurally characterized. FTIR and 1 H-NMR pointed out the presence of various functional groups and primary aromatic compounds, respectively. Bl-EPS exhibited strong antioxidant potential confirmed via DPPH radical, reducing power and superoxide anion scavenging assays. Microscopic analysis revealed that the antibiofilm activity of Bl-EPS (75 μg/ml) was higher against Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) bacteria over Gram-positive species (Bacillus subtilis and Bacillus pumilus). Bl-EPS led to biofilm inhibition against Candida albicans when tested at 75 μg/ml. The hemolytic assay showed low cytotoxicity of Bl-EPS at 5 mg/ml. Besides, Bl-EPS achieved LC 50 values < 80 μg/ml against larvae of mosquito vectors Anopheles stephensi and Aedes aegypti. Overall, our findings pointed out the multipurpose bioactivity of Bl-EPS, which deserves further consideration for pharmaceutical, environmental and entomological applications.

  6. The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments.

    PubMed

    Kim, Jung-Hoon; Won, Young-Bin; Ji, Chang-Jun; Yang, Yoon-Mo; Ryu, Su-Hyun; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Lee, Jin-Won

    2017-02-26

    PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerR BL , PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerR BL in B. licheniformis. In vitro and in vivo studies indicate that PerR BL , like PerR BS , uses either Fe 2+ or Mn 2+ as a corepressor and only the Fe 2+ -bound form of PerR BL senses low levels of H 2 O 2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H 2 O 2 sensitivity, if any, between PerR BL and PerR BS , B. licheniformis expressing PerR BL or PerR BS could sense lower levels of H 2 O 2 and was more sensitive to H 2 O 2 than B. subtilis expressing PerR BL or PerR BS . This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerR BS and PerR BL per se, affect the H 2 O 2 sensing ability of PerR inside the cell and the H 2 O 2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerR SA ), which is more sensitive to H 2 O 2 than PerR BL and PerR BS , were more resistant to H 2 O 2 than those expressing either PerR BL or PerR BS . This result indicates that the sufficient difference in H 2 O 2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    PubMed

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  8. Effect of amino acids on tannase biosynthesis by Bacillus licheniformis KBR6.

    PubMed

    Mohapatra, Pradeep K Das; Pati, Bikas R; Mondal, Keshab C

    2009-04-01

    Microbial tannase (tannin acyl hydrolase, EC 3.1.1.20), a hydrolysable tannin-degrading enzyme, has gained importance in various industrial processes, and is used extensively in the manufacture of instant tea, beer, wine, and gallic acid. Tannase is an inducible enzyme, and hydrolysable tannin, especially tannic acid, is the sole inducer. This study is of the effect of various amino acids and their analogues on tannase biosynthesis by Bacillus licheniformis KBR6 to ascertain the mode of action of these growth factors on tannase biosynthesis from microbial origin. Enzyme production was carried out in enriched tannic acid medium through submerged fermentation for 20 h at 35 degrees C. Different amino acids at a concentration of 0.05 g% (w/v) were added to the culture medium immediately after sterilization. Culture supernatant was used as the source of the enzyme and the quantity of tannase was estimated by the colorimetric assay method. Growth of the organism was estimated according to biomass dry weight. Maximum tannase (2.87-fold that of the control) was synthesized by B. licheniformis KBR6 when alanine was added to the culture medium. Other amino acids, such as DL-serine, L-cystine, glycine, L-ornithine, aspartic acid, L-glutamic acid, DL-valine, L-leucine and L-lysine, also induced tannase synthesis. L-Cysteine monohydrochloride and DL-threonine were the most potent inhibitors. Regulation of tannase biosynthesis by B. licheniformis in the presence of various amino acids is shown. This information will be helpful for formulating an enriched culture medium for industrial-scale tannase production.

  9. Draft Genome Sequence of Bacillus licheniformis Strain YNP1-TSU Isolated from Whiterock Springs in Yellowstone National Park

    PubMed Central

    O'Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew B.

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms can potentially influence second-generation biofuel production. This paper reports the draft genome sequence of Bacillus licheniformis strain YNP1-TSU, isolated from hydrothermal-vegetative microbiomes inside Yellowstone National Park. The assembled sequence contigs predicted 4,230 coding genes, 66 tRNAs, and 10 rRNAs through automated annotation. PMID:28254968

  10. Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis

    PubMed Central

    Flickinger, M. C.; Perlman, D.

    1979-01-01

    The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361

  11. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    PubMed

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  12. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus

    PubMed Central

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-01-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries. PMID:28101462

  13. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus.

    PubMed

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-12-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries.

  14. Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from Pleurotus nebrodensis.

    PubMed

    Yuan, Xianghe; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2016-08-01

    Three laccase isoenzymes (Lac1, Lac2 and Lac3) have been purified to homogeneity from Pleurotus nebrodensis in our previous study. Lac2 was shown to be the dominant isoform, capable of oxidizing the majority of laccase substrates and manifesting good thermostability and pH stability. Hence, Lac2 was selected to decolourize structurally different dyes and the colour removal efficiencies of Lac2 and the crude extract of P. nebrodensis were compared. By monitoring the λmax of the reaction system during the course of biotransformation, clear hypsochromic shifts were observed for most of the dyes examined, illustrating that at least one peak disappeared as a result of laccase treatment. In general, Lac2 was more efficient within a short time (1 h) and the crude extract, in general, could achieve similar or even higher efficiency when the duration of treatment was extended to 24 h. Malachite green (MG) was chosen to study the detoxifying potential of Lac2, because of the relatively simple structure and high toxicity of the dye towards microorganisms. The toxicity of MG towards both bacteria (Bacillus subtilis, Bacillus licheniformis, Pseudomonas fluorescens and Escherichia coli) and fungi (Fusarium graminearum and Trichoderma harzianum) was dramatically decreased and the potential mechanism was estimated by GC-MS as to remove four methyl groups firstly and the two newly formed amine groups would be degraded or polymerized further. The present study facilitates an understanding of the application of P. nebrodensis laccases and furnishes evidence for the safety of their utilization in the treatment of wastewater emanating from textile industries. © 2016 The Author(s).

  15. Degradation of dyes using crude extract and a thermostable and pH-stable laccase isolated from Pleurotus nebrodensis

    PubMed Central

    Yuan, Xianghe; Tian, Guoting; Zhao, Yongchang; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2016-01-01

    Three laccase isoenzymes (Lac1, Lac2 and Lac3) have been purified to homogeneity from Pleurotus nebrodensis in our previous study. Lac2 was shown to be the dominant isoform, capable of oxidizing the majority of laccase substrates and manifesting good thermostability and pH stability. Hence, Lac2 was selected to decolourize structurally different dyes and the colour removal efficiencies of Lac2 and the crude extract of P. nebrodensis were compared. By monitoring the λmax of the reaction system during the course of biotransformation, clear hypsochromic shifts were observed for most of the dyes examined, illustrating that at least one peak disappeared as a result of laccase treatment. In general, Lac2 was more efficient within a short time (1 h) and the crude extract, in general, could achieve similar or even higher efficiency when the duration of treatment was extended to 24 h. Malachite green (MG) was chosen to study the detoxifying potential of Lac2, because of the relatively simple structure and high toxicity of the dye towards microorganisms. The toxicity of MG towards both bacteria (Bacillus subtilis, Bacillus licheniformis, Pseudomonas fluorescens and Escherichia coli) and fungi (Fusarium graminearum and Trichoderma harzianum) was dramatically decreased and the potential mechanism was estimated by GC–MS as to remove four methyl groups firstly and the two newly formed amine groups would be degraded or polymerized further. The present study facilitates an understanding of the application of P. nebrodensis laccases and furnishes evidence for the safety of their utilization in the treatment of wastewater emanating from textile industries. PMID:27354563

  16. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B.

    PubMed

    Li, Zhu; Duan, Xuguo; Chen, Sheng; Wu, Jing

    2017-01-01

    The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase.

  17. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B

    PubMed Central

    Li, Zhu; Duan, Xuguo; Chen, Sheng; Wu, Jing

    2017-01-01

    The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase. PMID:28253342

  18. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.

  19. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium

    USDA-ARS?s Scientific Manuscript database

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known abou...

  2. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  3. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  4. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality.

    PubMed

    Kritas, S K; Govaris, A; Christodoulopoulos, G; Burriel, A R

    2006-05-01

    The purpose of this pilot study was to evaluate under field conditions the effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis on young lamb mortality and sheep milk production when administered in the late pregnancy and lactation feed of ewes. In a sheep farm, two groups of milking ewes with identical genetic material, management, nutrition, health status and similar production characteristics were formed. One group (46 ewes) served as control, while the other one (48 ewes) served as a probiotic-treated group. Both groups of ewes received a similar feeding regiment, but the ewes of the second group were additionally offered a probiotic product containing B. licheniformis and B. subtilis (BioPlus 2B, Chr. Hansen, Denmark) at the approximate dose of 2.56 x 10(9) viable spores per ewe per day. Lamb mortality during the 1.5 months suckling period, and milk yield during the 2 months of milk collection for commercial purposes have been recorded. In the non-treated control group, 13.1% mortality was observed versus 7.8% in the probiotic-treated group (P = 0.33), with mortality being mainly due to diarrhoea. Microbiological examination of diarrhoeic faeces from some of the dead lambs in both groups revealed the presence of Escherichia coli. The average daily milk yield per ewe was significantly lower in the control group (0.80 l) than that in the probiotic-treated group (0.93 l) (P < 0.05). Fat and protein content of milk in ewes that received probiotics was significantly (P < 0.05) increased compared with untreated ewes. It was concluded that supplementing ewe's feed with probiotics may have beneficial effect on subsequent milk yields, fat and protein content.

  5. Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park

    PubMed Central

    O' Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms are becoming more important for rapidly growing biofuel industries. This paper reports the draft genome sequences of Bacillus licheniformis strains YNP2-TSU, YNP3-TSU, and YNP5-TSU. These cellulolytic isolates were collected from several hydrothermal features inside Yellowstone National Park. PMID:28360181

  6. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.

    PubMed

    Kim, Jung-Hoon; Yang, Yoon-Mo; Ji, Chang-Jun; Ryu, Su-Hyun; Won, Young-Bin; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2017-06-01

    PerR, a member of Fur family protein, is a metal-dependent H 2 O 2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerR BL , PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerR BL . PerR BL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerR BS . However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H 2 O 2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerR BL and PerR BS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

  7. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    PubMed

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  8. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7.

    PubMed

    Guevara-Luna, Joseph; Alvarez-Fitz, Patricia; Ríos-Leal, Elvira; Acevedo-Quiroz, Macdiel; Encarnación-Guevara, Sergio; Moreno-Godinez, Ma Elena; Castellanos-Escamilla, Mildred; Toribio-Jiménez, Jeiry; Romero-Ramírez, Yanet

    2018-06-09

    Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C 6 H 4 (COOH) 2 , confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg -1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.

  9. In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2.

    PubMed

    Girija, Vairavan; Malaikozhundan, Balasubramanian; Vaseeharan, Baskaralingam; Vijayakumar, Sekar; Gobi, Narayanan; Del Valle Herrera, Marian; Chen, Jiann-Chu; Santhanam, Perumal

    2018-01-01

    In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish (Danio rerio) challenged with GFP tagged Vibrio parahaemolyticus Dahv2 was studied. The cell free extract of probiotic B. licheniformis Dahb1 at 100 μg mL -1 showed growth inhibition of V. parahaemolyticus Dahv2 in vitro. B. licheniformis Dahb1 also inhibited the biofilm growth of GFP tagged V. parahaemolyticus Dahv2 at 100 μg mL -1 in vitro. The growth and survival of zebrafish was tested using probiotic B. licheniformis Dahb1. Weight (1.28 g) of zebrafish that received the cell free extract was much higher than in control (1.04 g). The mortality of zebrafish infected with GFP tagged V. parahaemolyticus Dahv2 at 10 7 Cfu mL -1 (Group IV) was 100%, whereas a complete survival of zebrafish that received the cell free extract of B. licheniformis Dahb1 at 10 7 Cfu mL -1 (Group VII) was observed after 30 days. The number of GFP tagged V. parahaemolyticus Dahv2 colonies in the intestine and gills significantly reduced after treatment with the cell free extract of B. licheniformis Dahb1. Furthermore, a significant decrease in the fluorescent colonies of GFP tagged V. parahaemolyticus Dahv2 was observed after treatment with the cell free extract of B. licheniformis Dahb1 under confocal laser scanning microscopy (CLSM). In conclusion, the cell free extract of B. licheniformis Dahb1 could prevent Vibrio infection by enhancing the growth and survival of zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  12. Hyperproduction of γ-glutamyl transpeptidase from Bacillus licheniformis ER15 in the presence of high salt concentration.

    PubMed

    Bindal, Shruti; Gupta, Rani

    2017-02-07

    Microbial γ-glutamyl transpeptidases (GGTs) have been exploited in biotechnological, pharmaceutical, and food sectors for the synthesis of various γ-glutamyl compounds. But, till date, no bacterial GGTs are commercially available in the market because of lower levels of production from various sources. In the current study, production of GGT from Bacillus licheniformis ER15 was investigated to achieve high GGT titers. Hyperproduction of GGT from B. licheniformis ER15 was achieved with 6.4-fold enhancement (7921.2 ± 198.7 U/L) by optimization of culture medium following one-variable-at-a-time strategy and statistical approaches. Medium consisting of Na 2 HPO 4 : 0.32% (w/v); KH 2 PO 4 : 0.15% (w/v); starch: 0.1% (w/v); soybean meal: 0.5% (w/v); NaCl: 4.0% (w/v), and MgCl 2 : 5 mM was found to be optimal for maximum GGT titers. Maximum GGT titers were obtained, in the optimized medium at 37°C and 200 rpm, after 40 h. It was noteworthy that GGT production was a linear function of sodium chloride concentration, as observed during response surface methodology. While investigating the role of NaCl on GGT production, it was found that NaCl drastically decreased subtilisin concentration and indirectly increasing GGT recovery. B. licheniformis ER15 is proved to be a potential candidate for large-scale production of GGT enzyme and its commercialization.

  13. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus.

    PubMed

    Gobi, Narayanan; Malaikozhundan, Balasubramanian; Sekar, Vijayakumar; Shanthi, Sathappan; Vaseeharan, Baskaralingam; Jayakumar, Rengarajan; Khudus Nazar, Abdul

    2016-05-01

    In this study, the pathogenicity of GFP tagged Vibrio parahaemolyticus Dahv2 and the protective effect of the probiotic strain, Bacillus licheniformis Dahb1 was studied on the Asian catfish, Pangasius hypophthalmus. The experiment was carried out for 24 days with three groups and one group served as the control (without treatment). In the first group, P. hypophthalmus was orally infected with 1 mL of GFP tagged V. parahaemolyticus Dahv2 at two different doses (10(5) and 10(7) cfu mL(-1)). In the second group, P. hypophthalmus was orally administrated with 1 ml of the probiotic B. licheniformis Dahb1 at two different doses (10(5) and 10(7) cfu mL(-1)). In the third group, P. hypophthalmus was orally infected first with 1 mL of GFP tagged V. parahaemolyticus Dahv2 followed by the administration of 1 mL of B. licheniformis Dahb1 (combined treatment) at two different doses (10(5) and 10(7) cfu mL(-1)). The growth, immune (myeloperoxidase, respiratory burst, natural complement haemolytic and lysozyme activity) and antioxidant (glutathione-S-transferase, reduced glutathione and total glutathione) responses of P. hypophthalmus were reduced after post infection of GFP tagged V. parahaemolyticus Dahv2 compared to control. However, after administration with the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1), P. hypophthalmus showed significant increase in the growth, immune and antioxidant responses compared to 10(7) cfu mL(-1). On the otherhand, the growth, immune and antioxidant responses of P. hypophthalmus infected and administrated with combined GFP tagged Vibrio + Bacillus at 10(5) cfu mL(-1) were relatively higher than that of GFP tagged V. parahaemolyticus Dahv2 and control groups but lower than that of probiotic B. licheniformis Dahb1 groups. The results of the present study conclude that the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1) has the potential to protect the P. hypophthalmus against V. parahaemolyticus Dahv2 infection by enhancing the growth

  14. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    PubMed

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  15. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    PubMed

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  16. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  17. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry.

    PubMed

    Yan, Shan; Yao, Haosheng; Chen, Zhen; Zeng, Shengquan; Xi, Xi; Wang, Yuanpeng; He, Ning; Li, Qingbiao

    2015-01-01

    As an environmentally friendly and industrially useful biopolymer, poly-γ-glutamic acid (γ-PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high-resolution mass spectrometry and (1)H NMR. A flocculating activity of 11,474.47 U mL(-1) obtained with γ-PGA, and the effects of carbon sources, ions, and chemical properties (D-/L-composition and molecular weight) on the production and flocculating activity of γ-PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ-PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry--polyacrylamide with 1 ppm. The γ-PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers.

  18. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

  19. Decolorization of textile dye RB19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase.

    PubMed

    Wan, Juan; Sun, Xiaowen; Liu, Cheng; Tang, Mengjun; Li, Lin; Ni, Hong

    2017-06-01

    A triplicate volcanic rock matrix-Bacillus thuringiensis-laccase WlacD (VRMs-Bt-WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn) 2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn) 2 -WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9 (3 4 )-orthogonal test, Plackett-Burman test, steepest ascent method, and Box-Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L -1 , which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs-Bt-WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs-Bt-WlacD toward an initial concentration of 500 mg L -1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g-100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs-Bt-WlacD and have the potential for large-scale or continuous operations.

  20. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry.

    PubMed

    Favaro, Gabriella; Bogialli, Sara; Di Gangi, Iole Maria; Nigris, Sebastiano; Baldan, Enrico; Squartini, Andrea; Pastore, Paolo; Baldan, Barbara

    2016-10-30

    The plant endophyte Bacillus licheniformis, isolated from leaves of Vitis vinifera, was studied to individuate and characterize the presence of bioactive lipopeptides having amino acidic structures. Crude extracts of liquid cultures were analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. Chromatographic conditions were optimized in order to obtain an efficient separation of the different isobaric lipopeptides, avoiding merged fragmentations of co-eluted isomeric compounds and reducing possible cross-talk phenomena. Composition of the amino acids was outlined through the interpretation of the fragmentation behavior in tandem high-resolution mass spectrometry (HRMS/MS) mode, which showed both common-class and peculiar fragment ions. Both [M + H](+) and [M + Na](+) precursor ions were fragmented in order to differentiate some isobaric amino acids, i.e. Leu/Ile. Neutral losses characteristic of the iso acyl chain were also evidenced. More than 90 compounds belonging to the classes of surfactins and lichenysins, known as biosurfactant molecules, were detected. Sequential LC/HRMS/MS analysis was used to identify linear and cyclic lipopeptides, and to single out the presence of a large number of isomers not previously reported. Some critical issues related to the simultaneous selection of different compounds by the quadrupole filter were highlighted and partially solved, leading to tentative assignments of several structures. Linear lichenysins are described here for the first time. The approach was proved to be useful for the characterization of non-target lipopeptides, and proposes a rationale MS experimental scheme aimed to investigate the difference in amino acid sequence and/or in the acyl chain of the various congeners, when standards are not available. Results expanded the knowledge about production of linear and cyclic bioactive compounds from Bacillus licheniformis, clarifying the

  1. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation.

    PubMed

    Lin, Yicen; Xu, Shuai; Zeng, Dong; Ni, Xueqin; Zhou, Mengjia; Zeng, Yan; Wang, Hesong; Zhou, Yi; Zhu, Hui; Pan, Kangcheng; Li, Guangyao

    2017-01-01

    Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler

  2. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation

    PubMed Central

    Ni, Xueqin; Zhou, Mengjia; Zeng, Yan; Wang, Hesong; Zhou, Yi; Zhu, Hui; Pan, Kangcheng; Li, Guangyao

    2017-01-01

    Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler

  3. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    PubMed

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  4. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhancedmore » expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.« less

  5. Bacillus licheniformis BT5.9 Isolated from Changar Hot Spring, Malang, Indonesia, as a Potential Producer of Thermostable α-amylase

    PubMed Central

    Ibrahim, Darah; Zhu, Han Li; Yusof, Nuraqilah; Isnaeni; Hong, Lim Sheh

    2013-01-01

    A total of 34 bacterial isolates were obtained from soil samples collected from Changar Hot Spring, Malang, Indonesia. Of these, 13 isolates produced a zone of hydrolysis in starch-nutrient agar medium and generated various amylases in liquid medium. One isolate was selected as the best amylase producer and was identified as Bacillus licheniformis BT5.9. The improvement of culture conditions (initial medium pH of 5.0, cultivation temperature of 50°C, agitation speed of 100 rpm and inoculum size of 1.7 × 109 cells/ml) provided the highest amylase production (0.327 U/ml). PMID:24575243

  6. Characterization of Lipopeptide Biosurfactants Produced by Bacillus licheniformis MB01 from Marine Sediments

    PubMed Central

    Chen, Yulin; Liu, Shiliang A.; Mou, Haijin; Ma, Yunxiao; Li, Meng; Hu, Xiaoke

    2017-01-01

    Antibiotic resistance has become one of the world’s most severe problems because of the overuse of antibiotics. Antibiotic-resistant bacteria are more difficult to kill and more expensive to treat. Researchers have been studied on antibiotic alternatives such as antimicrobial peptides and lipopeptides. A functional bacteria MB01 producing lipopeptides which can be used as bacteriostat was isolated from the Bohai Sea sediments, which had been identified as Bacillus licheniformis by the morphological, physiological, and biochemical identification and 16s rDNA sequence. The lipopeptides produced by MB01 were determined to be cyclic surfactin homologs by LC-ESI-MS structural identification after crude extraction and LH-20 chromatography. [M+H]+ m/z 994, 1008, 1022, and 1036 were all the characteristic molecular weight of surfactin homologs. CID analysis revealed that the molecular structure of the lipopeptides was Rn-Glu1-Leu/Ile2-Leu3-Val4-Asp5-Leu6-Leu/Ile7. The lipopeptides showed well resistance to UV light and the change of pH and temperature. PMID:28559889

  7. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    PubMed

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  8. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain.

    PubMed

    Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2015-09-01

    Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.

  10. R software package based statistical optimization of process components to simultaneously enhance the bacterial growth, laccase production and textile dye decolorization with cytotoxicity study

    PubMed Central

    Dudhagara, Pravin; Tank, Shantilal

    2018-01-01

    The thermophilic bacterium, Bacillus licheniformis U1 is used for the optimization of bacterial growth (R1), laccase production (R2) and synthetic disperse blue DBR textile dye decolorization (R3) in the present study. Preliminary optimization has been performed by one variable at time (OVAT) approach using four media components viz., dye concentration, copper sulphate concentration, pH, and inoculum size. Based on OVAT result further statistical optimization of R1, R2 and R3 performed by Box–Behnken design (BBD) using response surface methodology (RSM) in R software with R Commander package. The total 29 experimental runs conducted in the experimental design study towards the construction of a quadratic model. The model indicated that dye concentration 110 ppm, copper sulphate 0.2 mM, pH 7.5 and inoculum size 6% v/v were found to be optimum to maximize the laccase production and bacterial growth. Whereas, maximum dye decolorization achieved in media containing dye concentration 110 ppm, copper sulphate 0.6 mM, pH 6 and inoculum size 6% v/v. R package predicted R2 of R1, R2 and R3 were 0.9917, 0.9831 and 0.9703 respectively; likened to Design-Expert (Stat-Ease) (DOE) predicted R2 of R1, R2, and R3 were 0.9893, 0.9822 and 0.8442 respectively. The values obtained by R software were more precise, reliable and reproducible, compared to the DOE model. The laccase production was 1.80 fold increased, and 2.24 fold enhancement in dye decolorization was achieved using optimized medium than initial experiments. Moreover, the laccase-treated sample demonstrated the less cytotoxic effect on L132 and MCF-7 cell lines compared to untreated sample using MTT assay. Higher cell viability and lower cytotoxicity observed in a laccase-treated sample suggest the impending application of bacterial laccase in the reduction of toxicity of dye to design rapid biodegradation process. PMID:29718934

  11. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli.

    PubMed

    Songsiriritthigul, Chomphunuch; Buranabanyat, Bancha; Haltrich, Dietmar; Yamabhai, Montarop

    2010-04-11

    Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannanase (EC 3.2.1.78), commonly named beta-mannanase, is an enzyme that can catalyze random hydrolysis of beta-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-beta-mannosidase gene (manB) from B. licheniformis. The mannan endo-1,4-beta-mannosidase gene (manB), commonly known as beta-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 x His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 +/- 96 units/mg. The optimal pH of the enzyme was between pH 6.0 - 7.0; whereas the optimal temperature was at 50 - 60 degrees C. The recombinant beta-mannanase was stable within pH 5 - 12 after incubation for 30 min at 50 degrees C, and within pH 6 - 9 after incubation at 50 degrees C for 24 h. The enzyme was stable at temperatures up to 50 degrees C with a half-life time of activity (tau1

  12. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    PubMed

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  13. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    PubMed

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  14. Characterization of an Alkali- and Halide-Resistant Laccase Expressed in E. coli: CotA from Bacillus clausii

    PubMed Central

    Brander, Søren; Mikkelsen, Jørn D.; Kepp, Kasper P.

    2014-01-01

    The limitations of fungal laccases at higher pH and salt concentrations have intensified the search for new extremophilic bacterial laccases. We report the cloning, expression, and characterization of the bacterial cotA from Bacillus clausii, a supposed alkalophilic ortholog of cotA from B. subtilis. Both laccases were expressed in E. coli strain BL21(DE3) and characterized fully in parallel for strict benchmarking. We report activity on ABTS, SGZ, DMP, caffeic acid, promazine, phenyl hydrazine, tannic acid, and bilirubin at variable pH. Whereas ABTS, promazine, and phenyl hydrazine activities vs. pH were similar, the activity of B. clausii cotA was shifted upwards by ∼0.5–2 pH units for the simple phenolic substrates DMP, SGZ, and caffeic acid. This shift is not due to substrate affinity (KM) but to pH dependence of catalytic turnover: The kcat of B. clausii cotA was 1 s−1 at pH 6 and 5 s−1 at pH 8 in contrast to 6 s−1 at pH 6 and 2 s−1 at pH 8 for of B. subtilis cotA. Overall, kcat/KM was 10-fold higher for B. subtilis cotA at pHopt. While both proteins were heat activated, activation increased with pH and was larger in cotA from B. clausii. NaCl inhibited activity at acidic pH, but not up to 500–700 mM NaCl in alkaline pH, a further advantage of the alkali regime in laccase applications. The B. clausii cotA had ∼20 minutes half-life at 80°C, less than the ∼50 minutes at 80°C for cotA from B. subtilis. While cotA from B. subtilis had optimal stability at pH∼8, the cotA from B. clausii displayed higher combined salt- and alkali-resistance. This resistance is possibly caused by two substitutions (S427Q and V110E) that could repel anions to reduce anion-copper interactions at the expense of catalytic proficiency, a trade-off of potential relevance to laccase optimization. PMID:24915287

  15. Engineering Bacillus licheniformis as a thermophilic platform for the production of l-lactic acid from lignocellulose-derived sugars.

    PubMed

    Li, Chao; Gai, Zhongchao; Wang, Kai; Jin, Liping

    2017-01-01

    Bacillus licheniformis MW3 as a GRAS and thermophilic strain is a promising microorganism for chemical and biofuel production. However, its capacity to co-utilize glucose and xylose, the major sugars found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, a "dual-channel" process was implemented to engineer strain MW3 for simultaneous utilization of glucose and xylose, using l-lactic acid as a target product. A non-phosphotransferase system (PTS) glucose uptake route was activated via deletion of the glucose transporter gene ptsG and introduction of the galactose permease gene galP . After replacing the promoter of glucokinase gene glck with the strong promoter P als , the engineered strain recovered glucose consumption and utilized glucose and xylose simultaneously. Meanwhile, to improve the consumption rate of xylose in this strain, several measures were undertaken, such as relieving the regulation of the xylose repressor XylR, reducing the catabolite-responsive element, and optimizing the rate-limiting step. Knockout of ethanol and acetic acid pathway genes further increased lactic acid yield by 6.2%. The resultant strain, RH15, was capable of producing 121.9 g/L l-lactic acid at high yield (95.3%) after 40 h of fermentation from a mixture of glucose and xylose. When a lignocellulosic hydrolysate was used as the substrate, 99.3 g/L l-lactic acid was produced within 40 h, with a specific productivity of 2.48 g/[L h] and a yield of 94.6%. Our engineered strain B. licheniformis RH15 could thermophilically produced l-lactic acid from lignocellulosic hydrolysate with relatively high concentration and productivity at levels that were competitive with most reported cases of l-lactic acid-producers. Thus, the engineered strain might be used as a platform for the production of other chemicals. In addition to engineering the B. licheniformis strain, the "dual-channel" process might serve as an

  16. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.

  17. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis.

    PubMed

    Liu, Peize; Chen, Zhen; Yang, Lijie; Li, Qingbiao; He, Ning

    2017-09-26

    Polysaccharides and poly-γ-glutamic acid (γ-PGA) are biomacromolecules that have been reported as bioflocculants, and they exhibit high flocculating activity in many industrial applications. Bacillus licheniformis CGMCC 2876 can produce polysaccharide and γ-PGA bioflocculants under different culture conditions. Several key genes are involved in the metabolic pathway of polysaccharides in B. licheniformis, but the impacts of the regulation of these genes on the production of polysaccharide bioflocculants have not been illustrated completely. To increase the bioflocculant production and identify the correlation between the synthesis of polysaccharides and γ-PGA in B. licheniformis, a few key genes were investigated to explore their influence on the synthesis of the bioflocculants. Overexpressing epsB from the eps gene cluster not only improved the bioflocculant crude yield by 13.98% but also enhanced the flocculating activity by 117.92%. The composition of the bioflocculant from the epsB recombinant strain was 28.95% total sugar, 3.464% protein and 44.03% γ-PGA, while in the original strain, these components represented 53.67%, 3.246% and 34.13%, respectively. In combination with an analysis of the transcriptional levels of several key genes involved in γ-PGA synthesis in B. licheniformis, we inferred that epsB played a key role in the synthesis of both polysaccharide and γ-PGA. The bioflocculant production of the epsB recombinant strain was further evaluated during batch fermentation in a 2 L fermenter; the flocculating activity reached 9612.75 U/mL, and the bioflocculant yield reached 10.26 g/L after 72 h, representing increases of 224% and 36.62%, respectively, compared with the original strain. Moreover, we found that the tandem expression of phosphoglucomutase (pgcA) and UTP-glucose-1-phosphate uridylyltransferase (gtaB1) could enhance the crude yield of the bioflocculant by 20.77% and that the overexpression of epsA could enhance the bioflocculant

  18. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-07-01

    Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Molecular dynamics simulation studies suggests unconventional roles of non-secretary laccases from enteropathogenic gut bacteria and Cryptococcus neoformans serotype D.

    PubMed

    Sharma, Krishna Kant; Singh, Deepti; Rawat, Surender

    2018-04-01

    Laccase in Cryptococcus neoformans is covalently linked to the carbohydrate moiety of the cell wall, which allows it to get access to the different substrates for catalyzing their oxidation and therefore plays a vital role in the virulence. The laccase gene (3.0 kb) from C. neoformans serotype D was amplified, cloned and sequenced for protein modeling, docking and simulation studies. The three dimensional homology models of laccase protein from C. neoformans and other pathogenic gut bacteria were docked with selected biomolecules like prostaglandins (PG), membrane phospholipids, neurotransmitters (serotonin) using GOLD software. The GOLDscore values of laccase from C. neoformans docked with prostaglandinH 2 (59.76), prostaglandinG 2 (59.45), prostaglandinE 2 (60.99), phosphatidylinositol (54.95), phosphatidylcholine (46.26), phosphatidylserine (55.26), arachidonic acid (53.08) and serotonin (46.22) were similar to the laccase from enteropathogenic bacteria but showed a better binding affinity as compared to that of the non-pathogenic bacteria (e.g. Bacillus safensis, Bacillus pumilus and Bacillus subtilis). The RMSD of MD simulation study done for 25 ns using laccase protein from C. neoformans complexed with phosphatidylcholine was found to be highly stable, followed by the laccase-PGE 2 and laccase-serotonin complexes. Furthermore, the binding free energy results were found to support the docking and MD simulation results. The present study implies that few candidate ligands can be intermediate substrate in the catalysis of microbial laccases, which can further play some crucial role in the cell signaling and pathogenesis of enteropathogenic gut micro flora and C. neoformans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies.

    PubMed

    Mahajan, Richi V; Saran, Saurabh; Kameswaran, Karthikeya; Kumar, Vinod; Saxena, R K

    2012-12-01

    L-Asparaginase has potential as an anti-cancer drug and for prevention of acrylamide formation in fried and baked foods. Production of the enzyme by Bacillus licheniformis (RAM-8) was optimized by process engineering using a statistical modeling approach and a maximum yield of 32.26 IU/ml was achieved. The L-asparaginase exhibited glutaminase activity of only 0.8 IU/ml and would therefore be less prone to cause the side effects associated with asparaginase therapy compared to enzyme preparations with higher glutaminase activities. When production was carried out in a 30-L bioreactor, enzyme production reached 29.94 IU/ml in 15 h. The enzyme inhibited poly-acrylamide formation in 10% acrylamide solution and reduced acrylamide formation in fried potatoes by 80%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  2. Utilization of Industrial Waste for the Production of Bio-Preservative from Bacillus licheniformis Me1 and Its Application in Milk and Milk-Based Food Products.

    PubMed

    Nithya, Vadakedath; Prakash, Maya; Halami, Prakash M

    2018-06-01

    The bio-preservative efficacy of a partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 in an economical medium developed using agro-industry waste was evaluated by direct application in milk and milk-based food products. The addition of ppABP in milk samples stored at 4 ± 2 °C and 28 ± 2 °C resulted in the growth inhibition of pathogens Listeria monocytogenes Scott A, Micrococcus luteus ATCC 9341, and Staphylococcus aureus FRI 722. The shelf life of milk samples with added ppABP increased to 4 days at 28 ± 2 °C, whereas curdling and off-odor were noticed in samples without ppABP. Furthermore, the milk samples with ppABP were sensorily acceptable. Antilisterial effect was also observed in cheese and paneer samples treated with ppABP. These results clearly indicate that the ppABP of B. licheniformis Me1 can be utilized as a bio-preservative to control the growth of spoilage and pathogenic bacteria, thereby reducing the risk of food-borne diseases.

  3. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support.

    PubMed

    Rehman, Haneef Ur; Aman, Afsheen; Zohra, Raheela Rahmat; Qader, Shah Ali Ul

    2014-02-15

    Pectinase from Bacillus licheniformis KIBGE IB-21 was immobilized in agar-agar matrix using entrapment technique. Effect of different concentrations of agar-agar on pectinase immobilization was investigated and it was found that maximum immobilization was achieved at 3.0% agar-agar with 80% enzyme activity. After immobilization, the optimum temperature of enzyme increased from 45 to 50 °C and reaction time from 5 to 10 minutes as compared to free enzyme. Due to the limited diffusion of high molecular weight substrate, K(m) of immobilized enzyme slightly increased from 1.017 to 1.055 mg ml(-1), while Vmax decreased from 23,800 to 19,392 μM min(-1) as compared to free enzyme. After 120 h entrapped pectinase retained their activity up to 82% and 71% at 30 °C and 40 °C, respectively. The entrapped pectinase showed activity until 10th cycle and maintain 69.21% activity even after third cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  5. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    PubMed

    Białkowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Jędrzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.

  6. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4

    PubMed Central

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S.

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent. PMID:27110500

  7. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    PubMed

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.

  8. [Mechanism of metabolic and ionic germination of "Bacillus licheniformis" spores treated with hydrogen peroxide (author's transl)].

    PubMed

    Cerf, O

    1977-01-01

    Spores of Bacillus licheniformis 109-2A0 lost their refractility and absorbancy at 640 nm in the presence of metabolizable molecules (L-alanine). The same occurred with spores treated with 4.4 mol/1 hydrogen peroxide, pH 2.0, at 65 degrees C, even after 5 min of treatment. In addition, these transformations could be promoted after 2 min of treatment by inorganic ions (KI). This possibility occurs following a kinetics of activation. Thermodynamic parameters showed this activation to be combined with a molecular re-organization. Loss of refractility or absorbancy, induced by L-ala or KI, was inhibited by inhibitors of membrane functions or of L-alanine dehydrogenase, enzyme of which a noticeable activity was demonstrated in treated spores. Only 10% of spore calcium leaked during the treatment. Therefore loss of refractility or absorbancy caused by molecules metabolizable or not seemed to correspond to a physiological germination. The first even of the metabolic, as well as or the ionic germination could well be a modification of the spore membrane proton-motive force.

  9. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  10. The Potential Source of B. licheniformis Contamination During Whey Protein Concentrate 80 Manufacture.

    PubMed

    Md Zain, Siti Norbaizura; Bennett, Rod; Flint, Steve

    2017-03-01

    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%. © 2017 Institute of Food Technologists®.

  11. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  12. Residues Phe103 and Phe149 are critical for the co-chaperone activity of Bacillus licheniformis GrpE.

    PubMed

    Lin, Min-Guan; Chi, Meng-Chun; Chen, Bo-En; Wang, Tzu-Fan; Lo, Huei-Fen; Lin, Long-Liu

    2015-01-01

    A tryptophan-free Bacillus licheniformis nucleotide exchange factor (BlGrpE) and its Trp mutants (F70W, F103W, F149W, F70/103W, F70/149W, F103/149W and F70/103/149W) were over-expressed and purified to near homogeneity. Simultaneous addition of B. licheniformis DnaJ, NR-peptide and individual variants synergistically stimulated the ATPase activity of a recombinant DnaK (BlDnaK) from the same bacterium by 3.1-14.7-fold, which are significantly lower than the synergistic stimulation (18.9-fold) of BlGrpE. Protein-protein interaction analysis revealed that Trp mutants relevant to amino acid positions 103 and 149 lost the ability to bind BlDnaK. Circular dichroism measurements indicate that F70W displayed a comparable level of secondary structure to that of BlGrpE, and the wild-type protein and the Trp mutants as well all experienced a reversible behavior of thermal denaturation. Guanidine hydrochloride (GdnHCl)-induced unfolding transition for BlGrpE was calculated to be 1.25 M corresponding to ΔG(N-U) of 4.29 kcal/mol, whereas the unfolding transitions of mutant proteins were in the range of 0.77-1.31 M equivalent to ΔG(N-U) of 2.41-4.14 kcal/mol. Taken together, the introduction of tryptophan residue, especially at positions 103 and 149, into the primary structure of BlGrpE has been proven to be detrimental to structural integrity and proper function of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes.

    PubMed

    Mohammad, Balsam T; Al Daghistani, Hala I; Jaouani, Atef; Abdel-Latif, Saleh; Kennes, Christian

    2017-01-01

    The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as Bacillus licheniformis and one isolate as Thermomonas hydrothermalis . This is the first report on the isolation of Thermomonas species from Jordanian hot springs. The isolates showed an ability to produce some thermostable enzymes such as amylase, protease, cellulose, gelatins, and lecithin. Moreover, the UPGMA dendrogram of the enzymatic characteristics of the ten isolates was constructed; results indicated a high phenotypic diversity, which encourages future studies to explore further industrial and environmental applications.

  14. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  15. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance.

    PubMed

    Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony

    2011-11-01

    PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis.

    PubMed

    Pakrashi, Sunandan; Kumar, Deepak; Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2014-12-01

    Crystalline structure of nanoparticles may influence their physicochemical behaviour as well as their toxicological impact on biota. The differences in orientation of the atoms result in the variations in chemical stability. Thus, toxicological impacts of different crystalline phases of aluminium oxide nanoparticles are expected to vary. The present study brings out a comparative toxicity analysis of γ-phase and α-phase aluminium oxide nanoparticles of comparable hydrodynamic size range towards a freshwater bacterial isolate Bacillus licheniformis at low exposure concentrations (5, 1, 0.5 and 0.05 µg/mL). Upon 2-h exposure, the α-aluminium oxide particles showed lower toxicity than the γ-phase aluminium oxide. The lower level of oxidative stress generation and cell membrane damage in case of the α-phase aluminium oxide nanoparticles substantiated the toxicity results. The involvement of protein, lipopolysaccharides in nanoparticle-cell surface interaction, was noted in both the cases. To conclude, the crystallinity of aluminium oxide nanoparticles played an important role in the interaction and the toxicity response.

  17. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics.

    PubMed

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p , Y p/s , Y p/X , and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL(-1) and 19.5 IU mg(-1) protein, respectively. The optimum temperature and pH for α -amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol(-1), respectively. Both enthalpies (ΔH (∗)) and entropies of activation (ΔS (∗)) for denaturation of α -amylase were lower than those reported for other thermostable α -amylases.

  18. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics

    PubMed Central

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p, Y p/s, Y p/X, and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH ∗) and entropies of activation (ΔS ∗) for denaturation of α-amylase were lower than those reported for other thermostable α-amylases. PMID:24587909

  19. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  20. A dispersion model for predicting the extent of starch liquefaction by Bacillus licheniformis alpha-amylase during reactive extrusion.

    PubMed

    Komolprasert, V; Ofoli, R Y

    1991-03-25

    A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed.

  1. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation.

    PubMed

    Biswas, Jayanta Kumar; Banerjee, Anurupa; Rai, Mahendra Kumar; Rinklebe, Jörg; Shaheen, Sabry M; Sarkar, Santosh Kumar; Dash, Madhab Chandra; Kaviraj, Anilava; Langer, Uwe; Song, Hocheol; Vithanage, Meththika; Mondal, Monojit; Niazi, Nabeel Khan

    2018-05-22

    The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L -1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL -1 ) at 5 mg mL -1 L-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L -1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.

  2. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations.

    PubMed

    Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef

    2008-01-01

    The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0-11.0 and 65-70 degrees C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 degrees C. The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 degrees C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 degrees C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.

  3. Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface.

    PubMed

    Machius, Mischa; Declerck, Nathalie; Huber, Robert; Wiegand, Georg

    2003-03-28

    It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.

  4. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat.

    PubMed

    Martins, Ligia O; Soares, Claudio M; Pereira, Manuela M; Teixeira, Miguel; Costa, Teresa; Jones, George H; Henriques, Adriano O

    2002-05-24

    The Bacillus subtilis endospore coat protein CotA shows laccase activity. By using comparative modeling techniques, we were able to derive a model for CotA based on the known x-ray structures of zucchini ascorbate oxidase and Cuprinus cereneus laccase. This model of CotA contains all the structural features of a laccase, including the reactive surface-exposed copper center (T1) and two buried copper centers (T2 and T3). Single amino acid substitutions in the CotA T1 copper center (H497A, or M502L) did not prevent assembly of the mutant proteins into the coat and did not alter the pattern of extractable coat polypeptides. However, in contrast to a wild type strain, both mutants produced unpigmented colonies and spores unable to oxidize syringaldazine (SGZ) and 2'2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The CotA protein was purified to homogeneity from an overproducing Escherichia coli strain. The purified CotA shows an absorbance and a EPR spectra typical of blue multicopper oxidases. Optimal enzymatic activity was found at < or =pH 3.0 and at pH 7.0 for ABTS or SGZ oxidation, respectively. The apparent K(m) values for ABTS and SGZ at 37 degrees C were of 106 +/- 11 and 26 +/- 2 microm, respectively, with corresponding k(cat) values of 16.8 +/- 0.8 and 3.7 +/- 0.1 s(-1). Maximal enzyme activity was observed at 75 degrees C with ABTS as substrate. Remarkably, the coat-associated or the purified enzyme showed a half-life of inactivation at 80 degrees C of about 4 and 2 h, respectively, indicating that CotA is intrinsically highly thermostable.

  5. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789.

    PubMed

    Rebecchi, Stefano; Pinelli, Davide; Zanaroli, Giulio; Fava, Fabio; Frascari, Dario

    2018-01-01

    2,3-Butanediol (BD) is a largely used fossil-based platform chemical. The yield and productivity of bio-based BD fermentative production must be increased and cheaper substrates need to be identified, to make bio-based BD production more competitive. As BD bioproduction occurs under microaerobic conditions, a fine tuning and control of the oxygen transfer rate (OTR) is crucial to maximize BD yield and productivity. Very few studies on BD bioproduction focused on the use of non-pathogenic microorganisms and of byproducts as substrate. The goal of this work was to optimize BD bioproduction by the non-pathogenic strain Bacillus licheniformis ATCC9789 by (i) identifying the ranges of volumetric and biomass-specific OTR that maximize BD yield and productivity using standard sugar and protein sources, and (ii) performing a preliminary evaluation of the variation in process performances and cost resulting from the replacement of glucose with molasses, and beef extract/peptone with chicken meat and bone meal, a byproduct of the meat production industry. OTR optimization with an expensive, standard medium containing glucose, beef extract and peptone revealed that OTRs in the 7-15 mmol/L/h range lead to an optimal BD yield (0.43 ± 0.03 g/g) and productivity (0.91 ± 0.05 g/L/h). The corresponding optimal range of biomass-specific OTR was equal to 1.4-7.9 [Formula: see text], whereas the respiratory quotient ranged from 1.8 to 2.5. The switch to an agro-industrial byproduct-based medium containing chicken meat and bone meal and molasses led to a 50% decrease in both BD yield and productivity. A preliminary economic analysis indicated that the use of the byproduct-based medium can reduce by about 45% the BD production cost. A procedure for OTR optimization was developed and implemented, leading to the identification of a range of biomass-specific OTR and respiratory quotient to be used for the scale-up and control of BD bioproduction by Bacillus licheniformis

  6. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.

    PubMed

    Singh, Sneha; Vidyarthi, Ambarish Sharan; Nigam, Vinod Kumar; Dev, Abhimanyu

    2014-02-01

    The development of a reliable, eco-friendly process for synthesis of gold nanoparticles (AuNPs) has gained impetus in recent years to counter the drawbacks of chemical and physical methods. This study illustrates simple, green synthesis of AuNPs in vitro using cell lysate supernatant (CLS) of non-pathogenic bacteria and to investigate its potential antimicrobial activity. Gold nanoparticles were synthesized by the reduction of precursor AuCl4- ions using the CLS of Bacillus licheniformis at 37°C upon 24 h of incubation. The nanoparticles were characterized for their morphology, particle size, optical absorption, zeta potential, and stability. Further the antimicrobial activity was assayed using cup-plate method. The process of biosynthesis was extracellular and the gold ions were reduced to stable nanogold of average size 38 nm. However, upon storage of AuNPs for longer duration at room temperature stability was influenced in terms of increase in particle size and decrease in zeta potential with respect to as synthesized nanoparticles. SEM micrographs revealed the spherical shape of AuNPs and EDX analysis confirmed the presence of gold in the sample. Also clear zone of inhibition was observed against Bacilllus subtilis MTCC 8364, Pseudomonas aeruginosa MTCC 7925, and Escherichia coli MTCC 1698 confirming the antimicrobial activity of AuNPs. The bioprocess under study was simple and less time consuming as compared to other methods as the need for harvesting AuNPs from within the microbial cells via downstream process will be eliminated. Nanoparticles exhibited good stability even in absence of external stabilizing agents. AuNPs showed good antimicrobial activity against several Gram-negative and Gram-positive pathogenic bacteria. The extracellular biosynthesis from CLS may serve as a suitable alternative for large scale synthesis of gold nanoparticles in vitro. The synthesis from lysed bacterial cell strongly suggests that exposure of microbial whole cells to the

  7. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    NASA Astrophysics Data System (ADS)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  8. Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, T.; Chandra, A.K.

    Alpha-amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90 degrees C and pH 9.0, and 91% of this activity remained at 100 degrees C. In the presence of substrate (soluble starch), the alpha-amylase enzyme was fully stable after a 4-hour incubation at 100 degrees C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74,more » 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 hours of treatment. The activation energy for this enzyme was calculated as 5.1 x 10 to the power of 5 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca(2+), and Mg(2+), showed stimulatory effect, wheras Hg(2+), Cu(2+), Ni(2+), Zn(2+), Ag+, Fe(2+), Co(2+), Cd(2+), Al(3+), and Mn(2+) were inhibitory. Of the anions, azide, F-, SO/sub 3/(2-), SO/sub 4/(3-), S/sub 2/O/sub 3/(2-), MoO/sub 4/(2-), and Wo/sub 4/(2-) showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, beta-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. Alpha-amylase was fairly resistant to EDTA treatment at 30 degrees C, but heating at 90 degrees C in presence of EDTA resulted in the complete loss of enzyme activity. (Refs. 32).« less

  9. Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1.

    PubMed

    Nithya, V; Murthy, P S K; Halami, P M

    2013-08-01

    An attempt was made to evaluate the effectiveness of partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 for food preservation by means of active packaging. The active packaging films containing ppABP were developed using two different packing materials [low-density polyethylene (LDPE) and cellulose films] by two different methods: soaking and spread coating. The activated films showed antibacterial activity against pathogens. The release study of ppABP from coated film showed that the LDPE films liberated ppABP as soon as it comes in contact with water, while gradual release of coated ppABP was observed in case of cellulose films. The activated films showed residual activity in different simulating conditions, such as pH of food and storage temperatures. The activated films demonstrated its biopreservative efficacy in controlling the growth of pathogens in cheese and paneer. The ppABP-activated films were found to be effective for biopreservation. The ppABP from active films got diffused into the food matrix and reduced the growth rate and maximum growth population of the target micro-organism. Both types of ppABP-activated films can be used as a packaging material to control spoilage and pathogenic organisms in food, thereby extending the shelf life of foods. © 2013 The Society for Applied Microbiology.

  10. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  11. Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support.

    PubMed

    Rehman, Haneef Ur; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio; Ansari, Asma

    2013-08-15

    Pectinases are heterogeneous group of enzymes that catalyse the hydrolysis of pectin substances which is responsible for the turbidity and undesirable cloudiness in fruits juices. In current study, partially purified pectinase from Bacillus licheniformis KIBGE-IB21 was immobilized in calcium alginate beads. The effect of sodium alginate and calcium chloride concentration on immobilization was studied and it was found that the optimal sodium alginate and calcium chloride concentration was 3.0% and 0.2 M, respectively. It was found that immobilization increases the optimal reaction time for pectin degradation from 5 to 10 min and temperature from 45 to 55°C, whereas, the optimal pH remained same with reference to free enzyme. Thermal stability of enzyme increased after immobilization and immobilized pectinase retained more than 80% of its initial activity after 5 days at 30°C as compared with free enzyme which showed only 30% of residual activity. The immobilized enzyme also exhibited good operational stability and 65% of its initial activity was observed during third cycle. In term of pectinase immobilization efficiency and stability, this calcium alginate beads approach seemed to permit good results and can be used to make a bioreactor for various applications in food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  13. Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India.

    PubMed

    Kaur, Gagandeep; Singh, Amninder; Sharma, Rohit; Sharma, Vinay; Verma, Swati; Sharma, Pushpender K

    2016-06-01

    In the present investigation, a gene encoding extracellular lipase was cloned from a Bacillus licheniformis. The recombinant protein containing His-tag was expressed as inclusion bodies in Esherichia coli BL21DE3 cells, using pET-23a as expression vector. Expressed protein purified from the inclusion bodies demonstrated ~22 kDa protein band on 12 % SDS-PAGE. It exhibited specific activity of 0.49 U mg -1 and % yield of 8.58. Interestingly, the lipase displayed activity at wide range of pH and temperature, i.e., 9.0-14.0 pH and 30-80 °C, respectively. It further demonstrated ~100 % enzyme activity in presence of various organic solvents. Enzyme activity was strongly inhibited in the presence of β-ME. Additionally, the serine and histidine modifiers also inhibited the enzyme activities strongly at all concentrations that suggest their role in the catalytic center. Enzyme could retain its activity in presence of various detergents (Triton X-100, Tween 20, Tween 40, SDS). Sequence and structural analysis employing in silico tools revealed that the lipase contained two highly conserved sequences consisting of ITITGCGNDL and NLYNP, arranged as parallel β-sheet in the core of the 3D structure. The function of these conserve sequences have not fully understood.

  14. Some structural features of the teichuronic acid of Bacillus licheniformis N.C.T.C. 6346 cell walls

    PubMed Central

    Hughes, R. C.; Thurman, P. F.

    1970-01-01

    A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[3H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods. PMID:5419741

  15. Immunoelectron microscopic double labeling of alkaline phosphatase and penicillinase with colloidal gold in frozen thin sections of Bacillus licheniformis 749/C.

    PubMed Central

    Guan, T; Ghosh, A; Ghosh, B K

    1985-01-01

    The subcellular distribution of alkaline phosphatase and penicillinase was determined by double labeling frozen thin sections of Bacillus licheniformis 749/C with colloidal gold-immunoglobulin G (IgG). Antipenicillinase and anti-alkaline phosphatase antibodies were used to prepare complexes with 5- and 15-nm colloidal gold particles, respectively. The character of the labeling of membrane-bound alkaline phosphatase and penicillinase was different: the immunolabels for alkaline phosphatase (15-nm particles) were bound to a few sites at the inner surface of the plasma membrane, and the gold particles formed clusters of various sizes at the binding sites; the immunolabels for penicillinase (5-nm particles), on the other hand, were bound to the plasma membrane in a dispersed and random fashion. In the cytoplasm, immunolabels for both proteins were distributed randomly, and the character of their binding was similar. The labeling was specific: pretreating the frozen thin sections with different concentrations of anti-alkaline phosphatase or penicillinase blocked the binding of the immunolabel prepared with the same antibody. Binding could be fully blocked by pretreatment with 800 micrograms of either antibody per ml. Images PMID:3876329

  16. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis

    PubMed Central

    Sørensen, Kim I.; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S.; Nielsen, Dennis S.; Derkx, Patrick M. F.; Jespersen, Lene

    2012-01-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis. PMID:22941078

  17. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis.

    PubMed

    Adimpong, David B; Sørensen, Kim I; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S; Nielsen, Dennis S; Derkx, Patrick M F; Jespersen, Lene

    2012-11-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis.

  18. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  19. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  20. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    PubMed

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  1. Structure, function, and fate of the BlaR signal transducer involved in induction of beta-lactamase in Bacillus licheniformis.

    PubMed Central

    Zhu, Y; Englebert, S; Joris, B; Ghuysen, J M; Kobayashi, T; Lampen, J O

    1992-01-01

    The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced. By 2 h after induction, BlaR is present in various (membrane-bound and cytosolic) forms, and there is a gradual decrease in beta-lactamase production. The penicillin sensors of BlaR and the class D beta-lactamases show strong similarities in primary structures. They appear to have the same basic spatial disposition of secondary structures as that of the class A beta-lactamases, except that they lack several alpha helices and, therefore, have a partially uncovered five-stranded beta sheet and a more readily accessible active site. Alterations of BlaR affecting conserved secondary structures of the penicillin sensor and specific sites of the transducer annihilate beta-lactamase inducibility. Images PMID:1400165

  2. Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole.

    PubMed

    Suda, Tomoyo; Hata, Takayuki; Kawai, Shingo; Okamura, Hideo; Nishida, Tomoaki

    2012-01-01

    Tetracycline antibiotics are widely used in human and veterinary medicine; however, residual amounts of these antibiotics in the environment are of concern since they could contribute to selection of resistant bacteria. In this study, tetracycline (TC), chlortetracycline (CTC), doxycycline (DC) and oxytetracycline (OTC) were treated with laccase from the white rot fungus Trametes versicolor in the presence of the redox mediator 1-hydroxybenzotriazole (HBT). High performance liquid chromatography demonstrated that DC and CTC were completely eliminated after 15 min, while TC and CTC were eliminated after 1 h. This system also resulted in a complete loss of inhibition of growth of Escherichia coli and Bacillus subtilis and the green alga Pseudokirchneriella subcapitata with decreasing tetracycline antibiotic concentration. These results suggest that the laccase-HBT system is effective in eliminating tetracycline antibiotics and removing their ecotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  5. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    PubMed Central

    Syed, Shameer; Chinthala, Paramageetham

    2015-01-01

    The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner. PMID:26525498

  6. Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films

    NASA Astrophysics Data System (ADS)

    Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu

    2015-07-01

    Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.

  7. Preparation of AN Electrode Modified with a Thermostable Enzyme BACILLUS Subtilis COTA by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito

    In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.

  8. Molten Globule-Like Partially Folded State of Bacillus licheniformis α-Amylase at Low pH Induced by 1,1,1,3,3,3-Hexafluoroisopropanol

    PubMed Central

    Abd Halim, Adyani Azizah; Zaroog, Mohammed Suleiman; Abdul Kadir, Habsah; Tayyab, Saad

    2014-01-01

    Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) on acid-denatured Bacillus licheniformis α-amylase (BLA) at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm) up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0. PMID:24977228

  9. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta.

    PubMed

    Shanthi, Sathappan; Jayaseelan, Barbanas David; Velusamy, Palaniyandi; Vijayakumar, Sekar; Chih, Cheng Ta; Vaseeharan, Baskaralingam

    2016-04-01

    In the present study, we synthesized and characterized a probiotic Bacillus licheniformis cell free extract (BLCFE) coated silver nanoparticles (BLCFE-AgNPs). These BLCFE-AgNPs were characterized by UV-visible spectrophotometer, XRD, EDX, FTIR, TEM and AFM. A strong surface plasmon resonance centered at 422 nm in UV-visible spectrum indicates the formation of AgNPs. The XRD spectrum of silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. TEM and AFM showed the AgNPs were spherical in shape within the range of 18.69-63.42 nm and the presence of silver was confirmed by EDX analysis. Light and Confocal Laser Scanning Microscope (CLSM) images showed a weak adherence and disintegrated biofilm formation of Vibrio parahaemolyticus Dav1 treated with BLCFE-AgNPs compared to control. This result suggests that BLCFE-AgNps may be used for the control of biofilm forming bacterial populations in the biomedical field. In addition, acute toxicity results concluded that BLCFE-AgNPs were less toxic to the fresh water crustacean Ceriodaphnia cornuta (50 μg/ml) when compared to AgNO3 (22 μg/ml). This study also reports a short term analysis (24 h) of uptake and depuration of BLCFE-AgNPs in C. cornuta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Novel Lentinula edodes Laccase and Its Comparative Enzymology Suggest Guaiacol-Based Laccase Engineering for Bioremediation

    PubMed Central

    Wong, Kin-Sing; Cheung, Man-Kit; Au, Chun-Hang; Kwan, Hoi-Shan

    2013-01-01

    Laccases are versatile biocatalysts for the bioremediation of various xenobiotics, including dyes and polyaromatic hydrocarbons. However, current sources of new enzymes, simple heterologous expression hosts and enzymatic information (such as the appropriateness of common screening substrates on laccase engineering) remain scarce to support efficient engineering of laccase for better “green” applications. To address the issue, this study began with cloning the laccase family of Lentinula edodes. Three laccases perfectio sensu stricto (Lcc4A, Lcc5, and Lcc7) were then expressed from Pichia pastoris, characterized and compared with the previously reported Lcc1A and Lcc1B in terms of kinetics, stability, and degradation of dyes and polyaromatic hydrocarbons. Lcc7 represented a novel laccase, and it exhibited both the highest catalytic efficiency (assayed with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS]) and thermostability. However, its performance on “green” applications surprisingly did not match the activity on the common screening substrates, namely, ABTS and 2,6-dimethoxyphenol. On the other hand, correlation analyses revealed that guaiacol is much better associated with the decolorization of multiple structurally different dyes than are the two common screening substrates. Comparison of the oxidation chemistry of guaiacol and phenolic dyes, such as azo dyes, further showed that they both involve generation of phenoxyl radicals in laccase-catalyzed oxidation. In summary, this study concluded a robust expression platform of L. edodes laccases, novel laccases, and an indicative screening substrate, guaiacol, which are all essential fundamentals for appropriately driving the engineering of laccases towards more efficient “green” applications. PMID:23799101

  11. Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK.

    PubMed

    Chen, Bo-En; Lin, Min-Guan; Lo, Huei-Fen; Wang, Tzu-Fan; Chi, Meng-Chun; Lin, Long-Liu

    2013-01-01

    Site-directed mutagenesis together with biochemical and biophysical techniques were used to probe effects of single-tryptophan-incorporated mutations on a bacterial molecular chaperone, Bacillus licheniformis DnaK (BlDnaK). Specifically, five phenylalanine residues (Phe(120), Phe(174), Phe(186), Phe(378) and Phe(396)) of BlDnaK were individually replaced by single tryptophans, thus creating site-specific probes for the fluorescence analysis of the protein. The steady-state ATPase activity for BlDnaK, F120W, F174W, F186W, F378W, and F396W was determined to be 76.01, 52.82, 25.32, 53.31, 58.84, and 47.53 nmol Pi/min/mg, respectively. Complementation test revealed that the single mutation at codons 120, 186, and 378 of the dnaK gene still allowed an Escherichia coli dnaK756-Ts strain to grow at a stringent temperature of 44°C. Simultaneous addition of co-chaperones and NR-peptide did not synergistically stimulate the ATPase activity of F174W and F396W, and these two proteins were unable to assist the refolding of GdnHCl-denatured luciferase. The heat-induced denaturation of all variants could be fitted adequately to a three-state model, in agreement with the observation for the wild-type protein. By CD spectral analysis, GdnHCl-induced unfolding transition for BlDnaK was 1.51 M corresponding to ΔG(N-U) of 1.69 kcal/mol; however, the transitions for mutant proteins were 1.07-1.55 M equivalent to ΔG(N-U) of 0.94-2.93 kcal/mol. The emission maximum of single-tryptophan-incorporated variants was in the range of 333.2-335.8 nm. Acrylamide quenching analysis showed that the mutant proteins had a dynamic quenching constant of 3.0-4.2 M(-1). Taken together, these results suggest that the molecular properties of BlDnaK have been significantly changed upon the individual replacement of selected phenylalanine residues by tryptophan. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.

  13. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase.

    PubMed

    Xavier, Janifer Raj; Ramana, Karna Venkata

    2017-03-01

    Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.

  14. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  15. Boosting isoprene production via heterologous expression of the Kudzu isoprene synthase gene (kIspS) into Bacillus spp. cell factory.

    PubMed

    Gomaa, Lamis; Loscar, Michael E; Zein, Haggag S; Abdel-Ghaffar, Nahed; Abdelhadi, Abdelhadi A; Abdelaal, Ali S; Abdallah, Naglaa A

    2017-08-08

    Isoprene represents a key building block for the production of valuable materials such as latex, synthetic rubber or pharmaceutical precursors and serves as basis for advanced biofuel production. To enhance the production of the volatile natural hydrocarbon isoprene, released by plants, animals and bacteria, the Kudzu isoprene synthase (kIspS) gene has been heterologously expressed in Bacillus subtilis DSM 402 and Bacillus licheniformis DSM 13 using the pHT01 vector. As control, the heterologous expression of KIspS in E. coli BL21 (DE3) with the pET28b vector was used. Isoprene production was analyzed using Gas Chromatography Flame Ionization Detector. The highest isoprene production was observed by recombinant B. subtilis harboring the pHT01-kIspS plasmid which produced 1434.3 μg/L (1275 µg/L/OD) isoprene. This is threefold higher than the wild type which produced 388 μg/L (370 μg/L/OD) isoprene, when both incubated at 30 °C for 48 h and induced with 0.1 mM IPTG. Additionally, recombinant B. subtilis produced fivefold higher than the recombinant B. licheniformis, which produced 437.2 μg/L (249 μg/L/OD) isoprene when incubated at 37 °C for 48 h induced with 0.1 mM IPTG. This is the first report of optimized isoprene production in B. licheniformis. However, recombinant B. licheniformis showed less isoprene production. Therefore, recombinant B. subtilis is considered as a versatile host for heterologous production of isoprene.

  16. Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol.

    PubMed

    Song, Chan Woo; Rathnasingh, Chelladurai; Park, Jong Myoung; Lee, Julia; Song, Hyohak

    2018-03-28

    Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis , which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.

  17. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhongchuan; Xie, Tian; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of

    2016-03-24

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature ofmore » CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.« less

  18. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  19. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  20. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.

    PubMed

    Phengnuam, Thanyarat; Suntornsuk, Worapot

    2013-02-01

    Jatropha curcas seed cake is a by-product generated from oil extraction of J. curcas seed. Although it contains a high amount of protein, it has phorbol esters and anti-nutritional factors such as phytate, trypsin inhibitor, lectin and saponin. It cannot be applied directly in the food or animal feed industries. This investigation was aimed at detoxifying the toxic and anti-nutritional compounds in J. curcas seed cake by fermentation with Bacillus spp. Two GRAS (generally recognized as safe) Bacillus strains used in the study were Bacillus subtilis and Bacillus licheniformis with solid-state and submerged fermentations. Solid-state fermentation was done on 10 g of seed cake with a moisture content of 70% for 7 days, while submerged fermentation was carried out on 10 g of seed cake in 100 ml distilled water for 5 days. The fermentations were incubated at the optimum condition of each strain. After fermentation, bacterial growth, pH, toxic and anti-nutritional compounds were determined. Results showed that B. licheniformis with submerged fermentation were the most effective method to degrade toxic and anti-nutritional compounds in the seed cake. After fermentation, phorbol esters, phytate and trypsin inhibitor were reduced by 62%, 42% and 75%, respectively, while lectin could not be eliminated. The reduction of phorbol esters, phytate and trypsin inhibitor was related to esterase, phytase and protease activities, respectively. J. curcas seed cake could be mainly detoxified by bacterial fermentation and the high-protein fermented seed cake could be potentially applied to animal feed. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Bioprospecting and biotechnological applications of fungal laccase.

    PubMed

    Upadhyay, Pooja; Shrivastava, Rahul; Agrawal, Pavan Kumar

    2016-06-01

    Laccase belongs to a small group of enzymes called the blue multicopper oxidases, having the potential ability of oxidation. It belongs to enzymes, which have innate properties of reactive radical production, but its utilization in many fields has been ignored because of its unavailability in the commercial field. There are diverse sources of laccase producing organisms like bacteria, fungi and plants. In fungi, laccase is present in Ascomycetes, Deuteromycetes, Basidiomycetes and is particularly abundant in many white-rot fungi that degrade lignin. Laccases can degrade both phenolic and non-phenolic compounds. They also have the ability to detoxify a range of environmental pollutants. Due to their property to detoxify a range of pollutants, they have been used for several purposes in many industries including paper, pulp, textile and petrochemical industries. Some other application of laccase includes in food processing industry, medical and health care. Recently, laccase has found applications in other fields such as in the design of biosensors and nanotechnology. The present review provides an overview of biological functions of laccase, its mechanism of action, laccase mediator system, and various biotechnological applications of laccase obtained from endophytic fungi.

  3. Blood tolerant laccase by directed evolution.

    PubMed

    Mate, Diana M; Gonzalez-Perez, David; Falk, Magnus; Kittl, Roman; Pita, Marcos; De Lacey, Antonio L; Ludwig, Roland; Shleev, Sergey; Alcalde, Miguel

    2013-02-21

    High-redox potential laccases are powerful biocatalysts with a wide range of applications in biotechnology. We have converted a thermostable laccase from a white-rot fungus into a blood tolerant laccase. Adapting the fitness of this laccase to the specific composition of human blood (above neutral pH, high chloride concentration) required several generations of directed evolution in a surrogate complex blood medium. Our evolved laccase was tested in both human plasma and blood, displaying catalytic activity while retaining a high redox potential at the T1 copper site. Mutations introduced in the second coordination sphere of the T1 site shifted the pH activity profile and drastically reduced the inhibitory effect of chloride. This proof of concept that laccases can be adapted to function in extreme conditions opens an array of opportunities for implantable nanobiodevices, chemical syntheses, and detoxification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A designed bifunctional laccase/β-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse.

    PubMed

    Furtado, G P; Ribeiro, L F; Lourenzoni, M R; Ward, R J

    2013-01-01

    A bifunctional enzyme has been created by fusing two Bacillus subtilis enzymes: the β-1,3-1,4-glucanase (BglS, EC 3.2.1.73) that hydrolyzes plant cell wall β-glucans and the copper-dependent oxidase laccase (CotA, EC 1.10.3.2) that catalyzes the oxidation of aromatic compounds with simultaneous reduction of oxygen to water. The chimeric laccase/β-1,3-1,4-glucanase was created by insertion fusion of the bglS and cotA genes, and expressed in Escherichia coli. The affinity-purified recombinant chimeric enzyme showed both laccase and glucanase activities, with a maximum laccase activity at pH 4.5 and 75°C that showed a V(max) 30% higher than observed for the parental laccase. The maximum glucanase activity in the chimeric enzyme was at pH 6.0 and 50°C, with a slight reduction in V(max) by ∼10% compared with the parental glucanase. A decreased K(M) resulted in an overall increase in the K(cat)/K(M) value for the glucanase activity of the chimeric enzyme. The hydrolytic activity of the chimera was 20% higher against natural milled sugarcane bagasse as compared with equimolar mixtures of the separate parental enzymes. Molecular dynamics simulations indicated the approximation of the two catalytic domains in the chimeric enzyme, and the formation of an inter-domain interface may underlie the improved catalytic function.

  5. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  6. Laccase/HBT and laccase-CBM/HBT treatment of softwood kraft pulp: impact on pulp bleachability and physical properties.

    PubMed

    Ravalason, Holy; Bertaud, Frédérique; Herpoël-Gimbert, Isabelle; Meyer, Valérie; Ruel, Katia; Joseleau, Jean-Paul; Grisel, Sacha; Olivé, Caroline; Sigoillot, Jean-Claude; Petit-Conil, Michel

    2012-10-01

    Pycnoporus cinnabarinus laccase and a chimeric laccase-CBM were applied in softwood kraft pulp biobleaching in the presence of 1-hydroxybenzotriazole (HBT). The presence of CBM could enhance the laccase biobleaching potential as a decrease in the enzymatic charge and chlorine dioxide consumption, as well as an increase in pulp brightness were observed. Laccase/HBT treatment could be improved by increasing oxygen pressure from 1 to 3bar and pulp consistency from 5% to 10%. Conversely, under the same conditions, no improvement of laccase-CBM/HBT treatment was observed, indicating a different behavior of both systems. However, laccase-CBM/HBT treatment led to a better preservation of pulp properties. This effect was probably due to fiber surface modifications involving the action of the CBM. Transmission electron microscopy examination of pulp fibers indicated a retention of laccase-CBM inside the pulp fibers due to CBM binding and an increased external microfibrillation of the fibers due to enzymatic treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    PubMed

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Construction and direct electrochemistry of orientation controlled laccase electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhang, Jiwei; Huang, Xirong, E-mail: xrhuang@sdu.edu.cn

    2014-03-28

    Highlights: • A recombinant laccase with Cys-6×His tag at the N or C terminus was generated. • Orientation controlled laccase electrodes were constructed via self assembly. • The electrochemical behavior of laccase electrodes was orientation dependent. • The C terminus tagged laccase was better for bioelectrocatalytic reduction of O{sub 2}. - Abstract: A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, usingmore » genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O{sub 2} reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells.« less

  10. Laccases from Aureobasidium pullulans

    USDA-ARS?s Scientific Manuscript database

    Laccases are polyphenol oxidases (EC 1.10.3.2) that have numerous industrial and bioremediation applications. Laccases are well known as lignin-degrading enzymes, but these enzymes can play numerous other roles in fungi. In this study, 41 strains of the fungus Aureobasidium pullulans were examined f...

  11. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase.

    PubMed

    Garg, Neha; Bieler, Nora; Kenzom, Tenzin; Chhabra, Meenu; Ansorge-Schumacher, Marion; Mishra, Saroj

    2012-10-23

    Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg(-1) protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Laccase of C. bulleri was successfully produced extra-cellularly to a high level of 7200

  12. Improved recovery of active recombinant laccase from maize seed.

    PubMed

    Bailey, M R; Woodard, S L; Callaway, E; Beifuss, K; Magallanes-Lundback, M; Lane, J R; Horn, M E; Mallubhotla, H; Delaney, D D; Ward, M; Van Gastel, F; Howard, J A; Hood, E E

    2004-01-01

    Lignolytic enzymes such as laccase have been difficult to over-express in an active form. This paper describes the expression, characterization, and application of a fungal laccase in maize seed. The transgenic seed contains immobilized and extractable laccase. Fifty ppm dry weight of aqueously extractable laccase was obtained, and the remaining solids contained a significant amount of immobilized laccase that was active. Although a portion of the extractable laccase was produced as inactive apoenzyme, laccase activity was recovered by treatment with copper and chloride. In addition to allowing the apoenzyme to regain activity, treatment with copper also provided a partial purification step by precipitating other endogenous corn proteins while leaving >90% of the laccase in solution. The data also demonstrate the application of maize-produced laccase as a polymerization agent. The apparent concentration of laccase in ground, defatted corn germ is approximately 0.20% of dry weight.

  13. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.

    PubMed

    Faille, C; Bénézech, T; Blel, W; Ronse, A; Ronse, G; Clarisse, M; Slomianny, C

    2013-04-01

    This study was designed to evaluate the respective roles of mechanical and chemical effects on the removal of Bacillus spores during cleaning-in-place. This analysis was performed on 12 strains belonging to the Bacillus cereus group (B. cereus, Bacillus anthracis, Bacillus thuringiensis) or to less related Bacillus species (Bacillus pumilus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus subtilis). Adherent spores were subjected to rinsing-in-place (mechanical action) and cleaning-in-place (mechanical and chemical actions) procedures, the latter involving NaOH 0.5% at 60°C. Results revealed that mechanical action alone only removed between 53 and 89% of the attached spores at a shear stress of 500 Pa. This resistance to shear was not related to spore surface properties. Conversely, in the presence of NaOH at a shear stress of 4 Pa, spores were readily detached, with between 80 and 99% of the adherent spores detached during CIP and the chemical action greatly depended on the strain. This finding suggests that chemical action plays the major role during CIP, whose efficacy is significantly governed by the spore surface chemistry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters.

    PubMed

    Othoum, Ghofran; Bougouffa, Salim; Razali, Rozaimi; Bokhari, Ameerah; Alamoudi, Soha; Antunes, André; Gao, Xin; Hoehndorf, Robert; Arold, Stefan T; Gojobori, Takashi; Hirt, Heribert; Mijakovic, Ivan; Bajic, Vladimir B; Lafi, Feras F; Essack, Magbubah

    2018-05-22

    The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.

  15. Fungal Laccases: Production, Function, and Applications in Food Processing

    PubMed Central

    Brijwani, Khushal; Rigdon, Anne; Vadlani, Praveen V.

    2010-01-01

    Laccases are increasingly being used in food industry for production of cost-effective and healthy foods. To sustain this trend widespread availability of laccase and efficient production systems have to be developed. The present paper delineate the recent developments that have taken place in understanding the role of laccase action, efforts in overexpression of laccase in heterologous systems, and various cultivation techniques that have been developed to efficiently produce laccase at the industrial scale. The role of laccase in different food industries, particularly the recent developments in laccase application for food processing, is discussed. PMID:21048859

  16. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    PubMed

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  17. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization.

    PubMed

    Singh, Rajender; Ahlawat, O P; Rajor, Anita

    2012-12-01

    The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    PubMed Central

    2012-01-01

    Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra

  19. Construction and direct electrochemistry of orientation controlled laccase electrode.

    PubMed

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Laccase/Mediator Systems: Their Reactivity toward Phenolic Lignin Structures.

    PubMed

    Hilgers, Roelant; Vincken, Jean-Paul; Gruppen, Harry; Kabel, Mirjam A

    2018-02-05

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it remains unclear to what extent the presence of a mediator influences the reactions of the phenolic subunits of lignin. To get more insight in this, UHPLC-MS was used to study the reactions of a phenolic lignin dimer (GBG), initiated by a laccase from Trametes versicolor , alone or in combination with the mediators HBT and ABTS. The role of HBT was negligible, as its oxidation by laccase occurred slowly in comparison to that of GBG. Laccase and laccase/HBT oxidized GBG at a comparable rate, resulting in extensive polymerization of GBG. In contrast, laccase/ABTS converted GBG at a higher rate, as GBG was oxidized both directly by laccase but also by ABTS radical cations, which were rapidly formed by laccase. The laccase/ABTS system resulted in Cα oxidation of GBG and coupling of ABTS to GBG, rather than polymerization of GBG. Based on these results, we propose reaction pathways of phenolic lignin model compounds with laccase/HBT and laccase/ABTS.

  1. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  2. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    PubMed

    Zhao, Jiayuan; Chi, Yuanlong; Xu, Yingchao; Jia, Dongying; Yao, Kai

    2016-01-01

    The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  3. Automated chromatographic laccase-mediator-system activity assay.

    PubMed

    Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C

    2017-08-01

    To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.

  4. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    PubMed

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Thermostable Fe/Mn superoxide dismutase from Bacillus licheniformis SPB-13 from thermal springs of Himalayan region: Purification, characterization and antioxidative potential.

    PubMed

    Thakur, Abhishek; Kumar, Pradeep; Lata, Jeevan; Devi, Neena; Chand, Duni

    2018-05-01

    Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that scavenges free radicals and increases the longevity. In this study, a thermostable superoxide dismutase (SOD) from Bacillus licheniformis SPB-13, from Himalayan region was purified to homogeneity using ion exchange chromatography (DEAE-Sepharose). The SDS and native PAGE analysis showed that SOD is composed of two subunits of 32 kDa each and total molecular mass of the enzyme was estimated as 68 kDa. The specific activity of enzyme was 3965.51 U/mg and was purified to 16.17 folds. The SOD showed maximum activity with 60 mM Tris-HCl buffer at pH 8.0 for 2 min of incubation. Enzyme along with FeCl 3 as metal ion remained active till 70 °C. After reaction variables optimization, enzyme activity increased from 3965.51 to 4015.72 U/mg. Kinetic analysis of SOD showed k m of 1.4 mM of NADH and V max of 10000 U/mg of protein. Turnover number (k cat ) and catalytic efficiency (k cat /K m ) were found to be 11,333 s -1 and 7092.2 s -1 ·mM -1 NADH. The activation energy (E a ) was calculated as 2.67 kJ·mol -1 . After typing, it was found to be a member of Fe/Mn SOD family with IC 50 value of 25 μg/ml, prevented the cell death at a concentration of 30 μg/ml and it increased the cell viability by 30%. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation

    PubMed Central

    Yang, Jie; Li, Wenjuan; Ng, Tzi Bun; Deng, Xiangzhen; Lin, Juan; Ye, Xiuyun

    2017-01-01

    Laccases are a family of copper-containing oxidases with important applications in bioremediation and other various industrial and biotechnological areas. There have been over two dozen reviews on laccases since 2010 covering various aspects of this group of versatile enzymes, from their occurrence, biochemical properties, and expression to immobilization and applications. This review is not intended to be all-encompassing; instead, we highlighted some of the latest developments in basic and applied laccase research with an emphasis on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics. Pharmaceuticals are a broad class of emerging organic contaminants that are recalcitrant and prevalent. The recent surge in the relevant literature justifies a short review on the topic. Since low laccase yields in natural and genetically modified hosts constitute a bottleneck to industrial-scale applications, we also accentuated a genus of laccase-producing white-rot fungi, Cerrena, and included a discussion with regards to regulation of laccase expression. PMID:28559880

  7. Engineering and Applications of fungal laccases for organic synthesis

    PubMed Central

    Kunamneni, Adinarayana; Camarero, Susana; García-Burgos, Carlos; Plou, Francisco J; Ballesteros, Antonio; Alcalde, Miguel

    2008-01-01

    Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed. PMID:19019256

  8. Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra

    PubMed Central

    Reiss, Renate; Ihssen, Julian; Richter, Michael; Eichhorn, Eric; Schilling, Boris; Thöny-Meyer, Linda

    2013-01-01

    Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera. PMID:23755261

  9. [Advance of heterologous expression study of eukaryote-origin laccases].

    PubMed

    Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng

    2017-04-25

    Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.

  10. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization.

    PubMed

    Zhang, Xinying; Wang, Meiyin; Lin, Linlin; Xiao, Gao; Tang, Zhenping; Zhu, Xuefeng

    2018-07-01

    Biomimetic mineralization has emerged as a novel tool for generating excellent supports for enzyme stabilization. In this work, protamine was used to induce titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles. This biomimetic titanification process was adopted for laccase immobilization. Laccase-biotitania biocatalyst was prepared and the effect of different parameters (buffer solution, titania precursor concentration, protamine concentration, and enzyme loading) on the encapsulation efficiency and recovery of laccase were evaluated. Compared with free laccase, the thermal and pH stability of immobilized laccase were improved significantly. In addition, laccase loaded on titania was effective at enhancing its storage stability. After seven consecutive cycles, the immobilized laccase still retained 51% of its original activity. Finally, laccase-biotitania biocatalysts showed good performance on decolorization of malachite green (MG), which can be attributed to an adsorption and degradation effect. The intermediates of the MG degradation were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the most probable degradation pathway was proposed. This study provides deeper understanding of the laccase-biotitania particles as a fast biocatalyst for MG decolorization. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (I). Production of laccase by batch and repeated-batch processes.

    PubMed

    Lin, Jian-Ping; Wei, Lian; Xia, Li-Ming; Cen, Pei-Lin

    2003-01-01

    The production of laccase by Coriolus versicolor was studied. The effect of cultivation conditions on laccase production by Coriolus versicolor was examined to obtain optimal medium and cultivation conditions. Both batch and repeated-batch processes were performed for laccase production. In repeated-batch fermentation with self-immobilized mycelia, total of 14 cycles were performed with laccase activity in the range between 3.4 and 14.8 U/ml.

  13. Engineering laccases: in search for novel catalysts.

    PubMed

    Robert, Viviane; Mekmouche, Yasmina; Pailley, Pierre R; Tron, Thierry

    2011-04-01

    Laccases (p-diphenol oxidase, EC 1.10.3.2) are blue multicopper oxidases that catalyze the reduction of dioxygen to water, with a concomitant oxidation of small organic substrates. Since the description at the end of the nineteenth century of a factor catalyzing the rapid hardening of the latex of the Japanese lacquer trees (Rhus sp.) exposed to air laccases from different origins (plants, fungi bacteria) have been continuously discovered and extensively studied. Nowadays, molecular evolution and other powerful protein modification techniques offer possibilities to develop tailored laccases for a wide array of applications including drug synthesis, biosensors or biofuel cells. Here, we give an overview on strategies and results of our laboratory in the design of new biocatalysts based on laccases.

  14. Engineering Laccases: In Search for Novel Catalysts

    PubMed Central

    Robert, Viviane; Mekmouche, Yasmina; Pailley, Pierre R; Tron, Thierry

    2011-01-01

    Laccases (p-diphenol oxidase, EC 1.10.3.2) are blue multicopper oxidases that catalyze the reduction of dioxygen to water, with a concomitant oxidation of small organic substrates. Since the description at the end of the nineteenth century of a factor catalyzing the rapid hardening of the latex of the Japanese lacquer trees (Rhus sp.) exposed to air laccases from different origins (plants, fungi bacteria) have been continuously discovered and extensively studied. Nowadays, molecular evolution and other powerful protein modification techniques offer possibilities to develop tailored laccases for a wide array of applications including drug synthesis, biosensors or biofuel cells. Here, we give an overview on strategies and results of our laboratory in the design of new biocatalysts based on laccases. PMID:21966250

  15. Fungal Laccases and Their Applications in Bioremediation

    PubMed Central

    Viswanath, Buddolla; Rajesh, Bandi; Janardhan, Avilala; Kumar, Arthala Praveen; Narasimha, Golla

    2014-01-01

    Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. PMID:24959348

  16. Heterologous expression of Trametes versicolor laccase in Saccharomyces cerevisiae.

    PubMed

    Iimura, Yosuke; Sonoki, Tomonori; Habe, Hiroshi

    2018-01-01

    Laccase is used in various industrial fields, and it has been the subject of numerous studies. Trametes versicolor laccase has one of the highest redox potentials among the various forms of this enzyme. In this study, we optimized the expression of laccase in Saccharomyces cerevisiae. Optimizing the culture conditions resulted in an improvement in the expression level, and approximately 45 U/L of laccase was functionally secreted in the culture. The recombinant laccase was found to be a heavily hypermannosylated glycoprotein, and the molecular weight of the carbohydrate chain was approximately 60 kDa. These hypermannosylated glycans lowered the substrate affinity, but the optimum pH and thermo-stability were not changed by these hypermannosylated glycans. This functional expression system described here will aid in molecular evolutionary studies conducted to generate new variants of laccase. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enhanced catalysis of L-asparaginase from Bacillus licheniformis by a rational redesign.

    PubMed

    Sudhir, Ankit P; Agarwaal, Viplove V; Dave, Bhaumik R; Patel, Darshan H; Subramanian, R B

    2016-05-01

    L-Asparaginase (3.5.1.1) being antineoplastic in nature are used in the treatment of acute lymphoblastic leukemia (ALL). However glutaminase activity is the cause of various side effects when used as a drug against acute lymphoblastic leukemia (ALL). Therefore, there is a need of a novel L-asparaginase (L-ASNase) with low or no glutaminase activity. Such a property has been observed with L-ASNase from B. licheniformis (BliA). The enzyme being glutaminase free in nature paved the way for its improvement to achieve properties similar to or near to the commercially available L-ASNases. Rational enzyme engineering approach resulted in four mutants: G238N, E232A, D103V and Q112H. Among these the mutant enzyme, D103V, had a specific activity of 597.7IU/mg, which is higher than native (rBliA) (407.65IU/mg). Moreover, when the optimum temperature and in vitro half life were studied and compared with native BliA, D103V mutant BliA was better, showing tolerance to higher temperatures and a 3 fold higher half life. Kinetic studies revealed that the mutant D103V L-ASNase has increased substrate affinity, with Km value of 0.42mM and Vmax of 2778.9μmolmin(-1). Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    PubMed

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+) and Fe(2+) could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  19. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation

    PubMed Central

    Jin, Xiaoting; Yu, Xiangyang; Zhu, Guangyan; Zheng, Zuntao; Feng, Fayun; Zhang, Zhiyong

    2016-01-01

    A high capacity of laccase from Trametes versicolor capable of degrading pesticides has been revealed. The conditions for degrading of five selected pesticides including chlorpyrifos, chlorothalonil, pyrimethanil, atrazine and isoproturon with the purified laccases from Trametes versicolor were optimized. The results showed that the optimum conditions for the highest activity were pH at 5.0 and temperature at 25 °C. The best mediators were violuric acid for pyrimethanil and isoproturon, vanillin for chlorpyrifos, and acetosyringone and HBT for chlorothalonil and atrazine, respectively. The laccase was found to be stable at a pH range from 5.0 to 7.0 and temperature from 25 to 30 °C. It was observed that each pesticide required a different laccase mediator concentration typically between 4.0–6.0 mmol/L. In the experiment, the degradation rates of pyrimethanil and isoproturon were significantly faster than those of chlorpyrifos, chlorothalonil and atrazine. For example, it was observed that pyrimethanil and isoproturon degraded up to nearly 100% after 24 hours while the other three pesticides just reached up 90% of degradation after 8 days of incubation. PMID:27775052

  1. Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation.

    PubMed

    Jin, Xiaoting; Yu, Xiangyang; Zhu, Guangyan; Zheng, Zuntao; Feng, Fayun; Zhang, Zhiyong

    2016-10-24

    A high capacity of laccase from Trametes versicolor capable of degrading pesticides has been revealed. The conditions for degrading of five selected pesticides including chlorpyrifos, chlorothalonil, pyrimethanil, atrazine and isoproturon with the purified laccases from Trametes versicolor were optimized. The results showed that the optimum conditions for the highest activity were pH at 5.0 and temperature at 25 °C. The best mediators were violuric acid for pyrimethanil and isoproturon, vanillin for chlorpyrifos, and acetosyringone and HBT for chlorothalonil and atrazine, respectively. The laccase was found to be stable at a pH range from 5.0 to 7.0 and temperature from 25 to 30 °C. It was observed that each pesticide required a different laccase mediator concentration typically between 4.0-6.0 mmol/L. In the experiment, the degradation rates of pyrimethanil and isoproturon were significantly faster than those of chlorpyrifos, chlorothalonil and atrazine. For example, it was observed that pyrimethanil and isoproturon degraded up to nearly 100% after 24 hours while the other three pesticides just reached up 90% of degradation after 8 days of incubation.

  2. Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoting; Yu, Xiangyang; Zhu, Guangyan; Zheng, Zuntao; Feng, Fayun; Zhang, Zhiyong

    2016-10-01

    A high capacity of laccase from Trametes versicolor capable of degrading pesticides has been revealed. The conditions for degrading of five selected pesticides including chlorpyrifos, chlorothalonil, pyrimethanil, atrazine and isoproturon with the purified laccases from Trametes versicolor were optimized. The results showed that the optimum conditions for the highest activity were pH at 5.0 and temperature at 25 °C. The best mediators were violuric acid for pyrimethanil and isoproturon, vanillin for chlorpyrifos, and acetosyringone and HBT for chlorothalonil and atrazine, respectively. The laccase was found to be stable at a pH range from 5.0 to 7.0 and temperature from 25 to 30 °C. It was observed that each pesticide required a different laccase mediator concentration typically between 4.0-6.0 mmol/L. In the experiment, the degradation rates of pyrimethanil and isoproturon were significantly faster than those of chlorpyrifos, chlorothalonil and atrazine. For example, it was observed that pyrimethanil and isoproturon degraded up to nearly 100% after 24 hours while the other three pesticides just reached up 90% of degradation after 8 days of incubation.

  3. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates

    PubMed Central

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639

  4. Heterologous laccase production and its role in industrial applications

    PubMed Central

    Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Sannia, Giovanni

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  5. Lignin oxidation and pulp delignification by laccase and mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourbonnais, R.; Paice, M.G.; Reid, I.D.

    1996-10-01

    The phenol oxidizing enzyme laccase is produced abundantly by the lignin-degrading fungus Trametes versicolor. We found previously that laccase can oxidize veratryl alcohol and other non-phenolic lignin model compounds when a mediator such as 2,2{prime}-azinobis(3-ethylbenzthiazoline-5-sulphonate) (ABTS) was present. The laccase/mediator couple was also shown to be effective for delignification of kraft pulps. Two different isozymes of laccase produced by this fungus were purified and their reactivities towards lignins and kraft pulps were studied. The mediator ABTS was shown to be essential for pulp delignification and to reverse the polymerization of kraft lignin by either laccase. Pulp delignification with laccase andmore » ABTS was also optimized. resulting in up to 55% lignin removal from kraft pulp following sequential enzyme treatments and alkaline extractions. Several variables were surveyed including enzyme and mediator dosage, oxygen pressure, temperature, reaction time, and pH.« less

  6. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    PubMed

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Linamarase activities in Bacillus spp. responsible for thermophilic aerobic digestion of agricultural wastes for animal nutrition.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2007-01-01

    Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.

  8. Roles of small laccases from Streptomyces in lignin degradation.

    PubMed

    Majumdar, Sudipta; Lukk, Tiit; Solbiati, Jose O; Bauer, Stefan; Nair, Satish K; Cronan, John E; Gerlt, John A

    2014-06-24

    Laccases (EC 1.10.3.2) are multicopper oxidases that can oxidize a range of substrates, including phenols, aromatic amines, and nonphenolic substrates. To investigate the involvement of the small Streptomyces laccases in lignin degradation, we generated acid-precipitable polymeric lignin obtained in the presence of wild-type Streptomyces coelicolor A3(2) (SCWT) and its laccase-less mutant (SCΔLAC) in the presence of Miscanthus x giganteus lignocellulose. The results showed that strain SCΔLAC was inefficient in degrading lignin compared to strain SCWT, thereby supporting the importance of laccase for lignin degradation by S. coelicolor A3(2). We also studied the lignin degradation activity of laccases from S. coelicolor A3(2), Streptomyces lividans TK24, Streptomyces viridosporus T7A, and Amycolatopsis sp. 75iv2 using both lignin model compounds and ethanosolv lignin. All four laccases degraded a phenolic model compound (LM-OH) but were able to oxidize a nonphenolic model compound only in the presence of redox mediators. Their activities are highest at pH 8.0 with a low krel/Kapp for LM-OH, suggesting that the enzymes’ natural substrates must be different in shape or chemical nature. Crystal structures of the laccases from S. viridosporus T7A (SVLAC) and Amycolatopsis sp. 75iv2 were determined both with and without bound substrate. This is the first report of a crystal structure for any laccase bound to a nonphenolic β-O-4 lignin model compound. An additional zinc metal binding site in SVLAC was also identified. The ability to oxidize and/or rearrange ethanosolv lignin provides further evidence of the utility of laccase activity for lignin degradation and/or modification.

  9. Uses of Laccases in the Food Industry

    PubMed Central

    Osma, Johann F.; Toca-Herrera, José L.; Rodríguez-Couto, Susana

    2010-01-01

    Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries. PMID:21048873

  10. Heat shock treatment improves Trametes versicolor laccase production.

    PubMed

    Wang, Feng; Guo, Chen; Wei, Tao; Zhang, Tian; Liu, Chun-Zhao

    2012-09-01

    An efficient heat shock strategy has been developed to improve laccase production in submerged Trametes versicolor cultures. The optimized heat shock strategy consists of subjecting T. versicolor mycelial pellets to three heat shock treatments at 45 °C for 45 min, starting at culture day 0, with a 24-h interval between treatments. Laccase production increased by more than 1.6-fold relative to the control in both flasks and a 5-L bioreactor because the expression of the laccase gene was enhanced by heat shock induction. The present work demonstrates that heat shock induction is a promising method because it both improves fungal laccase production and has a good potential in industrial application.

  11. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    PubMed

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  12. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol

    PubMed Central

    Palanisamy, Selvakumar; Ramaraj, Sayee Kannan; Chen, Shen-Ming; Yang, Thomas C. K.; Yi-Fan, Pan; Chen, Tse-Wei; Velusamy, Vijayalakshmi; Selvam, Sonadevi

    2017-01-01

    In the present work, we demonstrate the fabrication of laccase biosensor to detect the catechol (CC) using laccase immobilized on graphene-cellulose microfibers (GR-CMF) composite modified screen printed carbon electrode (SPCE). The direct electrochemical behavior of laccase was investigated using laccase immobilized different modified SPCEs, such as GR/SPCE, CMF/SPCE and GR-CMF/SPCE. Compared with laccase immobilized GR and CMF modified SPCEs, a well-defined redox couple of CuI/CuII for laccase was observed at laccase immobilized GR-CMF composite modified SPCE. Cyclic voltammetry results show that the as-prepared biosensor has 7 folds higher catalytic activity with lower oxidation potential towards CC than SPCE modified with GR-CMF composite. Under optimized conditions, amperometric i-t method was used for the quantification of CC, and the amperometric response of the biosensor was linear over the concertation of CC ranging from 0.2 to 209.7 μM. The sensitivity, response time and the detection limit of the biosensor for CC is 0.932 μMμA−1 cm−2, 2 s and 0.085 μM, respectively. The biosensor has high selectivity towards CC in the presence of potentially active biomolecules and phenolic compounds. The biosensor also accessed for the detection of CC in different water samples and shows good practicality with an appropriate repea. PMID:28117357

  13. [Enhancement of laccase activity by combining white rot fungal strains].

    PubMed

    He, Rong-yu; Liu, Xiao-feng; Yan, Zhi-ying; Yuan, Yue-xiang; Liao, Yin-zhang; Li, Xu-dong

    2010-02-01

    The method of combining white rot fungal strains was used to enhance laccase activity, and the interaction mechanism between strains was also studied. The laccase activity of combined fungi of strain 55 (Trametes trogii) and strain m-6 (Trametes versicolor) were 24.13 and 4.07-fold higher than that of strain 55 and strain m-6, respectively. No inhibitory effect was observed when the two strains were co-cultivated. On plate cultivation, there was hyphal interference in the contact area, where laccase activity was the highest followed by brown pigmentation. In liquid cultivation, strain m-6 played much more important role on enhancement of laccase activity, and the laccase activity of strain 55 by adding strain m-6 was 7.03-fold higher than that of strain m-6 by adding strain 55, furthermore, filter sterilized- and high temperature autoclaved-extracellular substances of strain m-6 could also stimulate strain 55 to excrete more laccase, which led to 6.79-fold and 4. 60-fold increase in laccase activity by adding 20 mL, respectively. The native staining results of Native-PAGE showed that the types of laccase isozymes were not changed when strains were co-cultured, but the concentration of three types increased.

  14. Light-induced inhibition of laccase in Pycnoporus sanguineus.

    PubMed

    Hernández, Christian A; Perroni, Yareni; Pérez, José Antonio García; Rivera, Beatriz Gutiérrez; Alarcón, Enrique

    2016-03-01

    The aim was to determine which specific regions of the visible light spectrum were responsible for the induction or inhibition of laccase in Pycnoporus sanguineus. Cultures were exposed to various bandwidth lights: blue (460 nm), green (525 nm), white (a combination of 460 and 560 nm), red (660 nm), and darkness. The results indicate that short wavelengths strongly inhibit the production of laccase: green (3.76 ± 1.12 U/L), blue (1.94 ± 0.36 U/L), and white (1.05 ± 0.21 U/L) in proportions of 85.8, 92.6, and 96.0%, respectively; whereas long wavelengths inhibit laccase production only partially i.e., red light (14.05 ± 4.79 U/L) in a proportion of 46.8%. Maximum activity was induced in absence of visible light (30 °C, darkness), i.e., 30.76 ± 4.0 U/L. It is concluded that the production of laccase in P. sanguineus responds to light stimuli [measured as wavelengths and lx] and that it does so inversely. This can be explained as an ecological mechanism of environmental recognition, given that P. sanguineus develops inside lignocellulose structures in conditions of darkness. The presence of short wavelength light (460-510 nm) would indicate that the organism finds itself in an external environment, unprovided of lignin, and that it is therefore unnecessary to secrete laccase. This possible new regulation in the laccase production in P. sanguineus has important biotechnological implications, for it would be possible to control the production of laccase using light stimuli.

  15. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto.

    PubMed

    Yongjun, Cai; Wei, Bao; Shujun, Jiang; Meizhi, Weng; Yan, Jia; Yan, Yin; Zhongliang, Zheng; Goulin, Zou

    2011-12-01

    Nattokinase (subtilisin NAT, NK) is a relatively effective microbial fibrinolytic enzyme that has been identified and characterized from Bacillus natto. In the current report, DNA family shuffling was used to improve the fibrinolytic activity of nattokinase. Three homologous genes from B. natto AS 1.107, Bacillus amyloliquefaciens CICC 20164 and Bacillus licheniformis CICC 10092 were shuffled to generate a mutant library. A plate-based method was used to screen the mutant libraries for improved activity. After three rounds of DNA shuffling, one desirable mutant with 16 amino acid substitutions was obtained. The mutant enzyme was purified and characterized. The kinetic measurements showed that the catalytic efficiency of the mutant NK was approximately 2.3 times higher than that of the wild-type nattokinase. In addition, the molecular modeling analysis suggested that the mutations affect the enzymatic function by changing the surface conformation of the substrate-binding pocket. The current study shows that the evolution of nattokinase with improved fibrinolytic activity by DNA family shuffling is feasible and provides useful references to facilitate the application of nattokinase in thrombolytic therapy. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    PubMed

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  17. Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli.

    PubMed

    Salony; Garg, N; Baranwal, R; Chhabra, M; Mishra, S; Chaudhuri, T K; Bisaria, V S

    2008-02-01

    Cyathus bulleri, a ligninolytic fungus, produces a single laccase the internal peptides (3) of which bear similarity to laccases of several white rot fungi. Comparison of the total amino acid composition of this laccase with several fungal laccases indicated dissimilarity in the proportion of some basic and hydrophobic amino acids. Analysis of the circular dichroism spectrum of the protein indicated 37% alpha-helical, 26% beta-sheet and 38% random coil content which differed significantly from that in the solved structures of other laccases, which contain higher beta-sheet structures. The critical role of the carboxylic group containing amino acids was demonstrated by determining the kinetic parameters at different pH and this was confirmed by the observation that a critical Asp is strongly conserved in both Ascomycete and Basidiomycete laccases. The enzyme was denatured in the presence of a number of denaturing agents and refolded back to functional state with copper. In the folding experiments under alkaline conditions, zinc could replace copper in restoring 100% of laccase activity indicating the non-essential role of copper in this laccase. The laccase was expressed in Escherichia coli by a modification of the ligation-anchored PCR approach making it the first fungal laccase to be expressed in a bacterial host. The laccase sequence was confirmed by way of analysis of a 435 bp sequence of the insert.

  18. Exploiting the oxidizing capabilities of laccases exploiting the oxidizing capabilities of laccases for sustainable chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannatelli, Mark D.

    Part one of this dissertation research has focused on harnessing the ability of laccases to generate reactive para-quinones in situ from the corresponding hydroquinones, followed by reaction with a variety of nucleophiles to perform novel carbon-carbon, carbon-nitrogen, and carbon-sulfur bond forming reactions for the synthesis of new and existing compounds. In part two of this dissertation, the fundamental laccase-catalyzed coupling chemistry developed in part one was applied to functionalize the surface of kraft lignin.

  19. Bacterial versus fungal laccase: potential for micropollutant degradation

    PubMed Central

    2013-01-01

    Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the bacterial genus Streptomyces (S. cyaneus, S. ipomoea, S. griseus and S. psammoticus) and the white-rot fungus Trametes versicolor were studied for their ability to produce active extracellular laccase in biologically treated wastewater with different carbon sources. Among the Streptomyces strains evaluated, only S. cyaneus produced extracellular laccase with sufficient activity to envisage its potential use in WWTPs. Laccase activity produced by T. versicolor was more than 20 times greater, the highest activity being observed with ash branches as the sole carbon source. The laccase preparation of S. cyaneus (abbreviated LSc) and commercial laccase from T. versicolor (LTv) were further compared in terms of their activity at different pH and temperatures, their stability, their substrate range, and their micropollutant oxidation efficiency. LSc and LTv showed highest activities under acidic conditions (around pH 3 to 5), but LTv was active over wider pH and temperature ranges than LSc, especially at near-neutral pH and between 10 and 25°C (typical conditions found in WWTPs). LTv was also less affected by pH inactivation. Both laccase preparations oxidized the three micropollutants tested, bisphenol A, diclofenac and mefenamic acid, with faster degradation kinetics observed for LTv. Overall, T. versicolor appeared to be the better candidate to remove micropollutants from wastewater in a dedicated post-treatment step. PMID:24152339

  20. Positions of Trp Codons in the Leader Peptide-Coding Region of the at Operon Influence Anti-Trap Synthesis and trp Operon Expression in Bacillus licheniformis▿

    PubMed Central

    Levitin, Anastasia; Yanofsky, Charles

    2010-01-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNATrp. Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNATrp. In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNATrp deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  1. Chitosan multiple addition enhances laccase production from Trametes versicolor.

    PubMed

    Adekunle, Abiodun Emmanuel; Wang, Feng; Hu, Jianhua; Ma, Anzhou; Guo, Chen; Zhuang, Guoqiang; Liu, Chun-Zhao

    2015-10-01

    Chitosan multiple addition strategy was developed to improve laccase production from Trametes versicolor cultures. The optimized multiple addition strategy was carried out by two-time addition of 0.1 g L(-1) chitosan to a 2-day-old culture media, with 24-h interval between the treatments. Under these conditions, laccase activity of 644.9 U l(-1) was achieved on the seventh day and laccase production was improved by 93.5 % higher than the control. Chitosan treatment increased reactive oxygen species generation and extracellular protein concentration in the treated mycelia. In contrast, the inducer inhibited the mycelia growth. The result of the quantitative reverse transcription polymerase chain reaction showed that the copy number of the laccase gene transcript increased by 16.7-fold in the treated mycelia relative to the control. This study provides insight into some of the intrinsic metabolic processes involved in the upregulation of laccase production in the presence of chitosan inducer in fungal culture.

  2. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions.

    PubMed

    Moya, Raquel; Saastamoinen, Päivi; Hernández, Manuel; Suurnäkki, Anna; Arias, Enriqueta; Mattinen, Maija-Liisa

    2011-11-01

    The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30°C and 50°C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Stabilized Laccases as Heterogeneous Bioelectrocatalysts (Postprint)

    DTIC Science & Technology

    2012-10-01

    nature, with examples that range from bacterial species to fungi and plants.19·101 However, certain properties of laccases, such as their protein...identified, includ- ing examples of extremophilic enzymes,l11·121 but the extracellu- lar laccases from wood-rotting fungi , such as Trametes spp...biomolecules not only affects the stability and selectivity of an enzyme towards different substrates but also the charge trans- fer at the electrode

  4. Induction of laccases in Trametes versicolor by aqueous wood extracts.

    PubMed

    Bertrand, Brandt; Martínez-Morales, Fernando; Tinoco, Raunel; Rojas-Trejo, Sonia; Serrano-Carreón, Leobardo; Trejo-Hernández, María R

    2014-01-01

    The induction of laccase isoforms in Trametes versicolor HEMIM-9 by aqueous extracts (AE) from softwood and hardwood was studied. Samples of sawdust of Pinus sp., Cedrela sp., and Quercus sp. were boiled in water to obtain AE. Different volumes of each AE were added to fungal cultures to determine the amount of AE needed for the induction experiments. Laccase activity was assayed every 24 h for 15 days. The addition of each AE (50 to 150 μl) to the fungal cultures increased laccase production compared to the control (0.42 ± 0.01 U ml(-1)). The highest laccase activities detected were 1.92 ± 0.15 U ml(-1) (pine), 1.87 ± 0.26 U ml(-1) (cedar), and 1.56 ± 0.34 U ml(-1) (oak); laccase productivities were also significantly increased. Larger volumes of any AE inhibited mycelial growth. Electrophoretic analysis revealed two laccase bands (lcc1 and lcc2) for all the treatments. However, when lcc2 was analyzed by isoelectric focusing, inducer-dependent isoform patterns composed of three (pine AE), four (oak AE), and six laccase bands (cedar AE) were observed. Thus, AE from softwood and hardwood had induction effects in T. versicolor HEMIM-9, as indicated by the increase in laccase activity and different isoform patterns. All of the enzymatic extracts were able to decolorize the dye Orange II. Dye decolorization was mainly influenced by pH. The optimum pH for decolorization was pH 5 (85%), followed by pH 7 (50%) and pH 3 (15%). No significant differences in the dye decolorizing capacity were detected between the control and the differentially induced laccase extracts (oak, pine and cedar). This could be due to the catalytic activities of isoforms with pI 5.4 and 5.8, which were detected under all induction conditions.

  5. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    DTIC Science & Technology

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  6. Use of Laccase as a Novel, Versatile Reporter System in Filamentous Fungi

    PubMed Central

    Mander, Gerd J.; Wang, Huaming; Bodie, Elizabeth; Wagner, Jens; Vienken, Kay; Vinuesa, Claudia; Foster, Caroline; Leeder, Abigail C.; Allen, Gethin; Hamill, Valerie; Janssen, Giselle G.; Dunn-Coleman, Nigel; Karos, Marvin; Lemaire, Hans Georg; Subkowski, Thomas; Bollschweiler, Claus; Turner, Geoffrey; Nüsslein, Bernhard; Fischer, Reinhard

    2006-01-01

    Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2′-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km = 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain. PMID:16820501

  7. Use of laccase as a novel, versatile reporter system in filamentous fungi.

    PubMed

    Mander, Gerd J; Wang, Huaming; Bodie, Elizabeth; Wagner, Jens; Vienken, Kay; Vinuesa, Claudia; Foster, Caroline; Leeder, Abigail C; Allen, Gethin; Hamill, Valerie; Janssen, Giselle G; Dunn-Coleman, Nigel; Karos, Marvin; Lemaire, Hans Georg; Subkowski, Thomas; Bollschweiler, Claus; Turner, Geoffrey; Nüsslein, Bernhard; Fischer, Reinhard

    2006-07-01

    Laccases are copper-containing enzymes which oxidize phenolic substrates and transfer the electrons to oxygen. Many filamentous fungi contain several laccase-encoding genes, but their biological roles are mostly not well understood. The main interest in laccases in biotechnology is their potential to be used to detoxify phenolic substances. We report here on a novel application of laccases as a reporter system in fungi. We purified a laccase enzyme from the ligno-cellulolytic ascomycete Stachybotrys chartarum. It oxidized the artificial substrate 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate) (ABTS). The corresponding gene was isolated and expressed in Aspergillus nidulans, Aspergillus niger, and Trichoderma reesei. Heterologously expressed laccase activity was monitored in colorimetric enzyme assays and on agar plates with ABTS as a substrate. The use of laccase as a reporter was shown in a genetic screen for the isolation of improved T. reesei cellulase production strains. In addition to the laccase from S. charatarum, we tested the application of three laccases from A. nidulans (LccB, LccC, and LccD) as reporters. Whereas LccC oxidized ABTS (Km = 0.3 mM), LccD did not react with ABTS but with DMA/ADBP (3,5-dimethylaniline/4-amino-2,6-dibromophenol). LccB reacted with DMA/ADBP and showed weak activity with ABTS. The different catalytic properties of LccC and LccD allow simultaneous use of these two laccases as reporters in one fungal strain.

  8. Recent developments and applications of immobilized laccase.

    PubMed

    Fernández-Fernández, María; Sanromán, M Ángeles; Moldes, Diego

    2013-12-01

    Laccase is a promising biocatalyst with many possible applications, including bioremediation, chemical synthesis, biobleaching of paper pulp, biosensing, textile finishing and wine stabilization. The immobilization of enzymes offers several improvements for enzyme applications because the storage and operational stabilities are frequently enhanced. Moreover, the reusability of immobilized enzymes represents a great advantage compared with free enzymes. In this work, we discuss the different methodologies of enzyme immobilization that have been reported for laccases, such as adsorption, entrapment, encapsulation, covalent binding and self-immobilization. The applications of laccase immobilized by the aforementioned methodologies are presented, paying special attention to recent approaches regarding environmental applications and electrobiochemistry. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Laccase-mediator catalyzed conversion of model lignin compounds

    USDA-ARS?s Scientific Manuscript database

    Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both comm...

  10. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon.

    PubMed

    Wang, J W; Wu, J H; Huang, W Y; Tan, R X

    2006-03-01

    The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by the endophytic fungus Monotospora sp. were evaluated. The optimal temperature and initial pH for laccase production by Monotospora sp. in submerged culture were found to be 30 degrees C and 8.5, respectively. Maltose (2 g l(-1)) and ammonium tartrate (10 g l(-1)) were the most suitable carbon and nitrogen source for laccase production. Under optimal culture medium, the maximum laccase activity was determined to be 13.55 U ml(-1), which was approximately four times higher than that in basal medium. This is the first report on laccase production by an endophytic fungus.

  11. Laccase-mediator catalyzed conversion of model lignin compounds

    USDA-ARS?s Scientific Manuscript database

    Laccases play an important role in the biological breakdown of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined a variety of laccases, both commercially prepared and crude extracts, for their ability to oxidize three model lignol compounds (p-coumaryl...

  12. Use of Probiotic Bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) Enrichment: Effects on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei, Larvae.

    PubMed

    Jamali, Hadi; Imani, Ahmad; Abdollahi, Daruosh; Roozbehfar, Reza; Isari, Amin

    2015-06-01

    This study was to evaluate the effect of a preparation of Bacillus probiotic (Bacillus licheniformis and B. subtilis, 1:1) on growth and survival rate of Pacific white shrimp, Litopenaeus vannamei larvae. The larvae were fed on Artemia urmiana nauplii and Brachionus plicatilis enriched with the probiotic preparation at 1 × 10(6) CFU mL(-1) rate. The experimental setup was completely randomized design comprised of six treatments, namely solo Artemia nauplii (A) or rotifer (R), Artemia nauplii and rotifer without any enrichment (A + R), Artemia nauplii enrichment with probiotic bacilli (Bacillus licheniformis and B. subtilis) (A + B), rotifer enrichment with probiotic bacilli (R + B) and enriched Artemia nauplii and rotifer (A + R + B). All treatments were performed in triplicate. Chemical parameters of rearing water viz. pH, salinity and temperature were 7.5-8, 30-31 ppt and 31-32 °C, respectively. Photoperiod was 16L:8D. Shrimp larvae were fed Artemia nauplii and rotifers at 5-20 and 10-40 individuals per shrimp larvae four times a day, respectively. Growth and survival rate of larvae were determined at MII, MIII, PL1, PL4, PL7 and PL10 stages. Larvae in A + R + B treatment showed the highest total length (10.89 ± 0.51 mm), weight (674 ± 73 μg) and survival rate (65% ± 3.5). Lowest total length, weight and survival rate (7.96 ± 0.63 mm, 493 ± 52 μg and 24.5 ± 2.4%, respectively) were recorded in treatment B larvae. We concluded that Bacillus probiotic can improve growth and survival rate of Pacific white shrimp larvae without conceivably undesirable effects.

  13. Laccase engineering: from rational design to directed evolution.

    PubMed

    Mate, Diana M; Alcalde, Miguel

    2015-01-01

    Laccases are multicopper oxidoreductases considered by many in the biotechonology field as the ultimate "green catalysts". This is mainly due to their broad substrate specificity and relative autonomy (they use molecular oxygen from air as an electron acceptor and they only produce water as by-product), making them suitable for a wide array of applications: biofuel production, bioremediation, organic synthesis, pulp biobleaching, textiles, the beverage and food industries, biosensor and biofuel cell development. Since the beginning of the 21st century, specific features of bacterial and fungal laccases have been exhaustively adapted in order to reach the industrial demands for high catalytic activity and stability in conjunction with reduced production cost. Among the goals established for laccase engineering, heterologous functional expression, improved activity and thermostability, tolerance to non-natural media (organic solvents, ionic liquids, physiological fluids) and resistance to different types of inhibitors are all challenges that have been met, while obtaining a more comprehensive understanding of laccase structure-function relationships. In this review we examine the most significant advances in this exciting research area in which rational, semi-rational and directed evolution approaches have been employed to ultimately convert laccases into high value-added biocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Combined sequence and structure analysis of the fungal laccase family.

    PubMed

    Kumar, S V Suresh; Phale, Prashant S; Durani, S; Wangikar, Pramod P

    2003-08-20

    Plant and fungal laccases belong to the family of multi-copper oxidases and show much broader substrate specificity than other members of the family. Laccases have consequently been of interest for potential industrial applications. We have analyzed the essential sequence features of fungal laccases based on multiple sequence alignments of more than 100 laccases. This has resulted in identification of a set of four ungapped sequence regions, L1-L4, as the overall signature sequences that can be used to identify the laccases, distinguishing them within the broader class of multi-copper oxidases. The 12 amino acid residues in the enzymes serving as the copper ligands are housed within these four identified conserved regions, of which L2 and L4 conform to the earlier reported copper signature sequences of multi-copper oxidases while L1 and L3 are distinctive to the laccases. The mapping of regions L1-L4 on to the three-dimensional structure of the Coprinus cinerius laccase indicates that many of the non-copper-ligating residues of the conserved regions could be critical in maintaining a specific, more or less C-2 symmetric, protein conformational motif characterizing the active site apparatus of the enzymes. The observed intraprotein homologies between L1 and L3 and between L2 and L4 at both the structure and the sequence levels suggest that the quasi C-2 symmetric active site conformational motif may have arisen from a structural duplication event that neither the sequence homology analysis nor the structure homology analysis alone would have unraveled. Although the sequence and structure homology is not detectable in the rest of the protein, the relative orientation of region L1 with L2 is similar to that of L3 with L4. The structure duplication of first-shell and second-shell residues has become cryptic because the intraprotein sequence homology noticeable for a given laccase becomes significant only after comparing the conservation pattern in several fungal

  15. Enhanced delignification of lignocellulosic substrates by Pichia GS115 expressed recombinant laccase.

    PubMed

    Kumar, Vidya Pradeep; Kolte, Atul P; Dhali, Arindam; Naik, Chandrashekar; Sridhar, Manpal

    2018-04-25

    Utilization of energy-rich crop residues by ruminants is restricted by the presence of lignin, which is recalcitrant to digestion. Application of lignin degrading enzymes on the lignocellulosic biomass exposes the cellulose for easy digestion by ruminants. Laccases have been found to be considerably effective in improving the digestibility by way of delignification. However, laccase yields from natural hosts are not sufficient for industrial scale applications, which restricts their use. A viable option would be to express the laccase gene in compatible hosts to achieve higher production yields. A codon-optimized synthetic variant of Schizophyllum commune laccase gene was cloned into a pPIC9K vector and expressed in P. pastoris GS115 (his4) under the control of an alcohol oxidase promoter. Colonies were screened for G418 resistance and the methanol utilization phenotype was established. The transformant yielded a laccase activity of 344 U·mL -1 after 5 days of growth at 30°C (0.019 g·mL -1 wet cell weight). The laccase protein produced by the recombinant Pichia clone was detected as two bands with apparent molecular weights of 55 kDa and 70 kDa on SDS-PAGE. Activity staining on native PAGE confirmed the presence of bioactive laccase. Treatment of five common crop residues with recombinant laccase recorded a lignin loss ranging between 1.64% in sorghum stover, to 4.83% in finger millet, with an enhancement in digestibility ranging between 8.71% in maize straw to 24.61% in finger millet straw. Treatment with recombinant laccase was effective in enhancing the digestibility of lignocellulosic biomass for ruminant feeding through delignification. To date, a number of hosts have been adventured to produce laccase in large quantities, but, to our knowledge, there are no reports of the expression of laccase protein from Schizophyllum commune in Pichia pastoris, and also on the treatment of crop residues using recombinant laccase for ruminant feeding.

  16. Effect of different compounds on the induction of laccase production by Agaricus blazei.

    PubMed

    Valle, J S; Vandenberghe, L P S; Oliveira, A C C; Tavares, M F; Linde, G A; Colauto, N B; Soccol, C R

    2015-12-03

    Laccases are polyphenol oxidases produced by many fungi and have many applications in textile, food and beverage, and pulp and paper industries. Laccase production can be induced using aromatic or phenolic compounds that mostly affect the transcription of laccase-encoding genes. In this study, we analyzed laccase and biomass production by Agaricus blazei in the presence of different concentrations of nitrogen, copper, and inducers such as pyrogallol, veratryl alcohol, xylidine, vanillin, guaiacol, and ethanol. Laccase production by A. blazei U2-4 reached 43.8 U/mL in the presence of 2.8 g/L nitrogen and 150 μM copper. However, addition of copper to the cultivation medium decreased biomass production. Different compounds differentially induced laccase production by A. blazei. Moreover, different concentrations of these inducers exerted different effects on laccase activity. Ethanol (1.0 mM), guaiacol (0.5 mM), and vanillin (0.5 mM) were the best inducers and increased laccase activity by 120% (A. blazei U2-2), 30% (A. blazei U2-3), and 9% (A. blazei U2-4), respectively. In contrast, pyrogallol and xylidine decreased laccase activity but increased biomass production.

  17. Specialization of Bacillus in the Geochemically Challenged Environment of Death Valley

    NASA Astrophysics Data System (ADS)

    Kopac, S.

    2014-04-01

    Death Valley is the hottest, driest place in North America, a desert with soils containing toxic elements such as boron and lead. While most organisms are unable to survive under these conditions, a diverse community of bacteria survives here. What has enabled bacteria to adapt and thrive in a plethora of extreme and stressful environments where other organisms are unable to grow? The unique environmental adaptations that distinguish ecologically distinct bacterial groups (ecotypes) remain a mystery, in contrast to many animal species (perhaps most notably Darwin's ecologically distinct finch species). We resolve the ecological factors associated with recently diverged ecotypes of the soil bacteria Bacillus subtilis and Bacillus licheniformis, isolated from the dry, geochemically challenging soils of Death Valley, CA. To investigate speciation associated with challenging environmental parameters, we sampled soil transects along a 400m stretch that parallels a decrease in salinity adjacent to a salt flat; transects also encompass gradients in soil B, Cu, Fe, NO3, and P, all of which were quantified in our soil samples. We demarcated strains using Ecotype Simulation, a sequence-based algorithm. Each ecotype's habitat associations were determined with respect to salinity, B, Cu, Fe, NO3, and P. In addition, our sample strains were tested for tolerance of copper, boron and salinity (all known to inhibit growth at high concentrations) by comparing their growth over a 20 hour period. Ecotypes differed in their habitat associations with salinity, boron, copper, iron, and other ecological factors; these environmental dimensions are likely causing speciation of B. subtilis-licheniformis ecotypes at our sample site. Strains also differed in tolerance of boron and copper, providing evidence that our sequence-based demarcations reflect real differences in metabolism. By better understanding the relationship between bacterial speciation and the environment, we can begin to

  18. Characterization of C-terminally engineered laccases.

    PubMed

    Liu, Yingli; Cusano, Angela Maria; Wallace, Erin C; Mekmouche, Yasmina; Ullah, Sana; Robert, Viviane; Tron, Thierry

    2014-08-01

    Extremities of proteins are potent sites for functionalization. Carboxy terminus variants of the Trametes sp. strain C30 LAC3 laccase were generated and produced in Saccharomyces cerevisiae. A variant deleted of the last 13 residues (CΔ) and its 6 His tagged counterpart (CΔ6H) were found active enzymes. The production of CΔ6H resulted in the synthesis of a unusually high proportion of highly glycosylated forms of the enzyme therefore allowing the additional purification of a hyper-glycosylated form of CΔ6H noted CΔ6Hh. Properties of CΔ, CΔ6H and CΔ6Hh were compared. Globally, LAC3 catalytic efficiency was moderately affected by terminal modifications except in CΔ for which the kcat/KM ratio decreased 4 fold (with syringaldazine as substrate) and 10 fold (with ABTS as substrate) respectively. The catalytic parameters kcat and KM of CΔ6H and CΔ6Hh were found to be strictly comparable revealing that over glycosylation does not affect the enzyme catalytic efficiency. To the contrary, in vitro deglycosylation of laccase drastically reduced its activity. So, despite a complex glycosylated pattern observed for some of the variant enzymes, terminal sequences of laccases appear to be appropriate sites for the functionalization/immobilization of laccase. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. FTIR Spectroscopy Applied in Remazol Blue Dye Oxidation by Laccases

    NASA Astrophysics Data System (ADS)

    Juárez-Hernández, J.; Zavala-Soto, M. E.; Bibbins-Martínez, M.; Delgado-Macuil, R.; Díaz-Godinez, G.; Rojas-López, M.

    2008-04-01

    We have used FTIR with attenuated total reflectance (ATR) technique to analyze the decolourization process of Remazol Blue dye (RB19) caused by the oxidative activity of laccase enzyme. It is known that laccases catalyze the oxidation of a large range of phenolic compounds and aromatic amines carrying out one-electron oxidations, although also radicals could be formed which undergo subsequent nonenzymatic reactions. The enzyme laccase is a copper-containing polyphenol oxidase (EC 1.10.3.2) which has been tested as a potential alternative in detoxification of environmental pollutants such as dyes present in wastewaters generated for the textile industry. In order to ensure degradation or avoid formation of toxic compounds it is important to establish the mechanism by which laccase oxidizes dyes. In this research individual ATR-FTIR spectra have been recorded for several reaction times between 0 to 236 hours, and the temporal dependence of the reaction was analyzed through the relative diminution of the intensity of the infrared band at 1127 cm-1 (associated to C-N vibration), with respect to the intensity of the band at 1104 cm-1 (associated to S = O) from sulphoxide group. Decolourization process of this dye by laccase could be attributed to its accessibility on the secondary amino group, which is a potential point of attack of laccases, abstracting the hydrogen atom. This decolourization process of remazol blue dye by laccase enzyme might in a future replace the traditionally high chemical, energy and water consuming textile operations.

  20. Ultrasound-intensified laccase production from Trametes versicolor.

    PubMed

    Wang, Feng; Ma, An-Zhou; Guo, Chen; Zhuang, Guo-Qiang; Liu, Chun-Zhao

    2013-01-01

    An efficient intermittent ultrasonic treatment strategy was developed to improve laccase production from Trametes versicolor mycelia cultures. The optimized strategy consisted of exposing 2-day-old mycelia cultures to 5-min ultrasonic treatments for two times with a 12-h interval at the fixed ultrasonic power and frequency (120 W, 40 kHz). After 5 days of culture, this strategy produced the highest extracellular laccase activity of 588.9 U/L among all treatments tested which was 1.8-fold greater than the control without ultrasound treatment. The ultrasonic treatment resulted in a higher pellet porosity that facilitated the mass transfer of nutrients and metabolites from the pellets to the surrounding liquid. Furthermore, the ultrasonic treatment induced the expression of the laccase gene (lcc), which correlated with a sharp increase in both extracellular and intracellular laccase activity. This is the first study to find positive effects of ultrasound on gene expression in fungal cells. These results provide a basis for understanding the stimulation of metabolite production and process intensification by ultrasonic treatment in filamentous fungal culture. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A New Laccase Based Biosensor for Tartrazine.

    PubMed

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-12-09

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM ( R ² = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis.

  2. A New Laccase Based Biosensor for Tartrazine

    PubMed Central

    Mazlan, Siti Zulaikha; Lee, Yook Heng; Hanifah, Sharina Abu

    2017-01-01

    Laccase enzyme, a commonly used enzyme for the construction of biosensors for phenolic compounds was used for the first time to develop a new biosensor for the determination of the azo-dye tartrazine. The electrochemical biosensor was based on the immobilization of laccase on functionalized methacrylate-acrylate microspheres. The biosensor membrane is a composite of the laccase conjugated microspheres and gold nanoparticles (AuNPs) coated on a carbon-paste screen-printed electrode. The reaction involving tartrazine can be catalyzed by laccase enzyme, where the current change was measured by differential pulse voltammetry (DPV) at 1.1 V. The anodic peak current was linear within the tartrazine concentration range of 0.2 to 14 μM (R2 = 0.979) and the detection limit was 0.04 μM. Common food ingredients or additives such as glucose, sucrose, ascorbic acid, phenol and sunset yellow did not interfere with the biosensor response. Furthermore, the biosensor response was stable up to 30 days of storage period at 4 °C. Foods and beverage were used as real samples for the biosensor validation. The biosensor response to tartrazine showed no significant difference with a standard HPLC method for tartrazine analysis. PMID:29232842

  3. Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor.

    PubMed

    Kajita, Shinya; Sugawara, Shinsuke; Miyazaki, Yasumasa; Nakamura, Masaya; Katayama, Yoshihiro; Shishido, Kazuo; Iimura, Yosuke

    2004-12-01

    One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants microg(-1) of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.

  4. Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds

    PubMed Central

    Xu, Feng; Kulys, Juozas J.; Duke, Kyle; Li, Kaichang; Krikstopaitis, Kastis; Deussen, Heinz-Josef W.; Abbate, Eric; Galinyte, Vilija; Schneider, Palle

    2000-01-01

    1-Hydroxybenzotriazole, violuric acid, and N-hydroxyacetanilide are three N-OH compounds capable of mediating a range of laccase-catalyzed biotransformations, such as paper pulp delignification and degradation of polycyclic hydrocarbons. The mechanism of their enzymatic oxidation was studied with seven fungal laccases. The oxidation had a bell-shaped pH-activity profile with an optimal pH ranging from 4 to 7. The oxidation rate was found to be dependent on the redox potential difference between the N-OH substrate and laccase. A laccase with a higher redox potential or an N-OH compound with a lower redox potential tended to have a higher oxidation rate. Similar to the enzymatic oxidation of phenols, phenoxazines, phenothiazines, and other redox-active compounds, an “outer-sphere” type of single-electron transfer from the substrate to laccase and proton release are speculated to be involved in the rate-limiting step for N-OH oxidation. PMID:10788380

  5. Laccase-catalyzed synthesis of 2,3-ethylenedithio-1,4-quinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2015-06-05

    Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) are part of a family of multicopper oxidases. These environmentally friendly enzymes require O 2 as their only co-substrate and produce H 2O as their sole by-product. As a result, they have acquired increasing use in biotechnological applications, particularly in the field of organic synthesis. In the current study, laccases have been employed to successfully couple 1,2-ethanedithiol to various substituted hydroquinones to produce novel 2,3-ethylenedithio-1,4-quinones in good yields via an oxidation–addition–oxidation–addition–oxidation mechanism. The reactions proceeded in one-pot under mild conditions (room temperature, pH 5.0). This study further supports the use of laccases as green toolsmore » in organic chemistry. Furthermore, it provides evidence that laccase-catalyzed cross-coupling reactions involving small thiols are possible, in spite of research that suggests small thiols are potent inhibitors of laccases.« less

  6. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch 'Benihoppe') Seedlings.

    PubMed

    Zhang, Jie; Pang, Hui; Ma, Mengxia; Bu, Yufen; Shao, Wei; Huang, Weijing; Ji, Qianlong; Yao, Yuncong

    2016-01-01

    Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth.

  7. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch ‘Benihoppe’) Seedlings

    PubMed Central

    Bu, Yufen; Shao, Wei; Huang, Weijing; Ji, Qianlong; Yao, Yuncong

    2016-01-01

    Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth. PMID:27755580

  8. Laccase pretreatment for agrofood wastes valorization.

    PubMed

    Giacobbe, Simona; Pezzella, Cinzia; Lettera, Vincenzo; Sannia, Giovanni; Piscitelli, Alessandra

    2018-06-01

    Apple pomace, potato peels, and coffee silverskin are attractive agrofood wastes for the production of biofuels and chemicals, due to their abundance and carbohydrate content. As lignocellulosic biomasses, their conversion is challenged by the presence of lignin that prevents hydrolysis of polysaccharides, hence demanding a pretreatment step. In this work, the effectiveness of Pleurotus ostreatus laccases (with and without mediator) to remove lignin, improving the subsequent saccharification, was assessed. Optimized conditions for sequential protocol were set up for all agrofood wastes reaching delignification and detoxification yields correlated with high saccharification. Especially noteworthy were results for apple pomace and coffee silverskin for which 83% of and 73% saccharification yields were observed, by using laccase and laccase mediator system, respectively. The herein developed sequential protocol, saving soluble sugars and reducing the amount of wastewater, can improve the overall process for obtaining chemicals or fuels from agrofood wastes. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties

    PubMed Central

    Mahajan, Richi V.; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C.; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and −20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α- helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10−5 M, 4.03 IU and 2.68×103 s−1, respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug. PMID:24905227

  10. Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties.

    PubMed

    Mahajan, Richi V; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and -20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α-helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10(-5) M, 4.03 IU and 2.68×10(3) s(-1), respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug.

  11. Copper induction and differential expression of laccase in Aspergillus flavus

    PubMed Central

    Gomaa, Ola M.; Momtaz, Osama A.

    2015-01-01

    Aspergillus flavus was isolated from soil and exhibited laccase activity under both constitutive and copper induced conditions. Spiking the medium with 1 mM copper sulfate resulted in an increase in the activity which reached 51.84 U/mL, a distinctive protein band was detected at 60 kDa. The extracellular enzyme was purified 81 fold using gel filtration chromatography and resulted in two different laccase fractions L1 and L2, the latter had a higher enzymatic activity which reached 79.57 U/mL and specific activity of 64.17 U/μg protein. The analysis of the spectrum of the L2 fraction showed a shoulder at 330 nm which is characteristic for T2/T3 copper centers; both copper and zinc were detected suggesting that this is an unconventional white laccase. Primers of laccase gene were designed and synthesized to recover specific gene from A. flavus . Sequence analysis indicated putative laccase (Genbank ID: JF683612) at the amino acid level suggesting a close identity to laccases from other genera containing the copper binding site. Decolorization of textile waste water under different conditions showed possible application in bioremediation within a short period of time. The effect of copper on A. flavus was concentration dependent. PMID:26221119

  12. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  13. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  14. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.

    PubMed

    Tišma, Marina; Znidaršič-Plazl, Polona; Vasić-Rački, Durđa; Zelić, Bruno

    2012-01-01

    Laccases are very interesting biocatalysts for several industrial applications. Its production by different white-rot fungi can be stimulated by a variety of inducing substrates, and the use of lignocellulosic wastes or industrial by-products is one of the possible approaches to reduce production costs. In this work, various industrial wastes were tested for laccase production by Trametes versicolor MZKI G-99. Solid waste from chemomechanical treatment facility of a paper manufacturing plant showed the highest potential for laccase production. Enzyme production during submerged cultivation of T. versicolor on the chosen industrial waste has been further improved by medium optimization using genetic algorithm. Concentrations of five components in the medium were optimized within 60 shake-flasks experiments, where the highest laccase activity of 2,378 U dm(-3) was achieved. Waste from the paper industry containing microparticles of CaCO(3) was found to stimulate the formation of freely dispersed mycelium and laccase production during submerged cultivation of T. versicolor. It was proven to be a safe and inexpensive substrate for commercial production of laccase and might be more widely applicable for metabolite production by filamentous fungi.

  15. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization

    PubMed Central

    Rodríguez-Escribano, David; de Salas, Felipe; Camarero, Susana

    2017-01-01

    Lignin valorization is a pending issue for the integrated conversion of lignocellulose in consumer goods. Lignosulfonates (LS) are the main technical lignins commercialized today. However, their molecular weight should be enlarged to meet application requirements as additives or dispersing agents. Oxidation of lignosulfonates with fungal oxidoreductases, such as laccases, can increase the molecular weight of lignosulfonates by the cross-linking of lignin phenols. To advance in this direction, we describe here the development of a high-throughput screening (HTS) assay for the directed evolution of laccases, with lignosulfonate as substrate and the Folin–Ciocalteau reagent (FCR), to detect the decrease in phenolic content produced upon polymerization of lignosulfonate by the enzyme. Once the reaction conditions were adjusted to the 96-well-plate format, the enzyme for validating the assay was selected from a battery of high-redox-potential laccase variants functionally expressed in S. cerevisiae (the preferred host for the directed evolution of fungal oxidoreductases). The colorimetric response (absorbance at 760 nm) correlated with laccase activity secreted by the yeast. The HTS assay was reproducible (coefficient of variation (CV) = 15%) and sensitive enough to detect subtle differences in activity among yeast clones expressing a laccase mutant library obtained by error-prone PCR (epPCR). The method is therefore feasible for screening thousands of clones during the precise engineering of laccases toward valorization of lignosulfonates. PMID:28820431

  16. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria.

    PubMed

    Pepe, Olimpia; Blaiotta, Giuseppe; Moschetti, Giancarlo; Greco, Teresa; Villani, Francesco

    2003-04-01

    Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.

  17. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    PubMed Central

    Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields. PMID:21755038

  18. Laccase: microbial sources, production, purification, and potential biotechnological applications.

    PubMed

    Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  19. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri.

    PubMed

    Dhawan, S; Lal, R; Kuhad, R C

    2003-01-01

    Effect of ethidium bromide, a DNA intercalating agent, on laccase production from Cyathus bulleri was studied. The bird's nest fungus, Cyathus bulleri was grown on 2% (w/v) malt extract agar (MEA) supplemented with 1.5 microg ml(-1) of the phenanthridine dye ethidium bromide (EtBr) for 7 d and when grown subsequently in malt extract broth (MEB), produced a 4.2-fold increase in laccase production as compared to the untreated fungus. The fungal cultures following a single EtBr treatment, when regrown on MEA devoid of EtBr, produced a sixfold increase in laccase in MEB. However, on subsequent culturing on MEA in the absence of EtBr, only a 2.5-fold increase in laccase production could be maintained. In another attempt, the initial EtBr-treated cultures, when subjected to a second EtBr treatment (1.5 microg ml(-1)) on MEA for 7 d, produced a 1.4-fold increase in laccase production in MEB. The white-rot fungus Cyathus bulleri, when treated with EtBr at a concentration of 1.5 microg ml(-1) and regrown on MEA devoid of EtBr, produced a sixfold increase in laccase production in MEB. The variable form of C. bulleri capable of hyper laccase production can improve the economic feasibility of environmentally benign processes involving use of fungal laccases in cosmetics (including hair dyes), food and beverages, clinical diagnostics, pulp and paper industry, industrial effluent treatment, animal biotechnology and biotransformations.

  20. Selection and evaluation of Malaysian Bacillus spp. strains as potential probiotics in cultured tiger grouper (Epinephelus fuscoguttatus).

    PubMed

    Yasin, Ina-salwany Md; Razak, Nabilah Fatin; Natrah, F M I; Harmin, Sharr Azni

    2016-07-01

    A total of 58 Gram-positive bacteria strains were isolated from the marine environment and screened for potential probiotics for disease prevention and improving the productivity of tiger grouper Epinephelus fuscoguttatus larvae and juveniles. The bacteria were identified as Bacillus licheniformis, B. subtilis, B. circulans, B. sphaericus, B. cereus, Brevibacillus brevis, Corynebacterium propinquum, Leifsonia aquatica and Paenibacillus macerans. Only 24 strains showed antagonistic activities against four pathogenic strains; Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and Aeromonas hydrophila, where two of the Bacillus strains, B12 and B45 demonstrated intermediate to highest level of inhibitory activity against these pathogenic strains, respectively. Further assessment by co-culture assay showed that Bacillus strain B12 exhibited a total inhibition of V. alginolyticus, while B45 strain displayed no inhibitory activity. Mixed culture of Bacillus B12 and B45 strains to outcompete V. alginolyticus was observed at a cell density of 10(7) CFU ml(-1). Molecular identification and phylogenetic tree analysis have categorized Bacillus strain B12 to the reference strains GQ340480 and JX290193 of? B. amyloliquafaciens, and Bacillus strain B45 with a reference strain JF496522 of B. subtilis. Safety tests of probionts by intraperitoneal administration of B12 and B45 strains at cell densities of 103, 105 and 10(7) CFU ml(-1) revealed no abnormalities and cent percent survival for healthy Epinephelus fuscoguttatus juveniles within 15 days of experimental period. Overall, the study revealed that Bacillus B12 strain possesses tremendous probiotic potential that could be used as a feed supplement in tiger grouper diets. ?

  1. Laccases as palladium oxidases.

    PubMed

    Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry

    2015-02-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.

  2. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    PubMed

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  3. Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers.

    PubMed

    Nguyen, A T V; Nguyen, D V; Tran, M T; Nguyen, L T; Nguyen, A H; Phan, T-N

    2015-06-01

    Spore-forming bacterial strains were isolated from chicken gastrointestinal tracts to develop a heat-stable feed supplement that promotes weight gain in broilers. Seven Bacillus strains having more than 90% sporulation were screened from the isolates and identified to be closely related with Bacillus subtilis and Bacillus licheniformis. Of the seven strains, B. subtilis CH16 was selected to develop a feed supplement for broilers, because it formed 100% heat-stable spores, grew rapidly at 42°C and quickly formed a biofilm. In large-scale trials in broilers (n ≥ 1150 per group), the group fed CH16 (3 × 10(6) CFU g(-1) pellet) showed higher average daily gain (ADG = 61·16) and lower food conversion ratio (FCR = 1·696) than did the group fed B. licheniformis CH22 (ADG = 57·10 and FCR = 1·792), the group fed B. subtilis HU58 (ADG = 51·90 and FCR = 1·868), BioPlus group (ADG = 59·32 and FCR = 1·807) and the control group (ADG = 56·02 and FCR = 1·880). In conclusion, CH16 spores significantly increased ADG by 9·17% and reduced FCR by 9·79% in broilers. The result supports the use of B. subtilis CH16 of chicken intestinal origin as a feed supplement that promote weight gain in broilers. Significance and impact of the study: This study reports screening of Bacillus strains isolated from chicken gastrointestinal tracts for development of a feed supplement that promote weight gain in broilers. Of the seven Bacillus isolates with high sporulation efficiency (≥90%), Bacillus subtilis CH16 strain showed the best growth and biofilm formation at body temperature of broilers (42°C). In large-scale trials in broilers (n ≥ 1150 per group), CH16 spores induced a 9·17% increase in daily weight gain (ADG) and a 9·79% reduction in FCR while the commercial BioPlus(®) YC induced only a 5·89% increase in ADG and a 3·88% reduction in FCR. © 2015 The Society for Applied Microbiology.

  4. Inactivation of Laccase by the Attack of As (III) Reaction in Water.

    PubMed

    Hu, Jinyuan; Lu, Kun; Dong, Shipeng; Huang, Qingguo; Mao, Liang

    2018-03-06

    Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.

  5. Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05.

    PubMed

    Dekker, Robert F H; Barbosa, Aneli M; Giese, Ellen C; Godoy, Saulo D S; Covizzi, Luiz G

    2007-09-01

    The physiological requirements needed to enhance the production of laccases by the ascomycete Botryosphaeria rhodina MAMB-05 in submerged cultivation were examined under non-induced and induced (veratryl alcohol, VA) conditions. Under non-induced conditions (-VA), the initial pH, C:N ratio, and inorganic N source did not influence laccase production, in contrast to Tween 80, soybean oil, and copper, which significantly increased laccase production, and proline and urea, which suppressed laccase formation. In addition, Tween 60 could serve as the sole carbon source for the production of these enzymes. Under VA-induced conditions of fungal growth, factors such as inoculum type, time-point of addition of inducer, initial pH, C:N ratio, and type of N source, influenced the production of laccases; however, unlike the non-induced conditions, proline and urea did not act as suppressors. Each of these physiological conditions exerted different effects on biomass production. The nutritional conditions examined for B. rhodina MAMB-05 are discussed in relation to their influence on fungal growth and laccase production.

  6. Immobilization of laccase of Pycnoporus sanguineus CS43.

    PubMed

    Gonzalez-Coronel, Luis A; Cobas, Marta; Rostro-Alanis, Magdalena de J; Parra-Saldívar, Roberto; Hernandez-Luna, Carlos; Pazos, Marta; Sanromán, M Ángeles

    2017-10-25

    Laccase from Pycnoporus sanguineus CS43 was successfully immobilized onto Immobead-150 and Eupergit-C by covalent binding and by entrapment in LentiKats. The highest immobilization was onto Immobead-150 (97.1±1.2%) compared to the other supports, LentiKats (89±1.1%) and Eupergit-C (83.2±1.4%). All three immobilized enzyme systems showed increased thermostability and better mechanical properties than free laccase. Moreover, after 5 cycles of reuse of these systems, 90% of initial laccase activity was retained. Immobead-150 and LentiKats systems exhibited the highest efficiencies in removal of m-cresol under the combined actions of biodegradation and adsorption, while laccase entrapped in LentiKats showed a high ability for degradation of m-cresol within 24h. In addition, the typical Michaelis-Menten enzymatic model effectively described the kinetic profile of m-cresol degradation by the enzyme entrapped in LentiKats. Based on the results obtained in the present study, it can be established that the immobilized biocatalysts developed here possess significant potential for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants.

    PubMed

    Yang, Hua; Sun, Hongfei; Zhang, Shujuan; Wu, Bingdang; Pan, Bingcai

    2015-07-01

    Low-cost and environmentally friendly mediators could facilitate the application of laccase (EC 1.10.3.2) in variant biotechnological processes. Acetylacetone (AA) represents an inexpensive and low toxic small molecular diketone that has been proven as an effective mediator for laccase in free radical polymerization. However, the potential of AA as a mediator for laccase in pollutant detoxification and/or degradation is still unknown. In this work, the roles of AA in laccase-induced polymerization and transformation were investigated. AA was demonstrated to be a highly efficient mediator in the laccase-induced grafting copolymerization of acrylamide and chitosan. The efficacy of AA in the laccase-induced decoloration of malachite green (MG) was compared with that of the widely used 1-hydroxybenzotriazole (HBT). The laccase-AA system had the highest turnover number (TON, 39.1 μmol/U), followed by the laccase-only system (28.5 μmol/U), while the TON of the laccase-HBT system was the lowest (14.9 μmol/U). The pseudo-first-order transformation rate constant (k 1) of MG in the laccase-AA system was up to 0.283 h(-1) under the given conditions, while the k 1 of AA caused by laccase was only 0.008 h(-1). In the five-cycle run, the concentration of AA remained stable. The larger TON of the laccase-AA system and the stability of AA in the cycling runs demonstrate that AA was more recyclable than HBT in the LMS, leading to a prolonged serving life of laccase. These results suggest that AA might be a potential redox mediator for laccase.

  8. Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent.

    PubMed

    Garcia, Hector A; Hoffman, Catherine M; Kinney, Kerry A; Lawler, Desmond F

    2011-02-01

    Pharmaceuticals and personal care products (PPCPs) are now routinely detected in raw and treated municipal wastewater. Since conventional wastewater treatment processes are not particularly effective for PPCP removal, treated wastewater discharges are the main entry points for PPCPs into the environment, and eventually into our drinking water. This study investigates the use of laccase-catalyzed oxidation for removing low concentrations of PPCPs from municipal wastewater primary effluent. Oxybenzone was selected as a representative PPCP. Like many other PPCPs, it is not recognized directly by the laccase enzyme. Therefore, mediators were used to expand the oxidative range of laccase, and the efficacy of this laccase-mediator system in primary effluent was evaluated. Eight potential mediators were investigated, and 2,2'-Azino-bis(3-ethylbenzthiazoline-6sulphonic acid) diammonium salt (ABTS), a synthetic mediator, and acetosyringone (ACE), a natural mediator, provided the greatest oxybenzone removal efficiencies. An environmentally relevant concentration of oxybenzone (43.8 nM, 10 μg/L) in primary effluent was completely removed (below the detection limit) after two hours of treatment with ABTS, and 95% was removed after two hours of treatment with ACE. Several mediator/oxybenzone molar ratios were investigated at two different initial oxybenzone concentrations. Higher mediator/oxybenzone molar ratios were required at the lower (environmentally relevant) oxybenzone concentration, and ACE required higher molar ratios than ABTS to achieve comparable oxybenzone removal. Oxybenzone oxidation byproducts generated by the laccase-mediator system were characterized and compared to those generated during ozonation. Enzymatic treatment generated byproducts with higher mass to charge (m/z) ratios, likely due to oxidative coupling reactions. The results of this study suggest that, with further development, the laccase-mediator system has the potential to extend the treatment

  9. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Escribano, David; de Salas, Felipe; Pardo, Isabel

    Lignin valorization is a pending issue for the integrated conversion of lignocellulose in consumer goods. Lignosulfonates (LS) are the main technical lignins commercialized today. However, their molecular weight should be enlarged to meet application requirements as additives or dispersing agents. Oxidation of lignosulfonates with fungal oxidoreductases, such as laccases, can increase the molecular weight of lignosulfonates by the cross-linking of lignin phenols. To advance in this direction, we describe here the development of a high-throughput screening (HTS) assay for the directed evolution of laccases, with lignosulfonate as substrate and the Folin-Ciocalteau reagent (FCR), to detect the decrease in phenolic contentmore » produced upon polymerization of lignosulfonate by the enzyme. Once the reaction conditions were adjusted to the 96-well-plate format, the enzyme for validating the assay was selected from a battery of high-redox-potential laccase variants functionally expressed in S. cerevisiae (the preferred host for the directed evolution of fungal oxidoreductases). The colorimetric response (absorbance at 760 nm) correlated with laccase activity secreted by the yeast. The HTS assay was reproducible (coefficient of variation (CV) = 15%) and sensitive enough to detect subtle differences in activity among yeast clones expressing a laccase mutant library obtained by error-prone PCR (epPCR). As a result, the method is therefore feasible for screening thousands of clones during the precise engineering of laccases toward valorization of lignosulfonates.« less

  10. High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization

    DOE PAGES

    Rodriguez-Escribano, David; de Salas, Felipe; Pardo, Isabel; ...

    2017-08-18

    Lignin valorization is a pending issue for the integrated conversion of lignocellulose in consumer goods. Lignosulfonates (LS) are the main technical lignins commercialized today. However, their molecular weight should be enlarged to meet application requirements as additives or dispersing agents. Oxidation of lignosulfonates with fungal oxidoreductases, such as laccases, can increase the molecular weight of lignosulfonates by the cross-linking of lignin phenols. To advance in this direction, we describe here the development of a high-throughput screening (HTS) assay for the directed evolution of laccases, with lignosulfonate as substrate and the Folin-Ciocalteau reagent (FCR), to detect the decrease in phenolic contentmore » produced upon polymerization of lignosulfonate by the enzyme. Once the reaction conditions were adjusted to the 96-well-plate format, the enzyme for validating the assay was selected from a battery of high-redox-potential laccase variants functionally expressed in S. cerevisiae (the preferred host for the directed evolution of fungal oxidoreductases). The colorimetric response (absorbance at 760 nm) correlated with laccase activity secreted by the yeast. The HTS assay was reproducible (coefficient of variation (CV) = 15%) and sensitive enough to detect subtle differences in activity among yeast clones expressing a laccase mutant library obtained by error-prone PCR (epPCR). As a result, the method is therefore feasible for screening thousands of clones during the precise engineering of laccases toward valorization of lignosulfonates.« less

  11. Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase

    PubMed Central

    Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer, Frieder

    2001-01-01

    We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified. PMID:11526052

  12. Location of laccase in ordered mesoporous materials

    NASA Astrophysics Data System (ADS)

    Mayoral, Álvaro; Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (Cs) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  13. Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris.

    PubMed

    Li, Q; Pei, J; Zhao, L; Xie, J; Cao, F; Wang, G

    2014-01-01

    A laccase-encoding gene of Trametes versicolor, lccA, was cloned and expressed in Pichia pastoris X33. The lccA gene consists ofa 1560 bp open reading frame encoding 519 amino acids, which was classified into family copper blue oxidase. To improve the expression level of recombinant laccase in P. pastoris, conditions of the fermentation were optimized by the single factor experiments. The optimal fermentation conditions for the laccase production in shake flask cultivation using BMGY medium were obtained: the optimal initial pH 7.0, the presence of 0.5 mM Cu2+, 0.6% methanol added into the culture every 24 h. The laccase activity was up to 11.972 U/L under optimal conditions after 16 days of induction in a medium with 4% peptone. After 100 h of large scale production in 5 L fermenter the enzyme activity reached 18.123 U/L. The recombinant laccase was purified by ultrafiltration and (NH4)2SO4 precipitation showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimum pH and temperature for the laccase were pH 2.0 and 50 degrees C with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. The recombinant laccase was stable over a pH range of 2.0-7.0. The K(m) and the V(max) value of LccA were 0.43 mM and 82.3 U/mg for ABTS, respectively.

  14. Comparative analysis of spatial organization of laccases from Cerrena maxima and Coriolus zonatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukova, Yu. N.; Zhukhlistova, N. E.; Lyashenko, A. V.

    2007-09-15

    Laccase (oxygen oxidoreductase, EC 1.10.3.2) belongs to the multicopper oxidase family. The main function of this enzyme is to perform electron transfer from the oxidized substrate through the mononuclear copper-containing site T1 to the oxygen molecule bound to the site T3 in the trinuclear T2/T3 cluster. The structures of two new fungal laccases from C. maxima and C. zonatus were solved on the basis of synchrotron X-ray diffraction data. Both laccases show high structural homology with laccases from other sources. The role of the carbohydrate component of laccases in structure stabilization and formation of ordered protein crystals was demonstrated. Inmore » the structures of C. maxima and C. zonatus laccases, two water channels of functional importance were found and characterized. The structural results reported in the present study characterize one of the functional states of the enzyme fixed in the crystal structure.« less

  15. Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group.

    PubMed

    Chaurasia, Pankaj Kumar; Singh, Sunil Kumar; Bharati, Shashi Lata

    2014-01-01

    Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations areexpensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.

  16. Upgrading Laccase Production and Biochemical Properties: Strategies and Challenges.

    PubMed

    Bertrand, Brandt; Martínez-Morales, Fernando; Trejo-Hernández, María R

    2017-07-01

    Improving laccases continues to be crucial in novel biotechnological developments and industrial applications, where they are concerned. This review breaks down and explores the potential of the strategies (conventional and modern) that can be used for laccase enhancement (increased production and upgraded biochemical properties such as stability and catalytic efficiency). The challenges faced with these approaches are briefly discussed. We also shed light on how these strategies merge and give rise to new options and advances in this field of work. Additionally, this article seeks to serve as a guide for students and academic researchers interested in laccases. This document not only gives basic information on laccases, but also provides updated information on the state of the art of various technologies that are used in this line of investigation. It also gives the readers an idea of the areas extensively studied and the areas where there is still much left to be done. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1015-1034, 2017. © 2017 American Institute of Chemical Engineers.

  17. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  18. Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta

    PubMed Central

    Abadulla, Elias; Tzanov, Tzanko; Costa, Silgia; Robra, Karl-Heinz; Cavaco-Paulo, Artur; Gübitz, Georg M.

    2000-01-01

    Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes. PMID:10919791

  19. Pycnoporus cinnabarinus laccases: an interesting tool for food or non-food applications.

    PubMed

    Georis, J; Lomascolo, A; Camarero, S; Dorgeo, V; Herpoël, I; Asther, M; Martinez, A T; Dauvrin, T

    2003-01-01

    The effects of the addition of ferulic acid and ethanol in P. cinnabarinus ss3 culture medium in fermentor were compared in 15-L fermentor. In the presence of 30 g l(-1) ethanol, laccase activity (270,000 U/L1) was 3-fold higher as compared with ferulic acid-induced cultures, and 150-fold higher as compared with non-induced cultures, respectively. High-quality flax pulp was bleached in a totally-chlorine free (TCF) sequence using a laccase-mediator system constituted by laccase from Pycnoporus cinnabarinus and 1-hydroxybenzotriazole (HBT) as mediator. Up to 90% delignification and strong brightness increase were attained after the laccase-mediator treatment followed by H2O2 bleaching. This TCF sequence was further improved by applying H2O2 under pressurized O2. In this way, up to 82% ISO brightness was obtained (compared with 37% in the initial pulp and 60% in the peroxide-bleached control) as well as very low kappa number. A positive evaluation of the laccase has been also performed in a food application. The colour of a tea-based beverage was significantly improved by incubating an infusion of green tea with the Pycnoporus laccase.

  20. Location of laccase in ordered mesoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayoral, Álvaro; Gascón, Victoria; Blanco, Rosa M.

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  1. Thermokinetic comparison of trypan blue decolorization by free laccase and fungal biomass.

    PubMed

    Razak, N N A; Annuar, M S M

    2014-03-01

    Free laccase and fungal biomass from white-rot fungi were compared in the thermokinetics study of the laccase-catalyzed decolorization of an azo dye, i.e., Trypan Blue. The decolorization in both systems followed a first-order kinetics. The apparent first-order rate constant, k1', value increases with temperature. Apparent activation energy of decolorization was similar for both systems at ∼ 22 kJ mol(-1), while energy for laccase inactivation was 18 kJ mol(-1). Although both systems were endothermic, fungal biomass showed higher enthalpy, entropy, and Gibbs free energy changes for the decolorization compared to free laccase. On the other hand, free laccase showed reaction spontaneity over a wider range of temperature (ΔT = 40 K) as opposed to fungal biomass (ΔT = 15 K). Comparison of entropy change (ΔS) values indicated metabolism of the dye by the biomass.

  2. Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology.

    PubMed

    Gao, Huiju; Chu, Xiang; Wang, Yanwen; Zhou, Fei; Zhao, Kai; Mu, Zhimei; Liu, Qingxin

    2013-12-01

    Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and CuSO4 were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, (NH4)2SO4 1 g/l, CuSO4 0.51 g/l, Tween-20 1 g/l, MgSO4 1 g/l, and KH2PO4 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

  3. Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.

    PubMed

    Wang, Ke-Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao

    2016-07-01

    An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.

  4. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    PubMed

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  5. One-pot synthesis of active copper-containing carbon dots with laccase-like activities

    NASA Astrophysics Data System (ADS)

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-11-01

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching

  6. Addition of Bacillus sp. inoculums in bedding for swine on a pilot scale: effect on microbial population and bedding temperature.

    PubMed

    Corrêa, E K; Ulguim, R R; Corrêa, L B; Castilhos, D D; Bianchi, I; Gil-Turnes, C; Lucia, T

    2012-10-01

    Thermal and microbiological characteristics of beddings for swine were compared according to their depth and of addition of inoculums. Bedding was added to boxes at 0.25 (25D) and 0.50 m (50D), with three treatments: control (no inoculums); T1, with 250 g of Bacillus cereus var. toyoii at 8.4 × 10(7) CFU; and T2, with 250 g of a pool of B. subtilis, Bacillus licheniformis and Bacillus polymyxa at 8.4 × 10(7) CFU (250 g for 25D and 500 g for 50D). Mean temperatures were 28.5 ± 3.9 at the surface and 35.2 ± 8.9 inside the beddings. The most probable number (MPN) of thermophilic bacteria was higher for T1 and T2 than for the control (P<0.05). The MPN of thermophilic bacteria and fungi was greater for D50 than for D25 (P<0.05). The use of 25D without inoculums is recommended due to the reduction of thermophilic microbiota. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer.

    PubMed

    Wang, Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao

    2014-08-01

    A highly efficient strategy for laccase production by Trametes versicolor was developed using corn steep liquor (CSL) as both a nitrogen source and a laccase inducer. At the optimal CSL concentration of 20 gL(-1), an extracellular laccase activity of 633.3 UL(-1) was produced after a culture period of only 5 days. This represented a 1.96-fold increase relative to control medium lacking CSL. The addition of crude phenolic extracts from CSL improved laccase production to 91.8% greater than the control. Sinapinic acid, present in CSL, caused a reduction in laccase production, vanillic acid and ferulic acid (also present in CSL) synergistically induced laccase production by more than 100% greater than the control medium. Vanillic acid and ferulic acid provided the main contribution to the enhancement of laccase production. This study provides a basis for understanding the induction mechanism of CSL for laccase production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    PubMed

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation. 2010 Elsevier Ltd. All rights reserved.

  9. Putative Virulence Factor Expression by Clinical and Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae

    PubMed Central

    Rowan, Neil J.; Deans, Karen; Anderson, John G.; Gemmell, Curtis G.; Hunter, Iain S.; Chaithong, Thararat

    2001-01-01

    Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors. PMID:11525980

  10. Laccase-conjugated amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 dye

    NASA Astrophysics Data System (ADS)

    Gahlout, Mayur; Rudakiya, Darshan M.; Gupte, Shilpa; Gupte, Akshaya

    2017-08-01

    Immobilization of enzyme with nanostructures enhances its ideal characteristics, which may allow the enzyme to become more stable and resistant. The present investigation deals with the formulation of laccase nanosilica conjugates to overcome the problems associated with its stability and reusability. Synthesized nanosilica and laccase nanoparticles were spherical shaped, with the mean size of 220 and 615 nm, respectively. Laccase nanoparticles had an optimum temperature of 55 °C and pH 4.0 for the oxidation of ABTS. Laccase nanoparticle retained 79% of residual activity till 20th cycle. It also showed 91% of its initial activity at lower temperatures even after 60 days. Laccase nanoparticles were applied for Reactive Violet 1 degradation wherein 96.76% of decolourization was obtained at pH 5.0 and 30 °C within 12 h. Toxicity studies on microbes and plants suggested that the degraded metabolites were less toxic than control dye. Thus, the method applied for immobilization increased storage stability and reusability of laccase, and therefore, it can be utilized for efficient degradation of azo dyes.

  11. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation.

    PubMed

    Chang, Yi-Tang; Lee, Jiunn-Fwu; Liu, Keng-Hua; Liao, Yi-Fen; Yang, Vivian

    2016-03-01

    Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.

  12. Effect of antibiotics on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus.

    PubMed

    Dhawan, Shikha; Lal, Rup; Hanspal, Manjit; Kuhad, Ramesh Chander

    2005-08-01

    The effect of nine different antibiotics (chloramphenicol, ampicillin trihydrate, kanamycin A monosulfate, neomycin sulfate, erythromycin, thiostrepton, tetracycline, apramycin sulfate and streptomycin sulfate) on growth and laccase production from Cyathus bulleri and Pycnoporus cinnabarinus has been investigated. All the antibiotics tested at a concentration of 200 mg/l affected the fungal growth, release of protein and laccase production to different extent. Inhibition in fungal growth was found to be positively correlated with increase in laccase production. Interestingly, apramycin sulfate inhibited biomass production (14.9-26.2%), nevertheless, it stimulated maximum laccase production (18.2 U/ml) in both the fungi. Increasing concentrations of apramycin sulfate enhanced laccase production from P. cinnabarinus but not from C. bulleri.

  13. Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation

    PubMed Central

    2012-01-01

    Background Use of crude ligninase of bacterial origin is one of the most promising ways to improve the practical biodegradation of lignocellulosic biomass. However, lignin is composed of diverse monolignols with different abundance levels in different plant biomass and requires different proportions of ligninase to realize efficient degradation. To improve activity and reduce cost, the simultaneous submerged fermentation of laccase and lignin peroxidase (LiP) from a new bacterial strain, Streptomyces cinnamomensis, was studied by adopting formulation design, principal component analysis, regression analysis and unconstrained mathematical programming. Results The activities of laccase and LiP from S. cinnamomensis cultured with the optimal medium formulations were improved to be five to eight folders of their initial activities, and the measured laccase:LiP activity ratios reached 0.1, 0.4 and 1.7 when cultured on medium with formulations designed to produce laccase:LiP complexes with theoretical laccase:LiP activity ratios of 0.05 to 0.1, 0.5 to 1 and 1.1 to 2. Conclusion Both the laccase and LiP activities and also the activity ratio of laccase to LiP could be controlled by the medium formulation as designed. Using a crude laccase-LiP complex with a specially designed laccase:LiP activity ratio has the potential to improve the degradation of various plant lignins composed of diverse monolignols with different abundance levels. PMID:22429569

  14. Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal.

    PubMed

    Aydemir, Tülin; Güler, Semra

    2015-01-01

    Laccase from Trametes versicolor was immobilized on magnetic chitosan-clay composite beads by glutaraldehyde crosslinking. The physical, chemical, and biochemical properties of the immobilized laccase and its application in phenol removal were comprehensively investigated. The structure and morphology of the composite beads were characterized by SEM, TGA, and FTIR analyses. The immobilized laccase showed better storage stability and higher tolerance to the changes in pH and temperature compared with free laccase. Moreover, the immobilized laccase retained more than 75% of its original activity after 10 cycles. The efficiency of phenol removal by immobilized laccase was about 80% under the optimum conditions after 4 h.

  15. Structure and Biochemestry of Laccases from the Lignin-Degrading Basidiomycete, Ganoderma lucidum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.A.Reddy, PI

    2005-06-30

    G. lucidum is one of the most important and widely distributed ligninolytic white rot fungi from habitats such as forest soils, agricultural soils, and tropical mangrove ecosystems and produce laccases as an important family of lignin modifying enzymes. Biochemically, laccases are blue multi copper oxidases that couple four electron reduction of molecular oxygen to water. There is a growing interest in the use of laccases for a variety of industrial applications such as bio-pulping and biobleaching as well as in their ability to detoxify a wide variety of toxic environmental pollutants. These key oxidative enzymes are found in all themore » three domains of life: Eukaryota. Prokarya, and Archaea. Ganoderma lucidum (strain no.103561) produces laccase with some of the highest activity (17,000 micro katals per mg of protein) reported for any laccases to date. Our results showed that this organism produces at least 11 different isoforms of laccase based on variation in mol. weight and/or PI. Our Studies showed that the presence of copper in the medium yields 15- to 20-fold greater levels of enzyme by G. lucidum. Dialysation of extra cellular fluid of G. lucidum against 10mM sodium tartrate (pH5.5) gave an additional 15 to 17 fold stimulation of activity with an observed specific activity of 17,000 {micro}katals/mg protein. Dialysis against acetate buffer gave five fold increase in activity while dialysis against glycine showed inhibition of activity. Purification by FPLC and preparative gel electrophoresis gave purified fractions that resolved into eleven isoforms as separated by isoelectric focusing, and the PI,s were 4.7, 4.6, 4.5, 4.3, 4.2, 4.1, 3.8, 3.7, 3.5, 3.4 and 3.3. Genomic clones of laccase were isolated using G. lucidum DNA as a template and using inverse PCR and forward/reverse primers corresponding to the sequences of the conserved copper binding region in the N-terminal domain of one of the laccases of this organism. Inverse PCR amplication of Hind

  16. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  17. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms ofmore » their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.« less

  18. [Decolorization of dyestuff and dying waste water by laccase solution with self-flocculent mycelial pellets of Coriolus versicolor].

    PubMed

    Wu, Mianbin; Xia, Liming

    2002-06-01

    Both laccase production by the white-rot fungus Coriolus versicolor and decolorization of dyestuff and dying waste water with crude solution of laccase were studied in this work. Laccase production meets the definition of secondary metabolism. For laccase production the optimum initial pH is 4.5. Addition of veratryl alcohol or elevated trace metals could both enhance the laccase activity, while Tween80 showed some inhibition. The immobilized mycelia of C. versicolor in polyurethane foam had less laccase production ability than mycelial pellets. A repeated batch cultivation process was found to be a very economical way for laccase harvest. The same pellets could be used for at least 14 times and average laccase activity of each batch could maintain 6.72 IU/mL. This method reduces the enzyme production course, medium consumption and the possibility of contamination, showing high efficient and great economic benefit. Good results were also obtained in decolorization experiments with the crude solution of laccase. With 3.3 IU/mL initial laccase activity, color removal of Acid Orange reached 98.5% after 24 h reaction. Also with 2.6 IU/mL initial laccase activity, color removal of dying waste water reached 93% after 24 h reaction.

  19. Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation

    PubMed Central

    Mazotto, Ana Maria; Coelho, Rosalie Reed Rodrigues; Cedrola, Sabrina Martins Lage; de Lima, Marcos Fábio; Couri, Sonia; Paraguai de Souza, Edilma; Vermelho, Alane Beatriz

    2011-01-01

    Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity. PMID:21822479

  20. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display.

    PubMed

    Bleve, G; Lezzi, C; Spagnolo, S; Rampino, P; Perrotta, C; Mita, G; Grieco, Francesco

    2014-03-01

    The ERY4 laccase gene from Pleurotus eryngii was expressed in Saccharomyces cerevisiae and the recombinant laccase resulted to be not biologically active. This gene was thus modified to obtain chimerical enzymes derived from the substitution of N-, C- and both N- and C-terminal regions with the corresponding regions of Ery3 laccase, another laccase isoform of P. eryngii. The chimerical isoform named 4NC3, derived from the substitution of both N- and C-terminal regions, showed the best performances in terms of enzymatic activities, affinities for different substrates and stability at a broad range of temperatures and pHs. The chimerical 4NC3 laccase isoform was displayed on the cell surface of S. cerevisiae using the N-terminal fusion with either the Pir2 or the Flo1 S. cerevisiae proteins as anchor attachment sequence. Immunofluorescence microscopy and Western blot analyses confirmed the localization of 4NC3 on the yeast cell surface. The enzyme activity on specific laccase substrates revealed that 4NC3 laccase was immobilized in active form on the cell surface. To our knowledge, this is the first example of expression of a chimerical fungal laccase by yeast cell display.

  2. One-pot synthesis of active copper-containing carbon dots with laccase-like activities.

    PubMed

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-12-14

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.

  3. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes.

    PubMed

    Zeng, Shengquan; Zhao, Jie; Xia, Liming

    2017-08-01

    Solid state fermentation with Trametes versicolor was carried out on agricultural wastes containing bisphenol A (BPA). It was found that BPA degradation was along with the occurrence of laccase production, and wheat bran and corn straw were identified as suitable mixed substrates for laccase production. In the process of BPA degradation with T. versicolor, laccase activity increased rapidly at the 6th-10th day after inoculation. Moreover, BPA can enhance the production of laccase. After 10 days of fermentation, degradation rate of BPA exceeded 90% without the usage of mediators ABTS and acetosyringone at pH 4.0-8.0. In addition, metal ions did not affect the BPA degradation with T. versicolor. In vitro, the optimum pH range of BPA degradation with laccase was in the acidic region with the optimal performance of pH 5.0. Metal ions Cu 2+ , Zn 2+ , and Co 2+ showed little effect on BPA degradation. However, Fe 3+ and Fe 2+ substantially inhibited the BPA degradation. Natural mediator acetosyringone showed optimum enhancement on BPA degradation. Greater than 90% of the estrogenic activity of BPA was removed by T. versicolor and its laccase. Compared to in vitro degradation with laccase, this study shows that the process of simultaneous laccase production and BPA degradation with T. versicolor was more advantageous since BPA can enhance the laccase production, mediators were unnecessary, degradation rate was not affected by metal ions, and the applicable pH range was broader. This study concludes that T. versicolor and laccase have great potential to treat industrial wastewater containing BPA.

  4. Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris

    PubMed Central

    Gelo-Pujic, Mirjana; Kim, Hyug-Han; Butlin, Nathan G.; Palmore, G. Tayhas R.

    1999-01-01

    The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis. PMID:10584012

  5. Functional expression, production, and biochemical characterization of a laccase using yeast surface display technology.

    PubMed

    Bertrand, Brandt; Trejo-Hernández, María R; Morales-Guzmán, Daniel; Caspeta, Luis; Suárez Rodríguez, Ramón; Martínez-Morales, Fernando

    2016-12-01

    A Trametes versicolor laccase was functionally expressed on the membrane surface of Saccharomyces cerevisiae EBY100. Laccase expression was increased 6.57-fold by medium optimization and surpassed production by the native strain. Maximal laccase and biomass production reached 19 735 ± 1719 Ug -1 and 6.22 ± 0.53 gL -1 respectively, after 2 d of culture. Optimum oxidization of all substrates by laccase was observed at pH 3. Laccase showed high affinity towards substrates used with Km (mM) and Vmax (μmol min -1 ) values of 0.57 ± 0.0047 and 24.55 ± 0.64, 1.52 ± 0.52 and 9.25 ± 1.78, and 2.67 ± 0.12 and 11.26 ± 0.75, were reported for ABTS, 2, 6-DMP and GUA, respectively. EDTA and NaN 3 displayed none competitive inhibition towards laccase activity. The optimum temperature for activity was 50 °C; however, the enzyme was stable over a wide range of temperatures (25-70 °C). The biologically immobilized laccase showed high reusability towards phenolic substrates and low reusability with non-phenolic substrates. High affinity for a diversity phenolic compounds and great ethanol tolerance substantiates this laccase/yeast biocatalyst potential for application in the production of bioethanol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  7. Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology.

    PubMed

    D'Souza-Ticlo, Donna; Garg, Sandeep; Raghukumar, Chandralata

    2009-11-25

    The effects of various synthetic medium components and their interactions with each other ultimately impact laccase production in fungi. This was studied using a laccase-hyper-producing marine-derived basidiomycete, Cerrena unicolor MTCC 5159. Inducible laccases were produced in the idiophase only after addition of an inducer such as CuSO(4). Concentration of carbon and nitrogen acted antagonistically with respect to laccase production. A combination of low nitrogen and high carbon concentration favored both biomass and laccase production. The most favorable combination resulted in 917 U L(-1) of laccase. After sufficient growth had occurred, addition of a surfactant such as Tween 80 positively impacted biomass and increased the laccase activity to around 1,300 U L(-1). Increasing the surface to volume ratio of the culture vessel further increased its activity to almost 2,000 U L(-1).

  8. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs.

    PubMed

    Kaewtapee, Chanwit; Burbach, Katharina; Tomforde, Georgina; Hartinger, Thomas; Camarinha-Silva, Amélia; Heinritz, Sonja; Seifert, Jana; Wiltafsky, Markus; Mosenthin, Rainer; Rosenfelder-Kuon, Pia

    2017-01-01

    Bacillus spp. seem to be an alternative to antimicrobial growth promoters for improving animals' health and performance. However, there is little information on the effect of Bacillus spp. in combination with different dietary crude protein (CP) levels on the ileal digestibility and microbiota composition. Therefore, the objective of this study was to determine the effect of Bacillus spp. supplementation to low- (LP) and high-protein diets (HP) on ileal CP and amino acid (AA) digestibility and intestinal microbiota composition. Eight ileally cannulated pigs with an initial body weight of 28.5 kg were randomly allocated to a row-column design with 8 pigs and 3 periods of 16 d each. The assay diets were based on wheat-barley-soybean meal with two protein levels: LP (14% CP, as-fed) and HP diet (18% CP, as-fed). The LP and HP diets were supplemented with or without Bacillus spp. at a level of 0.04% (as-fed). The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA was determined. Bacterial community composition from ileal digesta was analyzed by Illumina amplicon sequencing and quantitative real-time PCR. Data were analyzed as a 2 × 2 factorial design using the GLIMMIX procedures of SAS. The supplementation with Bacillus spp. did not affect both AID and SID of CP and AA in growing pigs. Moreover, there was no difference in AID of CP and AA between HP and LP diets, but SID of cystine, glutamic acid, glycine, and proline was lower ( P  < 0.05) in pigs fed the HP diets. The HP diets increased abundance of Bifidobacterium spp. and Lactobacillus spp., ( P  < 0.05) and by amplicon sequencing the latter was identified as predominant genus in microbiota from HP with Bacillus spp., whereas dietary supplementation of Bacillus spp. increased ( P  < 0.05) abundance of Roseburia spp.. The HP diet increased abundance of Lactobacillus spp. and Bifidobacterium spp.. The supplementation of Bacillus spp. resulted in a higher

  9. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.

    PubMed

    Li, Jie; Xie, Yanan; Wang, Rui; Fang, Zemin; Fang, Wei; Zhang, Xuecheng; Xiao, Yazhong

    2018-04-01

    Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.

  10. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran.

    PubMed

    Vats, Arpita; Mishra, Saroj

    2018-02-15

    Multiplicity in laccases among lignin degrading fungal species is of interest as it confers the ability to degrade several types of lignocellulosics. The combination of laccases produced on such substrates could be beneficial for treatment of complex aromatics, including dyes. In this study, we report on production of high units (679.6Ug -1 substrate) of laccase on solid wheat bran (WB) by Cyathus bulleri. Laccase, purified from the culture filtrates of WB grown fungus, was effective for oxidation of veratryl alcohol, Reactive blue 21 and textile effluent without assistance of externally added mediators. De novo sequencing of the 'purified' laccase lead to identification of several peptides that originated from different laccase genes. Transcriptome analysis of the fungus, cultivated on WB, confirmed presence of 8 isozymes, that were re-amplified and sequenced from the cDNA prepared from WB grown fungus. The 8 isozymes were grouped into 3 classes, based on their sequence relationship with other basidiomycete laccases. The isoforms produced on WB decolorized (by ∼57%) and degraded textile effluent far more effectively, compared to laccase obtained from Basal salt cultivated fungus. The decolorization and degradation was also accompanied by more than 95% reduction in phytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals

    PubMed Central

    Sharma, Krishna Kant; Shrivastava, Bhuvnesh; Sastry, V. R. B.; Sehgal, Neeta; Kuhad, Ramesh Chander

    2013-01-01

    The variables influencing laccase production by white-rot fungus Ganoderma sp. rckk-02 were optimized employing response surface methodology. Malt extract (6.0% w/v), lignin (0.5% w/v) and pH (5.5) were found to be the most significant factors for enhanced laccase production by 7 fold (226.0 U/ml) as compared to unoptimized growth conditions (32.0 U/ml). The N-terminal sequence of laccase revealed its distinct amino acid profile (S- I- R- N- S- G), which suggested it as a novel enzyme. The Far-UV CD spectrum of the laccase showed single broad negative trough at around 213 nm, a typical signature of all β proteins. The laccase was found to fall in the range of middle redox potential laccases. Purified laccase at dosage of 2.5 Ug−1 body weight when supplemented with pelleted diet of rats, a significant improvement (p < 0.05) in nutrients digestibility without causing any elevation of blood stress enzymes was observed. PMID:23416696

  12. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar1

    PubMed Central

    Ranocha, Philippe; Chabannes, Matthieu; Chamayou, Simon; Danoun, Saïda; Jauneau, Alain; Boudet, Alain-M.; Goffner, Deborah

    2002-01-01

    Laccases are encoded by multigene families in plants. Previously, we reported the cloning and characterization of five divergent laccase genes from poplar (Populus trichocarpa) xylem. To investigate the role of individual laccase genes in plant development, and more particularly in lignification, three independent populations of antisense poplar plants, lac3AS, lac90AS, and lac110AS with significantly reduced levels of laccase expression were generated. A repression of laccase gene expression had no effect on overall growth and development. Moreover, neither lignin content nor composition was significantly altered as a result of laccase suppression. However, one of the transgenic populations, lac3AS, exhibited a 2- to 3-fold increase in total soluble phenolic content. As indicated by toluidine blue staining, these phenolics preferentially accumulate in xylem ray parenchyma cells. In addition, light and electron microscopic observations of lac3AS stems indicated that lac3 gene suppression led to a dramatic alteration of xylem fiber cell walls. Individual fiber cells were severely deformed, exhibiting modifications in fluorescence emission at the primary wall/middle lamella region and frequent sites of cell wall detachment. Although a direct correlation between laccase gene expression and lignification could not be assigned, we show that the gene product of lac3 is essential for normal cell wall structure and integrity in xylem fibers. lac3AS plants provide a unique opportunity to explore laccase function in plants. PMID:12011346

  14. Extraction and Application of Laccases from Shimeji Mushrooms (Pleurotus ostreatus) Residues in Decolourisation of Reactive Dyes and a Comparative Study Using Commercial Laccase from Aspergillus oryzae

    PubMed Central

    Teixeira, Ricardo Sposina S.; Pereira, Patrícia Maia; Ferreira-Leitão, Viridiana S.

    2010-01-01

    Oxidases are able to degrade organic pollutants; however, high costs associated with biocatalysts production still hinder their use in environmental biocatalysis. Our study compared the action of a commercial laccase from Aspergillus oryzae and a rich extract from Pleurotus ostreatus cultivation residues in decolourisation of reactive dyes: Drimaren Blue X-3LR (DMBLR), Drimaren Blue X-BLN (DMBBLN), Drimaren Rubinol X-3LR (DMR), and Drimaren Blue C-R (RBBR). The colour removal was evaluated by considering dye concentration, reaction time, absence or presence of the mediator ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and the source of laccase. The presence of ABTS was essential for decolourisation of DMR (80–90%, 1 h) and RBBR (80–90%, 24 h) with both laccases. The use of ABTS was not necessary in reactions containing DMBLR (85–97%, 1 h) and DMBBLN (63–84%, 24 h). The decolourisation of DMBBLN by commercial laccase showed levels near 60% while the crude extract presented 80% in 24 h. PMID:21052547

  15. Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications.

    PubMed

    Jahangiri, Elham; Reichelt, Senta; Thomas, Isabell; Hausmann, Kristin; Schlosser, Dietmar; Schulze, Agnes

    2014-08-08

    The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  16. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  17. Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica.

    PubMed

    Guo, Mei; Lu, Fuping; Du, Lianxiang; Pu, Jun; Bai, Dongqing

    2006-08-01

    A cDNA encoding for laccase (Lcc1) was isolated from the ligninolytic fungus Trametes versicolor by reverse transcriptase polymerase chain reaction. The Lcc1 gene was subcloned into the Pichia methanolica expression vector pMETalphaA and transformed into the P. methanolica strains PMAD11 and PMAD16. The extracellular laccase activity of the PMAD11 recombinants was found to be 1.3-fold higher than that of the PMAD16 recombinants. The identity of the recombinant protein was further confirmed by immunodetection using the Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form. The effects of copper concentration, cultivation temperature, pH and methanol concentration in the BMMY on laccase expression were investigated. The laccase activity in the PMAD11 recombinant was up to 12.6 U ml(-1) by optimization.

  18. High-level coproduction, purification and characterisation of laccase and exopolysaccharides by Coriolus versicolor.

    PubMed

    Que, Youxiong; Sun, Shujing; Xu, Liping; Zhang, Yuye; Zhu, Hu

    2014-09-15

    In this study, a two-stage pH-shift fermentation process was developed for the coproduction of laccase and exopolysaccharides (EPS) by Coriolus versicolor. At the same time, laccase and EPS were purified and characterised in detail. The results showed that the highest laccase and EPS production reached 7680 U l(-1) and 8.2 g l(-1). Furthermore, the flow behaviour of fermentation broth was Newtonian and the maximum μ(ap) was 2.7×10(-3) Pa s. The MW of laccase was 64 kDa and it showed a pI value of 4.2. The CD analysis showed that laccase had a high α-helical content (68%). The MW of the purified EPS was determined to be 1.8×10(6) Da, consisting of carbohydrates (87.6%) and proteins (12.4%). The EPS consisted of 17 amino acids, mainly serine (11.3%), glutamic acid (12.60%), leucine (13.3%) and phenylalanine (9.4%) in protein moiety, and three monosaccharides (galactose, mannose and xylose). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Gram-scale production of a basidiomycetous laccase in Aspergillus niger.

    PubMed

    Mekmouche, Yasmina; Zhou, Simeng; Cusano, Angela M; Record, Eric; Lomascolo, Anne; Robert, Viviane; Simaan, A Jalila; Rousselot-Pailley, Pierre; Ullah, Sana; Chaspoul, Florence; Tron, Thierry

    2014-01-01

    We report on the expression in Aspergillus niger of a laccase gene we used to produce variants in Saccharomyces cerevisiae. Grams of recombinant enzyme can be easily obtained. This highlights the potential of combining this generic laccase sequence to the yeast and fungal expression systems for large-scale productions of variants. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Evaluation of laccase-mediator system (LMS) in the oxidation of veratryl alcohol

    USDA-ARS?s Scientific Manuscript database

    Identifying suitable reaction conditions remains an important task in the development of enzyme catalysis. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both commercially...

  1. Cost analysis in laccase production.

    PubMed

    Osma, Johann F; Toca-Herrera, José L; Rodríguez-Couto, Susana

    2011-11-01

    In this paper the cost of producing the enzyme laccase by the white-rot fungus Trametes pubescens under both submerged (SmF) and solid-state fermentation (SSF) conditions was studied. The fungus was cultured using more than 45 culture medium compositions. The cost of production was estimated by analyzing the cost of the culture medium, the cost of equipment and the operating costs. The cost of the culture medium represented, in all cases, the highest contribution to the total cost, while, the cost of equipment was significantly low, representing less than 2% of the total costs. The cultivation under SSF conditions presented a final cost 50-fold lower than the one obtained when culturing under SmF conditions at flask scale. In addition, the laccase production under SSF conditions in tray bioreactors reduced the final cost 4-fold compared to the one obtained under SSF conditions at flask scale, obtaining a final price of 0.04 cent €/U. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis.

    PubMed

    Min, K L; Kim, Y H; Kim, Y W; Jung, H S; Hah, Y C

    2001-08-15

    The white-rot fungus Phellinus ribis produced a single form of laccase, which was purified to apparent electrophoretic homogeneity from cultures induced with 2,5-xylidine. This protein was a dimer, consisting of two subunits of 76 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Carbohydrate analysis revealed that the enzyme contained about 28% carbohydrate content. The laccase appeared to be different from other known laccases by the UV-visible absorption spectrum analysis. One enzyme molecule contained one copper, one manganese, and two zinc atoms. The laccase showed optimal activity at pH 4.0-6.0, 5.0, and 6.0 with 2,6-dimethoxyphenol, ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)], and syringaldazine, respectively. The enzyme preferably oxidized dimethoxyphenol and aromatic amine compounds. The stability of the laccase was low at acidic pH, whereas it showed high stability at neutral pH and mild temperature. The N-terminal amino acid sequence revealed a very low homology with other microbial laccases. With some substrates, the addition of manganese and H2O2 resulted in a remarkable increase in the oxidation rate. Without an appropriate phenolic substrate, the enzyme could not oxidize Mn(II) in the presence of H2O2 or pyrophosphate. Copyright 2001 Academic Press.

  3. Reactivities of various mediators and laccases with kraft pulp and lignin model compounds.

    PubMed

    Bourbonnais, R; Paice, M G; Freiermuth, B; Bodie, E; Borneman, S

    1997-12-01

    Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification.

  4. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397).

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2013-01-01

    Laccase production by a temperature and pH tolerant fungal strain (GBPI-CDF-03) isolated from a glacial site in Indian Himalayan Region (IHR) has been investigated. The fungus developed white cottony mass on potato dextrose agar and revealed thread-like mycelium under microscope. ITS region analysis of fungus showed its 100% similarity with Trametes hirsuta. The fungus tolerated temperature from 4 to 48°C ± 2 (25°C opt.) and pH 3-13 (5-7 opt.). Molecular weight of laccase was determined approximately 45 kDa by native PAGE. Amplification of laccase gene fragment (corresponding to the copper-binding conserved domain) contained 200 bp. The optimum pH for laccase production, at optimum growth temperature, was determined between 5.5 and 7.5. In optimization experiments, fructose and ammonium sulfate were found to be the best carbon and nitrogen sources, respectively, for enhancing the laccase production. Production of laccase was favored by high carbon/nitrogen ratio. Addition of CuSO4 (up to 1.0 mM) induced laccase production up to 2-fold, in case of 0.4 mM concentration. Addition of organic solvents also induced the production of laccase; acetone showed the highest (2-fold) induction. The study has implications in bioprospecting of ecologically resilient microbial strains.

  5. Laccase produced by a thermotolerant strain of Trametes trogii LK13

    PubMed Central

    Yan, Jinping; Chen, Yuhui; Niu, Jiezhen; Chen, Daidi; Chagan, Irbis

    2015-01-01

    Thermophilic and thermotolerant micro-organisms strains have served as the natural source of industrially relevant and thermostable enzymes. Although some strains of the Trametes genus are thermotolerant, few Trametes strains were studied at the temperature above 30 °C until now. In this paper, the laccase activity and the mycelial growth rate for Trametes trogii LK13 are superior at 37 °C. Thermostability and organic cosolvent tolerance assays of the laccase produced at 37 °C indicated that the enzyme possessed fair thermostability with 50% of its initial activity at 80 °C for 5 min, and could remain 50% enzyme activity treated with organic cosolvent at the concentration range of 25%–50% (v/v). Furthermore, the test on production of laccase and lignocellulolytic enzymes showed the crude enzymes possessed high laccase level (1000 U g −1 ) along with low cellulose (2 U g −1 ) and xylanase (140 U g −1 ) activity. Thus, T. trogii LK13 is a potential strain to be applied in many biotechnological processes. PMID:26221089

  6. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw.

    PubMed

    Oliva-Taravilla, Alfredo; Moreno, Antonio D; Demuez, Marie; Ibarra, David; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production from wheat straw. However, they affect the enzymatic hydrolysis of this material by lowering the glucose recovery yields. This work aimed at explaining the negative effects of laccase on enzymatic hydrolysis. Relative glucose recovery in presence of laccase (10IU/g substrate) with model cellulosic substrate (Sigmacell) at 10% (w/v) was almost 10% points lower (P<0.01) than in the absence of laccase. This fact could be due to an increase in the competition of cellulose binding sites between the enzymes and a slight inhibition of β-glucosidase activity. However, enzymatic hydrolysis and infrared spectra of laccase-treated and untreated wheat straw filtered pretreated residue (WS-FPR), revealed that a grafting process of phenoxy radicals onto the lignin fiber could be the cause of diminished accessibility of cellulases to cellulose in pretreated wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Influence of very low doses of mediators on fungal laccase activity - nonlinearity beyond imagination

    PubMed Central

    Malarczyk, Elzbieta; Kochmanska-Rdest, Janina; Jarosz-Wilkolazka, Anna

    2009-01-01

    Laccase, an enzyme responsible for aerobic transformations of natural phenolics, in industrial applications requires the presence of low-molecular substances known as mediators, which accelerate oxidation processes. However, the use of mediators is limited by their toxicity and the high costs of exploitation. The activation of extracellular laccase in growing fungal culture with highly diluted mediators, ABTS and HBT is described. Two high laccase-producing fungal strains, Trametes versicolor and Cerrena unicolor, were used in this study as a source of enzyme. Selected dilutions of the mediators significantly increased the activity of extracellular laccase during 14 days of cultivation what was distinctly visible in PAGE technique and in colorimetric tests. The same mediator dilutions increased demethylation properties of laccase, which was demonstrated during incubation of enzyme with veratric acid. It was established that the activation effect was assigned to specific dilutions of mediators. Our dose-response dilution process smoothly passes into the range of action of homeopathic dilutions and is of interest for homeopaths. PMID:19732425

  8. Degradation of phenanthrene by Trametes versicolor and its laccase.

    PubMed

    Han, Mun-Jung; Choi, Hyoung-Tae; Song, Hong-Gyu

    2004-06-01

    Phenanthrene is a three-ring polycyclic aromatic hydrocarbon and commonly found as a pollutant in various environments. Degradation of phenanthrene by white rot fungus Trametes versicolor 951022 and its laccase, isolated in Korea, was investigated. After 36 h of incubation, about 46% and 65% of 100 mg/l of phenanthrene added in shaken and static fungal cultures were removed, respectively. Phenanthrene degradation was maximal at pH 6 and the optimal temperature for phenanthrene removal was 30 degrees C. Although the removal percentage of phenanthrene was highest (76.7%) at 10 mg/l of phenanthrene concentration, the transformation rate was maximal (0.82 mg/h) at 100 mg/L of phenanthrene concentration in the fungal culture. When the purified laccase of T versicolor 951022 reacted with phenanthrene, phenanthrene was not transformed. The addition of redox mediator, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) or 1-hydroxybenzotriazole (HBT) to the reaction mixture increased oxidation of phenanthrene by laccase about 40% and 30%, respectively.

  9. Gel-Based Purification and Biochemical Study of Laccase Isozymes from Ganoderma sp. and Its Role in Enhanced Cotton Callogenesis

    PubMed Central

    Kumar, Amit; Singh, Deepti; Sharma, Krishna K.; Arora, Sakshi; Singh, Amarjeet K.; Gill, Sarvajeet S.; Singhal, Barkha

    2017-01-01

    Basidiomycetous fungi, Ganoderma lucidum MDU-7 and Ganoderma sp. kk-02 secreted multiple laccase isozymes under diverse growth condition. Aromatic compounds and metal salts were also found to regulate the differential expression of laccase isozymes from both the Ganoderma sp. Laccase isozymes induced in the presence of copper from G. lucidum MDU-7 were purified by gel-based (native-PAGE) purification method. The purity of laccase isozymes was checked by zymogram and SDS-PAGE. The SDS-PAGE of purified proteins confirmed the multimeric nature of laccase isozymes. The molecular mass of isozymes was found to be in the range of 40–66 kDa. Further, the purified laccase isozymes and their peptides were confirmed with the help of MALDI-TOF peptide fingerprinting. The biochemical characterization of laccase isozymes viz. Glac L2, Glac L3, Glac L4, and Glac L5 have shown the optimum temperature in the range of 30°–45°C and pH 3.0. The Km values of all the laccase isozymes determined for guaiacol were (96–281 μM), ABTS (15–83 μM) and O-tolidine (78–724 μM). Further, laccase isozymes from G. lucidum whole genome were studied using bioinformatics tools. The molecular modeling and docking of laccase isozymes with different substrates showed a significant binding affinity, which further validates our experimental results. Interestingly, copper induced laccase of 40 U/ml in culture medium was found to significantly induce cotton callogenesis. Interestingly, all the laccase isozymes were found to have an antioxidative role and therefore capable in free radicals scavenging during callogenesis. This is the first detailed study on the biochemical characterization of all the laccase isozymes purified by a gel-based novel method. PMID:28473815

  10. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation.

    PubMed Central

    Muñoz, C; Guillén, F; Martínez, A T; Martínez, M J

    1997-01-01

    Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions. PMID:9172335

  11. Rice (Oryza sativa) Laccases Involved in Modification and Detoxification of Herbicides Atrazine and Isoproturon Residues in Plants.

    PubMed

    Huang, Meng Tian; Lu, Yi Chen; Zhang, Shuang; Luo, Fang; Yang, Hong

    2016-08-24

    Atrazine (ATR) and isoproturon (IPU) as herbicides have become serious environmental contaminants due to their overuse in crop production. Although ATR and IPU in soils are easily absorbed by many crops, the mechanisms for their degradation or detoxification in plants are poorly understood. This study identified a group of novel genes encoding laccases (EC 1.10.3.2) that are possibly involved in catabolism or detoxification of ATR and IPU residues in rice. Transcriptome profiling shows at least 22 differentially expressed laccase genes in ATR/IPU-exposed rice. Some of the laccase genes were validated by RT-PCR analysis. The biochemical properties of the laccases were analyzed, and their activities in rice were induced under ATR/IPU exposure. To investigate the roles of laccases in degrading or detoxifying ATR/IPU in rice, transgenic yeast cells (Pichia pastoris X-33) expressing two rice laccase genes (LOC_Os01g63180 and LOC_Os12g15680) were generated. Both transformants were found to accumulate less ATR/IPU compared to the control. The ATR/IPU-degraded products in the transformed yeast cells using UPLC-TOF-MS/MS were further characterized. Two metabolites, hydroxy-dehydrogenated atrazine (HDHA) and 2-OH-isopropyl-IPU, catalyzed by laccases were detected in the eukaryotic cells. These results indicate that the laccase-coding genes identified here could confer degradation or detoxification of the herbicides and suggest that the laccases could be one of the important enzymatic pathways responsible for ATR/IPU degradation/detoxification in rice.

  12. Production of laccase by Pynoporus sanguineus using 2,5 - Xylidine and ethanol

    PubMed Central

    Valeriano, Viviane S.; Silva, Anna Maria F.; Santiago, Mariângela F.; Bara, Maria T. F.; Garcia, Telma A.

    2009-01-01

    Enzyme application in biotechnological and environmental processes has had increasing interest due to its efficiency, selectivity and mainly for being environmentally healthful, but these applications require a great volume of enzymes. In this work the effect of different concentrations of ethanol and 2,5-xylidine on growth and production of laccase by Pycnoporus sanguineus was investigated. In a medium containing 200 mg.L-1 of 2,5-xylidine or 50 g.L-1 of ethanol, the maximum activity of laccase was 2019 U.L-1 and 1035 U.L-1, respectively. No direct correlation between biomass and activity of laccase was observed for any of the inducers used during the tests. Ethanol concentrations, larger than or equal to 20 g.L-1, inhibited the radial growth of P. sanguineus. This study showed that ethanol, which has less toxicity and cost than the majority of the studied inducers, presents promising perspectives for laccase production by P. sanguineus. PMID:24031426

  13. Structural and Phylogenetic Analysis of Laccases from Trichoderma: A Bioinformatic Approach

    PubMed Central

    Cázares-García, Saila Viridiana; Vázquez-Garcidueñas, Ma. Soledad; Vázquez-Marrufo, Gerardo

    2013-01-01

    The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential. PMID:23383142

  14. Role of Bacillus licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and its Application to the Food Industry

    PubMed Central

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, V.; Park, Se Chang

    2017-01-01

    Multifarious applications of Bacillus licheniformis VS16-derived biosurfactant were explored. Labeo rohita fingerlings were injected intraperitoneally with 0.1 mL of phosphate-buffered saline (PBS) containing purified biosurfactant at 0 (control), 55 (S55), 110 (S110), 220 (S220), or 330 (S330) μg mL-1 concentrations. Various immunological parameters and the expression of immune-related genes were measured at 7, 14, and 21 days post-administration (dpa). At 21 dpa, fish were challenged with Aeromonas hydrophila and mortality was recorded for 14 days. Immune parameters such as lysozyme levels (39.29 ± 2.14 U mL-1), alternative complement pathway (61.21 ± 2.38 U mL-1), and phagocytic activities (33.37 ± 1.2%) were maximum (P < 0.05) in the S220 group at 14 dpa; but immunoglobulin levels (11.07 ± 0.83 mg mL-1) were highest in the S220 group at 7 dpa, compared to that in controls. Activities of digestive enzymes (amylase, protease, and lipase) were higher (P < 0.05) in the S220 and S330 groups than in the control group. Regarding cytokine gene expression, pro-inflammatory cytokines (TNF-α and IL-1β) were down-regulated (P < 0.05) in the S220 and S330 groups. Expression of IL-10, TGF-β, and IKB-α were up-regulated in the S220 and S330 groups at 14 dpa, with the highest levels in the S220 group. The expression of NF-κB p65 and IKK-β were down-regulated in treatment groups, and were lowest (P < 0.05) in the S220 group. The highest post-challenge survival rate (72.7%) was recorded in S220 group. Further, the potential of this substance to inhibit biofilm formation, and heavy metal removal from vegetables were also evaluated. Biosurfactant was effective in inhibiting biofilm formation up to 54.71 ± 1.27%. Moreover, it efficiently removed cadmium (Cd) from tested vegetables such as carrot, radish, ginger, and potato, with the highest removal efficiency (60.98 ± 1.29%) recorded in ginger contaminated with Cd. Collectively, these results suggest that isolated

  15. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  16. Cloning, characterization and expression of a novel laccase gene Pclac2 from Phytophthora capsici

    PubMed Central

    Feng, Bao Zhen; Li, Peiqian

    2014-01-01

    Laccases are blue copper oxidases (E.C. 1.10.3.2) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. A novel laccase gene pclac2 and its corresponding full-length cDNA were cloned and characterized from Phytophthora capsici for the first time. The 1683 bp full-length cDNA of pclac2 encoded a mature laccase protein containing 560 amino acids preceded by a signal peptide of 23 amino acids. The deduced protein sequence of PCLAC2 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. In order to achieve a high level secretion and full activity expression of PCLAC2, expression vector pPIC9K with the Pichia pastoris expression system was used. The recombinant PCLAC2 protein was purified and showed on SDS-PAGE as a single band with an apparent molecular weight ca. 68 kDa. The high activity of purified PCLAC2, 84 U/mL, at the seventh day induced with methanol, was observed with 2,2′-azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) as substrate. The optimum pH and temperature for ABTS were 4.0 and 30 °C, respectively. The reported data add a new piece to the knowledge about P. Capsici laccase multigene family and shed light on potential function about biotechnological and industrial applications of the individual laccase isoforms in oomycetes. PMID:24948955

  17. Reactivities of Various Mediators and Laccases with Kraft Pulp and Lignin Model Compounds

    PubMed Central

    Bourbonnais, R.; Paice, M. G.; Freiermuth, B.; Bodie, E.; Borneman, S.

    1997-01-01

    Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification. PMID:16535747

  18. Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris.

    PubMed

    O'Callaghan, J; O'Brien, M M; McClean, K; Dobson, A D W

    2002-08-01

    A cDNA encoding a laccase enzyme was isolated from a Trametes versicolor cDNA library. The gene was subcloned into the Pichia pastoris expression vector pPIC3.5 and transformed into the P. pastoris strains KM71 and GS115. Laccase-secreting transformants were selected by their ability to oxidise the substrate ABTS. No difference in laccase activity was observed between culture supernatants from GS115 (proteolytic) and KM71 (nonproteolytic) strains. The presence of at least 200 microM copper was necessary for optimal laccase activity in the culture supernatants. During growth of P. pastoris on minimal medium the pH of the medium was reduced to <3.0. If alanine was added to the medium the pH reduction was not as pronounced and at alanine concentrations >0.6% w/v the pH was kept constant for >7 days. Cultures in which the pH was maintained by alanine metabolism produced higher levels of laccase activity than those grown in the absence of alanine. This study describes the development of a medium that allows convenient pH control of P. pastoris without the need for continuous neutralisation.

  19. Characterization, Molecular Cloning, and Differential Expression Analysis of Laccase Genes from the Edible Mushroom Lentinula edodes

    PubMed Central

    Zhao, J.; Kwan, H. S.

    1999-01-01

    The effect of different substrates and various developmental stages (mycelium growth, primordium appearance, and fruiting-body formation) on laccase production in the edible mushroom Lentinula edodes was studied. The cap of the mature mushroom showed the highest laccase activity, and laccase activity was not stimulated by some well-known laccase inducers or sawdust. For our molecular studies, two genomic DNA sequences, representing allelic variants of the L. edodes lac1 gene, were isolated, and DNA sequence analysis demonstrated that lac1 encodes a putative polypeptide of 526 amino acids which is interrupted by 13 introns. The two allelic genes differ at 95 nucleotides, which results in seven amino acid differences in the encoded protein. The copper-binding domains found in other laccase enzymes are conserved in the L. edodes Lac1 proteins. A fragment of a second laccase gene (lac2) was also isolated, and competitive PCR showed that expression of lac1 and lac2 genes was different under various conditions. Our results suggest that laccases may play a role in the morphogenesis of the mushroom. To our knowledge, this is the first report on the cloning of genes involved in lignocellulose degradation in this economically important edible fungus. PMID:10543802

  20. Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp

    Treesearch

    William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller

    2004-01-01

    Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...

  1. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    PubMed

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Immobilization of laccase on a novel ZnO/SiO2 nano-composited support for dye decolorization

    NASA Astrophysics Data System (ADS)

    Li, Wei-Xun; Sun, Huai-Yan; Zhang, Rui-Feng

    2015-07-01

    ZnO nanowires were introduced into macroporous SiO2 by means of in situ hydrothermal growth. The obtained nano-composite was then used to immobilize laccase (secured from Trametes versicolor) through the process of static adsorption. The average loading amount was as high as 193.4 μmol-g-1. The immobilized laccase was proven to be an effective biocatalyst in the decolorization of two dyes: Remazol Brilliant Blue B, and Acid Blue 25. The decolorization percentage of Remazol Brilliant Blue B and Acid Blue 25 reached 93% and 82% respectively. The immobilized laccase exhibited enhanced thermal stability and pH adaptability compared to free laccase. After ten recycles, the immobilized laccase retained 42% decolorization catalytic activity.

  3. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri.

    PubMed

    Dhawan, Shikha; Kuhad, Ramesh Chander

    2002-08-01

    Various amino acids, their analogues and vitamins have shown stimulatory as well as inhibitory effects on laccase production by Cyathus bulleri. DL-methionine, DL-tryptophan, glycine and DL-valine stimulated laccase production, while L-cysteine monohydrochloride completely inhibited the enzyme production. Among vitamins tested biotin, riboflavin and pyridoxine hydrochloride were found to induce laccase production.

  4. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    PubMed Central

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  5. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application.

    PubMed

    Kumar, Madan; Mishra, Arti; Singh, Shashi Shekhar; Srivastava, Shaili; Thakur, Indu Shekhar

    2018-04-14

    In the present study, a non-blue laccase gene from previously reported lignin degrading bacterium, Pandoraea sp. ISTKB, was isolated, cloned and expressed in E. coli. Bioinformatics analysis of sequence discovered twin-arginine translocation signal sequence, copper binding motifs and presence of more random coil compare to helices and sheets in structure. The enzyme was found to be active on wide pH range and the pH optima was observed at pH 4 and 8 on substrate 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and 2,6-Dimethoxyphenol respectively. This is a thermophilic enzyme with maximum activity around 50-70 °C. The enzyme was further characterized by spectroscopy, reaction kinetics and effect of metal ions and inhibitors were studied. Compared to laccase alone; the treatment of dyes with laccase plus mediator resulted in enhanced decolorization of crystal violet, methylene blue, azure B, carmine and Congo red but the effect of mediator was not observed on trypan blue. Laccase treatment triggered polymerization on vanillic acid (VA) and kraft lignin (KL). Laccase plus mediator treatment reversed the polymerization and resulted in transformation or degradation of VA and KL. This thermophilic and alkalophilic non-blue laccase from Pandoraea sp. ISTKB is promising with prospective biotechnological application. Copyright © 2018. Published by Elsevier B.V.

  6. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  7. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashenko, Andrey V.; Zhukhlistova, Nadegda E.; Gabdoulkhakov, Azat G.

    2006-10-01

    The crystallization and preliminary X-ray structure at 1.9 Å resolution of the fungal laccase from C. maxima are presented. Laccases are members of the blue multi-copper oxidase family that oxidize substrate molecules by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear centre. Dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. Crystals of the laccase from Cerrena maxima have been obtained and X-ray data were collected to 1.9 Å resolution using synchrotron radiation. A preliminary analysis shows that the enzyme has the typical laccasemore » structure and several carbohydrate sites have been identified. The carbohydrate chains appear to be involved in stabilization of the intermolecular contacts in the crystal structure, thus promoting the formation of well ordered crystals of the enzyme. Here, the results of an X-ray crystallographic study on the laccase from the fungus Cerrena maxima are reported. Crystals that diffract well to a resolution of at least 1.9 Å (R factor = 18.953%; R{sub free} = 23.835; r.m.s.d. bond lengths, 0.06 Å; r.m.s.d. bond angles, 1.07°) have been obtained despite the presence of glycan moieties. The overall spatial organization of C. maxima laccase and the structure of its copper-containing active centre have been determined by the molecular-replacement method using the laccase from Trametes versicolor (Piontek et al., 2002 ▶) as a structural template. In addition, four glycan-binding sites were identified and the 1.9 Å X-ray data were used to determine the previously unknown primary structure of this protein. The identity (calculated from sequence alignment) between the C. maxima laccase and the T. versicolor laccase is about 87%. Tyr196 and Tyr372 show significant extra density at the ortho positions and this has been interpreted in terms of NO{sub 2} substituents.« less

  8. Characterization and cloning of laccase gene from Hericium coralloides NBRC 7716 suitable for production of epitheaflagallin 3-O-gallate.

    PubMed

    Itoh, Nobuya; Takagi, Shinya; Miki, Asami; Kurokawa, Junji

    2016-01-01

    Epitheaflagallin 3-O-gallate (ETFGg) is a minor polyphenol found in black tea extract, which has good physiological functions. It is synthesized from epigallocatechin gallate (EGCg) with gallic acid via laccase oxidation. Various basidiomycetes and fungi were screened to find a suitable laccase for the production of ETFGg. A basidiomycete, Hericium coralloides NBRC 7716, produced an appropriate extracellular laccase. The purified laccase produced twice the level of ETFGg compared with commercially available laccase from Trametes sp. The enzyme, termed Lcc2, is a monomeric protein with an apparent molecular mass of 67.2 kDa. The N-terminal amino acid sequence of Lcc2 is quite different from laccase isolated from the fruiting bodies of Hericium. Lcc2 showed similar substrate specificity to known laccases and could oxidize various phenolic substrates, including pyrogallol, gallic acid, and 2,6-dimethoxyphenol. The full-length lcc2 gene was obtained by PCR using degenerate primers, which were designed based on the N-terminal amino acid sequence of Lcc2 and conserved copper-binding sites of laccases, and 5'-, and 3'-RACE PCR with mRNA. The Lcc2 gene showed homology with Lentinula edodes laccase (sharing 77% amino acid identity with Lcc6). We successfully produced extracellular Lcc2 using a heterologous expression system with Saccharomyces cerevisiae. Moreover, it was confirmed that the recombinant laccase generates similar levels of ETFGg as the native enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evolved α-factor prepro-leaders for directed laccase evolution in Saccharomyces cerevisiae.

    PubMed

    Mateljak, Ivan; Tron, Thierry; Alcalde, Miguel

    2017-11-01

    Although the functional expression of fungal laccases in Saccharomyces cerevisiae has proven to be complicated, the replacement of signal peptides appears to be a suitable approach to enhance secretion in directed evolution experiments. In this study, twelve constructs were prepared by fusing native and evolved α-factor prepro-leaders from S. cerevisiae to four different laccases with low-, medium- and high-redox potential (PM1L from basidiomycete PM1; PcL from Pycnoporus cinnabarinus; TspC30L from Trametes sp. strain C30; and MtL from Myceliophthora thermophila). Microcultures of the prepro-leader:laccase fusions were grown in selective expression medium that used galactose as both the sole carbon source and as the inducer of expression so that the secretion and activity were assessed with low- and high-redox potential mediators in a high-throughput screening context. With total activity improvements as high as sevenfold over those obtained with the native α-factor prepro-leader, the evolved prepro-leader from PcL (α PcL ) most strongly enhanced secretion of the high- and medium-redox potential laccases PcL, PM1L and TspC30L in the microtiter format with an expression pattern driven by prepro-leaders in the order α PcL  > α PM 1L  ~ α native . By contrast, the pattern of the low-redox potential MtL was α native  > α PcL  > α PM 1L . When produced in flask with rich medium, the evolved prepro-leaders outperformed the α native signal peptide irrespective of the laccase attached, enhancing secretion over 50-fold. Together, these results highlight the importance of using evolved α-factor prepro-leaders for functional expression of fungal laccases in directed evolution campaigns. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat.

    PubMed

    Zhou, Bin; Wirsching, Peter; Janda, Kim D

    2002-04-16

    A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.

  11. Immobilization of Trametes versicolor cultures for improving laccase production in bubble column reactor intensified by sonication.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-01-01

    The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.

  12. Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia.

    PubMed

    Belyaev, Anatoly A; Shternshis, Margarita V; Chechenina, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2017-03-01

    In geographical locations with a short vegetative season and continental climate that include Western Siberia, growing primocane fruiting raspberry varieties becomes very important. However, it is necessary to help the plants to overcome the environmental stress factors. This study aimed to evaluate the impact of the pre-planting treatment of primocane fruiting raspberry root system with Bacillus strains on the following plant development under variable environmental conditions. In 2012, Bacillus subtilis RCAM В-10641, Bacillus amyloliquefaciens RCAM В-10642, and Bacillus licheniformis RCAM В-10562 were used for inoculating the root system of primocane fruiting raspberry cultivar Nedosyagaemaya before planting. The test suspensions were 10 5  CFU/ml for each bacterial strains. The effects of this treatment on plant growth and crop productivity were estimated in 2012-2015 growing seasons differed by environmental conditions. The pre-planting treatment by the bacterial strains increased the number of new raspberry canes and the number of plant generative organs as well as crop productivity compared to control. In addition, these bacilli acted as the standard humic fertilizer. Variable environmental factors such as air temperature, relative humidity, and winter and spring frosts seriously influenced the plant biological parameters and crop productivity of control plants. At the same time, the pre-planting primocane fruiting root treatment by Bacillus strains decreased the negative effects of abiotic stresses on plants in all years of the research. Of the three strains studied, B. subtilis was shown to reveal the best results in adaptation of primocane fruiting raspberry plants to environmental factors in Western Siberia. For the first time, the role of Bacillus strains in enhancing frost resistance in primocane fruiting raspberry plants was shown. These bacilli are capable of being the basis of multifunctional biological formulations for effective plant and

  13. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.J.; Dobson, A.D.W.; Kotterman, M.J.J.

    1996-12-01

    Polycyclic aromatic hydrocarbons, particularly benzene homologs, are highly toxic organic pollutants. One of the three major groups of extracellular oxidative enzymes involved in the white rot fungal lignin degradative process are laccases. This study presents evidence indicating that laccase has a role in PAH oxidation by white rot fungi. 36 refs., 5 figs., 1 tab.

  14. Differential Regulation by Organic Compounds and Heavy Metals of Multiple Laccase Genes in the Aquatic Hyphomycete Clavariopsis aquatica

    PubMed Central

    Solé, Magali; Müller, Ines; Pecyna, Marek J.; Fetzer, Ingo; Harms, Hauke

    2012-01-01

    To advance the understanding of the molecular mechanisms controlling microbial activities involved in carbon cycling and mitigation of environmental pollution in freshwaters, the influence of heavy metals and natural as well as xenobiotic organic compounds on laccase gene expression was quantified using quantitative real-time PCR (qRT-PCR) in an exclusively aquatic fungus (the aquatic hyphomycete Clavariopsis aquatica) for the first time. Five putative laccase genes (lcc1 to lcc5) identified in C. aquatica were differentially expressed in response to the fungal growth stage and potential laccase inducers, with certain genes being upregulated by, e.g., the lignocellulose breakdown product vanillic acid, the endocrine disruptor technical nonylphenol, manganese, and zinc. lcc4 is inducible by vanillic acid and most likely encodes an extracellular laccase already excreted during the trophophase of the organism, suggesting a function during fungal substrate colonization. Surprisingly, unlike many laccases of terrestrial fungi, none of the C. aquatica laccase genes was found to be upregulated by copper. However, copper strongly increases extracellular laccase activity in C. aquatica, possibly due to stabilization of the copper-containing catalytic center of the enzyme. Copper was found to half-saturate laccase activity already at about 1.8 μM, in favor of a fungal adaptation to low copper concentrations of aquatic habitats. PMID:22544244

  15. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    PubMed

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  16. Modeling of growth and laccase production by Pycnoporus sanguineus.

    PubMed

    Saat, Muhammad Naziz; Annuar, Mohamad Suffian Mohamad; Alias, Zazali; Chuan, Ling Tau; Chisti, Yusuf

    2014-05-01

    Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L(-1 )days(-1), or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L(-1).

  17. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    PubMed Central

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL-1) and the AOX1 system (495 mgL-1) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg-1 GAP, 14.2 Umg-1 AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  18. Plasticity of laccase generated by homeologous recombination in yeast.

    PubMed

    Cusano, Angela M; Mekmouche, Yasmina; Meglecz, Emese; Tron, Thierry

    2009-10-01

    Laccase-encoding sequences sharing 65-71% identity were shuffledin vivo by homeologous recombination. Yeast efficiently repaired linearized plasmids containing clac1, clac2 or clac5 Trametes sp. C30 cDNAs using a clac3 PCR fragment. From transformants secreting active variants, three chimeric laccases (LAC131, LAC232 and LAC535), each resulting from double crossovers, were purified, and their apparent kinetic parameters were determined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and syringaldazine (SGZ) as substrates. At acidic pH, the apparent kinetic parameters of the chimera were not distinguishable from each other or from those obtained for the LAC3 enzyme used as reference. On the other hand, the pH tolerance of the variants was visibly extended towards alkaline pH values. Compared to the parental LAC3, a 31-fold increase in apparent k(cat) was observed for LAC131 at pH 8. This factor is one of the highest ever observed for laccase in a single mutagenesis step.

  19. Kraft Pulp Biobleaching and Mediated Oxidation of a Nonphenolic Substrate by Laccase from Streptomyces cyaneus CECT 3335

    PubMed Central

    Arias, M. Enriqueta; Arenas, María; Rodríguez, Juana; Soliveri, Juan; Ball, Andrew S.; Hernández, Manuel

    2003-01-01

    A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of 5.6, and its optimal pH and temperature were 4.5 and 70°C, respectively. The activity was strongly enhanced in the presence of Cu2+, Mn2+, and Mg2+ and was completely inhibited by EDTA and sodium azide. The purified laccase exhibited high levels of activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,6-dimethoxyphenol and no activity against tyrosine. The UV-visible spectrum of the purified laccase was the typical spectrum of the blue laccases, with an absorption peak at 600 nm and a shoulder around 330 to 340 nm. The ability of the purified laccase to oxidize a nonphenolic compound, such as veratryl alcohol, in the presence of ABTS opens up new possibilities for the use of bacterial laccases in the pulp and paper industry. We demonstrated that application of the laccase from S. cyaneus in the presence of ABTS to biobleaching of eucalyptus kraft pulps resulted in a significant decrease in the kappa number (2.3 U) and an important increase in the brightness (2.2%, as determined by the International Standard Organization test) of pulps, showing the suitability of laccases produced by streptomycetes for industrial purposes. PMID:12676669

  20. Copper and dyes enhance laccase production in gamma-proteobacterium JB.

    PubMed

    Malhotra, Kanam; Sharma, Prince; Capalash, Neena

    2004-07-01

    Laccase production in gamma-proteobacterium JB was enhanced 13-fold by adding 0.1 mM CuSO(4) 24 h after the onset of growth. Ethidium bromide (2.5 microM), Malachite Green, Phenol Red and Thymol Blue (10 microM each) enhanced laccase production 17-, 19-, 4- and 2-fold, respectively. Among the fourteen aromatic/organic compounds tried, p-aminobenzoic acid and an industrial effluent, from where the organism was isolated, showed 1.2- and 1.26-fold increases in production.

  1. Optimization of media components for laccase production by litter dwelling fungal isolate Fusarium incarnatum LD-3.

    PubMed

    Chhaya, Urvish; Gupte, Akshaya

    2010-02-01

    Laccase production by solid state fermentation (SSF) using an indigenously isolated litter dwelling fungus Fusarium incarnatum LD-3 was optimized. Fourteen medium components were screened by the initial screening method of Plackett-Burman. Each of the components was screened on the basis of 'p' (probability value) which was above 95% confidence level. Ortho-dianisidine, thiamine HCl and CuSO(4) . 5 H(2)O were identified as significant components for laccase production. The Central Composite Design response surface methodology was then applied to further optimize the laccase production. The optimal concentration of these three medium components for higher laccase production were (g/l): CuSO(4) . 5 H(2)O, 0.01; thiamine HCl, 0.0136 and ortho-dianisidine, 0.388 mM served as an inducer. Wheat straw, 5.0 g was used as a solid substrate. Using this statistical optimization method the laccase production was found to increase from 40 U/g to 650 U/g of wheat straw, which was sixteen times higher than non optimized medium. This is the first report on statistical optimization of laccase production from Fusarium incarnatum LD-3.

  2. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    PubMed

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  3. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune.

    PubMed

    Kirtzel, Julia; Scherwietes, Eric Leon; Merten, Dirk; Krause, Katrin; Kothe, Erika

    2018-06-25

    Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.

  4. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Molecular cloning of the cDNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica.

    PubMed

    Guo, Mei; Lu, Fuping; Pu, Jun; Bai, Dongqing; Du, Lianxiang

    2005-11-01

    A cDNA encoding for laccase was isolated from the ligninolytic fungus Trametes versicolor by RNA-PCR. The cDNA corresponds to the gene Lcc1, which encodes a laccase isoenzyme of 498 amino acid residues preceded by a 22-residue signal peptide. The Lcc1 cDNA was cloned into the vectors pMETA and pMETalphaA and expressed in Pichia methanolica. The laccase activity obtained with the Saccharomyces cerevisiae alpha-factor signal peptide was found to be twofold higher than that obtained with the native secretion signal peptide. The extracellular laccase activity in recombinants with the alpha-factor signal peptide was 9.79 U ml(-1). The presence of 0.2 mM copper was necessary for optimal activity of laccase. The expression level was favoured by lower cultivation temperature. The identity of the recombinant protein was further confirmed by immunodetection using Western blot analysis. As expected, the molecular mass of the mature laccase was 64.0 kDa, similar to that of the native form.

  6. A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye.

    PubMed

    Afreen, Sumbul; Shamsi, Tooba Naz; Baig, Mohd Affan; Ahmad, Nadeem; Fatima, Sadaf; Qureshi, M Irfan; Hassan, Md Imtaiyaz; Fatma, Tasneem

    2017-01-01

    A novel extracellular laccase enzyme produced from Spirulina platensis CFTRI was purified by ultrafiltration, cold acetone precipitation, anion exchange and size exclusion chromatography with 51.5% recovery and 5.8 purification fold. The purified laccase was a monomeric protein with molecular mass of ~66 kDa that was confirmed by zymogram analysis and peptide mass fingerprinting. The optimum pH and temperature of the enzyme activity was found at 3.0 and 30°C using ABTS as substrate but the enzyme was quite stable at high temperature and alkaline pH. The laccase activity was enhanced by Cu+2, Zn+2 and Mn+2. In addition, the dye decolorization potential of purified laccase was much higher in terms of extent as well as time. The purified laccase decolorized (96%) of anthraquinonic dye Reactive blue- 4 within 4 h and its biodegradation studies was monitored by UV visible spectra, FTIR and HPLC which concluded that cyanobacterial laccase can be efficiently used to decolorize synthetic dye and help in waste water treatment.

  7. A novel multicopper oxidase (laccase) from cyanobacteria: Purification, characterization with potential in the decolorization of anthraquinonic dye

    PubMed Central

    Afreen, Sumbul; Shamsi, Tooba Naz; Baig, Mohd Affan; Ahmad, Nadeem; Fatima, Sadaf; Qureshi, M. Irfan; Hassan, Md. Imtaiyaz

    2017-01-01

    A novel extracellular laccase enzyme produced from Spirulina platensis CFTRI was purified by ultrafiltration, cold acetone precipitation, anion exchange and size exclusion chromatography with 51.5% recovery and 5.8 purification fold. The purified laccase was a monomeric protein with molecular mass of ~66 kDa that was confirmed by zymogram analysis and peptide mass fingerprinting. The optimum pH and temperature of the enzyme activity was found at 3.0 and 30°C using ABTS as substrate but the enzyme was quite stable at high temperature and alkaline pH. The laccase activity was enhanced by Cu+2, Zn+2 and Mn+2. In addition, the dye decolorization potential of purified laccase was much higher in terms of extent as well as time. The purified laccase decolorized (96%) of anthraquinonic dye Reactive blue- 4 within 4 h and its biodegradation studies was monitored by UV visible spectra, FTIR and HPLC which concluded that cyanobacterial laccase can be efficiently used to decolorize synthetic dye and help in waste water treatment. PMID:28384218

  8. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, E. M., E-mail: e.m.osipov@gmail.com; Polyakov, K. M.; Engelhardt Institute of Molecular Biology, Vavilova str. 32, Moscow 119991

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. Withmore » the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.« less

  9. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    PubMed

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.

    PubMed Central

    D'Souza, T M; Boominathan, K; Reddy, C A

    1996-01-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. PMID:8837429

  11. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.

    PubMed

    Awasthi, Manika; Jaiswal, Nivedita; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N

    2015-09-01

    Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.

  12. Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology.

    PubMed

    Arockiasamy, Santhiagu; Krishnan, Indira Packialakshmi Gurusamy; Anandakrishnan, Nimalanandan; Seenivasan, Sabitha; Sambath, Agalya; Venkatasubramani, Janani Priya

    2008-12-01

    Plackett and Burman design criterion and central composite design were applied successfully for enhanced production of laccase by Coriolus versicolor NCIM 996 for the first time. Plackett and Burman design criterion was applied to screen the significance of ten nutrients on laccase production by C. versicolor NCIM 996. Out of the ten nutrients tested, starch, yeast extract, MnSO(4), MgSO(4) x 7H(2)O, and phenol were found to have significant effect on laccase production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Plackett-Burman design. The optimized medium composition for production of laccase was (g/l): starch, 30.0; yeast extract, 4.53; MnSO(4), 0.002; MgSO(4) x 7H(2)O, 0.755; and phenol, 0.026, and the optimum laccase production was 6,590.26 (U/l), which was 7.6 times greater than the control.

  13. The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry.

    PubMed

    Wang, Xinghao; Liu, Jiaoqin; Qu, Ruijuan; Wang, Zunyao; Huang, Qingguo

    2017-08-10

    Nanostructured manganese oxides, e.g. MnO 2 , have shown laccase-like catalytic activities, and are thus promising for pollutant oxidation in wastewater treatment. We have systematically compared the laccase-like reactivity of manganese oxide nanomaterials of different crystallinity, including α-, β-, γ-, δ-, and ɛ-MnO 2 , and Mn 3 O 4 , with 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 17β-estradiol (E2) as the probing substrates. The reaction rate behaviors were examined with regard to substrate oxidation and oxygen reduction to evaluate the laccase-like catalysis of the materials, among which γ-MnO 2 exhibits the best performance. Cyclic voltammetry (CV) was employed to assess the six MnO x nanomaterials, and the results correlate well with their laccase-like catalytic activities. The findings help understand the mechanisms of and the factors controlling the laccase-like reactivity of different manganese oxides nanomaterials, and provide a basis for future design and application of MnO x -based catalysts.

  14. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp.

    PubMed

    Ausec, Luka; Črnigoj, Miha; Šnajder, Marko; Ulrih, Nataša Poklar; Mandic-Mulec, Ines

    2015-12-01

    Laccases are oxidoreductases mostly studied in fungi, while bacterial laccases remain poorly studied despite their high genetic diversity and potential for biotechnological application. Our previous bioinformatic analysis identified alkaliphilic bacterial strains Thioalkalivibrio sp. as potential sources of robust bacterial laccases that would be stable at high pH. In the present work, a gene for a laccase-like enzyme from Thioalkalivibrio sp. ALRh was cloned and expressed as a 6× His-tagged protein in Escherichia coli. The purified enzyme was a pH-tolerant laccase stable in the pH range between 2.1 and 9.9 at 20 °C as shown by intrinsic fluorescence emission spectrometry. It had optimal activities at pH 5.0 and pH 9.5 with the laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,6-dimethoxyphenol, respectively. In addition, it could oxidize several other monophenolic compounds and potassium hexacyanoferrate(II) but not tyrosine. It showed highest activity at 50 °C, making it suitable for prolonged incubations at this temperature. The present study shows that Thioalkalivibrio sp. encodes an active, alkaliphilic, and thermo-tolerant laccase and contributes to our understanding of the versatility of bacterial laccase-like multicopper oxidases in general.

  15. Combinatorial evaluation of the laccase-mediator system (LMS) in the oxidation of veratryl alcohol

    USDA-ARS?s Scientific Manuscript database

    Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both co...

  16. Development of a Saccharomyces cerevisiae Strain with Enhanced Resistance to Phenolic Fermentation Inhibitors in Lignocellulose Hydrolysates by Heterologous Expression of Laccase

    PubMed Central

    Larsson, Simona; Cassland, Pierre; Jönsson, Leif J.

    2001-01-01

    To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-SNARE Sso2p. The factors affecting the level of active laccase obtained, besides the cultivation temperature, included pH and aeration. Laccase-expressing and Sso2p-overexpressing S. cerevisiae was cultivated in the presence of coniferyl aldehyde to examine resistance to lignocellulose-derived phenolic fermentation inhibitors. The laccase-producing transformant had the ability to convert coniferyl aldehyde at a faster rate than a control transformant not expressing laccase, which enabled faster growth and ethanol formation. The laccase-producing transformant was also able to ferment a dilute acid spruce hydrolysate at a faster rate than the control transformant. A decrease in the content of low-molecular-mass aromatic compounds, accompanied by an increase in the content of high-molecular-mass compounds, was observed during fermentation with the laccase-expressing strain, illustrating that laccase was active even at the very low levels of oxygen supplied. Our results demonstrate the importance of phenolic compounds as fermentation inhibitors and the advantage of using laccase-expressing yeast strains for producing ethanol from lignocellulose. PMID:11229906

  17. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.

    PubMed

    Larsson, S; Cassland, P; Jönsson, L J

    2001-03-01

    To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-SNARE Sso2p. The factors affecting the level of active laccase obtained, besides the cultivation temperature, included pH and aeration. Laccase-expressing and Sso2p-overexpressing S. cerevisiae was cultivated in the presence of coniferyl aldehyde to examine resistance to lignocellulose-derived phenolic fermentation inhibitors. The laccase-producing transformant had the ability to convert coniferyl aldehyde at a faster rate than a control transformant not expressing laccase, which enabled faster growth and ethanol formation. The laccase-producing transformant was also able to ferment a dilute acid spruce hydrolysate at a faster rate than the control transformant. A decrease in the content of low-molecular-mass aromatic compounds, accompanied by an increase in the content of high-molecular-mass compounds, was observed during fermentation with the laccase-expressing strain, illustrating that laccase was active even at the very low levels of oxygen supplied. Our results demonstrate the importance of phenolic compounds as fermentation inhibitors and the advantage of using laccase-expressing yeast strains for producing ethanol from lignocellulose.

  18. A Laccase with HIV-1 Reverse Transcriptase Inhibitory Activity from the Broth of Mycelial Culture of the Mushroom Lentinus tigrinus

    PubMed Central

    Xu, LiJing; Wang, HeXiang; Ng, TziBun

    2012-01-01

    A 59 kDa laccase with inhibitory activity against HIV-1 reverse transcriptase (IC50 = 2.4 μM) was isolated from the broth of mycelial culture of the mushroom Lentinus tigrinus. The isolation procedure involved ion exchange chromatography on DEAE-cellulose and CM-cellulose, and gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was adsorbed on both types of ion exchangers. About 95-fold purification was achieved with a 25.9% yield of the enzyme. The procedure resulted in a specific enzyme activity of 76.6 U/mg. Its N-terminal amino acid sequence was GIPDLHDLTV, which showed little similarity to other mushroom laccase and other Lentinus tigrinus strain laccase. Its characteristics were different from previously reported laccase of other Lentinus tigrinus strain. Maximal laccase activity was observed at a pH of 4 and at a temperature of 60°C, respectively. This study yielded the information about the potentially exploitable activities of Lentinus tigrinus laccase. PMID:22536022

  19. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design.

    PubMed

    Tavares, A P M; Coelho, M A Z; Agapito, M S M; Coutinho, J A P; Xavier, A M R B

    2006-09-01

    Experimental design and response surface methodologies were applied to optimize laccase production by Trametes versicolor in a bioreactor. The effects of three factors, initial glucose concentration (0 and 9 g/L), agitation (100 and 180 rpm), and pH (3.0 and 5.0), were evaluated to identify the significant effects and its interactions in the laccase production. The pH of the medium was found to be the most important factor, followed by initial glucose concentration and the interaction of both factors. Agitation did not seem to play an important role in laccase production, nor did the interaction agitation x medium pH and agitation x initial glucose concentration. Response surface analysis showed that an initial glucose concentration of 11 g/L and pH controlled at 5.2 were the optimal conditions for laccase production by T. versicolor. Under these conditions, the predicted value for laccase activity was >10,000 U/L, which is in good agreement with the laccase activity obtained experimentally (11,403 U/L). In addition, a mathematical model for the bioprocess was developed. It is shown that it provides a good description of the experimental profile observed, and that it is capable of predicting biomass growth based on secondary process variables.

  20. Properties of the glycoprotein laccase immobilized by two methods.

    PubMed

    Froehner, S C; Eriksson, K

    1975-01-01

    Laccase (p-diphenol:oxygen oxidoreductase; EC 1.10.3.2) from Neurospora crassa has been immobilized by two different procedures: (1) Covalent attachment to Sepharose 4B activated with cyanogen bromide, and (2) Adsorption to Concanavalin A-Sepharose via the carbohydrate moiety. Except for small changes in the Michaelis-Menten constants, no differences were noted in the enzymological properties of the immobilized enzymes when compared to free enzyme. The carbohydrate moiety of laccase involved in the interaction with Concanavalin A does not appear to be closely associated with the active center since binding to the lectin has no effect on the enzymological parameters investigated.

  1. Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes.

    PubMed

    López-González, B; Dector, A; Cuevas-Muñiz, F M; Arjona, N; Cruz-Madrid, C; Arana-Cuenca, A; Guerra-Balcázar, M; Arriaga, L G; Ledesma-García, J

    2014-12-15

    A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding.

    PubMed

    Osińska-Jaroszuk, Monika; Jaszek, Magdalena; Starosielec, Magdalena; Sulej, Justyna; Matuszewska, Anna; Janczarek, Monika; Bancerz, Renata; Wydrych, Jerzy; Wiater, Adrian; Jarosz-Wilkołazka, Anna

    2018-03-26

    Four bacterial EPSs extracted from Rhizobium leguminosarum bv. trifolii Rt24.2, Sinorhizobium meliloti Rm1021, Bradyrhizobium japonicum USDA110, and Bradyrhizobium elkanii USDA76 were determined towards their metal ion adsorption properties and possible modification of Cerrena unicolor laccase properties. The highest magnesium and iron ion-sorption capacity (~ 42 and ~ 14.5%, respectively) was observed for EPS isolated from B. japonicum USDA110. An evident influence of EPSs on the stability of laccase compared to the control values (without EPSs) was shown after 30-day incubation at 25 °C. The residual activity of laccases was obtained in the presence of Rh76EPS and Rh1021EPS, i.e., 49.5 and 41.5% of the initial catalytic activity, respectively. This result was confirmed by native PAGE electrophoresis. The EPS effect on laccase stability at different pH (from 3.8 to 7.0) was also estimated. The most significant changes at the optimum pH value (pH 5.8) was observed in samples of laccase stabilized by Rh76EPS and Rh1021EPS. Cyclic voltamperometry was used for analysis of electrochemical parameters of laccase stabilized by bacterial EPS and immobilized on single-walled carbon nanotubes (SWCNTs) with aryl residues. Laccases with Rh76EPS and Rh1021EPS had an evident shift of the value of the redox potential compared to the control without EPS addition. In conclusion, the results obtained in this work present a new potential use of bacterial EPSs as a metal-binding component and a modulator of laccase properties especially stability of enzyme activity, which can be a very effective tool in biotechnology and industrial applications.

  3. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.

    PubMed

    Sato, A C K; Perrechil, F A; Costa, A A S; Santana, R C; Cunha, R L

    2015-09-01

    The aim of this work was to evaluate the influence of laccase and ferulic acid on the characteristics of oil-in-water emulsions stabilized by sodium caseinate at different pH (3, 5 and 7). Emulsions were prepared by high pressure homogenization of soybean oil with sodium caseinate solution containing varied concentrations of laccase (0, 1 and 5mg/mL) and ferulic acid (5 and 10mM). Laccase treatment and pH exerted a strong influence on the properties with a consequent effect on stability, structure and rheology of emulsions stabilized by Na-caseinate. At pH7, O/W emulsions were kinetically stable due to the negative protein charge which enabled electrostatic repulsion between oil droplets resulting in an emulsion with small droplet size, low viscosity, pseudoplasticity and viscoelastic properties. The laccase treatment led to emulsions showing shear-thinning behavior as a result of a more structured system. O/W emulsions at pH5 and 3 showed phase separation due to the proximity to protein pI, but the laccase treatment improved their stability of emulsions especially at pH3. At pH3, the addition of ferulic acid and laccase produced emulsions with larger droplet size but with narrower droplet size distribution, increased viscosity, pseudoplasticity and viscoelastic properties (gel-like behavior). Comparing laccase treatments, the combined addition of laccase and ferulic acid generally produced emulsions with lower stability (pH5), larger droplet size (pH3, 5 and 7) and higher pseudoplasticity (pH5 and 7) than emulsion with only ferulic acid. The results suggested that the cross-linking of proteins by laccase and ferulic acid improved protein emulsifying properties by changing functional mechanisms of the protein on emulsion structure and rheology, showing that sodium caseinate can be successfully used in acid products when treated with laccase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biochemical characterization and molecular evidence of a laccase from the bird's nest fungus Cyathus bulleri.

    PubMed

    Vasdev, Kavita; Dhawan, Shikha; Kapoor, Rajeev Kumar; Kuhad, Ramesh Chander

    2005-08-01

    Cyathus bulleri, a bird's nest fungus, known to decolorize polymeric dye Poly R-478, was found to produce 8 U ml(-1) of laccase in malt extract broth. Laccase activity appeared as a single band on non-denaturing gel. Laccase was purified to homogeneity by anion exchange chromatography and gel filtration. The enzyme was a monomer with an apparent molecular mass of 60 kD, pI of 3.7 and was stable in the pH range of 2-6 with an optimum pH of 5.2. The optimal reaction temperature was 45 degrees C and the enzyme lost its activity above 70 degrees C. Enzyme could oxidize a broad range of various phenolic substrates. K(m) values for ABTS, 2,6-dimethoxyphenol, guaiacol, and ferulic acid were found to be 48.6, 56, 22, and 14 mM while K(cat) values were 204, 180, 95.6, and 5.2, respectively. It was completely inhibited by KCN, NaN(3), beta-mercaptoethanol, HgCl(2), and SDS, while EDTA had no effect on enzyme activity. The N-terminal amino acid sequence of C. bulleri laccase showed close homology to N-terminal sequences of laccase from other white-rot fungi. A 150 bp gene sequence encoding copper-binding domains I and II was most similar to the sequence encoding a laccase from Pycnoporus cinnabarinus with 74.8% level of similarity.

  5. Studies on Acetone Powder and Purified Rhus Laccase Immobilized on Zirconium Chloride for Oxidation of Phenols

    PubMed Central

    Lu, Rong; Miyakoshi, Tetsuo

    2012-01-01

    Rhus laccase was isolated and purified from acetone powder obtained from the exudates of Chinese lacquer trees (Rhus vernicifera) from the Jianshi region, Hubei province of China. There are two blue bands appearing on CM-sephadex C-50 chromatography column, and each band corresponding to Rhus laccase 1 and 2, the former being the major constituent, and each had an average molecular weight of approximately 110 kDa. The purified and crude Rhus laccases were immobilized on zirconium chloride in ammonium chloride solution, and the kinetic properties of free and immobilized Rhus laccase, such as activity, molecular weight, optimum pH, and thermostability, were examined. In addition, the behaviors on catalytic oxidation of phenols also were conducted. PMID:22545205

  6. The relationship between the structures of four beta-lactamases obtained from Bacillus cereus.

    PubMed

    Cid, H; Carrillo, O; Bunster, M; Martínez, J; Vargas, V

    1988-06-01

    Bacillus cereus has proved to be one of the most interesting microorganisms in the study of beta-lactamases. It secrets these enzymes very efficiently and, frequently, in multiple forms. Three different forms are produced by strain 569/H; mutant 5/B of the same microorganism is constitutive for the secretion of beta-lactamases I and II. The present study, based on secondary structure prediction by two independent methods, states the relationship among the structures of beta-lactamases I, II and III produced by B. cereus 569/H and beta-lactamase I from the strain 5/B of this microorganism. A strong similarity is also established for the enzyme type III of B. cereus and the enzyme type I produced by B. licheniformis which could have an evolutionary explanation. A structural analysis of the leader peptide regions of these enzymes by the method of Mohana and Argos is also reported.

  7. Flocculation and haze removal from crude beer using in-house produced laccase from Trametes versicolor cultured on brewer's spent grain.

    PubMed

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam

    2012-08-15

    The potential of brewer's spent grain (BSG), a common waste from the brewing industry, as a support-substrate for laccase production by the well-known laccase producer Trametes versicolor ATCC 20869 under solid-state fermentation conditions was assessed. An attempt was made to improve the laccase production by T. versicolor through supplementing the cultures with inducers, such as 2,2-azino bis(3-ethylbenzthiazoline-6-sulfonic acid), copper sulfate, ethanol, gallic acid, veratryl alcohol, and phenol. A higher laccase activity of 13506.2 ± 138.2 IU/gds (gram dry substrate) was obtained with a phenol concentration of 10 mg/kg substrate in a tray bioreactor after 12 days of incubation time. The flocculation properties of the laccase treated crude beer samples have been studied by using various parameters, such as viscosity, turbidity, ζ potential, total polyphenols, and total protein content. The present results indicated that laccase (25 IU/L) showed promising results as a good flocculating agent. The laccase treatment showed better flocculation capacity compared to the industrial flocculation process using stabifix as a flocculant. The laccase treatments (25 IU/L) at 4 ± 1 °C and room temperature have shown almost similar flocculation properties without much variability. The study demonstrated the potential of in-house produced laccase using brewer's spent grain for the clarification and flocculation of crude beer as a sustainable alternative to traditional flocculants, such as stabifix and bentonite.

  8. Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study.

    PubMed

    Silvério, Sara C; Moreira, Sérgio; Milagres, Adriane M F; Macedo, Eugénia A; Teixeira, José A; Mussatto, Solange I

    2013-03-01

    The production of laccase by immobilized mycelia of Peniophora cinerea and Trametes versicolor was studied. In an initial stage, experimental assays were performed in Erlenmeyer flasks using free and immobilized mycelium, and the performance of the fungal strains to produce the enzyme was compared. Both fungi adhered into the support material (a synthetic fiber), growing not only on the surface but also in the interspaces of the fibers. Immobilization of P. cinerea provided a 35-fold increase in laccase production when compared to the production obtained by using free mycelium. On the other hand, immobilization of T. versicolor caused a decrease in laccase activity. A comparison between the strains revealed that immobilized P. cinerea (3,500 U/L) surpassed the enzyme production by free T. versicolor (800 U/L). When the conditions that gave the best laccase production to each fungus were employed in a stirred tank bioreactor, very low laccase production was observed for both the cases, suggesting that shear stress and mycelia damage caused by the agitation impellers negatively affected the enzyme production.

  9. Isolation and Physicochemical Characterization of Laccase from Ganoderma lucidum-CDBT1 Isolated from Its Native Habitat in Nepal.

    PubMed

    Shrestha, Prabin; Joshi, Bishnu; Joshi, Jarina; Malla, Rajani; Sreerama, Lakshmaiah

    2016-01-01

    At present, few organisms are known to and capable of naturally producing laccases and white rot fungi are one such group. In the present study, three fungal species, namely, Ganoderma lucidum -CDBT1 , Ganoderma japonicum, and Lentinula edodes , isolated from their native habitat in Nepal were screened for laccase production, and G. lucidum -CDBT1 was found to express highest levels of enzyme (day 10 culture media showed 0.92 IU/mg total protein or 92 IU/mL laccase activity with ABTS as substrate). Lignin extracted from rice straw was used in Olga medium for laccase production and isolation from G. lucidum -CDBT1. Presence of lignin (5 g/L) and copper sulfate (30  μ M) in the media increased the extracellular laccase content by 111% and 114%, respectively. The laccase enzyme produced by G. lucidum -CDBT1 was fractionated by ammonium sulfate and purified by DEAE Sepharose anion exchange chromatography. The purified enzyme was found to have a molecular mass of 43 kDa and exhibits optimal activity at pH 5.0 and 30°C. The isolated laccase was thermally stable for up to 70°C for 1 h and exhibited broad pH stability. The kinetic constants, K m , V max , and K cat , determined using 2,2'-azinobis-(-3-ethylbenzothiazoline-6-sulfonic acid) as substrate were found to be 110  μ M, 36  μ mol/min/mg, and 246 min -1 , respectively. The isolated thermostable laccase will be used in future experiments for delignification process.

  10. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes.

    PubMed

    Gonzalez, Juan C; Medina, Sandra C; Rodriguez, Alexander; Osma, Johann F; Alméciga-Díaz, Carlos J; Sánchez, Oscar F

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametespubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69 ± 0.28 U mg(-1) of protein for the crude extract, and 0.08 ± 0.001 and 2.86 ± 0.05 U mg(-1) of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct.

  11. Production of Trametes pubescens Laccase under Submerged and Semi-Solid Culture Conditions on Agro-Industrial Wastes

    PubMed Central

    Rodriguez, Alexander; Osma, Johann F.; Alméciga-Díaz, Carlos J.; Sánchez, Oscar F.

    2013-01-01

    Laccases are copper-containing enzymes involved in the degradation of lignocellulosic materials and used in the treatment of phenol-containing wastewater. In this study we investigated the effect of culture conditions, i.e. submerged or semi-solid, and copper supplementation on laccase production by Trametes pubescens grown on coffee husk, soybean pod husk, or cedar sawdust. The highest specific laccase activity was achieved when the culture was conducted under submerged conditions supplemented with copper (5 mM), and using coffee husk as substrate. The crude extracts presented two laccase isoforms with molecular mass of 120 (Lac1) and 60 kDa (Lac2). Regardless of the substrate, enzymatic crude extract and purified fractions behaved similarly at different temperatures and pHs, most of them presented the maximum activity at 55 °C and a pH range between 2 and 3. In addition, they showed similar stability and electro-chemical properties. At optimal culture conditions laccase activity was 7.69±0.28 U mg-1 of protein for the crude extract, and 0.08±0.001 and 2.86±0.05 U mg-1 of protein for Lac1 and Lac2, respectively. In summary, these results show the potential of coffee husk as an important and economical growth medium to produce laccase, offering a new alternative use for this common agro-industrial byproduct. PMID:24019936

  12. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator.

    PubMed

    Liu, Hao; Zhou, Pandeng; Wu, Xing; Sun, Jianliang; Chen, Shicheng

    2015-11-04

    The biosynthetic utilization of laccase/mediator system is problematic because the use of organic cosolvent causes significant inhibition of laccase activity. This work explored how the organic cosolvent impacts on the laccase catalytic capacity towards 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in aqueous solution. Effects of acetone on the kinetic constants of laccase were determined and the results showed Km and Vmax varied exponentially with increasing acetone content. Acetone as well as some other cosolvents could transform ABTS radicals into its reductive form. The content of acetone in media significantly affected the radical scavenging rates. Up to 95% of the oxidized ABTS was successfully recovered in 80% (v/v) acetone in 60 min. This allows ABTS recycles at least six times with 70%-75% of active radicals recovered after each cycle. This solvent-based recovery strategy may help improve the economic feasibility of laccase/ABTS system in biosynthesis.

  13. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents.

    PubMed

    Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase.

  14. Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol.

    PubMed

    Heinze, Simon; Kornberger, Petra; Grätz, Christian; Schwarz, Wolfgang H; Zverlov, Vladimir V; Liebl, Wolfgang

    2018-06-08

    The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the P aprE -promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from

  15. LacSubPred: predicting subtypes of Laccases, an important lignin metabolism-related enzyme class, using in silico approaches

    PubMed Central

    2014-01-01

    Background Laccases (E.C. 1.10.3.2) are multi-copper oxidases that have gained importance in many industries such as biofuels, pulp production, textile dye bleaching, bioremediation, and food production. Their usefulness stems from the ability to act on a diverse range of phenolic compounds such as o-/p-quinols, aminophenols, polyphenols, polyamines, aryl diamines, and aromatic thiols. Despite acting on a wide range of compounds as a family, individual Laccases often exhibit distinctive and varied substrate ranges. This is likely due to Laccases involvement in many metabolic roles across diverse taxa. Classification systems for multi-copper oxidases have been developed using multiple sequence alignments, however, these systems seem to largely follow species taxonomy rather than substrate ranges, enzyme properties, or specific function. It has been suggested that the roles and substrates of various Laccases are related to their optimal pH. This is consistent with the observation that fungal Laccases usually prefer acidic conditions, whereas plant and bacterial Laccases prefer basic conditions. Based on these observations, we hypothesize that a descriptor-based unsupervised learning system could generate homology independent classification system for better describing the functional properties of Laccases. Results In this study, we first utilized unsupervised learning approach to develop a novel homology independent Laccase classification system. From the descriptors considered, physicochemical properties showed the best performance. Physicochemical properties divided the Laccases into twelve subtypes. Analysis of the clusters using a t-test revealed that the majority of the physicochemical descriptors had statistically significant differences between the classes. Feature selection identified the most important features as negatively charges residues, the peptide isoelectric point, and acidic or amidic residues. Secondly, to allow for classification of new Laccases

  16. Crystal structures of E. coli laccase CueO at different copper concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xu; Wei Zhiyi; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101

    2007-03-02

    CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra {alpha}-helixmore » from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper.« less

  17. Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover.

    PubMed

    Chen, Qin; Marshall, Megan N; Geib, Scott M; Tien, Ming; Richard, Tom L

    2012-08-01

    The aim of this study was to explore the synergies of laccase, a ligninolytic enzyme, with cellulose and hemicellulase amendments on ensiled corn stover. Molecular signals of lignin decomposition were observed by tetramethylammonium hydroxide thermochemolysis and gas chromatography-mass spectroscopy (TMAH-GC-MS) analysis. The significant findings suggest that ensilage might provide a platform for biological pretreatment. By partially hydrolyzing cellulose and hemicellulose into soluble sugars, ensilage facilitates laccase penetration into the lignocellulose complex to enhance lignin degradation. Downstream cellulose hydrolysis was improved 7% with increasing laccase loading rate. These results demonstrate the potential of enzymes, either directly amended or expressed by microbes during ensilage, to maximize utilization of corn stover for cellulosic biofuels and other downstream fermentations. Copyright © 2012. Published by Elsevier Ltd.

  18. Selective oxidation of lignin model compounds – a combinatorial application of the laccase-mediator system

    USDA-ARS?s Scientific Manuscript database

    Identifying suitable reaction conditions remains an important task in the development of practical enzyme catalysts. Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both comm...

  19. Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology.

    PubMed

    Periasamy, Rathinasamy; Palvannan, Thayumanavan

    2010-12-01

    Production of laccase using a submerged culture of Pleurotus orstreatus IMI 395545 was optimized by the Taguchi orthogonal array (OA) design of experiments (DOE) methodology. This approach facilitates the study of the interactions of a large number of variables spanned by factors and their settings, with a small number of experiments, leading to considerable savings in time and cost for process optimization. This methodology optimizes the number of impact factors and enables to calculate their interaction in the production of industrial enzymes. Eight factors, viz. glucose, yeast extract, malt extract, inoculum, mineral solution, inducer (1 mM CuSO₄) and amino acid (l-asparagine) at three levels and pH at two levels, with an OA layout of L18 (2¹ × 3⁷) were selected for the proposed experimental design. The laccase yield obtained from the 18 sets of fermentation experiments performed with the selected factors and levels was further processed with Qualitek-4 software. The optimized conditions shared an enhanced laccase expression of 86.8% (from 485.0 to 906.3 U). The combination of factors was further validated for laccase production and reactive blue 221 decolorization. The results revealed an enhanced laccase yield of 32.6% and dye decolorization up to 84.6%. This methodology allows the complete evaluation of main and interaction factors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  20. A novel ethanol-tolerant laccase, Tvlac, from Trametes versicolor.

    PubMed

    Chen, Lei; Yi, Xiaoming; Deng, Fajun; Fang, Wei; Zhang, Xuecheng; Wang, Xiaotang; Fang, Zemin; Xiao, Yazhong

    2016-03-01

    To produce and characterize novel laccases with ethanol tolerance from Trametes versicolor using agriculture by-products as energy source. Trametes versicolor 1017 produces two laccase isoenzymes with a total activity of 10 U ml(-1) within 8 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A novel isoenzyme, named Tvlac, was identified, purified and characterized. Its optimum pH and temperature were from 4.5 to 5 and 55 to 60 °C, respectively. Its activity was stimulated by ethanol at 10 % (v/v) which increased the V 0. The biochemical properties of Tvlac substantiate the potential of this enzyme for applications under an aqueous ethanol mixture environment.

  1. Modification of lignocellulosic materials by laccase

    Treesearch

    William Kenealy; John Klungness; Mandla Tshabalala; Roland Gleisner; Eric Horn; Masood Akhtar; Hilda Zulaica-Villagomez; Gisela Buschle-Diller

    2003-01-01

    Altering the surface properties of pulp can enhance binding, increase paper strength, and decrease the cost of fiber. In this study, we modified lignocellulosic materials (bark and pulp) with laccase and selected substrates to change the nature of the pulp surface. Modified pulps were evaluated by the amount of methylene blue (a cationic dye) that would bind to the...

  2. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food

    PubMed Central

    Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 104–2.8 × 106 cells/mL with a detection limit (LOD) of 0.9 × 103 cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens. PMID:26976753

  3. Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization.

    PubMed

    Marim, R A; Oliveira, A C C; Marquezoni, R S; Servantes, J P R; Cardoso, B K; Linde, G A; Colauto, N B; Valle, J S

    2016-10-17

    Pycnoporus sanguineus is a white-rot basidiomycete that produces laccase as the only oxidoreductase; enzyme synthesis depends on cultivation variables, and fungal species and strain. Laccases have wide substrate specificity, oxidize a broad range of compounds, and show potential for use in dye decolorization. We evaluated laccase production in a recently isolated strain of P. sanguineus cultivated with sugarcane molasses as the only carbon source, and urea or yeast extract as the nitrogen source [at various nitrogen concentrations (0.4, 1.4, 2.4, 3.4, and 4.4 g/L)], supplemented with copper (0, 150, 200, 250, and 300 µM), with or without agitation. The enzymatic extract produced at laccase peak activity was tested for dye decolorization capability on Remazol Brilliant Blue R, Reactive Black 5, Reactive Red 195, and Reactive Yellow 145. The nitrogen source did not affect enzyme production and the higher nitrogen concentration (3.4 g/L nitrogen as urea) increased enzymatic activity. The addition of up to 300 µM of Cu did not affect laccase production, whereas cultivation with agitation increased the activity peak by 17%. The highest laccase activity was ~50,000 U/L on the ninth day of cultivation. After 24 h, decolorization was 80% for Remazol Brilliant Blue R, 9% for Reactive Yellow 145, 6% for Reactive Red 195, and 2% for Reactive Black 5. The enzymatic extract of P. sanguineus provides a potential alternative to wastewater treatment. A better understanding of the behavior of this fungus under various culture conditions would allow improvement of the enzyme production bioprocess.

  4. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A.

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum,more » Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.« less

  5. Isolation and Physicochemical Characterization of Laccase from Ganoderma lucidum-CDBT1 Isolated from Its Native Habitat in Nepal

    PubMed Central

    Joshi, Jarina; Malla, Rajani

    2016-01-01

    At present, few organisms are known to and capable of naturally producing laccases and white rot fungi are one such group. In the present study, three fungal species, namely, Ganoderma lucidum-CDBT1, Ganoderma japonicum, and Lentinula edodes, isolated from their native habitat in Nepal were screened for laccase production, and G. lucidum-CDBT1 was found to express highest levels of enzyme (day 10 culture media showed 0.92 IU/mg total protein or 92 IU/mL laccase activity with ABTS as substrate). Lignin extracted from rice straw was used in Olga medium for laccase production and isolation from G. lucidum-CDBT1. Presence of lignin (5 g/L) and copper sulfate (30 μM) in the media increased the extracellular laccase content by 111% and 114%, respectively. The laccase enzyme produced by G. lucidum-CDBT1 was fractionated by ammonium sulfate and purified by DEAE Sepharose anion exchange chromatography. The purified enzyme was found to have a molecular mass of 43 kDa and exhibits optimal activity at pH 5.0 and 30°C. The isolated laccase was thermally stable for up to 70°C for 1 h and exhibited broad pH stability. The kinetic constants, K m, V max, and K cat, determined using 2,2′-azinobis-(-3-ethylbenzothiazoline-6-sulfonic acid) as substrate were found to be 110 μM, 36 μmol/min/mg, and 246 min−1, respectively. The isolated thermostable laccase will be used in future experiments for delignification process. PMID:27822471

  6. The Physiological Bases for Microbial Barotolerance.

    DTIC Science & Technology

    1980-03-31

    cerevisiae, 4 - Lactobacillus plantarum , 5 - Bacillus licheniformis, 6 - Bacillus _ a- teriumKM, 7 - Streptococcus mutans LM-7, 8 - Streptococcus sannuis, 9...E. coli, 10- Serratia marcescens, 1 - S. faecalis lOCI, 12 - S. mutans C-5, 13 - Lactobacillus casei, 14 - Lyt coccus, 15 - S mutans SL-l, 16

  7. Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – A comparative study

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2016-07-06

    The biocatalytic synthesis of phenothiazones and related compounds has been achieved in an aqueous system under mild conditions facilitated by laccase oxidation. It was found that by coupling 2-aminothiophenol directly with 1,4-quinones, the product yields could be significantly increased compared to generating the 1,4-quinones in situ from the corresponding hydroquinones via laccase oxidation. However, laccase still proved to be pivotal for achieving highest product yields by catalyzing the final oxidation step. Furthermore, a difference in reactivity of aromatic and aliphatic amines toward 1,4-naphthoquinone is observed. Furthermore, this study provides a sustainable approach to the synthesis of a biologically important classmore » of compounds.« less

  8. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Hu, Yiru; Guo, Chen; Huang, Wei; Liu, Chun-Zhao

    2012-04-01

    The immobilized laccase on magnetic mesoporous silica nanoparticles has been developed for efficient phenol degradation. The degradation rate of phenol by the immobilized laccase was 2-fold higher than that of the free laccase, and the immobilized laccase retained 71.3% of its initial degradation ability after 10 successive batch treatments of coking wastewater. The phenol degradation in the coking wastewater was enhanced in a continuous treatment process by the immobilized laccase in a magnetically stabilized fluidized bed (MSFB) because of good mixing and mass transfer. The degradation rate of phenol maintained more than 99% at a flow rate of less than 450mLh(-1) and decreased slowly to 91.5% after 40h of the continuous operation in the MSFB. The present work indicated that the immobilized laccase on magnetic mesoporous supports together with the MSFB provided a promising avenue for the continuous enzymatic degradation of phenolic compounds in industrial wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Genome-Wide Identification and Characterization of Novel Laccase Genes in the White-Rot Fungus Flammulina velutipes

    PubMed Central

    Kim, Hong-Il; Kwon, O-Chul; Kong, Won-Sik; Lee, Chang-Soo

    2014-01-01

    The aim of this study was to identify and characterize new Flammulina velutipes laccases from its whole-genome sequence. Of the 15 putative laccase genes detected in the F. velutipes genome, four new laccase genes (fvLac-1, fvLac-2, fvLac3, and fvLac-4) were found to contain four complete copper-binding regions (ten histidine residues and one cysteine residue) and four cysteine residues involved in forming disulfide bridges, fvLac-1, fvLac-2, fvLac3, and fvLac-4, encoding proteins consisting of 516, 518, 515, and 533 amino acid residues, respectively. Potential N-glycosylation sites (Asn-Xaa-Ser/Thr) were identified in the cDNA sequence of fvLac-1 (Asn-454), fvLac-2 (Asn-437 and Asn-455), fvLac-3 (Asn-111 and Asn-237), and fvLac4 (Asn-402 and Asn-457). In addition, the first 19~20 amino acid residues of these proteins were predicted to comprise signal peptides. Laccase activity assays and reverse transcription polymerase chain reaction analyses clearly reveal that CuSO4 affects the induction and the transcription level of these laccase genes. PMID:25606003

  10. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation

    PubMed Central

    Karp, Susan Grace; Faraco, Vincenza; Amore, Antonella; Letti, Luiz Alberto Junior; Thomaz Soccol, Vanete; Soccol, Carlos Ricardo

    2015-01-01

    Laccases are oxidative enzymes related to the degradation of phenolic compounds, including lignin units, with concomitant reduction of oxygen to water. Delignification is a necessary pretreatment step in the process of converting plant biomass into fermentable sugars. The objective of this work was to optimize the production of laccases and to evaluate the delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. Among eight variables (pH, water activity, temperature, and concentrations of CuSO4, (NH4)2SO4, KH2PO4, asparagine, and yeast extract), copper sulfate and ammonium sulfate concentrations were demonstrated to significantly influence laccase production. The replacement of ammonium sulfate by yeast extract and the addition of ferulic acid as inducer provided increases of 5.7- and 2.0-fold, respectively, in laccase activity. Optimization of laccase production as a function of yeast extract, copper sulfate, and ferulic acid concentrations was performed by response surface methodology and optimal concentrations were 6.4 g/L, 172.6 μM, and 1.86 mM, respectively. Experimentally, the maximum laccase activity of 151.6 U/g was produced at the 5th day of solid-state fermentation. Lignin content in sugarcane bagasse was reduced from 31.89% to 26.36% after 5 days and to 20.79% after 15 days by the biological treatment of solid-state fermentation. PMID:26180784

  11. [Induce of laccase from Trametes gallica and its degradation on neutral dyes and organophosphorus pesticides].

    PubMed

    Jing, De-Jun; Huang, Jian-Bo; Yang, Zhou-Ping; Hu, Rong; Cheng, Zi-Zhang; Huang, Qian-Ming

    2011-12-01

    The characteristics of the induction of laccase in Trametes gallica under different initial cultural pH, incubation time by different inducers were discussed, as well as the effects of temperature, pH and time on laccase degradation of six dyes and four organophosphors. The results showed that RB-bright blue, ABTS and o-toluidine affected the production of laccase at different levels, and ABTS was the best inductive agent in our test conditions, whose optimal initial pH and incubation time were 4.0 and 13 days, respectively. The appropriate reaction temperature of the laccase produced was 38 degrees C, and it got a good stability, for it could retain 78.6% of the enzyme activity after 20 min holding at 40 degrees C. Mediated by ABTS, the optimal temperature for laccase to degrade the six types of neutral dyes could be divided into two cases, that was 30 degrees C (neutral black, neutral bordeaux, neutral pink, methyl orange) and 60 degrees C (neutral dark yellow, cresol red), the optimal pH were 6.0 (neutral black), 2.0 (neutral bordeaux, neutral pink) and 4.0 (methyl orange, neutral dark yellow, cresol red), respectively, while the optimal times separately were 6 h (methyl orange, neutral dark yellow, cresol red), 12 h (neutral pink) and 24 h (neutral bordeaux). And using the same inductive agent, the best temperature for laccase to degrade dimethoate, chlorpyrifos, trichlorfon and parathion-pyridazine was 25 degrees C, the suitable time was 9 h, and the optimal pH was 10.0 for dimethoate, chlorpyrifos and parathion-pyridazine, and 8.0 for trichlorfon.

  12. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting

    NASA Astrophysics Data System (ADS)

    Dong, Aixue; Yu, Yuanyuan; Yuan, Jiugang; Wang, Qiang; Fan, Xuerong

    2014-05-01

    Jute fiber is a lignocellulosic material which could be utilized for reinforcement of composites. To improve the compatibility of hydrophilic jute fiber with hydrophobic resin, surface hydrophobization of the fiber is often needed. In this study, the feasibility of laccase-mediated grafting dodecyl gallate (DG) on the jute fiber was investigated. First, the grafting products were characterized by FT-IR, XPS, SEM and AFM. And then the grafting percentage (Gp) and the DG content of the modified jute were determined in terms of weighting and saponification, respectively. The parameters of the enzymatic grafting process were optimized to the target application. Lastly, the hydrophobicity of the jute fabrics was estimated by means of contact angle and wetting time. The mechanical properties and the fracture section of the jute fabric/polypropylene (PP) composites were studied. The results revealed covalently coupling of DG to the jute substrates mediated by laccase. The enzymatic process reached the maximum grafting rate of 4.16% when the jute fabric was incubated in the 80/20 (v/v, %) pH 3 0.2 M acetate buffer/ethanol medium with 1.0 U/mL laccase and 5 mM DG at 50 °C for 4 h. The jute fabric modified with laccase and DG showed increased contact angle of 111.49° and wetting time of at least 30 min, indicating that the surface hydrophobicity of the jute fabric was increased after the enzymatic graft modification with hydrophobic DG. The breaking strength of the modified jute fiber/PP composite was also increased and the fracture section became neat and regular due to the laccase-assisted grafting with DG.

  13. Fabrication, characterization and application of laccase-nylon 6,6/Fe3+ composite nanofibrous membrane for 3,3'-dimethoxybenzidine detoxification.

    PubMed

    Jasni, M Jasmin Fathi; Sathishkumar, Palanivel; Sornambikai, Sundaram; Yusoff, Abdull Rahim Mohd; Ameen, Fuad; Buang, Nor Aziah; Kadir, Mohammed Rafiq Abdul; Yusop, Zulkifli

    2017-02-01

    In this study, laccase was immobilized on nylon 6,6/Fe 3+ composite (NFC) nanofibrous membrane and used for the detoxification of 3,3'-dimethoxybenzidine (DMOB). The average size and tensile strength of the NFC membrane were found to be 60-80 nm (diameter) and 2.70 MPa, respectively. The FTIR results confirm that the amine (N-H) group of laccase was attached with Fe 3+ particles and the carbonyl (C=O) group of NFC membrane via hydrogen bonding. The half-life of the laccase-NFC membrane storage stability was increased from 6 to 11 weeks and the reusability was significantly extended up to 43 cycles against ABTS oxidation. Enhanced electro-oxidation of DMOB by laccase was observed at 0.33 V and the catalytic current was found to be 30 µA. The DMOB-treated mouse fibroblast 3T3-L1 preadipocytes showed maximum (97 %) cell inhibition at 75 µM L -1 within 24 h. The cytotoxicity of DMOB was significantly decreased to 78 % after laccase treatment. This study suggests that laccase-NFC membrane might be a good candidate for emerging pollutant detoxification.

  14. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments.

    PubMed

    Chenthamarakshan, Aiswarya; Parambayil, Nayana; Miziriya, Nafeesathul; Soumya, P S; Lakshmi, M S Kiran; Ramgopal, Anala; Dileep, Anuja; Nambisan, Padma

    2017-02-13

    Fungal laccase has profound applications in different fields of biotechnology due to its broad specificity and high redox potential. Any successful application of the enzyme requires large scale production. As laccase production is highly dependent on medium components and cultural conditions, optimization of the same is essential for efficient product production. Production of laccase by fungal strain Marasmiellus palmivorus LA1 under solid state fermentation was optimized by the Taguchi design of experiments (DOE) methodology. An orthogonal array (L8) was designed using Qualitek-4 software to study the interactions and relative influence of the seven selected factors by one factor at a time approach. The optimum condition formulated was temperature (28 °C), pH (5), galactose (0.8%w/v), cupric sulphate (3 mM), inoculum concentration (number of mycelial agar pieces) (6Nos.) and substrate length (0.05 m). Overall yield increase of 17.6 fold was obtained after optimization. Statistical optimization leads to the elimination of an insignificant medium component ammonium dihydrogen phosphate from the process and contributes to a 1.06 fold increase in enzyme production. A final production of 667.4 ± 13 IU/mL laccase activity paves way for the application of this strain for industrial applications. Study optimized lignin degrading laccases from Marasmiellus palmivorus LA1. This laccases can thus be used for further applications in different scales of production after analyzing the properties of the enzyme. Study also confirmed the use of taguchi method for optimizations of product production.

  15. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    PubMed

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  16. Laccase catalyzed elimination of morphine from aqueous systems.

    PubMed

    Huber, Daniela; Bleymaier, Klaus; Pellis, Alessandro; Vielnascher, Robert; Daxbacher, Andreas; Greimel, Katrin J; Guebitz, Georg M

    2018-05-25

    Pharmaceuticals contaminate the environment for several reasons, including metabolic excretion after intake, industrial waste and improper disposal. The narcotic drug morphine is commonly utilized for chronic pain management, and the distribution of morphine in aqueous systems and in waste waters is of high concern. Here, the removal of morphine by a laccase from Myceliophthora thermophila both in its free form as well as immobilized on Accurel MP1000 beads was investigated. Complete morphine elimination was achieved within 30 min for the free and the immobilized enzyme (70% bound protein) for concentrations between 1 and 1,000 mg L -1 according to LC-TOF mass spectrometry analysis. Higher morphine concentrations up to 60 g L -1 were also tested and total elimination was achieved within 6 h. Therefore, laccases are ideal candidates for removing morphine from aqueous systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures.

    PubMed

    Darvishi, Farshad; Moradi, Marzieh; Madzak, Catherine; Jolivalt, Claude

    2017-03-01

    Laccases are used in numerous applications, from green degradation of various xenobiotic compounds, waste detoxification, textile dye bleaching, and delignification of lignocellulose materials to biofuel production. In this study, the recombinant Yarrowia lipolytica YL4 strain carrying the white-rot fungus Trametes versicolor laccase IIIb gene was used for laccase production from beet molasses as an agro-industrial residue. Response surface methodology was used to statistical optimization of the production of laccase by Y. lipolytica using an industrial medium containing molasses which allows a six times increase in laccase activity compared to primary medium contains glucose after 144 h. In bioreactor cultivation after 48 h, laccase production reached to 3.7- and 22.5-fold more than optimized and primary media in shake-flask cultures, respectively. Laccase productivity in bioreactor (0.0937 U/h) was higher than shake-flask culture (0.0084 U/h). The present study provides valuable information about statistical optimization of bioprocess development for cost-effective production of laccase and other heterologous proteins in Y. lipolytica from beet molasses as sole carbon source, thus allowing the valorization and decreasing environmental pollution of this agro-industrial waste.

  18. Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns.

    PubMed

    Shameer, Syed

    2016-12-01

    Extracellular Polysaccharides (EPS) from both prokaryotes and eukaryotes have a great deal of research interest as they protect the producer from different stresses including antibiotics, ionic stress, desiccation and assist in bio-film formation, pathogenesis, adhesion, etc. In this study haloalkaliphilic Bacillus sp., known to cope with osmophilic stress, was selected and screened for EPS production. The EPS were isolated, partially purified and chemical characteristics were documented using liquid FT-IR followed by assessment of heavy metal biosorption (lead, copper and cadmium) using Atomic Absorption Spectroscopy (AAS). The EPS extracted from three isolates B. licheniformis NSPA5, B. cereus NSPA8 and B. subtilis NSPA13 showed maximum biosorption of Lead followed by Copper and Cadmium. Of the tested isolates, the EPS from isolate B. cereus NSPA8 showed maximum (90 %) biosorption of the lead.

  19. Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification.

    PubMed

    Hernández, Christian; Farnet Da Silva, Anne-Marie; Ziarelli, Fabio; Perraud-Gaime, Isabelle; Gutiérrez-Rivera, Beatriz; García-Pérez, José Antonio; Alarcón, Enrique

    2017-02-01

    The use of synthetic dyes for laccase induction in vivo has been scarcely explored. We characterized the effect of adding different synthetic dyes to liquid cultures of Pycnoporus sanguineus on laccase production. We found that carminic acid (CA) can induce 722 % and alizarin yellow 317 % more laccase than control does, and they promoted better fungal biomass development in liquid cultures. Aniline blue and crystal violet did not show such positive effect. CA and alizarin yellow were degraded up to 95 % during P. sanguineus culturing (12 days). With this basis, CA was selected as the best inducer and used to evaluate the induction of laccase on solid-state fermentation (SSF), using sugarcane bagasse (SCB) as substrate, in an attempt to reach selective delignification. We found that laccase induction occurred in SSF, and a slight inhibition of cellulase production was observed when CA was added to the substrate; also, a transformation of SCB under SSF was followed by the 13 C cross polarization magic angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). Results showed that P. sanguineus can selectively delignify SCB, decreasing aromatic C compounds by 32.67 % in 16 days; O-alkyl C region (polysaccharides) was degraded less than 2 %; delignification values were not correlated with laccase activities. Cellulose-crystallinity index was increased by 27.24 % in absence of CA and 15.94 % when 0.01 mM of CA was added to SCB; this dye also inhibits the production of fungal biomass in SSF (measured as alkyl C gain). We conclude that CA is a good inducer of laccase in liquid media, and that P. sanguineus is a fungus with high potential for biomass delignification.

  20. A Laccase with Antiproliferative and HIV-I Reverse Transcriptase Inhibitory Activities from the Mycorrhizal Fungus Agaricus placomyces

    PubMed Central

    Sun, Jian; Chen, Qing-Jun; Cao, Qing-Qin; Wu, Ying-Ying; Xu, Li-Jing; Zhu, Meng-Juan; Ng, Tzi-Bun; Wang, He-Xiang; Zhang, Guo-Qing

    2012-01-01

    A novel 68 kDa laccase was purified from the mycorrhizal fungus Agaricus placomyces by utilizing a procedure that comprised three successive steps of ion exchange chromatography and gel filtration as the final step. The monomeric enzyme exhibited the N-terminal amino acid sequence of DVIGPQAQVTLANQD, which showed only a low extent of homology to sequences of other fungal laccases. The optimal temperature for A. placomyces laccase was 30°C, and optimal pH values for laccase activity towards the substrates 2,7′-azinobis[3-ethylbenzothiazolone-6-sulfonic acid] diammonium salt (ABTS) and hydroquinone were 5.2 and 6.8, respectively. The laccase displayed, at 30°C and pH 5.2, Km values of 0.392 mM towards hydroquinone and 0.775 mM towards ABTS. It potently suppressed proliferation of MCF 7 human breast cancer cells and Hep G2 hepatoma cells and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity with an IC50 of 1.8 μM, 1.7 μM, and 1.25 μM, respectively, signifying that it is an antipathogenic protein. PMID:23093860

  1. Performance of an alkalophilic and halotolerant laccase from gamma-proteobacterium JB in the presence of industrial pollutants.

    PubMed

    Singh, Gursharan; Sharma, Prince; Capalash, Neena

    2009-08-01

    An alkalophilic and halotolerant laccase from gamma-proteobacterium JB catalyzed in high concentrations of organic solvents and various salts. The enzyme retained 80-100% activity in 10% concentration of dimethylsulfoxide (DMSO), ethanol, acetone or methanol; 100, 85 and 50% activity in 20 mM MgCl(2), 5.0 mM MnCl(2) and 0.1 mM CuCl(2); 140, 120 and 110% activity in 5.0 mM MnSO(4), 10 mM MgSO(4) and 1mM CaSO(4), respectively. Sodium halides inhibited the enzyme in the order: F(-)> Br(-)> I(-)> Cl(-). In 0.5 M NaCl, pH 6.0, laccase was approximately 60% active. Decolorization of indigo carmine by laccase at pH 9.0 was not inhibited even in the presence of 0.5 M NaCl. Release of chromophoric, reducing and hydrophobic compounds during biobleaching of straw rich-soda pulp by laccase was not inhibited when the enzyme was applied in the presence of 1 M NaCl at pH 8.0. Laccase retained 50% residual activity even when incubated with 5% calcium hypochlorite for 30 min.

  2. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts

    PubMed Central

    De Fine Licht, Henrik H.; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J.

    2013-01-01

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non–leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya. PMID:23267060

  3. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  4. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    PubMed

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Laccase-catalyzed α-arylation of benzoylacetonitrile with substituted hydroquinones

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2014-09-03

    This article investigates a green method for α-arylation of a primary nitrile. Compounds possessing a benzylic nitrile have shown to exhibit biological activity. Laccases (benzenediol:oxygen oxidoreductase EC 1.10.3.2) were used as the catalysts to perform the cross-coupling reaction between benzoylacetonitrile and substituted hydroquinones. The corresponding 2-substituted 3-oxo-3-phenylpropanenitriles where synthesized in moderate to excellent yields in pH 7.0 buffered water under mild conditions. The substituent on the hydroquinone had a significant impact on product yields and regioselectivity of reaction. The use of laccases, which require O 2 as their only co-substrate and produce H 2O as their only by-product, to performmore » this transformation is an environmentally benign method for α-arylation of primary nitriles.« less

  6. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.

    PubMed

    González, Tania; Terrón, María Carmen; Yagüe, Susana; Junca, Howard; Carbajo, José María; Zapico, Ernesto Javier; Silva, Ricardo; Arana-Cuenca, Ainhoa; Téllez, Alejandro; González, Aldo Enrique

    2008-03-01

    Wastewaters generated from the production of ethanol from sugar cane molasses may have detrimental effects on the environment due to their high chemical oxygen demand and dark brown color. The color is mainly associated with the presence of melanoidins, which are highly recalcitrant to biodegradation. We report here the induction of laccases by molasses wastewaters and molasses melanoidins in the basidiomycetous fungus Trametes sp. I-62. The time course of effluent decolorization and laccase activity in the culture supernatant of the fungus were correlated. The expression of laccase genes lcc1 and lcc2 increased as a result of the addition of complete molasses wastewater and its high molecular weight fraction to fungal cultures. This is the first time differential laccase gene expression has been reported to occur upon exposure of fungal cultures to molasses wastewaters and their melanoidins.

  7. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less

  8. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release

    DOE PAGES

    Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; ...

    2016-04-15

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less

  9. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. On the diversity of the laccase gene: a phylogenetic perspective from Botryosphaeria rhodina (Ascomycota: Fungi) and other related taxa.

    PubMed

    Castilho, Flávio J D; Torres, Rodrigo A; Barbosa, Aneli M; Dekker, Robert F H; Garcia, José E

    2009-02-01

    The present study is the first describing the sequencing of a fragment of the copper-oxidase domain of a laccase gene in the family Botryosphaeriaceae. The aim of this work was to assess the degree of genetic and evolutionary relationships of a laccase gene from Botryosphaeria rhodina MAMB-05 with other ascomycete and basidiomycete laccase genes. The 193-amino acid sequences of the copper-oxidase domain from several different fungi, insects, a plant, and a bacterial species were retrieved from GenBank and aligned. Phylogenetic analyses were performed using neighbor-joining, maximum parsimony, and Bayesian inference methods. The organisms studied clustered into five gene clades: fungi (ascomycetes and basidiomycetes), insects, plants, and bacteria. Also, the topologies showed that fungal laccases of the ascomycetes and basidiomycetes are clearly separated into two distinct clusters. This evidence indicated that B. rhodina MAMB-05 and other closely related ascomycetes are a new biological resource given the biotechnological potential of their laccase genes.

  11. Crystallization and preliminary X-ray diffraction analysis of the small laccase from Streptomyces coelicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skálová, Tereza, E-mail: skalova@imc.cas.cz; Dohnálek, Jan; Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Praha 6

    2007-12-01

    The expression, purification and crystallization of the small laccase from S. coelicolor are reported. Diffraction data were collected to 3 Å resolution. The small bacterial laccase from the actinobacterium Streptomyces coelicolor which lacks the second of the three domains of the laccases structurally characterized to date was crystallized. This multi-copper phenol oxidase crystallizes in a primitive tetragonal lattice, with unit-cell parameters a = b = 179.8, c = 175.3 Å. The crystals belong to either space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. The self-rotation function shows the presence of a noncrystallographic threefold axis in the structure. Phases willmore » be determined from the anomalous signal of the natively present copper ions.« less

  12. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its Application on Dye Decolorization.

    PubMed

    Sun, Jiao; Guo, Na; Niu, Li-Li; Wang, Qing-Fang; Zang, Yu-Ping; Zu, Yuan-Gang; Fu, Yu-Jie

    2017-04-23

    The present study was conducted to screen a laccase-producing fungal endophyte, optimize fermentation conditions, and evaluate the decolorization ability of the laccase. A new fungal endophyte capable of laccase-producing was firstly isolated from pigeon pea and identified as Myrothecium verrucaria based on a ITS-rRNA sequences analysis. Meanwhile, various fermentation parameters on the laccase production were optimized via response surface methodology (RSM). The optimal fermentation conditions were a fermentation time of five days, temperature 30 °C and pH 6.22. Laccase activity reached 16.52 ± 0.18 U/mL under the above conditions. Furthermore, the laccase showed effective decolorization capability toward synthetic dyes (Congo red, Methyl orange, Methyl red, and Crystal violet) in the presence of the redox mediator ABTS, with more than 70% of dyes decolorizing after 24 h of incubation. Additionally, the activity of laccase was relatively stable with pH (4.5-6.5) and a temperature range of 35-55 °C. Therefore, the high laccase production of the strain and the new fungal laccase could provide a promising alterative approach for industrial and environmental applications.

  13. Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature.

    PubMed

    Awasthi, Mukesh Kumar; Wong, Jonathan W C; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Zhang, Zengqiang

    2018-01-01

    The aim of this work was to study the biodegradation of food waste employing thermostable α-amylase and cellulase enzymes producing bacteria. Four potential isolates were identified which were capable of producing maximum amylase and cellulase and belong to the amylolytic strains, Brevibacillus borstelensis and Bacillus licheniformis; cellulolytic strains, Bacillus thuringiensis and Bacillus licheniformis, respectively. These strains were selected based on its higher cell density, enzymatic activities and stability at a wide range of pH and temperature compared to other strains. The results indicated that 1:1 ratio of pre and post consumed food wastes (FWs) were helpful to facilitate the degradation employing bacterial consortium. In addition, organic matter decomposition and chemical parameters of the end product quality also indicated that bacterial consortium was very effective for 1:1 ratio of FWs degradation as compared to the other treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nucleus-Selective Expression of Laccase Genes in the Dikaryotic Strain of Lentinula edodes.

    PubMed

    Ha, Byeongsuk; Lee, Sieun; Kim, Sinil; Kim, Minseek; Moon, Yoon Jung; Song, Yelin; Ro, Hyeon-Su

    2017-12-01

    In mating of Lentinula edodes , dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes , suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons.

  15. Nucleus-Selective Expression of Laccase Genes in the Dikaryotic Strain of Lentinula edodes

    PubMed Central

    Ha, Byeongsuk; Lee, Sieun; Kim, Sinil; Kim, Minseek; Moon, Yoon Jung; Song, Yelin

    2017-01-01

    In mating of Lentinula edodes, dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes, suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons. PMID:29371806

  16. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.

    PubMed

    Sitarz, Anna K; Mikkelsen, Jørn D; Højrup, Peter; Meyer, Anne S

    2013-12-10

    Based on a differential pre-screening of 44 white-rot fungi on a lignocellulose-supplemented minimal medium, four basidiomycetes were selected for further study: Ganoderma lucidum, Polyporus brumalis, Polyporus ciliatus and Trametes versicolor. Only G. lucidum was able to grow vividly on malt extract or minimal media supplemented with alkali lignin. When grown on malt extract or minimal medium supplemented with lignocellulose (sugar cane bagasse), the crude G. lucidum protein extract exhibited high laccase activity, ∼3U/mL toward syringaldazine. This activity was 13-17 fold higher than the corresponding activities of the crude protein extracts of P. brumalis, P. ciliatus and T. versicolor. Native PAGE electrophoresis of the crude G. lucidum extract confirmed the presence of an active laccase. The G. lucidum laccase had a molecular weight of ∼62.5kDa, and a Km value of 0.107mM (determined on ABTS). A partial amino acid sequence analysis of four short de novo sequenced peptides, defined after trypsin digest analysis using MALDI-TOF MS/MS analysis, revealed 64-100% homology to sequences in related laccases in the UniProt database, but also indicated that certain sequence stretches had low homology. Addition of the laccase-rich G. lucidum broth to lignocellulosic biomass (pretreated sugar cane bagasse) together with a state-of-the-art cellulase enzyme preparation (Cellic™CTec1) produced significantly increased cellulolytic yields, which were also better than those obtained with a T. versicolor laccase addition, indicating that the laccase from G. lucidum has unique properties that may be momentous in lignocellulosic biomass conversion. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Laccase and lectin activities of intracellular proteins produced in a submerged culture of the xylotrophic basidiomycete Lentinus edodes.

    PubMed

    Vetchinkina, Elena P; Pozdnyakova, Natalia N; Nikitina, Valentina E

    2008-10-01

    The white-rot fungus Lentinus edodes produced D-melibiose-specific lectins and two laccase forms in a lignin-containing medium. The maxima of laccase and lectin activities coincided, falling within the period of active mycelial growth. The enzymes and lectins were isolated and purified by gel filtration followed by anion-exchange chromatography. The L. edodes lectins were found to be able to stabilize the activity of the fungus's own laccases. Lectin activity during the formation of lectin-enzyme complexes remained unchanged.

  18. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development

    PubMed Central

    Balasubramanian, Vimal Kumar; Rai, Krishan Mohan; Thu, Sandi Win; Hii, Mei Mei; Mendu, Venugopal

    2016-01-01

    The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality. PMID:27679939

  19. Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A.

    PubMed

    Zhao, Jie; Zeng, Shengquan; Xia, Ying; Xia, Liming

    2018-04-01

    The laccase gene from Pycnoporus sanguineus was cloned and inserted between the strong Pcbh1 promoter and the Tcbh1 terminator from Trichoderma reesei to form the recombinant plasmid pCH-lac. Using Agrobacterium-mediated technique, the pCH-lac was integrated into the chromosomes of T. reesei. Twenty positive transformants were obtained by employing hygromycin B as a selective agent. PCR was used to confirm that the laccase gene was integrated into the chromosomal DNA of T. reesei. Laccase production by recombinant transformants was performed in shaking flasks, and the activity of laccase reached 8.8 IU/mL after 96-h fermentation under a batch process, and 17.7 IU/mL after 144-h fermentation using a fed-batch process. SDS-PAGE analysis of the fermentation broth showed that the molecular mass of the protein was about 68 kDa, almost the same as that of the laccase produced by P. sanguineus, which indicated that laccase was successfully expressed in T. reesei and secreted out of the cells. The laccase produced by the recombinant T. reesei showed good thermal stability, and could degrade the toxic phenolic material bisphenol A efficiently, after 1-h reaction with 0.06 IU/mL laccase and 0.5 mmol/L ABTS as the mediator at 60 °C and pH 4.5, the degradation rate reached 95%, which demonstrated that it had great potential value in treating the household garbage and wastewater containing the bisphenol A. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases.

    PubMed

    Ulčnik, A; Kralj Cigić, I; Pohleven, F

    2013-12-01

    The ability of two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and one brown-rot fungus (Gloeophyllum trabeum) to degrade two organochlorine insecticides, lindane and endosulfan, in liquid cultures was studied and dead fungal biomass was examined for adsorption of both insecticides from liquid medium. Lindane and endosulfan were also treated with fungal laccase and bacterial protein CotA, which has laccase activities. The amount of degraded lindane and endosulfan increased with their exposure period in the liquid cultures of both examined white-rot fungi. Endosulfan was transformed to endosulfan sulphate by T. versicolor and P. ostreatus. A small amount of endosulfan ether was also detected and its origin was examined. Degradation of lindane and endosulfan by a brown rot G. trabeum did not occur. Mycelial biomasses of all examined fungi have been found to adsorb lindane and endosulfan and adsorption onto fungal biomass should therefore be considered as a possible mechanism of pollutant removal when fungal degradation potentials are studied. Bacterial protein CotA performed more efficient degradation of lindane and endosulfan than fungal laccase and has shown potential for bioremediation of organic pollutants.

  1. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    PubMed

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1) LacA, 109.9 mg L(-1) MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1), respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  2. Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism

    PubMed Central

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL-1 LacA, 109.9 mg L-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s-1, respectively. UV–visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography–mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  3. Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures

    PubMed Central

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G.; Faraco, Vincenza; Amore, Antonella

    2012-01-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  4. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.

    PubMed

    Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L

    2007-12-01

    In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.

  5. Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063.

    PubMed

    Mainardi, Pedro H; Feitosa, Valker A; Brenelli de Paiva, Livia B; Bonugli-Santos, Rafaella C; Squina, Fabio M; Pessoa, Adalberto; Sette, Lara D

    2018-05-01

    Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. LACCASE Is Necessary and Nonredundant with PEROXIDASE for Lignin Polymerization during Vascular Development in Arabidopsis[C][W

    PubMed Central

    Zhao, Qiao; Nakashima, Jin; Chen, Fang; Yin, Yanbin; Fu, Chunxiang; Yun, Jianfei; Shao, Hui; Wang, Xiaoqiang; Wang, Zeng-Yu; Dixon, Richard A.

    2013-01-01

    The evolution of lignin biosynthesis was critical in the transition of plants from an aquatic to an upright terrestrial lifestyle. Lignin is assembled by oxidative polymerization of two major monomers, coniferyl alcohol and sinapyl alcohol. Although two recently discovered laccases, LAC4 and LAC17, have been shown to play a role in lignin polymerization in Arabidopsis thaliana, disruption of both genes only leads to a relatively small change in lignin content and only under continuous illumination. Simultaneous disruption of LAC11 along with LAC4 and LAC17 causes severe plant growth arrest, narrower root diameter, indehiscent anthers, and vascular development arrest with lack of lignification. Genome-wide transcript analysis revealed that all the putative lignin peroxidase genes are expressed at normal levels or even higher in the laccase triple mutant, suggesting that lignin laccase activity is necessary and nonredundant with peroxidase activity for monolignol polymerization during plant vascular development. Interestingly, even though lignin deposition in roots is almost completely abolished in the lac11 lac4 lac17 triple mutant, the Casparian strip, which is lignified through the activity of peroxidase, is still functional. Phylogenetic analysis revealed that lignin laccase genes have no orthologs in lower plant species, suggesting that the monolignol laccase genes diverged after the evolution of seed plants. PMID:24143805

  7. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    PubMed

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  8. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    PubMed Central

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  9. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology

    PubMed Central

    Nandal, Preeti; Ravella, Sreenivas Rao; Kuhad, Ramesh Chander

    2013-01-01

    Laccase production by Coriolopsis caperata RCK2011 under solid state fermentation was optimized following Taguchi design of experiment. An orthogonal array layout of L18 (21 × 37) was constructed using Qualitek-4 software with eight most influensive factors on laccase production. At individual level pH contributed higher influence, whereas, corn steep liquor (CSL) accounted for more than 50% of the severity index with biotin and KH2PO4 at the interactive level. The optimum conditions derived were; temperature 30°C, pH 5.0, wheat bran 5.0 g, inoculum size 0.5 ml (fungal cell mass = 0.015 g dry wt.), biotin 0.5% w/v, KH2PO4 0.013% w/v, CSL 0.1% v/v and 0.5 mM xylidine as an inducer. The validation experiments using optimized conditions confirmed an improvement in enzyme production by 58.01%. The laccase production to the level of 1623.55 Ugds−1 indicates that the fungus C. caperata RCK2011 has the commercial potential for laccase. PMID:23463372

  10. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    PubMed

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  11. Kinetic evidence for the interactive inhibition of laccase from Trametes versicolor by pH and chloride.

    PubMed

    Raseda, Nasrin; Hong, Soonho; Kwon, O Yul; Ryu, Keungarp

    2014-12-28

    The interactive inhibitory effects of pH and chloride on the catalysis of laccase from Trametes versicolor were investigated by studying the alteration of inhibition characteristics of sodium chloride at different pHs for the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). At pH 3.0, the addition of sodium chloride (50 mM) brought about a 40-fold increase in Km(app) and a 4-fold decrease in Vmax(app). As the pH increased to 7.0, the inhibitory effects of sodium chloride became significantly weakened. The mixed-inhibition mechanism was successfully used to quantitatively estimate the competitive and uncompetitive inhibition strengths by chloride at two different pHs (pH 3.0 and 6.0). At pH 3.0, the competitive inhibition constant, Ki, was 0.35 mM, whereas the uncompetitive inhibition constant, Ki', was 18.1 mM, indicating that the major cause of the laccase inhibition by chloride is due to the competitive inhibition step. At a higher pH of 6.0, where the inhibition of the laccase by hydroxide ions takes effect, the inhibition of the laccase by chloride diminished to a great extent, showing increased values of both the competitive inhibition constant (Ki= 23.7 mM) and uncompetitive inhibition constant (Ki' = 324 mM). These kinetic results evidenced that the hydroxide anion and chloride share a common mechanism to inhibit the laccase activity.

  12. New potential biocatalysts by laccase immobilization in PVA Cryogel type carrier.

    PubMed

    Stanescu, Michaela Dina; Fogorasi, Magdalena; Shaskolskiy, Boris L; Gavrilas, Simona; Lozinsky, Vladimir I

    2010-04-01

    Laccases are enzymes belonging to the Oxidoreductases class. These enzymes may be good biocatalysts for different processes, at laboratory and industrial levels. A successful use at industrial scale demands a higher stability of the enzyme. As an easy way to obtain longer life biocatalysts, the immobilization process is recommended. Thus, the paper presents different ways of obtaining new biocatalysts by a laccase covalent immobilization on a macroporous carrier based on poly(vinyl alcohol) cryogel. Different procedures of covalent immobilization are described, the newly obtained biocatalysts being characterized. According to the experimental data, the stability of the immobilized enzyme increased and the pH profile changed, compared with those of the free enzyme.

  13. Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes.

    PubMed

    Li, Qi; Ge, Lin; Cai, Junli; Pei, Jianjun; Xie, Jingcong; Zhao, Linguo

    2014-04-01

    It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and (NH4)2SO4 precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and 55°C with 2,2'-azino-bis-[3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and 60°C. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a Vmax value of 51.28 U/mg, and the Km and Vmax values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.

  14. Hybrid biobattery based on arylated carbon nanotubes and laccase.

    PubMed

    Stolarczyk, Krzysztof; Sepelowska, Małgorzata; Lyp, Dominika; Zelechowska, Kamila; Biernat, Jan F; Rogalski, Jerzy; Farmer, Kevin D; Roberts, Ken N; Bilewicz, Renata

    2012-10-01

    Single-walled carbon nanotubes (SWCNT) were covalently modified with anthracene and anthraquinone and used for the construction of cathodes for biocatalytic reduction of dioxygen. The nanotubes with aromatic groups casted onto the electrode increased the working surface of the electrode and enabled efficient direct electron transfer (DET) between the enzyme and the electrode. The aryl groups enter the hydrophobic pocket of the T1 center of laccase responsible for exchanging electrons with the substrate. Glassy carbon electrode covered with arylated SWCNT and coated with a layer of neutralized Nafion containing laccase was found to be a very efficient cathode in the hybrid battery. Zn wire covered with a Nafion film served as the anode. The cell parameters were determined: power density was 2 mW/cm(2) and the open circuit potential was 1.5 V. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Production of laccase by Coriolus versicolor and its application in decolorization of dyestuffs: (II). Decolorization of dyes by laccase containing fermentation broth with or without self-immobilized mycelia.

    PubMed

    Lin, Jian-Ping; Lian, Wei; Xia, Li-Ming; Cen, Pei-Lin

    2003-01-01

    The capability of decolorization for commercial dyes by Coriolus versicolor fermentation broth containing laccase with or without immobilized mycelium was evaluated. With cell-free fermentation broth containing laccase, high decolorization ratio was achieved foracid orange 7, but not for the other dyes concerned. The immobilized mycelium was proved to be more efficient than the cell-free system. All the four dyestuffs studied were found being decolourized with certain extent by immobilized mycelium. The repeated-batch decolorization was carried out with satisfactory results. The experimental data showed that the continuous decolorization of wastewater from a printing and dyeing industry was possible by using the self-immobilized C. versicolor.

  16. Peptide/laccase cocatalyzed asymmetric α-oxyamination of aldehydes.

    PubMed

    Akagawa, Kengo; Kudo, Kazuaki

    2011-07-01

    An asymmetric α-oxyamination could be successfully performed by a peptide catalyst and laccase. The combination of peptide catalysis and enzymatic air oxidation promoted the reaction smoothly in water without employing a metal reagent. The oxyaminated compounds could be obtained as both aldehyde and carboxylic acid products depending on the reaction conditions.

  17. Laccase immobilization and insolubilization: from fundamentals to applications for the elimination of emerging contaminants in wastewater treatment.

    PubMed

    Ba, Sidy; Arsenault, Alexandre; Hassani, Thanina; Jones, J Peter; Cabana, Hubert

    2013-12-01

    Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.

  18. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.

    PubMed

    Fang, Zemin; Li, Tongliang; Wang, Quan; Zhang, Xuecheng; Peng, Hui; Fang, Wei; Hong, Yuzhi; Ge, Honghua; Xiao, Yazhong

    2011-02-01

    Laccases are blue multicopper oxidases with potential applications in environmental and industrial biotechnology. In this study, a new bacterial laccase gene of 1.32 kb was obtained from a marine microbial metagenome of the South China Sea by using a sequence screening strategy. The protein (named as Lac15) of 439 amino acids encoded by the gene contains three conserved Cu(2+)-binding domains, but shares less than 40% of sequence identities with all of the bacterial multicopper oxidases characterized. Lac15, recombinantly expressed in Escherichia coli, showed high activity towards syringaldazine at pH 6.5-9.0 with an optimum pH of 7.5 and with the highest activity occurring at 45 °C. Lac15 was stable at pH ranging from 5.5 to 9.0 and at temperatures from 15 to 45 °C. Distinguished from fungal laccases, the activity of Lac15 was enhanced twofold by chloride at concentrations lower than 700 mM, and kept the original level even at 1,000 mM chloride. Furthermore, Lac15 showed an ability to decolorize several industrial dyes of reactive azo class under alkalescent conditions. The properties of alkalescence-dependent activity, high chloride tolerance, and dye decolorization ability make the new laccase Lac15 an alternative for specific industrial applications.

  19. Mediator-assisted decolorization and detoxification of textile dyes/dye mixture by Cyathus bulleri laccase.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, T R

    2008-12-01

    Laccase from basidiomycete fungus Cyathus bulleri was evaluated for its ability to decolorize a number of reactive and acidic dyes in the presence of natural and synthetic mediators. The extent of decolorization was monitored at different mediator/dye concentrations and incubation time. Among the synthetic mediators, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was effective at low mediator/dye ratios and resulted in 80-95% decolorization at rates that varied from 226 +/- 4 nmol min(-1) mg(-1) for Reactive Orange 1 to 1,333 +/- 15 nmol min(-1) mg(-1) for Reactive Red 198. Other synthetic mediators like 1-hydroxybenzotriazole and violuric acid showed both concentration- and time-dependent increases in percent decolorization. Natural mediators like vanillin, on the other hand, were found to be less effective on all the dyes except Reactive Orange 1. Computed rates of decolorization were about twofold lower than that with ABTS. The laccase-ABTS system also led to nearly 80% decolorization for the simulated dye mixture. No clear correlation between laccase activity on the mediator and its ability to decolorize dyes was found, but pH had a significant effect: Optimum pH for decolorization coincided with the optimum pH for mediator oxidation. The treated samples were also evaluated for toxicity in model microbial systems. The laccase-mediator system appears promising for treatment of textile wastewaters.

  20. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.

    PubMed

    Ardao, Inés; Magnin, Delphine; Agathos, Spiros N

    2015-10-01

    Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles. © 2015 Wiley Periodicals, Inc.

  1. Overproduction of laccase and pectinase by microbial associations in solid substrate fermentation.

    PubMed

    Stoilova, Ivanka; Krastanov, Albert

    2008-04-01

    The growth and the enzymatic production of two microbial fungal associations were studied: Aspergillus niger and Fusarium moniliforme and Trametes versicolor and Aspergillus niger. The synergistic interrelations between the species of the first mixed culture increased the biosynthesis of alpha-amylase and pectinase. T. versicolor and A. niger proved to be compatible partners in the overproduction of the enzyme laccase, whose synthesis surpassed 8.4 times the enzymatic level in the monoculture, with both of the mixed microbial populations cocultivation facilitating the amplified synthesis of enzymes rather than their growth acceleration. A further proof of the presence of synergism established by the cultures was the enzyme volumetric productivities in both of the mixed microbial cultures, which increased parallel to the rise in the combined biomass synthesis. The competent selection of compatible partners can adjust the desired enzymatic levels and compositions in mixed fungal systems aimed at a number of specified designations. Thus, a very high level of laccase production (97,600 IU/g dry weight) was achieved. The chosen fungal strains produce a variety of different enzymes, but first microbial association produces mainly amylase and pectinase, necessary for their growth, and second association produces mainly laccase and pectinase.

  2. Refolding of laccase in dilution additive mode with copper-based ionic liquid.

    PubMed

    Bae, Sang-Woo; Ahn, Kihun; Koo, Yoon-Mo; Ha, Sung Ho

    2013-11-01

    Ionic liquids (ILs) are molten salts which do not crystallize at room temperature. Tunable physicochemical properties of ILs including hydrophobicity and polarity facilitate their applications in many biological processes. In this study, a copper-based IL was employed in order to enhance the refolding efficiency of laccase from Trametes versicolor which requires copper as a cofactor. When 1-ethyl-3-methylimidazolium trichlorocuprate ([EMIM][CuCl₃]) was added to refolding buffer instead of urea, the laccase refolding yield was improved more than 2.7 times compared to the conventional refolding buffer which contains urea. When the refolding of laccase was carried out at different temperatures (4, 25, and 37 °C), the highest refolding yield was obtained at 25 °C. At low temperature, two conflicting effects, i.e., suppression of the aggregate formation and decrease of folding rate, influence the protein refolding. In contrast, a copper-based IL did not enhance the refolding of lysozyme, a non-copper-containing protein. From these results, we can conclude that this copper-based IL, [EMIM][CuCl₃], was exclusively effective on the refolding process of a copper-containing protein.

  3. Prediction and optimization of the laccase-mediated synthesis of the antimicrobial compound iodine (I2).

    PubMed

    Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S

    2015-01-10

    An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.

    PubMed

    Yano, Akira; Kikuchi, Sayaka; Nakagawa, Yuko; Sakamoto, Yuichi; Sato, Toshitsugu

    2009-01-01

    The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K(M) values for the substrates 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide. 2008 Elsevier GmbH.

  5. Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems.

    PubMed

    Tušek, Ana Jurinjak; Šalić, Anita; Zelić, Bruno

    2017-08-01

    Laccase belongs to the group of enzymes that are capable to catalyze the oxidation of phenols. Since the water is only by-product in laccase-catalyzed phenol oxidations, it is ideally "green" enzyme with many possible applications in different industrial processes. To make the oxidation process more sustainable in terms of biocatalyst consumption, immobilization of the enzyme is implemented in to the processes. Additionally, when developing a process, choice of a reactor type plays a significant role in the total outcome.In this study, the use of immobilized laccase from Trametes versicolor for biocatalytic catechol oxidation was explored. Two different methods of immobilization were performed and compared using five different reactor types. In order to compare different systems used for catechol oxidation, biocatalyst turnover number and turnover frequency were calculated. With low consumption of the enzyme and good efficiency, obtained results go in favor of microreactors with enzyme covalently immobilized on the microchannel surface.

  6. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    PubMed

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Functional magnetic mesoporous nanoparticles for efficient purification of laccase from fermentation broth in magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-12-01

    A magnetically stabilized fluidized bed (MSFB) with the Cu(2+)-chelated magnetic mesoporous silica nanoparticles (MMSNPs-Cu(2+)) was established to purify laccase directly from the fermentation broth of Trametes versicolor. The MMSNPs-Cu(2+) particles in the MSFB maintained a stable bed expansion of two to threefold at a flow rate of 120-180 cm/h. At the optimal magnetic field intensity of 120 Gs, both the maximal Bodenstein number and the smallest axial dispersion coefficient were achieved, which resulted in a stable fluidization stage. The dynamic binding capacity of laccase in the MSFB decreased from 192.5 to144.3 mg/g when the flow velocity through the bed increased from 44.2 to 69.8 cm/h. The MSFB with MMSNPs-Cu(2+) achieved efficient laccase purification from the fermentation broth with 62.4-fold purification of laccase and 108.9 % activity yield. These results provided an excellent platform for the application of these magnetic mesoporous nanoparticles integrated with the MSFB in developing novel protein purification process.

  8. Production of Poly-γ-Glutamate (PGA) Biopolymer by Batch and Semicontinuous Cultures of Immobilized Bacilluslicheniformis strain-R

    PubMed Central

    Berekaa, Mahmoud M.; El Aassar, Samy A.; El-Sayed, Samia M.; EL Borai, Aliaa M.

    2009-01-01

    Production of Polyglutamate (PGA) biopolymer by immobilized Bacillus licheniformis strain-R was intensively investigated. Preliminary experiments were carried out to address the most suitable immobilization methodology. Entrapment of Bacillus cells in alginate–agar led optimal PGA production (36.75 g/l), with 1.32-and 2.18-fold increase in comparison with alginate-or K-carrageenan-immobilized cells, respectively. During semicontinuous cultivation of agar-alginate gel-cell mixture, production of PGA by 10 ml mixture was increased from 2nd to 3rd run whereas, increased till the 4th run using 15ml mixture. Adsorption was the most suitable immobilization technique for production of PGA and the sponge cubes was the preferred matrix recording 43.2 g/l of PGA with the highest cell adsorption. Furthermore, no PGA was detected when B. licheniformis cells were adsorbed on wood and pumice. Although luffa pulp-adsorbed cells recorded the highest PGA production (50.4 g/l), cell adsorption was the lowest. Semicontinuous cultivation of B. licheniformis cells adsorbed on sponge led to increase of PGA production till the 3rd run and reached 55.5 g/l then slightly decreased in the 4th run. The successful use of fixed-bed bioreactor for semicontinuous cultivation of B. licheniformis cells held on sponge cubes (3 runs, 96 hours/run) provides insight for the potential biotechnological production of PGA by immobilized cells. PMID:24031418

  9. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.

    PubMed

    Bertrand, Thomas; Jolivalt, Claude; Briozzo, Pierre; Caminade, Eliane; Joly, Nathalie; Madzak, Catherine; Mougin, Christian

    2002-06-11

    Laccases are multicopper oxidases that catalyze the oxidation of a wide range of phenols or arylamines, and their use in industrial oxidative processes is increasing. We purified from the white rot fungus Trametes versicolor a laccase that exists as five different isozymes, depending on glycosylation. The 2.4 A resolution structure of the most abundant isozyme of the glycosylated enzyme was solved. The four copper atoms are present, and it is the first crystal structure of a laccase in its active form. The crystallized enzyme binds 2,5-xylidine, which was used as a laccase inducer in the fungus culture. This arylamine is a very weak reducing substrate of the enzyme. The cavity enclosing 2,5-xylidine is rather wide, allowing the accommodation of substrates of various sizes. Several amino acid residues make hydrophobic interactions with the aromatic ring of the ligand. In addition, two charged or polar residues interact with its amino group. The first one is an histidine that also coordinates the copper that functions as the primary electron acceptor. The second is an aspartate conserved among fungal laccases. The purified enzyme can oxidize various hydroxylated compounds of the phenylurea family of herbicides that we synthesized. These phenolic substrates have better affinities at pH 5 than at pH 3, which could be related to the 2,5-xylidine binding by the aspartate. This is the first high-resolution structure of a multicopper oxidase complexed to a reducing substrate. It provides a model for engineering laccases that are either more efficient or with a wider substrate specificity.

  10. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst.

    PubMed

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications.

  11. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst

    PubMed Central

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J.; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T.; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications. PMID:27741301

  12. Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710-1 under solid-state fermentation.

    PubMed

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2014-01-01

    Laccase from Trametes polyzona WR710-1 was produced under solid-state fermentation using the peel from the Tangerine orange (Citrus reticulata Blanco) as substrate, and purified to homogeneity. This laccase was found to be a monomeric protein with a molecular mass of about 71 kDa estimated by SDS-PAGE. The optimum pH was 2.0 for ABTS, 4.0 for L-DOPA, guaiacol, and catechol, and 5.0 for 2,6-DMP. The K(m) value of the enzyme for the substrate ABTS was 0.15 mM, its corresponding V(max) value was 1.84 mM min(-1), and the k(cat)/K(m) value was about 3960 s(-1)  mM(-1). The enzyme activity was stable between pH 6.0 and 8.0, at temperatures of up to 40 °C. The laccase was inhibited by more than 50% in the presence of 20 mM NaCl, by 95% at 5 mM of Fe(2+), and it was completely inhibited by 0.1 mM NaN(3). The N-terminal amino acid sequence of this laccase is AVTPVADLQISNAGISPDTF, which is highly similar to those of laccases from other white-rot basidiomycetes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Refolding of laccase from Trametes versicolor using aqueous two phase systems: Effect of different additives.

    PubMed

    Sánchez-Trasviña, Calef; Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2017-07-21

    Protein refolding is a strategy used to obtain active forms of proteins from inclusion bodies. On its part, laccase is an enzyme with potential for different biotechnological applications but there are few reports regarding its refolding which in many cases is considered inefficient due to the poor obtained refolding yields. Aqueous Two-Phase Systems (ATPS) have been used for the refolding of proteins getting acceptable recovery percentages since PEG presents capacity to avoid protein aggregation. In this work, 48 PEG-phosphate ATPS were analyzed to study the impact of different parameters (i.e. tie line length (TLL), volume ratio (V R ) and PEG molecular weight) upon the recovery and refolding of laccase. Additionally, since laccase is a metalloprotein, the use of additives (individually and in mixture) was studied with the aim of favoring refolding. Results showed that laccase presents a high affinity for the PEG-rich phase obtaining recovery values of up to 90%. Such affinity increases with increasing TLL and decreases when PEG molecular weight and V R increase. In denatured state, this PEG-rich phase affinity decreases drastically. However, the use of additives such as l-cysteine, glutathione oxidized, cysteamine and Cu +2 was critical in improving refolding yield values up to 100%. The best conditions for the refolding of laccase were obtained using the PEG 400gmol -1 , TLL 45% w/w, V R 3 ATPS and a mixture of 2.5mM cysteamine with 1mM Cu +2 . To our knowledge, this is the first time that the use of additives and the behavior of the mixture of such additives to enhance refolding performance in ATPS is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electron transfer and reaction mechanism of laccases.

    PubMed

    Jones, Stephen M; Solomon, Edward I

    2015-03-01

    Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu's divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC), where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force, reorganization energy, and electronic coupling matrix element. Then, the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e(-) reduction steps. The first 2e(-) step forms the peroxide intermediate, followed by the second 2e(-) step to form the native intermediate, which has been shown to be the catalytically relevant fully oxidized form of the enzyme.

  15. The novel role of fungal intracellular laccase: used to screen hybrids between Hypsizigus marmoreus and Clitocybe maxima by protoplasmic fusion.

    PubMed

    Xu, Jianzhong; Zhang, Junlan; Zhang, Weiguo; Hu, Kaihui

    2012-08-01

    Laccase has been proved important in decolorization of Remazol Brilliant Blue R (RBBR), oxidation of 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, lignin degradation and fruiting-body formation. The decolorization of RBBR by laccase was firstly used to screen protoplast fusants. Fusants were obtained by protoplast fusion between the strains of Hypsizigus marmoreus and Clitocybe maxima, and two fusants (IM1 and IIIM5) were screened on PDA medium containing RBBR. These fusants were significant higher in laccase activity than H. marmoreus, nearly 413 and 395 times, respectively. Their hyphal growth rates were also remarkable higher than H. marmoreus, nearly 1.5 and 1.4 times, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed these fusants contained the laccase, and the molecular mass of the laccase was consistent with the laccase of C. maxima, nearly 62 kDa. The pileus color of the IM1 and IIIM5 also showed partial recombined characteristics comparing to the parental strains, while biological efficiency ratios were prominent higher than that of H. marmoreus, up to 14.58 and 10.87 %, respectively. Randomly amplified polymorphic DNA bands of fusants not only were similar to parental bands, but presented new non-parental bands. Using the Unweighted pair-group method together with mathematic averages method to gain a dendrogram, in which the fusants showed intra-cluster variations. Significantly, H. marmoreus was the dominant parent, while C. maxima were distant from the fusants. The differences among IM1, IIIM5 and H. marmoreus, and the similarities among IM1, IIIM5 and C. maxima indicated IM1 and IIIM5 were somatic hybrids of H. marmoreus and C. maxima. Accordingly, it is feasible to use laccase to screen fusants of H. marmoreus and C. maxima.

  16. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate.

    PubMed

    Aydinoğlu, Tuğba; Sargin, Sayit

    2013-02-01

    The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4-1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.

  17. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed Central

    Blánquez, Alba; Ball, Andrew S.; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T.; González-Vila, Francisco; Arias, M. Enriqueta

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA−) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA−). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA− and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation. PMID:29112957

  18. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?

    PubMed

    Blánquez, Alba; Ball, Andrew S; González-Pérez, José Antonio; Jiménez-Morillo, Nicasio T; González-Vila, Francisco; Arias, M Enriqueta; Hernández, Manuel

    2017-01-01

    The role of laccase SilA produced by Streptomyces ipomoeae CECT 3341 in lignocellulose degradation was investigated. A comparison of the properties and activities of a laccase-negative mutant strain (SilA-) with that of the wild-type was studied in terms of their ability to degrade lignin from grass lignocellulose. The yields of solubilized lignin (acid precipitable polymeric lignin, APPL) obtained from wheat straw by both strains in Solid State Fermentation (SSF) conditions demonstrated the importance of SilA laccase in lignin degradation with the wild-type showing 5-fold more APPL produced compared with the mutant strain (SilA-). Analytical pyrolysis and FT-IR (Fourier Transform Infrared Spectroscopy) confirmed that the APPL obtained from the substrate fermented by wild-type strain was dominated by lignin derived methoxyphenols whereas those from SilA- and control APPLs were composed mainly of polysaccharides. This is the first report highlighting the role of this laccase in lignin degradation.

  19. Development of recombinant biocatalysts expressing laccase enzyme from Trametes versicolor

    USDA-ARS?s Scientific Manuscript database

    Increasing demands for sustainable energy necessitate the use of biorenewable sources such as agricultural and forestry wastes. A major challenge of using lignocellulosic biomass for biofuel production is the recalcitrant nature of the lignin structure. Laccase is a multi-copper oxidase that catal...

  20. Laccase Gene Expression and Vinasse Biodegradation by Trametes hirsuta Strain Bm-2.

    PubMed

    Tapia-Tussell, Raúl; Pérez-Brito, Daisy; Torres-Calzada, Claudia; Cortés-Velázquez, Alberto; Alzate-Gaviria, Liliana; Chablé-Villacís, Rubí; Solís-Pereira, Sara

    2015-08-19

    Vinasse is the dark-colored wastewater that is generated by bioethanol distilleries from feedstock molasses. The vinasse that is generated from molasses contains high amounts of pollutants, including phenolic compounds and melanoindin. The goal of this work was to study the expression of laccase genes in the Trametes hirsuta strain Bm-2, isolated in Yucatan, Mexico, in the presence of phenolic compounds, as well as its effectiveness in removing colorants from vinasse. In the presence of all phenolic compounds tested (guaiacol, ferulic acid, and vanillic acid), increased levels of laccase-encoding mRNA were observed. Transcript levels in the presence of guaiacol were 40 times higher than those in the control. The lcc1 and lcc2 genes of T. hirsuta were differentially expressed; guaiacol and vanillin induced the expression of both genes, whereas ferulic acid only induced the expression of lcc2. The discoloration of vinasse was concomitant with the increase in laccase activity. The highest value of enzyme activity (2543.7 U/mL) was obtained in 10% (v/v) vinasse, which corresponded to a 69.2% increase in discoloration. This study demonstrates the potential of the Bm-2 strain of T. hirsuta for the biodegradation of vinasse.

  1. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils.

    PubMed

    Artz, Rebekka R E; Reid, Eileen; Anderson, Ian C; Campbell, Colin D; Cairney, John W G

    2009-03-01

    Repeated prescribed burning alters the biologically labile fraction of nutrients and carbon of soil organic matter (SOM). Using a long-term (30 years) repeated burning experiment where burning has been carried out at a 2- or 4-year frequency, we analysed the effect of prescribed burning on gross potential C turnover rates and phenol oxidase activity in relation to shifts in SOM composition as observed using Fourier-transform infrared spectroscopy. In tandem, we assessed the genetic diversity of basidiomycete laccases. While the overall effect of burning was a decline in phenol oxidase activity, Shannon diversity and evenness of laccases was significantly higher in burned sites. Co-correspondence analysis of SOM composition and laccase operational taxonomic unit frequency data also suggested a strong correlation. While this correlation could indicate that the observed increase in laccase genetic diversity due to burning is due to increased resource diversity, a temporal replacement of the most abundant members of the assembly by an otherwise dormant pool of fungi cannot be excluded. As such, our results fit the intermediate disturbance hypothesis. Effects were stronger in plots burned in 2-year rotations, suggesting that the 4-year burn frequency may be a more sustainable practice to ensure the long-term stability of C cycling in such ecosystems.

  2. Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design*

    PubMed Central

    Ramírez-Cavazos, Leticia I.; Junghanns, Charles; Nair, Rakesh; Cárdenas-Chávez, Diana L.; Hernández-Luna, Carlos; Agathos, Spiros N.; Parra, Roberto

    2014-01-01

    The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143 000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20 000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers. PMID:24711355

  3. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    PubMed

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase.

    PubMed

    Margot, Jonas; Maillard, Julien; Rossi, Luca; Barry, D A; Holliger, Christof

    2013-09-25

    Many organic compounds present at low concentrations in municipal wastewater, such as various pharmaceuticals and biocides, are recalcitrant in conventional wastewater treatment plants (WWTPs). To improve their biodegradation, oxidoreductase enzymes such as laccases were tested. The goal was to find optimal conditions for the transformation of two anti-inflammatory pharmaceuticals (diclofenac (DFC) and mefenamic acid (MFA)), one biocide (triclosan (TCN)) and one plastic additive (bisphenol A (BPA)) by Trametes versicolor laccase. Experiments were conducted in spiked solutions at different pH values (from 3 to 9), enzyme concentrations (70-1400 Ul(-1)), reaction times (0-26 hours) and temperatures (10, 25 and 40°C) following a Doehlert experimental design. A semi-empirical model was developed to understand better the combined effects of the four factors and to determine optimal values. This model was able to fit well the experimental data (R(2)>0.97) and showed good predictive ability. All four factors had a significant effect on the micropollutant oxidation with the greatest influence shown by pH. Results for single compounds were different from those obtained for mixtures of micropollutants. For instance, DFC transformation occurred at much higher rates in mixtures under alkaline conditions. Optimal conditions were compound-dependent, but were found to be between pH 4.5 to 6.5 and between 25°C to more than 40°C. A laccase concentration of 730 Ul(-1) was sufficient to obtain a high removal rate (>90%) of the four individual compounds (range of times: 40 min to 5 hours), showing the potential of laccases to improve biodegradation of environmentally persistent compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. In silico analysis of Pycnoporus cinnabarinus laccase active site with toxic industrial dyes.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Narayana, Siva Lakshmi; Ramakrishna, V; Kunal, Swaraj Priyaranjan; Srinivas, M

    2012-05-01

    Laccases belong to multicopper oxidases, a widespread class of enzymes implicated in many oxidative functions in various industrial oxidative processes like production of fine chemicals to bioremediation of contaminated soil and water. In order to understand the mechanisms of substrate binding and interaction between substrates and Pycnoporus cinnabarinus laccase, a homology model was generated. The resulted model was further validated and used for docking studies with toxic industrial dyes- acid blue 74, reactive black 5 and reactive blue 19. Interactions of chemical mediators with the laccase was also examined. The docking analysis showed that the active site always cannot accommodate the dye molecules, due to constricted nature of the active site pocket and steric hindrance of the residues whereas mediators are relatively small and can easily be accommodated into the active site pocket, which, thereafter leads to the productive binding. The binding properties of these compounds along with identification of critical active site residues can be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.

  6. Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity.

    PubMed

    Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca

    2015-03-30

    An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers.

    PubMed

    Asgher, Muhammad; Noreen, Sadia; Bilal, Muhammad

    2017-02-01

    In the current study, different bio-polymers such as agar-agar, polyacrylamide and gelatin were utilized as bolster materials for the immobilization of a fungal laccase through entrapment approach. Among the polymers, agar-agar matrix most firmly encapsulated the enzyme yielding significant laccase immobilization (79.65±2.55%). Immobilization prolonged the reaction time of laccase and agar-agar, polyacrylamide and gelatin entrapped laccases displayed maximum catalytic activities after 10.0, 15.0 and 10.0min of reaction, respectively, as compared to free counterpart (5.0min). It also increased the optimal temperature by 5.0-10°C and provided an alkaline shift of the pH optima to agar-agar and gelatin entrapped laccase, while, in case of polyacrylamide, optimum pH was displaced to acidic region. Kinetic data revealed that K m(app) values were slightly increased while V max values were decreased as compared to free counterpart. Polymers encapsulation led to significant improvement in activity against thermal denaturation. After 180min at 60°C, the enzymes preserved 28.1±0.9, 48.6±1.3 and 32.5±1.8% residual activities, respectively, whereas, the free enzyme was completely inactive. Immobilization enabled the enzymes to resist a number of different effectors including metal ions, inhibitors/denaturants and chelating agents. Moreover, the resulted modified laccases displayed good recycling capability for substrate-oxidation reactions in several successive batches. In summary, the tremendously improved attributes of polymers-encapsulated enzymes display a high potential for various applications in different industrial sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  9. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55.

    PubMed

    Kazeem, Muinat Olanike; Shah, Umi Kalsom Md; Baharuddin, Azhari Samsu; AbdulRahman, Nor' Aini

    2017-08-01

    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.

  10. Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation.

    PubMed

    Sharma, Abha; Shrivastava, Bhuvnesh; Kuhad, Ramesh Chander

    2015-10-01

    Statistical designs were applied for optimizing laccase production from a white-rot fungus, Ganoderma sp. rckk-02 under solid-state fermentation (SSF). Compared to unoptimized conditions [2,154 U/gds (Unit per gram of dry substrate)], the optimization process resulted in a 17.3-fold increase in laccase production (37,423 U/gds). The laccase produced was evaluated for its potential to decolorize a recalcitrant synthetic dye, malachite green. Laccase at dosage of 30 U/ml in presence of 1 mM of 1-hydroxybenzotriazole (HBT) almost completely decolorized 100 and 200 mg/l of malachite green in 16 and 20 h, respectively, at 30 °C, pH 5.5 and 150 rpm. While, higher dyes concentrations of 300, 400 and 500 mg/l were decolorized to 72, 62 and 55 % in 24, 28 and 32 h, respectively, under similar conditions. Furthermore, it was observed that the decolorized malachite green was less toxic towards the growth of five white-rot fungi tested viz. Crinipellis sp. RCK-1, Ganoderma sp. rckk-02, Coriolopsis Caperata RCK 2011, Phanerochaete chrysosporium K3 and Pycnoporous cinnabarinus PB. The present study demonstrates the potential of Ganoderma sp. rckk-02 to produce high titres of laccase under SSF, which can be exploited in conjunction with redox mediator for the decolorization of high concentrations of malachite green from water bodies.

  11. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deepti; Rawat, Surender; Waseem, Mohd

    The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K{sub m} values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative propertymore » against BSA and Cu{sup 2+}/H{sub 2}O{sub 2} model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.« less

  12. Effect of the inducers veratryl alcohol, Xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor.

    PubMed

    Saraiva, Jorge A; Tavares, Ana P M; Xavier, Ana M R B

    2012-06-01

    Laccase production from Trametes versicolor was improved in the presence of the inducers ligninosulphonates, veratryl alcohol, and xylidine respectively two-, four-, and eightfold. The thermal inactivation of the produced laccase, after partial purification with ammonium sulfate was kinetically investigated at various temperatures (60-70 °C) and pH values (3.5, 4.5, and 5.5). The inactivation process followed first-order kinetics for all conditions tested, except for veratryl alcohol, for which a constant activity level was observed at the end of the inactivation, also after first-order decay. Enzyme thermostability was affected by the type of inducer used in the culture medium for the production of laccase and also by the pH of incubation mixture. Generally, laccase stability increased with pH increment, being more stable at pH 5.5, except with xylidine. At pHs 4.5 and 5.5, the three inducers significantly increased laccase thermal stability, with the higher effect being observed for pH 5.5 and ligninosulphonates, where increment of half-life times ranged from 3- to 20-fold, depending on the temperature.

  13. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    PubMed

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  14. Functional Characterization of Epitheaflagallin 3-O-Gallate Generated in Laccase-Treated Green Tea Extracts in the Presence of Gallic Acid.

    PubMed

    Itoh, Nobuya; Kurokawa, Junji; Isogai, Yasuhiro; Ogasawara, Masaru; Matsunaga, Takayuki; Okubo, Tsutomu; Katsube, Yuji

    2017-12-06

    Epitheaflagallin (ETFG) and epitheaflagallin 3-O-gallate (ETFGg) are minor polyphenols in black tea extract that are enzymatically synthesized from epigallocatechin (EGC) and epigallocatechin gallate (EGCg), respectively, in green tea extract via laccase oxidation in the presence of gallic acid. The constituents of laccase-treated green tea extract in the presence of gallic acid are thus quite different from those of nonlaccase-treated green tea extract: EGC and EGCg are present in lower concentrations, and ETFG and ETFGg are present in higher concentrations. Additionally, laccase-treated green tea extract contains further polymerized catechin derivatives, comparable with naturally fermented teas such as oolong tea and black tea. We found that ETFGg and laccase-treated green tea extracts exhibit versatile physiological functions in vivo and in vitro, including antioxidative activity, pancreatic lipase inhibition, Streptococcus sorbinus glycosyltransferase inhibition, and an inhibiting effect on the activity of matrix metalloprotease-1 and -3 and their synthesis by human gingival fibroblasts. We confirmed that these inhibitory effects of ETFGg in vitro match well with the results obtained by docking simulations of the compounds with their target enzymes or noncatalytic protein. Thus, ETFGg and laccase-treated green tea extracts containing ETFGg are promising functional food materials with potential antiobesity and antiperiodontal disease activities.

  15. Long term storage of Pleurotus ostreatus and Trametes versicolor isolates using different cryopreservation techniques and its impact on laccase activity.

    PubMed

    Eichlerová, Ivana; Homolka, Ladislav; Tomšovský, Michal; Lisá, Ludmila

    2015-12-01

    The strain Pleurotus ostreatus Florida f6, its 45 basidiospore-derived isolates (both monokaryons and dikaryons prepared in our laboratory), Trametes versicolor strain CCBAS 614 and 22 other T. versicolor isolates obtained from the sporocarps collected in distant localities were successfully preserved for 12 y using perlite and straw cryopreservation protocols. All tested isolates survived a 12-year storage in liquid nitrogen (LN) and their laccase production and Poly B411 decolorization capacity was preserved. Also mycelium extension rate and the types of colony appearance of individual isolates remained unchanged. Different cryopreservation techniques were also tested for the short time (24 h) and the long time (6 m) storage of the culture liquid with extracellular laccase produced by T. versicolor strain CCBAS 614. The results showed that 10 % glycerol was the most suitable cryopreservant. The absence of the cryopreservant did not cause high loss of laccase activity in the samples; the presence of DMSO (5 or 10 %) in LN-stored samples caused mostly a decrease of laccase activity. For the preservation of laccase activity in the liquid culture the storage in the freezer at -80 °C is more convenient than the storage in liquid nitrogen. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Laccase from a non-melanogenic, alkalotolerant gamma-proteobacterium JB isolated from industrial wastewater drained soil.

    PubMed

    Bains, Jasleen; Capalash, Neena; Sharma, Prince

    2003-07-01

    A gram-negative, alkalotolerant bacterium, isolated from the soil continually drained with industrial wastewater and identified as gamma-proteobacterium by partial 16S rRNA sequence analysis, produced a polyphenol oxidase, which showed laccase but not tyrosinase activity. The organism grew well from pH 6 to 10 and produced laccase maximally at pH 10. The enzyme was stable from pH 3 to 10.6 for at least 24 h and was optimally active at 55 degrees C and pH 6.5 in a 5 min assay.

  17. Protein and gene structure of a blue laccase from Pleurotus ostreatus1.

    PubMed Central

    Giardina, P; Palmieri, G; Scaloni, A; Fontanella, B; Faraco, V; Cennamo, G; Sannia, G

    1999-01-01

    A new laccase isoenzyme (POXA1b, where POX is phenol oxidase), produced by Pleurotus ostreatus in cultures supplemented with copper sulphate, has been purified and fully characterized. The main characteristics of this protein (molecular mass in native and denaturing conditions, pI and catalytic properties) are almost identical to the previously studied laccase POXA1w. However, POXA1b contains four copper atoms per molecule instead of one copper, two zinc and one iron atom per molecule of POXA1w. Furthermore, POXA1b shows an unusually high stability at alkaline pH. The gene and cDNA coding for POXA1b have been cloned and sequenced. The gene coding sequence contains 1599 bp, interrupted by 15 introns. Comparison of the structure of the poxa1b gene with the two previously studied P. ostreatus laccase genes (pox1 and poxc) suggests that these genes belong to two different subfamilies. The amino acid sequence of POXA1b deduced from the cDNA sequence has been almost completely verified by means of matrix-assisted laser desorption ionization MS. It has been demonstrated that three out of six putative glycosylation sites are post-translationally modified and the structure of the bound glycosidic moieties has been determined, whereas two other putative glycosylation sites are unmodified. PMID:10417329

  18. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    PubMed

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid

    PubMed Central

    Baxi, Nandita N.

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328

  20. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    PubMed

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  1. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization.

    PubMed

    Akpinar, Merve; Ozturk Urek, Raziye

    2017-06-01

    Lignocellulosic wastes are generally produced in huge amounts worldwide. Peach waste of these obtained from fruit juice industry was utilized as the substrate for laccase production by Pleurotus eryngii under solid state bioprocessing (SSB). Its chemical composition was determined and this bioprocess was carried out under stationary conditions at 28 °C. The effects of different compounds; copper, iron, Tween 80, ammonium nitrate and manganese, and their variable concentrations on laccase production were investigated in detail. The optimum production of laccase (43,761.33 ± 3845 U L -1 ) was achieved on the day of 20 by employing peach waste of 5.0 g and 70 µM Cu 2+ , 18 µM Fe 2+ , 0.025% (v/v) Tween 80, 4.0 g L -1 ammonium nitrate, 750 µM Mn 2+ as the inducers. The dye decolorization also researched to determine the degrading capability of laccase produced from peach culture under the above-mentioned conditions. Within this scope of the study, methyl orange, tartrazine, reactive red 2 and reactive black dyes were treated with this enzyme. The highest decolorization was performed with methyl orange as 43 ± 2.8% after 5 min of treatment when compared to other dyes. Up to now, this is the first report on the induction of laccase production by P. eryngii under SSB using peach waste as the substrate.

  2. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization.

    PubMed

    Liu, Youxun; Geng, Yuanyuan; Yan, Mingyang; Huang, Juan

    2017-06-02

    The successful encapsulation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a well-known laccase mediator, within a mesoporous metal-organic framework sample (i.e., MIL-100(Fe)) was achieved using a one-pot hydrothermal synthetic method. The as-prepared ABTS@MIL-100(Fe) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen sorption, and cyclic voltammetry (CV). Our ABTS@MIL-100(Fe)-based electrode exhibited an excellent electrochemical response, indicating that MIL-100(Fe) provides an appropriate microenvironment for the immobilization and electroactivity of ABTS molecules. ABTS@MIL-100(Fe) was then evaluated as an immobilized laccase mediator for dye removal using indigo carmine (IC) as a model dye. Through the application of laccase in combination with a free (ABTS) or immobilized (ABTS@MIL-100(Fe)) mediator, decolorization yields of 95% and 94%, respectively, were obtained for IC after 50 min. In addition, following seven reuse cycles of ABTS@MIL-100(Fe) for dye treatment, a decolorization yield of 74% was obtained. Dye decolorization occurred through the breakdown of the chromophoric group by the Laccase/ABTS@MIL-100(Fe) system, and a catalytic mechanism was proposed. We therefore expect that the stability, reusability, and validity of ABTS@MIL-100(Fe) as a laccase mediator potentially render it a promising tool for dye removal, in addition to reducing the high running costs and potential toxicity associated with synthetic mediators.

  3. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme.

    PubMed Central

    Bligny, R; Douce, R

    1983-01-01

    A laccase-type polyphenol oxidase is excreted by sycamore cells (Acer pseudoplatanus L.) cells. The enzyme has been purified by classical purification techniques. It is a blue copper protein of Mr 97 000, containing 45% carbohydrate and 0.24% copper. This protein consists of one single unit and the copper content corresponds to four copper atoms per protein molecule. The specific activity of the purified extracellular sycamore-cell laccase measured at pH 6.6 (optimum pH) and in the presence of 20mM-4-methhylcatechol (optimum substrate conditions) corresponded to an oxygen uptake of 32 000 nmol of O2/min per mg of protein. Under these conditions, the catalytic-centre activity of the enzyme reached 100 s-1. The excretion of laccase by sycamore cells is significant, being about 2% of the total protein synthesized by the cells during the exponential phase of growth, and is independent of cell growth. The physiological significance and the problems raised by the passage of this protein across the cytoplasmic membrane are discussed. PMID:6847630

  4. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    NASA Astrophysics Data System (ADS)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-11-01

    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  5. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  6. Laccase from Aspergillus niger: A novel tool to graft multifunctional materials of interests and their characterization.

    PubMed

    Iqbal, Hafiz M N; Kyazze, Godfrey; Tron, Thierry; Keshavarz, Tajalli

    2018-03-01

    In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)- g -EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)- g -EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.

  7. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7.

    PubMed

    Ramírez-Montoya, Luis A; Hernández-Montoya, Virginia; Montes-Morán, Miguel A; Cervantes, Francisco J

    2015-10-01

    Immobilization of laccase from Trametes versicolor was carried out using carbon supports prepared from different lignocellulosic wastes. Enzymes were immobilized by physical adsorption. Taguchi methodology was selected for the design of experiments regarding the preparation of the carbon materials, which included the use of activating agents for the promotion of mesoporosity. A good correlation between the mesopore volumes of the carbon supports and the corresponding laccase loadings attained was observed. Specifically, the chemical activation of pecan nut shell with FeCl3 led to a highly mesoporous material that also behaved as the most efficient support for the immobilization of laccase. This particular laccase/carbon support system was used as biocatalyst for the decolorization of aqueous solutions containing Acid Orange 7. Mass spectrometry coupled to a liquid chromatograph allowed us to identify the products of the dye degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A step forward in laccase exploitation: Recombinant production and evaluation of techno-economic feasibility of the process.

    PubMed

    Pezzella, Cinzia; Giacobelli, Valerio Guido; Lettera, Vincenzo; Olivieri, Giuseppe; Cicatiello, Paola; Sannia, Giovanni; Piscitelli, Alessandra

    2017-10-10

    Protein heterologous production offers viable opportunities to tailor laccase properties to specific industrial needs. The high redox potential laccase POXA1b from Pleurotus ostreatus was chosen as case study of marketable enzyme, due to its desirable properties in terms of activity/stability profile, and already assessed applicability. POXA1b was heterologously produced in Pichia pastoris by investigating the effect of inducible and constitutive expression systems on both the yield and the cost of its production. System performances were first assessed in shaken-flasks and then scaled-up in bioreactor. The production level obtained in the inducible system is 42U/mL, while the activity value achieved with the constitutive one is 60U/mL, the highest obtained in constitutive systems so far. The economic feasibility of recombinant laccase production was simulated, describing the case of an Italian small-medium enterprise. Two scenarios were evaluated: Scenario (I) production based on methanol inducible system; Scenario (II) production based on the constitutive system, fed with glycerol. At all the scales the glycerol-based fermentation is more economic than the methanol-based one. The price forecast for rPOXA1b production is 0.34€kU -1 for glycerol-based process, and is very competitive with the current price of commercial laccase. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes.

    PubMed

    Salony; Mishra, S; Bisaria, V S

    2006-08-01

    Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg(-1) protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58+/-5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80-92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k(cat)/K(M)) on guaiacol followed by 2,2'-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5-5.4 days.

  10. Identification and Characterization of Psychrotolerant Sporeformers Associated with Fluid Milk Production and Processing

    PubMed Central

    Ivy, Reid A.; Ranieri, Matthew L.; Martin, Nicole H.; den Bakker, Henk C.; Xavier, Bruno M.; Wiedmann, Martin

    2012-01-01

    Psychrotolerant spore-forming bacteria represent a major challenge to the goal of extending the shelf life of pasteurized dairy products. The objective of this study was to identify prominent phylogenetic groups of dairy-associated aerobic sporeformers and to characterize representative isolates for phenotypes relevant to growth in milk. Analysis of sequence data for a 632-nucleotide fragment of rpoB showed that 1,288 dairy-associated isolates (obtained from raw and pasteurized milk and from dairy farm environments) clustered into two major divisions representing (i) the genus Paenibacillus (737 isolates, including the species Paenibacillus odorifer, Paenibacillus graminis, and Paenibacillus amylolyticus sensu lato) and (ii) Bacillus (n = 467) (e.g., Bacillus licheniformis sensu lato, Bacillus pumilus, Bacillus weihenstephanensis) and genera formerly classified as Bacillus (n = 84) (e.g., Viridibacillus spp.). When isolates representing the most common rpoB allelic types (ATs) were tested for growth in skim milk broth at 6°C, 6/9 Paenibacillus isolates, but only 2/8 isolates representing Bacillus subtypes, grew >5 log CFU/ml over 21 days. In addition, 38/40 Paenibacillus isolates but only 3/47 Bacillus isolates tested were positive for β-galactosidase activity (including some isolates representing Bacillus licheniformis sensu lato, a common dairy-associated clade). Our study confirms that Paenibacillus spp. are the predominant psychrotolerant sporeformers in fluid milk and provides 16S rRNA gene and rpoB subtype data and phenotypic characteristics facilitating the identification of aerobic spore-forming spoilage organisms of concern. These data will be critical for the development of detection methods and control strategies that will reduce the introduction of psychrotolerant sporeformers and extend the shelf life of dairy products. PMID:22247129

  11. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation.

    PubMed

    Riebel, Matthias; Sabel, Andrea; Claus, Harald; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz; Fronk, Petra

    2017-08-15

    Phenolic components (PCs) are well-known for their positive impact on human health. In addition to their action as radical scavengers, they act as activators for the intrinsic cellular antioxidant system. Polyphenol oxidases (PPOs) such as tyrosinase and laccase catalyze the enzymatic oxidation of PCs and thus, can alter their scavenging and antioxidative capacity. In this study, oxidation by tryosinase was shown to increase the antioxidant capacity of many PCs, especially those that lack adjacent aromatic hydroxyl groups. In contrast, oxidation by laccase tended to decrease the antioxidant capacity of red wine and distinct PCs. This was clearly demonstrated for p-coumaric acid and resveratrol, which is associated with many health benefits. While oxidation by tyrosinase increased their antioxidant activity laccase treatment resulted in a decreased activity and also of that for red wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    PubMed

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9.

    PubMed

    Mao, Shurui; Lu, Zhaoxin; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei

    2013-02-01

    Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90% activity when incubated for 2 h at 60 °C and remain about 75% and 44% activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98% with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.

  14. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum.

    PubMed

    Postemsky, P D; Bidegain, M A; González-Matute, R; Figlas, N D; Cubitto, M A

    2017-05-01

    Solid-state fermentation was evaluated at the pilot-scale for the bioconversion and valorization of rice husks and straw (RSH), or sunflower seed hulls (SSH), into medicinal mushrooms and crude extracts, with laccase activity. The average mushroom yield was 56kg dry weight per ton of agro-residues. Laccase activity in crude aqueous extracts showed its maximum value of 10,927Ukg -1 in RSH (day 10, Exudate phase) and 16,442Ukg -1 in SSH (day 5, Full colonization phase), the activity at the Residual substrate phase being 511Ukg -1 in RSH and 803Ukg -1 in SSH, respectively. Crude extracts obtained with various protocols revealed differences in the extraction yields. Lyophilization followed by storage at 4°C allowed the preservation of laccase activity for more than one month. It is proposed that standard mushroom farms could increase their profits by obtaining laccase as a byproduct during the gaps in mycelium running. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Laccase 1 gene from Plutella xylostella (PxLac1) and its functions in humoral immune response.

    PubMed

    Wang, Ze-Hua; Hu, Rong-Min; Ye, Xi-Qian; Huang, Jian-Hua; Chen, Xue-Xin; Shi, Min

    Laccase (EC 1.10.3.2) is a phenoloxidase found in many insect species. The Laccase 1 gene from Plutella xylostella (PxLac1) was cloned, and its expression patterns and functions were determined using qPCR and RNAi methods. The results showed that the expression levels of PxLac1 were consistently high in all larval stages, and the most abundant was in the midgut during the 4th instar stage. Moreover, the expression of PxLac1 was up-regulated in response to bacterial infection, and decreased 24 h after being parasitized by Cotesia vestalis. Further analyses indicated that the effect of parasitization on PxLac1 was induced by active C. vestalis Bracovirus (CvBV). Haemocyte-free hemolymph phenoloxidase (PO) activity was suppressed when PxLac1 was treated with RNAi. Our results provide evidence for a connection between the Laccase 1 gene and insect immunity, and revealed that parasitoid polydnavirus suppresses host PO activity via PxLac1 regulation. Copyright © 2018. Published by Elsevier Ltd.

  16. Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Mazlan, Siti Zulaikha; Hanifah, Sharina Abu

    2014-09-01

    Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.

  17. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities.

    PubMed

    Shi, Xiaowei; Liu, Qian; Ma, Jiangshan; Liao, Hongdong; Xiong, Xianqiu; Zhang, Keke; Wang, Tengfei; Liu, Xuanmin; Xu, Ting; Yuan, Shanshan; Zhang, Xin; Zhu, Yonghua

    2015-11-01

    Isolation and identification of a novel laccase (namely Lac4) with various industrial applications potentials from an endophytical bacterium. Endophyte Sd-1 cultured in rice straw showed intra- and extra-cellular laccase activities. Genomic analysis of Sd-1 identified four putative laccases, Lac1 to Lac4. However, only Lac4 contains the complete signature sequence of laccase and shares at most 64 % sequence identity with other characterized bacterial multi-copper oxidases. Recombinant Lac4 can oxidize non-phenolic and phenolic compounds under acidic conditions and at 30-50 °C; Km values of Lac4 for ABTS at pH 2.5 and for guaiacol at pH 4.5 were 1 ± 0.15 and 6.1 ± 1.7 mM, respectively. The activity of Lac4 was stimulated by 0.8 mM Cu(2+) and 5 mM Fe(2+). In addition, Lac4 could decolorize various synthetic dyes and exhibit the degradation rate of 38 % for lignin. The data suggest that Lac4 possesses promising biotechnological potentials.

  18. Banana peel: a potential substrate for laccase production by Aspergillus fumigatus VkJ2.4.5 in solid-state fermentation.

    PubMed

    Vivekanand, V; Dwivedi, Pallavi; Pareek, Nidhi; Singh, Rajesh P

    2011-09-01

    In solid-state fermentation, among various solid supports evaluated, banana peel was found to be an ideal support and resulted into higher levels of laccase (6281.4 ± 63.60 U l(-1)) along with notable levels of manganese peroxidase production (1339.0 ± 131.23 U l(-1)) by Aspergillus fumigatus VkJ2.4.5. Maximum levels of laccase was achieved under derived conditions consisting of 80% of moisture level, 6 days of incubation period, 6% inoculum level, and an aeration level of 2.5 l min(-1). A column-tray bioreactor was designed to scale up and economize the enzyme production in three successive cycles of fermentation using the same fungal biomass. Thermal and pH stability profiles revealed that enzyme was stable up to 50°C and at varying pH range from 5-9 for up to 2 h. The apparent molecular weight of laccase was found to be 34 ± 1 kDa. MALDI-TOF/TOF analysis of the protein showed significant homology with maximum identity of 67% to other laccases reported in database.

  19. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria.

    PubMed

    Ozer, Aysegul; Uzuner, Ugur; Guler, Halil Ibrahim; Ay Sal, Fulya; Belduz, Ali Osman; Deniz, Ilhan; Canakci, Sabriye

    2017-12-29

    A chemical bleaching process of paper pulps gives off excessive amount of chlorinated organic wastes mostly released to environment without exposing complete bioremediaton. Recent alternative and eco-friendly approaches toward pulp bleaching appear more responsive to environmental awareness. Here we report, direct use of a recombinant Bacillus subtilis bacterium for pulp bleaching, endowed with three ligninolytic enzymes from various bacteria. In addition, efficient bleaching performance from glutathione-S-transferase (GST) biocatalyst tested for the first time in pulp bleaching applications was also achieved. Simultaneous and extracellular overproduction of highly active GST, laccase, and lignin peroxidase catalysts were also performed by Bacillus cells. Both enhanced bleaching success and improved delignification rates were identified when enzyme combinations tested on both pine kraft and waste paper pulps, ranging from 69.75% to 79.18% and 60.89% to 74.65%, respectively. Furthermore, when triple enzyme combination applied onto the papers from pine kraft and waste pulps, the best ISO brightness values were identified as 66.45% and 64.67%, respectively. The delignification rates of pulp fibers exposed to various enzymatic bleaching sequences were comparatively examined under SEM. In conclusion, the current study points out that in near future, a more fined-tuned engineering of pulp-colonizing bacteria may become a cost-effective and environmentally friendly alternative to chemical bleaching. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  20. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    PubMed Central

    Zhao, Shuang; Rong, Cheng-Bo; Kong, Chang; Liu, Yu; Xu, Feng; Miao, Qian-Jiang; Wang, Shou-Xian; Wang, He-Xiang

    2014-01-01

    A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 37°C, K m values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein. PMID:25540778